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On the Onset of Breakup in Inviscid and Viscous Jets

by

D. A. Caulk and P. M. Naghdi

Abstract. This paper is concerned with the instability of inviscid and viscous
jets utilizing the basic equations of the one-dimensional direct theory of a
fluid jet based on the concept of a Cosserat (or a directed) curve. First, a
system of differential equations is derived for small motions superposed on
uniform flow of an inviscid straight circular jet which can twist along its axis.
Periodic wave solutions are then obtained for this system of linear equations;

j and, with reference to a description of growth in the unstable mode, the compar.-
son of the resulting dispersion relation is found to agree extremely well with
the classical (three-dim ensional ) results of Rayleigh. Next, constitutive
equations are obtained for a viscous elliptical jet and these are used to
discuss both the symmetric and the anti-symmetric small disturbances in the
shape of the free surface of a circular jet. Through a comparison with available
three-dimensional numerical results, •the solution obtained is shown to be anr improvement over an existing approximate solution of the problem.
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1. Introduction

The disintegration or breakup of a fluid jet due to surface tension, or

so-called capillary instability, has long been a subject of interest in fluid

mechanics. We do not include here a complete list of references on the subject,

but mention those that have some bearing on the present paper. The classical

study for an inviscid jet is due to Lord Rayleigh [1,2], who in turn cites the

static investigations of Plateau and the experiments of Savart. Later Rayleigh

[3] extended his earlier work to include viscosity but, due to analytical dif-

ficulty, explicitly considered only the case of negligible inertia. Weber [~ ]

also examined the stability of a viscous jet and sought to remove the difficulty

encountered in Rayleigh’s work [3] by introducing approximations to the three-

dimensional theory that take account of the ‘thinness’ of the jet. These

approximations are ad hoc in nature and somewhat inconsistent, but they lead to

results which agree reasonably well with Rayleigh’s [1,2] in the special case

of an inviscid jet.

In the references cited above, the problem of jet instability has been

approached by considering small perturbations to a uniform cylindrical jet in

*the context of the linearized three-dimensional equations. This procedure leads

to a relatively simple dispersion relation in the case of an inviscid jet [1,2],

but when the fluid is viscous the frequency of the wave motion is governed by

an implicit transcendental equation and marty results must be obtained numerically

(see Chandrasekhar [6]) or by approximation [1~]. Rather than consider another

such approximation here we approach the subject using a one-dimensional theory

• of a directed (or a Cosserat) curve in the form given by Green, Naghdi and

~:enner [7]. The relevance and applicability of this approach to problems

• 4 ~ involving fluid jets have been demonstrated in several papers by Green and

*These references consider the temporal instability of an infinite jet. This
should be distinguished from the so-called spatial instability of a semi-
infinite jet considered by Keller et al. [5].

1.
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• Laws [8], by Green [9,10] and by Caulk and Naghdi [U]. Additional background

on the theory of a Cosserat curve and its applications can be found in Green

et al. [7,12].

• With the use of the exact linearized three-dimensional equations, Rayleigh

[1,2] derived the explicit result that the jet is unstable only in the axi-

symmetric mode of disturbance. Inasmuch as the present development does not

• begin with the three-dimensional equations, all modes of disturbance which

occur in the present one-dimensional direct theory must be examined for

stability. It is because of this that in section 2 of the paper we begin with

• a brief review of the basic equations for a straight jet of elliptical cross-

section which can twist along its axis~ In section 3, we derive linearized

field equations for an incompressible inviscid. jet appropriate for small motions

superposed on uniform flow of a circular jet. We show that the solution to

these linearized equations can be decomposed into two modes representing a

symmetric and an anti-symmetric disturbance in the shape of the free surface.

The anti-symmetric mode is stable for all wavelengths, while the symmetric

mode is found to be unstable over a range of longer wavelengths . These con-

clus ions are then compared with the corresponding exact three-dimensional

analysis of Rayleigh [l,2]~ In terms of a description of growth in the unstable
• mode , the agreement in this case is r emarkably good.

• The coristitutive equations for a linear viscous elliptical jet in the

absence of twist are considered in section ~ and are utilized in section 5

• 
~Cons1deration of a twisted elliptical jet will permit growth of a general

• • disturbance which is not necessarily symmetric. Indeed, if’ a priori
assumptions are nmde to restrict the motion of the jet, any conditions

• for instability (in the context of the present theory) are only sufficient.

~Here our results partly overlap with a recent study by Bogy [13], who deals• only with axiel)y symmetric disturbances of a nonrotating j et. In particular,
Bogy considers the instability of an incompressible liquid viscous jet of

• circular section and in the main his work is concerned with spatial instability
of a semi-infinite jet formulated as a boundary value problem.

2.
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to examine the stability of’ a cylindrical viscous jet. The results of this

analysis are compared with those of’ Weber [1~] and are shown to agree more

• I closely with the three-dimensional numerical results of Chandrasekbar [61.
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2. Basic equations.

We sum~narjze in this section the 1.~tin kinematics and differential equations

characterizing the motion of a directed fluid jet in the form derived. by Caulk and

Naghdi [U] The jet is straight, incompressible and homogeneous. Recall that

this characterization of fluid jets is based on the concept of a Cosserat (or

a directed) curve, hereafter designated as ft. Such a one-dimensional directed

medium comprises a material line and a pair of director s attached to every

point of the material line.

Let the particles of the mater ial line of ft be identified with the convected

coordinate 
~
; let c, the curve occupied by the material line of ~ in the present

configuration at time t, be described by its position vector r relative to a

fixed origin; and let d (~~=l,2) stand for the pair of directors at r. Then,

a motion of the directed curve ft is specified by

r = r (~~,t )  , d = d ( ~ ,t)  . (i)

The velocity and the director velocities are defined by

v = r  , ~~~~~~~~~~~ , (2)

where a superposed dot designates the material time derivative holding ~ fixed.

For the purpos e of displaying the details of’ the kinematics of a straight

• jet, including the rotation of the director s in a plane normal tc the jet axis,

we introduce a fixed systein of rectangular Cartesian coordinates (x,y,z) with

the z-axis parallel to the jet . Further , let the unit base vectors of the

• rectangular Cartesian axes be denoted by (i , j , k)  and introduce , for later

conven ience, the addit ional base vectors

• 

• 

= i cos sin e , ~~ = - i  sin 8 -I- j  cos e e3 = , (3)
a

• • where 9 is a smooth function of z and t. We assume that the directors are so

I~.
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• 
restricted that they describe an elliptical cross-section of smoothly varying

orientation along the length of the jet and that at each z=const., the base

vectors and lie alorLg the major and minor axes of the ellipse , respectively.

Then , the angle 9, called the sectional orientation, specifies the orientation

• of the cross-section as a function of position. With this background, henceforth

we restrict motions of the directed curve ft such that in the present configuration

at time t ,

r = z(~ ,t)e3 ~ ~l 
= 0l~l ‘ = 02!2 (~ )

• where and 
~2 

measure the semiaxes of the elliptical cross-section. The

velocity, the acceleration , the director velocities and the director accelera-

tions assume the form t

V = V e
3 ~ V = Z  ~ v = v e

3 
, (~)

and 
~,1. = 

~1 ‘~lZl 
+ Wl~~~

) = 
~2 ~~~~ - W2!,l) (6)

= (C1+ C 1-w 1)01~~ + (2C1w1+ w ) 0 e
t .~~ .

= + - w~ ~~~~ 
- (2

~~
w
2 

+ 
~~ ~~~~

where

= 
~l~l ‘ ~2 = 

~2C2 
(8)

and and represent the rotational components of the director velocities ir

• the plane normal to the jet axis .

The condition expressing the incompressibility of the fluid medium is

given by

= 0 (~ )

~It should be noted that (6) and (7) represent values for w and w in the
present configuration and are not obtained by direct differen~~ation1f the cor-responding present values 

~~~ ~ 
for d_; see, in th is connection , Caulk and

Nagbdi [U1. ‘ 
_
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and the differential equations of motion for the elliptical jet described above

are (see Caulk and Naghdi [11]):

= ~~~~ +o2~1~
h(0a,o2,e~

) +
~102~

h(
~2 ,01,e~

) +

+ 
* •

) (10 )

• Al
A(f- - rr /z’)

~l 
= (-p -~ 1Ø2h(~1,Ø2,e) ÷~~ rrp 

~i~2 l i Wifl~ L

+ [~~m(~1,02,e ) +
~~~ iip 2 (~ 1+ 2 C1w1))~~ , (11)

- 
~~~~ = [-p - ~1~2h(Ø2 ,Ø~

,o ) + 
~~ 

i ip~~~~ 1(~ 2 
+ -

- [~~m(02,0l,9 )+ 
* ( • ) )  , (12 )

• A 
~z e~ x n + d  xii + -

~~~~~
- 

~ = 0 (13)
—

where z ’ = . ~z/~~ and a subscripted z denotes ~~~~ The kinetic quantities

• and are specified by constitutive equations , p is related to an average

pressure over the cross-section of the jet and is the three-dimensional

density of the fluid. In addition, h and in arise due to the constant surface

tension T and are given by

2h(~ ,~~ ,e ) = q cos x dx , (l1~)l 2 z

m(~1,~2,9 ) = - -
~~ q sin 2X dX , (15)

wher e

*  6
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-~~~~

q = .j* [[~~ ~~~1I1 X COS X - (~1~2 sin
2
x Ø2O1 cos2x)1

2 
4 b~ t ;in2

X ~ ~~cos
2x) 2

2 2 . 2  2 2 .• x [t .-~~sin X + c ~2cos X ) ( ~ 1 ’b2cos X + ~~2~~~ 1cin x- [e~
(ø2

_
~ 1)!~,

s1nxcos x

• 

. 

- 0i~2 9
~

) _ 2[ 1O2~~
_ ø

2o1~~
)s X c0sX~ e

~
(0
~
cos x + O~ sin

2X ) ]

x 0202z lølz )51 ~~~~~ 
~~~~~~

- 

~1Ø2 [( ~1 COS X~~ 02~z~~~~ 
)2~ (

~~~~~~~~ i~~~~~~~~ 019 cos x )2+1]) , (16 )

and for convenience we have let ~ stand for the triple (Ø ,Ø ,Ø ) in the

arg’~i:ient s of h and m. Also , we note the fact that m satisfies the condition

= 0 . (17)

To complete the above system of equations, we must add an expr ess ion for

e, or the rate of sectional rotation of the jet. When the jet is non-

circular~ this relation is

2 2

e =  2~~ ~~l • (18)

~2~~~l

For later reference , we record here the expression for the mechanical power

P per unit mass of an incompressible j et , namely

A ~~ A A ~~X P = n . — + i - ~~ .w  +p ~~~
. _

~~ (19)

where

X = Z~~ ~~ 1~2 (20)

~At a point where the jet is circular 
~~l

=
~~2~~’ 

there is no preferred orientat ion
of the cross-section.

4:1
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3 bmall motion~ supLr 1)os~ d on a u 1~ u x m flow ol nn inv iscid  JLt

First we consider an inviscid j ct characterized by t hc~ constitjti; •

~ssumptions

(21)

• ifl this case, (10) to (12) reduce to the five scaler equations

~.Tp *
øl~2 (v t + v v )  = - 

~z 
- 02øi~

h 
~~~~~~~~ 

- 

~l~2Z i
~ 2~

øl~
eZ) 

-

1 iip
*
~3~ (c ~~~~~~~~~ 2) =

• ~~~p *
~ lø2 (w lt +v w lz + 2 C lwl ) =-m(~ 1,~ 2,9 ) , (22 )

* 2 2
~ ~~~~~~~~~~~~~~~~ 

=

I ~p*ø~~~ (w +v~~~ +2~~w~~ =-m(~2,~1,9,)

where we have expressed all functions in terms of the current position z of

the material particle ~ at time t. The set (22) is completed by adding the

incompressibility condition (9) together with the kinematic relations (8) 12
and (18). Consider now the simple solution

r
p = i a T  , (23)

• which satisfies exactly the above system of differential equations and where

v and a are constants. This solution represents a uniform circular jet

moving with constant velocity v
0
. With a suitable choice of reference frame

we may let v0 = 0; then, due to the rotational symmetry of’ the directors in -

I 
the plane of the cross-section , we may (at least for this solution ) take

• 4 9 = 0  , (2 1k )

without loss in generality.

‘ 8.
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We now examine small motions superposed on the uniform flow repr esented by

• 1 the solution (23). This naturally leads to a discussion of jet instability and

breakup (or disintegration) as each is generally understood in the literature.

Accordingly, we shall determine a linearized version of the governing equations

(22), (8), (9) and (18) appr opriate for small deviations from the motion (23).

We proceed in this manner owing to its relative simplicity and wide use, but

note that any results arising from such a tr eatment shall be necessarily

• restricted by tha limited scope of’ a linearized stability analysis.

Consider small deviations from the motion (23) in the form

V = V + V  ~ W = W

(25)
p = iiaT +

• and retain only linear terms in quantities represented by symbols with superposed

tildas (“ “) in all equations. Drawing upon the discussion preceding (214)

we take ~~ = 0 and = 0 in the unperturbed flow. Then , in keeping with the

linearized procedure, we assume that is small in the perturbed flow and

neglect its square and product with quantities having tildas . If we linearize

(16) in this manner, with the help of (i~ ) and (15) we obtain

h = - + ~~ [~ a + ~ + 
~ ~~ ~~~~ ~~~~ 

, m = 0 . (26)

]:ntroducing (25) and (26 ) into (22),  (8) and (9) ,  neglecting squares and

products of small quantities and then dropping the tildas for simplicity, we

• are left witht

• 

I ___________________

~Since neither e nor its derivatives appear in any of the other linearized
equations (27), we do not record a linearized counterpart to (18).

9.
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• *2• 1 ~~p a v,~ ~~~~~~~~~~~~~~~

= p + i i T[~~ (301 2 )
~5 1 ~~~~02 -01fl

• ~~1iP a
~ C2t = p+iiT[~~- (302~~

0l)ZZ 02~~~~
0l 02

)]
(27)

• Cj + C 2 + v
~ = 0

aC1 = 0lt , a~~ = 02t ‘

Wlt
= O  , W2t = O

In order to examine solutions to the system of partial differential equa-

tions (27) ,  it is convenient to introduce the change of variables

0 = 
~

(0l~~02 ) = l~~~ 2~ 
(28)

• Substituting (28) into (27) and then adding (27)2 and (27 )
3~ with the help of

(27) 
6 8 we obtain

5, ,7,

* 2 ,

~p
*iia30tt = pt~~~

TCa2
~5~~~~

] , (29)

20 +av = 0
t Z

Alternatively, if we use (28) in (27) and subtract (27)
3 
from (27)2, we have

= 

~~~~~~~~~~ 

(a2
a~~~

- 3 a )  . (3c )

• 
Hence , in terms of the variables (28) ,  the set (27 ) decouples into (29) and

• (30 ) and we can find solutions to each separately. First , we consider (29).

• Elimination of p and v among these equations yields

• 
~
a20~~~5

_20
tt = ~~ ~~~~~~~~~~ 

(31)
p a

p 10.

• I •~~~~~~~~~~~~ • , - - - —~~~— - - - • • -
~~~~

• -
- —• —-— -~ - • -  . 

~ - • • - •• - S ‘••
~~~

S •-‘ • .5 ‘ - • .~~~ - • -~~~~~~ .•
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as a differential equation in ~ only. We examine solutions of’ (31) in the

form

Ø(z ,t )  = f
0 
(k0)exp[i(a0t-k0

z)] , (32)

• • from which follows the dispersion relation

22ka- l
a0 = 

*3 ~8~k
2a2~~~~

2 . (33)
0

From (33) it is clear that the wave motion (32) is unstable for wave numbers
• / sa tisfying

k2a2
< l  . (314)0

Returning to (30), we consider periodic solutions to this equation in the

form

a(z,t) = f2 (k2 )exp [i (a2t - k 2z ) ]  . (35)

The resulting dispersion relation is

I 

a~ 
2T 

(k~a
2 

+ 3) . (36)
p a

Now , fr om (28) we have for 0]~ and

- 

= + 6 , = - a (~~ )

so that the general motions consists of two parts: Whe n ~= o , (37) gives

01 = 02 = 0 and the circular cross-section of the jet remains circular in the

• perturbation. We call 0 the symmetric mode. When 0 = 0, we have 
~l 

= 

~2 
=

and the cross-section of the perturbed jet is an oscillating ellipse,

exchanging alternatively its major and minor axes. This we call the anti-

synrietric mode.

In summary, a small disturbance to the motion (23) can be decomposed

~~~~~~~~~~ 

• 

11.
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into two modes of vibration: (i) a symmetric mode whose frequency is governed

• by (33 ) and (ii ) an anti-symmetric mode whose frequency satisfies (36). The

latter mode is stable for all wavelengths , while th.~ symmetric mode is unsta ble

for wavelengths satisfying (314). It is worth noting here that if’ the rotations

and the twist 9 are set equal to zero at the outset in the equations (10)

-

• 
to (13), then the results and conclusions of this section would remain

unchanged.

• Before closing this section, we make a comparison with the results of

Rayleigh [1,2] who examined small deviations from the uniform flow Oj . an

inviscid, incompressible fluid in a straight circular jet. For this purpose,

we introduce cylindrical polar coordinates (r,X,z) such that the z-axis lies

along the axis of the jet. Rayleigh considered disturbances from a circular

jet of radius a in which the free surface had the modal forms

r = a+b(z,t)cosnX , (38)

where n is an integer and b is smail. With (38) as his basic assumption ,

• Rayleigh examined solutions to the linearized three-dimensional equations for

which b(z,t) has the form (32). The resulting dispersion relations for each

integer ri (as recorded in Lamb [i14, §2714]) are

I’(k a)[k
2
a2 ÷ n2 - l]k a2 _ T n n  n n

an~~ *3  I ( k a )
p a  n f l

-
‘ wher e I is the modified Bessel function of order ti . The only value of n that

ti

can lead to unstable wave motion is n=0 , corresponding to an axially symmetric

disturbance. With n=0 , (39) becomes

I ’(k a) [k 2a2 - l]k a-
• 2 T 0 0  0 0 14a0 = — 

10(k0a)  0

• indicating a range of unstable ~ave1engths consistent with (3 14) . The unbounded

growth of disturbances in this range leads to an eventual disintegration of the

• 12.
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__________ 3~~~~( ~~~~ ~ I



jet . For purposes of comparison, we tabulate in Table 1 values for from

• (33) and (140) over the entire range of unstable wavelengths. Of the wave-

• lengths in this range , the one that corresponds to the greatest magnitude of

• a0, and hence the most rapid rate of growth in the disturbance, will tend to

dominate the disintegration process. The value obtained by Rayleigh for this

wavelength corresponds to

k~a2 
= 0.14858 , (14i)

whereas from (33) we find

k2a2 = 0.14853 (142)

yields maximum growth.

Setting n = 2  in (39), we obtain the counterpart to (36 ) in the linearized
• three-dimensional theory, namely

• I’(k a)[k2a2+3]k a

• 2 
= * 3  12 (k2~~ 

3

In line with (36), the motion governed by (143) is stable for all wavelengths.

E~cpanding (143) in powers of k~a2 yields

= 4~ (k~a~ +3) [1 + ~~~ k~a~ + . . .] . (1414)
• p a

• A comparison of this relation with (36) suggests the appropriateness of the

latter for fairly long wavelengths.

‘9
I
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___________ 
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1
k
2
a
2 Directed Jet

r
Ray1ei

~~ 

--

1 0.00 0.0000 0.0000

• 0.05 0.1536 0.1536

0.10 0.2107 0.2108

0.20 0.2793 0.27914

0.30 0.3181 0.3182

0.140 0.3381 0.3382

0.50 0.31429 0.31432

• 0.60 0.33141 0.331414

0.70 0.3107 0.3111

o.8o 0.2696 0.2701

0.90 0.2010 0.2015

1.00 0.0000 0 .0000

Table 1: Compar ison of the frequency 
~~ 

(in non-dimensional

form) over the range (314) of unstable wave1en~ths

as predicted by Eq~ (33) o•f the direct theory of

• 

• 
jets and by Eq. (140) due to Ray~~i~~. E1,2J.

• 114.
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I 
~~~ A viscous elliptical j et wit hout rotation or twist.

In this section we consider a jet of an incompressible linear viscous

fluid; and, in view of the results for the stability of an inviscid Jet, we

limit the discussion to motions in which

- w1 w2 = O  , 9 =c o n s t .  (145)

1 To account for the viscosity of the fluid medium, we must provide appropriate
-~~~~~~~~ • • • 

A A ~I constitutive equations for the quantities ti , ii and p . Much of the develop-

• ment of this section is similar to that of’ Green [101 in which the jet is

restricted to be circular.

Referred to the orthonorinal basis (e1,~~ ,e3) introduced in section 2, the

response functions can be expressed in terms of their components in the form

A Aj A~ A~j Arj t~yj
n = n e. , ii = rr  e. , p = p  e
v... —1 — ‘-‘1 —

As a consequence of the symmetry of the assumed flow, (10) to (12) suggest

:1 that we put

A1 ~
• • n• = n  = 0 ,

Ti ‘ 

A12 A13 ~2l 
,s23

It =11  = 1•T =11  =0 , (147 )

A12 Al3 ~~1 
t~€3p = p  = p  = p  = 0 .

With the help of ( 14) to (6) and (146), the mecha nical power (19) reduces to

-
~~~~ 

p ~~~ + ~
*1l

C~ + ~~22~~ + 
~~

ll
~1~ 

+ ~~22~ (148)

where we have set

= Ø ( ~~~/z’) ÷0~~~~~ ‘ 
(no sum on ~ ) . (49)

• We seek to characterize the linear viscous property of the fluid in appropriate

• 
- constitutive equations for the one-dimensional functions

H 
~ 15.

I 
_ _ _ _ _  

_ _ _ _ _



• • A3 Axll A~22 A*ll Ax22n ,n ,u ,p ,p . (so)

To this end, we assume that the quantities (50) are linear functions of degree

one in the kin ematic variables

v ,C1,C2,C1 ,~2 (51)

with coefficients that depend upon Oi 
and 

~2 
Hence, we take

A3
• n X1v

~ 
+ x2 c~ + x3

= x + x ~~~ , (52 )
(no sum on c~)

— +4 X6~~~ “7~~~z

• where ~~~~~~~~~~~~ are functions of and 02 and we have used (9) to
• 

• . A4(~yç~eliminate v from the expressions for n and p

A three-dimensional linear viscous fluid is isotropic. In order that the one-

dimensional theory under consideration reflect the symmetry properties of the fluid

• • and the geometry of the jet , we impose the requ irement that under the transformations

z -’-z , v -.-v , 0~~— . 0~ , (53)

the mechanical power (48) remain invariant . Consequently , under (53 ) the

functions (50) must transform according to

I 
A3 A3 ~~~~

- . (514)

Hence the relations (52) reduce to

16.
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A3• : - = X

1
V + X ~~ C

• = (no sum on ~ ) , ( 5 5)

= xrc~ 
(no sum on

In order to determine explicit values for the coefficients in (55) , we

recall briefly some aspects of an approximation procedure for rod-like bodies

in the three-dimensional theory. A detailed development of this procedure can

be found in Green et al. [12) and a brief outline is included as an appendix to

Caulk end Naghdi [11]. Without going into detail, we recall that the developments

in Green et al. [12) are based on an approximation for the position vector to the
*

material points in the rod-like body and involve integration of the three-dimensional

equations through its cross-section. Let the material points be identified with the

convected coordinates 9~ (i=l ,2,3) and, for convenience, set ~~~~~ Further, let

4 p denote the position vector of a typical point at time t. Then,

p = p ( 9 ~,~ ,t) =
~~~~~~~

(56)

H ~~ij ~~~i~~~j  , ~~~~~~~ = ~1 
, g~J = g ~~.g

3 
, ~~= d e t~~~~

where and are the covariant and contravariant base vectors , g1~ 
is the

metric tensor, g~~ its inverse and is the ~ronecker delta. In the present

context the fluid is assumed to occupy a region of’ space in the neighborhood

of the curve B~ = 0 , bounded by the free (material) surface

= 1 , (5 7 )

where we identify 9~ =0 with the z-axis. With the help of ( 14),

• *It should be mentioned that the one-dimensional equations that result from
• • this procedure can be brought into 1-1 correspondence with the theory of a

directed curve.

17.

• 

~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~



• the approximation for the position vector mentioned above leads to

p = z (~~~, t ) e~~~+ e
1
Ø1(~ ,t)e1

+ e2~2(~,t)~ , 
. (58 )

I It follows from an examination of the second and third terms of (58) that

(57 ) represents an elliptical cross-section with semiaxes ~~. The veloc ity

which is the material time derivative of p, is given by

1 2
• 

V = ye
3 

+ 9 O1~~
ea 

+ 8 ~~~~~~

where we have used ( 14),  (8) and ( 1 4 5) .  For an incompressible linear

viscous fluid, the determinate part of the stress response is given by

T T
1
~g. , T~~. 

~~~~~~~~~~~~~~~~~~~~~ 
‘ 

(6c )

where r. . and. 13 are the covar iant and contravar iant comoonents of the stressiJ

tensor , p is the shear viscosity and a conuna denotes partial differentiation

with  respect to 9~. ~e may now use (57), (59) and (60) in the usual

expressions t for the quantities (146) in terms of integrals over a cross-

section of the rod-like body. The results of this rather long but routine

calculation are

= 2~j .~T

= 
~~~~~

~ (ri o sum on
• .~ 2 ,.

• p - 

~~ ~1*2~~~~z ~

• so that we may identify

• tSee , for example , equation (A13) of Caulk and Naghdi Eli].
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1’ = 2~~ 0102 = 0 , X~
1 

= 2~~ ~1~2
1~~~~~~~~~~

-. (62 )
11 i 22 i 3 12 21 12 21

X
7 ~20l Xr( ~~~~~~IJ 1 T O

1~~2 
X 14 ~~~X14 ~~~~~~ - X

7 
= 0

in (5~ ).

Adopting the values (62) and using the constitutive equations (55) in

the field equations (10) to (13), we obtain the governing differential equa-

tions for a linear viscous jet , namely

t Itp 0102
(v
t 

+ vv 5 ) = - p
~ 

- 020i~
h(

~ 1,02
) - 

~1~2~ h(02,o1) +2~~(~102v )

• ‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

= p + O 1O2h( O1,~ 2 ) + ~~~~It(0~~2 C1 ) , (63)

• ~ np*030 (c +v C + ~~ ) + 2 ~~ ø102~2 
= p+~~1~2h( Ø2 ,~ 1) ÷ ~~ ~

It(
~~~l~~~

)

where use has been made of (4~ ) and (17) and we have let

- 

h(01,02 ) = h (~ 1,02 ,0) . (614)

The set (63) is completed by add ing (8) and (9). Apar t from differences

in notation , we note that (63)
~ 2 ~ 

reduce to those given by Green [10,

:~s. (6.3) and (6.4))  in the special case of a circular cross-section

and. in the absence of gravity.

~~

•

~~~

- I
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~~~~~~~ 

-
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5. Small motions superposed on a uniform flow of’ a viscous jet.

The motion (23) satisfies the differential equations (63) , (8) and (9);

• and, hence, it also represents an exact sciution for the viscous jet discussed

• In section 14. Since in the case of an inviscid jet (see section 3) the

superposed rotations ~~
‘ had no effect on the resulting differentiation equa-

tions, for simplicity we assume that = 0 here and consider small motions

superposed on the uniform flow (23) in the form specified by the first two

• of (25) and. the fourth of (25). In a manner similar to that employed in

section 3, we again neglect squares and products of quantities represented by

symbols with superposed tildas in (63), (8) arid (9).  After setting v0=0

without loss in generality, the resulting linearized equations are

~
1 p a

2
V
t 

= - 
~~~ 

+I
~~~~1 ~~2~z 

+2~~a
2v

~~ffp a lt + 2 a 2
~l = p +~ T[~~ (3~1+ O 2 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2 (65 )
P ~~n Q a t + 2~~ a2

~~ = p÷~~T[~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C2zz

÷ C1 + = 0 = a~ 1 ‘ 02t =

where again for convenience the tildas have been omitted.

Again we utilize the change of variables (28) and by adding (65)2 and

(65 )
3~ with the help of (65 )

~~ 5 6 ~ 
we obtain

• 

• ~- T p a v ~ ~~~~~~~~~~~~~~~~~~~~~

~r a
~~~~~

+2
~~

a
~t 

= ~~~~~~~~~~~~~~~~~ ~

3

~tzz 
(66 )

2
~~~~

av , = O

- 

• - Subtraction of (65) 3 from (65 ) 2 , after ~~~~~ (28)  ~~~ (65 )
5,6~ 

yieid~
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• 1 ~ p a 35tt +t
~

a6t = T(a 2 6~~~
_ 3 6 ) +

~ ~a36t~~ 
. (67 )

• Thus, the linearized system (65 ) is decoupled through the change of variables

• (28), just as in the case of the inviscid jet. Again the solution of (65 )

will have the form (37 ) and decompose into a symmetric mode 0 and an

anti-symmetric mode 6. Eliminating p and v among (66)l,2,3~ for the symmetr ic

mode we obtain

~ 
a
2
Ott~~~

_20tt ~~ (~ a2
05~~ 5

_ 6 0
5~~

) t +4  (a 2
O~~~~~

+ O )  . (68)

For solutions of (68) to be of the form (32), :0
and k0 must satisfy

* 
(~ k~a2 

+ 3)k
2
a
2 

(i - k
2a2)k2a

2

(.)2 ÷ a O  
1 2 2  

(.a ) 2 P a  
2 2  (69 )

~~k0a +1 ~~k a  +1

It follows from (69 ) that ia can be real and positive if and only if

k2a2 < 1  . (70)

Hence the range of unstable wavelengths for the symmetric mode is precisely the

same as for an inviscid jet. The effect of viscosity in the present case is to

diminish the magnitude of over the range (70) and therefore retard the •
impending dIsintegration of the jet . As in section 3,we consider solutions for

the anti-symmetric mode in the form (35). Using (35 ) in (67 ) we obtain

the relation

• 
(ia
2
)
2+

~~~a
2 
(k~a

2
+8)(i~2

)+-~~3 
(k~a

2
~~3) = 0 (71)

between 
~2 

and k
2
. From (71) one can show that Ia2 

has a negative real

part for all values of k2. This indicates , as In the case of the iriviscid jet,

that the anti-symmetric m ode is stable for disturbances of all wavelengths.

The effect of viscosity, however, is to damp the disturbance in proportion

_ _ _  

_ _ _ _ _ _  

— - •~~~~~~~~~~~~~~~~~~~~ -~~~~~

— - ‘.~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ,



Fl

to the magnitude of the shear viscosity ~. Critical damping for a given value

of k2 corresponds to

A
2 = = 

16(k
2
a +3) 

(72) j
where we have introduced the non-dimensional parameter A for later convenience.

We close with a comparison of certain results of this section with those of

a similar investigation by Weber [14] who has examined small axially symmetric

per turbations to uniform flow of a cylindrical viscous jet using an approximate

form of the linearized Navier-Stokes equations. Weber’s procedure employs

specific assumptions on the variation of stress and velocity in the cross-

section of the jet and ignores all but the axial component of momentum. This

approach leads to a one-dimensional reduction of the three-dimensional equations

and corresponding to (69 ) gives

(ia )
2 

+ 
~~2 

3k
2a2(ia) = 

* 3 (l-k
2a2)k2a2 . (73 )

p a  2pa

A plot of ia0 versus k0a is given in Fig. 1 for various values of the parameter

A over the range (70) of unstable wavelengths , using both (69 ) and (73). it

can be seen from this graph that the difference between the results of each

approach is greatest for an inviscid jet (A=0) and gradually diminishes with

increasing viscosity, other things being equal.

On the basis of the close agreement (Table 1) with the exact three-

dimensional analysis of Rayleigh [1,2] for an inviscid jet (A=0), it is

reasonable to infer from Fig. 1 that for a viscous jet the results of this

section constItute an improvement over the approximate treatment of Weber [14].

In support of this inference, we appeal to some numerical results recorded in

* 2The parameter A can be recognized as twice the ratio of the Weber number to
the square of the Reynold ’s number .
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Chandrasekhar [6) which are based on the implicit dispersion relation obtained

from the linearized Navier-Stokes equations~ Figure 2 shows a magnified portion

of one of the curve pairs in Fig. 1 corresponding to A = 0 .5 along with points

obtained from the tables in Chandrasekhar [6] . We show the region near

max imum in view of its importance in the breakup process. The fact that the

theory of a directed fluid jet offers an improvement over Weber ’s results is

clearly evident .

Acknowledgment. The results reported here were obtained in the course of research
supported by the U.S. Office of Naval Research under Contract N000114-76-C-014714,
~‘oject I~B 062-5314, with the University of California, Berkeley.
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~The difficulty in dealing analytically with this same dispersion relation is
what led Weber [14) to consider an approximation to the three-dimensional
equations.
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