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ABSTRACT

Several general formulas relating aerodynamic forces and moments

acting on finite solid bodies immersed in a fluid to the time—variation

of vorticity—mounent integrals are presented. The formulas are valid for

two— and three—dimensional flows and are shown to form a theory for aero-

dynamic forces and moments which encompasses much of the existing aerodynamic

theories.
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H,
I. INTRODUCTION

The problem of predicting aerodynamic forces and moments acting on

finite solid bodies immersed in and moving relative to a fluid has occupied

the center stale of aerodynamic research from the end of the nineteenth

century onwards. In fact, it is this focal problem that distinguishes

the science of aerodynamics from other branches of theoretical fluid mechanics.

Studies of the motion of the fluid relative to the solid bodies of course

represent a fundamental aspect of aerodynamics. In the majority of aerodynamic

applications, however, such studies do not represent ends in themselves.

Rather, they are undertaken in recognition of the fact that the motion

of the fluid is ultimately responsible for the forces and moments exerted

on the solid bodies by the fluid.

H It is known that the problem of finding analytical solutions to equations

of fluid motion associated with solid configurations of practical importance

presents considerable , often insurmountable , mathematical diff icult ies.

Historically , therefore, the most remarkable advances in aerodynamics

were brought about by aerodynamicists who perceived approaches for the

prediction of aerodynamic forces and moments that avoid, as much as possible,

entanglement with the details of the fluid motion. For example, the

Kutta—Joukowski theorem, i.e. the circulation theory for two—dimensional

steady motion, permits the lift force acting on a solid body to be determined

from a knowledge of the circulation about the body. For the case of a

two—dimensional body with a sharp trailing edge, the Kutta condition,

requiring the ~‘ear stagnation point of a potential flow to be located

at the trailing edge, is known to yield acceptably accurate values of

the circulation, provided that the flow is steady and does not separate

over an appreciable region around the solid body. With the KII ta condition,

* - 
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the problem of predicting the lift force for such a flow is reducible to

that of solving an integral equation (Ref. 1). The unknown function of this

integral equation is a distribution of singularity (sources , sinks, and vorti-

ces) over the body surface. There is no need to know the fluid motion away

f rom the body except that it is reasonably represented by a potential flow

about the body.

Extensions of the circulation theory to three—dimensional and to

unsteady flows are generally based on the concept of bound vortices

and free vortices . The bound vortices are considered to move wi th the

solid body. The free vortices are considered to be shed f rom the solid

body either because of the Helmholtz theorem, which states that a vortex

f ilament cannot beg in or terminate wi thin the fluid domain , or because the

total circulation of the entire fluid system is required to be zero . These

free vortices are located at finite distances from the solid bodies and

they make a finite contribution to the fluid motion near the solid surfaces .

This contribution is quantitatively determinate once the spatial distribution

of the free vortices is known . This distribution is dependent on the con—

plex processes of shedding of vortices and subsequent transpor t of free

vortices in the fluid.  To avoid the detailed computation necessary for an

accurate determination of this distribution, most previous authors have

prescribed the motion of free vortices in a simple manner . For example ,

‘with Prandtl’s lifting—line theory, it is usually assumed that the free

vortices remain stationary relative to the freestream.

i~1 The circulation theory and its extensions permit reasonably accurate

predictions of the l if t  force for some solid configurations and flow environ—

ments . The scope of applicability of this theory and its extensions has not

been precisely established. It is well—known, however that considerable

uncertainties exist regarding the value of the circulation to b~ prescribed
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in cases where the solid body does not possess a sharp trailing edge , where

appreciable regions of flow separation exist , or where the motion of the solid

is time—dependent . These uncertainties arise mainly because assumptions , or

hypotheses, utilized in the development of the theory are often ad—hoc and ,

consequently, the theory is not readily interpreted as an approximation of

• a specific phjsical phenomenon. For example, the bound vortex is usually

described in well—known treatises as “replacing” an airfoil (or a wing) .

The vorticity, defined as the curl of the velocity, is twice the angular

velocity in a solid region. If the airfoil is not rotating, then clearly

it does not possess vorticity. The bound vortex is therefore not an approxi-

mation of the airfoil. To the experienced aerodynamicist, the remarkable

agreement between the predicted and measured l i f t  forces under certain circum-

stances points to the inevitable conclusion, that the circulation theory is a

reasonable approximation of the physics of the problem under these circum—

stances . It was suggested (Ref. 2) that the bound vortex does represent the

airfoil plus its boundary layers. The fact that such an interpretation wus

emphasized so very recently (in 1976 ) has motivated the principa l investigator

to examine critically the historical development of the circulation theory,

together with its more recent extensions , with the hope of facilitating

the interpretation of the circulation theory and thus contributing to

its further development for three—dimensional flows, unsteady flows, and

separated flows. In the course of this study, several general formulas

H relating aerodynamic forces and moments to the time—variation of vorticity—

moment integrals were uncovered. It became evident that these formulas have

far reaching consequences in the realms both of theoretical aerodynamics and of

computational aerQdynamics. In particular, it was shown that the formulas form

a theory for aerodynamic forces and moments. This theory encompasses much of

the existing aerodynamic theories. For example, the circulation theory for

en -
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steady lift and its various extensions are readily interpreted as various levels

of approximation of the general theory. The purpose of this report is to present

• this general theory.

A distinguishing feature of the present theory is that the concept of bound

vortex, or that of singularity eleme~Lts such as sources, sinks, and vortex fila-

ments, is not embodied in the genera~. formulas forming the theory. Rather, the

actual vorticity distributions of the fluid and of the solid, the latter being re—

lated to the rotational motion of the solid, enter these formulas. The starting

point of the present theory is a rotational flow analysis. Consequently, the

theory is applicable to viscous flows. This freedom from “bondAge” is important

in the interpretation of the various aerodynamic theories. For example, it permits

a precise definition of the “circulation” about a two—dimensional solid in the case

L where an appreciable region of separation exists. While the Kutta—Joukovski theorem

predicts zero drag, the general formula does relate the time—variation of a vorti—

city-moment integral to a non—zero drag, including the profile drag. The formulas

predict an unsteady drag without the customary energy or apparent mass consideration .

These general formulas, in fact , clearly point out the basis principles for mini—

mizing the drag and for maximizing the lift. Many of the measures proposed for drag-

reduction and for lift—augmentation are readily interpretable on the basis of

‘ these principles. The present research deals only with incompressible flows,

although the basic principles described here are certainly applicable to

compressible flows as well.

In recent years , extensive efforts have been in progress at many research

institutions to develop numerical methods for the solution of aerodynamic problems .

An ultimate goal of these efforts is to make available methods of predicting

aerodynamic forces and moments that are more accurate and that possess a wider

scope of validity than the circulation theory. These efforts are divisible into

two major categories. In one category, numerical methods are being developed

~~~~— ~~~~~~~ .I*I .L . :. - . — • ~~~~~~~~ 
—. —- -- • , -• --~~_____
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• for the solution of inviscid flow equations. The free vortices, are assumed to

convect, but not to diffuse, with the fluid . The solid body is represented by

a singularity distribution. Conceptually, these numerical methods utilize the

basic assumptions of the circulation theory. They relax the restrictions of

analytical methoO based on the circulation theory through detailed compu—

tation. For example, the linearization procedure introduced in classical

studies of the unsteady two—dimensional airfoil problem (e.g. Ref. 3) is no

longer necessary if numerical methods (e.g. Ref. 4) are employed. These

• numerical methods are of course expected to be subject to the well—known

limitations of the inviscid flow assumption. In this regard, the availa-

bility of the general formulas are expected to offer clearer interpretation

of these numerical methods and better definition of. their scope of application.

In the second category , numerical methods are being developed for the

solution of differential equations governing viscous flows. Impressive

progress has been made in recent years in the numerical solution of two—

dimensional laminar separated flow problems as well as in the establishment

of turbulence models for separated flows. For three—dimensional separated

flows , the development of numerical methods is hindered by excessive compu-

tation requirements (Ref.  5). Methods that possess superior computational

efficiency are therefore of critical importance. During the past few

years, the principal i~vestigator and his co—workers have developed a

new numerical approach which permits the confinement of the solution field

to the vortical region of the flow (Ref. 6). In comparison to available

finite—difference and finite—element methods, all of which require the

solution field to include the potential region in addition to the vortical

• 
, region, the new approach requires a dras tically smaller number of grid

points. The computation requirements using this new approach, called the

integro—differential approach, are consequently drastically smaller than

• 
- 
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6

those using other methods (Ref. 7,8) . The new approach uses the vorticity

vector as a field variable in place of the pressure. The general formulas

presented in this report provide a convenient means of computing the aero-

dynamic forces and momenta directly from vorticity distributions. That is,

using these general formulas, it is no longer necessary to compute first the

pressure and shear stress distributions on the solid surfaces from the value

and normal gradient of vorticity on the surface (Ref. 8) and then the inte-

grated forces and moments. In addition, the general formulas suggested

several promising techniques for minimizing the required computation.

Several important theorems of fluid dynamics are utilized in the den —

vation of general formulas for aerodynamic forces and moments. Similar

theorems and formulas are given in many well—known textbooks on aerodynamics,

e.g. Refs. 9 and 10. These earlier theorems and formulas , however , are

traditionally considered in the context of an infinite limitless fluid ,

i.e., an infinite fluid with no internal boundaries. The present theorems

and formulas are valid in the presence of internal boundaries that repre—

sent solid surfaces. The practical importance of this more general validity

needs no emphasis since the interaction between the solids and the fluid is

indeed what the subject of aerodynamics is about.

The subjec t of this report received some attention in the 1950’s, nearly

a quarter of a century ago. Phillips (Ref. 11) presented a formula relating

the fluid momentum to an integral of vorticity moment for a two—dimensional

flow associated with a cylinder in translation. The general formulas

presented in this report are valid for two— and three—dimensional flows

associated with one or more finite solid bodies of any arbitrary shape

executing any prescribed steady or time—dependent translation and/or ro—

• tation. Moreau (Ref. 12) presented formulas for a limitless fluid and

for a portion of fluid subject to certain “order” condi tions at infinity.

_ _ _ _ _ _ _ _ _  - 
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Truesdell (Ref. 13) comeented that “Moreau emphasized his application to a

limitless fluid, all but a finite interior part of which is in irrotational

• or circulation preserving motion. In this connection we should beware of

the extremely strong order conditions at infinity required in order to

• 
, get simple results, order conditions, indeed, which possibly may never

• be satisfied”. In this report, formulas are rigorously derived for the

viscous flow of fluids past finite bodies, using order conditions at in-

finity that are shown to be satisfied under quite general circumstances.

The applications of the theory formed from these formulas will be presented

in future reports.
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II. VORTICITY DYNAMICS

The time—dependent motion of an infinite incompressible fluid with

uniform viscosity relative to one or more imeereed solid bodies is considered

h in the present study. The solid bodies are initially at rest in the fluid

also at rest and are located within finite distances from one another.

Subsequent prescribed motions of the solid bodies induce a corresponding

motion of the fluid. At lange time levels after the motion has initiated,

if the solid bodies move uniformly at a constant translations-I velocity

relative to the freestream, then the possibility of an asymptotic steady

flow exists. Alternatively, the possibility of a time—dependent flow

involving periodic vortex shedding, as evidenced by the well—known Karman

vortex street behind a circular cylinder, also exists. In the present

work, a steady flow, when it exists, is considered to be approached asymp-

totically at large time levels after the initiation of the solid motion.

If the solid bodies do not move uniformly, or if the solid motion is time—

dependent, then the motion of the fluid is necessarily time—dependent.

The familiar differential equations describing the time—dependent

fluid motion are the continuity and Navier—Stokes equations:

+ 4
V.v 0 (li—i)

-‘ 1 +  2+
+ (v.V ) v — ~ Vp +v V v (11—2)

.4

where v, p, p, and V are respectively the velocity vector , the pressure,

the density, and the kinematic viscosity of the fluid, p being a constant

in the present study. For simplicity, the kinematic viscosity of the

fluid is considered to be uniform in this report. It is not 4’fficult
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to generalize the analyses given here to flows where the viscosity is

not uniform. Such a generalization, however, is not essential to the

purpose of the present work.

In this report, the region occupied by the fluid is designated R
f~

• A coordinate system with its origin located within finite distances from

all solid surfaces, collectively designated by B~, is used. Unless otherwise

specified, this coordinate system is considered to be at rest relative

to the freestream. The fluid region Rf is bounded internally by 85

and externally by a close boundary 
~ 

at infinity. The region occupied

by the jth solid body is designated R
3
, which is bounded externally

by B~. The limitless region jointly occupied by all the solid bodice

and the fluid is designated I~,,.

It is convenient to introduce the vorticity vector defined by

+ + 4

• V x v  w (11—3)

and tQ consider the vorticity transport equation

4

3w ± + 4  1~~
• ~~~~~ 

— v x (vxw ) + v V w (11—4)

obtained by taking the curl of both sides of Eq. (11—2) and using Eqi .

(u —i) and (11—3).

- •
.
, 

- 

- The set of equations (lI—i), (11—3), and (11—4) replaces the set
+

of equations (11 1) and (11—2). There are several reasons for using W

in the formulation of the problem. In the first place, the circulation

~: I theory for the l i f t  force suggests that the vorticity of the flow, which
.
~ I

ultimately should be traced to the circulation, is responsible ~or the

forces and moments exerted by the fluid on the solid. Secondly, as shown

in Reference 6, the use of the vorticity vector, which is intimately connected

_ _ _ _ _ _ _ _ _ _  
- - 
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with viscosity effects, permits the solution field for the incompressible

flow problem to be confined to the viscous region only. Thirdly, the
4

set of equations in term? of w decomposes conveniently into a kinematic

aspect and a kiuetic~ aspect, each aspect constituting an entity by itself.

The first feature stated above provided the motivation for the present

effort in developing general formulas relating aerodynamic fo~ces and

moments to the time—variation of vorticity-moment integrals. The advantages

offered by the second feature have been extensively studied by this author

and his coworkers in a series of previous articles in the context of computation

methods. Mast of the numerical results obtained thus far have been for

two—dimensional incompressible laminar flows, both time—dependent (Refs. 6, 7 , 8)

and steady—state (Ref. 14). Some results have been obtained recently,

- . however, for relatively simple turbulent flows (Ref. 15) . In addition ,

extensions to compressible flow problems have been suggested (Refe . 16, 17) .

The importance of the third feature in the present work is due to

the fact that the physical processes of flow development are clearly delineated

once the overall problem is decomposed into its kinematic and kinetic

aspects . In particular , with vorticity as a field variable , considerable

insight is gained by examining the differential equations describing these

two aspects , without employing detailed mathematical or numerical analyses.

The kinematic aspect of the problem concerns the relationship between

the wox ticity distribution at any given instant of time and the velocity

distribution at the same instant. The differential equations describing

this aspect are the cont inuity and vorticity definition equations (il—I)

and (11—4) . Since the density of the solid bodies does not undergo appreciable

change , the continuity equation (I t—i )  is obviously valid within the solid

regions as well as in the fluid region R~. If , within a solid region

one def ines a vorticity field according to Rq. (11—3), then the kinematics

~~ ~~~~,., - ~~~~
—
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of the solid bodies and the fluid are described by the same differential

equations. The stress—strain relation., which differentiate the fluid

from the solid bodies kinetically, do not enter the kinematic relation

betveeen the velocity field and the vorticity field. As a consequence ,

the solid bodies and the fluid can be treated together as one kinematical

system.

The recognization of the fact just mentioned makes it relatively

simple to derive the kinematic theorems and formulas presented in the

report. For these theorems and formulas, the region of interest is limitless

.ud ~h. differential equations leading to these theorems and formulas

are linear. In fact, all previously available kinematic theorems and

formulas derived for an infinite unlimited fluid are imsediately applicable

to the present situation of an infinite fluid with one or more liasersed

solid bodies. This fact is not well recognized. The treatment of the

solid bodies and the fluid together as one kinematical system has not received

emphasis in the literature. In this report, kinematic theorems and formulas

are derived by treating the solid bodies and the fluid together. The

author has , in addition , re—derived each of these formulas and theorems

by considering only the limited fluid region which is bounded intercally

by solid surfaces. The presence of boundaries makes the derivations lengthy

and algebraically tedious . In this report, only a few of these re—derivation.

are presented to demonstrate the validity of treating the solid bodies

and the fluid together as one kinematical system.

The kinetic aspect of the problem is concerned with the development

- 

- 

of the vorticity field with time. This aspect is described by the vorticity

transport equation (11—4). This equation is non—linear in the sense that

the first term on its right—hand side involves the product of and
4. 4 +

• w, and v is kinematically a function of w. This equation is valid

only in the fluid domain, which is limited.

&
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Recause of the non—linearity of the differential equation and the

necessity of treating a limited region , the analysis of the kinetic aspect

of the problem presents greater mathematical difficulties than the analysis

of the kinematic aspect. Under certain conditions, it is possible to

specify the vorticity field appromiastely without actually solving the

vorticity transport equation . It is then only necessary to deal with

the kinematic aspect of the problem which, as stated earlier, is described

by linear differential equations applicable to the entire limitless region

Under these circumstances, the aerodynamic forces and momenta are

Sometimes obtainable in a relatively simple manner.

The available literature on classical theories for aerodynamic forces

and moments shows that the avoidance of the kinetic part of the problem

has bee~ an essential ingredient of these theories. There have been many

recent efforts, via numerical methods, to treat the kinetic aspect either

partially, e.g., on the basis of the inviscid flow equations, or fully.

These efforts can benefit from a clear understanding of the physical processes

involved in the development of the vorticity field in the fluid. A significant

amount of information already exists in the literature on this topic (e.g.

See Ref. 10). Those feature. of vorticity—field development that are

pertinent to the present work are described briefly below.

For an inviscid fluid, the last term in Eq. (11—4) vanishes and the

vorticity is convected with the fluid in the sense that the vorticity
+ +

flux W .ds associated with each material element ds moving with the

fluid remains a constant for all times. This well—known theorem of Rel~ iolta,

a proof of which is available in many textbooks, e.g. Ref. 18, is modified

in the case of a real fluid by the process of vorticity diffusion. According

to Eq. (11—4), changes in the vorticity flux take place only by diffusion.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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:~ Vorticity flux cannot be created or destroyed in the interior of a fluid.

) For the problem under consideration, the vorticity is obviously everywhere

zero prior to the impulsive start of the motion of the solid bodies.

The interior of the fluid domain therefore can become vortical only if

vorticity d~i ffuse. across the boundaries of the fluid region. Consequently,

i~~~diately after the onset of the motion, the vorticity 
is everywhere

zero in the fluid except at the boundaries in contact with the solid bodies.

That is, the fluid motion ii ediately after the onset of the motion has

a non—zero tangential velocity relative to the solid bodies at the solid

boundaries. The discontinuity in tangential velocity constitutes a sheet

of concentrated vorticity (vortex sheet) at the boundaries. At subsequent

time levels, this concentrated vorticity spreads into the interior of

the fluid domain by diffusion and, once there, is transported away from

the boundaries by both convection and diffusion. At the same time, the

no—slip condition provides a mechanism for the continual generation of

vorticity at the boundaries. The general flow pattern therefore contains

vortical regions surrounding the solid bodies and vortical wakes trailing

the solid bodies. Outside of these vortical regions and wakes the flow

is essentially free of vorticity and therefore irrotational. In particular,

if the flow Reynolds number is not small, then the vorticity spreads by

diffusion only a-short distance from the boundaries before it is carried

away with the fluid by convection. Therefore a large region of the fluid,

ahead and to the side of the solid bodies, is essentially free of vorticity

and irrotational.

In the next two Chapters, a number of theorems and formulas are derived

using the above described kinematic and kinetic characteristics of the

flow. 

-
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III. SELECTED THEORE1~S AND FORMULAS FOR THE KINETIC ASPECT

1. Asymptotic lehavior and Effective Extent of Vorticity Field.

For the present problem, the vorticity decays exponentially

— with increasing distance from the origin at large distances for

all finite time levels after the onset of the motion and the effective

extend of the vortical region is finite. The finite extent of the

vortical region is a consequence of the fact that the vorticity

is transported in the fluid by finite—rate processes and cannot

be created in the interior of a fluid domain. This fact as well

as the asymptotic behavior of the vorticity distribution at large

distances from solid bodies are established below by considering

the fundamental solution of the diffusion equation.

The fundamental solution F of the diffusion equation, i.e. the

Green’s function for an infinite unlimited region, can be expressed as

(Ref. 18 and 19)

- ! . 
. ~~~~~~~ 2

P( t; 
~~~~
,
, t0

) d exp{ — 
4 v(t—t

0
) ~ (1114)

where r and are position vectors and d is the dimensionality

of the problem, i.e., d 1, 2, and 3 respectively for one— , two— , and

three—dimensional problems. For the present problem, the fundamental

solution represents the vorticity distribution at the time level t resulting

from the diffusion of a concentrated vorticity which is of “unit” strength

and is located at the point 
~~ 

at the time level t0, with t0ct .

____  
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- 
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If, at the time level to, the vorticity is non—zero, only in an elemental

region dR0 located at and the value of vort icity in dR~, is

then the vorticity distribution at the subsequent time level t is

If , at the time level to, the vorticity distribution is known in the

unlimited ~.egion ~~~~ 
then the vorticity distribution at a subsequent

time level t is expressible as an integral:

~ (i ’, t) — L~°’ t0)dR0 (111—2)

where the subscript for dR0 indicates that the integration is performed

j in the space.

Equation (111—2) is valid in an infinite unlimited region in the

absence of convection. The form of the fundamental solution F clearly

shows that, if the vorticity is non—zero at the time level to only within

finite distances from the origin, then the vorticity at any subsequent

finite time level t approaches zero exponentially with increasing distance

r from the origin, at large distances. Therefore, the vortical region

is effectively confined to a finite region at any finite time level t.

For a fluid region bounded internally by solid surfaces and in which

convective process is present, Eq.(III—2) needs to be generalized. It

is obvious that the convective process, being one of finite rate, does

not alter the above conclusions regarding the effective extent of vortical

regions and the asymptotic behavior of vorticity at any finite time level.

Similarly , the presence of solid surfaces in the fluid provides a mechanism

for introducing vorticity at the boundaries of the fluid region and, as

long as these boundaries are within finite distances from the origin,

- 
- - 

~

. 

the introduction of vorticity does not alter the above conclusions. For

~~~~~~~~~~~~~~~~~~~~ ~~~
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two—dimensional flows, the generalized version of Eq. (111—2.) is expressible

as (Refa . 17 and 20):

t) — (
~ o dR~

+ dt~ / w0~~s~ ~FdR0 + vl dtaj
(: 

~~ ~ ~ ~~~r ) .  ~0dB0 (111—3)

where the subscript “a” indicates that the variables, differentiations,
4 +

and integrations are in the r0, to space, e.g. ~ • ~~~~~ t0). The

second and third integrals of Eq. (111—3) represent respectively the convective

process and the effect of solid boundaries. Each of the integrands in

the integrals of Eq. (111—3) is directly proportional to F - and/or F.

At any given time level t and at large distances r from the origin,

F and ~ F decays exponentially with increasing r. It follows that,

for any problem in which B5 consists of finite surfaces located within

finite distances from the origin, if the vorticity decays exponential

3 with increasing r at large r for all time levels previous to t , then

• the vorticity decays exponentially with increasing r also at the time

level t. In fact, for such a problem, if the vorticity is confined within

finite distances from the origin at any given instant of time , then the

vorticity decays exponentially with increasing r at large r at all

subsequent finite time levels. For the present problem involving an impulsively -

started motion, the vorticity is non—zero imaediately after the onset

of the motion only on the solid surfaces. - Consequently, the statements

made in the first paragraph of this Section are true for two—dimensional

flows. It can be similarly shown that these statements are also true

for three—dimensional flows.

—~ 
-

~~~~~~~~~~
- -—-

~
--
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2. Principle of Total Vorticity Conservation — Tvo—Dimenáional Plows.

It shall be shown that, for the flow of an incompres sible flui d pas t

solid bodies, the total vorticity in the infinite unlimited apace occupied

jointly by the fluid and the solid bodies is invariant with respect to

t ime, prov~ded that an order condition for the vorticity at infinity is

satisfied . This order condition is that the vortici ty approaches zero

as r 11, where n>d , d being the dimensiouality of the problem.

The above statement will be referred to as the principle of total

vorticity conservation and is expressible mathematically as

d wdl — 0 (111—4)

provided that w approaches r~~ as r •~~~, with n>d.

As noted earlier the solid bodies and the fluid can be treated together

as one kinematic system in the present prob lem. For three—diaenaiona l

flows, since the vorticity field is solenoidal and is effectively confined

• to a finite region, all vorticity—lines in the combined system form closed

curves . Conseqâently, one has

I - ’ 
S 11

w d1 — 0

In the next Chapter, a proof of Eq. (111—5) is presented treating the

solid bodies and the fluid as separate kinematical systems. Clearly, Eq. (iII-4~

follows directly from Eq. (111—5). Thus the total vorticity is not only

conserve d, it must always be zero in three—dimensional flows.

For two—dimensional flows, the vorticity—lines are directed perpendicular

to the plane of the flow. The vorticity—lines extend to infinity in the

. -. . - -  - - 5  5- - 5 - -
- 5- ~~~~~~~~-~~~~~ -

- 
- - -— - ____ _ .5___ _______._____ ___ _ _  

. - - - 
‘ * I 5-
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direction perpendicular to the flow, and they do not form closed curves

in the plane of the flow. The total vorticity of the fluid and the solid

bodies, that is, the integral of vorticity in the infinite unlimited plane

of the flow , is still conserved . This principle of total vorticity conservation

for two—di~ensional flows is not usually discussed in standard treatises

on fluid dynamics. A proof of this principle for two—dimensional flows

is given below on the basis of the kinetics of the problem.

For two—dimensional flows, the vorticity transport equation (11—4)

can be rewritten as

-
1 

+

H * -vV x x ~ 111—6

where denotes a substantial derivative.

The time rate of change of the total vorticity of the fluid is

5 . 5 

- 

~~~~

. 

f ~ dR f  ~~ dR (“-7)

f
(t) R

f
(t)

where Rf (t )  is the entire region occupied by the fluid and is a function

of the time.

Placing Eq. (111—6) into Eq. (111—7) and using Stoke ’s theorem,

one obtains -

d ~~ ~~‘ + ~4~~~~~#

~ J w dR a v f  (Vxw)xndB (111-8)
Rf(t) R(t)

where n is a unit outward directed normal vector~
In Eq. (111—8) , the boundary B consists of the 4~~~d boundary

and the boundary at infinity B~,. The contribution ~ B,, to Eq.(I1I 5)

-~~~~r .
- - — - -  :. :L- - : : . -~- ’ ~~~~~~~~~~~~~~~~ 

— --5— - - ULft . 1.
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is zero provided that w approach zero as r’
~~ for large r , with n >2.

Since ~ approaches zero exponentially wi th incretaing r for large

r , the above order condition at large r is satisfied for the present

problem. The boundary B in Eq. (111—8) can therefore be replaced by

the solid boundary 3~.

Equation (11—2) can be rewritten as

- 
~~è h _ v ~~

x
~~ 

(111 9)

Taking the vector product of each term in Eq. (111—9) with ~ and

integrate the resulting equation around B8, one has -

~~ x~dB - - ~~~ ~~ px~dB - V~ x~ )~~dB 

- 

(111-10)

The first integral on the right—hand side of Eq. (111—10) is zero

by virtue of the aingle—valuedness of pressure on B~. This ‘fact can

also be shown by using ~he Stoke ’s theorem and the fact that the curl

of the gradient of any scalar function is zero. Combining Eqs. (111—8)

and (111—10) therefore gives

~~~.- f  w dR * — 5 x~dB (111—li)

- 

R f (t )  B8

I :  Consider now the region R5 bound externally by B
~
. With the no—

slip condition, the substantial acceleration on B~ is identical

for the solid bodies and for the fluid . Using Stokes ’s theorem and the

fact that the outward normal vector for R5 is directed opposite to that

for Rf~ one obtains : S

~ f  
u dR — 

f ~ x(~~) dR (111—12)

Rf(t) ç(t)

!~~~~~~J~~~~ 
— _ -

~ 
--. — — — - —5-— ~~~~~ ~~~~~~~ 
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In the solid region Rj~ the velocity vector is given by

+ + * 4 -

v — v. + ~i . x r (111—13)
I
’ 

- 

3 3

where is the rectilinear velocity of the solid body j and

is its rotational velocity. For two-dimensional problems, 
~j 

is directed

perpendicular to the plane of the flow . The vorticity in the solid body

j is readily obtainable by taking the curl of the velocity vector as

given by Eq. (111—13) and is

+ +
(U — ~~~~ (111—14)

Using vector differential identities, it is simple to show tha t

in each of the solid regions R~. One thus obtains from

Eq. - (111-12)

- 

d “ d 4’

~~ 
w dR - 

~~~~~ 
f W dR (111-15)

Rf
(t) R5(t)

Equation (111—15) is equivalent to Eq. (111—4) . It states that the

rate of change of the total vorticity is equal in magnitude and opposite

in sign to the rate of change of the total vorticity in the solid bodies

or , equivalently , the total vorticity in the infinite unlimited region

is zero. If the rotational velocities of the solid bodies are

pr.scribed functions of time, then the rate of change of the total vorticity

in the fluid can be calculated using the foll owing simple formula:

d •
— ~~~~~~~~~~~~ (111—16)

If

— 

. ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ -~ - - -

s ~~~~~~~~~~~~~~~~~~~~~~~~~~ t - ~~~~~~~~~~~~ 
— 
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where N is the total number of solid bodies present , and is the

size of the solid body j .
Equation (111—15) can be integrated with respect to time, yielding

.1 w d R + J  w dR - A
Rf(t) R8(t) (111—17)

+
where A is a constant vector.

For a motion starting from rest, the total vorticity in the combined

fluid and solid regions is zero before the onset of the motion. Consequently,

A — 0 and one obtaLns (111—5) , which states that the vorticity tn the

combined solid and fluid regions, i.e., the infinite unlimited region,

is always zero. Thus, if the solid motion is prescribed at any time level ,

the total vorticity in the fluid is easily calculated from

+ N ,
J~~w dR — —2 

~~~~~ 
~~ 

~~~~~ 
(111—18)

There are several conceptual differences between the principle of

total vorticiçy conservation discussed here and the usual understanding

of invariance of vorticity integral with respect to time.

In the present work , the solid regions are included in the evaluation

of the total vorticity. The integrands of Eqs. (111—4) and (111—5) are

piecewise continuous and the integrals converge. The meaning of the total

vorticity in the unlimited infinite space jointly occupied by the fluid

and the solid bodies is unambiguous. While previous discussions of the

invariance of the total vorticity are usually made in the context of an

inviscid fluid or of an unlimited infinite fluid region (in the absence

of internal boundaries), the present study utilizes the no—Blip condition

at the solid boundaries and permits the presence of such b~ indaries in

- ---5 ---—-- -~~
— - , — - — — —— . . — -

~~ 
- 
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the fluid. In Ref. 21, Section 8.2, a formula similar to Eq. (111—18),

• but specialized to a single solid and including an additional term repre-

senting the contribution of the velocity at a surface enclosing the solid, is

presented. In the present work, it is shown that this contribution is

absent if the surface is sufficiently distant from the solid bodies and

the order condition for the vorticity vector is satisfied. The formula

(111—18) is derived for one or more solid bodies in the present Chapter .

Ref. 21 also gives a formula for the rate of change of the total

j vorticity in the fluid. That formula contains a term representing “conduction

of vorticity through the solid boundary.” It is pointed out that further

dynamic (kinetic) equations are needed to evaluate this term. The present

result , Eq. (111—16) , shows that this term is given simply by the rate

of change of the total vorticity of the solid bodies.

In Ref. 10, it is shown that in three—dimensions the total vorticity

is zero in a region which contains the fluid region and “a region extending

beyond the actual boundaries”. The present results show that the proper

extension of the fluid region is simply the solid regions in which the

correct vorticity values to assign are the actual vorticity of the solid

bodies . For two-dimensional flows, the literature emphasizes the possibility

of the existence of a non—zero circulation around closed paths at large

distances from the solids. According to the present results, this possibility

does not exist for a real fluid at any finite time level after a motion

has started from rest. An evaluation of the conduction of vorticity through

solid boundaries is not necessary since this “conduction process” conserves -

the total vorticity in the infinite unlimited region occupied jointly

by the fluid and the solid bodies.

— ~~~~~~~~~~~~~~~~ ~ 
— - — -
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3. Stress Outside the Vortical Regions.

Outside the vortical regions , the vorticity i . zero and the viscous

stress is absent. The momentum equation (11—2) simplifies to

p — — 
~ (p +pv

2/~) 
(111—19)

The absence of vorticity implies the existence of a scalar potential

• such that

j — —h (111—20)

Placing Eq. (111—20) into Eq. (111—19) and integrating the resulting

- - 
equation in space gives

2

~ 
.~i— 2.~ + f(t) (111—21)

This well—known equation for unsteady inviscid pressure will be utilized

to derive general formulas for aerodynamic forces and moments in Chapter V.
I

It should be noted that the scalar potential is stngle-valued. For three—

dimensional flows past finite solid bodies, the region in which • exists

is singly—connected mnd therefore $ is independent of path. For two—

dimensional flows, the region in which • exists is multiply—connected.

However, the cyclic constant for $ is zero since the vortical regions

are of finite extent and the total vorticity is zero.

•i- I

4 - . -~~~~ - - - - - - -  5 - -  

-)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fd~~~~~ &~~~
5- t~~1



F-, P 
-

24

IV. SELECTED THEOREMS AND FORMULAS FOR THE KINEMATIC ASPECT

The proof~ of the theorems and formulas for the kinematic aspec t

of the eztetnal flow problem utilize only the kinematic relationship between

the velocity and the vorticity fields and the order conditions for the

vorticity field.

1. Principie of Total Vorticity Conservation——Three—Dimensional Flows.

+ + +

Let n, b1, and b2 be a right—handed set of orthogonal vectors on

the boundary I~ . 
~~~ 

l~ are tangential unit vectors. Let the velocity

components in the n, b1, and b2 direc tions be ~~ Vbl, and ~b2 
respectively.

With the no—slip condition, these velocity components are identical on

B5 for the fluid and for the solid bodies . The normal component of the
3”bvorticity vector on the boundary B is given by 2 — ~l and is

4 4  
~ 

a 2continuous across B5. That is w • a on B8 for the fluid is identical

to that for the solid body.

Using the fact that w is solenoidal, one obtains through vec tor

differential identities:

(IV-l)

4 .where a is an arbitrary constant vector.

The divergence theorem then gives

f
~~~dR ~

R a (Iv—2)

S t  
_ _ _  

_ _  
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Let R be the fluid region Rf. Th. boundary $ then consists

of the solid boundary B~ and a boundary at infinity. The contribution

of the boundary at infinity is zero provided that w approaches zero

as r~~ for large r, with n>3. This order condition is certainly

met in the pt~esent problem for which w decays exponentially with r

for large r. Therefore, th. boundary B in Eq. (iV—2) can be rep laced

by B3.

Since the normal component of ~5 Continuous across i~, one may

replace ~~~~. 1
’ in the right—hand side of Eq. (IV—2) by 2 

~~~~ 
where

is the angular velocity of the )
th solid body. One then has

N

J ~~ dR — 2 E ( 
~~~ 

~)dB 
- - 

(Iv—3)
Rf

Consider now the region R in Eq. (111—2 ) to be the region R~

bounded externally by B~. One has

2 f ( 
~i~ .)dB — 2 J?i~dR (I v—4 )

j  j

Placing Eq. (IV—4) into Eq. (IV—3) and noting that the normal vector in
- - 

Eq. (IV—3) is directed outward from Rf while it is directed inward from R
~ 
in Eq.

(IV—4), one obtains 
-

f ~~ dR — —2 E t~3R~ (Iv—5)
Rf

which is equivalent to Eq. (111—5).

2. Biot—Savart’s Law.

It is shown in Ref. 6 that, by using the fundamental solution of

the Poisson ’s equation , the kinematics of th. problem, i.e. Eqs. (Il—i)

and ( II—3 ) , is expressible in the fotm of an integral r.presen~ation:

_ _ _ _  
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~ 
fw  x ( r 0 —r)

v(r , t) - 

~ 
) 
~~~ —

+ d d10 —

R I O rI 
-

+ 
1 f  ~~~~ 

(~o x ~~) x (t0-r~ dB ( IV-6)

B 
• 

(r0—r j~ 
0

where A and d are constants depending on the dimensionality of the

problem ——— A — 4ir and d a 3 for three—dimensional problems, A — Zn

and d — 2 for two—dimensional probiems———and the subscript “o” indicates
+ + + 4that the variables and the integrations are in the r0 space, i.e. N w(r~,, t)

etc. 

Let the region R be the fluid region Rf bounded internally by

the solid boundary B9 and externally by a boundary at infinity. With

a coordinate system attached to the fresetream , the velocity at infinity

is zero and the contribution of the boundary integral to the velocity

field is therefore limited to the solid boundary 35.

The contribution of the solid boundary B~ to the velocity field

is expressibl e as

— 

~~ ((‘~~.~~)~~p — (~~,
x
~~~
) ~; P) dB~ (t v— i)

r 
3

where P is the fundamental solution of the Poi sson ’s equation and is

defined by

1
4
~ Ir—r0I for three—dimensional problems

in for two—dimensional problems

Using vector identities, Eq. (IV—7) can be rewritten as

:,

_

~~ 

~~~~~~~~~~~ ~~~~~~~~~
——— ~~~~~~~~~~~~

-
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- 

~13 
— 

~ 5 ~~~~~~~~~ +~~ 5 P~0x~~,dB~ ( Iv-8)
t I  3 3

Consider now the solid region R~ bounded externally by B~ . Using

the divergence theorem and Stoke ’s theor em, and noting that the outward
- 

normal for the region Rj is directed opposit. to 
~~~~, 

one obtains from

Eq. (tV—a)

— 

R~ 
E 
~ (~~~

. (P ~
)) + x z(P ~;~) ) dR~, 

-

Using vector differential identities, the integrand in Eq. (IV—9)

I 
can be re—expressed as

x ~~
) x~ P - 

~~~ ~~~. ~~P) (tv—b )

it is easy to show that

— . ~~P . - V 
2P ~ 0 for 

~~

Thus, in the fluid region Rf~ one has,

a -

~~~~~ 

f •~~~d 
dR0

K3

One therefore obtains from Eq. (IV -6),

+ + 4

+ 
x (r —r)

;(r , t) • — 

~ ~ r0—r~~ ~~~ 
( tv— il) 

— • - ~~~~~~~~~ --- —~~~~~~~~~~~~

-

~~~
‘ 

~~~~~~~~ 
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where lx is the unlimited infini te region jointly occupied by the fluid

and the solid bodies. Equation (Iv—1l) is an expression of the Biot—Savart’s

law for a distribution of vorticity in an unlimited infinite region.

In fact , by considering the solid bodies and the fluid together as one

kineaatical systein, Eq. (tv— il) can be imeediately written down without

going through the intermediate steps de*ling with the boundary conditions

on B3.

3. Asymptotic Behavior of Velocity Field.

To examine the asymptotic behavior of the velocity field at large

distances from the solid bodies, one re—expresses Eq. (IV—ll) as

+ + +
v(

~~ 
t) — V z~

, 
w
0pdR0 

- 

(IV—12)

For three—dimensional problems, expressing the function as
+ 1 0 1

a Taylor series about the point r0 — 0 , one obtains

- 

~~~~~~~~~ r;0 t~~oi~~¼~ t r0]

+~~~~ + .  f~v V~~~~~~~) -I + . . .o r r 0: 
- ~ 

o 0 
~ 
r0—r ~ r0 oJ

Ls~ -4

• 
Or 

r0
_r
~ 

— — + terms of order r~~ , ~� 3 (1v—U)

One has from Eqs. (IV—8), (IV—12), and (IV—13), the following expr ession

for the velocity vector

— ~~~~~~~~~ ~~~~~~ r~~~~~~ •~~~~~ q ~- -.- ~~~~~~~~~
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4 +  + + 1 •~~~l +

v(r, t) — -~~~ (V x W~dR~ - ~~ xf (r4,. V 
.
~ ) w

0dR0 
(rv-14)

+ terms of order r 0, n.� 4

The first term on the right—hand side of Eq. (IV—4) is zero because

the total vorticity in the infinite unlimited region is zero, i.e. Eq.(IV—5)

or Eq. (111—5).

Using the identity -

V0 ((rd 
!) 

~~~
‘•) — (~ ~~~~~~ ~~~ + (~!. ~~ ~~ 

(Iv-l5)

the second term on the right—hand side of Eq. (IV—14) is rewritten, with

the help of the divergence theorem, as

H -~~—ex~~4f( 
(V! . r) 

~~~~~~

- (V !  . W)r ) dR (Iv-l6)

- .
~~ f(~. V I) ro(Wo.no)dBoI

~~ oc~

The last integral in the above expression vanishes if w approaches zero as

r 11 for large r , with n>4. This condition is certainly met, as discussed

- in Chapter III. The remainder of the above expression can be rewritten

as

~~
x(
~~-~ x ~~,) (Iv-17)

l~~~ ±l 4
or (y .a0)

L i
’ 

+ +
where a0 is the total first moment of the vorticity w 0 defined by

— 
~~~= ~~~~~~~~-=~~ — *
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4 + +.1 r x ~,~0dR (tv—ia)

Equation (IV—14) is thus expressible as

I (i~, t) ~~~~~~~~ (* ! . + terms of order r~~, ~� 
4 (IV—l9)

The first term on the righthand side of Eq. (IV—18) is of order r 3.

Provided that is not zero, is of order r 3 for large r.

For two—dimensional problems, the function In 
~r ~r 

can be expressed
l o I

as a Taylor series about the point r0 0:

in r~—r 
in — lii ‘~~~ + terms of order r~~, ~~> 3

( o  I

Following similar procedures as that given above for three—dimensional

problems, one obtains for two—dimensional problems:

~~~~~~~~~, t) f (~~ln!) x ~~~~ dR - 
~~~~~~~~~~~~~ ~ ln ~) ~0dR0

- 
I + terms of order r tt , n > 3  (Iv—2o)

- 

I 

- The first term on the right—hand side of Eq. (IV—20) vanishes because

- of Eq. (111—18). The second term may be rewritten, by noting that.4
4 1 + + 1 + 1 • +

~,(r0. ~ ln ~~
) — r0( w~. ~ In ;) a — (V in ~~) x (r0 x

4
and that in two—dimensional problems

I _ 
_ _  

_ _ _  

_ _
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-

4 + 1
- 0

as

~~~ ~~ in!x 
~~~~~~~ 

- - 
1 

~ 
2i~ ~ + f. (~~~ 

~ ~)(~ln ~~)

/
The first term on the righithand side of the above expression vanishes

for r * 0. One thus has, for two—dimensional problems

(r t) a h V (~ 
in 1 . ~~~,

) + terms of order r T
~, n> 3 (tV—21)

Therefore, provided that is not zero, ~ is of order

for large r. - -

The above conclusions for two—dimensional and three-dimensional problems

can be combined into the statement that, provided that is not zero,

is of order r~~ for large r d being the dimensionaliey of the

problem.

4. Velocity Integrals in ~~~ge Bounded Regions

Using Eqs. (IL—i) and (11—3) and. vector differential identities,

one has, for three-dimensional problems,

The divergence theorem and its corollaries then give

f ( ~ x W—2v)dR ç ((~~~)tt— (~~.~‘)-~ )dB

~. 1 ’ R
• 1

The above equation can be re—expressed as

— 

J~ dR — ‘~~
. J r x W dR - 

~ 
5
3 

x ~)dB (iV-23)

— I

-

I 
_ _ _  _ ____ _  _ _ _ _ _ _  
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Let R be the region occup ied by the solid body j. Equation

(IV—23) gives

1 + + + + -
~~~~~~ +

r x (n x v)dB a f r x .dR - f v.dR (1v—24)
B. 3.. 1.

3 3 3

Consider now R in Eq. (IV—23) to be R’1 , the part of fluid region

bounded internally by the solid surface and externally by a barge

but finite spherical surface r L. Let thia spherical surface be - designated

Let L be sufficiently large so that encloses all the solid

bodies present. The boundary B in Eq. (Iv-23) now consists of the solid

boundary B
~ 

and the spherical boundary B~. With the no-slip condition,

the contribution of B5 to Eq. (IV—23) is given by Eq. (Iv—24). One

then has, noting that for R’f th: normal vector n is directed into

the solid where as in Eq.  ( IV—24 ) ii is directed into the fluid ,

N + N ., .
~~J vdR j I b  .1 v~dR + 

~ .1 (r xW )dR + 
~~ 

f r zU~dR
R. R ’ J 1  R.

-

~~~ 
P 

f ‘ 3 .1 3

— 5 x(n x )dB (Iv-25)

Equation (IV—25) can be re—expressed as

-~~~~ + 1 + + 1 + + +J vdR — f(r  xW) d R.  — 
~~r x(n x v)dB

:

~~~~~~~~~~ 

~~~~~~~~~___________________________________ ~~~~~~ 
‘1

~~~1 
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where is the spherical region r ~L and includes the fluid region

Rf~ as well as all the solid regions R~.

Let L be sufficiently large so that the total vorticity outside

j  
I is negligible and the velocity on is accurately giva~by the first

term on the right—hand side of Eq. (IV—l9). The integral over the surface

in Eq. (IV—26) is finite and expressible in terms of the vorticity—mo.ent

integral ci as shown below.
+ + +

Let i, j, and k be a set of right-banded normal unit vectors in

a Cartesian coordinate system (x, y, z), in the directions x, y, and

z respectively. The corresponding spherical coordinates (r, e. •) with
unit vectors Cr~ e9 , and are related to x, y, and z by

x r S in O C o s  •

y — r Sin eSin •

z r Cos e

On BL I the first term of Eq. (lV—19) gives a velocity vector

+ 
a

0 + +v — —i (2 Cose~e + Sin9 e~)8iiL r

Also, on one has r — L
~
’
r and — 

~r
One thus has

- ‘ a S1n 0 4
r x(n x v) a. - e

8
~~

ci “ 2 +—2~.(Sin O cos O Cos~ i + sinecoee sin~ j —Sin e i i )
8~L

Placing the above expression into the sutface integral of Eq. (IV-26) ,

one obtains .
~~ ~ as the value of that integral. Noting that the first

int
~
g
~
al on the ri.tht—hsnd sid. of Eq. (IV—2’~) ~s . ~~~~ 110 1

:~

_ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I . +
.1 vdR — •~~ ci0 (Iv—27) 

-

It should be pointed out that Eq. (IV—27) is valid for any sufficiently

large but finite value of L. Although Eq. (IV-26) is independent of

the size of ILL, one may not consider L to be infinitely large. The

integral 5 vdR is in fact indeterminate if a~ 0. For example, the
R c ~

s—component of this integral over the region r-�L is, according to the

first term of Eq. (IV—19),
iT

~~~~

- 5 5 5 — (2Cos 0—Sin 8)Sin0drdl3d$

•IxO O’~0 r~L

This integral gives

- (c080 —Cos30) 1i~)

which is indeterminate.

It is simple to show that the integrals of the x— and y—coinponents
+

of v over the infinite region r �’L are also indeterminate . Also,
+ 4

the integrals of the velocity moment r x v over the infinite region

r> L are indeterminate. To show that these latter integrals do not diverge,

terms of order r 4 in Eq. (IV—19) must be considered.

Eq. (IV—22) is valid only for three—dimensional problems. For two—

dimensional problems, one has, instead of Eq. (IV—22),

~~~~~~~~~~~~~ - -  - 
__________________



The two—dimensional version of Eq. (Iv—26) is therefore

,+ + ~~~~~~~ + +
I vdR — I (r xw )dR — I r x ( n x v)dB

4 4 4 (Iv-29)

where is a circle of radius L bounded by ILL.

Let the flow be in the x—y plane, with the x—axis selected to be

in the a direction. On 5L the first term of Eq. (IV—21) gives a

velocity vector -

+ 0 + +
— 

2 (cose e + Sin eee)211L r

where and are unit vectors in the cylindrical coordinate system

(r , e)given by -

- 
- 

x — rCo.0

y — rSine

+ + + +

~~
n 3L one has r — Le and n — er. Thus one has

- + + + a
0r x(n x v) - SinO e0

a — + Co~~~)

-~~ 
Placing this expression into the surface integral of Eq. (IV—29) ,

one finds this integral to be 
~~ ~ 

Equation (IV—29) therefore gives,

for two—dimensional problems,

I 

_____ ___________~i~- — - -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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I vdR - — ci
j 2 ° (IV-30)

Equation (IV—30) is independent of the size of R~, as long as L

is finite. The integral 5 vdR is indeterminate if 
~ ~iO because

the first term on the right—hand side of Eq. (IV—20) is of order r 2.

Ref. 11 gives a formula similar to Eq. (iV—30) but with the coefficient

for 4 in equation (IV—30), replaced by 1. That formula is derived

by considering a finite cylindrical voltine centered on the s—axis , bounded

by two planes z 0 and z — 6, and using Eq. (IV—23). The derivation

of the formula neglected the contribution of the last integral in (IV-29)

(See the equation between Eqs. A—3 and A—4 of Ref. 11). The formula is

in error for any finite cylinders. As it turns out, however, if the cylinder

is infinite in length, then the formula in Ref. 11 is correct, -

as shown in Chapter V.

- 
- 5. Velocity—Moment Integrals in Large Bounded Regions.

In this Section, a formula for the velocity—moment integral is derived.

Using the equation

+ + 1 2~ 1+ 2+r x v  — — .
~~~r W + ~Vx (rv) (IV—31)

one obtains, with the help of Stokes’ Theorem

‘ x dR - 4 fr2 ~dR - 4 fr2( x~~)dB (IV-32)
R B

Li- V 

- 

-- 
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where B is the boundary of K .

Let 3. be the portion of the fluid region bounded internally

by the solid boundaries and externally by L~. 0~ø has from Eq. (IV-32)

— - 4 f r2~~ii - f fr
2( x~n ) d B _ 4  Z (I-

i ’  3 . ’  Bf f L j

Let R be R~ in Eq. (IV—32), one obtains -

-4 ~~r~ (~~ x ~)dB (~~ x ~)dk + 4 fr
2
~~dR 

- 

(Iv-34)

- Placing Eq. (IV—34) into Eq. (IV—33) and noting that the normal vector

in these two equations are directed opposite to each other, one obtains

upon simplification

i$
+ 1 - 2 ~ 1 2~~~~+f r x v dR - 

~ 
f  r W dR — ~ ~~r (v x n)dB (IV 35)

EL

where R,1~ include the solid regions R~ and the portion of the fluid

region Rf ’ . -

Let EL be a spherical region , or a circular region in two dimensions,

4, -centered on the origin with the radius L. Let L be sufficiently large

so that the total vorticity outside EL is negligible. One has then

I

- - ~~~~~~~~~~~~~~~~~~~~~ p



- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
-- -
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~~~~~~~

A j r~~, x ~~dB — L2
5~~~X ~dB — L2 f ~ dR (Iv 36)

The last integral in Eq. (IV—35) is therefore zero because of the

principle of total vorticity conservation discussed in Section 111—2.

4 
- 

One obtains therefore , upon noting r2 w is negligible outside

x dR - - 4 - 

(IV-37)

where 
~ 

is the integral of the second moment of vorticity defined by

f  r~2 w0d90 (IV—38)

• 

- 

Equation (IV—37) relates velocity—moment integral to an integral

of the second moment of vorticity. This equation is valid for both two—

and three—dimensional problems. -

The fact that the last integral in Eq. (IV—35) vanishes can also

- be shown by noting that if L is sufficiently large, then a scalar velocity

I potential • exists on and is single—valued. The boundary integral

- 
in Eq. (IV—35) can therefore be expressed as

2 ~ +H L 5 V~~x n d BBL

• Using Stokes’ theorem, this integral is expressible as

— - —-.----- . -__u__ — — - - -- . -—-- • -- -
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L2 f~~ x V ~~dREL

and is zero because the incegrand, being the curl of the gradient of a

function, is zero.

It is not difficult to show that the terms of the asymptotic expression

+

for v, Eqs. (IV—19) and (IV—21) are all expressible as gradients of a scaler

function. For example, for two—dimensional flows, the firsc term on the

right—hand aide of Eq. (IV—21) and the next term, being resp .ctively of

orders r 2 and r 3, are important. The first term is already written

1 +

in the form of a gradient of a scalar function, namely -
~~~~ ~~~( Vln~ .c10).

The next term can be shown to be expressible as

~~-x ~~~oro
2 [cos(:90

_29)] 
dR0 x~ I woro2{~09~~~o ~~~~

~~~~ I 
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V. AERODYNAN IC FORCE AND MOMENT

In this Chapter, the theorems and formulae presented in Chapters III

and IV are utilized to derive general formulas relating the aerodynamic

forces and moments to the vorticity—moment integrals.

1. Aerodynamic Force

• Consider the control volume EL bounded externally by 8L and containing

the fluid occupying the region Rf’ and the solid bodies occupying the

regions R
1
. The momentum theorem gives -

- 

~-j~ f~~v’cn + 
j~~~~

.~ )dB (v-i)

EL -

where Ft is the total force acting on the system within EL’ and ~

is either the fluid density p or the solid density P~ , depending on

the particular region of interest.

On account of the asymptotic behavior of v’ the last integral in

Eq. (v—i) is negligible for sufficiently large values of L. The integral

over EL can be written as sums of integrals as follows:

a P ~~ ~~~~R- j~1 
~~~~~ 

f
~~ ch1( + 

~~ ~~ (v-z)

+

— 
The total force Ft acting on the system in EL consists of the

force acting on the boundary 8L and the external force

+ +

~~~~~ (V—3)

I
p _________________ - - - . - - - .- 

~~ 
i— -

~ ~~~
— — —  - —

- TL,~. ~~~~~ ~
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The external force 7e 
is the force exerted froth outside the system

and acts on the solid bodies. The total force acting on the solid bodies

is F5 + F , where F is the aerodynamic force exerted by the fluid on

the solid bodi~s. Newton’s second law of motion gives

+ + N
F + F a £ 

~~ f P.v.dR (V—4)
e ~ ,1 ut 

~

Placing Eqs. (V—3) and (V—4) into Eq. (v—I) one obtains

+ + d + d +F - FL~~ P~~ fvda + 
33j ~~~~fPv3dR (V 5)

EL

For sufficiently large L, the shear stress is negligible on
4.

and F~ is expressible in terms of p as given by Eq. (111—21). That

15 -

FL
a p 1p ~ dB — .1[~i_ ~

I
+ f(t )J~~3 (v 6)

The asymptotic behavior of v shows that the term does not contribute
. 

- 4

to the last integral in Eq. (V—6). The function f(t), being independent

of position, also does not contribute to Eq. tv—b ). One thus has

-: - N

I - -p5
1 ~~ ~dB -p~~ f  ;dR + 

~~ 
J~~~ dR (v-i)

L EL Rj

I

Using Eqs. (111—20) and (IV—19), one obtains for three—dimensional

fbi.

-

~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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ndl - - (
~~~ ~~ .~~)ndB

EL

Expressing the last integral in a spherical coordinate system with

directed in the k direction, one obtains

j ~ ~d3 - 
~~ S Cos2e Site d~d0

4

Using Eqs. (IV—27) and the above equation, one obtains from Eq. (V-7)

the folloving expression for aerodynamic force in three—dimensional flows.

+ N
+ 1 dci0 E d •- F — — 

~P 
~~~~~~ 

+ ~ 
~~~~ 

~~ fv 3
di (V— 8)

Pot two—dimensional flows, using Eqs. (111—20) and (IV—21), one obtains

+ +

a 21t a
. 

- 5 ~~~ ndB - - 5 Cos ~~~ — —

~~ (v-9)
L

Using Eq. (IV—30) and the above equation, one obtains from Eq. (V-i)

the following expression for the aerodynamic force in two—dimensional

• flows:

a —P + P 

~ 
f . dR (v—b ) 

-i-—- . 
~~~~~

- 

~
— - — -— —  — ‘

~~~~~~~~~~~~~~~~
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~~
— - - - 

~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~
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2. Moment of Aerodynamic Force

The theorems of moment of momentum gives

4 + d + + 4. + 4-4
x F~ - 

~~~~~ 

f  ~~r x v)dR +0 x v)(v.n)dB

EL
where I~ is a position vector describing the line of action of the total

force Ft.

The last integral in Eq. (v—li ) is negligible for sufficiently large
4. +

L. The total moment consists of the moment x FL 
acting on the boundary

EL and the externally applied moment ‘e x Fe The shear stress is negligible

on 8L• Consequently the moment x 
~L 

is negligible. One thus has

+ + 1~ + 4.

1 x P  — —~~ I~~ ( r x v )dRa e dt j  (v—li)
EL

H 
- N

or 1e X F e * P ~~ ~~~ x v’~dR -4 
~~~~~~~ 

Jrxvjda

N
+ 

~~ 
•

~~~~ j P.(r X v
3

)dR (v—l2)

The total moment acting on the solid bodies consists of the externally

applied moment and the moment exerted by the fluid on the solid bodies.

This total momentum is equal to the t ime rate of change of angular momentum

H of the solid bodies. This rate of change of angular momentum is given

by the last term of Eq. (V- lI) . One therefore obtains the following expressions

f or the first moment of aerodynamic force in both two—and three—dimensional

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _
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problems, by using Eq. (IV-37)

~~ N
- 4’ ‘

~~~~~~~~ 

+ P ~~ f1
’x .dR (V43)

where 1 is a position vector describing the line of action of the aerodynamic
+

force F.

Equations (V—5) and (V—lO)express the aerodynamic force exerted by

a fluid on solid bodies imersed in the fluid as integrals of the first

moment of the vorticity vector plus an inertia term. Equation (V—i3)

expresses the first moment of the aerodynamic force as an integral of

a second moment of the vorticity vector plus a moment of inertia term.

Higher moments of the aerodynamic force can be related to intêgrils of

higher moments of the vorticity vector.

3. Sumeary.

The preceeding results form a theory for aerodynamic forces and moments

which encompasses much of the previous aerodynamic theories. As discussed

in Chapter U of this report, this theory deals with unsteady motions

of a fluid which is at rest at certain initial instant of time . A steady

7 
- 

flow, if it exists , is considered to be approached asymptotically at large

time levels. It has been shown that under this circumstance the effective

vortical regions surrounding and trailing the solid bodies are of finite

- 

- 

extent at any finite time level. The theory comprises of the following

three statements:

a. The combined total vorticity of the fluid and the solid bodies

is zero.
• I b. The aerodynamic force acting on the solid bodies is expressible

as the time derivative of an integral of the first moment of the vorticity
• 

- plus a inertia term.
I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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c. The moment of aerodynamic force acting on the eolid bodies is

expressible in terms of the time derivative of an integral of a second

moment of the vorticity plus an moment of inertia term.

These three statements are expressible mathematically as follows:

- fwdR — 0 (111—5) , (III—

where 1 , ii the infinite unlimited region jointly occupied by the fluid and

all the solid bodies.

~~ T ~t ~~~ x~~ m + p N 
~~~ dR (v-8),(V-9)

j~ l R .

where d is the dimensionality of the problem.

1 x — ~ E .1 r2 
~ dR + p ~ ~ 5 ~ x dR (V 43)

3l

‘

~

‘

6 
-

~~~~ 

.

I
It I-
:t .

_  _
_ _ _  _ _ _ _  

~~~~~ V i  ‘P



r -

~~~~

46

VI. REFERENCES 
-

1. Hess, J. and Smith , A. 14. 0., “Calculation of Potential Flows about Arbitra
Bodies”; Progress in Aeronautical Sciences, Vol. 8, Pergamon Press , N. Y . ,
1967, pp. 1—138.

— 2. Sears . V. k., “Unsteady Motion of Airfoil with Boundary—Layer Separation,”
AIAA Journal, Vol. 14, No. 2, 1976 , pp. 216—220.

3. Von Karman , Th., and Sears V. R., “Airfoil Theory for Non—Uniform Motion,’
J. of the Aero. Sciences, Vol. 5, No. 10, 1938, pp. 379—390.

4. Ceising , J. P. , “Nonlinear Two—Dimensional Unsteady Potential Flow with
Lift ,” Journal of Aircraft, Vol . 5, No. 2, 1968, pp. 135—143.

5. Vu , J. C., “Prospects for the Numerical Solution of General Viscous Flow
Problems,” Proceeding of the Viscous Flow Symposium, Lockheed Georgia
Company LG7YEROO44, 1976, pp. 39—104 .

6. Vu, J. C. and Thompson, J. F., “Numerical Solutions of Time—Dependent
Incompressible Navier—Stokes Equations using an Integro—Differential
Formulation,”, Computers and Fluids, Vol. 1, No. 2, 1973, pp. 197—215.

* 

7. Vu, J. C., “Numerical Boundary Conditions for Viscous Flow Problems,”
AIAA Journal , Vol . 14, No. 8 , 1976 , pp. 1042—1049 .

8. Vu, J. C., Sampath, S., and Sankar, N. L., “A Numerical Study of Viscous
Flows around Airfoils,” Proceedings of AGARD Fluid Dynamics Panel Sy.posiu
On Unsteady Aerodynamics, 1977, in print.

9. Lamb , H., “Hydrodynamics,” Dover, N. Y., 1945.

10. Batchebor, G. K., “An Introduction to Fluid Dynamics,” Cambridge Univerait
Press, 1967.

11. Phillips, 0.14., “The Intensity of Aeolian Tones ,” J. Fluid Mech .,
Vol. 1, 1956 , pp. 607—624 .

12. Moreau , J. ~J., “Bilan Dynamique d’un E’coulement Rotationnel”,J. Math. Puree Appi., Vol. 9, No. 31, pp. 355—375 and Vol. 9, No.
32 , pp. 1—78 , 1953.

13. Truesdell C., “The Kinematics of Vorticity”, Indiana University
Press, 1954.

14. Vu. J.C., and Wahbah, 14. 14., “Numerical Solution of Viscous Flow
Equations using Integral Representations,” Proceedings of the Fifth
International Conference on Numerical Methods in Fluid Dynamics—
Lecture Series in Physics, Vol. 59, Springer—Verlag, 1976, pp. 448—
453. -

- • 15. Vu, J.C., and Sugavanaa, “A Method for the Numerical Solution of
Turbulent Flow Problems,” AIAA Paper No. 77—649 , 1977 , 13 pages.

p

~
‘
~~
‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ k fl~~i —
Li ~~~~~ 

— _________________________ — - 
V ~ 

..
~~~~~~~ ‘ ‘P

•—.- —.-
~~

-- 
—~~~~~ .---~~——- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ - ______ — I ~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- .  47

16. Vu, J.C., “Integral Representations of Field Variables.for the
Finite—Element Solution of Viscous Flow Problems,” Proceedings
of the 1974 International Conference on Finite Element Methods
in Engineering, Clarendon Press, 1974. -

17. Vu, J.C., “Finite Element Solution of Flow Problems using Integral
Representation,” Proceedings of Second International Symposium
on Finite Element Methods in Flow Problems, International Centre
for Computer Aided Design, Conference Series No. 2176, June, 1976.

18. So erfeld, A., “Mechanics of Deformable Bodies” Academic Press,
1950.

19. Carslaw, R.S. and Jaegen, J.C., “Conduction of Heat in Solids”,
Oxford University Press, 1959.

20. Vu. J.C., “Integral Representation of the Kinetics of Viscous
Flow Problems,” Georgia Institute of Technology. Notes, 1974.

21. Lagerstrom, P.A., “Laminar Flow Theory,” Section B of Theory of
Laminar Flow, F.K. Moore, Editor, Princeton University Press,
1964.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ 

_ _ _  _ _  _ _



p
~~~T - -- - - - -

r —I’

- DISTRIBUTION LIST FOR UNCLASSIFIED
TECHNICAL REPORTS AND REPRINTS ISSUED UNDER

CON RACT aO/~’-Zc ~C-- O~,Z~~ TASK I IRO W- ,?,.2~~
4 Al]. addresses receive one copy unless otherwise specified

Technical Library Office of Naval Research
Building 313 Attn: Code 1U21P (ONRL)
Ballistic Research Laboratories 8)0 N. Quincy Street
Aberdeen Proving Grou~td, MD 21005 Arlington , VA 22217 6 copies

Dr. P. D. Bennett • Dr. J. L. Potter
External Ballistic Laboratory Deputy Director, Technology
Ballistic Research Laboratories ~on Karman Gas Dynamics Facility
Aberdeen Proving Ground, MD 2W03 Arnold Air Force Station, T1~ 37389

Mr. C. C. Hudson Professor J. C. Vu
Sandia Corporation Georgia Institute of Technology
Sandia Base School of Aerospace Engineering
Albuquerque , NM 81115 Atlanta , GA 30332

Professor P. J. Roache Library
Ecodynamice Research Aerojet-General Corporation

f Associates, Inc. ~352 North Irwindale AvenueP. 0. Box 8172 Azusa, CA 917(i2
A1buquerque,-.!~( 87108

* NASA Scientific and Technicci
Dr. J. D. Shreve, Jr. Information Facility
Sandia Corporation P. 0. Box 8757
Sandia Base Baltimore/Washington International
Albuquerque, NM 81115 Airport, MD 21240

Defense Documentation Center Dr. K. C. Wang
Cameron Station , Building 5 Martin Marietta Corporation
Alexandria , VA 22314 12 copies Martin Marietta Laboratories

1450 South Rolling Road
- - Library Baltimore, MD 21227

Navel Academy
Annapolis , MD 2l4u2 Dr. S. A. Berger

Uni~’ersity of CaliforniaDirector , Tactical Technology Office Department of Mechanical Engineering
Defense Advanced Research Projects Berkeley, CA .94720

Agency
14.0 Wilson Boulevard Professor A. J. Chorin
Arlington, VA 2221) University of California

Department of Mathema t ics
Office of Naval Research Berkeley, CA 9472J
Attn: Code 211
8~)0 N. Quincy Street Professor K. Rolt
Arlington, VA 22217 University of California

Department of Mechanical Engineering
Office of Na ,al Research Berkeley, CA 94720
AtCn: Code 438
8~J N. Quincy Street Dr. H. a. Chaplin
Arlington, VA 22217 Code 1600

David V. Taylor Naval Ship Research
and Development Center

Bethesda, MD 20084

-~~~~~‘-- -.~--- ~ ~ ~~‘
- - - — - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘•.~~ 1~~ V —- — ~~~~~~~ ~~~~~~~



V — -—- -‘ -
~~~~~~~~~

- - - -  - -
~~~

-- .-~~~—— -
~~~---~ ‘,---‘ -~

Pate 2

Dr. Hans Lugt - Code 753
Code i84 Naval Weapons Center

— David V. Taylor Naval Ship Research China Lake, CA 93555
and Development Center

Bethesda, MD 20084 Mr.. 3. Marshall
Code 4063

Dr. Yrancois Prenkie). Naval Weapons Center
Code 1802.2 China Lake, CA 93555
Dtvid V. Taylor. Naval Ship Research
and Development Center Professor R. T. Davis

Bethesda , MD 20084 Department of Aerospace Engineering
University of Cincinnati

Dr. G. H. lager Cincinnati, OH 45221
Department of Aerospace Engineering
Virginia Polytechnic Institute and Library MS 60—3
State University NASA Levis Research Center

Blscksburg, VA 24061 21000 Brookpark Road
Cleveland , OH 44135

Professor A. H. Neyfeh
Department of Engineering Science Dr • J • D. Anderson., Jr.
Virginia Polytechnic Institute end Chairmen , Department of Aerospace
State University Engineering

* Blacksburg, VA 24061 College of Engineering
University of Maryland

- 
:- Mr. A. Rubel College Park, MD 20742

Research Department
Gr~~~an Aerospace Corporation Professor W. L. Melnik

* Bethpage, NY U714 Department of Aerospace Engineering
• University of Maryland

Oommsnding Officer College Park, MD 20742 -

OftLce of ‘Naval - Research Branch Office
* 666 Summer Street, Bldg. 114, Section D Professor 0. Burggraf

Boston , MA 02210 Department of Aeronautical end
Astronautical Engineering —

Dr. G. Hall Ohio State University
• State University of Nev York at Buffalo 1314 Kinnear Road

- 

- 

- Faculty of Engineering and Applied Columbus, OH 43212
Sciences

Fluid and Thermal Sciences Laboratory Technical Library
Buffalo, NY 14214 - Java]. Surface Weapons Center

- . 

Dahlgren Laboratory
Dr. B. J. Vida,l Dahigren, VA 22448
CALSPAN Corporation

• Aerodynamics Research Department Dr. F. Moore
P. 0. Box 235 Naval Surface Weapons Center
Buffalo, NY 14221 Dahlgren Laboratory

Ds.blgren, VA 22448
Professor B. F. Probstein
Department of Mechanical Engineering Technical Library 2—51131
Massachusetts Institute of Technology LTJ Aerospace Corporation
Cambridge, MA 02139 P. 0. Box 5907

Dallas, TX 75222
Comeandiag Officer
Office of Naval Research Branch Office

• 
- =

~~~~~~~~~~~~~~~~~~ ~~~~ :~T:



_________________________________________
-—

Page 3

Library, United Aircraft Corporation Professor B. A. Caughey
Research Laboratories Sibley School of Mechanical and

Silver Lane Aerospace Engineering
East Hartford, CT 06108 Cornell University

- Ithaca, NY 14850
Technical Library
AVCO-Everett Research Laboratory Professor E. L. Reeler
2385 Revere Beac~h Parkway Sibley School of Mechanical and
Everett, MA 021149 Aerospace Engineering

Cornell University
Professor 0. Moretti Ithaca, NY 14850
Polytechnic Institute of New York

-
~ 

Long Island Center Professor S. F. Shen
Department of Aerospace Engineering Sibley School of Mechanical and

and Applied Mechanics Aerospace Engineering
Route 110 Ithaca, NY 14850

* ?armingdale, NY 11735
Library

— Professor S. 0. Rubin Midwest Research Institute
Polytechnic Institute of New York 1425 Volker Boulevard
Long Island Center Kansas City, MO 641i0

* Department of Aerospace Engineering . -

and Applied Mechanics Dr . M. H. Hafez
Route 110 Flow Research, Inc.
Permingd.ale, NY 11735 P. 0. Box 5040

Kent, WA 98031
Dr. V. R. Briley
Scientific Research Associates, Inc. Dr. B. H. Murman
P. 0. Box 1e98 Flow Research, luc.
Glastonbury’, CT 06033 P. 0. Box ~o4o

Kent, WA 98031
Professor P. Gordon
Calumet Campus Dr. S. A. Orezag
Department of Mathematics Cambridge - Hydrodynamics, Inc.
Purdue University 54 Baskin Road

r ~ 
- H~~~ond, IN 46323 Lexington, MA 02173

Library (MS 185) Dr. P. Bradshaw
NASA Langley Research Center I~nperial College of Science endLangley Station - Technology
Hampton, VA 23665 Department of Aeronautics

Prince Consort Road
Professor A. Chapmann London SW? 2BY, England
Chairman, Mechanical Engineering
Department Professor T. Cebeci

William H. Rice Institute California State University,
Box 1892 LongBeach
Houston, TX 77001 Mechanical Engineering Department

Long Beach, CA 90840
Technical Library
Naval Ordnance Station Mr. 3. L. Hess
Indian Head , MD 20640 Douglas Aircraft Company *

3855 Lekevood Boulev6rd
Long Beach, CA 90305

-

~~~~1 &~ _ _ _  

-

_ _ _ _ _ _ _  _ _  — - - -

— -~ i __~~~.a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- .-

~~
- . 

- 
- - -

~~ • - - .• ~ ,- -—,~-
.,•~~~~ - -~~ ~~ -‘•~

. -- ~~‘ - P..-

— — -•-—---.•-.——-~ .•~~~-. — —~~ — C~~~~~~~~__ — I V — ~~~ — ~~~



Page 14

Dr • H. K. Cheng - Dr • S • S • 8tahara 
-

University of Southern California, Nielsen Engineering & Research, Inc.

University Park 5lOClyde - Avenue
Department of Aerospace Engineering Mountain View, CA 914043
Los Angeles, CA 90007

Engineering Societies Library
Professor J. D. Cole 345 East 47th Street
Mechanics and Structures Department New York , NY 10017
School of Engineering and Applied
Science Professor A. Jsmeeon

University of California New York University

Los Angeles, CA 90024 Courant Institute of Mathematical
Sciences

- t Engineering Library 251 Mercer Street
University of Southern California New York , NY 10012
Box 77929
Los Angeles , CA 90007 Professor G. Miller

Department of Applied Science
Dr. C. -M. Ho New York University
Department of Aerospace Engineering 26 36 Stuyvesant Street

* University of Southern California, New York, NY 10003
University Park

Los Angeles, CA 90007 Office of Naval Research
New York Area Office

Dr. T. D. Taylor 715 Broadva~ — 5th Floor
The Aerospace Corporation New York, NY 10003
P. 0. Box 92957
Los Angeles, CA 90009 Dr. A. Vaglio—Laurin

Department of Applied Science
C~~~anding. Officer 

26—36 Stuyvesant Street -

Naval Ordnance Station New York University
Louisville, KY 140214 New York, NY 10003

Mr. B. H. Little, Jr. Professor B. B. Ranch
Lockheed-Georgia Company • Ph.D. Program in Mathematics
Department 72—74, Zone 369 The Graduate School and University
Marietta, GA 30061 Center of the City University of

New York
Professor E. B. 0. !ckert 33 West Ie2nd Street
University of Minnesota New York, NY 10036
2141 Mechanical Engineering Building
Minneapolis, MN 55455 Librarian, Aeronautical Library

National Research Council
Library MOntreal Road
Naval Postgraduate School Ottawa 7 Canada
Monterey, CA 93940

Lockheed Missiles and Space Company
Supersonic-Gas Dynamics Research Technical Information Center
Laboratory 3251 Hanover Street

Department of Mechanical Engineering Palo Alto, CA 94304
McGill University
Montreal 12, Quebec, Canada

_ _ _ _  
- - 

~~~~~~~~~~~~

--  -

‘ 

— 

- 

—---- 

~~

- 

* 

-



Page 5

Co~ nanding Officer Professor L. Sirovich
Office of Naval Research Branch Office Division of Applied Mathematics
1030 Esst Green Street Brown University
Pasadena, CA 91106 Providence, RI 02912

California Institute of Technology Dr. P. K. Del CR1/2178)
Engineering Division - TRW Systems Group, Inc.
Pasadena, CA 91109 One Space Perk

Redondo Beach , CA 90278
Library -.
Jet Propulsion Laboratory - Redstone Scientific Information Cerr
148oo Oak Grove Drive Chtef , Document Section
Pasadena, CA 91103 - Army Missile Ccminand

- Redstone Arsenal , AL 35809
Professor H. Liepnann
Department of Aeronautics U.S. Army Research Office
California Institute of Technology - P. 0. BOx 12211
Pasadena, CA 91109 Research Triangle , NC 27709

Mr. L. I. Chasen , MGR-MSD Lib. Editor, Applied Mechanics Review
General Electric Company Southwest Research Institute
Missile and Space Division 8500 Culebra Road
P. 0. Box 8555 Sen Antonio , TX 78228

* Philadelphia, PA 19101
Library and Information Services

Mr. P. Dodge General Dynamics-CONVAIR
- -- Aires.arch Manufacturing Company P. 0. Box 1128

of ~~1zona San Diego, CA 92112
Division of Garrett Corporation
1402 South 36th Street Dr. B. Magnus
Phoenix ,. AZ 85010 General Dynamics-CONVAIR

Kearny Mesa Plant
Technical Library . P. 0. Box 80847
Naval Missile Center San Diego, CA 92138
Point Mugu, CA 93042

- Mr. T. Brundage
Professor S. Bogdonoff Defense Advanced Research Proj ects
Gas Dynamics Laboratory Agency
Department of Aerospace end Research and Development Field Unit
Mechanical Sciences APO 1146, Box 271

Princeton University - San Francisco, CA 962146
Princeton, NJ 08540

Office of Naval Research
Professor s. i. Cl~ieng Sen Francisco Area Office
Department of Aerospace and One Halildie Plaza , Suite 601

Mechanical Sciences Sen Francisco, CA 94].02
Princeton University
Princeton, NJ 08540

The RAND Corporation
Dr. J. N. Yates 1700 Main Street
Aeronautical Research Associates Santa Monica , CA 90401

of Princeton, Inc .
• . 50 Washington Road

Princeton, NJ 08540

~~

.
- I j 

-~~.--
-
~~~ 

~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r

Page 6

Dr. P. B. Rubbert Dr. B. J. Hakkinen
Boeing Aerospace Company McDonnell Douglas Corporation

* 
Boeing Military Airplane Development Department 222
Organization P. 0. Box 516

P. 0. Box 3707 St. Louis, MD 63166
Seattle, WA 981214

- Dr. B. P. Heiniech
Dr • H. Yosbihara Honeywell, tue.
Boeing Aerospace Company Systems and Research Division -
P. 0 Box3999 Aerospace Defense Group

* Mail Stop 141-18 - 23145 Walnut Street
Seattle , WA 98124 St. Paul, MN 55113

Mr. R. Feldhuhn Dr . N. Majinuth
Naval Surface Weapons Center Rockwell International Science Center
White Oak Laboratory 10149 Camino Dos Rios
Silver Spring, MD 20910 P. 0. Box 1085

Thousand Oaks, CA 91360
* Librarian -

Naval Surface Weapons Center Library
White oa~ lAboratory Institute of Aerospace Btudiea
Silver Spring, MD 20910 University of Toronto -

Toronto 5, Canada
Dr. J. M. Solomon
Naval Surface Weapons Center Professor V. B. Sears
White Oak Laboratory Aerospace end Mechanical Engineering
Silver Spring, MD 20910 University of Arizona

Tucson, AZ 85721
Professor J. H. Ferziger
Department of Mechanical Engineering Professor A. R. Seebass
Stanford University Department of Aerospace and Mechanical
Stanford, CA 94305 Engineering

p University of Arizona
Professor K. Karamc~heti Tucson, AZ 85721
Department of Aeronautics and
Astronautics Dr. K. T. Yen

Stanford University Code 3015
Stanford, CA 914305 Naval Air Development Center

- 
- Warminster , PA 189714

Professor N . van Dyke
Department of Aeronautics and Air Force Office of Scientific Rese.rc

Astronautics (sR z 4)
Stanford University Building 11410, Bofl ing Afl
Stanford, CA 94305 Washington, DC 20332

Professor 0. Bunemarm Chief of Research and Development
Institute for Plasma Research Office of Chief of Staff

- 
- Stanford Univereity Department of the Army

Stanford, CA 94305 Washington, DC 20310

Engineering Library Library of Co eec
- 

- 
cD nne11 Do11as Co~~oration Science and Tec)mo1o~ ’ Division

P. 0. Box 516 Washington, DC 20540

L Bt.Louis,MO 63166 —

ii

- 
- 

~~~~~~~~~~~~~~~



. 

—

~~~~~~~~~~

- -

~~

- -  —

Page~~

Director of Research (Code RE) Chief o~ AerodynamicsNational Aeronautics and Space AVCO Corporation
Administration Missile Systems Division

600 Independence Avenue, SW 201 Lowell Street
Washington, DC 20546 Wilmington, MA 01887

Library Reeearch Library
National Bureau of Standards AVCO Corporation
Waahington,. DC 20234 Missile Systems Division

20]. Lowell Street
National Science Foundation Wilmington , MA 0188?
Engiueering Division
1800 0 Street , NW APAPL (APRC)
Washington, DC 20550 AR

Wright Patterson, APE, OH 145433
Mr. U. Koven -

AIR 03E Dr. Donald J. Harney
Naval Air Systems Coemand AFFDL/FX
Washington, DC 20361 Wright Patterson APE, OR 1451133

Mr. B. Sievert
AIR 320D
Naval Air Systems Co~~~nd
Washington , DC 20361

: 
- Technical Library Division

AIR 6OIe
Naval Air Systems Cc~ nand
Washington, DC 20361

Code ~627 -

Naval Research Laboratory
Washington, DC 20375

SEA 03512 - -

* 
Naval Sea Systems Command
Washington, DC 20362

SEA 0903
Naval Sea Systems Cr~..~nd
Washington, DC 20362

Dr. A. L. Slafkosky
Scientific Advisor
Comsandsut of the Marine Corps

(Code AX)
- 1 - Washington, DC 20380

Director
Wespone Systems Evaluation Group
Washington, DC 20305

— - — — - - —- -—— - - -—————— .— --— -‘_____________
— —~~ ——- _~ ______~ _*~~ _ .~ -

~~~~~~~
-—~~~~~ -- - - - -- - -

~~ - — 
—~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~ ..~~~~~ ~~~~ 

q i -
~~~~~ ~~ ~ ~~- t


