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On the Onset of Breakup in Inviscid and Viscous Jets

by

D. A. Caulk and P. M. Naghdi

Abstract. This paper is concerned with the instability of inviscid and viscous
jets utilizing the basic equations of the one-dimensional direct theory of a
fluid jet based on the concept of a Cosserat (or a directed) curve. First, a
system of differential equations is derived for small motions superposed on
uniform flow of an inviscid straight circular jet which can twist along its axis.
Periodic wave solutions are then obtained for this system of linear equations;
and, with reference to a description of growth in the unstable mode, the compari-
son of the resulting dispersion relation is found to agree extremely well with
the classical (three-dimensional) results of Rayleigh. Next, constitutive
equations are obtained for a viscous elliptical jet and these are used to

discuss both the symmetric and the anti-symmetric small disturbances in the

shape of the free surface of a circular jet. Through a comparison with available
three-dimensional numerical results, the solution obtained is shown to be an
improvement over an existing approximate solution of the problem.

.

e U R i S g N LS e L .‘f’ R RN i
il P i v}mvﬂ.‘.m' '..m.ah“m.w‘fm’, {:3.; oml .




1. Introduction
The disintegration or breakup of a fluid jet due to surface tension, or

so-called capillary instability, has long been a subject of interest in fluid
mechanics. We do not include here a complete list of references on the subject,
but mention those that have some bearing on the present paper. The classical
study for an inviscid jet is due to Lord Rayleigh [1,2], who in turn cites the
static investigations of Plateau and the experiments of Savart. Later Rayleigh
[3] extended his earlier work to include viscosity but, due to analytical dif-

ficulty, explicitly considered only the case of negligible inertia. Weber [4]

also examined the stability of a viscous jet and sought to remove the difficulty !

‘ encountered in Rayleigh's work [3] by introducing approximations to the three-
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dimensional theory that take account of the 'thinness' of the jet. These E
approximations are ad hoc in nature and somewhat inconsistent, but they lead to
4 results which agree reasonably well with Rayleigh's [1,2] in the special case

of an inviscid jet.

In the references cited above, the problem of jet instability has been
approached by considering small perturbations to a uniform cylindrical jet in
¥*
the context of the linearized three-dimensional equations. This procedure leads

to a relatively simple dispersion relation in the case of an inviseid jet [1,2],

but when the fluid is viscous the frequency of the wave motion is governed by

g T AR S g e e

an implicit transcendental equation and many results must be obtained numerically

(see Chandrasekhar [6]) or by approximation [4]. Rather than consider another 1

such approximation here we approach the subject using a one-dimensional theory

Y AR T ST it
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| of a directed (or a Cosserat) curve in the form given by Green, Naghdi and

@ g Wenner [7]. The relevance and applicability of this approach to problems
t g' - involving fluid jets have been demonstrated in several papers by Green and

*These references consider the temporal instability of an infinite jet. This
; should be distinguished from the so-called spatial instability of a semi-
s infinite jet considered by Keller et al. [5].
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Laws [8], by Green [9,10] and by Caulk and Naghdi [11]. Additional background
on the theory of a Cosserat curve and its applications can be found in Green
et al. [7,12].

With the use of the exact linearized three-dimensional equations, Rayleigh
[1,2] derived the explicit result that the jet is unstable only in the axi-
symmetric mode of disturbance. Inasmuch as the present development does not
begin with the three-dimensional equations, all modes of disturbance which
occur in the present one-dimensional direct theory must be examined for
stability. It is because of this that in section 2 of the paper we begin with
a brief review of the basic equations for a straight jet of elliptical cross-
section which can twist along its axisf In section 3, we derive linearized
field equations for an incompressible inviscid jet appropriate for small motions
superposed on uniform flow of a circular jet. We show that the solution to
these linearized equations can be decomposed into two modes, representing a
symmetric and an anti-symmetric disturbance in the shape of the free surface.
The anti-symmetric mode is stable for all wavelengths, while the symmetric
mode is found to be unstable over a range of longer wavelengths. These con-
clusions are then compared with the corresponding exact three-dimensional
analysis of Rayleigh [l,2]§ In terms of a description of growth in the unstable
mode, the agreement in this case is remarkably good.

The constitutive equations for a linear viscous elliptical jet in the

absence of twist are considered in section 4 and are utilized in section 5

1'Consid,erat:i.on of a twisted elliptical jet will permit growth of a general

disturbance which is not necessarily symmetric. Indeed, if a priori
assumptions are made to restrict the motion of the jet, any conditions
for instability (in the context of the present theory) are only sufficient.

§Here our results partly overlap with a recent study by Bogy [13], who deals
only with axislly symmetric disturbances of a nonrotating jet. In particular,
Bogy considers the instability of an incompressible liquid viscous jet of
circular section and in the main his work is concerned with spatial instability
of a semi-infinite jet formulated as a boundary value problem.
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to examine the stability of a cylindrical viscous jet. The results of this
analysis are compared with those of Weber [4] and are shown to agree more

closely with the three-dimensional numerical results of Chandrasekhar [6].
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2. Basic equations.

We summarize in this section the muin kinematics and differential equations
characterizing the motion of a directed fluid jet in the form derived by Caulk and
Naghdi [11] . The jet is straight, incompressible and homogeneous. Recall that
this characterization of fluid jets is based on the concept of a Cosserat (or
a directed) curve, hereafter designated as R. Such a one-dimensional directed
medium comprises a material line and a pair of directors attached to every
point of the material line.

Let the particles of the material line of ® be identified with the convected
coordinate &; let c, the curve occupied by the material line of R® in the present
configuration at time t, be described by its position vector {lrelative to a

fixed origin; and let da (¢=1,2) stand for the pair of directors at r. Then,

a motion of the directed curve R is specified by

£=£(§,t) ’ ga=2~a(§’t) . (1) 3

The velocity and the director velocities are defined by 1
gex . W (2) ]

4

where a superposed dot designates the material time derivative holding £ fixed.
For the purposs of displaying the details of the kinematics of a straight i
jet, including the rotation of the directors in a plane normal tc the jet axis,
we introduce a fixed ‘system of rectangular Cartesian coordinates (x,y,z) with
the z-axis parallel tc the jet. Further, let the unit base vectors of the
rectangular Cartesian axes be denoted by (i,i,&) and introduce, for later

convenience, the additional base vectors

sl=£cos +J sin 8 , Se:-’ivsine+icose > i3=}i s (3)

where ¢ is a smooth function of z and t. We assume that the directors are so

L.
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restricted that they describe an elliptical cross-section of smoothly varying
orientation along the length of the jet and that at each z =const., the base 1
vectors & and & lie along the major and minor axes of the ellipse, respectively.

Then, the angle @, called the sectional orientation, specifies the orientation

of the cross-section as a function of position. With this background, henceforth

we restrict motions of the directed curve R such that in the present configuration

at time t,

r=z(gtle; » 4 =018 , 4, =9, (&)

where ¢l and ¢2 measure the semiaxes of the elliptical cross-section. The

velocity, the acceleration, the director velocities and the director accelera-

tions assume the f.‘orm.r

!’= Vsa ’ V=é ’ ’\.L=\.IE3 ’ (5) ]
M =8 (Geg tere) 5 Wy = 8,(0,8 mwpey) (6)
and
Wy u LG, ~0 e * (B0 0+, D6
%1 C Mg vy mop Noey 19 Yo 8,8,
A (T):
Mo = (G + Gy muployey - (20my vwy)dye
where
. . 3
2 =816 2 9 =950, @ 3
and

wy and w, represént the rotational components of the director velocities in

the plane normal to the jet axis.

The condition expressing the incompressibility of the fluid medium is

given by

vz+gl+g2=o (9)

f

It should be noted that (6) and (7) represent values for v and w_ in the
present configuration and are not obtained by direct differentfation™8f the cor-

responding present values (h)a 3 for d ;5 see, in this connection, Caulk and
Neghdi [11]. g i
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and the differential equations of motion for the elliptical jet described above

are (see Caulk and Naghdi [11]):

A
an

g 22
5z = (P, 90,81, 0(8):0,,0,) +8,0, h(2,,0,,8,) +6,(8,-87)m(3,,3,,0 )

* .
+ e gid,vles s

~ Al ’ * ; 2
5 -0 /2'08) = (-p-0.9,0(8,,8,,8,) + & ™o 9, (L) + - 0d)le

+ {83m(8)28,,0,) + & 0 939, (6; +2C 0 )]e, (11)
o

Loy = Y 5 A e e 2o
3 " 0 /2'00, = {-p-9.9,0(0,,8,,0,) +4 mp 829, (0, + G5 -wg)le,

2 * .
- {ggn(B,58,58,) + & m0'838, (w0 +20w,) ey (12)
A o, R
z'g3xg+gaxﬁa+ a';f xga= 0 (13)

A
where z’=293z/3f and a subscripted z denotes 3/dz. The kinetic quantities n,

Nt A

m and p- are specified by constitutive equations, p is related to an average

~

pressure over the cross-section of the jet and p* is the three-dimensional

density of the fluid. In addition, h and m arise due to the constant surface

tension T and are given by

P
h(¢1,¢2,ez) = 14 g cos” x dx , (14)

2t

m(3,:8,,8,) =-% | gsinexax , (15)

0

where
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q = T{le,sinX cos X (bz-bi) - (wlmezsingx t ¢2¢1200-°-2x)12 i biﬁinzx + 9gcos2x]-
x {(#y51n% + 3c0s7%) (6, _p,cosx + 3opg?1510X - [0, (25-57 )1 sinX cos X f
- 9,9,6)) - 20(8,8,, -8,6, )sinx cosx - g, (s2cosx + ¢2sin’X)]
x [(0,8,, -89, )sinx cosx + ¢,9,8 ]
- ¢l¢2[ (¢lzcos X - 9,6,sinx )2 + (;bzzsin X + ;blezcosx )2 +1V} (16)

and for convenience we have let ¢a stand for the triple (¢a,¢az ’¢cxzz) in the

argunents of h and m. Also, we note the fact that m satisfies the condition
m(31,¢2:o) 5 O o (17)

To complete the above system of equations, we must add an expression for

é, or the rate of sectional rotation of the jet. Vhen the jet is non-

circ;:lar‘,r this relation is
2 2
.« Qow, mOnw
2579
For later reference, we record here the expression for the mechanical power

P per unit mass of an incompressible jet, namely

7 SR A v
~ o'/ o ~O
=n . <<+ cw o+ . 1
L N e e E xE (19)
wrnere
Nn=z'pmas, . (20)

+ " 2 . s
‘At a point where the jet is circular (;bl:g)g), there is no preferred orientation
of the cross-section.




£ Small motions superposed on a unilorm flow of an inviscid jet

First we consider an inviscid jet characterized by the constitutive

sssumptions

A
=

2’03

R (21)

15>
I
O
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In this case, (10) to (12) reduce to the five scalar equations

AR 4 2 g 2 :
0 98, (v t vV ) =-p, 3,81 ,0(058558,) - 818, 1(9,58,58,) - 8, (85-07)m(s,,2,,8,)

2

* 3 2 i3
P 0195 (Crg TV, * Gy ) = P8950(8100,508, )

£l

| Liaen’
f &m0 90,0y, + ey, +20 ) =-m(py:3,,8)) (22)

T : e ;

E-4

é S e A
w TP 918, (wpy + iy, F20,wp) = -mlsy,8,58,)

where we have expressed all functions in terms of the current position z of o
the material particle g at time t. The set (22) is completed by adding the

i
13
é% .
: incompressibility condition (9) together with the kinematic relations (8)l 5
b

(R

and (18). Consider now the simple solution

= 0" 5 p=mal (23)

'L ‘ which satisfies exactly the above system of differentizl equations and where
v, and a are constants. This solution represents a uniform circular jet
moving with constant velocity Vo With a suitable choice of reference frame
we may let vo==O; then, due to the rotational symmetry of the directors in

the plane of the cross-section, we may (at least for this solution) take

ez =0 N (214)

: without loss in generality.

]
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We now examine small motions superposed on the uniform flow represented by

5 ‘ the solution (23). This naturally leads to a discussion of jet instability and

| : breakup (or disintegration) as each is generally understood in the literature.
Accordingly, we shall determine a linearized version of the governing equations
(22), (8), (9) and (18) appropriate for small deviations from the motion (23).
We proceed in this manner owing to its relative simplicity and wide use, but
note that any results arising from such a treatment shall be necessarily
restricted by the limited scope of a linearized stability analysis.

Consider small deviations from the motion (23) in the form

~ ~°
= a+t v=v_+vV w =w
L 5& 2 o A a

(25)

i 3

4

and retain only linear terms in quantities represented by symbols with superposed

. tildas ("~") in all equations. Drawing upon the discussion preceding (24)

we take s 0 and ez =0 in the unperturbed flow. Then, in keeping with the
linearized procedure, we assume that ez is small in the perturbed flow and
neglect its square and product with quantities having tildas. If we linearize

172

(16) in this manner, with the help of (14) and (15) we obtain

- s o Sy o i e

nT , nT 2~ 1l 2~ &L e me o~ %
h=-?+;§[%a¢lzz+ha¢2zz+E(¢2 ¢1)+¢2] B e dt 25}

Introducing (25) and (26) into (22), (8) and (9), neglecting squares and

products of small quantities and then dropping the tildas for simplicity, we

are left w:i.t:h‘r

i * fSince neither © nor its derivatives appear in any of the other linearized
g equations (27), we do not record a linearized counterpart to (18).

9.
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* 2
mp a“v, =-pz+nT(¢l+¢2)z s

2
p+nTl- (3¢, +9,),, ~ ¢ +5(8,-8,)]

i

* 1
npaglt

=

2
np*auget p-+nT[%r (3¢2-+¢l)zz-¢2'+%(¢1-¢2)] :

Fl=

(27)

G teatv, =0 .
o, e M San. EE

e =G

D1 Woy

In order to examine solutions to the system of partial differential equa-

tions (27), it is convenient to introduce the change of variables
Sl L =
¢ = 2(¢l+¢2) 5 6 = 2(¢l ¢2) 8 (28)

Substituting (28) into (27) and then adding (27)2 and (27)3, with the help of
(27)5,6,7,8 we obtain

" a + 21
R A To, »

%p*na3¢tt = pt'+ﬂT[aE¢ZZ-¢] , (29)

2¢t+avZ =0 .

Alternatively, if we use (28) in (27) and subtract (27)3 from (27)2, we have

e

2 \

Hence, in terms of the variables (28), the set (27) decouples into (29) and
(30) and we can find solutions to each separately. First, we consider (29).

Flimination of p and v among these equations yields

12 o i 2
I p*a (¢zz b3 ) (31)

2222
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as a differential equation in ¢ only. We examine solutions of (31) in the

form
8(z,t) = £ (k )expli(ot -k 2)] (32)

from which follows the dispersion relation

2 L7 (kiae'l) 22
g = —— (———=)k“a“ . (33)
o p*a3 8+k§a2 ¥

From (33) it is clear that the wave motion (32) is unstable for wave numbers

satisfying
et <1 . () 4

Returning to (30), we consider periodic solutions to this equation in the

form
8(z,t) = £,(k;)expli(o,t-kz)] . (35)
The resulting dispersion relation is
2 2T 2 2
2 kg * 3 (k2a +3) . (36)
p a
Now, from (28) we have for N and %,

$l=¢+5 > ¢2=¢"6 > (37)

so that the general motions consists of two parts: When §=0, (37) gives

¢l=¢2=;a and the circular cross-section of the jet remains circular in the

perturbation. We call ¢ the symmetric mode. When ¢ =0, we have ¢l= -¢2 =8

and the cross-section of the perturbed jet is an oscillating ellipse,

exchanging alternatively its major and minor axes. This we call the anti-

symmetric mode.

In summary, a small disturbance to the motion (23) can be decomposed

L L ST RE TN TR
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into two modes of vibration: (i) a symmetric mode whose frequency is governed
by (33) and (ii) an anti-symmetric mode whose frequency satisfies (36). The
j latter mode is stable for all wavelengths, while th: symmetric mode is unstable

for wavelengths satisfying (34). It is worth noting here that if the rotations

W, and the twist 8 are set equal to zero at the outset in the equations (10)
to (13), then the results and conclusions of this section would remain

unchanged.

Before closing this section, we make a comparison with the results of

Rayleigh [1,2] who examined small deviations from the uniform flow oi an

inviscid, incompressible fluid in a straight circular jet. For this purpose,

we introduce cylindrical polar coordinates (r,X,z) such that the z-axis lies
‘ along the axis of the jet. Rayleigh considered disturbances from a circular

jet of radius a in which the free surface had the modal forms |
r = a+b(z,t)cosnXx , (38) .

where n is an integer and b is small. With (38) as his basic assumption,

H
;2 Rayleigh examined solutions to the linearized three-dimensional equations for I
?{ which b(z,t) has the form (32). The resulting dispersion relations for each

:; integer n (as recorded in Lamb [14, §27L4]) are

,:i , B e a)[ka +n° -1)k a

}a : o = p*a3 In(kna) s (39)

where In is the modified Bessel function of order n. The only value of n that
can lead to unstable wave motion is n=0, corresponding to an axially symmetric
disturbance. With n=0, (39) becomes
2.2
I'(kx a)[k“a“-1]k a
T o 0 0 o)
g = ; (40)

"{ o p*a3 Io(koa)

% indicating a range of unstable wavelengths consistent with (34). The unbounded

growth of disturbances in this range leads to an eventual disintegration of the

12.
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jet. For purposes of comparison, we tabulate in Table 1 values for ci from
(33) and (40) over the entire range of unstable wavelengths. Of the wave-
lengths in this range, the one that corresponds to the greatest magnitude of
9y and hence the most rapid rate of growth in the disturbance, will tend to
dominate the disintegration process. The value obtained by Rayleigh for this

wavelength corresponds to

k§a2 = 0.4858 , (b1)
whereas from (33) we find

2

ka = 0.4853 (42)

yields maximum growth.
Setting n=2 in (39), we obtain the counterpart to (36) in the linearized
three-dimensional theory, namely

: 2.2
I2(k2a)[k a +3]k2a

2 T
o5 = . (43)
2 9*33 I,(kya)
In line with (36), the motion governed by (43) is stable for all wavelengths.
Expanding (43) in powers of kga2 yields
g Bt 2 deapio.
9% = 53 (k2a +3)[1+55 koa” + Vi (4k4)

A comparison of this relation with (36) suggests the appropriateness of the

latter for fairly long wavelengths.

13.
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| ) io ()"
] i
’ kia2 Directed Jet Kayleigh
|
: 0.00 0.0000 0.0000
] 0.05 0.15326 | 0.1536
- 0.10 0.2107 0.2108
F
| 0.20 0.2793 | 0.2794
ﬁ 0.30 0.3181 5 0.3182
' |
, 0.10 0.3381 ; 0.3382
i 0.50 0.3k429 0.3k432
| 0.50 0.3341 0.33hk
} 0.70 0.3107 0.3111
0.80 0.2696 0.2701
.90 0.2010 0.2015
1.00 0.0000 0.0000

Table 1: Comparison of tne frequency d, (in non-dimensicnal
form) over the range (34) of unstable wavelengths

| as predicted by Eq. (33) of the direct theory of

jets and by Eg. (U40) due to Rayleign [1,2].

1h.




—— J-:—’,'\z!"mw

S ; L S 4 o s DA
.;‘.A,#"W R ._”..'._...-«- 4—- b e

b, A viscous elliptical jet without rotation or twist.

In this section we consider a jet of an incompressible linear viscous
fluid; and, in view of the results for the stability of an inviscid Jet,‘we
limit the discussion to motions in which

Wy =0 , @ = const. (45)
To account for the viscosity of the fluid medium, we must provide appropriate
constitutive equations for the quantities g, g? and g?. Much of the develop-
ment of this section is similar to that of Green [1Q] in which the jet is
restricted to be circular.

Referred to the orthonormal basis (El,ge,ga) introduced in section 2, the

response functions can be expressed in terms of their components in the form

A A. . .
n-as, M-l , BY- - 8

As a consequence of the symmetry of the assumed flow, (10) to (12) suggest

that we put

N e
n = n =

312=Q13=T’;21‘=T/;e3=0 , (u7)

1}
(@)

A A i
p2 = pl3 . g2l . 3

With the help of (4) to (6) and (46), the mechanical power (19) reduces to

X o i L), esp, L fead Ax22 48
;7P"nvz+“ &f“ %+p %z+p %z 2 (48)

where we have set

A
fraa ¢a(aaa

Sau 3 S*aa = ¢d£aa (no sum on a) . (49)

Z’)+¢az

We seek to characterize the linear viscous property of the fluid in appropriate

constitutive equations for the one-dimensional functions

15-




{

A3 Axll Ax22 Axll Ax22 |
n3,“ s T sP P . (50) !

To this end, we assume that the quantities (50) are linear functions of degree

one in the kinematic variables
Vz’gl’QQ,ng’QZZ (51)

with coefficients that depend upon é1 and ¢ Hence, we take

N
2R xlvz-+xgga+-xggaz ,
{ T/}*ad = )\ZBCB gl )\gBCBZ s (52)
} (no sum on «)
A
p*acx = KgBCB e X'(;BGBZ 2

where kl,kg,..., 9B are functions of ¢, and ¢, and we have used (9) to
Nx Ax
eliminate b from the expressions for m % and p o
A three-dimensional linear viscous fluid is isotropic. In order that the one-

dimensional theory under consideration reflect the symmetry properties of the fluid

and the geometry of the jet, we impose the requirement that under the transformations
(A it Al e S (e = s ® =9 ) (53)

the mechanical power (48) remain invariant. Consequently, under (53) the

functions (50) must transform according to

N N A# Ax A¥ A
ns'ﬂ n3 8y y P B T g (54)

b

Hence the relations (52) reduce to
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t : s ma— :

A3 o
no = Alvz + }\QCQ' ’
Ay
neY xgega (no sum on @) , (55)
Aaa L aBf
p =\ ng (no sum on o) .

In order to determine explicit values for the coefficients in (55), we
recall briefly some aspects of an approximation procedure for rod-like bodies
in the three-dimensional theory. A detailed development of this procedure can
be found in Green et al. [12] and a brief outline is included as an appendix to
Csulk end Naghdi [11]. Without going into detail, we recall that the developments
in Green et al. [12] are based on an approximation for the position vector to the f
meterial points in the rod-like body and invoive integration* of the three-dimensional i
equations through its cross-section. Let the material points be identified with the

convected coordinates ei (i=1,2,3) and, for convenience, set 93=§- Further, let

p dencte the position vector of a typical point at time t. Then,

~

)
R = 2( aa’gﬁt) b §‘i = _-i— Y
= (56)
= " . B o - TN SR, X
By 848y * & "8 =8 » € g g , g=detg,
wnere g and 59 are the covariant and contravariant base vectors, 8i3 is the

metric tensor, giJ its inverse and 51 is the Hronecker delta. 1In the present

J

context the fluid is assumed to occupy a region of space in the neighborhood

of the curve 8%=0, bounded by the free (material) surface

EE a1, (57)

where we identify 6%=0 with the z-axis. With the help of (4),

»
It should be mentioned that the one-dimensional eguations that result from
this procedure can be brought into 1-1 correspondence with the theory or a
directed curve.




e

the approximation for the position vector mentioned above leads to

B o 2
p=z(Stle +0p)(5,t)e; + 673, (5,t)e, - (58)

It follows from an examination of the second and third terms of (58) that
(57) represents an elliptical cross-section with semiaxes ﬁa. The velocity v*,

which is the material time derivative of p, is given by

« 1 P
T SR FOR Lo Y0 (59)

where we have used (4), (8) and (45). For an incompressible linear

viscous fluid, the determinate part of the stress response is given by

nj-

i 13 . .
T o= ghy g Toe =ply g v g ] 60
& ST o T B B gl i60)

J are the covariant and contravariant components of the siress

where T, snd T
1J
tensor, p is the shear viscosity and a comma denotes partial differentiation ¢

with respect to g-. Ve may now use {(57), (59) and (60) in the usual

expressions  for the quantities (46) in terms of integrals over a cross-

section of the rod-like tody. The results of this rather long but routine

calculation are

3
M ARt
N«
\ \
o sum on &,
= . § (no sum on ) 1
Nrgy 1 T E
p A il olW2Qagaz L ;

so that we may identify

Ysee, for example, equation (il3) of Caulk and Naghdi [11].
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(62)
11 3 22 12 21 ;
X7 = -.1‘ [T, 'b2¢i ) )\7 = -lu‘ WTT ¢l$g ) Ku = k]{, = L? = X7 =0

in (55).
Adopting the values (62) and using the constitutive equations (55) in
the field equations (10) to (13), we obtain the governing differential equa-

tions for a linear viscous jet, namely

“"*‘”ﬂz("t +wv,) ==, = 9,01,0(2:8,) - 9,9,,0(0,:0,) + 2“"("’1?’2"z)z ’
b o 00,0yt ey, D)+ 2uT 3.9,8) = PHoyo,h(p,8,) ¢ unleds,g )., (63)
§ 0030, (G + ¥Cp, + ) + 20 89,0y = B+ 2190(05.0)) + E um(038,6,,),
where use has been made of (45) and (17) and we have let

h(¢1’®2) o h(91,¢2,0) . (61“)

The set (63) is completed by adding (8) and (9). Apart from differences
in notation, we note that (63)1’2 3 reduce to those given by Green [10,

b
Zos. (6.3) and (6.4)] in the special case of a circular cross-seetion (¢l=¢2)

end in the absence of gravity.
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Se Small motions superposed on a uniform flow of a viscous jet.

The motion (23) satisfies the differential equations (63), (8) and (9);
and, hence, it also represents an exact sclution for the viscous jet discussed
in section 4. Since in the case of an inviscid jet (see section 3) the
superposed rotations Ga had no effect on the resulting differentiation equa~
tions, for simplicity we assume that $a= O here and consider small motions
superposed on the uniform flow (23) in the form specified by the first two
of (25) and the fourth of (25). 1In a manner similar to that employed in
{ section 3, we again neglect squares and products of quantities represented by
symbols with superposed tildas in (63), (8) and (9). After setting v, =0

without loss in generality, the resulting linearized equations are

* 2 2
Tp a v, =-pz+nT(¢l+92)z+2pma A
2
S ] s ra i s s ey ok
L ﬂp a glt+2.-ﬂ"~‘ ;l == p+1T‘TI.T (391+¢2/ZZ ﬁl+b($2 wl)] + u wa %lzz b
2
* U 2 1 L
tmpa Cop t2uma gy = p+ﬂT[aT (3@2%1)22-321‘%(31-:2)]+r; el s

where again for convenience the tildas have been omitted.

Again we utilize the change of variables (28) and by adding (65)2 and

(65)3, with the help of (65)h,5,6’ we obtain

»~

2 X i ahr
P a ‘t ——pz+2n‘1¢z+2una \zz ’

X wp 808 . +Oun = r)*'T'l‘l'a2 5] + % »~-m33
y TR eTi, ,wa:bt—---4z>zzv W BTR Do 9

T

-

La

EOtFav il

Subtraction of (65)3 from (65)2, after using (28) end (65)5,6’ yields

(65)
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Thus, the linearized system (65) is decoupled through the change of variables
(28), just as in the case of the inviscid jet. Again the solution of (65)
will have the form (37) and decompose into a symmetric mode ¢ and an
anti-symmetric mode §. Elimingting p and v among (66)1,2,3, for the symmetric

mode we obtain

- & Sl e t e Y -
R ¢ttzz 2¢tt ] p* (% a ¢zzzz 6¢zz)t-+p*a (a szzz.+¢zz) g {68)

For solutions of (68) to be of the form (32), o, and k_ must satisfy

e 2 22 T 2 2\,2 2
5 az = (-8- koa + 3)k0a ;;;;g (1- koa )koa
S o] . =5
(10 )" + T2 g = % 2o . (69)
8 o o

It follows from (69) that io  can be real and positive if and only if
R <l 5 (70)

Hence the range of unstable wavelengths for the symmetric mode is precisely the
same as for an inviscid jet. The effect of viscosity in the present case is to
diminish the magnitude of g, over the range (70) and therefore retard the
impending disintegration of the jet. As in section 3,we consider solutions for
the anti-symmetric mode in the form (35). Using (35) in (67) we obtain

the relation

2
(102)2-+-§#§-(kga2+-8)(ioe)-+;%§§ (k2a21-3) =0 (71)

between 9 and k2. From (71) one can show that i02 has e negative real
part for all values of k2. This indicates, as in the case of the inviscid jet,

that the anti-symmetric mode is stable for disturbances of all wavelengths.

The effect of viscosity, however, is to damp the disturbance in proportion




- '.:.:--su-;-t e

to the magnitude of the shear viscosity p. Critical damping for a given value

of k2 corresponds to E |

252
o 2u? i 16(k2a +3)
e e 2
oA (k23+8)

(72)

*
where we have introduced the non-dimensional parameter A for later convenience.

We close with a comparison of certain results of this section with those of
a similar investigation by Weber (4] who has examined small axially symmetric
perturbations to uniform flow of a cylindrical viscous jet using an approximate
form of the linearized Navier-Stokes equations. Weber's procedure employs

specific assumptions on the variation of stress and velocity in the cross-

section of the jet and ignores all but the axial component of momentum. This
approach leads to a one-dimensional reduction of the three-dimensional equations ?

and corresponding to (69) gives

2p*a3

(i0)% + = 3%a%(10,) = ——= (1-K2a°)Koa? . (73)
p a

A plot of ico versus koa is given in Fig. 1 for various values of the parameter
A over the range (70) of unstable wavelengths, using both (69) and (73). It
can be seen from this graph that the difference between the results of each
approach is greatest for an inviscid jet (A=0) and gradually diminishes with
increasing viscosity, other things being equal.

On the basis of the close agreement (Table 1) with the exact three-
dimensional analysis of Rayleigh [1,2] for an inviscid jet (A=0), it is
reasonable to ;nfer from Fig. 1 that for a viscous jet the results of this
section constitute an improvement over the approximate treatment of Weber [4].

In support of this inference, we appeal to some numerical results recorded in

*The parameter A2 can be recognized as twice the ratio of the Weber number to
the square of the Reynold's number.




Chandrasekhar [6] which are based on the implicit dispersion relation obtained
from the linearized Navier-Stokes equationsf Figure 2 shows a magnified portion
of oné of the curve pairs in Fig. 1 corresponding to A=0,5 along with points
obtained from the tables in Chandrasekhar [6] . We show the region near
maximum 9, in view of its importance in the breakup process. The fact that the
theory of a directed fluid jet offers an improvement over Weber's results is

clearly evident.

Acknowledgment. The results reported here were obtained in the course of research
supported by the U.S. Office of Naval Research under Contract NOOOl4-76-C-OUTL,
Project NR 062-534, with the University of California, Berkeley.

1'The difficulty in dealing analytically with this same dispersion relation is
what led Weber [4] to consider an approximation to the three-dimensional
equations. ‘
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