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ABSTRACT

Two methods for predicting the reliability and
maintainability (R/M) of systems are discussed--a simu-
lation method and an analytic method. Two computer
programs (SIM3 and GEMJR) incorporating these methods
and their input and output are described. The simula-
tion method uses Monte Carlo techniques in predicting
reliability. The analytic method incorporates the
Poisson failure process to develop stochastic matrices
which can be solved using infinite series to give re-
liability and availability.

The advantages and disadvantages of both methods
are discussed. System configuration changes and com-
plex missions can be considered more effectively using
the simulation method. However, the simulation method
does not calculate availability and provides only ap-
proximate results. In contrast, the analytic method
predicts exact results and can examine such maintenance
aspects as repairmen, standbys, and redundancies. Both
methods are useful tools depending upon the R/M
applications.
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SECTION 1
INTRODUCTION
A January 1971 Navy instruction states, "It is the policy of the De-
partment of Navy that logistic support planning will be included in the

design, test, evaluation, production and operation of systems/equipment at
all stages beginning with early conceptual studies."l* Logistics support
planning has many facets. One of those delegated to the Chief of Naval
Material involves the development and promulgation of '"techniques for pre-
dicting costs and optimizing life cycle logistic support through analysis
of potential tradeoffs between reliability, maintainability, design and
manning interfaces, and other logistic support alternatives."1 Consequent-
ly, the ability to determine reliability and maintainability (R/M) of

systems throughout the design phase is necessary.

s s——

The theory for calculating R/M has been in existence for years but had
not been widely applied before the advent of the digital computer. Evalua-
tion of the performance of Navy systems--including ship systems--during the
design phase has been facilitated through the application of R/M computer

programs. This report describes two computer programs utilizing two dif-
ferent methods for calculating R/M: GEMJR and SIM3. GEMJR utilizes an
analytical method; SIM3 a simulation method. GEMJR is based on GEM,2 a

large, comprehensive, user-oriented computer program which can solve many

s ;R e
) —-

different R/M problems. Much smaller than GEM, GEMJR is useful for specific

———

solutions; however, a user can easily develop a program suitable for his
particular problem by following the analytic method incorporated in GEMJR.

The simulation program SIM33 uses Monte Carlo4 techniques for generating

T

failure and repair events. From the descriptions of these two programs

provided in this report, the user will be able to select the one best
suited to his needs.

e
B it e S

*A complete listing of references is given on page 105.
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SECTION 2
BACKGROUND
Reliability is defined as the probability that a system will perform

——————

satisfactorily~-that is, without failing--for a given period of Lime.5

i The reliability of a system is an important consideration in logistics
planning, for the fewer the failures, the less the maintenance required.
However, the process for increasing system reliability must be considered
in conjunction with the life cycle cost; increasing system reliability may
increase system cost even though it may decrease maintenance cost. The

tradeoffs between cost and reliability are beyond the scope of this report.

(Appendix A is an example of a tradeoff analysis.) Only the methods used

l to determine reliability are described here.

} Maintainability,5 defined as the capacity of a system to be restored
to operable condition within a given length of time after the system fails,
must also be considered in logistics planning. Maintainability is not cal-

culated directly; it is determined from availability, the probability that

the system will be available for use at a given time. When a system fails,
the length of time the system is inoperable is affected by the maintenance
resources (number of repairmen, spare parts, etc.) available. Tradeoffs
between maintenance resources and cost and time to repair are part of the

logistics planning process.

affected by the system design as well as by the maintenance resources

1]
|
i
t
i; System downtime (the time the system is inoperable due to failure) is
Z available. For example, standby equipment can be incorporated into the
»

T
St SO

system to be used when the on-line equipment fails; redundant circuits can

be included in the system for use when the primary circuit fails. Such
design options affect the cost of a system and form a logical part of the
logistic planning process.
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SECTION 3
SIMULATION RELIABILITY PREDICTION USING SIM3

The SIM3 simulation method uses Monte Carlo techniques6 in predicting
reliability. Although it does not predict availability and gives only ap-
proximate results, it does provide useful information in R/M applications.
For a more detailed description of the SIM3 computer program, see

Appendix B.

3.1 SIM3 INPUT

The input to SIM3 is of three types:

* Descriptions of the phases of the mission scenario

» A system definition in the form of a reliability block diagram
for each subsystem involved in each phase of the mission

e Reliability data in the form of mean time between failures (MTBF),
mean time to repair (MITR), and utilization factors (the average percentage

of time the equipment is used during the mission)

3.1.1 Mission Scenario

A simple mission for a ship system may consist of a single phase--for
example, constant speed over a given time. For such a specification the
system definition and thus the configuration of its subsystems remains
unchanged over its operational profile, referred to as the mission scenario.
A complex mission will involve several phases, and the ship equipment con-
figuration may change with each phase to perform the required operations.
Addition or substitution of equipment or of whole subsystems may be re-

quired. For instance, one phase might call for half power, requiring only

one boiler subsystem in the configuration. A later phase might need full
power and the second boiler subsystem would be required. SIM3 can easily

accommodate such equipment configuration changes.

3.1.2 System Definition
A system is a combination of equipment, components, and parts which

perform the overall functions dictated by the mission. A complex system

' N —— - R i 2. ot i o oo
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can be divided into one or more subsystems, each of which performs a spe-
cific function in the system. Thus, a system is essentially an integrated
collection of subsystems, and a system configuration incorporates all the
! individual subsystem configurations.
A system is defined for R/M purposes by a reliability block diagram
showing the equipment in the system arranged to enable the calculation of

R/M characteriatics (see Appendix C). When the mission scenario specifies

VI RS 45

changes in performance from phase to phase, the equipment configuration,

and thus the system definition, may change correspondingly.

|

{

3 3.1.3 Reliability Data

>} The reliability of a system is derived as a composite function of the
! probability distributions for each piece of equipment in that system. The

probability distribution for each equipment is based on its operating

A

history. Once the most appropriate distribution has been determined through
statistical means, the parameters required in the distribution can be

determined.

SIM3 uses an exponential distribution which requires the parameters

; mean time between failures (MTBF) and mean time to repair (MTTR) for each
E piece of equipment in the system. These parameters are determined by ob-
; serving the occurrence of failures and times to repair of the equipment

b under actual operating conditions. By averaging the failure and repair

¢ data over a given time interval, mean values are obtained. Although an

ﬂi exponential distribution is not always the best approximation of mechanical
‘; system operations, it is used because the parameters MTBF and MTTR are more
)

4 easily obtained than the parameters for most other distributionms.

3.2 SIMULATION DESCRIPTION
3.2.1 Definitions

The use of simulation to determine the reliability of a system assumes
knowledge of the operation of the system in its environment. The system's

operation is simulated by generating failures and repairs of all the

i —— - | S
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equipment in the system over a specified mission scenario. By the use of
appropriate criteria, the success or failure of the simulated mission can
be determined.

Because the generation of failures and repairs in the simulation is
random, the success or failure of a single mission is not meaningful. Many

simulated missions must be run to obtain the reliability of the system,

which is defined as the ratio of successful missions to total missions
1 simulated.

Two examples are given to illustrate the application of Monte Carlo
techniques to generate failures and repairs in a simulated mission. Reli-

ability with repair is to be computed over a specific mission time period.

3 } To perform the simulation, the quantities TTF (time to failure) and TTR

1 J (time to repair) are generated for each equipment. TTF represents an in-
terval from the time the equipment begins operation to the time when it
fails. TTR represents the length of time required to repair the equipment

;; after it has failed. The following algorithms are used to obtain TTF and

TTR for an equipment with mean time between failure of MTBF and mean time

to repair of MTTR:

TTF = -MTBF 1n RN

i o b e
£ SRR :

=0 ’ "
B e I
' i

TTR = -MTTR 1n RN

RN is a random number between O and 1.

= -

To simulate a mission for a given scenario, a series of TTF's and

TTR's is generated for each equipment. The sequence in which the times
are generated will determine whether or not the simulated mission is

successful. ]
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3.2.2 Illustrative Example I
To illustrate the use of SIM3 in predicting reliability, consider

operation of a system containing one equipment; when the equipment fails,

so will the system.

The generation of TTF's and TTR's can be represented by a time line

on a one-dimensional graph.

MISSION MISSION
START END
;i TTFy t, t, TTF, t3 tg TTF, “5
t = tg —— +— UP.STATE
TTR, TTR,
B — T P —_—_——_— e — - DOWN-STATE

During the mission, equipment can assume two conditions or states.
When the system is operating, it is referred to as being in an up-state;
when the system is not operating due to failure, it is referred to as being
in a down-state.

The mission starts at t = 0 with the system in the up-state. The
first event is the generation of TTF1 (time to the first failure)

TTFl = -MTBF 1n RN

At tl, the system drops into the down-state for an interval TTR1 (time for

first repair)

TTR1 = -MTTR 1ln RN

t. + TTR, = t

10
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At tz the equipment is repaired and resumes operation. Similarly, TTF

2

and T'l‘R2 represent the second time to failure and time to repair. TTF3,
the third time to failure does not fail the system until after the mission
ends at t5 with the system in an up-state.

In this example, whenever the equipment failed (became inoperable),
the system dropped into the down-state. In a system composed of two equip-
ment in series, similar time~lines are generated. If either equipment
fails, the system drops into the down-state, even though the other equip-
ment is still functioning. If the two equipments are in parallel, the
system might remain in operation if one equipment fails depending upon the

mission requirements.

3.2.3 Illustrative Example II
This example further illustrates repair, up-~ and down-states, and
other concepts used in this simulation. A system made up of two equipments

A and B in parallel has the configuration

The operation of this configuration will be described over a mission ex-

tending from t = 0 to t = tg- The operation of the system is specified by
the up-state rule which states that, for a mission to be successful, either
A or B must be in operation. If both A and B fail, the mission is aborted.

The system can assume the following states:

11
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State Description
0 A and B both operational
1 Either A or B operational
2 A and B both failed

States 0 and 1 are considered up-states, since the system will operate

ORI T I Py o

successfully under either of these conditions. State 2 is a down-state.
This system is illustrated using two time-lines, one for A and one for
B, and a third time-line indicating the state of the system as the result “

of failures and repairs of A and B.

Generating TTF and TTR as before, equipment A is down from tl to t2,

and B is down from t3 to t4. Since these intervals do not overlap, the

0 t t t t
Ae 2 2 6 g UP-STATE OF A
———————————————————— DOWN-STATE OF A
t t t t
Be 3 4 5 d UPSTATE OF B
;) _________ e e e DOWN-STATE OF B
|
\ STATE O t t, t t t t .
, einciab il £ s 4 = B SYSTEM UPSTATE
f‘ ts ‘7 3
} SRR ) = R O 55, St ) RS e A SYSTEM UP-STATE .
} B e el A O S C A e s S g SYSTEM DOWN-STATE
i
&
»

system is in State 1 during both failures. At t B goes down and the

5!
‘ system again goes from State 0 to State 1. However, before B is repaired,

A goes down (at t6) and the system fails (State 2). At t,, B is repaired

7’

and the system becomes operative again, proceeding to State 1. At t8 A is

repaired and the system is restored to State O.

12
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In this example, at least one of the two equipments is required for
operation. When the system entered State 2 at t6’ the system failed and
the mission aborted. However, if the two equipments had not failed at the
same time, State 2 would not have been reached and the mission would have

been successfully completed.

3.2.4 Mission Success

Since TTF's and TTR's are generated using random numbers, each simu-
lated mission (replication) will be different. However, the actual states
entered and the times at which they are entered are unimportant. What is
important for either of the illustrative examples is the continuous opera-
tion of the entire system. If the system never enters a down-state, the
mission is successful.

To obtain the reliability of a system, the simulation is executed with
a given mission scenario and all the system failures are tabulated. At

the end of a specified* number of replications, the reliability is computed.

Number of successful missions
Total number of missions run ;

Reliability =

Reliability, the probability that the system will successfully perform
the mission as specified in the scenario, is expressed as a statistical

average, the percentage of successful missions.

3.3 SIM3 INPUT DESCRIPTION AND SPECIFIC
EXAMPLE

Section 3.1 described the three types of input required by SIM3:
mission scenario, system definition, and reliability data. This section
describes the data in greater detail.

*The number of replications required to give a specific accuracy can
be determined stastically or experimentally by performing sensitivity
studies on the number of replications.

13

2

L adel 2 R W A N Y
» ol o A e N .'}{ e i I



3.3.1 Mission Information
3.3.1.1 Scenario. The mission scenario is described in terms of the
length of each phase, the system definition during that phase, and related

| information. -

3.3.1.2 Abort Criteria. One of the characteristics of SIM3 which adds to

its usefulness is the inclusion of abort criteria normally not available in
analytic methods. These criteria are given in the form of three values
(Tl, T2, and T3) specified for all subsystems and for the system itself,

where Tl f-TZ f'T3:
. T1 is defined as negligible subsystem or system downtime. If the

subsystem (or the system) is down for a time less than Tl, an equipment

failure is not recorded and the mission does not abort.

° T2 is defined as allowable sustained downtime. Only if a subsystem

(or the system) is down for a time t and t > T2 does the mission abort.

L SRR

{ G T3 is defined as allowable cumulative downtime, A subsystem (or the
system) may be permitted several down periods (where ty is a down period)
during each phase, so long as the cumulative total of such downtimes does

not exceed a specified limit. Thus if T, < £ < T2, the mission will not

1 :
g
n
abort unless E ti > T3 where n is the number of down periods.
i=1

These three abort criteria enable a realistic simulation of operating
conditions, since failure of one subsystem does not always cause mission
abort. If these abort procedures are not desired in the simulation, or if

comparison with analytic methods is preferred, the setting Tl = T2 = T3 =0

is used.

3.3.2 System Definition

Once the equipment in each phase of the mission has been specified,
each equipment will be identified by a code which is entered into the
program as input. Figure 1 illustrates the use of the code in a sample

block diagram of a simple system. (See Appendix C for derivation of a
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block diagram.) Each numbered rectangle in the diagram represents a sepa-
rate equipment. The equipment numbers, a different number for each piece,
are for identification purposes only and have no other significance.

As indicated in Figure 1 each alternative path in each block is a
separate branch. The branches are renumbered within each block. Each
equipment is located in one of the branches and the branches are arranged
into logical blocks of equipment. As shown in Figure 1, series components
form one block (Block 2) and redundant elements form two separate blocks
(Blocks 1 and 3). A block must contain at least one branch and a branch
must contain at least one piece of equipment. Branches are numbered con-
secutively from top to bottom. Blocks are also numbered consecutively
from either direction.

A redundant configuration occurs whenever a block contains more than
one branch. It then becomes necessary to specify the up-state rule for
that block, i.e., the number of branches required for successful operation.
If a block contains n branches and only m are required for system opera-
tion, the up-state rule is given in terms of m/n as shown in Figure 1.

The rules for mapping a configuration are as follows:

1. All blocks must be arranged in series.

2. All branches within a block must be in parallel. For each block
an m/n up-state rule must be specified.

3. All equipment within a branch must be arranged in series.

4. Blocks in each subsystem must be consecutively numbered.

5. Branches within a block must be consecutively numbered.

6. Equipment numbers are for purposes of identification only.

3.3.3 Equipment Type Number

SIM3 was written initially for the CDC 3300* computer where limited
size necessitated incorporating certain procedures into the program to
decrease the amount of required computer storage. Equipments which have
exactly the same MTBF, MTTR, and utilization factor (UF) are grouped into

a type and assigned a type number. If two identical equipments are used

*SIM3 has recently been adapted to the CDC 6700 series computers.

16

e~ —— el — e

T AR 1) b - TP o - v g e

- A ok v TR s it e D N st b s e 80 ki 3l




in the same phase of a mission, each must be referred to by a different
equipment number. If these two equipments carry the same type number, the
identical character of the equipment is retained. When an identical equip-~
ment is used in different phases, the same equipment number and type may

be used. Thus identical equipments are always referred to by the same type

number, although they may have different equipment numbers.

3.4 SAMPLE CONFIGURATION
A sample problem may serve to clarify the concepts of type and equip-
ment number, mission, and system definition as related to SIM3. A three-

phase mission may be diagrammed along a horizontal line (Figure 2).

TIME | L L J
(hrs) ¢ 262 430 1200

] PHASE 1, PHASE 2, PHASE 3,
b | LEVEL 2 LEVEL 1 LEVEL 2
4

Figure 2 - Mission Profile for System A

e e L

In this example, the mission begins at t = 0 and ends at t = 1200.
The mission specifies that the system will assume two levels of performance.

The configuration for each level is shown in Figure 3. During Phases 1

and 3, Level 2 is required for operation; during Phase 2, Level 1 is

: required.
E: In Figure 3, the configuration is divided into four blocks; within

each block each rectangle represents an equipment. Only the configuration

o

in Block 1 changes between Levels 1 and 2. The configuration in Block 1
of Level 2 displays redundancy; that in Block 1 of Level 1 is arranged in

series.
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The system diagrammed in Figure 3 contains eight types of equipment.
The type number for each equipment is indicated in the lower right-hand
corner of each rectangle. Block 1, Level 2 contains four different types
of equipment and Level 1 contains two identical equipments, 1 type. In
both Levels 1 and 2, Block 2 contains three type-2's in parallel and Block
3 contains two type-4's in parallel, both redundant configurations. Block
4 contains two different equipments in series.

When the equipment in a block is redundant, an up-state rule must be
specified. For Block 2, assume m/n = 2/3 is specified i.e., two of the
three branches in parallel must be operable for the subsystem to be opera-
ble. For Block 1, Level 2 and for Block 3, Levels 1 and 2, m/n = 1/2 is
specified.

Appendix B describes the input deck setup for SIM3 and includes a

sample printout.
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SECTION 4
ANALYTIC RELIABILITY PREDICTION THEORY
This section discusses the analytical approach to reliability in- N é
cluding the theory of the Poisson failure process and its incorporation into 7

the analytic prediction method. Both exact and approximate solutions will

be derived for solving the set of differential equations from which re-

liability and availability are computed.

4.1 THE STOCHASTIC MATRIX
4.1.1 Theoretical Aspects

To compute the reliability of a system analytically, all the states
that the system can assume must be identified. Up-states are defined as
those states in which a system is operative. Down-states are those that
occur when a system fails. The configuration of the equipment in the
system determines up-states and down-states. For example, in a system
composed of two identical equipments, called A, the following three states

occur (A represents an equipment that is up and A an equipment that is

down) :
State Symbol and Description
0 AA - both operational
1 AA - one operating and one failed

[

AA - both failed

The probabilities for the three states are defined as PO, Pl, and PZ'

The system will always be in one of these three states; therefore, the
sum of the three probabilities is 1. The probabilities can be determined
knowing only what equipment exists in the system configuration, without
knowledge of the arrangement itself. To determine the reliability from

the probabilities, the configuration must be known.

Since the reliability is the probability that a system is in opera- g
tional condition, only the up-states are used for computing the reliabili- .

ty. For example, if a system has the following configuration, consisting
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as State 0 in which both A's are in operation. If either equipment fails,

the system fails. The reliability of this configuration is P,, the proba-

0
bility that both equipments are operating. :
If the system configuration consists of two equipments arranged in

parallel,

where redundancy is assumed, then the operation of only one equipment is
required for system operation, so the up-states are 0 and 1. The reliabil-
ity would equal P0 + Pl, the probability that either or both of the equip-
ments are operating.

For either system configuration, State 2 describes a condition of
system failure. Since reliability is the probability that the system is

up, P, is not considered in the reliability of either system configuration.

2
Once we have defined all the states in the system, a matrix, called a
stochastic matrix, can be generated whose elements represent the transitions

between these states. If N represents the number of states in the system,




the dimensions of the matrix are NXN. In the above example of two identi-
cal equipments, the stochastic matrix is dimensioned 3%3, containing nine
elements.

In general, an NXN matrix has N2 elements or transitions, but not all
of them are allowed, for the following rules must be observed when using
the Poisson failure process7:

* The probability of a transition in the interval t, t + At is AAt,
where A is the failure rate.

* The probability of more than one failure in the above interval
is zero.

* The transition probabilities are independent of the state of
the system.

Transitions can occur only between two adjacent states, e.g., from

State 0 to State 1 or from 1 to 2, but not from O to 2. The probability

of a transition from State 0 to State 2 is defined to be O.

L These rules and the method for deriving the transition probabilities
Fﬁ are given by Saudler.7 In the next sections the derivation of the stochas-
tic matrix and the calculations of reliability and avilability from the
stochastic matrix will be illustrated. Since these calculations are fairly

straightforward, emphasis will be placed on the derivation of the stochastic

matrix for various configurations.

4.1.2 Derivation of the Stochastic
Matrix

The NXN stochastic matrix represents a set of N simultaneous dif-

ferential equations (ome equation for each state). In simple cases such
as the one above, these equations can be solved exactly, but when the

number of states becomes large, infinite series are needed for a solution.

The accuracy desired in the series approximation can be specified. If the

;. f desired accuracy is obtained, the solution of the differential equations

using series can then be considered exact.

For our first example of the construction of a stochastic matrix we

shall examine the case of reliability without repair. Simple expressions
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have been derived which are used to determine the reliability of a non~
maintained system and a complicated derivation is unnecessary. However,
for illustrative purposes, we shall indicate how these expressions can be

determined by use of stochastic matrices.

4.1.3 Reliability without Repair

PR A —————

Each element in a stochastic matrix represents a transition from an

NPT PTOIIPO T GRS

initial state, represented vertically, to a final state, represented |
horizontally.
The stochastic matrix for a system consisting of two identical pieces ?.

of equipment for which repair is not available and for which the failure

is as follows:

rate A = L
MTBF

Initial States Final States
0 -1 2
0 1-2x 22 0
1 g ik X 1
2 0 O 1 !

The States 0, 1, and 2 have been defined for a system ccnsisting of

two pieces of equipment. The matrix of Equation (1) has nine elements.

When a transition violates the rules represented in Section 4.1.1, a zero
is entered. The 00 element represents a transition from an initial State

0 to a final State 0, i.e., the probability that both equipments will
remain in operable condition through the interval dt. This transition
represents the probability (1~2)A) that neither equipment will fail.

Element Ol represents the probability of transition from State 0 to 1, i.e.,
the probability that one of the equipments will fail. Since both equip-

ments have the same probability of failure, the transition is represented
by A + A = 2A. The 02 element is zero since it is not a transition between i
two adjacent states. Element 10 is zero. Since there is no repair, the 4

system canncc go from State 1 back to State 0. Element 11 represents the
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probability that one of the pieces of equipment does not fail when the other
already has failed and is 1 - A. Element 12 represents the probability

that if one equipment has failed the second one will fail also, and is A.
Element 20 is zero for it represents a two-state transition. Element 21

is zero, since repair is not allowed. Element 22 is 1, for when both

equipments have failed they will always remain failed (no repair).

4.1.4 Reliability with Repair

If repairs can be made, down-state items can be made operable, thus
increasing the system reliability. Once we assume a maintained system,
repairmen must be introduced. If one repairman is assigned to each equip-

ment, an equipment that fails can be repaired immediately by a dedicated

repairman. If two or more equipments are down at the same time, both can
be repaired simultaneously by two dedicated repairmen. On the other hand,
if the number of repairmen is less than the number of equipments in the
system, the repair capability is reduced, decreasing the reliability.

The following matrix represents a system composed of two identical

equipments in parallel with two repairmen, where y is the repair rate.

0 1 2
0 #1sg% 2K 0

1w TGy A (2)
2 0 2u 1-2u

The repair rate is the reciprocal of the mean time to repair.

Some elements of this matrix are identical to those of the matrix in
which repair was not considered. We shall examine only those elements
that change with the introduction of repair. Element 10 is u, the proba-
bility that one equipment is repaired. Element 11 is 1 - (A+u), the proba-
bility that one equipment is not repaired and the other does not fail.
Element 21 is Y, the probability that either equipment is repaired. And
Element 22 is 1 - 2y, the probability that neither equipment is repaired.
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However, if only one repairman is available for the two equipments, Ele-
ment 21 becomes y and Element 22, 1 - pu.

In this situation, only one

equipment would be repaired at a time. The coefficient of U represents

the number of repairmen specified.

4.1.5 Standby Redundancy

If a system has a configuration with a + b identical equipments in

parallel, and at least a equipments are required for continuous operation,

the configuration is termed redundant. If the b redundant equipments are

fully operative, active redundancy is present. If the b equipments are not

operational until some of the a primary equipments fail, standby redundancy
exists.

The stochastic matrix for a two-equipment standby redundant configura-

tion (only one active equipment) with one repairman is

0 1 2

[ 0

1 {w =) X (3)
2 0 M 1-p

Element 00 becomes 1 - A, indicating the probability that one equip-

ment will not fail. This is so, since only one equipment is active and
capable of failing; the equipment in standby is inactive and therefore is

not considered. The same argument holds for Element 01 which becomes A.

4.2 SOLUTION METHODS FOR STATE PROBA-
BILITIES AND RELIABILITIES

4.2.1 Exact Solution

To illustrate the exact analytic solution using the stochastic matrix,

reliability without repair will be used. More complicated cases involving

repair can also be solved analytically, but there are limitations. As
the number of states becomes large, approximate methods must be used.

This application will serve mainly to introduce the theory of the state
probabilities.
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Equation (1), the stochastic matrix for two identical equipments with-
out repair, is repeated here:

1~2) 2\ 0

Two operations must be performed to convert this matrix into usable
form. First, 1's are subtracted from all the diagonal elements and then

the transpose of the matrix is taken, resulting in

2\ -\ 0 (4)

If Po(t), Pl(t), and Pz(t) are the probabilities of the system being
in States 0, 1, and 2, then their relation with the stochastic matrix is

Pa(t) Po(t) -2 0 O
Pi(t) = Pl(t) 2 =k 0 (5)
Pé(t) Pz(t) 0 A 0

where (') represents derivatives with respect to time.

Equation (5) breaks down into the following three simultaneous dif-
ferential equations:

Pb(t) = =2\ Po(t) (6)

Pi(t) = 2\ Po(t) - APl(t) 7

Pé(t) = APl(t) (8)




-

Since the system is fully operational at t = 0, the initial conditions

are:

T

; { PO(O) =1
Pl(O) =0 9)
P2(0) =0
Using Laplace transforms to solve Equations (6), (7), and (8) gives the
following expressions for the state probabilities:
-2\t
A P0 = e (10)
}!
:
’ P, = et _ garike (11)

P2 represents a down-state and is not used in the reliability computation.

If the two equipments are specified in series, the reliability results
represent the probability that both equipments are operational, or

Reliability = P, = e 2At

0 (12)

Equation (12) could have been obtained by multiplying the reliabilities of

the individual equipments together (i.e., e-kt X e—kt). However, if the

equipments are in parallel, then the reliability is the probability that
at least one equipment is operational, stated as

: s - . plahal T St
B e e it g ﬂ,_'_.

s T

Reliability = P + P, = 2¢ 't _ o~2At

0 1

(13)
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This expression could have been derived from the standard expression

for the reliability of parallel equipments which for two equipments is

Reliability = 1 - (1-R)* (14)

where R is the reliability of one equipment.

If we assume an exponential distribution R = e_At, then

Reliabilits = 1 ~ (e 5% (15)

and Equation (16) is the same as Equation (13).
For a simple case like this in which the expressions are already
known, Laplace transforms are not necessary. Their use is indicated for

the more complicated analytical cases.

4.2.2 Approximate Solution
When the number of states becomes large, approximate solutions are
required. Infinite series are introduced to facilitate a solution.

Let [A] represent the stochastic matrix of n dimensions and

[B()] = (By(t), By(E), By(t) . o . . P_(£)) an

(P(t)]

(Po(t), Pl(c), Pz(t) 3 bre Pn(t)) (18)

Then the matrix Equation (5) can be written as

[P(t)] = [P(t)]A] (19)

ALK b
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Also, let the initial probability state vector be specified as

[P(O)] = (PO(O), Pl(O), Get e Pn(O)) (20)

so that the solution of the matrix equation is of the form

[Alt

[P(t)] = e [P (21)

0]

To evaluate this expression, the infinite series expansion for the

exponential function e[A]t is used.
[A]lt |A|2t2 |A|jtj
e = [1] + [A]lt + T C TR 3T
e
- 2 '.Lé%TE- (22)
j=0

In this series, t is the time variable and [I] is the nXn identity matrix
(1's in the diagonal elements and zero's elsewhere).

The infinite series e[A]t

can be evaluated for a specified number of
terms providing t does not become much greater than |[A|| (the magnitude
of [A]). If t >> ||A||, the series will not converge. To make the solu-
tion of Equation (21) generally applicable, it is necessary to eliminate
any possibility of nonconvergence. As an illustration, let us represent

the matrix equation [P(t)] = [P(t)][A] in a different form as

y(t) = Ay(t) (23)

where y is an n-dimensional column vector and A is an nXn matrix.

s DR




To overcome the problem of nonconvergence when t >> IIAII, an iterative
procedure is introduced which allows the evaluation of the series with an
increment At of t, instead of t itself. The value of At is of the same
order of magnitude as A in order to force the series to converge. The

solution of Equation (23) is in the form

y(0) = ey (26)

This equation should hold (theoretically) for any value of t. Thus, if
t + t + At, the equation becomes

y(ahe) = eA(t+At)yo
= eAteAAt
Yo
(25)
- AAt At
Yo
y(e+de) = 22ty (r)
since y(t) = eAtyo.
To determine y(t+At), we need evaluate only the series
(At 1a)%¢?
e o (1] + (A)de ¢+ =Sge=-4 . . . (26)
instead of eAt.
Consequently, to evaluate y(t) for any t, the series e[A]At has only

to be evaluated once.
The iteration process will be illustrated by indicating how the value
of y(t) for t = T is obtained. T is a specified time interval (measured

from t = 0) and is much larger than [A]. An increment At is chosen (a

TR O AT L+l & LU et ¥
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value of 0.05 is presently used) and for simplicity we assume it will divide
evenly into T so that on dividing %E = n., The value of n represents the
number of iterations required to obtain y(t). (Non-integer values of n can
be handled in the actual calculations.)

Equation (25) is

’

y(t+At) = eAAty(t)

Letting t = 0 and y(0) = Yoo the specified initial value of y(t)

ye) = Mty @7

Thus, with eAAt and Yo known, y(At) may be obtained. Then, letting Yo
= y(At), a value for y(2At) can be obtained, and so on up to y(nAt).

The iteration process may be represented as

yae) = %y 1
y(28E) = ™2t che
73ty = 25 28¢)

y(aat) = e*Ey[(n-1)At]

and

y(T) = y(nAt) (28)

which gives the desired state probabilities represented by the vector y.
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4.3 DETERMINATION OF RELIABILITY AND
AVAILABILITY USING THE
STOCHASTIC MATRIX

Once the stochastic matrix has been derived, availability as well as
reliability can be obtained.

4.3.1 Stochastic Matrix Derivation

A configuration with two identical equipments in parallel and two
repairmen may be diagrammed as

The stochastic matrix for such a system, shown as matrix (2), is con-

verted into an operational form by subtracting 1 from each of the diagonal
elements and transposing. The matrix becomes

-2\ M 0
2 =(A+p) 2u (29)
0 A -2u

The system can assume three states
State 0 - Both equipments operational
State 1 - One equipment operational, one equipment failed
State 2 - Both equipments failed

Only in States 0 and 1 will the system be operational.
system failure.

State 2 represents

33
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4.3.2 Calculation of Availiability
In calculating the state probabilities when availability is desired,
the entire stochastic matrix of dimensions 3x3 is used. The availability

represents the sum of the probabilities of all up-states.

Availability = PO + Pl (using entire stochastic

matrix of dimension nXn) (30)

4.3.3 Calculation of Reliability

In calculating the state probabilities when reliability is desired,
an adjustment in the stochastic matrix is required. If NSF represents the
number of up-states (in this case NSF = 2), then a new 2X2 matrix consist-

ing of the up-states is formed. This matrix is

-2\ U )
( 2\ - () (B

derived by entering zeros in the last column of the original stochastic
matrix. In the calculation of reliability, transitions from down-states

to up-states are discarded. This rule comes from the definition of reli-
ability, which states that the system must not be in a down-state during
the specified time interval. Thus, the derivations of Elements 12 and 22
in matrices (2) and (3) were not required for the computation of reliabili-
ty. They were described, since they are required in the availability cal-

culations. Since only P0 and Pl are required, a 2X2 matrix is sufficient.

Reliability = P0 + P1 (derived from NSFXNSF up-state matrix) (32)

4.3.4 Truncation Error
The use of an infinite series to solve the set of differential equa-

tions for the state probabilities may result in an approximate calculation.

The question to be answered is, "How much of an approximation?"
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As the number of terms used in the series to evaluate the quantity
eAAt increases, the results become more and more exact. In addition, the
size of the increment At has an effect on the accuracy and must be

considered.

Investigators at Naval Applied Science Laboratory (NASL) have de-
veloped equations to evaluate the truncation error, given the number of
terms in the series and the increment. The truncation error represents
the derivation of the series solution from the exact value. For instance,

if we evaluate the series to the nth term we have
n <
j t
[A]- [At]
2 3 (33)
j=0
The truncation error T would be
k|
Z {a)) [ae]” [At] (34)
j=n+l

We want to determine T, given n and At. Equation (35) has been derived by

NASL to provide an upper bound for T

en+2 9
T = W [l+ 3 sin (nxe)] (35)

where 0 = YAAt
g ||A]|, the magnitude of A
At is the time increment

T is the truncation error

a is the number of terms taken in the series
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Since At is known and YA can be computed from the derived stochastic
matrix, the truncation error can be found. Conversely, if T is specified,
1 : a combination of n and At can be found to satisfy that value.
At present At = 0.5 is used with a maximum error of 10-8 allowed.
3 ; Starting with n = 5, n is increased until T §.10_8. If T is already less

than 10-8 when n = 5, five terms are used in the series.

L

36

—

e T

wte: AR
gl Lol A o gi
- b L -




et~

—y

SECTION 5
ANALYTIC RELIABILITY PREDICTION USING GEMJR
5.1 OVERVIEW

GEM is a comprehensive R/M computer model, developed at NASL and im-
plemented on the CDC 6700 at DINSRDC. GEM computes various elements of
R/M from complex system definitions. Since GEM employs a user-type
language, little knowledge of the computer or of programming is required,
and the program is well-suited to users not desiring to get involved in the
computer aspects of R/M calculations. However, because the user orienta-
tion of GEM necessitates a large computer program with its own compiler
and function library, GEM cannot be run simultaneously with other programs.
Consequently, a much smaller computer program that would compute elements
of R/M was needed,’ and GEMJR was developed at DTINSRDC. This program, al-
though not user oriented as GEM, can calculate many R/M quantities and has
been used to investigate the feasibility of developing small but compre-
hensive versions of GEM for specific applications.

GEMJR incorporates the Poisson failure process, utilizing the theory
developed in the previous section. It follows the lines of the original
GEM program, incorporating similar theory and calculations. Because of
its small size, GEMJR can be readily adapted to other computer programs.
Although GEMJR was developed for a specific application, a user familiar
with the basic theory can construct general programs (which will still be
relatively small) to accommodate various system configurations and missions.
A description and listing of GEMJR and its required input are given in

Appendix D.

5.2 SAMPLE PROBLEM

GEMJR was constructed to calculate reliability and availability of
the system configuration described in Section 3.4. The reliability block
diagram and mission scenarios for GEMIR are identical to those given in
Figure 3.

The block diagrams‘in the problem are straightforward; however, the

specification of two levels of operation during the mission complicates
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the reliability calculations. Each level of operation is associated with

a different block diagram. Thus, when the level of operation changes, the
block diagram changes. Each block diagram requires a different stochastic
matrix. To compute reliability from a block diagram with changes in level
of operation, the concept of interval reliability (i.e., reliability com-

puted for a specific time interval) must be used to retain continuity of

system states.

5.3 SYSTEM DEFINITION
5.3.1 Independence

If the concept of independence is assumed, the block diagram in
Figure 3 can be partitioned to simplify the problem. The configuration can
be divided into a series of smaller units called stages* which are simpler
to handle than the entire configuration as a whole. The assumption of in-
dependence places certain restrictions on the problem. However, these re-
strictions are minor compared to benefits realized in the form of reduced
effort to solve the problem.

To illustrate the concept of independence and the simplification ob-
tained, the system states are described. When the Poisson process is used,
the stochastic matrix is of dimension NXN, where N is the total number of
states in the system. If M represents the number of different equipments

in the block diagram, then

N>2
When all equipments in the system are different, N = ZM; otherwise the
inequality holds, i.e., at least two equipments are similar. The total
number of states decreases when more equipments are similar.
A look at Level 1 of the block diagram in Figure 3 shows that M = 9

so that

*The stages are the same as the blocks defined in Figure 3.
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Thus, a 512x512 stochastic matrix is needed to compute the reliability.

If the configuration is divided into the four stages indicated, the largest
l . matrix required is 32x32 (i.e., 32 = 25), the size needed for Stage 1, Level
2, with 5 different pieces of equipment. Under the concept of independ-
ence, each stage is assumed independent of the others, i.e., all R/M
quantities are computed separately for each stage, and esach has its own
repairman and standby equipment when applicable; there is no sharing be~
tween stages. The four stages are solved independently.

Complicated problems can be simplified by invoking independence.

However, care must be taken to avoid distorting the problem by assuming an

independence that does not apply.

5.3.2 System Configuration
All series equipments can be treated alike, whether or not repairs
are made, for the system fails when any series equipment fails. Even if
repairs are allowed, the system will be down during the repair period and
! the mission will be aborted. Consequently, the reliability of Stage 4,
which consists only of series equipments, can be computed from the fol-
lowing standard formula for reliability

Relfability = e 't (36)

where A is the failure rate and t is the failure time.

Equation (36) makes no assumptions or approximations. The reliabili-
ty of these series equipments is independent of the number of repairmen
assigned to them. The mission specifies up-state for Equipments 3, 4, 5,
6, and 7. Because of the group reference to these equipments, in the

mission we refer to Equipments 3, 4, and 5 as Stage 2, and Equipments 6

and 7 as Stage 3. Since Stages 2 and 3 are independent of each other,
| repairmen cannot be shared. Only the equipment configuration of Stage 1

changed during the mission.
The assumption of independence permits each stage to be identified

with a simpler stochastic matrix. Stage 1 has a 5X5 matrix, Stage 2 a 4X%4

" matrix, and Stage 3 a 3X3 matrix.
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If there are M different equipments in a stage, then ZM different
states are possible. If some or all of the equipments are identical, fewer
than 2M states exist. As seen in Figure 3, both Stages 2 and 3 are com- AE
posed of identical items within the stage, so the two stages have fewer
than ZM states.

Stages 2 and 3 could have been treated as a single stage consisting of
five pieces of equipment. This expanded stage would have involved a total
of 12 different states, resulting in a more complicated derivation of the :
stochastic matrix. At the same time, however, such an expanded stage !
would have added flexibility by allowing the sharing of repairmen over
these five equipments as a group.

The configurations of Stages 2 through 4 are the same in the different g
phases so the same expression for computing their reliabilities holds |
throughout the mission. The configuration of Stage 1 changes during the
mission, however, as Phase 1 of Stage 1 is composed of five equipments,
Phase 2 of two equipments, and Phase 3 of five equipments. This configu-
ration change alters the stochastic matrix so, instead of using the stand-
ard reliability expression (see Section 5.5), the concept of interval reli-
ability must be introduced to compute the reliability in Phases 2 and 3.
Although Stage 1 contains only two equipments during Phase 2, it is assumed
to contain (for calculation purposes only) five different equipments at all
times, for a total of 32 possible states.

Because the stages are independent, their reliabilities, which are
obtained separately, must be multiplied together to get the reliability of
the total system during that phase. The reliability and availability for
the entire mission are obtained by multiplying the reliability and avail-

ability of the different phases together.
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5.4 STAGE 1 CONFIGURATION
Stage 1 can be represented by the following diagram

Each equipment is numbered and has associated with it failure rates,
Al’ Az e 15 and repair rates His Hy eee Mg. The number of states in the
stage is 25 = 32, as listed in Table 1. The 32 states describe all the
possible conditions of Stage 1 composed of equipments 1, 2, 3, 4, and 5.

These equipment numbers are different from those in Figure 3 but are used

for simplicity. In each state each equipment can be either up, i.e., opera-

tive, or down, i.e., failed. An equipment number without a bar indicates
that the equipment is operational; an equipment number with a bar indicates
that the equipment has failed. The configuration represents a type of
redundancy in that the up-state, representing non-failure of the system,
requires that either equipments 1 and 2 are operative or that equipments

3, 4, and 5 are operative, but not both sets at once. States 0 to 10
represent up-states and the rest down-states. The non-zero elements of the
entire stochastic matrix are given in Table 2. To compute reliability
with repair, only the up-states are considered. To compute interval reli-
ability and availability, all the stages in the stochastic matrix must be

considered.

5.5 R/M DEFINITIONS -
In this section the terms reliability, availability, and interval
reliability will be defined with respect to the stochastic matrix, state

probabilities, and number of up-states.
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TABLE 1 - POSSIBLE STATES FOR STAGE 1

State Configuration
0 12345
1 12345
2 12345
3 12345
4 12345
5 12345
6 12345
7 12345
8 12345
9 12345

10 12345
11 12345
12 12345

13 12345

14 12345

15 12345

16 12345

17 12345

18 12345

19 12345

20 12345

21 12345

22 12345

23 12345

24 12345

25 12345

26 12345

27 12345

28 12345

29 12345

30 12345

31 12345
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TABLE 2 - NON-ZERO ELEMENTS FOR STAGE 1 STOCHASTIC MATRIX

TABLE 2A - DIAGONAL ELEMENTS

Transition Element Transition Element
0,0 1 (Al+k2+x3+A4+X5) 16,16 (A1+A3+A4+u2+u5)
L 1 (A2+A3+A4+A5+u1) 17,17 (A4+As+u1+u2+u3)
2,2 1 (A1+A3+X4+A5+u2) 18,18 (A3+A5+u1+u2+u4)
3,3 1 0\3+>\4+>\5+u1+u2) 19,19 ()\3+}\4+ul+u2+u5)
4,4 1 (>\1+>\2+>\4+>\5+u3) 20,20 ()\2+)\5+u1+u3+u4)
5,5 1 (A1+A2+A3+As+u4) 21,21 (k1+k5+u2+u3+u4)
6,6 1 (>\1+>\2+X3+>\4+u5) 22,22 (A2+A3+u1+u4+u5)
7,7 1 (X1+X2+A5+u3+u4) 23,23 (A1+X3+u2+u4+u5)
8,8 1 ()\1+A2+)\3+u4+u5) 24,24 (A2+A4+ul+u3+u5)
9,9 1 (X1+A2+X4+u3+u5) 25,25 (A1+A4+u2+u3+u5)
10,10 1 (A1+A2+u3+u4+u5) 26,26 (A2+ul+u3+p4+u5)
11,11 1 (A2+.X4+)\5+u1+u3) 27,27 (Al+u2+u3+u4+u5)
12,12 1 (A2+k3+xs+ul+u4) 28,28 (A3+ul+u2+u4+u5)
13,13 1 (A2+X3+A4+ul+u5) 29,29 (A4+ul+u2+u3+u5)
14,14 1 (X1+A4+A5+u2+u3) 30, 30 (X5+ul+u2+u3+u4)
15,15 1 (A1+A3+A5+uz+u4) 31,31 (ul+u2+u3+u4+u5)

Note: Under Transition first value is initial state, second value

is final state.
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5.5.1 Reliability
A system is assumed to be in an up-state at the start of the mission,
§ . t = 0. The reliability at any time t (greater than t = 0) is defined as -
the probability that the system will not fail up to that time, t. During
the time period t = 0 to t, redundant equipments can be repaired. Since :
reliability is the probability that the system will remain in an up-state

(will not fail), transitions from up~states to down-states (system failure)

FUSNPPSNRPRINELT =1V S

are not allowed in the calculations. Therefore, only the abbreviated up-

iois A i

state version of the stochastic matrix is considered. From the up-state

matrix, the state probabilities (for only the up-states) over the first

I

}

r‘ phase can be computed. The initial state probabilities at t = 0 are |
: specified as P(1)* = 1, and the rest, P(2) to P(11), zero, signifying that |
!

‘ the system is fully up at t = 0. The state probabilities over Phase 2 are

i J computed with respect to the new initial state probabilities, which are the
state probabilities computed over Phase 1. Finally, state probabilities
over Phase 3 are computed with respect to those from Phase 2. The up-state |
probabilities computed over Phase 3 (remember, they are a function of the
state probabilities at Phases 1 and 2) are added to give the reliability
for the mission, the probability that the system will be in an up-~state

condition.

5.5.2 Availability
If the system is assumed to be up at t = 0, the availability is defined

as the probability that the system will be up at any time t greater than
t = 0. The system could have failed and been restored many times in the
interval (0,t), but the important consideration is the state of the system
at time t.

Since the availability is a function of the time that the system is
in both states (for the system can enter an up-state from a down-state and
conversely), the entire stochastic matrix must be used in calculations.

Therefore, all the state probabilities must be calculated to obtain the

D e

,‘ *P (1) represents the probability that the system will be in State 0,
similarly P(2) represents the probability that the system will be in State
1 and so on.
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availability.

The state probabilities over each phase are calculated as a
function of the initial probabilities for that phase. The initial proba-
bility for other than the first phase is the final probability of the pre-

ceding phase. All the state probabilities at the end of Phase 3 are added
to give the availability.

5.5.3 Interval Reliability

It is assumed that the system is completely operational at t = 0 and
that, in the interval from t = 0 to tl’ system failures and repairs can
take place. But, during the interval tl to t2, only redundant items can
be repaired if they fail. The interval reliability R(tl,tz) of a system
is defined as the join; probability that the system will be up at time tl
and remain up until time tz which is greater than tl. The concepts of both
availability from O to tl and reliability from tl to t2 are involved.

To calculate the interval reliability R(tl,tz), the entire stochastic
matrix must be used to obtain all the state probabilities over the interval
[0,t1]. Then only the up-state probabilities are used to compute the

interval reliability over [tl,tZ].

5.6 CALCULATION OF RELIABILITY AND
AVAILABILITY OF STAGE 1

5.6.1 Phase 1
To calculate reliability and availability for Stage 1, the following

quantities are used:

Variables Definitions
A Stochastic matrix dimensioned 32x%32
A' Up-state stochastic matrix of dimension 11x11
P(0) Column vector of state probabilities at t = 0

(Initial conditions)

P(t) (Po(t), Pl(t) R P31(t)), Column vector of all state
probabilities at time t (32 elements)

P'(t) Column vector of up-state probabilities (11 elements)
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At Time increment

5 Time at end of Phase 1
t
n, e number of iterations required for first phase

To obtain the state probabilities at the end of Phase il n, iterations
are necessary. The stochastic matrix for Stage 1 is given in Table 2. As

shown in Equation (26), the following operations are required

P(At) = *tp(0)

AAt
P(2At) = e "P(At) (37)

P(t,) = P(nAt) = ABtH (n-1)AL)

Each line or iteration represents a matrix multiplication. The state

probabilities are represented by a column vector and eAAt is a square
matrix so that multiplying a matrix by a column vector results in a column
vector, i.e., the new state probabilities. After n, iterations, the state

probabilities are known at tl’ and by combining them we get availability.

31

Availability = E Pi(tl) (38)
i=0

If the same procedure is followed and Matrix A is replaced with

Matrix A' in Equation (37), we obtain reliability by summing the up-state
probabilities.
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Pr(At) = & A% (0)
P'(28t) = & 21 (Ar)
: AAt

P'(tl) = P(nlAt) e P'((nl—l)At)

From P' and A' in the iteration Equation (37) and the up-state probabili-
ties at tl (column vector), P' can be determined. The reliability at t1
is determined by summing the elements of vector P'.

10

Reliability = 2 Biee) (39)
i=0

These calculations are used for the first phase of the mission. The
configuration change of Phase 2 requires the calculation of interval reli-

ability as described in the next section.

5.6.2 Phase 2

The configuration change from Phase 1 to Phase 2 makes it necessary
to compute interval reliability; two changes must be made in the calcula-
tions as performed for Phase 1.

The configuration change during the phase change results in a change
in the number of up-states, causing an alteration in the stochastic matrix.
In Stage 1, the Phase 1 configuration consists of five equipments. The
Phase 2 configuration consists of only two. Thus, there has been an actual
decrease in the number of possible states from 25 to 22. However, use of
the Poisson process requires that the number of possible states remain

constant throughout the mission. Consequently, we must assume that there
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are five equipments in Phase 2, even though only two equipments exist.
Only the following eight states, which reflect the probability that both
Equipments 1 and 2 are up, are considered in the reliability calculation.

12345

12345

12345

12345

12345

12345

12345

12345
By specifying these up-states and eliminating up-states 12345, 12345, and
12345 from Phase 2, we imply that the failures of only equipments 1 and 2
affect the reliability. Although the configuration has not changed
physically, we have arranged the calculations so that the configuration
actually consists of only two equipments in series.

The mathematical procedures used require that the down-states follow
the up-states in the original stochastic matrix. Therefare the original
stochastic matrix must be rearranged so that the first eight rows contain
the up-states specified.

The second change, necessitated by the configuration change involves
the calculation of interval reliability.

At the beginning of the mission, t = 0, initial values for the state

31
probabilities are specified as PO(O) = 1, 2 Pi(O) = 0. The 32 proba-
i=1
bilities are computed at the end of Phase 1, using the total stochastic
matrix, and the availability is computed. These probabilities become the
initial values of the state probabilities for computing both availability
and reliability during Phase 2. The availability is computed using the

rearranged total stochastic matrix with all 32 initial values. The
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reliability is computed using the abbreviated and rearranged stochastic

matrix (8x8 matrix consisting only of up-states) with the first eight
initial values being those for the state probabilities. When computing
reliability with repair, the initial values of the reliability calculations
are obtained from the previous reliability calculation (last phase). How-
ever, because we are calculating interval reliability, the initial values
are obtained from the preceding availability calculations. Also, the re-
sulting interval reliability is the reliability for the specified interval
phase only. To obtain the reliability through Phase 2, the reliability of
Phase 1 must be multiplied by the interval reliability for Phase 2. The
same process is used again to compute the interval reliability over Phase 3.

The original stochastic matrix is used because the configuration reverts

to the original configuration of Phase 1.

5.7 CALCULATION OF RELIABILITY FOR
STAGES 2, 3, AND 4

An analysis similar to that used for Stage 1 is used for Stages 2 and
3, the only difference being in the derivation of the stochastic matrix.

For these stages, reliability with repair is calculated throughout the

mission using the straightforward iteration process described in the last
section.

The configuration of Stage 2, consisting of three identical equipments
arranged in parallel, is
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These are four possible states:

State

0

1
2
3

All
Two
One
All

Description
equipments operational

equipments operational
equipment operational

equipments fail

With one repairman for each equipment and active redundancy; the stochastic

matrix is

1-3A 3\
B 1-(2A\u
0 2u
0 0

0 0

o s 0 (40)
1-(A+2u) A
3u 1-3u

The probabilities Pl(t) can be determined up to any time t. Relia-

bility and availability are obtained by summing the probabilities of the

up-states at the end of each phase.

The up-state rules specify that two out of three pieces must be

operational, i.e., only States O and 1 contribute to the reliability. Thus

Availability =

Reliability =

Po(t) + Pl(t) (41)

Pb(t) + Pi(t) 42)

The up-state 2X2 matrix used to compute reliability is

1-3A
u

3) (43)
1-(22+u)
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The configuration of Stage 3 consists of two identical equipments
arranged in parallel

A repairman is assigned to each equipment. The states possible are

| State Description

| 0 All equipments operational
i 1 One equipment operational
J 2 All equipments fail

E | The stochastic matrix is

1-2A 2A 0
B 1-(Ap) A
0 2u 1-2p

.._4‘.'._,,,-..-'—7. R AR
o

Since the up-state rules specify that one of two equipments must be

up for operation, States 0 and 1 are up-states and the following notation
applies

Availability

Po(t) + Pl(t)

g T P S oo

k Reliability Pé(t) + Pi(t)

The configuration of Stage 4 consists of two different equipments

arranged in series
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The simple expression for two identical equipments in series, Equa-

tion (12), can be applied to compute the reliability of Stage 4.

Reliability = ¢ F ¢ o A o g2At (12)
Since Stage 4 contains two different equipments, Equation (12) becomes
-Alt —Azt
Reliability = e e e (45)
-(A,+2,)t
= e L5 (46)

5.8 CALCULATION OF RELIABILITY FOR
TOTAL SYSTEM

The reliability and availability for each phase and each stage, and
thus for the total mission, can be calculated. We shall outline the pro-
cedure for obtaining the reliability of the total system.

To obtain the reliability (R) for Stages 2 ang g R2

tively, we use their stochastic matrices, perform K% iterations, and sum

and R3, respec-

the up-state probabilities at tz.
Stage 1 is complicated by the configuration change in Phase 2. The
t

state probabilities at the end of Phase 1, t = tl’ obtained through K%

For Phase 2, we use the concept of interval
t,-t
are obtained after At

iterations, are called Rll'

reliability. The state probabilities at t = t

2
iterations. Summing the up-states gives the interval reliability (IR)
over tltz, Phase 2, which is IR(tltz). The reliability for Stage 1 up
through t2 is

R1 = Rll(tl) X IR(tltz) 47)

e e e e ep—

ORI T R 7 2 O 2 D, P
- RN MR




fi Finally the total reliability for Phase 2 is

Rphase 2 = Ry (ty) Ry(ty) Ry(ty) R, (t,) (48)

The same procedure is used to obtain the reliability at the end of
Phase 3 (end of mission) at t = tqs except that

R3 = Rll x IR(tltz) x IR(t2t3) (49)

e
-
e .
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SECTION 6

COMPARISON OF R/M PREDICTION METHODS
Both the simulation and analytic reliability prediction methods have
advantages and disadvantages so that the choice of the best program for a
given situation is not obvious. The characteristics of the two programs

are compared so that the user can make an informed decision.

6.1 SIMULATION METHOD

Before the reliability of a system can be calculated, a block diagram
of the system must be constructed and the appropriate data obtained. SIM3
uses Monte Carlo techniques to simulate the operation of a system. The
possible outcomes of such a simulated mission are mission success or mission
abort. To calculate the reliability of the system, many missions must be
simulated.

The reliability is computed stochastically as the number of successful
missions is divided by the total number of missions. Since a prediction
based on simulation is nondeterministic, the results of each computer run
will be somewhat different. However, as more missions are simulated, the

statistical prediction should approach that obtained from analytic (or

deterministic) methods.

6.1.1 Advantages

The nature of the simulation process allows some highly complicated
applications to be solved with relative ease.

First, SIM3 records the number of times each piece of equipment fails.
These results are tabulated separately for each simulated mission and any
equipment with a high failure record can be identified. Steps can be taken
to improve the performance of the equipment and thus increase system
reliability.

Second, SIM3 can handle system configuration changes more easily than
can the analytic method since interval reliability is more easily
calculated.
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Finally, SIM3 provides for the specification of allowable sustained
downtime. When a subsystem (or the entire system) fails and is down for a
time less than the sustained downtime the abort criteria are not violated.

{ This feature is not incorporated in analytic methods.

6.1.2 Disadvantages

The statistical nature of simulation means that final results are ob-
tained by averaging. (It is possible to predict the actual number of
mission simulations required to satisfy a given confidence limit.) As the

system gets larger and more equipments are added, each simulated mission

requires more computer time to run, and simulation of large systems can

Py

T "
it -

become quite expensive.
i Another shortcoming of SIM3 is that it does not compute time-dependent
J availability, although steady-state availability can be computed. Also,
| simulation predictions are generally not as flexible as analytic methods
in the consideration of the several aspects of maintainability; repairmen,
standbys, redundancies, and spare parts cannot easily be considered. 'i
Finally, the statistical results of simulation are not as exact as

analytical results. The simulaticn prediction results approach the exact . |

results as the number of simulated missions increases, but in some cases it

\ _.
g

. o ey - "
T oanda S

is impractical to run enough missions to achieve desired accuracy. Thus

the results usually deviate from the actual value by a few percent.

6.2 ANALYTIC METHOD
The theory of analytic prediction is covered in detail in Section 4.

The Poisson failure process is used to develop stochastic matrices from

which a set of simultaneous differential equations is generated. Solving
these equations gives a one-dimensional array whose elements are the state
probabilities. The more equipment to be considered, the greater the number

Bl | of states and thus the greater the number of calculations involved.
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6.2.1 Advantages

An analytic prediction is deterministic in that the results are always
the same providing the input has not changed. There is no variation in the
prediction as there is with simulation programs. Because of this exactness
in results, an analytic process can be used when small changes in parameters
are required. For instance, assume we want to observe the effect of adding
additional redundant equipment in a configuration. Because our analytic
prediction is exact, even small changes will usually be reflected in the
answer. With the simulation prediction, such small changes might be in-
distinguishable from the normal variation in the results.

The primary input in an analytic prediction is the stochastic matrix.

Once it is derived, the remaining calculations are routine. Many different
P aspects of maintenance can be incorporated by altering various elements of
J the stochastic matrix. Thus, repairmen and standby equipment can easily be

considered. In addition, variations in the number of repairmen and standby

equipment can be made, enabling tradeoffs with system maintenance cost

and reliability.

6.2.2 Disadvantages -
Because all the states that a system can assume must be identified in

g

the analytic method, the size of the system for which reliability and avail-

i

ability are calculated is limited. The number of different states that a
;3 system can assume (as reflected by the dimensions of the stochastic matrix) %*

is represented by ZN, where N is the number of different pieces of equip-

f.; ! ment. If N = 5, the number of states possible is 2S = 32, and the associ-
ated stochastic matrix would be dimensioned at 32 by 32. The derivation

. of this matrix is not a simple task. One can imagine the work required when
F N is even larger. Thus the subsystems must be kept to a '"reasonable" size

to keep the volume of calculations down. If N is unmanagably large, other

methods which may include simulation programs, must be used.

The failure-prone items can be more easily identified using simulation
methods. Furthermore, situations involving complicated mission scenarios,
.1 ; numerous configuration changes, and many operational levels are not

amenable to analytic solutions.
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6.3 COMPARISON OF SIM3 AND GEMJR RESULTS

Sample runs of the configuration pictured in Figure 3 were made with

SIM3 and GEMJR. The results are shown in Table 3. The average deviation

of the results for all three phases was 1.4 percent.

TABLE 3 - SIM3 AND GEMJR RESULTS

Run Characteristics |
Reliability Eoetage
Phase 1| Phase 2 | Phase 3 | 375" | yeighted | EStimated !
Seconds $ Cost |
Core }
SIM3 0.926 0.746 0.590 31 19752 5.50 i
GEMJR | 0.925 0.759 0.605 142 19074 21.24

Notes:

System Seconds = Computer central processing and input/
output time.

Average Weighted Core = Average computer word memory in
decimal units.

Estimated $ Cost = Projected cost of the run (based on
system seconds).

The results in Table 3 show that the computer memory requirements of

the two programs are similar. However, GEMIR required more than four times y

the computer time of SIM3 at nearly four times the cost. Thus when cost

and time become factors in running the programs (especially with large re-
liability configurations), SIM3 will be preferred. However, before a final

T = S Y . WAy b

choice is made, other advantages and disadvantages should be reviewed.

-
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APPENDIX A
EXAMPLE OF A TRADEOFF ANALYSIS USING SIM3

A hypothetical system is used to illustrate the integration of main-
tainability with optimization. The total system cost, consisting of both
equipment and maintenance costs, will be optimized (i.e., minimized) by

varying the configuration of the system.

1.0 OVERVIEW é
In this hypothetical application SIM3 is used to generate equipment ;

failures in the system. Each failure requires a corrective (or unscheduled)

maintenance (CM) action, with a specific cost involved. Preventive (or

scheduled) maintenance (PM) actions are generated at a fixed rate and the

| S

cost of each action is determined. The inclusion of PM effectively in-
creases the MTBF of each equipment, decreasing the chance of failures (cor-
rective maintenance requirements). There is a tradeoff between cost in-
%é vested in PM and costs incurred in CM, for increased PM costs can decrease

CM costs. Although not performed in this analysis, such a tradeoff could

3
k have been made to determine the minimum cost of both PM and CM actionms.
1

<
b | 2.0 METHOD

{
a1 The following example illustrates the method of minimizing system
"g costs. An optimization procedure is used to allocate equipment in the
g configuration.
4

: Let CM = maintenance cost of system

number of maintenance actions required for ith equipment

maintenance cost for ith equipment

N = total number of equipments in the system
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The expression for the maintenance costs of the system is

i=1

We can determine the effects on the maintenance cost of adding items
* . in parallel or in series, and the effect of operating the system under
different up-state rules, i.e., in a redundant configuration specifying

how many equipments are required for the system to be in operation.

3 Let system X contain initially the different equipments A, B, and C

From this initial or baseline configuration we shall derive an optimal
configuration for minimizing total cost by varying the number of equipments
in the configuration.

Let CA = cost of equipment A
CB = cost of equipment B
CC = cost of equipment C

CM = total cost of maintenance actions
CMA = cost of maintenance action on A
CMB = cost of maintenance action on B
CMC = cost of maintenance action on C

C, = cost of preventive maintenance actions
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C.n. = total system cost

n, = number of items of A (nA)0 =1 (ni)0 represents

ng = number of items B (nB)0 = 2 | the initial
n. = number of items C (nc)0 = 1 Lconfiguration
NA = number of maintenance actions on A
1
NB = number of maintenance actions on B %
Ne = number of maintenance actions on C %7
i
In the case of redundancies, the N's represent the total maintenance |
actions for all redundant items. 13
The cost of the equipment in system X is
CS = nACA + nBCB + nCCC ;
The maintenance cost due to repairs is
Cu = NMaCa * NgOp * Naluc
NA’ NB’ and NC ére obtained from the simulation program SIM3 and n,, Ny,
and nC are the variables in the allocation optimization method. As indi-
cated in the baseline configuration the initial values are é
%
By ™ 1, np = 2, and n, = 1 |
i
The objective is to minimize total system cost, CST by varying the n's {
where
CST = CM + CS + cP ;

and CP is the cost of preventive maintenunce which occurs at a specified

rate.
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If RA is the reliability of item A, RB for B, and RC for C, then the
reliability without repair of the system is given by the expression

n n n
R = [1-0-R) *101-a-ry) Plp-a-ry)

with the constraint n,, ng, N, et

This expression considers n, redundancies for item A, ng for B, and

A
n. for C. 1In the case of reliability with repair a closed expression with

repair cannot be computed.

At this point, expressions for the total cost of the system, C
for the reliability, R, have been derived.

when Ny, Mg, and n

analysis is to

ST’ and
The optimization process used
c are varied will depend on whether the objective of the

a. Minimize CST

b. Maximize R, or

c. Maximize R with a constraint on C

Cc
ST
In (a), where CST is minimized, the reliability of the system might

become unacceptably low. In (b), as the R is maximized, the cost of the

system can get unacceptably high. However, if R is required at a specific

level regardless of cost, then (b) is used. Generally (c) provides a
Reliability is maximized within a

Various values can be substituted for the cost
constraint to obtain the variation of reliability with cost.

moderate approach to system design.

specific cost constraint.

If values of
the reliability are too low within the range of acceptable costs, the

designs of the system will have to be reevaluated.

To illustrate how the consideration of a weight constraint in the

optimization of a configuration would be taken into account, let us return
to our prior example.

Representing the total cost of system X as

CST = NACA + NBCB + NCCC + NACMB + NBCMB + NCCMC
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with WA, B’ and Wc representing the weights of A, B, and C, and with Wx
representing the weight of system X then

W, = nAW

X +nW +nW

Z BB ccC

We then want to minimize CST’ satisfying the weight constraint which
is formulated as follows

where wo is a specified upper limit of the system weight. The system with
the lowest CST for which the above inequality holds is desired.




APPENDIX B
SIM3 PROGRAM DESCRIPTION

1.0 INTRODUCTION

The simulation program SIM3 is a Fortran program originally developed
by the Naval Applied Science Laboratory (NASL) for the CDC 3200/3300 series
computers and converted for use on the CDC 6700 series.

Equipment failures and repairs are generated through a sequence of
phases, i.e., a mission scenario. The same equipment can be used from
phase to phase but the reliability configurations (block diagrams) can
change. :

DTNSRDC has added several features to the NASL version of SIM3: :

* Printing option when the system aborts.

* Computation of total reliability for a mission. }

* Computation of reliability for each phase. 1

* Tabulation of individual equipment failures for each phase.

2.0 INPUT DATA FORMAT AND DESCRIPTION

The input data pack consists of 13 different types of cards, some of
which are repeated when the system consists of more than one phase. The
first two cards contain indicators to control printing, as described in the
output section. Cards 3 and 4, which describe equipment, are repeated as
required. Card 5 indicates the end of the reliability data. Cards 6 and 7 1

describe the system and its phases and are repeated for each phase. A set

of Cards 8 and 9 is required for each subsystem in each phase. Cards 10
and 11 are repeated as required to describe the block diagrams of each sub-
system in each phase. Card 12 is used to renew equipment. For each run
all the equipment must be renewed in the first phase. All values are
right-justified. A blank card must be supplied if there is no input for
one of the cards. There must also be a blank card between the last type
card and the first equipment card. See Figure 4 for input deck setup. A

description of the contents of each different type of card follows.
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Repeated for
each phase

SIMULATE

Highest Equip. No., increment

RENEW, Phase No., Lowest Equip. No.,

Repeated as required
to describe subsytem
configuration

Repeated for

BRANCH, Branch No., Equip. No.
(Max 14) CONT

BLOCK, Block No., No. of Branch

in Block, No. of Branches required

each subsystem

SSTIME, No. Blocks, Phase No., LETR LY
T3, Subsys. Code Name

SUBSYSTEM, Subsys. Name & Ident.,
Subsys. Code Name

STIME, Phase No., No. Subsys., Ty T,
T3 SYSTEM

SYSTEM, Phase No., No. of Subsystems,

Time at Start Phase, Time at End Phase

Repeated as
required

ENDTABLE, No. Missions, No. Phases, RNS,
C Down

EQUIPMENT, Equip. No.'s (15), Type, Type No.

Blank card

TYPE, Type No., MTBF, MTTR, UF,
Type Description

IOPT (Optional Print for Abort Messages)

KS (Optional Print for Final Output)

First Card

Figure 4 - SIM3 Source Deck Setup
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Variable

Mame Cols. Description
Card 1 - Indicator Card KS(1) 10 Replace jump switches in
KS(2) 20 original SIM3 routine.
KS(3) 30 If KS (1 to 6) # 2, all
KS(4) 40 optional output will be
KS(5) 50 printed. A value of 2 will
KS(6) 60 suppress printout.
Card 2 - Indicator Card IOPT 1-4 IOPT = 1 Print abort
messages
IOPT = 2 Omit abort messages
Card 3 - Type Card* ID 2-5 The word TYPE punched
I 11-14 Type number
X 21-30 Mean time between failures
(MTBF)
Y 31-40 Mean time to repair (MTTR)
U 41-50 Utilization factor
F 73-80 Type name (Any alpha-
numeric designation)
Card 4 - Equipment Card** 1D 2-5 The letters EQUI punched
LOAD 12-15 Equipment numbers, each
(1 to 15) 16-19 consisting of four digits
¢ for a maximum of 15 dif-
2 ferent equipments on one
68-71 card
1Q 73-76 The word TYPE punched
IT 77-80 Type number
Card 5 - End Table Card ID 2-5 The letters ENTA punched
LOAD(1) 12-19 Number of missions to be
LOAD(2) run
LOAD(4) 24-27 Number of phases to be run
LOAD(6) 32-35 Initial random number
(Not used at present)
LOAD(8) 40-43 C Down. If number of
system failures > C Down,
sum system downtimes on a
separate counter
Card 6 - System Card ID 2-5 The letters SYST punched
JPHASE 11-14 Phase number
NSS 17-19 Number of subsystems in

system

*Card 3 is repeated for each type number in the configuration.

**%Card 4 is repeated for each piece of equipment.
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Card 6 (Continued)

Card 7 - System Time Card

Card 8 - Subsystem Card

Card 9 - Subsystem Time
Card

Card 10 - Block Card*

*Card 10 is repeated to describe the entire subsystem configuration.

Variable
Nace Cols. Description

STPHAS 21-30 Calendar time at start
of phase

ENDPHA 31-40 Calendar time at end of
phase

ID 2-5 The letters STIM punched

JPHASE 11-14 Phase number

NSS 17-19 Number of subsystems in
the system

SSTIME(1) 21-30 System allowable negligible
downtime (Tl)

SSTIME(2) 31-40 System allowable sustained
downtime (T2)

SSTIME(3) 41-50 System allowable cumulative
downtime (T3)

F 73-80 The word SYSTEM punched
LOAD(1) 2-5 The letters SUBS punched
LOAD(2) 6-9

LOAD(19) 74-77 Subsystem name and identi-
fication

LOAD (20) 78-80 Subsystem code name, any
designation desired

ID 2-5 The letters SSTI punched

MBL 11-14  Number of blocks in the
subsystem

K 17-19 Phase number

SSTIME(1) 21-30 Subsystem allowable negli-
gible downtime (Tl)

SSTIME(2) 31-40 Subsystem allowable sus-
tained downtime (T2)

SSTIME (3) 41-50 Subsystem allowable cumula-
tive downtime (T3)

TITLE 73-80 Subsystem code name

ID 2-5 The letters BLOC punched
IBL 12-15 Block number

MBR 16-19 Number of branches in block
NEED 20-23 Number of branches required

for operation
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Va;::Zle Cols. Description
Card 11 - Branch Card* ID 2-5 The letters BRAN punched
IBR 12-15 Branch number
LOAD(1) 16-19 Equipment numbers in branch
LOAD(2) 20-23 (4 cols. for each equipment
; : no.; max. of 14 equipments)
LOAD(14) 68~71
IKK 73~76  The word CONT is punched in
cols. 73-76 if there are
more than 14 equipments in
the Branch. Additional
equipment nos. start in
column 16 of the continuing
card(s).
Card 12 - Renew Card ID 2-5 The letters RENE punched
IQ 12-15 Number of phase in which
renew action is to take
place i
KL 16-19 Lowest equipment number in |
the set f
KH 20-23 Highest equipment number
in the set 3
INC 24-27 Increment counter for re- :

newal of equipment !
INC = 1 (or blank), renew t
each equipment; INC = 2,
renew every other one;

INC = 3, renew every third
equipment

Note: Equipment to be renewed at the start of any phase must be
grouped in sets of consecutive numbers.

Example: To renew the equipments 10 to 20 and 50 to 75, two different
RENEW cards are required.

Card 13 ID 2-5 The letters SIMU punched

3.0 OUTPUT

SIM3 output falls into two categories: automatic and optional.

Optional output is generated by the program when the elements of KS are

not equal to 2. Automatic output, printed only at certain times, includes

e,

*Card 11 is repeated to describe the entire subsystem configuration. 3
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* Printout of all input cards.

Printout of mission abort data including the equipments that caused

the abort, the time of abort, and the time that the equipment will come
up again.

Summary tabulation at the end of each phase, containing the number
of simulated missions that entered the phase and the number aborted during
the phase.

The optional output is controlled by the values assigned to the KS
array as follows:

KS(1) = 0 Print out equipment state table at time of abort

KS(2) = 0 Print out each equipment state table if system is down
at end of phase

KS(3) = 0 Each time system goes down, print out the time that it
went down, how long it stayed down, and the time it
resumed operation i
KS (4) Not used in this version
KS(5) = Print out each event as it occurs during the simulation
KS(6) = Internal tables of events occurring during simulation L

This is a debugging feature. i

A value of 2 for any of the above will prevent printing.

e
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PROGRANM MIKE(INPUT,OUTPUT, TAPESSINPUT, TAPEG=OUTPUT,TAPEL,TAPE2)

DIMENSTION KS(10),F (2)

OIMENSION TI2(50)

DIMENSION LOAD(20) LREL(10)

DIMENSION INORD(G), ITYPE(20), NFAILS(1500), KEQU (1500)

EQUIVALENCE (ETIME(1),INORO(1))

COMMON XMTBF(S00) ,XMYTR(500), IDOWN(800),LBLOCL (250),LBLOC2 (250)
1o TITLE(S0) o ISUBL (250, ISUB2(25) s SSTIME(5425) 4L OSTL (25),L0ST2(25)
2,L0ST3(25)

EQUIVALENCE (LOAD, IDOWN)

COMMON TEQU(1500),ETINE(1500)

COMMON STPHAS ENDPHA oNEQeJPHASE ¢ TPoNPHoNMI o NSMISS ¢NBRoNBL 4NSS,
ANSS1,ISHBL 4 ISNSS

DATA JTYPE, JENDT ¢ JENDS/GHTYPE, 4HENDT , 6 HENOS/

DATA JCONT o JRE NE/LHCONT o 4 HRENE/

IOPT=l~cencccccccccec====PRINT ABORT MESSAGES

[0PT22-ccacccccccccccaae=(ONIT ABORT MESSAGES

READ (5,606) (KS(I),I=1,6)

READ (5,607) rOPY :
606 FORMAT (8110) :
607 FORMAT (I&)

OO0

c
c ;
C FILL EQU AND TYPE TABLES
IREAD=1
IWRITE=2
NEQ=0
NTYPE=0
NBL=0
NBR=0
NSS=0
TOTALR = 1.0
RELP = 1.0
IOATA =
001 I = 1,250
LeLocL (1) = 0
1 LeLOoC2(I) =0
DO 2009 1I=1,1500
ETIME(I) = 1,E30
IEQUIIN=0
NFAILS(I) = 0
KEQU(I) = ¢
2009 CONTINUE
00 26408 I =1,500
XMTBF(I)=0.0
2608 XMTTR(IN=0.0
C READ TYPE CARDS
2010 READ(S5,2001)I04I4KoXoYoUy (FIJ)oJ=1,2)
2001 FORMAT (1XoAR49SXoTlko2XoI3¢1X93IELD.3422X¢2A4)
TF(ID.NE.JTYPE) GO TO 2012
2012 MRITE(642002)ID¢I (KoeXoYeUy(F(J),U=1,2)
IF(XMTBF(I))2051,2050,2051
2051 WRITE(6,2055)1
GO 70 2010
2055 FORMAT (1 X, 4HTYPE,IS+1X913HOEFINED TWICE)
2050 XMTBF(I)=X/V

ity
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e Bt FuRALSEED 1020 —

XMTTR(I) =Y
NTYPE=NTYPE #1
GO Y0 2010
C AFTER LAST TYPE CARD MUSY BE A BLANK CARD ,THEN FOLLOWS EQU CARDS
2012 READ(5,2002)I0, (LOADCI) I=1415),IQ,1I7
IF(I0.EQ.JENDT) GO TO 2(13
2016 DO 2015 I=1,15
IF(LOADI(I) .EQ.0) GO TO 2015
2016 IBM=LOAD(I)
IF(ISM.LE.NEQY GO TO 2096
2095 NEQ = IBM
2096 IFC(INPAKH (IEQUCIBM)))I2061,2069,2061
2061 WRITE(6,2065)IBM
GO TO 2012
2065 FORMAT (1Xo4MEQUe» IS+21 X2 IHOEFINED TNWICE)
2069 CONTINUE
TEQU(IBM)=TPACKHIIT,IEQUIIBM))
2015 CONTINUE
WRITE(692002)IDo (LOAD(I) 9 I=1515),1IQ,IT
GO T0 2012

c
’ C ALL EQV AND TYPE CARDS HAVE BEEN READ TN THE LAST CARD READ AT
, c THIS POINT WAS AN ENDTABLE CARD
} 2013 NMI=LOAD(1)%10+LOAD(2)
NSMISS=NMI
COOMN =LOAD (8)
: NPH=LOAD (&)
f | LAND=LOAD(6)
c CALL RANSET (LAND,Y)
WRITE (64 2006)NMI ,NPH
2004 FORMAT (1H1,5X, [8,1X425HMISSIONS NILL BE RUN THRU,I&e1X,7HPHASES.)

c
i c
! C PHASE GEOMETRY CARDS SHOULD APPEAR NEXT DR ENDSIM
| c NEXT CARD SHOULD BE A SYSTEM CARD
} 2100 WRITE(6,2004)
= DO 2401 I = 1,NEQ
' 2401 IEQUIT)=ANDIIEQUII)4000006000007777G0008)
b | NMISS=NSMISS
Bt WRITE (6,999) IREAD
# 999 FORMAT (3H LUeI3,1X,19HINPUT TO NEXT PHASE)
k4 READ(5,2001)IDy JPHASE ¢NSS,STPHAS ¢ ENDPHA
1 IF(ID.NE.JENDS) GO VO 2121
b ¢ C2020 IS AFTER LAST PHASE IT CALLS FOR FINAL SUMMARY TABLES
. ) C2020 CALL UNLOAD(IWRITE)
Pt c COMPUTE TOTAL RELIABILITY FOR CONPLETE MISSION®*»vsssssssssssasssssvesss
00 1190 JJ = 1, NPH

TOTALR = REL(JJ) * TOTALR
1190 CONTINUE
WRITE(6y 895) TOTALRs NPH
895 FORMAT (1X, &OHTOTAL RELIABILITY FOR COMPLETE MISSION= , F8.S,
114HAT THE ENO OF o Ib, 9H PHASES )
sToP
2121 WRITE(6,2001) 1Dy JPHASE(NSS,STPHAS ,ENDPHA
NSS1=NSS+1
READ(5,2001)IDy JPHASE ¢sNSSy (ISSTIME(MoNSS1) o M=1,43),F
HRITE(642001)I0, JPHASE,NSS, (SSTIME (MyNSS1) oM=1,3) ,F

BB it L s Bl
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THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED 70 DDC s

-

VITLE(NSSL1)=F (1)
TI2(NSS1) = F(2)
DO 200 I=1,NSS1
LOSTL(IN=0
LOST2(I)=0
LOST3(I)=0
ISuUB1(I)=0
200 ISus2(Ii=0
C 00 FOR ALL SUBSYSTENS
LeL=1
LBR=1
C LBL IS LOW BLOCK NUMBER IN THIS SS. |
C LBR IS LOW BRANCH NUMBER 1IN THIS BLOCK. ;
00 2200 II=1,NSS ’
READ(5,2003)L0AD
2003 FORMAT (1X919AL.A3)
MRITE(6,2003)L0AD
READ(5,2001) ID,MBL Ky (SSTIME(M,IT) oM=1,3),TITLEC(II), TI2(II)
WRITE(692001)IDoMBL Ko (SSTIME(M, ITV o M=1,3), TITLE(IT), TI2(II)
ISUBL(II)=LBL
ISUB2(II)=LBL¢+MBL~-1

i A e bt 2

c

C DO FOR ALL BLOCKS IN THIS SUBSYSTEM
DO 2292 JJ=1,MBL
READ(S5,2002) ID,IBL,MBR,NEED
WRITE(6,2002)I0,1BL,MBR,NEED
MQ=IBL+LBL -1

LBLOCL (MQ) = IPACKL(LBR, LBLOCL (MQ))

LBLOCL (MQ) = IPACKH(LBR+MBR-1, L8LOCL (MQ))
{ LBLOC2 (MQ) = IPACKH(II , LBLOC2 (MQ))
§ LBLOC2 (MQ) = IPACKL(NEED, LBLOC2 (MQ))

c
C 00 FOR ALL BRANCH CARDS IN THIS BLOCK
00 2201 KK=1,MBR
2110 READ(5,2002) ID,IBR, (LOADIN) ¢N=1,14),IKK
WRITE(6,20020 0y IBRy (LOADIN) yN=1o124) 4 IKK
2002 FORMAT(1XoAbe6X9151ks1XyAlyIb)
DO 2115 N=1,14
& | IT=LOAD(N)
54 IF(IT.EQ.0) GO TO 211S
4 2116 IQ=IBR¢LBR-1
'1 IF (INPAKL (IEQU(IT))H)2071,2070,2071
{

B

2071 WRITE(6,2075)IT
IK = KS(&)
e IK = 1
5 IF(IK.EQ.2) GO TO 2110
C2500 CALL UNLOAD(IWRITE)
2500 CONTINUE
2075 FORMAT (1X,4HEQU., I5,1X,23HAPPEARS IN TWO BRANCHES)
2070 TEQU(IT)I=IPACKL (IQyIEQU(IT))
2115 CONTINUE
TFIIKK.EQ.JCONT) GO TO 2110
2201 CONTINUE
A LBR =LBR #MBR
' 2202 CONTINUE
LBL =LAL #NBL
2200 CONTINUE
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THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

—————

NBL=LBL-1
NBR=LBR~-1
ISUBLINSS1) =1
ISUB2 (NSS1)=NBL

B e T

PHASE GEOMETRY HAS BEEN READ IN

NEXT CARD SHOULD BE A RENEW CARD OR A SIMULATE CARD
FIRST CLEAR RENEWS FROM PREVIOUS PHASES
DO 2400 I=1,NEQ
2400 IEQU(I)=AND(000000080000037777272778,IEQU(I))
2156 READ(5,2002)ID,IQeKL,KH,INC
TF(ID.NE.JRENE) GO TO 2151
2150 IF(INC)2152,2153,2152
2153 INC=1
i 2152 DO 2155 KaKLoKHoINC
x 2155 IEQU(K)=0R(4&00000000000000000008,IEQUIK))
!
1
!

OO0O0O0O0

WRITE(6,2002)1ID, IQeKLoKHo INC
GO 70 2156
c
C SIMULATE CARD START SIMULATION
C START OF PHASE JPHASE
2151 00 401 KMI=1o NMI

1 TIME=STPHAS
} SUMDOW =0.0 ,
: SUNDOW =0.0 |
IF (JPHASE-1) 10419,10 ;
10 READ(IREAD) ITEMP,ITEMP1,ITENP2, TENP1,TEML2 , TENP2,

1 (ETIME(J),J = 1,NEQ)
* C IF FIRST WORD=0,MISSION WAS SUCCESS
IF (ITEMP)  18,19,18
18 NMISS=NMISS-1
60 TO 300

. 19 00 20  K=1,NBR
. 20 TDOWN(K)=0
: C RENEW EQUIPMENTS SPECIFIED AND DETERMINE INITIAL STATE OF BRANCHES
' 00 25  I=1,NEQ
%2 IF (TEQUII))  921,25,22

i 921 IF(INPAKH (IEQU(I))21,25,21

: 21 CALL SETE(1,I)

4 G0 T0 25 ‘
E { 22 IF (ETIMECI)) 26423,25 i
i C ETIME=0 BUT IEQU NOT =0 :
23 WRITE(6,610) ,
i 610 FORMAT (L1HO oSXo6HETIME (3I2,5H) = 095X, &HMAIN) i
B | 26 K=INPAKL (IEQUCI))
F TOOMN (K) =T DOWN (K) #1
25 CONTINUE }
C SET INITIAL CONDITIONS OF BLOCKS,SUBSYSTEMS AND SYSTEM :
ISUB1 (NSS1)=AND(000000000000377777778, ISUBL(NSS1))
Do SO KSS=14NSS
CALL SSUP(1,KSS)
IF (ISWSS) 45, 66,45 !
45 ISUB1(NSS1)=0R(400000000000000000008,ISUBL (NSS1))
A 46 SSTIME (4,KSS)=0.
E | SSTIME (S,KSS)=0.
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50 CONTINUE
SSTIME (4 4NSS1)=0.
f SSTIME(5,NSS1)=0.
I . C THE ACTUAL MISSION SIMULATION BEGINS HERE
60 TP=TIME
IF(KS(6)-2)51, 56,51
51 WRITE(6952) TP, (IEQUIJ) ETINE(J) 4J=1,NEQ)
WRITE(6,53) (IDONN(K) ¢ KZ1 ¢ NBR) o (LBLOC2 (I)oI=1,NBL),(ISUBL(J) oJ=1,N
1SS1) , (ISUB2(JJ) 9 JU=1,NSS1)
52 FORMAT(1XoF10e ko7 (09,F10.4))
53 FORMAT(1X,08)
Sk CALL EVENT(TIME,IFORR,KEQ)
IK = KS(S)
IF(IK.EQ.2) 60 TO 92
91 WRITE(6490)KEQ.ETIME(KEQ) ¢KMI
90 FORMAT(I204F20.3+5Xs7HMISSION,110)
92 DELT=TIME-TP
C CHECK IF ANY DOWN TIMES HAVE EXCEEDED CRITVERIA
0o 70 KSS=1 ,NSS1
IF (ISUB1(KSS)) 65,6445 70
C ISUB1=0 FOR SOME SUBSYSTEM OR SYSTEM
’ 64 WRITE(6,601) KSS

o RO S i bt

601 FORMAT (1HO ,5X, 6HISUBL (4I2,5H) = 0)
{ 65 SSTIME (4,KSS)=SSTIME(4,KSS)+DELT
i } TF(SSTIME (4 ¢KSS)=-SSTIME(2,KSS))  66+66,202
66 IF (SSTIME(4,KSS)-SSTIME(1,KSS)) 70,70+67
67 IF (SSTIME(S,KSS) +SSTIME (4oKSS)=-SSTIME (3,KSS)) 70,705,203
70 CONTINUE |
71 CONTINUE |
C CHECK IF TIME GREATER THAN END OF PHASE
IF (TIME-ENDPHA ) 750754250
75 KBR=INPAKL (IEQUI(KEQ))
C CHECK IF EQUIPMENT IS IN SYSTEM
| 1F (KBR) 76,600,476
! 600 CALL SETE(OWKEQ?

‘ GO 70 60 1
! C FIND BLOCK WHICH EQUIPMENT IS IN
§ - 76 00 80 KBL=1, NBL
IF (KBR-INPAKH (LBLOCL (KBL))? 85,85,80
1 80 CONTINUE
i C BRANCH NUMBER MIGHER THAN HIGHEST BRANCH IN HIGHEST 8LOCK
3 WRITE(6,4602)
3 602 FORMAT (1HO0,5X,21H SEE COMMENT ABOVE 80)
3 85 KSS=INPAKH (LBLOC2 (KBL))
{; ISSPRE =1ISUB1(KSS)
4 i ISYPRE =ISUB1INSS1)
E s C PERFORM EVENT ANDO UPDATE STATE OF BRKBR.BLKBL,SBSYSTEM KSS AND SYSTEM

CALL SETE (9,KEQ)
TDOWN(KBR) =IDOWN (KBR) +IFORR

. CALL BLOCUP(KBL)
k IF "(IFORR) 120+100,102

i C EVENT NEITHER FAILURE NOR REPAIRs, OR STATE WAS NEITHER UP OR DOWN

i 100 WRITE(6,603)
603 FORMAT(1HO+5X,22H SEE COMMENT ABOVE 100)

b C EVENT WAS FAILURE

Fi 101 IF (ISWBL) 110,60,110

110 IF (ISSPRE ) 60,100,112
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112 ISUBL(KSS)=0R(400000000000800000008,ISUBL (KSS))
IF (ISYPRE ) 60,100,114
116 ISUBL1(NSS1)=0R(400000000000000000008,ISUBL (NSS1))
GO TO 60
C EVENT WAS REPAIR
120 IF (IDOWN (KBR)) 60,122,60
122 IF (ISWBL) 60,125,60
125 CALL SSUP (0 ,KSS)
IF ( ISNSS) 60,126,60
126 IF (ISSPRE ) 127,100,60
127 LOST1(KSS)I=LOSTL(KSS) +1
IF (SSTIME (4eKSS)~-SSTINME(1,KSS)) 140,160,138
130 SSTIME(S,KSSI=SSTIME(S,KSS)+SSTINE (4 ,KSS)
140 SSTIME(&,KSS)=0.
CALL SYSUP
IF (ISUB1(NSS1)) 60,100,154
154 IF (ISYPRE ) 155,100,60
155 LOST1(NSS1)=LOST1 (NSS1)e1
i XQX=SSTIME (4,NSS1)
TOOWN= TTME-XAX
i SUMDON =SUMDOW +XQX
| IF(XQX.LE.COOWN) GO TO 451
4§50 SUNDOW = SUNDOW + XQX
i 451 IFIKS(3)-2) 156,165,156
i J 156 WRITE(6,226)JPHASE o TDOWN TIME o SSTIME (4 oNSS1) ¢ KMI
165 IF(SSTIME (4,NSS1)-SSTIME(1,NSS1)) 180,180,170
170 SSTIME(5,NSS1) =SSTIME (S,NSS1)+SSTINE (4 4NSS1)
180 SSTIME (44NSS1)=0.
GO TO 60
C ABORT PROCEDURE
202 ICRIT=2
TABORT=TIME=(SSTIME(4,KSS)-SSTIME (2,KSS))
60 TO 204
203 ICRIT=3
TABORT=TIME=-(SSTIME (44KSS) +SSTIME(5,KSS)=SSTIMEC3 4KSS))
204 IF (TABORT~ENDPHA ) 205,71,71
205 IF (ICRIT=2) 206,207,206
206 LOST3(KSS)=LOST3 (KSS) +1
207 LOST2(KSS)=LOST2(KSS) ¢1
IF(IOPT.EQ.2) GO TO 209
208 WRITE(64220)JPHASE oKMI,TABORT, TETLECKSS) o TI2(KSS) s ICRIT,SSTIMNE
1 (ICRIT,KSS)
209 IF(IDATA.EQ.2)60 TO 215
210 JUKMI = 0
IDATA = 2
215 1 = 1
DO 516 I =1,NEQ
ITYPE(TY) = I
I=1J + 1
IF(ETIME(I))S13,516,516
513 IF(INPAKH (TEQUII))I)IS14:516,51k

% A

i

-

TR o
A . SR

c COMPUTE TOATL TIMES OF EACH EQUIPMENT FAILURE ®%0 05333033853 330033830s0sss
514 IF (KMI .EQ. JKMI) GO TO 512
JKMI = KMI

KEQU(I) = KEQU (I) ¢ 1
IF(IOPT.EQ.2) GO TO S16
512 WRITE(64515)I,ETIME(T)
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515 FORMAT (17X ,9HEQUIPMENT ,IS,24H DOWN IT WILL COME UP AT,F10,4)
| 516 CONTINUE
| IK = KS(1)
! - IF(IK.EQ.2) GO TO S18
517 CALL PPROG
618 ITEMP =ICRIT
ITENMPL =KNI
ITEMP2=JPHASE
TEMP1=TITLE (KSS)
TEM12 = TI2(KSS)
TEMP2=TABORT
GO TO 280
C END OF PHASE PROCEDURE FOR MISSION KMI
| 250 IF(ISUBL(NSS1)) 260,251,272
| C SYSTEM NEITHER UP NOR DOWN, DITTO SUBSYSTEM
{ 251 WRITE(6,604)
604 FORMAT (1H0 ,5X, 17HSEE COMMENT ABOVE)
260 TDOWN=TIME=-SSTIME (4,NSS1)
TOUR=ENDPHA =-TDONWN
IFIKS(3)=-2) 265,270,265
265 WRITE(6,226)JPHASE, TDOWN, ENDPHA o TOUR,KMI
270 WRITE(6,225)JPHASE, TDURyKMI }
IFIKS(2)-2) 271,272,271 i
271 CALL PPROG :
) 272 ITEMP=0
280 DO 290 I=1,NSS1
IF (ISUB1(I)) 282,251,290
282 LOSTL1(I)=LOSTL (1) ¢t
290 CONTINUE

300 WRITE (IWRITE) ITEMP,ITEMPL,ITEMP2, TENPL,TEML2,TENP2, E
1 (ETIME(J)4J = 1,NEQ)
IK = KS(3)

IF(IK.EQ.2) GO TO 401
400 IF(SUMDOW.EQe0.0) GO TO &Gt
410 WRITE(69%02) JPHASE ¢ KMIoSUNDOW o,CDOMN,SUNDOW
402 FORMAT (1XoSHPHASEIS,1Xs29HTOTVAL SYS DOWNTIME IN MISSION,IS.1X,3HW i
1AS,ELbL by H HRS/10Xo14HSYS DOWNS oGTogFEo0o8H HRS WASF10ebo%H HRS
2)
- 401 CONTINUE
. C END OF PHASE JPHASE PROCEDURE
{ HRITE(6,227)NMISS  JPHASE
{ c WRITE EQUIPMENT NOe. AND TOTAL FAILURES®SSS5 0353305000003 03303003300333038%
§

IOIFF = 0
D0 1110 IJ = 1, NEQ
WRITE (64820) ITYPE(IJ), KEQU(TIJ)
i 820 FORMAT (1X, 1SHEQUIPMENT NO. , I&, SX, 16HTOTAL FAILURES= ,I4&)
g’ IDIFF = IDIFF ¢ KEQU(IJ)
i 1110 CONTINUE
WRITE (6,821) IDIFF
821 FORMAT (41X, GH====, / Li1X, I&)
00 1115 IJ = 1, NEQ
KEQU(TJ) = O
1115 CONTINUE
IDATA = 1
00 311 I=1,NSS1
ITEMP=LOST2(I) +LOST3(I)
RELL1 = LOST1(D)
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311 WRITE(64228) TITLE(I),TI2(D),

o

i e it

- f.‘,. .’-.np., sl £ i
o000

800 FORMAT (/1X, 26HRELIABILITY DURING PHASE

THIS PAGE IS BEST QUALITY PRACTICARLS
CT1
FROM OOkYAFLhﬂ&ISHEI)IK)DDC

—

SSTIME (1,10,
L1SSTIME (2910 oSSTIME(3,I),LOST2(I),LOST3I(I)oITENP,LOSTL(T)

COMPUTE RELIABILITY FOR EACH PHASE S 00ssssssssssssssssssssssssssssssvesss
RELNM = NMISS

REL(JPHASE) = (RELNM - RELL1) 7 RELNM

RELP = RELP * REL (JPHASE)

WRITE (6+ 800) JPHASEe REL (JPHASE), JPHASE, RELP

'!2' 3H = .FS.I.

1 13X, 2SHRELIABILITY UP TO PHASE 3H =, F5.3)

ITEMP=INRITE
ENDFILE INRITE
REWIND INRITE
REWIND IREAD
INRITE=IREAD
IREAD=ITEMP
GO TO 2100

o124

220 FORMAT (1Xy9HIN PHASE ¢I694Xy SHMISSION 4I694Xy1SHABORTED AT TIME,F1

10.4,10H BECAUSE +2A&4,15H EXCEEDED CRIT,I3,5X,F10.3,5H HRS.)

225 FORMAT (1X927HSYSTEM DOWN AT END OF PHASE,I16413H FOR DURATION.F10.4

196Xy THMISSION, I6)

226 FORMAT (1X 41 2HOURING PHASE ¢16420H SYSTEM WENT DOWN AT,F10.6,18H SYS

ATEM CAME UP AT F10.%911H DOWNTIME =oF10.%¢6Xe 7THNT SSION, I6)

227 FORMAT (1X,16,23H MISSIONS ENTERED PHASE,16)
228 FORMAT (1X2Aky Xy 3HTL1=gF10.bobXo3HT22oF 10, koo Xo3HTI=,F10.4o4X, 7HAB

10RT225 1694 X9 7THABORT3I= 9165 4X s OHTOTABORT =, 164X o SHTOTOOWN= 4 16)
ENO

SUBROUTINE PPROG

DIMENSION LOAD(20)

OIMENSION INORD(6)

EQUIVALENCE (ETIME(1) o INORD(1))

COMMON XMTBF(500) 4XMTTR(500) ,TOOWN(800),LBLOCL (250),LBLOC2 (250)
14 TITLE(S0) 4 ISUBL (25) s TSUB2(25) s SSTIME(5,25) 5L 0ST1 (25) 4LOST2¢25)

2,L0S73(2%)

EQUIVALENCE (LOAD,IDOWN)
COMMON IEQU(1500),ETINE(1500)
COMMON STPHAS ,ENDPHA oNEQy JPHASE s TPy NPHyNMI, NSMNISS,; NBRyNBL ¢ NSS»
INSS1,ISHBL o ISHSS

OIMENSION IC(10)
DIMENSION IJUK(10)

CATA JLIHXo JIN/LHXoIN /7
D0 601 K=1,10

601 IJUK(K)=K-1

WRITE(6910) ENDPHA, (IJUKIK) 9K=1,10)

10 FORMAT(1Xs1IHPHASE ENDS AT,F12,3/60X,50MTABLE OF EQUIPMENT STATES

11

.0
‘ L3

425
12

1 AND TIME OF NEXT EVENT/&H NOoIXoI1,9(12X011)/7)

INEQ=NEQ+1

DO 425 I=1,INEQ,10

TJy=1-1

L=1J¢9

MRITE(6o11) IJo(ETIME (J)yJ=1Jyl)
FORMAT (1H +I6010(2X,F10.2))

00 2 J=1,10
L=1JeJ-1
IF C(INPAKL
IC(I) =J1HX
G0 T0 2
ICUII=yiN
CONTINUVE
WRITE(6,12)IC
FORMAT (41X, 10(12X,A1))
RETURN

END

(TEQUIL) ) I51040,01
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SUBROUTINE SETE(KEY,N)

DIMENSION LOAD(20)

DIMENSION IWORD(6)

EQUIVALENCE (ETIME(1),INORD(1))

COMMON XMTBF(500) ,XNTTR(500) , IOONN(8801,LBLOCL (250),LBLOC2 (250)
1o TITLE(S0) o ISUBL (250, ISUB2(25) s SSTINE(5,25),LOST1 (25) ,LOST2(25)
2,L0ST31(25)

€QUIVALENCE (LOAD,IDOWN)

COMMON IEQUIL500),ETINE(1500)

COMMON STPHAS ENDPHA oNEQeJPHASE o TPoNPHoNNL ,NSHISSoNBRyNBL oNSS»
INSS1,ISHBL o ISHSS

KEY = GENERATE TIME TO FAILURE
KEY =0 GENERATE TIME TO NEXT EVENY |

RN = RANF(OUM)
ITYPE=INPAKN (IEQUIN))
IKEY=KEYeL
IF(IKEY.EQ.2) GO VO 2 |
1 IF(ETINE(ND 13,405
& WRITE(6,10)N
10 FORMAT (1H0 ,SXo6HETIME (4I245H) = 045X, 4HSETE) |
FIND REPAIR TIME |
S ETVIME(N)==1.0%(-XMTTRC(ITYPE) *ALOGI(RN)*ETINEIN)) |
RETURN |
GENTERATE TIME TO FAIL IF KEY=0 RECKON TIME FROM START OF PHASE
2 B=STPHAS |
60 Y0 6 |
3 B=ABS(ETINME(N))
6 ETIME(N)=~XMTBF(ITYPE)® ALOG(RN)+ 8
RETURN
END

FUNCTION IPACK (I,K)
ENTRY IPACKH
IF(1.67,2047) GO 7O 3
IPACK=1I%4096 ¢+ AND(000000000000000077778+K)
RETURN
ENTRY IPACKL
IF(I.6T.2047) 6O 7O 3
IPACK = I + AND(000000000000377700008,K)
RETURN
3 NRITE(6,+5)
5 FORMAT (1HQ ¢5Xs IHI <GT.2047)
RETURN
END

FUNCTION INPAK(I)

ENTRY INPAKL

INPAK = AND(000000000000000077773,1)
RETURN

ENTRY INPAKH

INPAK = AND(000000000000377700008,1) /4096
RETURN

END
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SUBROUTINE EVENT(TINE,LSIGN,LPOS)
OIMENSION LOAD (20)
OIMENSION INORO(6)
EQUIVALENCE (ETVIME (1),INORD(1))
COMMON XMTBF(500) XNTTR(500) sIDONN(800),LBLOCL (250),LBLOC2 (250)

1o TITLE(50) . ISUBL (250, ISUB2(25) , SSTINE(S,25),L0ST1 (25) ,LOST2(25)
20L0ST3(25)

EQUIVALENCE (LOAD, IOOWN)
COMMON  TEQU(1500) ,ETINE(1500)

COMMON STPHAS ENOPHA oNEQe SJPHASE , TPy NPH . NNI , NSMISS, NBR,NBL oNSS,
INSS1,ISUBL, ISUSS

o000

TIME=ABS(ETINE (1))
LPOS=4
00 2 J=1,NEQ
R=ABS (ETINME tU))
IF(R=-TIME)1142,2
11 TINE=R
LPOS=)
CONT INUE
IF(ETIME(LPOS)) 3,44
LSIGN=-1
GO0 70 S
LSIGN=1
RETURN
END

Ve W N

SUBROUTINE SYSUP

OIMENSION LOAD(20)

DIMENSION INORO(6)

EQUIVALENCE (ETIME(1),IMORD(1))

COMMON XMTBF(500) 4 XMTTR(500) +XDOWN(800),LBLOCL (250),LBLOC2 (258)

1, TITLE(50) o ISUB1 (25) ISUB2(25) , SSTINE(5+25)»LOST1 (25) ,LOST2(25)
2,L0ST3(25)

EQUIVALENCE (LOAD,IDONN)
COMMON TEQUI1500),ETIMNE(1500)

COMMON STPHAS ,ENDPHA oNEQs JPHASE, TP NPHo NNI , NSMISS,NBR4NBL 4NSS,
1NSS1, ISHBL, ISNSS

o000

00 70 I=1,NSS
IF (ISUB1(I)) 62461470
C SUBSYSTEM IS NEITHER UP NOR DOWN
61 WRITE(6,5)
S FORMAT (1HO,5X, 17HSEE COMMENT ABOVE,SX, SHSYSUP)

62 ISUBL(NSS1)=0R (400000000000000000008,1ISUBL (NSS1))
G0 70 75

70 CONTINUE

ISUBL (NSS1)=AND(00000000000037 7777778, ISUBL(NSS1))
75 RETURN

END
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SUBROUTINE SSUP (KKK, K)

OIMENSION LOAD(28)

DIMENSION INORD(6)

EQUIVALENCE (ETIME(1) ,INORD(1))

COMMON XMTYBF (5080 ¢XNTTRIS00),IDONNIS00),LBLOCL (258),LBLOC2 (250)
1¢ TITLE(50) , ISUB1 (25), ISUB2(25) 4 SSTINE(5,25) 4LOST4 (25) ,LOST2(25)
2,L0S73(25%)

EQUIVALENCE (LOAO,IOONN)

COMMON IEQUILS00) ,ETINE(1500]

COMMON STPHAS ,ENDPHA oNEQs JPHASE TP, NPH, NMI s NSHISS s NBRoNBL ¢ NSSy
ANSSL 4 ISHBL » ISHSS

ISUSS=0

TSUBL (X)=AND(D 0000090080037 777777B,ISUBL(K))
ILOBL=TISUBY (K)

IHIBL=ISUB2 (K)

80 S¢ J=ILO0BLe INIBL

IF (KKK) bl, 62,61

CALL BLOCUP ()

IFLaLoc2 N £3,65,50

ISHSS=1

ISUBLIX)= OR(A000008000006800000008,ISUBL(K))
IF (KKK? 50 455,50

C LeLoc =0

(X<}

1]

CONTINUE
WRITE(6+6) J

6 FORMAT (1HO 45X, THLBLOCK(512,5HJ = 0}

S0

CONTINUE

55 RETVURN

END

SUBROUTINE BLOCUP (J)

DIMENSION LOAD(20)

OIMENSION INORD(6)

EQUIVALENCE (ETIME(1),INORD(1))

COMMON XMTBF(500) 4 XMTTR(500) ,IDOWN(800),LBLOCL (250),LBLOC2 (250)
1, TITLE(S0)  ISUBL (25) ¢ ISUB2(25) s SSTIME (5,250 4L OSTL(25),LOST2(25)
2,L03T3¢€25)

EQUIVALENCE (LOAD,IDOMWN)

COMMON IEQU(1500),ETINE(1500)

COMMON STPHAS (ENDPHA (NEQ,JPHASE TPy NPH,NMI,NSMISS, NBRyNBLyNSS,
iNSS1,ISNBL o ISHSS

ISWBL=0

LBLOC2 (J)=AND(000000000000377777778,LBLOC2¢(N))
IHIBR=INPAKH (LBLOCL (J))

ILOBR=INPAKL (LBLOC1 (J))

IUP=INPAKL (LBLOC2 (J))

ICT=IHIBR-ILOBR+1

00 30 K=ILOBR, INIBR

IF (IDOWN(K)) 28,30,28

28 ICT=ICT-%
30 CONTINUE

IF tICT-1UP) 31460440

31 ISWeL=1

LBLOC2 (J)=0R(400000000000000000008,L8L0OC2(J))

40 RETURN

81

S — ~ e —————. . 5

e e sttt

M ' MR A5 o IOV A . ol o e
- ¢ kbl M i s i i) e, BINC 50 L ML L

¢ S 1 i

S i

&




T

B

et

APPENDIX C
BLOCK DIAGRAM DERIVATION

The system definition must be given in terms of a reliability block
diagram which is derived from a functional or schematic diagram. The
initial system definition is usually given in terms of a functional diagram
which describes the physical connections of all the equipment. In order to
compute the reliability and the availability, this functional diagram must
be transformed into a reliability block diagram. Examples of functional
and block diagrams follow.

A functional diagram illustrates the interaction and relation of the
components. This functional or operational (schematic) diagram reflects
the actual sequence of operations--the signal path. Equipments connected
in parallel are drawn in parallel; equipments connected in series are drawn
in series. For example, a system might consist of items A, B, C, and D

with the following schematic

The following reliability block diagram, can be derived from this

functional diagram to show the effect of failures on the system.
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An equipment whose failure causes the system to cease performance (mission
abort) is drawn in series in the reliability block diagram, and an equip-
ment whose failure causes mission abort only when another equipment also
fails is drawn in parallel. These representations do not necessarily cor-
respond to those in the functional diagram.

This block diagram indicates that a failure of A or D would result in
mission abort, whereas if either B or C failed, the system could remain
operational and the mission would not be aborted.

Once the mission scenario, block diagram, and data are known, the in-
formation can be inserted into a reliability program to obtain the required

R/M quantities.
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APPENDIX D
GEMJR PROGRAM DESCRIPTION

1.0 INTRODUCTION

GEMJR is an analytic model for predicting R/M. The Poisson failure
process is used to develop a stochastic matrix which is solved to determine
reliability and availability considering repairmen, equipment redundancies,
and standbys. GEMJR was developed along the lines of the much larger GEM2
model, in order to examine analytic R/M program operations and to compare
results with those of the simulation R/M program, SIM3. GEMJR was also used
to determine the feasibility of smaller R/M programs which could be used
when all the power of GEM was not required.

The GEM program fills an entire CDC 6600 computer and uses its own
compiler. It requires a minimum of 135,000 (octal) words of memory, 300,000
(octal) words for complicated applications. The computer program GEMJR was
developed at DINSRDC to compute reliability, availability, and other ele-~
ments of maintainability. GEMJR, written in FORTRAN IV for the IBM 7090,
incorporates a Poisson failure process described in Section 4. The theory

and the calculations are similar to those used in GEM.

2.0 SUBROUTINE DESCRIPTIONS
The sample problem referred to in Section 3.4 will be used as a guide
in describing the operation of GEMJR. GEMJR was written especially to solve
a specific problem, but can be easily extended to solve other types of R/M
problems. !
The terminology incorporated here is a bit different than that used

in the SIM3 description. In the sample problem, pictured in Figure 5, we

refer to the blocks as stages, i.e., Block 1 becomes Stage 1 and so on,
(. except that Block 4 is now divided into two stages. Previously Block 4
; represented Equipments 8 and 9; now Stage 4 will consist of Equipment 8
and Stage 5 of Equipment 9. There will be a total of five stages in this

problem. Otherwise, the mission is the same, consisting of three phases
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with two distinct operational levels. In this example we will not be con~
cerned with the type number, and equipment number will be used only as a
means of identification.

The following paragraphs describe the subroutines in the program. All
required input is imbedded in these routines, and will be identified in
each subroutine.

2.1 EXECUTIVE ROUTINE
This routine is the control center of the program. It specifies when
and how the reliability and availability of each stage in the mission are E

to be computed. Most of the data required in the program are read in the

executive routine.

o g DU i st 720055 ¢

‘ The calculation of the reliability and availability for a specific
J stage is obtained by using the statement CALL HUM(J). The stage is identi-
fied by the index J which represents the number of items in that stage.

The reliability and availability calculated after each CALL HUM(J) are
| composite quantities. They represent values up through that stage. For
example, the reliability calculated in Stage 3 represents Rl X R2 X R3,
where R1 is the reliability of the first stage and so on. Since our sample

problem consists of five stages, the quantities calculated during the fifth

g

-y - »’-'

stage are the reliability and availability of the entire configuration for

duration of the mission. Figure 6 indicates the subroutine calling

i} sequence.
:i The following input is required in this routine:
:; ' Variable Name Description
| NST Total number of stages in configuration

NPH Total number of phases in mission

TOM(N), Time for start of phase; TOM(N) represents the start
3 N =1, NPH of the Nth phase

TINC Time increment, AT, used in iteration process (see

Section 4.2)
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—3 TWO

— STACK

———> FIVE

—p SER

p—— CONV
p———3p RECON—> FIVE
r—> ERCL

EXEC —» HUM ———¢—> MOUSE—
t——» CALC

p—— VECTOR——> CALC

— FAT

Figure 6 - GEMJR Subroutine Calling Sequence

p——3p THREE——

— ZERO

L——» DIAG
r—>» ZERO

> DIAG

—> ZERO

—p MATS

L——> DIAG

)




XL, XM Arrays containing MTBF's and MTTR's for all equipment
in Stage 1

XLS, XLM MTBF and MTTR for all other stages. (These stages do
not contain more than one type of equipment.)

RBL, RAL Arrays containing initial values of reliability and
availability

2.2 SUBROUTINE HUM(JN)
JN is the number of items in the stage called.
This subroutine controls the calculations for each stage. Reliability

and availability are computed up through the stage called and are printed

out.
Input Description
NIND NIND = 0 indicates one equipment stage (Stages 4 and 5)
NIND = 1 all other stages
The following quantities are not input but are described for
clarification:
Variable Description
A Array containing stochastic matrix
NP Phase number index
IP IP = 1, reliability is calculated
IP = 2, availability is calculated
NSF Number of up-states

2.3 SUBROUTINE STACK (JN,N)
N is the number of states in the stochastic matrix. The stochastic

matrix associated with the number of equipment JN is set up through calls

to the appropriate subroutines,

2.4 SUBROUTINE CONV(P)
P is the state probability vector. The stochastic matrix and state

probability vector associated with Stage 1 are converted from the form

used in Phase 1, to one suitable for use in Phase 2.
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2.5 SUBROUTINE FAT

The reliability and availability at each stage are printed out. In-
terval reliability is used in Phase 2 of Stage 1. To get the reliability
up through Phase 2, this interval reliability must be multiplied by the

reliability computed in Phase 1. To accomplish this operation the variable
COT is introduced.

Variable Description
REL(J) For the ITth stage, the reliability at the Jth phase
RAL(J) For the ITth stage, the availability at the Jth phase

2.6 SUBROUTINE RECON (N,P,AS)

This subroutine reconverts the ;tochastic matrix of Stage 1 from its
altered form used during Phase 2 to its original form for use during
Phase 3. This subroutine and subroutine CONV are necessary since Stage 1

undergoes a configuration change at Phase 2, requiring an alteration in

the stochastic matrix.

2.7 SUBROUTINE SER
This subroutine computes reliability and availability of single equip-

ment stages (series components).

2.8 SUBROUTINE MOUSE (N,AF,AS,NP,IP)
This subroutine sets up the infinite series in order to calculate the

state probabilities. AF is the sum of the identity matrix and the first

4
g
A
E
&
!
{
-t
¥
A
-

term of the infinite series. AS is the stochastic matrix A which is trans-
formed into operational form. The first term of the infinite series is
added to the identity matrix.

Variable Description

PP Number of terms of infinite series required to satisfy
accuracy criterion

TE Array containing truncation errors for each series
calculation (printed out)

PR giraens Q A MR .,’_,"““"'



2.9 SUBROUTINE CALC (AF,AS,N,NIN,T)
The sum of NIN terms of the infinite series is calculated.
NIN is the same as PP, T is the time increment used in the iteration

process, and AF is the matrix sum of the infinite series.

2.10 SUBROUTINE VECTOR (N,IP,NP,AF,AS)
This subroutine computes final stage probabilities and sums them to

give the reliability and the availability.

Variable Description
NIS Array containing values of NIN for each series calculation

(printed out)

2.11 SUBROUTINE DIAG (N)

This subroutine evaluates the diagonal elements of a stochastic matrix,
given all the non-diagonal terms.

Given a stochastic matrix, Aij’ the sum of all the terms in the ith

row equals 1, i.e.,

-

j=

The diagonal term of the ith row is Aii and can be evaluated from

the expression

i
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2.12 SUBROUTINE FIVE (N)

The elements of stochastic matrix for Stage 1 are set up and
calculated.

2.13 SUBROUTINE THREE (N)

The elements of stochastic matrix for Stage 3 are set up and
calculated. :

2.14 SUBROUTINE TWO (N)

Sets up and calculates elements of stochastic matrix for Stage 2.

2.15 SUBROUTINE ZERO (N)

Assigns zero to all elements of stochastic matrix before calculating
the elements.

2.16 SUBROUTINE ERCL (N,H,P,T)
The number of terms required in the infinite series to satisfy the

prescribed value of 10-8 is calculated. At least five but not more than
25 terms are used.

H is the time increment (see TINC) and P is the number of terms re-

quired to satisfy the accuracy criterion.

2.17 SUBROUTINE MAT 5

All non-diagonal elements for the stochastic matrix of Stage 1 are

calculated.
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3.0 PROGRAM LISTING

&

-

10

PROGRAM MIKE(INPUT,OUTPUT, TAPES=INPUT, TAPE6=OUTPUT)
COMMON/ETCH/NST
COMMON/RST /NPH
COMMON/HINO/ XLSoXMS,TOM(10)
COMMON/LOLLY/TINC,NT(10),ET(10!
COMMON /ABC/A(S0+50)+XL(10),XN(10)
COMMON/DEF /RELS (10420 4P(50,2),PZ(50,2)
COMMON/HALT/IT,RBL(10),RAL(10) ,NIS(10,2),TE(10,2)
COMMON /NEW/NINDoNSF o NIN
NIN IS THE NUMBER OF TERMS IN THE INFINIVE SERIES
MINIMUM NUMBER OF TERMS IN SERIES IS S
IF TRUNCATION ERROR IS NOT LESS THAN 1.0E-8 DETERMINE
HOW MANY TERMS ARE NECESSARY TO OBTAIN THIS ACCURACY
25 TERMS IS THE UPPER LIMIT
TOM(1) = 0.0
TOM(2) = 262.
TOM(2), TIME TO END OF PHASE 1
TOM(3) = &30.
TOM(3), TIME TO END OF PHASE 2
TOM(&) = 1200.
TOM(&4), TIME TO END OF PHASE 3
NPH, NUMBER OF PHASES IN MISSION
NST, NUMBER OF STAGES IN RELIABILITY BLOCK ODIAGRAM
NST = S
NPH = 3
TINC = 5
00 & J = 1,NPH
TOV = TOM(J ¢ 1) - TOM()
TN = TOT/TINC
NT(J) = IFIX(TN)
JT = NT(J)
XNT = FLOATWJT)
SH = XNT®*TINC
ET(Y) = TOT - SM
CONT INUE
XLty = 2300,
XL(2) = 2300.

XL(3) = 22500.
XL(&) = 12700
XL(5) = 910.
XM(1) = &3
XM(2) = 4.3
XM(3) = 2.4
XM(&) = 2.1
XMIS) = &2

001 J = 1,5
XLEJ) = 1.,/7XL())
XMIJ) = 1./7XM(I)
00 10J = 1,NPH
RAL(J) = 1.0
RBLI(J) = 1.0
IT=0

CALL HUM(S)

XLS = 22200.
XMS = 21.3

CALL HUM(3)

XLS = 196400.
XMS = 6.4

CALL HUM(2)

00 6 IY = 1,2
XLS = 1,/7000.
CALL HUN(1)
CONTINUE

STO0P

END
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SUBROUTINE HUM (JN)
COMMON/RST /7 NPH
COMMON/HAL T/IT,RBL (10 ),RAL(10) NES(10+2),TE(10,2)
COMMON/LOLLY/TINC,NT(10) ,ET(10)
COMMON /ABC/A(S50+50),XL(10),XN(10)
COMMON/NEN/NIND, NSF,NIN
COMMON/DEF /RELS(10+2) 9P(50+2)4P2(50,2)
RELS(IoJ)y I = PHASE NUMBER, J = 1 RELIABILITY, J =2 AVAILABILITY
PUIoeJ)oP(IeJ)y I RON NUMBER, J AS ABOVE
OIMENSION AF(50,50),AS(58,50)
NSF, NUMBER OF STATES IN WHICH SYSTEM IS UP
INPUT FORM OF MATRIX HAS ONES SUBTRACTED FROM
DIAGONAL ELEMENTS
TRANSPOSE INPUT MATRIX AF
CALL STACK(JNyN2)
N = N2
IF(NIND.EQ.Q) GO TO 7
D0 15 J = 1,N
D0 1S I = 1,N
K=1
L=
ASILeK) = A(IyJ)
15 CONTINUE
D0 58 J = 1,N
00 58 I = 1,N
58 A(IJ) = AS(I,\U)
D0 2 NP=1,NPH
002 IP = 1,2
IF(NP.EQ.2.AND.IT.EQ.0.AND.IP.EQ.1) CALL CONV(PZ)
IFINP.EQe3.AND.IT.EQ.0.AND.IP.EQ.1) CALL RECON(N,PZ,AS)
| N = N2
! IF(IP.EQ.1) N = NSF
CALL MOUSE (NoAF o AS,NP, IP)
CALL VECTOR(Ny IPyNP,AF,AS)
006 J = 1,N2
6 PZLJ,IP) = PLJ,IP)
2 CONTINUVE
7 CONTVINUE
CALL FAT
RETURN
END

o000 OO0

Ly e -

SUBROUTINE STACK(JNsN)
IF(JN.EQ.2) CALL TWO(N)
IF(JUN.EQ.3) CALL THREE(N) .
IF(UN.EQ.5) CALL FIVE(N)
k| IF(UNCEQ.1) CALL SER
RETURN
! END

e

0 P -

., =




SUBROUTINE FAT
{ COMMON /HAL T/IT,RBL(10) ,RAL (100 (NIS(10,2),TE(L10,2)
COMMON/ETCH/NST
} COMMON/LOLLY/TINC,NT(10),ET(10)
| . COMMON/RST /7 NPH
COMMON/DEF/RELS(18+2) 4P(50,2)P2(50,2)
17T = IT7 ¢+ 1
WRITE(6,1) IT
IFCLIT.EQ.NST) WRITE(6,2)
IFIIT.EQ.NST) WRITE(6,6) NPH
IF(IT.EQeleOR ITeEQe2,0R.IT.EQeI) MWRITE(6,43) IT,TINC
D07 J = 1,NPH
CoT = 1.0
IF(J.EQe2.AND. IT.EQ.1) COT = RELS(1,1)
IF(J.EQe3.AND.IT.EQ.1) COT = RELS(1,1) ®RELS(2,1)
RBL(J! = RBLIJI®RELS(J 10 %COT
RALC(J) = RALUJI®RELSI,2)
NRITE(6,5) J
IF(IT.EQ.4.0R. IT.EQ.5) GO TO 10
WRITE(646) RBL(J) NIS(I,1),TE(Jy1)
HRITE(G28)RALIJI o NES(Js2) 4 TE(S,2)
GO TQo 7
10 MRITE(6,9) RBL(J),RAL (J)
7 CONTINUE
1 FORMAT (1H1, 20X,18HOUTPUT UP TO STAGE, I3
2 FORMAT (1HO 418X ¢23HTHIS IS THE LAST STAGE.)
& FORMAT (11X 19HTHE OUTPUT AT PHASE,I3/11X,S1HREPRESENTS THE RESULTS
1 FOR THE ENTIRE CONFIGURATION)
3 FORMAT (1HO,y9X, 37HA STOCHASTIC MATRIX WAS USED IN STAGE.I3/10X,11HS
1TEP SIZE =,F5.2+923H IN ITERATION PROCEOURE)
S FORMAT(1HO0 220X s SHPHASEI2,7H OUTPUT)
6 FORMAT (1H0,20X L SHRELIABILITY =,F8.5/21X, 36HNUMBER OF TERMS IN INF
LINITE SERIES =,I3/21X,18HTRUNCATION ERROR =,E14.6)
8 FORMAT (1H0,20X 3 1 SHAVAILABILITY=,F8,5/21X, 36HNUMBER OF TERMS IN INF
LINITE SERIES =,I3/21Xo18HTRUNCATION ERROR =,E1&6)
9 FORMAT (1H0 920X y A SHRELIABILITY =,F8.5/21Xo 14HAVAILABILITY =,F8,5)
F | RETURN
4 ENO

L OS—,

SUBROUTINE CONV(P)
COMMON /ABC/A(S0,50),XL(10),XM(180)
COMMON/NEW/NIND s NSF oy NIN
DIMENSTON P(S042)4B(3,50),C(S)
NSF = 8
k& | 001 I = 2,6
A CUI-1) = PUI,2)
001 J = 1,32
1 B(I-1,J) = ALI, S
D021 = 2,8
- PlI,2) = P(I ¢ 3,2)
; 002 J = 1,32
4 2 ALI,J) = A(Ie3,0)
. 003 I = 9,11
- P(I,2) = C(I-8)
3 DO 3 J = 1,32
s 3 A(I,J) = BUI=-8,4)
DO & J
00 & I
j & BlJ~1,1I
3 p0S J
005 I
5 AtI,J)
1 D06 J
. 4 D06 X = 1,32
6 ALI,J) = B(J=8,1)
007 4 = 1,32
7 Pldel) = PLJIe2)
RETURN
g END

AlXeJe3)
911

LU I O BT A )
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SUBROUTINE RECON (N, P, AS)
COMMON /NEN/NINDo NSF o, NIN
COMMON /ABC/A(50,58) o XL(18)XN(18)
DIMENSION P(50,2),C(5),0(18),AS(50,50)
CALL FIVE(N)

00 15 J = 1,M

00 1S I = 1,N

K=1I

L=J

ASILoK) = AL, J)
CONTINUE

00 58 J = 1,N

DO S8 I = 1,0

AlIoJ) = AS(I,J)

0041 I = 1,3

ClI) = P(1¢8,2)

002 I = 2,8

0(I) = P(I,2)

DOS I = 2,8

P(Ie3,2) = O(I)

003 I =1,3

P(Ie1,2) = C(I)

006 I = 1,32

PllIe1) = P(I,2)

RETURN

END

SUBROUTINE SER

COMMON/HINO/ XLS,XMS, TOMI10)
COMMON/RS T/ NPH
COMMON/DEF/RELS11042) oP(50+2),P2(50,2)
COMMON/NEN/NINDy NSFoNIN
NIND = O

DO 9 J = 1,NPH

™ = TON(J*1)

RELS(J,1) = EXP(=-XLS*TN)
RELS(J,2) = RELS(J,1)

CONT INVE

RETURN

END

SUBROUTINE MOUSE (Ny AF o AS, NP, IP)
COMMON /ABC/AL(S0,50),XLI10) o XN(10)
COMMON/LOLLY/TINC,NT(10),ET(10)
COMMON/NEN/NIND, NSF,NIN
COMMON/HALT/IT,RBL (10D RAL(10) oMIS(10,42)0TE(10,2)
DIMENSION AF(50,58),AS(50,50)
CALL ERCLINJTINC,PP,T)
TE(NP,IP) = T
NIN = IFIXIPP)
MATRIX AF, FIRST THO TERMS IN SERIES
00 & I = 14N
00 & J = 1N
PR = 0.0
IF(I.EQ.JF PR = 1.0
AF(I,J) = A(I,JI®TINC ¢ PR
INITIALIZE OPERATIONAL MATRIX AS
AS(I,J) = AlI, )
AF INPUT MATRIC
AF INPUT MATRIX
Tov TOTAL TINME
TINC INCREMENT OF TINME
NIN NUMBER OF TERMS IN SERIES
P FINAL RELIABILITY VECTOR
CALL CALCUAF,AS,NyNIN,TINC)
RETURN
END
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SUBROUTINE VECTOR(N,IP,NPoAF,AS)
COMMON/NEN/NIND, NSF oNIN
COMMON/DEF/RELS(1002) oP(50,2)4P2(50,2)
COMMON/LOLLY/TINC,NT(10),ET(10)
COMMON/HALT/ZIT,RBL (100 oRAL(10) JNIS(10,2),TE(10,2)
DIMENSTION AF(58,50) ,AS(50,500,PSI50)
00 17 J = f.,M

PS(J) = PZ(JeIP)

NTS = NTINP)

00 12 KT = $,NTS

IFIXT.EQ.1) GO TO 25

00 16 J = 1.MN

PSLI) = PlJIM)

CONT INUE

DO 11 I = 1,M

Q= 0.

00 13 J = 1.0

Q=Q ¢ PSUJISAF (I,

PII.IP) = Q

CONT INUE

EF = ETIN)

IFIEF.EQ.0.0) 60 7O 16

CALL CALCUAF,AS N, NINGEF)

00 53 J = 4,0

PSLJ) = PLJILIP)

D0 51 I = 1N

Q= 0.0

DO 52 J = 1,M

Q=Q ¢ PSUII®AF (I,

PII,IP) = Q

REL = 0.0

DO 3 J = 1,NSF

REL = REL ¢ P(JIP)

RELS(NP,IP) = REL

NISINP,,IP) = NIN

RETURN

END

SUBROUTINE FIVE(IN)
COMMON/DEF 7P (60) «PZ(40) +REL
COMMON /ABC/A(S50+500 ¢ XLC10),XNELO)
COMMON/NEN/NINDo NSF,NIN
NIND = 1§
NSF = 11
N = 32
CALL ZERO(N)
CALL MATS
COMPUTE OIAGONAL ELEMENTS OF MATRIX A
CALL DIAGIN)
RETURN
END
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SUBROUTINE THREE(N)
COMMON /ABC/ACS0,50),XLI10),XN(10)
COMMON ZHINO/ XLS)XNS, TON(10)
COMMON/DEF /P(60) o PZ(48) o REL
COMMON/NEN/NIND, NSF,NIN
LS = 1,0/XLS
XMS = 1.0/XNS
NIND = ¢
NSF = 2
s 6
CALL ZERO(N)
At1,2) = 3.%0S
A(201) = XNS
A(2,3) = 2.%xLS
At3,6) = XLS
Alhe3) = 3,°XNS
COMPUTE DIAGONAL ELEMENTS OF MATRIX A
CALL DIAG(N)
RETURN
END

SUBROUTINE TNO (N)
COMMON/HINO/ XLSoXMS, TON(10)
COMMON 7ABC/A(S50,50),XLI18),XN(10)
COMMON/DEF/P(40) 4PZ(40)REL
COMMON/NEW/NIND,NSF,MIN
XLS = 1.0/XLS
XMS = 1.,0/XMS
NSF = 2
NIND = 1
Ns=3
CALL ZERO(N)
Al1,2) = 2.%KLS
A(241) = XNS
A(2,3) = XLS
A(3,2) = 2,°XNS
COMPUTE OIAGONMAL ELEMENTS OF MATRIX A
CALL DIAG(N)
RETURN
END

SUBROUTINE OIAG(N)

COMMON /ABC/A(S0,50),XLI10)oXNI10)
008 I = 1,N

PA = 0.0

007 J = 1,N

IF(I.EQ.J) GO TO 7

PA = PA ¢ AL U

CONTINUVE
ACI,I) = =PA
RETURN

END




SUBROUTINE ZEROIN)
COMMON /ABC/ALS0,50),XLI10)XNI10)

COMMONZ7DEF /RELS(1042) 4PIS0,2)0P2(50,2)

002 1 = g,M

002 J = 3N

PZ2(I.4) = 0.0

PI(L,2) = 0.8

AlIeJ) = 8.0

P2M1,1) = 1.0 -
PZ2(1,2) = 1.0

RETURN

Eno

SUBROUTINE CALC(AF,ASoNoNIN,T)
COMMON /ABC/A(SE,50) o XL (28D o XN(20)
DIMENSION AF(50,50)4,AS(50,50),A2(50,50)
NJ = NIN - §

1s=7

00 6 JJ = 1,MJ

XN = FLOAT(JJ)

TS = TS®T/(XN#1,0)

DOS I = 4,N

D0 5 J = 1,N

Q= 0.

00 3 K = 44N

Q=0 ¢ ASUI,K)I®ALK,I)

CONTINUE

A2tI,J) = Q
MATRIX A2 RESULT OF MATRIX MULTIPLICATION OF AS®A,
WHERE AS = A®SNJ

CONTINUE

D07 T = 1,N
007 J = 1,N

SET RESULT OF MATRIX MULT. A2 EQUAL TO OPERATIONAL MATRIX AS
AS(I,J) = A2(I,J)

COMPUTE NJ~1 TERM IN SERIES
A2(I4J) = AS(I,J)*TS

SUN UP SERIES ;
AF(I,J) = AF(I,J) ¢ A2(I,J) i
FORNAT (3(10%sF10.50) !
CONT INUE : f
CONTINUE
RETURN
€N




ERCLENHoP, T)
/0050500, XL (10D o XN(L0)
oM
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A ¢ Al V"2

QRTIVA)
A%H

‘§§

CN<dmS

-
.
LK B
"o g

~
O-N<<40
- & 2 1 J

T = (THOO(P ¢ 2.0/7(P ¢ 2.00%08. ¢ TH/LP ¢ 3.)1%.5°(EXPITH)
1 ~EXP(-TH))
IPN = IP ¢ 3
009 J = 1,IPN
97 = T/FLOAT(S)
\ TFIT.LE.2.E-8) GO TO 3
{ & CONTINUE
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SUBROUTINE MATS

COMMON /ZABC/A(S0+50),XL110),XN(10)

Al1,2) = XL(Q)
Al1,3) = XL(2)
Al1,9%) = XL
Al1,6) = XLIS)
AlL,7) = XLI(S)
Al2,1) = XN(1)
Al2,6) = XL(2)
Al2,12) = XL(I)
A(2,13) = XLIN)
A(2,18) = XLIS)
Al3,1) = XN(2)
A83,6) = XLI3)
Al3,15) = XL(3)
A(3,16) = XL(&)
A(3,17) = XL(S)
Al&,2) = XM(2)
Al4,3) = XN(Y)
Alho18) = XL(I)
Alh,19) = XLIG)
Al4,20) = XLIS)
A(5,1) = XM(3)
A(5,8) = XL(W)
Al 5,10) = xL(S)
A(S5,12) = XL(1)
AlS,15) = XL(2)
Al6et) = XN(S)
A(6,8) = XL(3)
A(6,9) = XL(5)
Al6,13) = XL(1)
A(6,16) = XL(2)
Al7,1) = XM(5)
A(7,9) = XL(&)
Al 7,10) = XL(3)
Al7,18) = XLID)
Al7,17) = XL(2)
A€8,5) = XN(&)
A€8,6) = XH(3)
Al 8,11) = XL(S)
Al8,21) = XLI(1)
A(8,22) = XL(2)
A(9:6) = XN(S)
A(9,7) = XM(N)
Al 9,11) = XLI(D)
219,23) = XLIL)
A(9,26) = XLC2)

Al10, S) = XM(S)
Al10, 7) = XN(Z)
AG10,11) = XL(W)
A€16,2%) = XL(L)
A110,26) = XL(2)
Atil, 8) = XNIS)
Alil, 99 = XNL3)
A(11410) = XNIND
Al11,27) = XL(2)
Al1142080) = W(20




Al12, 29
Al12, 5)
Al12,10)
Al12,21)
A(12,29)
All13, 2)
Al13, 6
Al13,19)
A(13,21)
Al13,23)
Alle, 20
AlLs, 7)
Al24,20)
A(16,23)
A (14,25)
Al1S, 3)
Al15, 5)
A(15,18)
A(15,22)
A(15,26)
Al16, 3)
Al16, 6)
Al16,19)
A(16,22)
A(16,24)
AlL7, 3)
A7, M
A(17,20)
AlLT,206)
A (17,26}
Al18, &)
Al16,12)
A(18,15)
A(18,30)
A(18,31)
A(19, &)
A(19,13)
A(19,16)
A(19,29)
K29, 38)
At20, &)
AC20,16%)
Al20,17)
A(20,29
A (20,300
At21, 8)
A(21,12)
At21,13)
R(21,27)
A21,31)
Al22, 8)
A(22,15)
A122,16)
A(22,428)
A(22,31)
AL23, 9
A(23,13)

xmes)
xnel)
ni2)
X660
xL(s)
XNES)
xmes)
x4z
xn¢3
xL(S)
XN(S)
xXnei9
niz2)
xnis)
xL(3)
XH¢3)
xne2s
xnig)
XL(&)
XL(S)
xXnts)
xMe29
xL(1)
xL(3)
X (S
XH(sH
xM¢2)
xL(1)
xnis)
XL(3)
XMt 3)
XMt2)
xMeLd
xn(s)
XLe6)
XM &)
xMt2)
XM(1)
xL(S)
XL(3)
XM(S)
xH¢2)
xnii)y
XLC&)
xL¢3Y
xneg)
XME&)
XM(3)
XL(S)
xL(2)
xme29
XM(6)
XH(3)
XL(5)
XLet)
xMei)
XM(S)

v ¥l
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A(23,16)
A(234270
A (23,29
A (26, 9)
A(26416)
AC24417)
A (26,28)
A (26+29)
Al25,10)
A(25,12)
Al25,16)
A125,28)
A(25,30)
A(26,10)
A(26,15)
A(26417)
A (26+28)
AC26,30)
AC27411)
Al27,21)
A(27,23)
A(27+25)
A (27 ,32)
A(28,11)
At28,22)
A(28,23)
A(28,26)
A(28,32)
A129,19)
A (29,29)
A(29,23)
A(29,26)
A(29,32)
A(30.18)
At30,200
A(30,25)
A(30,26)
A(30,32)
A(31,18)
A(31,19)
A(31,21)
A(31,22)
A(31,32)
A(32,27)
A(32,28)
A(32,29)
AL32,30)
A€32,31)
RETURN
ENOD
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XHie)
XLe3
xt2)
XML2)
XM(S)
XNt &)
XxL(3)
xLeg)
XMe(1)
XM(S)
Xne3)
At
X2y
XMt2)
XM(S)
XM(3)
XLis)
XLeg)
XHeg)
XM(S)
XM(3)
XMt4)
xL(2)
XM(2)
XM(S)
XM( 3D
XM( &)
XL
XH(S)
XM(&)
XM(2)
xMe1)
XL(3)
XM(S)
XML 3)
XM(2)
XM(1)
XL{s)
XM(4)
XM¢3)
XM(2)
XMC1)
XL(S)
XM¢2)
XMC1)
xM¢3)
XM(&)
XM(S)

g 3 S
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