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ABSTRACT
Several general formulas relating aerodynamic forces and moments
acting on finite solid bodies immersed in a fluid to the time-variation

of vorticity-moment integrals are presented. The formulas are valid for

two- and three-dimensional flows and are shown to form a theory for aero-

dynamic forces and moments which encompasses much of the existing aerodynamic

theories.
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I. INTRODUCTION

The problem of predicting aerodynamic forces and moments acting on
finite solid bodies immersed in and moving relative to a fluid has occupied
the center stage of aerodynamic research from the end of the nineteenth
century onw;rda. In fact, it is this focal problem that distinguishes
the science of aerodynamics from other branches of theoretical fluid mechanics.
Studies of the motion of the fluid relative to the solid bodies of course
represent a fundamental aspect of aerodynamics. In the majority of aerodynamic
applications, however, such studies do not represent ;udn in themselves.
Rather, they are undertaken in recognition of the fact that the motion
of the fluid is ultimately responsible for the forces and moments exerted
on the solid bodies by the fluid.

It is known that the problem of finding analytical solutions to equations
of fluid motion associated with solid configurations of practical importance
presents considerable, often insurmountable, mathematical difficulties.
Historically; therefore, the most remarkable advances in aerodynamics
were brought about by aerodynamicists who perceived approaches for the
prediction of serodynamic forces and ﬁonents that avoid, as much as possible,
entanglement with the details of the fluid motion. For example, the
Kutta-Joukowski theorem, i.e. the circulation theory for two-dimensional
steady motion, permits the lift force acting on a solid body to be determined
from a knowledge of the circulation about the body. For the case of a
two-dimensional body with a sharp trailing edge, the Kutta condition,
requiring the cear stagnation point of a potential flow to be located
at the trailing edge, is known to yield acceptably accurate values of
the circulation, provided that the flow is steady and does not separate

over an appreciable region around the solid body. With the Ku:ta condition,
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the problem of predicting the lift force for such a flow is reducible to

that of solving an integral equation (Ref. 1). The unknown function of this
integral equation is a distribution of singularity (sources, sinks, and vorti-
ces) over the body surface. There is no need to know the fluid motion away
from the body gxéepc that it is reasonably represented by a potential flow
about the body.

Extensions of the circulation theory to three-dimensional and to
unsteady flows are generally based ou the concept of bound vortices
and free vortices. The bound vortices are considered to move with the
solid body. The free vortices are considered to be shed from the solid
body either because of the Helmholtz theorem, which states that a vortex
filament cannot begin or terminate within the fluid domain, or because the
total circulation of the entire fluid system is required to be zero. These
free vortices are located at finite distances from the solid bodies and
they make a finite contribution to the fluid motion near the solid surfaces.
This contribution is quantitatively determinate once the spatial distribution
of the free vortices is known. This distribution is dependent on the com-
plex processes of shedding of vortices anﬁ subsequent transport of free
vortices in the fluid. To avoid the detailed computation necessary for an
accurate determination of this distribution, most previous authors have
prescribed the motion of free vortices in a simple manner. For example,
with Prandtl's lifting~line theory, it is usually assumed that the free
vortices :emain stationary relative to the freestream.

The circulation theory and its extensions permit reasonably accurate
predictions of the lift force for some solid configurations and flow environ-
ments. The scope of applicability of this theory and its extensions has not
been precisely established. It is well-kmown, however, that considerable

uncertainties exist regarding the value of the circulation to be prescribed
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in cases where the solid body does not possess a sharp trailing edge, where
appreciable regions of flow separation exist, or where the motion of the solid

is time-dependent. These uncertainties arise mainly because assumptions, or

hypotheses, utilized in the development of the theory are often ad-hoc and,
consequently, the theory is not readily interpreted as an approximation of
a specific phyﬁical phenomenon. For example, the bound vortex is usually
described in well-known treatises as "replacing" an airfoil (or a wing).

The vorticity, defined as the curl of the velocity, is twice the angular

velocity in a solid region. If the airfoil is not rotating, them clearly

it does not possess vorticity. The bound vortex is therefore not an approxi-
é i mation of the airfoil. To the experienced aerodynamicist, the remarkable
agreement between the predicted and measured lift forces under certain circum-

! stances points to the inevitable conclusion that the circulation theory is a

reasonable approximation of the physics of the problem under these circum—
stances. It was suggested (Ref. 2) that the bound vortex does represent the

airfoil plus its boundary layers. The fact that such an interpretation wus

it g &

emphasized so very recently (in 1976) has motivated the principal investigator ;

to examine critically the historical development of the circulation theory,

together with its more recent extensions, with the hope of facilitating
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the interpretation of the circulation theory and thus contributing to
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its further development for three-dimensional flows, unsteady flows, and

separated flows. In the course of this study, several general formulas

relating aerodynamic forces and moments to the time-variation of vorticity-

T —— T ——

| moment integrals were uncovered. It became evident that these formulas have
far reaching consequences in the realms both of theoretical aerodynamics and of

- computational aeradynamics. In particular, it was shown that the formulas form

a theory for aerodynamic forces and moments. This theory encompasses much of

the existing aerodynamic theories. For example, the circulation theory for
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steady lift and its various extensions are readily interpreted as various levels
of approximation of the general theory. The purpose of‘this report is to present
this general theory.

A distinguishing feature of the present theory is that the concept of bound
vortex, or that of singularity elemepts sucﬁ as sources, sinks, and vortex fila-
ments, is not embodied in the general formulas forming the theory. Rather, the
actual vorticity distributions of the fluid and of the solid, the latter being re-
lated to the rotational motion of the solid, enter these formulas. The starting
point of the present theory is a rotational flow analysis. Consequently, the
theory is applicable to viscous flows. This freedom fr&n "bondage" is important

in the interpretation of the various aerodynamic theories. For example, it permits

a precise definition of the "circulation" about a two-dimensional solid in the case

where an appreciable region of separation exists. While the Kuéta-joukowski theorem
predicts zero drag, the general formula does relate the time-variatioa of a vorti-
city-monént integral to a non~zero drag, including the profile drag. The formulas
predict an unsteady drag without the customary energy or apparent mass consideration.
These general foruulas, in fact, clearly point out the basis principles for mini-
mizing the drag and for maximizing the lift. Hahy of the measures proposed for drag-
reduction and for lift~augmentation are ;eadiiy interpretable on the basis of

these principles. The present research deals only with incompressible flows,
although the basic principles described here are certainly applicable to

compressible flows as well.

In recent years, extensive efforts have been in progress at many research
institutions to develop numerical methods for the solution of aerodynamic problems.

An ultimate goal of these efforts is to make available methods of predicting

aerodynamic forces and moments that are more accurate and that possess a wider
scope of validity than the circulation theory. These efforts are divisible into

two major categories. In one category, numerical methods are being developed
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for the solution of inviscid flow equations. The free vortices are assumed to
convect, but not to diffuse, with the fluid. The solid.body is represented by
a singularity distribution. Conceptually, these numerical methods utilize the
basic assumptions of the circulation theory. They relax the restrictions of
analytical methods based on the circulatioﬁ theory through detailed compu-
tation. For e;ample, the linearization procedure introduced in classical
studies of the unsteady two-dimensional airfoil problem (e.g. Ref. 3) is no
longer necessary if numerical methods (e.g. Ref. 4) are employed. These
numerical methods are of course expected to be subject to the well-known
limitations of the inviscid flow assumption. In this tégard, the availa-
bility of the general formulas are expected to offer clearer interpretation
of these numerical methods and better definition of their scope of application.
In the second category, numerical methods are being develoﬁed.for the
solution of differential equations governing viscous flows. Impressive
progress has been made in recent years in the numerical solution of two-
dimensional laminar separated flow problems as well as in the establishment
of turbulence ﬁodels for separated flows. For three-dimensional separated
flows, the development of numerical methods is hindered by excessive compu-
tation requirements (Ref. 5). Methods :ha£ possess superior computational
efficiency are therefore of critical importance. During the past few
years, the principal investigator and his co-workers have developed a
new numerical approach which permits the confinement of the solution field
to the vortical region of the flow (Ref. 6). In comparison to available

finite-difference and finite-element methods, all of which require the

solution field to include the potential region in addition to the vortical
region, the new approach requires a drastically smaller number of grid
points. The computation requirements using this new approach, called the

integro~differential approach, are consequently drastically smaller than
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those using other methods (Ref. 7,8). The new approach uses the vorticity
vector as a field variable in place of the pressure. The general formulas 1
presented in this report provide a convenient means of computing the aero- |
dynamic forces and moments directly from vorticity distributions. That is, |
using these general formulas, it is no longer necessary to compute first the 1
pressure and shear stress distributions on the solid surfaces from the value
and normal gradient of vorticity on the surface (Ref. 8) and then the inte-
grated forces and moments. In addition, the general formulas suggested
several promising techniques for minimizing the required computation.

Several important theorems of fluid dynamics are utilized in the deri-
vation of general formulas for aerodynamic forces and moments. Similar
theorems and formulas are given in many well-known textbooks on aerodynamics,
e.g. Refs. 9 and 10. These earlier theorems and formulas, howeQer,.are
traditionally considered in the context of an infinite limitless fluid,

i.e., an infinite fluid with no internal boundaries. The present theorems
and formulas are valid in the presence of internal boundaries that repre-
sent solia surfaces. The practical importance of this more general validity
needs no emphasis since the interaction between the solids and the fluid is
indeed what the subbect of aerodynamics is about.

The subject of this report received some attention in the 1950's, nearly
a quarter of a century ago. Phillips (Ref. 11) presented a formula relating

the fluid momentum to an integral of vorticity moment for a two-dimensional

flow associated with a cylinder in translation. The general formulas
presented in this report are valid for two- and three-dimensional flows
associated with one or more finite solid bodies of any arbitrary shape
executing any prescribed steady or time-dependent translation and/or ro-
tation. Moreau (Ref. 12) presented formulas for a limitless fluid and

for a portion of fluid subject to certain "order" conditions at infinity.
P y
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Truesdell (Ref. 13) commented that "Moreau emphasized his application to a

limitless fluid, all but a finite interior part of which is in irrotational
or circulation preserving motion. In this connection we should beware of
the extremely strong ofder c&nditions at infinity required in order to

get simple results, order conditions, indeed, which possibly may never

be satisfied". In this report, formulas are rigorously derived for the
viscous flow of fluids past finite bodies, using order conditions at in-
finity that are shown to be satisfied under quite general circumstances.

The applications of the theory formed from these formulas will be presented

in future reports.
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I1. VORTICITY DYNAMICS
The time-dependent motion of an infinite incompressible fluid with
uniform viscoaity relative to one or more immersed solid bodies is considered
in the present study. The solid bodies are initially at rest in the fluid
also at rest and are located within finite distances from one another.
Subsequent prescribed motionsof the solid bodies induce a corresponding

motion of the fluid. At large time levels after the motion has initiated,

i xTvow
MLl b 0 M = g i

if the solid bodies move uniformly at a constant translational velocity

T ——

relative to the freestream, then the possibility of an asymptotic steady

! flow exists. Alternatively, the possibility of a time-dependent flow

involving periodic vortex shedding, as evidenced by the uell;known Karman

vortex street behind a circular cylinder, alsoc exists. In the present

work, a steady flow, when it exists, is considered to be approached asymp-
totically at large time levels after the initiation of the solid motion.
If the solid bodies do not move uniformly, or if the solid motion is time-

dependent, then the motion of the fluid is necessarily time-dependent.

o el ol L Smn ik o Al
v g

| Wt The familiar differential equations describing the time~dependent

fluid motion are the continuity and Navier-Stokes equations:

> +
V.v = 0 (11-1)
:
i + > 2
IS EIEIEE B P (11-2)

AP

-
where v, p, p, and V are respectively the velocity vector, the pressure,
the density, and the kinematic viscosity of the fluid, p being a constant
in the present study. For simplicity, the kinematic viscosity of the

fluid is considered to be uniform in this report. It is not difficult
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to generalize the analyses given here to flows uhetg the viscosity is
not uniform. Such a generalization, however, is not essential to the
purpose of the present work.

In this report; the region occupie§ by the fluid is designated Re-
A coordinate system with its origin located within finite distances from
all solid surfaces, collectively designated by Bs, is used. Unless otherwise
specified, this coordinate system is considered to be at rest relative
to the freestream. The fluid region Rf is bounded internally by Bs
and externally by a close boundary B, at infinity. The region occupied
by the jth solid body is designated Rj’ vhich is bounded externally
by Bj. The limitless region jointly occupied by all the solid bodiee
and the fluid is designated R .

It is convenient to introduce the vorticity vector ® defined by
Vxv =0 (11-3)
and to consider the vorticity transport equation
a-}
52 =¥
obtained by taking the curl of both sides of Eq. (II-2) and using Eqe.

x(vxw ) + v V' (11-4)

(11-1) and (II-3). :

The set of equations (II-1), (1I-3), and (II-4) replaces the set
of equations (II-1) and (iI-2). There are several reasons for using M
in the formulation of the problem. In the first place, the circulation
theory for the lift force suggests that the vorticity of the flow, which
ultimately should be traced to the circulation, is responsible for the
forces and moments exerted by the fluid on the solid. Secondly, as shown

in Reference 6, the use of the vorticity vector, which is intimately conmnected
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with viscosity effects, permits the solution field for the incompressible
flow problem to be confined to the viscous region oniy. Thirdly, the
set of equations in termrs of ; decomposes conveniently into a kinematic
aspect and a kinetic aspect, each aspect constituting an entity by itself.
The first feature stated above provided the motivation for the present
effort in éeveloping general formulas relating aerodynamic foices and
moments to the time-variation of vorticity-moment integrals. The advautages
offered by the second feature have been extensively studied by this author
and his coworkers in a series of previous articles in the context of computation
methods. Most of the numerical results obtained thus far have been for
two~dimensional incompressible laminar flows, both time-dependent (Refs. 6, 7, 8)
and steady-state (Ref. 14). Some results have been obtained recently,
however, for relatively simple turbulent flows (Ref. 15). In addition,
extensions to compressible flow problems have been suggested (Refs. 16, 17).
The importance of the third feature in the present work is due to
the fact that the physical processes of flow development are clearly delineated
once the overall problem is decomposed into its kinematic and kinetic
aspects. In particular, with vorticity as a field variable, considerable
insight is gained by examining the differential equations describing these
two aspects, without employing detailed mathematical or numerical analyses.
The kinematic aspect of the problem concerns the relationship between
the vorticity distribution at any given instant of time and the velocity
distribution at the same instant. The differential equations describing
this aspect are the continuity and vorticity definition equations (II-1)

and (1I-4). Since the density of the solid bodies does not undergo appreciable

change, the continuity equation (II-1) is obviously valid within the solid {

regions Rj as well as in the fluid region Rg. 1f, within a solid region

Rj’ one defines a vorticity field according to Eq. (II-3), then the kinematics

—— .
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of the solid bodies and the fluid are described by Ehe same  differential
equations. The stress~strain relations, which differentiate the fluid
from the solid bodies kinetically, do not enter the kinematic relation
betweeen the velocity field and the vor;icity field. As a consequence,
the solid Podies and the fluid can be treated together as one kinematical
system.

The recognization of the fact just mentioned makes it relatively
simple to derive the kinematic theorems and formulas presented in the
report. For these theorems and formulas, the region of interest is limitless
aud the differential equations leading to these the;tens and'fornuiaa
are linear. In fact, all previously available kinematic theorems and
formulas derived for an infinite unlimited fluid are immediately applicable
to the present situation of an infinite fluid with one or more immersed
solid bodies. This fact is not well recognized. The treatment of the
solid bodies and the fluid together as one kinematical system has not received
emphasis in the literature. In this report, kinematic theorems and formulas
are derived by treating the solid bodies and the fluid together. The
author has, in addition, re-~derived each of these formulas and theorems
by considering only the limited flui& region which is bounded interrally
by solid surfaces. The presence of boundaries makes the derivations lengthy
and algebraically tedious. In this report, only a few of these re-derivations
are presented to demonstrate the validity of treating the solid bodies
and the fluid together as one kinematical system.

The kinetic aspect of the problem is concerned with the development

of the vorticity field with time. This aspect is described by the vorticity

transport equation (II-4). This equation is non-linear in the sense that

the first term on its right-hand eide involves the product of ';. and

->
z, and v is kinematically a function of w. This equation is valid

only in the fluid domain, which is limited.
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Because of the non-linearity of the differential equation and the
necessity of treating a limited region, the analysis of the kinetic aspect
of the problem presents greater mathematical difficulties than the analysis
of the kinematic aspect. Undecr certain conditions, it is possible to
specify the,v;rticity field approximately without actually solving the
vorticity transport equation. It is then only necessary to deal with
the kinematic aspect of the problem which, as stated earlier, is described
by linear differential equations applicable to the entire limitless region
R . Under these circumstances, the aerodynamic forces and moments are
sometimes obtainable in a relatively simple manner.

The available literature on classical theories for aerodynamic forces
and moments shows that the avoidance of the kinetic part of the problem |
has bee: an essential ingredient of these theories. There have been many
recent efforts, via numerical methods, to treat the kinetic aspect either
partially, e.g., on the basis of the inviscid flow equatioms, or fully.

These efforts can benefit from a clear understanding of the physical processes
involved in the development of the vorticity field in the fluid. A significant
amount of information already exists in the literature on this topic (e.g.

See Ref. 10). Those features of vorticity~field development that are

pertinent to the present work are described briefly below.

For an inviscid fluid, the last term in Eq. (II-4) vanishes and the

vorticity is convected with the fluid in the sense that the vorticity
+> >
flux Weds associated with each material element ds moving with the
fluid remains a constant for all times. This well-known theorem of Helwholtsz,

a proof of which is available in many textbooks, e.g. Ref. 18, is wmodified

in the case of a real fluid by the process of vorticity diffusion. According

to Eq. (II-4), changes in the vorticity flux take place only by diffusion.
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Vorticity flux cannot be created or destroyed in the interior of a fluid.
For the problem under comsideration, the vorticity is obviously everywhere

zero prior to the impulsive start of the motion of the solid bodies.

The interior of the Fluid domain therefore can become vortical only if

vorticity djff;aes across the boundaries of the fluid region. Consequently,

immediately after the onset of the motion, the vorticity is everywhere

zero in the fluid except at the boundaries in contact with the solid bodies.

That is, the fluid motion immediately after the onset of the motion has

a non-zero tangential velocity relative to the solid bodies at the solid
boundaries. The discontinuity in tangential velocity constitutes a sheet
of concentrated vorticity (vortex sheet) at the boundaries. At subsequent

time levels, this concentrated vorticity spreads into the interior of

the fluid domain by diffusion and, once there, is transported away from
the bqundatiel by both convection and diffusion. At the same time, the
no-slip condition provides a mechanism for the continual generation of
vorticity at the boundaries. The general flow pattern therefore contains
vortical regions surrounding the solid bodies and vortical wakes trailing
the solid bodies. Outside of these vqttical regions and wakes, the flow
is essentially free of vorticity and therefore irrotational. In particular,
if the flow Reynolds number is not small, then the vorticity spreads by
diffusion only a-short distance from the boundaries before it is carried
away with the fluid by convection. Therefore a large region of the fluid,
ahead and to the side of the solid bodies, is essentially free of vorticity
and irrotational.

In the next two Chapters, a number of theorems and formulas are derived

using the above described kinematic and kinetic characteristics of the

flow.
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II1. SELECTED THEOREMS AND FORMULAS FOR THE KINETIC ASPECT

1. Asymptotic Behavior and Effective Extent of Vorticity Field.

For the éresent problem, the vorticity decays exponentially
with increasing distance from the origin at large distances for
all finite time levels after the onset of the motion and the effective
extend of the vortical region is finite. The finite extent of the
vortical region is a consequence of the fact that the vorticity
is transported in the fluid by finite-rate processes and cannot
be created in the interior of a fluid domain. This fact as well
as the asymptotic behavior of the vorticity distribution at large
distances from solid bodies are established below by considering
the fundamental solution of the diffusion equation.

The fundamental solution F of the diffusion equation, i.e. the
Green's funqtion for an infinite unlimited region, can be expressed as

(Ref. 18 and 19)

> >
ol e - 1 B 3
F(r, t; T, to) 3 exp{ Wt } (iII-1)
2
AW ¢-
CACEN)

+ + {
where r and r, are position vectors and d is the dimensionality
of the problem, i.e., d = 1, 2, and 3 respectively for ome-, two-, and

three-dimensional problems. For the present problem, the fundamental

14

solution represents the vorticity distribution at the time level t resulting

from the diffusion of a concentrated vorticity which is of "unit" strength

. + : :
and is located at the point r, at the time level tyr Wwith t<t.
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If, at the time level tos the vorticity is non-zero. only in an elemental
region dab located at :; and the value of vorticity in dno is J‘f
then the vorticity distribution at the subsequent time level t is é;odno'
If, at the time level tor the vorticity distribution is known in the

unlimited region R_, then the vorticity distribution at a subsequent

time level t 1is expressible as an integral:

5 G0 = [RG, )R e
Ro
where the subscript for dRo indicates that the integration‘is per formed
in the ;; space.

Equation (III-2) is valid in an infinite unlimited region in the
absence of convection. The form of the fundamental solution F clearly
shows that, if the vorticity is non-zero at the time level t, only within
finite distances from the origin, then the vorticity at any subsequent
finite time level ¢t approaches zero exponentially with increasing distance
r from the origin, at large distances. Therefore, the vortical region
is effectively confined to a finite region at any finite time level t.

For a fluid region bounded internally by solid surfaces and in which
convective process is present, Eq.(III-2) needs to be generalized. It
is obvious that the convective process, being one of finite rate, does
not alter the above conclusions regarding the effective extent of vortical
regions and the asymptotic behavior of vorticity at any finite time level.
Similarly, the presence of solid surfaces in the fluid provides a mechanism
for introducing vorticity at the boundaries of the fluid region and, as
long as these boundaries are within finite distances from the origin,

the introduction of vorticity does not alter the above conclusions. For

leiati e e Rl i




b e LA Sy -

A

1

e - -
4

e o e ————

16

two-dimensional flows, the generalized version of Eq. (III-2) is expressible

as (Refs. 17 and 20):

w (r, ) = J (F ), . o9&,
£ s

> -
25 [ dto J movo.v oPdRo +\)f dtnf(l? ﬁowo-w o voF)' igo'mco (111-3)
€ g
S

where the subscript "o" indicates that the variables, differentiations,

+> +
and integrations are in the r _, t, space, e.g. g * “b(ro’ to). The

o
second and third integrals of Eq. (III-3) represent respectively the convective
process and the effect of solid boundaries. Each of the integrands in

the integrals éf Eq. (III-3) is directly proportional to F .and/or ; F.

At any given time level t and at 1argé distances r from the origin,

F and ¥ F decays exponentially with increasing r. It follows that,

for any problem in which Bg consists of finite surfaces located within
finite distances from the origin, if the vorticity decays exponential

with increasing r at large r for all time levels previous to t, then

the vorticity decays exponentially with increasing r also at the time

level t. In fact, for such a problem, if the vorticity is confined within
finite distances from the origin at any given instant of time, then the

vorticity decaysleiponentially with increasing r at large r at all

subsequent finite time levels. For the present problem involving an impulsively

started motion, the vorticity is non-zero immediately after the onsget

of the motion only on the solid surfaces. Consequently, the statements
made in the first paragraph of this Section are true for two-dimensional
flows. It can be similarly shown that these statements are also true

for three-dimensional flows.

s 44*‘}1»—,5“‘,‘- "R
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2. Principle of Total Vorticity Conservation -- Two-Dimensional Flows.

It shall be shown that, for the flow of an incompressible fluid past
solid bodies, the total vorticity in the infinite unlimited space occupied

jointly by the fluid and the solid bodies is invariant with respect to

time, provided that an order condition for the vorticity at infinity is
satisfied. This order condition is that the vorticity approaches zero
as r *, vhere n>d, d being the dimensionality of the problem.

The above statement will be referred to as the principle of total

{ vorticity conservation and is expressible mathematically as

| d - '
: j % {wa = 0 (111-4)

provided that ® approaches r® as r +o, with n>ad.

As noted earlier, the solid bodies and the fluid can be treated together
as one kinematic system in the present problem. For three-dimensional
flows, since the vorticity field is solenoidal and is effectively confined
to a finite region, all vorticity-lines in the combined system form closed

curves. Consequently, one has

' ’ - -
i _ 4[“' e (111-5)

,: In the next Chapter, a proof of Eq. (III-5) is presented treating the
E; solid bodies and the fluid as separate kinematical systems. Clearly, Eq. (III-4

follows directly from Eq. (III-5). Thus the total vorticity is not only

SETNTII.

Fl conserved, it must always be zero in three-dimensional flows.
For two-dimensional flows, the vorticity~lines are directed perpendicular

to the plane of the flow. The vorticity-lines extend to infinity in the

g v - A = e — -
Mw " AP BRI % o P - Ay 9
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direction perpendicular to the flow, and they do not form closed curves

in the plane of the flow. The total vorticity of the fluid and the solid

bodies, that is, the integral of vorticity in the infinite unlimited plane

of the flow, is still conserved. This principle of total vorticity conservation

for two-diqen;ional flows is not usually discussed in standard treatises

on fluid dynamics. A proof of this principle for two-dimensional flows

is given below on the basis of the kinetics of the problem. é
For two-dimensional flows, the vorticity transport equation (II-4)

can be rewritten as

-
L I A (111-6)
D : ;
where Pt denotes a substantial derivative. .

The time rate of change of the total vorticity of the fluid is

2o

3 +
1[ w dR = %% drR (111-7) i
f(t) Rf(t)

where Rf(t) is the entire region occupied by the fluid and is a function
of the time.
Placing Eq. (III-6) into Eq. (III-7) and using Stoke's theorem,

one obtains

+ > >
%E w dk = v [ (V x w)xndR (111-8)
Rf(t) B(t)
where n is a unit outward directed normal vector.
In Eq. (III-8), the boundary B consists of the .u.!d boundary

B, and the boundary at infinity B . The contribution ¢t B_ to Eq.(III 5) ]
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is zero provided that ( approach zero as B for large r, with n >2.
Since w approaches zero exponentially with increasing r’ for large

r, the above order condition at large r is satisfied for the present
problem. The boundary B in Eq. (III-8) can therefore be replaced by
the solid bopndary. Bg.

Equation (II-2) can be rewritten as

>

bv
Dt

Taking the vector product of each term in Eq. (111-9) with n and

- Lt vixd (111-9)

integrate the resulting equation around Bs. one has

§

={

P T 4
B B

S S S

'Dl.-

The first integral on the right-hand side of Eq. (III-10) is zero
by virtue of the single-valuedness of pressure on Bs. This fact can
also be shown by using che Stoke's theorem and the fact that the curl
of tﬁe gradient of any scalar function is zero. Combining Eqs. (III-8)

and (1II-10) therefore gives

xittdB

9.

(111-11)

- o

->
w dR = - ’F
Bg

Rf(t)

Consider now the region Rs bound extetnally by Bs. With the no-
slip condition, the substantial acceleration %% on Bg is identical
for the solid bodies and for the fluid. Using Stokes's theorem and the

fact that the outward normal vector for Rg is directed opposite to that

for Rf, one obtains:
a . Dv
" w dR = - ¥ x(gp) dr (111-12)
Rf(t) s(t)
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In the solid region Rj , the velocity vector is given by

I PSS IRV (111-13)

vhere ; is the rectilinear velocity of the solid body j and ﬁj
is its rotational velocity. For two-dimensional problems, ﬁj is directed
perpendicular to the plane of the flow. The vorticity in the solid body

j is readily obtainable by taking the curl of the velocity vector as
given by Eq. (III-13) and is

‘
w = 2Q. (111-14)

Using vector differential identities, it is simple to show that

+ »>
ﬁx(%v;_) =« DO i, each of the solid regions Rj. One thus obtains from

Eq. (III-12)

2o

> d >
j v ~ -G o (111-15)
Rf(t) Rs(t)

Bquacion.(III—IS) is equivalent to Eq. (III-4). It states that the
rate of change of the total vorticity is equal in magnitude and opposite
in sign to the rate of change of the total vorticity in the solid bodies,
or, equivalently, vthe total vorticity in the infinite unlimited region
R, is zero. I1f the rotational velocities ﬁj of the solid bodies are
prescribed functions of time, then the rate of change of the total vorticity
in the fluid can be calculated using the following simple formula:

N 48
d > i
dt I“' M e -5 jz'x a Ny (111-16)
"
£

- r . = . - ISR <t coumrs
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where N is the total number of solid bodies present, and Rj is the
size of the solid body j.
Equation (III-15) can be integrated with respect to time, yielding
-+ -+ >
J] wdar+f] w dr = A
- Re(t) Rg(t) (111-17)

>
where A 1is a constant vector.

For a motion starting from rest, the total vorticity in the combined
fluid and solid regions is zero before the onset of the motion. Consequently,
'Z = 0 and one obtains (III-5), which states that the vorticity in the
combined solid and fluid regions, i.e., the infinite unlimited region,
is always zero. Thus, if the solid motion is prescribed at any time level,
the total vorticity in the fluid is easily calculated fron.

N
Joud = -2 L @

j
Re

1 R

33 (111-18)

Theré are several conceptual differences between the principle of
total vorticity conservation discussed here and the usual understanding
of invariance of vorticity integrnllwith respect to time.

In the present work, the solid regions are included in the evaluation
of the total vorticity. The integrands of Eqs. (III-4) and (III-S5) are
piecewise continuous and the integrals converge. The meaning of the total
vorticity in the unlimited infinite space jointly occupied by the fluid
and the solid bodies is unambiguous. While previous discussions of the
invariance of the total vorticity are usually made in the context of an
inviscid fluid or of an unlimited infinite fluid region (in the absence

of internal boundaries), the present study utilizes the no-slip condition

at the solid boundaries and permits the presence of such boundaries in
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the fluid. In Ref. 21, Section B.2, a formula eimilar to Eq. (111-18),

but specialized to a single solid and including an additional term repre-
senting the contribution of the velocity at a surface enclosing the solid, is
presented. In the present work, it is shown that this contribution is

absent if t#e surface is sufficiently distant from the solid bodies and

the order condition for the vorticity vector is satisfied. The formula
(111-18) is derived for one or more solid bodies in the present Chapter.

Ref. 21 also gives a formula for the rate of change of ghe total
vorticity in the fluid. That formula contains a term representing ‘conduction
of vorticity through the solid boundary." It is pointed out that further
dynamic (kinetic) equations are needed to evaluate this term. The present
result, Bq. (III-16), shows that this term is given simply by the rate
of change of the total vorticity of the solid bodies.

In Ref. 10, it is shown that in three-dimensions the total vorticity
is zero in a region which contains the fluid region and "a region extending
beyond the actual boundaries". The present results show that the proper
extension of the fluid region is simply the solid regions in which the
correct vorticity values to assign are the actual vorticity of the solid
bodies. For two-dimensional flows, the literature emphasizes the possibility
of the existence of a non-zero circulation around closed paths at large
distances from the solids. According to the present results, this possibility
does not exist for a real fluid at any finite time level after a motion
has started from rest. An evaluation of the conduction of vorticity through
solid boundaries is not necessary since this "conduction process" conserves
the total vorticity in the infinite unlimited region occupied jointly

by the fluid and the solid bodies.
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3. Stress Outside the Vortical Regions.

Outside the vortical regions, the vorticity is zero and the viscous

stress is absent. The momentum equation (II-2) simplifies to

: - P& - - 3(1’ +p‘,2/2) (111-19)

The absence of vorticity implies the existence of a scalar potential

® such that
v = -Vo (111-20)

Placing Eq. (III-20) into Eq. (III-19) and integrating the resulting

equation in space gives

2
- 2‘21 + £(t) (111-21)

o

]

©
#13

This well-known equation for unsteady inviscid pressure will be utilized
to derive general formulas for aerodyngmic forces and moments in Chapter V.
It should be noted that the scalar potential is single-valued. For three-
dimensional flows past finite solid bodies, the region in which ¢ exists
is singly-connected ‘and therefore ¢ is independent of path. For two-
dimensional flows, the region in which ¢ exists is multiply-connected.
However, the cyclic constant for ¢ is zero since the vortical regions

are of finite extent and the total vorticity is zero.
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IV. SELECTED THEOREMS AND FORMULAS FOR THE KINEMATIC ASPECT

The proofs of the theorems and formulas for the kinematic aspect
of the extefnal flow problem utilize only the kinematic relationship between
the velocity and the vorticity fields and the order conditions for the
vorticity field.

1. Principle of Total Vorticity Conservation--Three~Dimensional Flows.

-+ »
Let 5, ﬁl, and b2 be a right-handed set of orthogonal vectors on

+> -+
the boundary B,. bl' b2 are tangential unit vectors. Let the velocity

+ > d 3 y
components in the n, bl’ and b2 directions be Vo' Yb1? and V2 respectively.

With the no-slip condition, these velocity components are identical on
Bs for the fluid and for the solid bodies. The normal component of the
\4 aV

e
by B,

-
That is w ., ;'on Bs for the fluid %s identical

vorticity vector on the boundary By is given by and is

continuous across Bs.
to that for the solid body.

E 3
Using the fact that w is solencidal, one obtains through vector

differential identities:

+> + > > + >
V'((a'f) (4)) = a.® (IV"I)
where a is an arbitrary constant vector.
The divergence theorem then gives
+ +> > >
fudr = $r(w-n)dp
R B (1v-2)
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Let R be the fluid region Rg. The boundary B then consists

of the solid boundary Bs and a boundary at infinity. The contribution

of the boundary at infinity is szero provided that w

as r ©® for large r, with n>3. This order condition is certainly

approaches zero

met in the present problem for which w decays exponentially with r
for large r. Therefore, the boundary B in Eq. (IV-2) can be replaced
by Bs.
>
Since the normal component of w is continuous across Bs, one may
replace W.n in the right-hand gide of Eq. (IV-2) by 2 a%:;. where

ﬁj is the angular velocity of the jth solid body. One then has ]

+> N -+ >
I wdk = 2 % r( ﬁj' n)dB (1v-3)
Re

i=1 g,

Congider now the region R in Eq. (III~2) to be the region Rj
bounded externally by Bj‘ One has

+ > »
2 { r( ﬂj.n)dn - znfﬁjdk (1v=-4)

j
Placing Eq. (IV-4) into Eq. (IV-3) and noting that the normsl vector m in

Eq. (IV-3) is directed outward from Re while it is directed inward from R in Eq.
(1IV~4), one obtains
R = -2 QR
.'. - A (1v-5)
R J
f

which is equivalent to Eq. (1II-5).

2. Biot-Savart's Law.

It is shown in Ref. 6 that, by using the fundamental solution of 1

the Poisson's equation, the kinematics of the problem, i.e. Bqs. (II-1)

and (1I-3),is expressible in the form of an integral represen:ation:
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0 x (<5
W x (r =-r
VE, ) = -i-f—‘-’-—-——!’—-—aa
R ' o -tl

] f (g B )F D) - (F xB) x (F 1)
B

+

d dno ( IV-6 )
Fo7%|

where A and d are constants depending on the dimensionality of the
problem ==~A = 47 and d = 3 for three-dimensional problems, A = 2m
and d = 2 for two~dimensional problems---and the subscript "o" indicates
that the variables and the integrations are in the ;; space, i.e. ;L - 5(;;, t)
etc.
Let the region R be the fluid region Rf bounded internally by
the solid boundary B. and externally by a boundary at infinity. With
a coordinate system attached to the freestream, the velocity at infinity
is zero and the contribution of the boundary integral to the velocity
field is therefore limited to the solid boundary Bs.
The contribution of the solid boundary Bj to the velocity field

is expteribld as
5 > e I 2 +
W 85 (Vo a)DT P =Gy xn) xV P) dn_ (1v~7)
3

where P is the fundamental solution of the Poisson's equation and is

defined by

1
Inlr-rol for three-dimensional problems

1 1 ; ¢
7 1n‘1;:;;T for two-dimensional problems

Using vector identities, Eq. (IV-7) can be rewritten as
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+xj = F §f w aas ¢V x Nt an

o (1v-8)
nj nj

Consider now thé solid region Rj bounded externally by Bj. Using
the divergence theorem and Stoke's theorem, and noting that the outward
normal for the region Rj is directed opposite to 3. one obtains from

Eq. (IV-8)

x’j = R.g e-v(vo.u: 3°)>+ Vab xeV) )R, (1v-9)

Using vector differential identities, the integrand in Eq. (IV-9)

can be re-expressed as

s +
-@ L xV) At - TV YR (1v-10)

It is easy to show that

B

L e PPN = 4 X s
g s AT A o A T A e

7-%p = -y’ = 0 for Pu?
Thus, in the fluid region R., one has,
-
2 Qjx(Z -r)
Ij i > =+ dRo

R, Iro-rl

J
.f One therefore obtains from Eq. (IV-6),

. -»>
] X (r —r)

| W om o -q [ (1v-11)
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