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This report describes the symbolism and terminology
required for modeling systems using SAINT. SAINT (Systems
Analysis of Integrated Networks of Tasks) is a package of
computer routines designed to aid the system designer and
human engineer in analyzing complex man-machine systems.

It provides the conceptual framework which allows the de-
velopment of system models in which men, machines, and the
environment are represented. It permits the assessment of
the effect of the component characteristics of the system on
overall system performance. The procedures for using the
SAINT simulation program to analyze system modelis are
described in The SAINT User's Manual (l1). The overall struc-
ture and individual FORTRAN subprograms of SAINT are de-
scribed in Documentation for the SAINT Simulation Program
(20). The use of an external statistical analysis package

to analyze SAINT output is described in Analyzing SAINT
Output Using SPSS (3).

All SAINT modeling concepts are described in this man-
ual. The manual is divided into sections, where each sec-
tion details a set of related concepts. Each new concept
is presented, discussed, and then illustrated through an
example. A single example of a man-machine system is used
throughout the manual in order to demonstrate SAINT cap-
abilities in a systems context. At the end of each section,
a summary of the concepts presented is provided.
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SECTION I

e e e i e S il

INTRODUCTION

Communications play a fundamental role in research,
especially when interdisciplinary activities are involved.
Mental images and concepts are satisfactory as long as a
single researcher is working on a problem. As soon as two
or more individuals are working together, a vehicle for
expressing ideas and concepts is necessary. The use of
networks or graphs as communication vehicles for researchers
is well established. Examples of networks are circuit dia- |
grams, free-body diagrams, signal flow graphs, block diagrams, |
and PERT and GERT networks. Networks are models of systems.
These models may be used for both communication and analysis
, purposes. In many cases, it is the former purpose which is
! significant as it permits a concise, explicit definition of
the pertinent concepts the researcher w’ hes to convey.
Once a network is developed, effort can be concentrated on
. analyzing the system by analyzing the network model. When
& the network model can be used for both descriptive and anal-
! ysis procedures, the researcher has a significant tool at
! his disposal.

The human factors specialist has long advocated the use |
of operational sequence diagrams (4), function flow loaic
block diagrams (5), and to some extent, models (6). Besides
Siegel and Wolf's early use of simulation techniques to eval-
uate operators performing discrete tasks, there are other
precedents for using simulation to portray manual tracking
tasks (7). What appeared to be required was an integrated
framework that not only assimilated and consolidated these e |
previous achievements but allowed for the systematic enrich- |
ment of such technical tools. SAINT provides this framework.

SAINT is not a model; there are no "built-in" parameters |

or distributions, although a wide range of standard distribu- ;
? tions are available to the user. SAINT is a framework within

which any proposed model may be described and exercised; the

only requirement is that the model be capable of being quanti-

tatively stated. Changes can easily be made as the situation

dictates and the network diagram of the model enables the

user to communicate to others the basic concepts of the sys-

tem model he or she is trying to develop.

Network Modeling and Analysis

The SAINT philosophy is to separate modeling from anal-
ysis. A graphic approach to modeling is taken in which the
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system to be analyzed is represented by a network model. The
SAINT approach to problem resolution is depicted in Figure 1.
A SAINT network model describes a system in network terms us-
ing the SAINT symbol set. The fundamental elements of SAINT
networks are tasks, resources (equipment and/or personnel) re-
quired to perform the tasks, relationships among tasks, and
system status variables referred to as state variables. Sys-
tem performance is related to which tasks are performed, the
manner in which they are realized, and the extent to which
certain states of the system are achieved or maintained. The
generalized SAINT symbol set provides a vehicle for modeling
resources performing tasks to accomplish system objectives.

In addition to providing a fixed set of symbols which are
integrated to form a network model of the system, the SAINT
network modeling approach allows for the specification of the
conditions and constraints under which the system operates.
These conditions and constraints may include such factors as
time constraints on resources and the environmental conditions
under which the resources must perform the tasks. By providing
the means for specifying such conditions and constraints, SAINT
allows the analyst to depict man-machine system performance
in a variety of situations.

An important factor in the SAINT modeling approach is the
analyst's experience and knowledge of the system. It is the
analyst's repsonsibility to integrate the SAINT symbol set into
a network model of the system, identifying each task to be
performed, the resources required to perform the tasks, the
state variables, and the conditions that initiate interactions
between state variables and task performance. The analyst also
specifies the environmental conditions under which the sys-
tem is required to operate. Thus, while SAINT provides the
necessary tools for developing system models, it is the anal-
yst who develops the models by utilizing those tools.

Once the analyst has developed a network model of the
system, the SAINT simulation program will automatically gen-
erate system performance estimates, that is, an analysis of
the network model. The input to the SAINT program is an alpha-
numeric representation of the network model. The simulation
program processes the input and verforms a simulation of the
network model to obtain estimates of system performance.

The level of detail at which a system or system segment
should be modeled cannot be specified a priori. It is the
analyst's repsonsibility to determine the level of detail to
be included in the network model based upon the nature of the
problem he is trying to solve and an analysis of the task com-
ponents and their interrelationships. He must decide if it
is sufficient to model a task as a single unit, or if it is
necessary to model each component individually. Detailed
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network models of specific tasks may be included in an overall
system model. Further, the output derived from simulating a
detailed model may be used as the description of a particular
task in an overall system mode. The concept of hierarchical
modeling, where the output of one simulation is used as input
to another, is an inherent aspect of the SAINT network model-
ing and analysis approach.

User-Oriented Manual Structure

Since the SAINT simulation technique was designed to be
used to model a wide variety of complex systems, it incorpor-
ates an extensive and sometimes complex set of modeling capa-
bilities. For this reason, a single example of a man-machine
system is used throughout this manual in order to demonstrate
SAINT capabilities, from the fundamental to the advanced, in
a systems context. Each new concept is presented, discussed,
and then illustrated through an example. Each succeeding sec-
tion presents new concepts, building on the more fundamental
concepts already presented. This structure allows you to
learn SAINT at a pace commensurate with your desires and abil-
ities. Further, it allows you to master only those concepts
that meet your individual modeling requirements.

The example used in this manual pertains to a system
that is composed of a group of operators monitoring and
controlling the flight of a numker of ground controlled
vehicles (GCV) through the use of visual (CRT) displays of
the vehicles' flight paths and parameters. The overall ap-
proach will be to verbally describe possible alternative
representations of the GCV system, define the SAINT concepts
and symbols required in order to model them, and to present
the resulting models. The representations of the GCV system
used to demonstrate the SAINT capabilities are only intended
to be illustrative and are not intended to represent any
existing or hypothesized system. The GCV example is intended
only to provide a framework for presenting the SAINT capabil-~
ities.
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SECTION II

SEQUENCES OF TASKS

Consider a simple system consisting of a single operator
whose sole responsibility is to launch a single GCV (ground
controlled vehicle). 1In order to achieve the GCV launch, the
operator must press two buttons in succession: a "LAUNCH"
button and a "GCV" button. The pressing of the buttons are
tasks to be performed by the operator. Let us begin by
defining a few basic SAINT concepts that relate to this man-
machine system.

The basic element of SAINT is a task. In SAINT, tasks
are related to one another by precedence relations. A pre-
cedence relation stipulates that a task can be initiated
only after another task has been completed. Precedence rela-
tions are represented by branches (arcs, connecting lines)
between tasks. Tasks are represented by nodes (Figure 2).
The combination of branches and nodes is called a network.

A network is a model: it is an abstract representation of a
system, just like a set of equations can be an abstract repre-
sentation of a system. Networks, however, are easier to con-
ceive, and as we shall see for SAINT, network analysis is
provided automatically.

A SAINT task has associated with it an input side, a
task description, and an output side (Figure 2). The input
side of a task specifies the number of predecessor tasks that
must be completed before the task can be released. The term
"released" is used instead of "started" because all predeces-
sor tasks can be completed but the task not started due to a
resource conflict (i.e., two or more tasks requiring the same
resource at the same time). The source of these conflicts
will be discussed more fully in later sections of this man-
ual. The task description consists of a series of parameters
associated with task performance. The output side represents
the means by which successor tasks will be identified upon
task completion.

The SAINT network model of the simple GCV system involv-
ing two sequential tasks is shown in Figure 3. Each task in-
cluded in a SAINT network must be assigned a unique task num-
ber. The task number is shown on the output side of the task
symbol. In Figure 3, task 1 represents the pressing of the
LAUNCH button. This task is immediately followed, as indi-
cated by the precedence relation (branch), by task 2, which
represents the pressing of the GCV button.
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Task Input

The input side of a SAINT task specifies the number of
predecessor tasks that must be completed before the task can
be released. The task is released for starting when a speci-
fied number of predecessor requirements is satisfied. Since
tasks might be released more than once, and since the first
time usually represents a special case, the design of SAINT
allows for two values to be associated with the number of
predecessor requirements to release a task: 1) the number
of predecessor requirements to release the task for the first
time; and 2) the number of predecessor requirements to release
the task after the first time.

In the model of the simple GCV system shown in Figure 3,
the task which represents pressing the LAUNCH button (task 1)
is released at the time the simulation begins. Thus, there
are no predecessor tasks that must be completed before task 1

can be released. This type of task is referred to as a source

task and is indicated by the wavy input line to the left-hand
side of the task symbol. In addition, the number "O0" is
placed in the upper left-hand portion of the task symbol to
indicate that no predecessor tasks need to be completed prior
to the first release of task 1.

In the same network model, task 2 requires that task 1
be completed before it can be released. The LAUNCH button
must be pushed before the GCV button. A precedence relation
exists between task 1 and task 2. The branch drawn from the
output side of task 1 to the input side of task 2 represents
the required precedence relation. The number of predecessor
task completions required for the first release of task 2 is
specified in the upper left-hand corner of the task symbol
and is 1.

Now consider another GCV system in which the operator
launches a series of GCVs. In this system, the operator
will be required to press the LAUNCH button and then the GCV
button to launch a single GCV. Once a GCV is launched, the
identical process will be per ‘ormed for the next GCV. The
SAINT model of this system is shown in Figure 4.

The SAINT network model for this GCV system is identical
to the model shown in Figure 3, except that there now exists
a feedback branch from task 2 to task 1. After both task 1
and task 2 have been completed, task 1 is released again.
Since task 1 is to be released immediately following the
completion of task 2, the number of predecessor requirements
for subsequent release of task 1 is one as shown in the lower
left-hand portion of the task symbol. In addition, since task

21
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2 should be released immediately after the completion of task
1, the number of predecessor requirements for subsequent re- -
lease of task 2 is also set to 1.

Figure 5 summarizes the SAINT modeling concepts pre-
sented thus far.

Task Description

The interior portion of a task symbol contains all task
description information, such as performance time character-
istics, statistics to be collected, and other task related
quantities to be discussed in later sections of this manual.
It is subdivided into rows, with each row containing a specific
type of descriptive information about the task. Further, each
row is divided into two parts. The left-hand part contains
the task description code. It is used to identify the type
of information that appears in the right-hand part of the row.
The standard task symbol contains four rows for descriptive
information, as shown in Figure 6. However, only the infor-
mation necessary to describe a task need be shown on a task
symbol. TIf fewer than four rows are needed, the remaining
rows can be left blank; if more than the four rows provided
are required, we simply add the necessary number of additional
rows to the bottom of the task symbol, as illustrated in
Figure 7. i

For example, let us assume that we want to verbally
identify the tasks of our GCV system. SAINT allows us to
specify an alphanumeric description or label for each task
in the network. The task description code for a label is
LABL. Assuming we want to refer to task 1 as "LAUNCH" and to
task 2 as "GCV", the SAINT model of the GCV system illustrated
in Figure 4 would appear as in Fiqure 8. To be more complete
in our description, we might have labeled task 1 as "Press
LAUNCH Button", and task 2 as "Press GCV Button", but these
are longer expressions. The SAINT computer programs will
only store up to eight characters of the label, so it is de-
sirable to keep them short.

Task Duration

Task duration, or the time required to perform a task,
is also specified on the task symbol. It can be a constant,
a sample from a probability distribution, or a value obtained
from a user-written subprogram. The use of user-written sub-
programs to define task performance will be explained later.

23

alitel wne

SR




E |
g
¥

-g3daouo) HBUTTIPOW INIVS TERTITUI 30 Axeumms °g 2InbHTJ4

¥Se3 STU3 3O 3S2aT7ax 3usnbssqns
sauzawsITNbaI I0SS353Dp3 o Za3cumu
3337 uc ¥sel Aq popssaid ag Isnu s s i o ¥
3uSTI uo ¥se3l eyl S33ESTPUT YoSURIG

\
X

>
24

Isqumu ¥sSe3

¥Se3 STU3l 3O 3Se3aT3x 3ISIT3 103
sS3uUsWaITnbax 10Ss3259p31d 30 Isqunu

- . e e — A — - —




3
E
|
E |
=
I ]
TASK: ''TASK
INPUT | DESCRIPTION , OUTPUT
| |
:
i
|
|
:
1
[ ]
%
I"igure 6. Standard Task Symbol.

B e o e DRt




Figure 7.

|

\

TASK ' TASK
DESCRIPTION | OUTPUT

Expanded Task Symbol.

B oS ) BRI . A A 4% 5 oo,

4 T S AN X Mo TSI A by 554 &

e

S i S F Y VA A . 15



*burraqeT ysel S5uT3eIISNITI TSPOK INIVS °g 2Inb1J m

27

0
5 Taet| U HONNWI| 1897




The SAINT simulation program can produce samples from
probability distributions, utilizing the information provided
by the user in the associated distribution set, identified

through a distribution set number. The parameters included

in a distribution set provide such information as the distri-
bution type (e.g., normal), and the mean, standard deviation,
minimum value, and maximum value associated with the probabil-
ity distribution. The samples are obtained by SAINT such that
if a sample is less than the minimum value, the sample value

is given the minimum value. Similarly, if the sample value

is greater than the maximum value, the sample value is assigned
the maximum value.

For example, assume that the time required to press
either the LAUNCH or the GCV button in the model shown in
Figure 4 has been determined and is appropriately described
as being normally distributed with a mean of 1.0 second and
a standard deviation of 0.5 seconds. 1In order to assign these
task performance time characterisitics to both tasks 1 and 2,
additional information is required on the task symbol, as
shown in Figure 9.

The task description code for performance time is TIME.
The right-hand side of the task description row, which repre-
sents the task performance time characteristics, now contains
the alphanumeric symbol "DS" (Distribution Set) and the num-
ber "1", separated by a comma. The presence of these charac-
ters indicates that the task performance time of each task is
defined by the information included in distribution set 1.
On input, we would define distribution set 1 as a normal dis-
tribution with a mean of 1.0 second and a standard deviation
of 0.5 seconds. ,Eleven distribution types are available in
SAINT: constant™, normal, uniform, Erlang, lognormal, Poisson,
beta, gamma, beta fitted to three estimates, triangular, and
Weibull.

An alternate method for specifying task performance times
is through the use of Scaled Constant, or "SC". SAINT takes
the value specified in conjunction with "SC", and divides it
by the scale factor (which is designated on input) to compute
the task performance time.

Now consider the situation where the task performance
time of task 2 is not the same as that of task 1. 1In this
situation, modeled in Figure 10, the time to perform task 1 ]
remains normally distributed with a mean of 1.0 seconds and a
standard deviation of 0.5 seconds. However, the time to

lA constant can be thought of as a value drawn from a prob-
ability distribution in which the probability is one that
the constant is obtained.
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perform task 2 is now characterized by the information con-~
tained in distribution set 2. For example, this distribution
set might include information describing a uniform distribu-
tion with a minimum value of 0.5 seconds and a maximum value
of 1.5 seconds. In this manner, we can specify task perform-
ance times that are governed by any of the available distri-
butions.

Task Output

The output side of a SAINT task represents a branching
or decision operation. Following completion of a task, a
selection is made as to which branches emanating from the task
should be selected. The branching type dictates the method
by which this selection is made. The four types of branching
operations included in SAINT are:

1. Deterministic - select all branches
2. Probabilistic - probabilistically select one branch

3. Conditional-take first - select first branch for
which the specified condi-
tion is satisfied

4. Conditional-take all - select all branches for which
the specified conditions are
satisfied

If no branches emanate from the output side of a task, then
no branching is performed.

A special case is the task whose completion could cause
the stopping of the simulation. This is called a sink task,
and is designated by the symbol shown on the output side of
task 3 (Figurell). SAINT allows multiple sink tasks to be
included in a single network model and the completion of more
than one sink task, or more than one completion of a single
sink task, may be required for the simulation to be stopped.
The number of sink task completions required is specified on
input. A sink task can have the same performance time charac-
teristics as any other task in the SAINT network. Thus, a
sink task has all the capabilities associated with a regular
task with the exception of branching. No branching is allowed
from a sink task.

Deterministic Branching

The branching operations shown in Figures 1, 3, 4, 8, 9,
and 10 are deterministic, indicated by a semi-circle ( D) on
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the output side of each task symbol. Variations in the shape
of the output side of each task will be used to reflect branch-
ing options and will be discussed on subsequent pages. When

a deterministic branching operation is specified, all branches
emanating from the task are selected upon task completion.
Thus, the number of requirements for all successor tasks con-
nected to the completed task by the branches is reduced by

one. Essentially, each branch has a probability of 1.0 of
being selected.

Probabilistic Branching

For probabilistic branching, each branch emanating from :
the task has an associated probability of being selected. |
Only one of the branches is selected upon completion of the
task. The sum of the probabilities associated with the bran-
ches emanating from a task with probabilistic output must be
4

Once again, consider the situation modeled in Figure 10.
In that model, there was a probability of 1.0 (deterministic
branching) of launching another GCV once the preceding GCV
was launched. However, assume now that after the operator
has launched a GCV, there is a 70% chance of his launching
another GCV and a 30% chance of another GCV not being launched.
In the latter case, the simulation will be halted. The SAINT
network model of this new system is shown in Figure 11.

In Figure 11, the shape of the output side of task 2 is
altered to reflect the probabilistic branching operation
required. The triangle shape () is used to indicate proba-
bilistic branching. The probability of performing task 1 upon
the completion of task 2 (launching an additional GCV) is 0.7.
The probability of not launching an additional GCV (proceeding
to task 3 upon completion of task 2) is 0.3. Note that the
sum of the probabilities associated with the branches emanating
from task 2 sum to 1.0 (0.7 + 0.3 = 1.0).

If task 3, which is labeled "STOP", is selected as the
successor to task 2, the simulation will be halted. The only
function of task 3 in the network model shown in Figure 11 is
to indicate the end of the simulation. As such, it takes no
time to "perform". Thus, the time to perform task 3 is speci-
fied as 0 through the use of the performance time specifica-
tion "SC".

Conditional-Take First Branching J

For a conditional-take first branchina operation, each
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branch is specified with a conditon, and the branches are or-
dered. Each condition is tested sequentially in the order in
which it appears on the data input cards, and the first branch
whose condition is satisfied is selected. All of the condi-
tions that are recognized by SAINT will be presented later.
However, two of the available conditions are:

1. The current value of simulated time is less than
or equal to a specified value (TLV), and

2. The current value of simulated time is greater than
a specified valug (TGV).

Consider a situation in which the GCV operator is not
allowed to launch another GCV whenever the current value of
simulated time is greater than 10 time units. The SAINT
network model of this situation is shown in Figure 12.

Upon completion of task 2, the feedback branch to task 1
is selected if the current value of simulated time is less
than or equal to 10. When this branch is selected, the oper-
ator will launch another GCV. However, if the current value
of simulated time is greater than 10, the branch to task 3
will be selected, no additional GCVs will be launched, and
the simulation will end. In Figure 12, the output side of
task 2 is modified to reflect the conditional-take first
branching operation. The symbol for conditional-take first
branching is [y .

Conditional-Take All Branching

A conditional-take all branching operation is similar to
the conditional-take first branching operation. Any of the
conditions recognized by SAINT for the conditional-take first
branching operation are available for use with conditional-
take all branching. However, in the case of conditional-take
all branching, the condition on every branch emanating from
the task is evaluated. For every condition that is satisfied,
the corresponding branch is selected.

Let us assume for our GCV example that after the operator
stops launching GCVs, 1) he must press a "FINISHED" button
indicating that he is no longer launching GCVs, and 2) the
last GCV launched must fly for 10 time units before the simu-
lation is stopped. The SAINT model for this situation is
given in Figure 13.

In Figure 13, task 3 represents the operator pressing
the "FINISHED" button. Its performance time is governed by
distribution set 3. Task 4 represents the flight of the last
GCV (assume the scale factor is 1). After the operator launches




it B s i

e T

A

s

*hutyouead 3ISITJ 9YeL-TRUOTITPUOCD HUTIeIISHTTI IOPOW INIVS

aoﬁ.u>av///

(0T'A1L)

*ZT1 2aInbd1a

o 0‘0S dWIL \H\\A/
doLns [ 14av1
yn T
4 ; 1 -
2’sa] FWIL | ¢ 17sa aWIL o
ADD | 19¥1 HONNY'1 Tav1

35




o ‘H
|

o
-

el R i S

i b A

*butyoueag TIV OYL-TEUOT3ITPuUOD bHuriexisnlll TSPOW INIVS ‘g1 =2Inbta
o
0T“08 AWIL | -
IHOITA | 149wl
(0T’ADL) ©
T T
2'sa]| AWIL| ¢ 1’sa aniy o
ADD | T1avT HONNYT TAY'T
(0T'ADL) (0T‘ATL)
— o
€’sa AWIL[
QIHSINIA 991




the last GCV, we want hoth tasks 3 and 4 to be released simul-
taneously. Thus, the output side of task 2 is squared off (1)
to reflect the conditional-take all branching that allows
branching for all conditions that are satisfied. Also, we
want both tasks 3 and 4 to be completed before the simula-
tion is complete. For this reason, both tasks are sink tasks
and we specify (through input) that 2 sink task completions
are required for the simulation to be completed.

bt 4302 L0 T o el (i o il e ik Lt et Sl
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Detailed Iteration Report

Among the SAINT user options is the provision for a
detailed iteration report. Figure 14 illustrates this op-
tion for the SAINT model in Figure 13. The report identi-
fies the release, start, and completion times for each task
performed as the simulation progresses. In addition, the
priority and resources assigned to the task are listed
(these concepts will be introduced in later sections).

This output option is especially useful in uncovering errors
in model logic and in communicating the details of model
operation to others.

Aggregation

Let us now assume that we wish to model a situation in
which the GCV operator will launch a single GCV and then
nonitor its flight during the remainder of the simulation.
In order to launch a GCV, the operator needs only to press
the "LAUNCH" and "GCV" buttons. However, to monitor the
GCV, that is, to obtain the deviation of the GCV from its
desired flight path at any point in time, the operator must
request computer action to compute the GCV's flight devia-
tion. To do this, the operator must press the "COMPUTER"
button to interact with the computer and then press "STATUS"
to inform the computer that he desires the GCV's deviation
status. The computer will then obtain and process the
desired information and report the current time and the GCV ‘
deviation to the CRT console. The operator writes this '
information down on the appropriate recording form. Addi-
tional requests for deviation status require the operator
to repeat the above tasks. ]

The exact manner by which the GCV deviation values
are computed and the SAINT concepts used to represent the
computation and display of information will be subjects
of later sections of this manual. However, a plausible
SAINT representation of this situation is shown in Figure

.
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In this model, task 1 represents the pressing of both
the LAUNCH button and the GCV button. We have assumed that
it is not important to represent the pressing of the LAUNCH
and GCV buttons as two separate tasks. For the problem
being studied, it is only important that the time of launch-
ing the GCV be available. Thus, the pressing of the two
buttons is represented as a single task, where distribution
set 1 defines the time required to press both the LAUNCH
and GCV buttons.

The process of combining two or more tasks into a
single task is called aggregation. The use of aggregation
in modeling is an important concept. In general, the amount
of aggregation to be employed is dependent upon the appli-
cation of interest. This determination is by no means a
trivial problem. Aggregation should be used only if its
use will not significantly affect the values of the per-
formance measures to be derived from the model or the avail-
able information within the model.

In Figure 15, tasks 2 through 5 represent, respectively,
the operator pressing the COMPUTER button, the operator
pressing the STATUS button, the computer processing and
displaying the appropriate information, and the operator
reading and recording the time and deviation values. These
tasks require performance times defined by distribution
sets 2, 3, 4, and 5, respectively.

Upon the completion of task 5, a conditional-take
first branching operation is performed. If the present
value of simulated time is less than or equal to 50, the
GCV operator will continue monitoring and recording. After
time 50, monitoring of the GCV is discontinued and the
simulation is ended.

Summarx

The following SAINT modeling concepts were presented
in this section. If you do not understand these concepts,
re-read the section.

1. The basic element of SAINT is a task, repre-
sented by a node.

2. Tasks are related to one another by precedence
relations, represented by branches.

3. The combination of tasks and precedence rela-
tions is a network, an abstract representation
of a system.
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A SAINT task is divided into three sections:
task input, task description, and task output.

Each task in a network is identified by a
unique task number.

The input side of a task specifies the

number of predecessor tasks, identified by
the precedence relations (branches) that

must be completed before the task is released.

SAINT requires two values for the specifica-
tion of predecessor requirements: the number
for first release and the number for subse-
quent release.

A source task has no predecessor requirements
for first release. Source tasks are auto-
matically released at the beginning of a sim-
ulation.

The task description portion of a SAINT task
contains parameters associated with task per-
formance and statistics collection.

Each row of the task description contains a
specific type of information, identified by
an alphanumeric task description code.

An alphanumeric label can be specified for
each task, identified by the task description
code LABL.

Task duration can be a constant, a sample from
a probability distribution, or a value ob-
tained from a user-written subprogram.

Probability distributions are described in
distribution sets, identified by a unique
distribution set number.

The task description code for task duration
is TIME.

The alphanumeric symbol DS indicates that
task performance time is a sample from a
distribution set.

The alphanumeric symbol SC indicates that
task performance time is a scaled constant
(a constant divided by a scale factor
specified on input).
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The shape of the output side of a SAINT task
represents a branching operation, the means
by which branches emanating from a task are
selected.

Deterministic branching, represented by a
semi-circle (D), selects all branches.

Probabilistic branching, represented by a
triangle (> ), selects a single branch
probabilistically.

Conditional-take first branching, represented
by a truncated triangle (|)), selects the
first branch for which the specified condition
is satisfied.

Conditional-take all branching, represented
by a rectangle ([]), selects all branches
for which the specified conditions are
satisfied.

A task whose completion could cause the end
of a simulation is a sink task.

The process of combining two or more tasks
into a single task is aggregation.
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SECTION III

RESOURCES ASSOCIATED WITH TASKS

In the last GCV model presented (Figure 15), an operator
and a computer were required to perform tasks. However, since
all tasks in that model were released sequentially, the per-
formance of tasks by the operator and computer was dictated
solely by the task release requirements specified. Thus, the
operator and computer were implicit components of the model.
In order to make the operator and computer explicit components
of the model, we identify them as resources.

Definition of a Resource

What is a resource? 1In SAINT, a resource is defined as
any non-consumable commodity (equipment, operator, etc.) that
is required for the performance of one or more tasks.

When resources are included in a SAINT model, there are
two requirements which must be satisfied before a task can be
performed. First, as indicated in the previous section, a
specified number of predecessor tasks must be completed before
the task is released. Second, the resources required to per-
form the task must be available. If the resources are avail-
able, then they are set to work performing the task. If the
resources are not available, i.e., they are busy performing
other tasks, the scheduling of task performance must be de-
layed until they become available.

In the previous examples presented, the operator could
have been modeled explicitly as a resource. However, because
no tasks were competing for this operator and because we had
not introduced the concept of a resource, the operator was
not defined as a resource. With the introduction of resources,
we can illustrate the procedures for including resources in
a network description. An important advantage of using re-
sources in one's model is the automatic calculation of the util-
ization of each resource by SAINT. However, for each task in
the network, we must decide which resources are required for
performance (each resource is identified by a unique number).

For the latest GCV example, define resource number 1 as
the computer and resource number 2 as the operator. From
Figure 15, we can see that task 1 (the operator launching the
GCV) will require only the operator for its performance.
Similarly, task 2 (the operator requesting the computer) re-
quires only the operator for its performance. However, task
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3 (inputting the status request) requires the interaction of
both the operator and the computer. Task 4 (processing the
GCV deviation) is performed solely by the computer. Task 5
(recording the GCV deviation) requires only the operator.

| & Lastly, task 6, which ends simulation, requires neither the
operator nor the computer for its performance.

For this model we could have decided that we wanted to
compute the utilization of the pencil that the operator uses
in recording a GCV deviation or the keyboard through which
the operator makes requests. However, one need only define
as resources those items which may cause delays in the sched-
uling of task perfromance due to resource unavailability or
those items whose utilization is of significant interest.
The selection of the resources to be included in a model is
based on the analyst's description of the system and the art
of knowing what is important. These decisions are based in

[ part on the intended use of the model. The capability to
x) make good decisions identifies the experienced analyst.

Assignment of Resources to Tasks

The assignment of resources to tasks for our GCV system
is presented in Figure 16. The task description portion of
! the task symbol is used to specify the resources associated
with the task. The task description code for resources asso-
ciated with the task is RESR. In the right-hand portion of the
resource specification appears the resource requirement code
for the task and the resource associated with the task.

What is the resource requirement code? It specifies the
method by which SAINT assigns resources to tasks after the
tasks have been released. There are two possible methods for
assigning resources to tasks:

AND All resources specified (if any) are required for
the performance of the task;

' OR One of the resources specified is required for the
performance of the task.

The method of resource assignment that we select directly
affects the conditions under which the task is performed.

An AND requirement stipulates that all of the resources
associated with the task must be available before the task
can be started. To illustrate this concept, again consider
Figure 16. The operator (resource 2) and the computer (re-
source 1) are assigned to the task labeled STATUS (node 3)
by prescribing the AND resource requirement code. Since we
know which specific resources are to perform which specific
tasks, we are able to use the AND method.
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Now consider the situation involving two operators in
the GCV system. Both of these operators are situated in
front of CRT consoles connected to the computer. Suppose
operator 1 is assigned all monitoring activities, but either
operator can perform the launch operation. If we define
operator 2 as resource number 3, we can model this situation
as depicted in Figure 17. The only difference between this
model and the model in Figure 16 is that for task 1, we now
use an OR specification for the resource assignment and list
both resources 2 and 3. This specification allows either
resource z or resource 3 to perform task 1, since an OR task
is performed by one of the associated resources. The first
resource available to perform the task will do so. If two
or more resources become available at the same time (as is
the case at the beginning of our model), the resource that
performs the task is selected on a random basis. This implies
that if we run a simulation of the SAINT model depicted in
Figure 17, on the average resource 2 will perform task 1
502 of the time, while resource 3 will perform task 1 the
other 50% of the time.

Resource Utilization Reports

Resource utilization statistics for selected iterations
can be obtained from SAINT as well as a summary over all
iterations. To illustrate these options, 100 iterations
of the network model in Figure 16 were performed. The
resource utilization report for iteration 1 is shown in
Figure 18. For each resource in the model, the total
time busy/idle and the fraction of time busy/idle are re-
ported.

The statistical summary of resource utilization over
the 100 iterations performed is shown in Figure 19. The
report includes the mean, standard deviation, and minimum/
maximum values observed for both busy and idle time for
each resource in the model.

Summary

The following SAINT modeling concepts were presented
in this section. If you do not understand these concepts,
re-read this section.

1. A resource is any non-consumable commodity
(equipment, operator, etc.) that is re-
quired for the performance of one or more
tasks.
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When resources are included in a SAINT model, }
a second requirement must be satisfied before

the task can be performed. After the task

is released, all required resources must be

available (not performing other tasks).

If the required resources are not available,
the scheduling of task performance is delayed
until they do become available.

SAINT automatically collects and reports

the utilization of each resource included

in a model.

Each resource is identified by a unique
number.

The task description code for resources
associated with a task is RESR.

The right-hand side of the RESR row con-
tains the resource requirement code and a
list of resources, identified by number,
associated with the task.

The resource requirement code specifies

the method used by SAINT to assign the
associated resources to a task after it

has been released. The two possible methods
are:

AND All resources specified (if any)
are required for task performance.

OR One of the resources specified
is required for task performance.

If the OR specification is selected and two
or more resources are available, the assign-
ment of a resource to perform the task is
made on a random basis.
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SECTION IV

INFORMATION ATTRIBUTES

In the previous section, we constructed a model which
represents the launch of a GCV by one or two operators followed
by the monitoring and reporting of the GCV flgiht status by
a single operator until mission time reaches 50. Instead of
continuously monitoring the flight of one GCV, suppose we
launch a series of two GCVs and determine the deviation from
their flight paths after they have flown approximately 50
time units. Operator 2 launches the two GCVs and operator 1
monitors and records the deviation of these GCVs after they
have flown for at least 50 time units. In order to keep our
network manageable, assume that the computer is activated
automatically whenever operator 1 performs the monitoring
task. In this case, it is no longer necessary for us to
treat the computer as a resource of the system. For con-
venience, we redefine resources 1 and 2 as operators 1 and
2, respectively.

Description of a New GCV Model

The model for this new system is depicted in Figure 20.
Task 1 represents the launch of the first GCV. Task 2 repre-
sents the launch of the second GCV. To perform these tasks,
only operator 2 is required. Both task performance times are
governed by distribution set 1. Task 3 represents the 50 time
unit delay before operator 1 first requests the status of a
GCV. Thus, its performance time is 50 time units. Neither
resource 1 nor resource 2 are required to perform task 3. Task
4 represents an aggregation of operator 1 requesting the status
of the GCV, the computer computing and displaying the deviation
of the GCV, and the operator recording this information. Here,
we have made the assumption that the operator is required to
wait at the terminal for the display and cannot perform other
operations during this time. The time to perform this task is
now defined by distribution set 2. Task 5 causes the simulation
to end after the status of both GCVs has been recorded.

Because we wish both GCVs to have their status recorded,
we do not perform task 5 until both GCVs have had operator 1
monitor and record their deviation. To accomplish this, we
set the number of predecessor completions required for the
first release of task 5 to 2.

Information Flow

On the surface, the model described above seems to

51

i i




*MOTJ uoT3ewIojul buTr3erlsniiI [SPOW INIVS °0Z 2InbTd

=, z ;///
SaNVY e |
4 ; 1:a ds:| 1

072S[ dawWIlL z Z'sd| aWixz T
doIs| TavI SNIYIS Q9ooad| 19wl
o~
n
T
€ 7
0S‘2S| daWIL 1
IHOITd | 14yl
z Z'ANY| ¥S™| T Z:aN¥ | ¥sm | T
p - | HWII T T 1°sd qNIL 0
ZF HONNWI| a9y T# HONOYI | 19v1

. 1 .
e dle el v i .hil.ib— " G 8 3 oin o




represent the situation desired. However, there is no indica-
tion in the network that the two performances of tasks 3 and 4
are different in any way, even though they are being performed
for different GCVs. Essentially, the significant question is:
At task 4, how does operator 1 know which GCV he is considering?

From the networks we have described, we can see that there
appears to be a flow in the network dictated by the branching
from task to task. This leads us to ask: Is there anything
flowing between tasks, and if so, what is it? The answer to
this question is that information 1is flowing between tasks.
The information flow in all the previous examples has only
been used to identify successors to the task just completed.
However, in this case, we can see that we may want to pass
additional information along the branches, that is, we want
to inform the SAINT model which task is to be performed next
and for which GCV. Specifically, we would like to tell the
operator at task 4 which GCV is to be monitored. Why? Sup-
pose that we have a way (which we will explain later) of
modeling GCV flight using their equations of motion. 1In that
case, when operator 1 at task 4 determines and records the
status of the GCV, it will be necessary for the model to
determine which GCV is being monitored so that the appropri-
ate flight equations can be used to compute the deviation
value.

Information Packets

In SAINT, information is organized into packets, with
each information packet containing attributes. Attributes
characterize items flowing through the network, signals being
processed by the network , or any other concept relating to
network flow. As an example, consider the GCVs being modeled
in our system. Attributes such as wing span and thrust char-
acteristics could be included in the information packet asso-
ciated with each GCV.

At the start of the simulation, information packets are
created at all source tasks. The number of attributes con-
tained in each packet is specified on input. When a task
is completed, the information packet associated with that task
is transmitted along each precedence branch selected by the
branching operation. For example, if branching is determinis-
tic, the information packet will be sent along all branches
emanating from the completed task. 1If a task has probabilistic
output, then the information packet will only be sent along
the single branch selected. If the task calls for conditional
branching, then the information packet will be sent along all
branches selected. This process continues until all required
sink tasks have been completed.
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Assignment of Information Attribute Values

Assignments of information attribute values are made at
the tasks of the network through an assignment mechanism.
This assignment mechanism allows us to assign a constant value
or a value sampled from a probability distribution to any
attribute of the information packet that is currently at the
task.

In our example, suppose we wish to define information
attribute 1 as the GCV number. At task 1, which represents
the launch of GCV 1, we would assign information attribute 1
the value of 1. This value will then be associated with the
information packet for the remainder of the simulation (unless
it is changed at a subsequent task).

In the model shown in Figure 21, two deterministic
branches emanate from task 1. Thus, two information packets
will be created when task 1 is completed. Both will have
information attribute 1 equal to 1. This first packet will
proceed to task 2, indicating that the first GCV has been
launched and that the second GCV can now be launched. The
second packet will proceed to task 3 so that the GCV described
by information attribute 1 (1) can start its 50 time unit flight.

At the start of task 2, we reassign the value of informa-
tion attribute 1 in the arriving packet. It is assigned a
value of 2 to indicate that this packet will now be associated
with the second GCV. This reassignment is performed only for
the one packet that arrived at task 2. Therefore, we now have
two distinct information packets in our model, one represent-
ing each GCV. The packet representing GCV 2 will flow from
task 2 to task 3 after the GCV is launched (task 2 is completed).
The assignment mechanism that we employ for the above process
is depicted in Figure 21.

The task description code for an assignment made at a
task is ATAS (attribute assignment). In the right-hand side
of this assignment specification appears the description of
the assignment. Assignments may be made at any of three points
in time relating to the task (those in Figure 21 were selected
arbitrarily):

REL The release of the task

STA The start of the task. Note that the task may be
released and not started due to the unavailability
of resources at the time of release.

COM The completion of the task.

Only one assignment point can be specified for each task.
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The second specification required for an attribute assign-
ment is the attribute type. In this case, since we are inter-
ested in information attributes, the specification is IA fol-
lowed by the attribute number that will be assigned a value.
(SAINT allows the assignment of values to other types of attri-
butes. These will be explained in later sections of this man-
ual.) The last specification required for attribute assign-
ments is the method for assigning the value to the information
attribute. This method is identical to the specification for
the task time as presented previously. Thus, the assignment
of a value to an information attribute may be based on a dis- |
tribution set or it may be based on a scaled constant (See i
Figure 21 for an example of the latter.)

Information Choice Mechanism

As we have shown in previous discussions, each task in a
SAINT network has a certain number of requirements, or pred-
ecessor task completions, which must be satisfied before the
task can be started. Now we see that accompanying each satis-
fied requirement is an information packet which was associated
with a predecessor task. By design, a SAINT task can only have
one information packet associated with it. Thus, for tasks
with multiple predecessor requirements, a decision must be
made to determine which incoming information packet should be
saved. This decision is made by making use of the information
choice mechanism for the task. The information choice mechanism
1s specified on the task symbol. There are four decision modes
which are available for use with the information choice mech-
anism:

FIR Retain the information packet accompanying the
first satisfied requirement.

LAS Retain the information packet accompanying the
last satisfied requirement.

BIG Retain the information packet with the biggest ,
value in a given information attribute.

SMA Retain the information packet with the smallest
value in a given information attribute.

If the incoming information packet satisfies the requirements
of the decision mode, it is saved. Any previously saved in-
formation packet will no longer be saved. If the incoming
information packet does not satisfy the decision mode require-
ments, then it is not saved. When all predecessor requirements
have been satisfied, the task will have a single information
packet associated with it.
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Each task in a SAINT network having multiple predecessor
requirements to satisfy should be assigned a decision mode
for use by the information choice mechanism. If no decision
mode is prescribed by the user on input, decision mode LAS is
selected as a default condition, 0

The representation of the information choice mechanism
on the task symbol is presented in Figure 22. The task
description code for the information choice mechanism is INCM.
In the right-hand section of the row for the information
choice mechanism, we enter the information choice mode we
have selected. 1In Figure 22, task 1 retains the information
packet accompanying the first satisfied requirements; task 2
retains the information packet accompanying the last satisfied
requirement; task 3 retains the information packet with the
biggest value of information attribute 1; and task 4 retains
the information packet with the smallest value in information
attribute 2. An example of the significance of the information
choice mechanism will be illustrated in a later section of
this manual.

Summary

1. Information flows from task to task in a manner dic-
tated by the precedence relations.

2. Information is organized into packets, with each
information packet containing attributes.

3. The packets flowing through the network are differ-
entiated by the values of information attributes.

4. At the start of a simulation, information packets
are created at all source tasks.

5. The number of attributes contained in each information
packet is specified on input.

6. When a task is completed, the information packet asso-
ciated with that task is transmitted along each pre-
cedence branch selected by the branching operation.

7. Assignments of information attribute values are made
at the tasks of the network.

8. The task description code for an attribute assignment
is ATAS.
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Figure 22. SAINT Mode! Illustrating Information
Choice Mechanism Specifications.
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The description of the assignment appears on the
right~hand side of the ATAS row.

Attribute assignments at a task can be made at the
release of the task, at the start of the task, or at
the completion of the task.

To make an information attribute assignment, the
specification IA is used, followed by the information
attribute number that will be assigned a value.

The values of information attributes may be assigned
as constants or samples from a distribution set, in
the same manner as task duration.

A SAINT task can have only one information packet
associated with it.

The information choice mechanism determines which
incoming information cket should be saved for a
task with multiple preuecessor requirements.

The information choice mechanism can take one of
four decision modes:

FIR Retain the packet accompanying the first
satisfied requirement.

LAS Retain the packet accompanying the last
satisfied requirement.

BIG Retain the packet with the biggest value
in a given information attribute.

SMA Retain the packet with the smallest value
in a given information attribute.

If no decision mode is prescribed by the user SAINT
selects LAS as the default condition.

The task description code for the information choice
mechanism is INCM.

In the right-hand section of the INCM row, we enter
the decision mode desired. '
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SECTION V

TASK STATISTICS

SAINT is a simulation language designed to be used for
the study of systems that contain resources, equipment, and
environmental constraints. In general, the most common
SAINT usage is the study of resources performing tasks to
achieve a desired objective. For this reason, SAINT auto-
matically provides the user with utilization statistics
on all defined resources. However, we may also desire
some information on how the tasks in the network are per-
formed. While SAINT does not provide these statistics
automatically, it does provide a framework through which
an analyst can obtain any type of task statistic desired.

For any task in a SAINT network that is defined as a
statistics task, SAINT obtains estimatc. of the mean,
standard deviation, minium, maximum, and a histogram assoc-
iated with the statistical quantity to be observed. The
specification of the statistical quantity is fairly complex,
since SAINT provides a great deal of flexibility in the
specification of the statistics to be collected.

Defining a Statistical Quantity

Essentially, the statistical quantity is defined by a
statistic type and a collection point. The types of sta-
tistics that can be collected are:

FIR The time of the first occurrence
ALL The time of all occurrences

BET The time between occurrences

NUM The number of occurrences

After reading the above, the logical question is: What is
an occurrence? An occurrence is defined as one of the
following:

REL The release of a task
STA The start of a task

COM The completion of a task
CLR The clearing of a task

(At this point, we have yet to define task clearing. Clear-
ing will be defined later, and it is sufficient to simply
note here that statistics can be collected at task clear-
ings.)
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If we combine the definitions for statistic type and
occurrence time, we can see that the following are possible
statistics we can collect on tasks:

FIR REL The time of the first release of a task
ALL COM The time of all completions of the task
BET STA The time between starts of a task
NUM CLR The number of clearings of a task

In fact, there are sixteen possible combinations of statis-
tics that can be collected at any one task. However, only
one of the combinations can be requested for any one task
in the network. The following table lists all possible
statistical collection combinations.

RELEASE START COMPLETION CLEARING
FIRST FIR REL FIR STA FIR COM FIR CLE
ALL ALL REL ALL STA ALL COM ALL CLE
BETWEEN BET REL BET STA BET COM BET CLE
NUMBER NUM REL NUM STA NUM COM NUM CLE

Identifying a Statistics Task

For our GCV model in Figure 21, we would like to collect
statistics on the time between initiation of GCV flight
(task 3), the time that the launch process for GCV 2 begins
(task 2), and the number of times GCV status is recorded
(task 4). The task description code for task statistics is
STAT. The definition of the statistic to be collected is
placed on the right-hand side of the STAT row. Figure 23
displays the GCV model with the statistics collection re-
quirements included. This model will collect and report
statistics on the time of the first start (FIR STA) of
task 2, the time between releases (BET REL) of task 3, and
the number of completions (NUM COM) of task 4.

Interval Statistics

In examining the SAINT statistic collection procedure
described above, we note that the available statistics do
not represent any interactions or relations between tasks.
For exampleé, suppose that we wanted to know how long it
took for operator 2 to launch both GCVs. 1In this case, we
would like to know the interval of time between the start
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of task 1 and the completion of task 2. Because this inter-
val of time type of statistic is of interest, SAINT allows
us to specify interval (INT) statistics in addition to
number, between, first, and all statistics.

As with the other statistics, interval statistics may be
collected at the release, start, completion, or clearing of
any task in the network. The specification of interval
statistics at a task requires a reference time to be sub-
tracted from the current time. The reference time is called
the mark time and its value flows through the network with
the information packet. The resultant value of the subtrac-
tion is the interval of time that is collected.

Assigning Mark Times

Mark times are values of time that are carried with the
information packets as they flow through the network. We
can, at various points in the network, assign the mark times.
The possible assignment points are:

FPC The first predecessor completion of a task
(e.g., if three predecessors were required,
time would be marked upon completion of
the first predeecessor)

REL The release of a task

STA The start of a task

COM The completion of a task

We can obtain information on the time it takes an informa-
tion packet to flow from one point in a network to another
by specifying a mark at the first point and collecting an
interval statistic at the second. For the example where we
desire the time to launch both GCVs, we would mark at the
start of task 1 and collect interval statistics at the
completion of task 2. This is shown in Figure 24. Note
that the task description code for marking is MARK and the
right-hand side of the row for marking contains the occur-
rence time at which marking for this task is to take place.

In SAINT, marking and statistics collection may be per-
formed at the same task. Thus, we may mark at the first
predecessor completion of a task and collect interval sta-
tistics at the same task's completion. We may also mark
at the release of the task and collect interval statistics
at the start of the task. This causes the collection of a
statistic representing the time the task awaits a resource
before it is started. With the ability to mark and to col-
lect first, all, between, number, and interval statistics
at various points for each task, SAINT provides the capa-

bility to abstract a great deal of information from a net-
work simulation.
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Statistics Task Reports

] Statistics task reports can be obtained in both graphi-
cal and tabular form. These reports may be obtained for
particular iterations or summarized over all iterations. ?
To illustrate these reports, 100 iterations of the SAINT i
model in Figure 23 were performed.

In the graphical form, a histogram is used to portray :
the data collected during the simulation. The histogram |
of the average time between release statistic for task 3
(Flight) over the 100 iterations is shown in Figure 25
Both the relative and cumulative frequency distributions
are plotted.

In the tabular form, the mean, standard deviation, and
minimum/maximum values observed are used to portray the
2 data. Figure 26 illustrates the statistic task report
= for the 100 iterations of the SAINT model in Figure 23

Summary

j The following SAINT modeling concepts were presented in
F | this section. If you do not understand these concepts, re-
! read this section.

| 1. For any task in a SAINT network that is defined
- as a statistics task, SAINT obtains estimates
3 of the mean, standard deviation, minimum,
maximum, and a histogram associated with the
statistical quantity to be observed.

2. The statistical quantity is defined by a sta-
tistics type and a collection point.

3. The available statistics types are:

- FIR The time of first occurrence
1 ALL The time of all occurrences
BET The time between occurrences
INT The time interval between the mark
time and the collection point
NUM The number of occurrences

4. The available collection voints are:

REL Release of the task
STA Start of the task

coM Completion of the task
CLR Clearing of the task
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5. The task description code for task statis-
tics is STAT.

6. In the right-hand side of the STAT row,
o the statistic desired is defined.

7. The mark time associated with interval
(INT) statistics is associated with the
information packet.

8. Mark times can be assigned at any one of
four points in time relating to a task:

FPC The first predecessor completion

REL The release of the task |
STA The start of the task f
COM The completion of the task 1

E | 9. The combination of mark time and interval
statistics allows the collection of sta-
tistics on the time required for an infor-
mation packet to flow from one point in a
network to another.

10. The task description code for marking time
is MARK.

PR S oo e

11. The right-hand side of the MARK row contains
the time at which the marking is to take
place.

12. Marking and statistics collection may be
performed at the same task.

68
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SECTION VI

TASK PRIORITY

Suppose that instead of requiring operator 2 to launch
the first GCV and then launch the second GCV, as dictated by
the precedence relations of Figure 24, we don't specify a
task sequence but only require him to launch both GCV 1 and
GCV 2. In this case, both task 1 and task 2 will be source
tasks that have branching from them to task 3. This situation
is illustrated in Figure 27. However, suppose that we still
want to retain control over which task is performed first. 1In
some cases, we would like task 1 to be performed before task
2. In other cases, perhaps we would like task 2 to be per-
formed first. Thus, we would like some way of informing re-
source 2 that one task is more important than another task.
This is accomplished through the use of task priority.

Task Scheduling

Fach task in a SAINT network can be assigned a priority.
When two tasks require the same resource at the same time, the
resource will decide which task to perform on the basis of
priority. 1In general, the task with the highest priority will
be performed first. In our situation, if we assign a priority
of 1.0 to task 1 and a priority of 0.5 to task 2, operator 2
will launch the first GCV prior to launching the second. On
the other hand, if the priorities are reversed, then the oper-
ator will launch the second GCV first. The use of priorities
in the SAINT model allows us flexibility in determininc the
way the system operates.

Assignment of Task Priority Values

The priority specification for a task, as given in
Figure 27 , is presented in the task description portion of the
task symbol. (More complex task priority concepts will be dis-
cussed in Section XIV.) The task description code for task
priority is PRTY. The priority we assian the task is then
given in the right-hand side of the row defining task priority.
In Figure 27, we have defined the priority of task 1 to be
0.5 and the priority of task 2 to be 1.0. Thus, for the case
presented, GCV 2 will be launched first and GCV 1 will be
launched second (note that we no longer collc t an interval
statistic at task 2, since this task is no longer a predecessor
task to task 1).
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Task Priority and the Information Choice Mechanism

Now, in addition to the statistics we are already col-
lecting, suppose that we are interested in determining the
interval of time between the time of launch of the last GCV
to the completion of the mission. We might say, "Simple
enough, we simply mark at the completion of task 1 and collect
interval statistics at the completion of task 5." True, but
we must now be concerned with the information packet that is
retained by task 5. Remember that two predecessor completions
are required for the release of task 5. The second GCV will
cause the first predecessor completion of task 5 while the
first GCV will cause the second predecessor completion of task
5. Since we are marking at task 1, we would like to retain
the information packet associated with task 1, that is, the
information packet associated with GCV 1.

In this case, we have two options of specifying the in-
formation packet to be kept by task 5. First, since we know
that the information packet that we desire (that of GCV 1)
will cause the second release of task 5, we can simply use
the LAS mode for the information choice mechanism. Second,
since we know we want to retain the packet of GCV 1, we can
specify that we would like to retain the packet with the
smallest number in the information attribute 1 (SMA,l). Using
the latter specification, the GCV model that results appears
in Figure 28. Naturally, if we change the priorities of tasks
1l and 2, we must also be concerned with a change in the infor-
mation choice mechanism at task 5 to insure that the statis-
tic produced by SAINT is the statistic that we desire.

Summarx

The following SAINT modeling concepts were presented

in this section. 1If you do not understand these concepts,
re-read the section.

1. Fach task in a SAINT network can be assigned a
task priority.

2. When two or more tasks require the same resource at
the same time, the resource will perform the task
with the highest priority first.

3. The task description code for the task priority
is PRTY,

4., The right-hand side of the PRTY row contains the
numeric value of the task priority.
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SECTION VII

RESOURCE ATTRIBUTES

Up to this point, we have included various types of re-
sources in our SAINT models, such as human operators and equip-
ment (e.g., computers). The tasks for which resources were
specified could only be performed if the required resources
were available, that is, they were not working on other tasks.
However, we had no means for differentiating among the re-
sources other than by resource number, although they can be
uniquely described by a set of characteristics. Human opera-
tors can be described by height, weight, level of training,
etc. Characteristics of computer equipment include processing
speed and available storage capacity. Thus, the characteris-
tics of a resource can affect task performance. In SAINT,
resource attributes, designated RA, are the means by which we
assign characteristics to resources. Only those characteris-
tics which affect task performance need be included as re-
source attributes in a model.

Description of Resource Attributes

Each resource included in a SAINT model is described by
a set of attributes associated with it. These attributes are
organized into packets, with each packet characterizing a
particular resource. At the start of a simulation, resource
packets are created for each resource included in the model.
Each packet contains attributes which uniquely describe the
associated resource. Each packet remains with its associated
resource throughout the simulation.

Depending on the type of resource, resource attributes
can represent many different characteristics. If the resource
is a hammer, we may assign resource attributes describing its
length, its weight, whether or not it has a claw, or perhaps
what material it is made of. On the other hand, if the
resource is a computer, it may be described by its processing
speed or the amount of available memory. In many cases, as
in the GCV system, the resource is a human operator. For an
operator, we might include his weight, his height, or his
level of intelligence.

Resource Attributes for the GCV Svstem

In the real world, some operators are faster or slower
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than others. For illustrative purposes, let us assume that

we can assign a numeric value to the relative speed of opera-
tors. This "speed factor" defines the speed of an operator's
performance in relation to a "normal" operator. Thus, if an
operator has a speed factor of 0.9 and the "normal" operator
performs a task in ten minutes, then our operator will perform
the task in nine minutes:. Similarly, if his speed factor were
1.1, he would perform the task in eleven minutes.

In order to demonstrate the use of resource attributes
in a SAINT model, assume that only one operator is required in
our GCV model, and that he performs the launch and monitoring
operations for both GCVs. Our objective is to simulate this
system using operators with varying speed characteristics in
order to determine the effect of this characteristic on the
time that it takes to complete the entire mission. Thus, we
will collect interval statistics from the start of the simula-
tion until the end of the simulation. By comparing the statis-
tics generated based on operators having different speed fac-
tors, we can determine the effect of operator speed on mission
performance.

Assignment of Resource Attribute Values

In order to perform this experiment, we must first define
speed as an attribute of the resource. How do we do this?
The attribute assignment mechanism allows us to selectively
assign or change the values of resource attributes at any task
included in our model. 1In addition, assignments to individual
attributes of any resource included in the model can be made
prior to the start of the simulation. For a resource attribute
assignment at a task, it is not necessary for the resource
to be working on that task in order for assignments to be made
to one or more of its attributes.

As with information attributes, we have three options in
making a resource attribute assignment at a particular task
in the network. Assignments can be made at the release (REL)
of a task, at the start (STA) of a task, or at the completion
(COM) of a task. However, if more than one type of attribute
assignment is made (information or resource) at a particular
task, the point of assignment option applies to all attribute
assignments. In other words, all attribute assignments made
at a task take place at the same point in relation to task
performance.

For a resource attribute assignment, as with the infor-
mation attribute assignment, the ATAS description code is used.
Four pieces of information are required to specify a resource
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attribute assignment. These are a resource nurber, an attri-
bute number, a function type, and a parameter specification.
The resource number, which follows the RA specification in
the right-hand row of the assignment, defines the resource
for which the assignment is to be made. The resource attri-
bute number, which follows the resource number, indicates the
attribute of the specified resource's attribute packet to
which the assignment is to be made. For example, RA 4-17
would be used in specifying assignment to attribute 17 of
resource 4. Like information attribute assignments, the func-
tion type is used in conjunction with the parameter specifica-
tion in order to generate the value to be assigned to the at-
tribute. The parameter specification may either indicate

the distribution set which contains the parameters for the
assignment, or it may be used as a parameter in the assign-
ment function. The function type and parameter specification
are the same concepts used when specifying task duratica.
Thus, the SAINT user can perform an assignment using any of
the available SAINT distributions or functions.

SAINT Model of the GCV System

Figure 29 presents the SAINT model for our newly hypoth-
esized GCV system. The single resource included in the model
is required to perform tasks 1, 2, and 4. The statistic of
interest is the time interval from the start to the completion
of the mission. Thus, we mark at the release of task 2 (task
2 will be the first task performed due to its higher priority)
and we collect an interval statistic upon the completion of
task 5. Since we want Lo use the mark time assigned at task
2 in our statistics calculations, we employ the information
choice decision mode BIG,l. Finally, we assign a value of
0.9 to attribute 1 of resource 1 at the release of task 2
(distribution set 3 is defined as a constant distribution
with a value of 0.9). In our model, we have now defined re-
source attribute 1 as the speed factor for resource 1.

We have now built a model that can be used to analyze
the effect on mission performance of operators with different
speed factors. However, in order to continue with the experi-
ment, we must specify the effect of this speed factor on
task performance. The method for doing so is the subject of
the next section.

Summarz

) ?he following SAINT modeling concepts were presented
in this section. If you do not understand these concepts,
re-read the section.
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10.

11.

12.

Resource attributes are the means by which charac-

teristics are assigned to resources.

Resource attributes are organized into packets,
with each packet characterizing a particular resource.

At the start of a simulation, resource packets are
created for each resource included in the model.

Each packet remains with its associated resource
throughout the simulation,

The attribute assigiinent mechanism is used to sel-
ectively assign or change resource attribute values
at any task in the network.

Assignments to resource attributes can be made prior
to the start of a simulation.

It is not necessary for a resource to be working on
a task in order for values to be assigned to its
attributes at that task.

Resource attribute assignments can be made at the
release (REL), start (STA), or completion (COM) of
a task.

All attribute assignments made at a task, regardless
of type, must be made at the same point in relation
to task performance.

The task description code for an attribute assignment
is ATAS.

To make a resource attribute assignment, the speci-
fication RA is used, followed by the resource number
and resource attribute number.

Values to be assigned to resource attributes are de-
termined by a function type and parameter specifi-
cation in the same manner as information attributes.
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SECTION VIII

MODERATOR FUNCTIONS

In our previous GCV models, the time required to perform
a task was either a constant or a sample drawn from a probabil-
ity distribution. However, as we have seen in the previous
section, task duration is not always solely dictated by the
value of the constant or the sample drawn from the designated
probability distribution. Thus, in order to fully represent
complex man-machine systems, it is often necessary to modify
task duration, as well as other task performance character-
istics, as a function of resource characteristics and/or sys-
tem status. 1In SAINT, any function that specifies an effect
on baseline task performance is defined as a moderator function.

Incorporating Moderator Functions in a SAINT Model

Subroutine MODRF is provided by SAINT in order for us to
define any number of moderator functions. If we wish to incor-
porate moderator functions in our model, we must code the mod-
erator function logic in subroutine MODRF in FORTRAN or a com-
patible language. All standard language conventions must be
observed. The form to be used in writing subroutine MODRF is
shown in Figure 30.

Subroutine MODRF is called automatically by SAINT for the
tasks that we specify at the time that those tasks are being
scheduled for performance (after resources have been assigned).
The subroutine has two arguments: MODFN is the number of the
moderator function to be applied; and NTASK is the task number
for which the moderator function is being called. A computed
GO TO statement can be used in order to transfer control within
subroutine MODRF to the appropriate moderator function code.

If more than one moderator function is to be applied to the
task, SAINT calls subroutine MODRF the required number of
times with the appropriate arguments.

Referring to Figure 30, assume that moderator functions
1l and 3 are to be applied to a hypothetical task 21. At the
time of scheduling task 21, SAINT executes the statement
CALL MODRF (1,21). Control is then transferred to subroutine
MODRF, the FORTRAN code beginning with statement 10 is executed,
and control is returned to SAINT. SAINT then executes the
statement CALL MODRF (3,21). Control is once again transferred
to subroutine MODRF, the FORTRAN code beginning with the state-
ment 30 is executed, and control is returned to SAINT. Task
21 is then scheduled for performance.

78
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SUBROUTINE MODRF (MODFN,NTASK)

Rk ke ke d ok ke ok ke ok ok

8 COMMON CARDS (if necessary)
LA SR LS RS

GO TO (10,20,30) ,MODFN

10 ** FORTRAN code for moderator function 1
RETURN

20 ** FORTRAN code for moderator function 2
RETURN

30 ** FORTRAN code for moderator function 3

RETURN
END

Fiqure 30. General Form of Subroutine MODRF,
Illustrating Three Moderator Functions.
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We may require information other than the moderator
function number and the task number in order to fully define
our moderator functions. For this purpose, we may include
SAINT labeled COMMON storage in subroutine MODRF. Two vari-
ables of importance that are located in SAINT COMMON storage
are TTIME and PFIRB. When subroutine MODRF is called, TTIME
contains the baseline task duration (the constant or sample
from a probability distribution) and PFIRB contains the prob-
ability of selecting the first branch specified upon comple- ‘
tion of task NTASK. Of course, the use of PFIRB is only ap- |
plicable when task NTASK required probabilistic branching.
Otherwise, PFIRB will be assigned a value of 1.0.

Moderator Function Status Specification

Each moderator function included in a SAINT model is
3 identified by a unique moderator function number. The total
F | number of moderator functions, as well as the initial status
: of each moderator function, is specified on input. Moderator
o functions can initially be either active or inactive. If a
: moderator function is initially active, it will be applied
to every task in the network until its status has been changed.
If it is initially inactive, it will not be applied to any
task until a change to active status is specified. Unless
; we specify otherwise, all moderator functions are assumed to
E | be initially inactive.

Changes to the status of any moderator function included
in a model can be made at any task in the network. These
changes can be permanent (until another status change is made
or the present iteration ends) or only for the task at
which the specification is made (following scheduling of the
task, the status of the moderator function returns to its
previous state). Status specifications made at a task, if any 1
are made, will override initial or previous specifications
if a conflict arises. The SAINT User's Manual describes
the procedure for specifying moderator function status.

Moderator Functions for the GCV System

For the GCV system described in the last section, we
require a moderator function that specifies the effect of
the speed factor (resource attribute 1) on the baseline task
performance times of tasks 1, 2, and 4, since each of those
tasks require resource 1. The network shown in Figure 31
illustrates the means by which we specify the moderator
functions applicable to each task. The task description code v
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for moderator functions that apply to a task is MODF. The
number (s) of the moderator function(s) that apply to the task
are then listed on the right hand side of the MODF row. For
our GCV example in Figure 31, we see that moderator function
1l is to be applied to tasks 1, 2, and 4.

The requirements of our model dictate that moderator
function 1 must be active for tasks 1, 2, and 4 only. We
can obtain this result by employing the following moderator
function status specifications:

1. Svecify moderator function 1 as initially inactive.

2. Activate moderator function 1 at task 1 for task 1
only.

3. Activate moderator function 1 at task 2 for task 2
only.

4. Activate moderator function 1 at task 4 for task
4 only.

Alternatively, we can achieve the same result by using the
following moderator function status specifications:

1. Specify moderator function 1 as initially active.

2. Deactivate moderator function 1 at task 3 for task 3
only.

3. Deactivate moderator function 1 at task 5 for task
5 only.

Either of the two status specification alternatives allow us
to incorporate the effect of moderator function 1 on tasks
l, 2, and 4, The selection of the most efficient method
depends upon the number and complexity of the moderator
functions as well as the size and complexity of the network
model.

Subroutine MODRF for the GCV Model

The FORTRAN code implemented in subroutine MODRF for the
required moderator function is shown in Figure 32. Subroutine
GETRA is used to obtain the value of the speed factor from the
attribute packet associated with resource 1. The arguments
to subroutine GETRA are the resource number (1), the resource
attribute number (1), and the attribute value (returned by
subroutine GETRA). Then, to obtain the desired moderator
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‘ SUBROUTINE MODRF (MODFN,NTASK)
1 (o
] COMMON /COM22/ TTIME,PFIRB
(o
C**** MODIFY TASK PERFORMANCE TIME BY SPEED FACTOR
c
CALL GETRA(1l,1,VALUE)
‘ TTIME=TTIME*VALUE |
i RETURN 'i‘
| END i
;
i
]
§ ]
i
3
; % 4
Figure 32. Subroutine MODRF for GCV System of Figure 25.
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function effect, we simply multiply TTIME (the baseline task
performance time) by VALUE (the value of the speed factor).
The new value of TTIME js used by SAINT as the time required
5 to perform the task. You will note that unlike the design
presented in Figure 30, the argument MODFN is not used in
our moderator function, since we have only one moderator
function included in the model.

Summary

The following SAINT modeling concepts were presented in
this section. If you don't understand these concepts, re-
read the section.

1. Any function that specifies an effect on a baseline
task performance is defined as a moderator function.

2. All required moderator function logic is coded in
E FORTRAN or a compatible language in subroutine MODRF.

: 3. Subroutine MODRF is automatically called by SAINT
\ for the task specified with the moderator function
E number and task number as arguments.

“, 4 . A computed GO TO statement is used to transfer control
 : within subroutine MODRF to the appropriate moderator
2 function code.

5. If more than one moderator function is to be applied
to a task, SAINT calls surbroutine MODRF the required
number of times with the appropriate arguments.

6. The SAINT COMMON variable TTIME is assigned the
value of baseline task duration prior to the call
to subroutine MODRF.

7. The SAINT COMMON variable PFIRB is assigned the
probability of selecting the first branch emanating
¢ from a task that requires probabilistic branching.
If a task does not require probabilistic branching,
PFIRB will be assigned a value of 1.0.

8. Each moderator function included in a SAINT model
is identified by a unique moderator function number.

9. The total number of moderator functions, as well as
the initial status of each moderator function, is
specified on input,
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Moderator functions can initially be either active
or inactive.

Changes to the status of any moderator function
included in a model can be made at any task in
the network.,

Changes to the status of moderator functions at a
task can be permanent or only for the task at which
the specification is made.

Status specifications made at a task will override
any previous specifications if a conflict arises.

The task description code for moderator functions
that apply to a task is MODF. The number (s) of
the moderator function(s) that apply to the task
are listed on the right-hand side of the MODF row.

85




SECTION IX

SYSTEM ATTRIBUTES

In previous sections, we have modeled the GCV system

in which one operator launches two GCVs and then records their
flight deviation after they have flown for at least 50 time
units. We have incorporated the capability to model different
operators performing these tasks through the use of a modera-
tor function and resource attributes. In addition, our model
records statistics on the length of time it takes the operator
to complete his required tasks. Although we have included the
characteristics of the operator in our model, we have yet to
include the characteristics of the GCV.

In many situations, it may be desirable to specify at-
tributes which are not directly applicable to an information-
oriented or resource-oriented characterization. These attri-
butes, being global in nature, do not flow through or move
about the network as information and resource packets do.
These attributes are characterized as system attributes, with
one set of system attributes being associated with the SAINT
model.

System Attributes for the GCV System

For our GCV system, we define four system attributes.
The velocity of GCV 1, 500 feet per second, is stored in sys-
tem attribute 1. The velocity of GCV 2, 500 feet per second,
is stored in system attribute 2. The headings of the two
GCVs are stored in system attributes 3 and 4, respectively.
GCV heading is defined in terms of radians with respect to a
due east reference (a heading of m/2 radians is a due north
heading, while a heading of 0 radians is a due east heading).
For this example, assume that both GCVs are heading due east.

Assignment of System Attribute Values

The number of system attributes included in a model, as
with information and resource attributes, is specified on in-
put. For this example, we specify four system attributes.

As with resource attributes, we have the capability to make
initial system attribute assignments if desired. We also have
the option of making system attribute assignments at any task

in the network. Like other attributes, system attribute assign-
ments can be made at either the release, start, or completion

of any task. However, remember that all attribute assignments
of any type made at a particular task are made at the same
point in relation to task performance.




To make a system attribute assignment, the ATAS task
description code is used with the RES, STA, or COM assignment
point specification. The alphanumeric symbol SA is used to
identify a system attribute assignment. The assignment speci-
fication includes the system attribute number to be assigned
a value, as well as the function type and parameter specifi-
cation to be used in determining the assignment value.

The system attribute assignments described above are
illustrated in Figure 33, System attributes 1 and 3, repre-
senting the velocity and heading of GCV 1, are assigned values
at task 1. Likewise, system attributes 2 and 4 are assigned
values at task 2.

Information, Resource, and System Attributes

With the presentation of system attributes in this sec-
tion, we now have access to three distinct classes of attributes:
information, resource, and system. While each is related to
a network model in a different manner, each has a complete
set of parallel assignment and usage capabilities.

We have now defined the characteristics of the resource
in our model, as well as the characteristics of the GCVs.
However, we have yet to see how the characteristics of the
GCVs are used to model the flight of the GCVs now represented
by task 3. The model of GCV flight is discussed in the next
section.

Summary

The following SAINT modeling concepts were presented in
this section. If you do not understand these concepts, re-
read the section.

1. Attributes which are not directly applicable to an
information-oriented (flow through the network) or
resource-oriented (move about the network) character-
ization are called system attributes.

2. A single set of system attributes is associated with
the SAINT model.

3. The number of system attributes to be included in
the model is specified by the user on input.

4. As with resource attributes, initial system attribute
assignments may be made.
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System attribute assignments can be made at the re-
lease, start, or completion of any task in the
network.

The ATAS description code is used with the RES, STA,
or COM assignment point specifications to designate
a system attribute assignment in the same manner as
information and resource attribute assignments.

The alphanumeric symbol SA is used to identify a
system attribute assignment.

The parameters of a system attribute assignment
include the system attribute number, and the
function type and parameter specification to be
used in generating the assignment value.

Three distinct classes of attributes (information,
resource, and system) are included in SAINT. While
each is related to a network model in a different
manner, each has a complete set of parallel assignment
and usage capabilities.




SECTION X

STATE VARIABLES

When using SAINT, we have the capability to model
variables whose values change continuously over time. These
variables, called state variables, are descirbed by algebraic,
differential, or difference equations that govern their time-
dependent behavior. With the incorporation ot methods for ]
modeling state variables, SAINT offers those capabilities most
often associated with analog or continuous simulation. More-
over, SAINT also provides the constructs for modeling inter-
actions between state variable and task-oriented model com- |
ponents. These concepts will be the subject of this and ]
following sections. |

3 GCV_Flight

Let us assume that we are modeling the flight of GCVs as
a linear path from their launch point to their final destin-
ation, as depicted in Figure 34. The initial position, in
X and y coordinates, of the GCV is (xg,yg). The final posi-
tion of the GCV is (Xt,y¢) - Thus, the x-position of the GCV
at time t(xy) is equal to x , the x-position of the GCV at
time s, plus the distance that the GCV flew in the x direction
| in the time interval between s and t. We now rely on basic
trigonometric functions to model the GCV's position over
time, given its speed and heading. If h represents the head-
ing of the GCV relative to the x-axis, then xt will be equal
to Xg plus the cosine of the heading h times the velocity v
of the GCV times the time interval (t-s). This relation is
described by the following equation:

X =xX_ % (cos (h) ®* v * {t=s))
t S
Similarly, the equation for the y-position of the GCV at
¢ time t is:

Yo ™ ¥, * (sin (h) * v * (t-s))

State Variable Modeling Concepts

Before presenting the SAINT representation of the GCV
flight equations described above, we must define a number of
SAINT state variable modeling concepts. First, we have said
previously that state variables are defined by writing the
difference or derivative equations that describe their time-
dependent behavior. These equations must be coded by the user

, 90




o T A Y G P o i N i B0 Tl e A e AN e b e " O OpTY P & ’
s s DRSS S L SR A U S oo 230 ke |

<

)

(xeryy

F | (xsrys)

Viansi o

Figure 34. Pictorial Representation of GCV Flight.
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in subroutine STATE. This subroutine must be written in
FORTRAN or a compatible language. Second, there are a number
of SAINT COMMON variables which are necessary in writing the
equations that describe our state variables. These variables,
included in SAINT labeled CCOMMON storage, are defined as
follows:

TNOW The time at which the state variables are being
computed and evaluated for acceptability (the
time at the end of the current time step).

TTLAS The time at which the values of the state
variables were last accepted (the time at the
beginning of the current time step).

DTNOW The time interval between calculations of
state variable values (TNOW-TTLAS).

SS(I) The value of state variable at time TNOW.

SSL(I) The value of state variable I at time TTLAS.

State Variable Definitions for the GCV Model

Now, we wish to model the flight of two GCVs in the x-y
coordinate plane. To do so, we define SS(1l) as the x-position
of GCV 1; SS(2) as the x-position of GCV 2; SS(3) as the y-
position of GCV 1; and SS(4) as the y-position of GCV 2. The
values of the velocities and headings of the GCVs are contained
in system attributes, as described in Section IX. The state
variable information corresponding to this system description
is depicted on the network model in the manner shown in Figure
35 For each state variable included in the model, we give
the state variable number, the state variable label, its
defining equation in subroutine STATE, and its initial value
(to be discussed at the end of this section). You will note
that we have abbreviated the phrase "system attribute I"

By’ "SACL)".

Subroutine STATE for the GCV Model

In order to include state variables in a SAINT model,
we must write subroutine STATE. Subroutine STATE for the
state variable model component described by Figure 35 is
shown in Figure 36. Since the SAINT variables SS(+) and
SSL(+) are included in subroutine STATE, we are also re-
quired to include SAINT labeled COMMON block COM17. By doing
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SUBROUTINE STATE

C
COMMON /COM17/ Ss(100) ,SSL(100),DD(100) ,DDL(100) ,LLSVR(100,2)
C
C**** RETRIEVE VELOCITIES AND HEADINGS FROM SYSTEM ATTRIBUTES
C
CALL GETSA(1,Vl1)
CALL GETSA(2,V2)
CALL GETSA(3,H1)
CALL GETSA(4,H2)
C
C**** COMPUTE GCV X AND Y COORDINATES
C
SS(1)=SSL(1)+COS (H1) *V1*DTNOW
SS(2)=SSL(2)+COS (H2) *V2*DTNOW
SS(3)=SSL(3)+SIN(H1) *V1*DTNOW
SS(4)=SSL(4) +SIN(H2) *V2*DTNOW
C
RETURN
END

Figure 36. Subroutine STATE Using SS(:) Equations.
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so, the values of SS(*) and SSL(*) are communicated between
SAINT and subroutine STATE.

As stated above, we have assigned the values of the ve-
locities and headings of the two GCVs to system attributes.
It is necessary to retrieve these values from the appropriate
system attributes in order to define our state variables.
This retrieval is accomplished by using the user callable
subprogram GETSA, with the following arguments:

1. The number of the system attribute to be retrieved;
and

2. The value of the system attribute to be returned by
subroutine GETSA.

Following the four calls to subroutine GETSA, V1 will contain
the value of system attribute 1 (the velocity of GCV 1), V2
will contain the value of the velocity of GCV 2, Hl1l will con-
tain the heading of GCV 1, and H2 will contain the heading of
GCV 2. After we retrieve these values, the x-positions of
the GCVs (SS(1) and SS(2)) and the y-positions of the GCVs
(SS(3) and SS(4)) can be calculated.

SAINT automatically advances simulated time for us. In
defining our state equations, all we are required to do is
recognize the fact that the current position of the GCV is
equal to its last position plus the distance it has traveled
in the appropriate direction during the last interval of time.
Since SSL(°*) represents the value of the state variable at
the last time the state equation was updated and DTNOW repre-
sents the time since that update, the state equations given
in Figure 36, when evaluated, will provide the values of the
state variables that we require.

Modeling Using Derivatives of State Variables

An alternative to the representation of GCV flight
presented in Figure 36 involves the use of derivative equations.
SAINT uses a Runge-Kutta-England (RKE) algorithm to integrate
the equations of subroutine STATE that are written in terms
of derivative equations (8). To write the derivative equa-
tion representation of GCV flight, we use the following SAINT
COMMON variables:

DD(*) The value of the derivative of state variable
I at time TNOW.

DDL(+) The value of the derivative of state
variable I at time TTLAS.
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When equations are written using DD(+) variables, the RKE
algorithm integrates them to obtain the values of the cor-
responding SS(°*) variables. The RKE algorithm is capable of
solving a set of simultaneous first order ordinary differen-
tial equations. Thus, if we code the derivatives of our GCV
positions in subroutine STATE, we obtain the same values of
SS(*) as we did in our previous representation of the system.

The derivatives of the x and y positions of the GCVs are
the x and y velocities. Thus, the x-velocity of a GCV is rep-
resented by the following equation:

X' = cos (h) * v

Similarly, the equation for the y-velocity of a GCV is repre-
sented by:

y' = cos (h) *V

Now, if we wish to model GCV flight in terms of deriva- i
tive equations, we define DD(1l) as the x-velocity of GCV 1,
DD(2) as the x-velocity of GCV 2, DD(3) as the y-velocity of
GCV 1, and DD(4) as the y-velocity of GCV 2. Subroutine STATE ;
for this representation of our GCV system is given in Figure 37.

2 When DD (*) equations are included in subroutine STATE,

! SAINT automatically integrates their values to determine the
values of the corresponding SS(*) variables. Thus, the values
of the SS(+) variables at time t will be the same as those in
the difference equation representation of GCV flight, where
SS(1l) is the x=-position of GCV 1, SS(2) is the x=-position of
GCV 2, SS(3) is the y-position of GCV 1, and SS(4) is the
y-position of GCV 2.

Alternative State Variable Representations

We now have two alternative methodls for representing
state variables. If we use SS(*) equations, we must perform
the computation of the integration of their values over time
ourselves. If we use DD(*) equations, the SAINT RKE integra-
tion package performs the integration automatically for us.
Further, SAINT allows us to include both SS(*) and DD(*) vari-
ables in subroutine STATE. In the GCV example, it is relatively
easy to perform the integration since we have a system of
linear equations. However, for more complex systems, it is
often necessary to allow SAINT to perform the integration us-
ing its sophisticated RKE integration scheme, since this scheme
arrives at more exact values of the SS(-) variables than we
would calculate. With these capabilities, SAINT provides us
with the ability to model highly complex state variable con-
figurations.
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SUBROUTINE STATE
COMMON /COM17/ S$S(100),SSL(100),DD(100),DDPL(100),LLRES(100,2)
C**** RETRIEVE THE HEADINGS AND VELOCITIES OF THE GCVS
CALL GETSA(1,V1)
CALL GETSA(2,V2)
CALL GETSA(3,H1)
CALL GETSA(4,H2)
C¥*** COMPUTE THE DERIVATIVES OF THE GCV COORDINATES
DD (1) =COS (H1) *V1
DD (2)=COS (H2) *V2
DD (3)=SIN(H1) *Vl
DD (4)=SIN(H2)*V2

RETURN
END

Figure 37. Subroutine STATE Using DD(+) Equations.
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Time Advance Mechanism

Before leaving the discussion of state variables, we
must describe the means by which SAINT advances simulated
time. In SAINT, simulation time is advanced in steps. The
amount by which simulated time is advanced at each step is
DTNOW. The value of DTNOW is variable, and depends on the
type of equations modeled and the values of specific variables
at the current point in time. If no state variables are in-
volved, simulated time is advanced from one task completion
to the next. Since task completions are scheduled to occur
at some future point in time, these event times are known.
However, when state variables are involved, time is incre-
mented in steps between scheduled task completions for the
purpose cf updating the values of the state variables.

SAINT will advance simulated time by the maximum step
size allowed until the end of the simulation unless condi-
tions warrant a reduced step size. The selection of an ap-
propriate step size is made automatically by SAINT. This
selection depends on such factors as the integration accuracy
required (user specified), the minimum and maximum step sizes
allowed (user specified), and the time of the next scheduled
task completion. In this manner, the SAINT time advance
mechanism allows for all model contingencies, choosing a
step size appropriate to the requirements of the particular
model.

Writing Subroutine STATE

Subroutine STATE is written to compute the current value
of each state variable or its derivative. Subroutine STATE
is called frequently, especially if there are derivative
equations in the model, and therefore should contain only
essential code. It is most efficient if the state variable
equations are numbered sequentially starting at 1.

There are several policies which are to be adhered to
in writing subroutine STATE. By definition, the largest
subscript for a derivative (DD(+)) equation is NNEQD. This
value must be defined on input. Therefore, equations defin-
ing the rate of change of SS(I); i.e., an equation for DD(I),
must satisfy the expression I< NNEQD.

Also defined on input i8 NNEQS, the number of state
variable equations written in terms of SS(°*). Thus, the
largest subscript I that can be used for SS(*) equations is
NNEQD+NNEQS, or NNEQT. An equation defining SS(I) must sat-
isfy the expression NNEQD<I < NNEQT.
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To explain how this numbering system works, assume that
we have 5 DD(e) equations and 3 SS(+) equations. On input,
we would specify NNEQD=5 and NNEQS=3. SAINT would then cal-
culate NNEQT as NNEQD+NNEQS=8. Then, in subroutine STATE,
subscripts 1-5 would be used for DD(°*) equations, while sub-
scripts 6-8 would be used for the SS(+) equations. In general,
if we have M DD(+) equations and N SS(+) equations, then the
most efficient specifications would be NNEQD=M, NNEQS=N, and
NNEQT=M+N. For an equations defining DD(I), I <NNEQD. For
an equation defining SS(1), NNEQD<I<NNEQT. h

Either NNEQD or NNEQS can be 0. Further, since it is
most efficient to have the DD(+) variables numbered sequen-
tially, NNEQD is often referred to as the number of defining
equations written for DD(+) variables. Similarly, NNEQS is
often referred to as the number of defining equations written
for SS(+) variables.

The preceding discussion delineates the numbering pro-
cedure to be used for state variables. The order in which
the equations are written in subroutine STATE is left up to
us, i.e., a statement defining DD(5) can precede a statement
defining DD(3). Because SAINT does not change the execution
sequence of state variable equations, correct sequencing of
state and derivative equations is our responsibility. If
the defining equations for DD(+) do not involve other DD(-*)
variables, then any order is permitted and the RKE integration
procedure simultaneously solves for all the DD(¢) and the
corresponding SS(¢) variable values.

If the defining equations for DD(+) do involve other
DD(+) variables, then ordering becomes important, i.e., if
DD (3) is a function of DD(5), then the equations for DD(5)
must precede the equation for DD(3) according to standard
FORTRAN conventions. Thus, if there are simultaneous equa-
tions involving DD(*) variables, we must develop an algorithm
for solving this set of equations. This is also the case when
a set of simultaneous DD(*) equations is included in subroutine
STATE.

In subroutine STATE, the equations for DD(*) and SS(*)
can be written in a variety of forms. The equations

DD (M)

"

RATE, and

]

SS (M) SSL (M) + DTNOW * RATE

are essentially equivalent. Equations which define both
DD (M) and SS(M) at the same time instant are not permitted
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since they would either be redundant or conflicting. When

an equation for DD(M) is written, values of SS(M) are obtained
through the RKE integration routine contained within SAINT.
Values of DDL(M) and SSL(M) are automatically maintained. The
step size is automatically determined to meet specified ac-
curacy requirements on the computation of SS(M). When the
equation is written for SS(M), only SSL(M) is maintained. 1In
this case, the step size for updating SS(M), DTNOW, is main-
tained at the maximum value specified by the user unless con-
ditions warrant a reduced step size.

The form of the equations for DD(+) and SS(-) is limited
only by the FORTRAN statement types. This allows for a great
deal of flexibility in defining the state variables of a model.
In fact, state variable descriptions can be conditioned on
system status. For example, if a rate is to change after 100
time units have elapsed, the code in subroutine STATE could
be written in the following manner:

IF (TNOW.LT.100)DD (M)

SS(3) * SS(4) +SS(5)

IF (TNOW.GE.100)DD (M) SS(3)

Since the use of the two equations is mutually exclusive,
SAINT does not consider them to be redundant or conflicting.
In this manner, SAINT provides the capability of altering
state variable equations forms as a function of system status.
Other alternatives to the formulation presented above will

be discussed later.

Initializing State Variables

When state variables are included in a SAINT model, we
are also required to write subroutine INTLC to initialize the
values of the state variables defined by equations in subroutine
STATE. For our GCV example, we need to specify the initial
(launch) positions of the 2 GCVs. - In other words, we must
assign values to SS(1), SS(2), SS(3) and SS(4) in subroutine
INTLC. These represent the positions of the GCVs at time
zero. If we assume that the initial position of GCV 1 is
(3,4) and the initial position of GCV 2 is (7,2), subroutine
INTLC would be coded as in Figure 38. SAINT COMMON block
COM17 is included in subroutine INTLC since we are defining
the values of SS(+) variables.

Only the SS(*) variables that have initial values other
than zero need be initialized in subroutine INTLC, since SAINT
automatically assigns the value of zero to all SS(:) variables
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SUBROUTINE INTLC
* c
COMMON /COM17/ $$(100),SSL(100),DD(100) ,DDL(100) ,LLSVR(100,2)
¢
C**** INITIALIZE LAUNCH POSITIONS OF GCVs.
- c
Ss(1)=3.
ss(2)=7.
SS(3)=4.
Ss(4)=2.
c
RETURN
END g

Figure 38. Subroutine INTLC for the SAINT Model
of the GCV System.
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i, prior to execution of subroutine INTLC. Further, the initial
e values of SSL(.) variables are automatically set to the initial
values of SS(.) variables by SAINT following the call to sub-
routine INTLC. Finally, even if we use DD(-) equations to
define our state variables, the SS(+) equivalents must be
assigned initial values in subroutine INTLC.

State Variable Output

We may obtain three types of state variable output from
SAINT. The output may consist of plots of the values of state
variables versus time, tables of the values of state variables
versus time, and/or time-integrated statistical summaries of
state variable values. All state variable output is prepared
for the individual iterations that we specify on input. We
may specify any combination of the three types of output for
each state variable included in a model.

e il e e e L o SRS Sk

If we desire plots of the values of state variables, we

i simply specify the indices of the state variables to be
plotted, the label to be used for each plotted state variable,
and the time interval between consecutive recordings of their
values. The appearance of the plotted output provided by
SAINT for those variables we specify is very similar to other
line printer plots such as those produced by Gadp 1V (8).

! We have three options in the specification of the maximum
(minimum) ordinate value for each variable to be plotted. We

: may specify that the maximum (minimum) ordinate value is to

‘ be the maximum (minimum) observed value during the simulation,
or that the maximum (minimum) ordinate value is to be that
specified on input, or that the maximum (minimum) ordinate
value is to be rounded upward (downward) to the nearest speci-
fied value. These capabilities give us a wide range of options
in designing a plot.

A second form of statistical output that we can obtain
from SAINT is a table. We specify on input, in much the same
manner as for a plot, the index of each state variable to be
tabled, the label to be used for each tabled variable, as well
as the time interval between consecutive recordings of their
values. SAINT automatically records each value, notes the
time at which it was recorded, and outputs this information
E at the end of each iteration specified. Further, SAINT auto-
matically computes the maximum and minimum values observed
for each variable in the table.

The third form of output associated with state variables
is a time-integrated statistical summary of the values of the
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variables. On _aput, we specify the indices of the state
variables for which SAINT is to collect statistics. For

each of these variables, SAINT automatically integrates their
values over time. At the end of each iteration for which

state variable statistics are requested, SAINT provides a stat-
istical report which includes the average value of each vari-
able, as well as the minimum and maximum values observed dur-
ing the iteration.

Summary

; The following SAINT modeling concepts were presented in |
’ this section. If you do not understand these concepts,
re-read the section.

1. vVariables whose values change continuously over
time are called state variables.

2. State variables are described by algebraic, differ-
ential, or difference equations that govern their
time-dependent behavior.

3. State variable equations must be coded in subroutine
STATE in FORTRAN or a compatible language using special
: SAINT COMMON variables.

] 4. A table which includes the state variable number,
] label, defining equation in subroutine STATE, and
initial value portrays the state variable model
component on the network drawing.

5. Algebraic or difference state variable equations must
be of the form "SS(I)=", where I is the state variable
number.

6. SAINT labeled COMMON block COM17 must be included in
subroutine STATE.

7. SAINT automatically advances simulated time,
' accounting for task completions and state variable
1 updating.

8. Differential state variable equations must be of the
form "DD(I)=", where I is the state variable number.

9. SAINT automatically integrates DD (+) equations to
determine the values of the corresponding SS ()
variables.
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SECTION XI

SWITCHES

In Section X, we modeled the flight of the GCVs using
state variables. They fly in a linear path from their launch
point along prescribed headings. However, even though we have
a task whose completion represents the launch of a GCV, the
GCVs are actually flying beginning at time 0. For this reason,
SAINT incorporates the capability for communication between
the task-oriented and state variable components of a model.

We also presented an alternative for specifying the equa-
tions in subroutine STATE in which we based the use of individ-
ual state variable equations on the value of TNOW, #*he current
time. If we knew the exact time of launch of each ¢i the GCVs,
we could use this same technique in our model to launch the
GCVs at the correct time. However, since the tasks represent-
ing GCV launch have performance times that are based on prob-
ability distributions, we do not know a priori the exact times
that the tasks will be completed (the GCVs will be launched).
Thus, we need a mechanism by which we can inform the state
variable component of the model that the GCVs have been launched.
The vector IS(+) provides that mechanism.

Using Switches

The vector IS(-) is included in SAINT COMMON. The
subscript of the array is the switch number. 1Initially, the
values of the IS(+) vector are assumed to be off, i.e.,

IS(+) = 0. These values can be reset in subroutine INTLC or
at the completion of any task in the network. If we code
subroutine STATE to be dependent on switch values, and we
turn on the appropriate switch at the time of each GCV launch,
then we can provide the interaction necessary to initiate

GCV flight, as represented by the state variable component

of the model, at the correct time.

Switches for the GCV Model

Let us define IS(l) as a switch which is equal to 1 if
GCV 1 has been launched and equal to 0 if GCV has not been
launched. 1IS(2) is defined similarly for GCV 2. Thus, at
the completion of task 1, switch 1 will be set of 1. At the
completion of task 2, switch 2 will be set to 1.
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Assigning Switch Values at Tasks

To simplify the model, assume that the required resource
and system attribute values have been assigned by means of
initial attribute specifications instead of being assigned at
the tasks as shown previously. Under this framework, Figure
39 illustrates the required switching described above. The
task description code for switching information is SWIT. We
specify the switches to be reset and their new values on the
right-hand side of the SWIT row. Thus, upon completion of
task 1, switch 1 is set to 1 (IS,1=1). 1In the same fashion,
switch 2 is set to 1 (IS,2=1) at the completion of task 2.

PR

exilieekiaciation. S8

Coding Subroutine STATE Using Switches

Figure 39 displays the representation of the interaction E
on the task-oriented model component, but how do we include
this interaction in subroutine STATE? Let us assume that we
are using an SS(.) representation for the state variables in
g & our model. In this case, we must insure that the state
f variable equations describing GCV position are not evaluated
3 until the switches for the GCVs are equal to 1. Subroutine
STATE for this situation is illustrated in Figure 40. The
only other addition to subroutine STATE is the inclusion of
COMMON block COM18, which contains the IS(*) vector.

S sl G i

T

Summary of the GCV System

v To recap, we now have a SAINT model of the following GCV
H system. Operator 1 launches GCV 1 at task 1 and GCV 2 at

3 task 2. These tasks cause the appropriate switches to be set
to 1. When the switches are 1, the GCVs are set in motion
through subroutine STATE. They fly along the heading and
velocity specified as system attributes. Now, it seems that
we have developed a reasonably accurate representation of our
system. However, we note that at task 4 we record the status
of the GCV, yet we still have no mechanism for transferring
information from the state variable component to the task-

] oriented component of the model. The method by which we can
F 1 accomplish this transfer of information is discussed in the
2 next section.

A per i

Summarx

The following SAINT modeling concepts were presented in
this section. If you do not understand these concepts, re-
4 read this section.

-
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SUBROUTINE STATE

C
COMMON /COM17/ 8S(100),SSL(100),DD(100),DDL(100) ,LLSVR(100,2)
COMMON /COM18/ 1S(20) ,NABAD(300) ,YABAR(600)
C
C***% RETRIEVE VELOCITIES AND HEADINGS FROM SYSTEM ATTRIBUTES.
¢
CALL GETSA(1,V1)
CALL GETSA(2,V2)
CALL GETSA(3,H1)
CALL GETSA(4,H2)
C
Cr®ax COMPUTE GCV X AND Y COORDINATES 1F GCV 1S FLYING.
C
IF(IS(1).EQ.1) SS(1)=SSL(1)+COS (H1)*V1*DTNOW
IF(IS(2).EQ.1) SS(2)=S8SSL(2)+COS (H2)*V2*DTNOW
IF(IS(1).EQ.1) SS(3)=SSL(3)+SIN(H1)*V1I*DTNOW
IF(IS(2).FQ.1) SS(4)=SSL(4)+SIN(H2)*V2*DTNOW
(&
RETURN
END

Figure 40. Subroutine STATE for SAINT Model in Figure 39.
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The vector IS(:) is included in SAINT COMMON storage
to provide a communications link between the state
variable and task-oriented components of a SAINT model.

The subscript of the array IS(+) is the switch number.

Initially, the values of the IS(*) vector are assumed
to be off, i.e., IS(:) = 0.

The values of the IS(*) vector can be reset in
subroutine INTLC or at the completion of any task
in the network.

The IS(°+) vector can be used to control the operation
of subroutine STATE, enabling the task-oriented com-
ponent of the model to affect the computation of
state variable values.

The task description code for assigning switch values
at a task is SWIT.

The switches to be reset and their new values are
specified on the right-hand side of the SWIT row.

SAINT COMMON block COM18 must be included in any
user-written subprogram which employs the IS(:) vector.
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SECTION XII

USER FUNCTIONS

Employing User Functions

A user function enables us to write our own FORTRAN
function (function USERF) for generating attribute assignment
values. At any task in the network, we can specify any attri-
bute assignment using the function specification UF. In-
ternally, this directs SAINT to call function USERF with the
user function number as an argument. The required attribute
values are computed in function USERF. SAINT automatically
assigns these values to the attributes specified. 1In this
manner, attribute assignment values can be computed as a
function of any SAINT or user-defined variable.

To satisfy the requirements of our example, we will make
an attribute assignment at task 4. In the assignment func-
tion, we specify "UF,I1I", where I represents the user function
which applies for this task. Within the user function, we
compute the necessary value and assign it to USERF. SAINT
then assigns this value to the specified attribute. If we
specify an attribute assignment at the completion of task 4
which sets information attribute 2 to the value computed in
user function 1 (as is illustrated in Figure 41), then SAINT
will automatically call USERF (1) to make the assignment.
However, we are responsible for writing the user function
code that computes the required assignment value. The standard
form for writing function USERF is given in Figure 42. It
must be written in FORTRAN or a compatible language and can
incorporate any of the internal SAINT variables.

Function USERF

Since user functions allow us to compute attribute values
as a function of SAINT or user-defined variables, they can
provide a method of communication between the task-oriented
and state variable components of a model. We will now examine
the coding of function USERF for our GCV example. When
USERF is called from task 4, we would like the user function
to return the value of the deviation of the GCV from its
flight path. Since we know that the GCV is designed to fly
from coordinate (0,0) in an easterly direction, we can see
that the Y-coordinate of the GCV will represent its deviation
from its desired flight. Thus, we will assign the value of
the Y-coordinate of the GCV to attribute 2. Since the Y-
coordinate of the GCV is SS(3) for GCV 1 and SS(4) for GCV 2,
we simply determine which GCV we are working on and set USERF
to the appropriate SS(-) value.
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FUNCTION USERF (IP)

kkokkkkokkkk

8 COMMON CARDS (IF NECESSARY)
*ekkok ok okokokok ok

GO TO (10,20,30),IP

10 *****pPORTRAN Code for User Function 1.
RETURN

20 *****PORTRAN Code for User Function 2.
RETURN

30 *****PORTRAN Code for User Function 3.
RETURN
END

Figure 42. General Form of Function USERF.
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Function USERF for our GCV system is given in Figure
43. Note that at the time function USERF is called, we must
retrieve the value of information attribute 1 (the GCV num-
ber). To do so, we employ subroutine GETIA (NAT,VALUE), where
NAT is the attribute number that we desired and VALUE is the
value of this attribute returned by SAINT. Once we have
retrieved the GCV number from the information attribute, we
compute the appropriate SS(+) index and set USERF to the
Y-coordinate of this GCV.

Navigation System Errors

Whenever user function 1 is called for our current GCV
model, it will always return a value of 0. We have directed
the GCVs in an easterly direction, and we know that there
are no errors in flight. However, in reality, we realize
that no GCV will fly without error. For this reason, we
would like to model errors in the navigation systems onboard
the GCVs.

We have set system attributes 3 and 4 to be the head-
ings of GCVs 1 and 2, respectively. If at the time of the
launch of these GCVs, we introduce a deviation in the values
of the system attributes, we can model errors in GCV naviga-
tion systems. Let us assign the values of system attributes
3 and 4 through a user function of tasks 1 and 2, respec-
tively. 1In this user function, we will take the initial
value of the heading, as specified on input (which we have
previously defined as 0) and add a normal deviate with a
meon of 0 radians and a standard deviation of 0.001 radians.
This process will introduce errors in GCV flight in our
model.

Model of the GCV System with Navigation System Errors

The SAINT model of the GCV system with navigation system
errors is shown in Figure 44. The FORTRAN code for function
USERF, which assigns values to system attribute 3 at task 1,
system attribute 4 at task 2, and information attribute 2 at
task 4 appears in Figure 45. The navigation system errors
are applied in user function 2 using the SAINT normal deviate
generator, function RNORM. If we define distribution set 4
as a normal distribution with mean 0 and standard deviation
0.001, then we can call RNORM(4) to obtain a sample from
this distribution. (Other random deviate generators avail-
able in SAINT are discussed in The SAINT User's Manual (1)).
We compute this normal sample and set USERF to be the old
value of the system attribute plus our random sample. With
this new value in the system attribute for the heading of
the GCV, subroutine STATE will compute GCV flight paths that
deviate from those desired.
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FUNCTION USERF (IP)

|
|
, c
i COMMON /COM17/ SS(100),SSL(100),DD(100),DDL(100),LLRES (100,2)
¢ c
E C**** DETERMINE THE GCV NUMBER
c
‘ CALL GETIA(1,VALUE)
IGCV=VALUE
c
C**** DETERMINE STATE VARIABLE FOR Y-COORDINATE OF THIS GCV
c
INDX=IGCV+2
c
C**** SET USERF TO THE Y-COORDINATE
C
USERF=SS (INDX)
RETURN
END

Figure 43. Function USERF for SAINT Model in Figure 41.
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FUNCTION USERF (IP)

c
COMMON /COM17/ SS(100),SSL(100),DD(100),DDL(100) ,LLRES (100,2)
- c
E GO TO (10,20),IP
: c
C**** CODE FOR USER FUNCTION 1
c
10 CALL GETIA(1,VALUE)
IGCV=VALUE
INDX=IGCV+2
USERF=SS (INDX)
RETURN
c
C**** CODE FOR USER FUNCTION 2
, c
20 CALL GETIA(1,VALUE)
& IGCV=VALUE
o INDX=IGCV+2

e
i

g CALL GETSA (INDX,VALUE)
E 4 USERF=VALUE+RNORM (4)

[ RETURN

; END

i

|

Figure 45. Function USERF for SAINT Model of Figure 44.
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Summary
The

this section.

following SAINT modeling concepts were presented in
If you do not understand these concepts, re-

read this section.

1.

b

- - . -

v

10.
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User functions are used to compute attribute assign-

ment values as a function of any SAINT or user-
defined variables.

User functions can be employed in any situation
where attribute values are assigned.

The function type for a user function assignment
is UF.

The parameter specification for a user function
assignment is the user function number.

SAINT has no restrictions on the number of user
functions included in a model.

Specifying UF,I as an attribute assignment causes
Function USERF to be called with argument I.

Function USERF is user-written.

SAINT assigns the returned value of USERF to the
specified attribute.

Subroutine GETIA is used in a user-written sub-
program to retrieve the value of an information
attribute.

Function RNORM can be used in a user-written sub-
program to obtain a sample from a normal distribu-
tion.
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SECTION XIII

BRANCHING ON ATTRIBUTES

In the preceding section, we have discussed how values
from the state variable component of the model can be
retrieved and assigned to attributes. Since SAINT is de-
signed to model a complex system containing resources which
perform tasks within an environment, it must allow the
resources of the system to perform different tasks based on
the status of the environment, i.e., the status of the state
variables. For example, we would like to be able to determine
the tasks that the operator must perform depending on the
deviation of the GCVs from their desired flight paths.

SAINT Conditional Branching Capabilities

SAINT allows us to branch from one task in the network
to another based on the values of the system, resource, or
information attributes. The following list gives all the
conditional branching conditions allowed by SAINT. Any one
of these codes may be specified for a branch in the network
which emanates from a conditional branching operation. Thus,
the branch will be taken only if the condition specified
is satisfied.

TVC A task specified has been completed.

TVN A task specified has not been completed.

TLV The current time is less than or equal to a value.
TGV The current time is greater than a value.

ALV The value of an attribute is less than or equal
to a specified value.

AGV The value of an attribute is greater than a
specified value.

TAC The task whose number is found in an attribute
has been completed.

TAN The task whose number is found in an attribute
has not been completed.

TLA The current time is less than or equal to the
value of an attribute
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TGA The current time is greater than the value of
an attribute.

ALA The value of one attribute is less than or equal
to the value of another attribute.

AGA The value of one attribute is greater than the
value of another attribute.

The required parameters for each of these conditions is
discussed in The SAINT User's Manual (1).

Branching Based on GCV Deviation

In our GCV system, we know that information attribute 2
will be set at task 4 to be the deviation of a GCV from its
flight path. Let us assume that instead of being required
to write down this deviation value, the operator must per-
form an operation that is dependent on this value. Suppose
that at the time the operator determines the status of the
GCV, he must decide whether the GCV requires a correction or
whether it is close enough to its flight path to not require
correction. Furthermore, let us assume that the operator
will correct a GCV if its deviation is greater than 100 feet.
Thus, we need to branch from task 4 depending on the value
of information atttribute 2. If information attribute ? is
greater than 100, then we want to branch to a task which
represents correcting the flight of the GCV. On the cther
hand, if the deviation of the GCV is less than or egual to
100 feet, the operator will not make a correction fur this
GCV. 1In the latter case, we will branch, as before, to
task 5.

Correrting GCV Deviation

Let us define task 6 as a task which requires the
operator to press a button to correct GCV flight. Pressing
this button causes the computer to automatically correct the
flight of this GCV (to head the GCV back towards its desired
flight path). Since the operator is required to push the
button, he is specified as being required for task 6. The
performance time of task 6 will be defined in distribution
set 5. The SAINT model illustrating the above situation is
depicted in Figure 46. At task 4, we make a conditional-take
first branching operation which selects the branch to task 6
if information attribute 2 is greater than 100. Otherwise,
the branch to task 5 is taken. Thus, if the deviation is
greater than 100 feet, task 6 will be released and the
operator will be required to press the correction button
that improves GCV flight. After the correction, the branch
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to task 5 is taken deterministically, indicating that no
further operations need to be performed on this GCV.

Further Use of Task Priorities

For the SAINT model in Figure 46, both tasks 4 and 6
could require the operator at the same time for different
GCVs. We must decide whether it is more important for the
operator to monitor the GCVs or to correct a GCV whose devi-
ation is too large. Let us assume that once the operator
determines that the deviation of a GCV is too large, we want
him to immediately press the correction button. For this
situation, task 6 should be given a higher priority than
task 4. 1In Figure 46, task 6 is given a priority of 1.0 and
task 4 is given a priority of 0.5.

Summary
The concept of branching based on attributes was pre-

sented in this section. If you do not understand how
attributes can be used for branching, re-read this section.
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SECTION X1V

DYNAMIC TASK PRIORITY

Our current GCV system is defined as follows: An
operator launches two GCVs and allows them to fly for at
least 50 time units. After a GCV has flown for at least 50
time units, the operator determines the status of the GCV
and causes a heading change on the GCV if its deviation from
the flight path is greater than 100 feet. After he has
checked both GCVs, he is finished with his mission. To make
the system more realistic, suppose that instead of allowing
the GCVs to fly 50 time units and then check their status
once, we assume that once the GCVs are launched, the operator
continuously monitors the deviation status of the GCVs and
makes heading corrections whenever necessary.

To set up this system, and to simplify the discussion,
let us assume that we are no longer interested in computing
the time it takes to perform the mission for different
operators, i.e., we no longer need to be concerned with the
moderator function specifications at tasks 1, 2, and 4, the
mark at task 2, and the statistics collection at task 5.

Revised Model of the GCV System

Under the above framework, the SAINT model of our GCV
system would appear as in Figure 47. Tasks 1 and 2 repre-
sent the launch of the GCVs as before. Since we no longer
require the GCVs to fly 50 time units, we have deleted task 3.
In its place, tasks 1 and 2 branch directly to task 4,
where the operator determines the status of each GCV. If a
GCV's deviation is less than 100 feet, no correction is re-
quired. In this case, we return the information packet for
this GCV to task 4, indicating that additional monitoring
is required. On the other hand, if the deviation is '
greater than 100 feet, task 6, which represents the operator
pressing a button to correct the heading of the GCV, is
released. After task 6 is completed, the information packet
is returned to task 4, indicating that further monitoring
is required.

Required Priorities of the Model

For this model, all tasks require resource 1. Thus, we
must insure that the priority structure is input so that the
model performs as we desire. Since we desire both GCVs to
be launched before any monitoring operation is performed, we
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want to set the priorities of tasks 1 and 2 greater than
that of task 4. 1In addition, as we would like the operator
to immediately correct the status of a GCV once it is found
to be off course, we would like to set the priority of

task 6 higher than that of task 4. To perform the above,
we set the priority of task 1 to be 100.5, the priority of
task 2 to be 101.0, and the priority of task 6 to be 100
(we still want GCV 2 to be launched prior to GCV 1).

Dynamic Priority Requirements

We will set the priorities of tasks 1, 2, and 6 to be
greater than the priority of task 4. Whenever an attribute
packet releases one of these tasks, it will be performed
before task 4 is performed for any other attribute packet.
Since all tasks require resource 1, he will not perform
task 4 unless there is no higher priority task to be per-
formed. Thus, whenever task 4 is to be performed, the
operator will have to select one of the two GCVs to consider,
since both will be waiting for status determination.

We would like to have control of which transaction the
operator chooses. Thus, we would like to be able to set a
priority that is based not only on the task, but also on
the GCV whose status is to be determined. This can be
accomplished through the use of the dynamic task priority
capability in SAINT.

Function PRIOR

In addition to the capability for assigning priorities
to tasks on input, we have the option of specifying a
dynamic task priority. Before the scheduling of any task
in the network, user-written function PRIOR is called by
SAINT to assign the priority to all tasks awaiting scheduling
(those tasks released but not yet started). If we do not
write function PRIOR, the priorities used in ranking those
tasks awaiting scheduling are those assigned on input.

Function PRIOR is accessed with a single argument, the
task number for which a dynamic task priority is to be
specified. We must write function PRIOR in FORTRAN or a
compatible language. All standard 1language conventions
must be observed. If we write function PRIOR, then we are
totally responsible for setting the priorities of all tasks
in the network through this function.
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Using Dynamic Priorities

Since we write function PRIOR, all SAINT COMMON storage
arrays are available. Thus, we may assign the dynamic task
priority based on time, the task priority that was input,
the value of an attribute, the status of a resource, etc.
One piece of information that we may find particularly use-
ful in the determination of dynamic task priorities is the
amount of time that the task has been awaiting scheduling.
A subprogram that retrieves this value has been included
in SAINT. Function TIMEQ can be called from function PRIOR
to compute the amount of time that the attribute packet
associated with the task being considered has been waiting
for resources so that it can be scheduled. Function TIMEQ
is used with a dummy argument and returns the amount of
time that this task has been awaiting scheduling.

Function PRIOR is called before the scheduling of any
task in the network for any particular transaction. Thus,
function PRIOR is called for each task that can be
scheduled at the current time and for each transaction that
resides at the task. In our case, when we have two trans-
actions awaiting scheduling at task 4, function PRIOR will
be called twice, once for each transaction.

Dynamic Priorities for the GCV System

Now consider our situation. If we assign the priorities
based on the GCV number, i.e., we let the priority of the
task associated with the transaction be equal to the GCV
number, we would perform all operations on GCV 2 and none on
GCV 1, since it would always have a larger priority.

Instead of using the above procedure, we would like to
construct a dynamic priority scheme that will allow the
operator to monitor the GCVs alternately. To accomplish
this, we use function PRIOR in conjunction with function |
TIMEQ. If we set the priority of the transaction at task 4 ;
to be equal to the time that the transaction has been await-
ing scheduling, we can accomplish our objective. Whenever
we are ready to schedule task 4, one of the transactions
(GCVs) will have just arrived while the other transaction
will have been waiting. The GCV that has been waiting will
be the GCV that was not most recently monitored or corrected.
Thus, if we assign our priorities properly, this transac-
tion will be scheduled. As the simulation progresses, the
result of this priority scheme will force the operator to
alternately monitor the GCVs. Note that since we set the
priority of the GCVs at task 4 to be the time awaiting
scheduling, and since this time will be less than 100 sec-
onds for all cases (assuming task times for tasks 4 and 6
are less than 10 seconds), the priorities of tasks 1, 2,
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and 6 will always be greater than the priority at task 4,
which is what we originally desired.

Specifying Dynamic Priorities

To specify that we are writing function PRIOR and
assigning dynamic priorities to all tasks in the network,
we can specify on the task symbol the value given to the
priority or the functional relationship that computes the
priority. This information is placed in the right-hand
side of the row that defines the priority (PRTY). For the
situation described above, function PRIOR is given in
Figure 48. Since function PRIOR is called for every task
in the network, we must insure that the priorities of tasks
1, 2, and 6 are those that we input. If the task number is
not equal to task 4, we branch and retrieve the priority
value of the task as given on input. We use subroutine
GETPR to retrieve the value. The arguments to this sub-
routine are the task number followed by the value retrieved.
When we retrieve the value, we set PRIOR to this value.
Thus, for tasks 1, 2, and 6, the dynamic priority is constant
and is the value that we input for the task. On the other
hand, for task 4, we simply set PRIOR equal to TIMEQ. This
causes the priority to be the time that the transaction
has been awaiting scheduling.

Task Scheduling

Up to this point, we have assumed that all tasks are
scheduled based on the priority. However, this is not
necessary in SAINT. While using the priority and/or dynamic
priority capability in SAINT provides us with great modeling
flexibility, we do have other options in determining how tasks
are scheduled. On input, we can specify any of four rules
that determine the sequence in which tasks are performed.

The rules are as follows:

1. Low-value-first based on priority

2. High-value-first based on priority

3. First-in, first-out (FIFO)

4. Last-in, first-out (LIFO)
Only the first two ranking procedures utilize the task
priority specified on input or computed dynamically. The
last two ranking procedures ignore the task priority. In

all the previous examples, we have assumed that the high-
value-first based on the task priority rule has been used.
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FUNCTION PRIOR(ITASK)

C**** COMPUTE DYNAMIC PRIORITY OF TASK 4

IF (ITASK.NE.4) GO TO 100
PRIOR=TIMEQ (IDUM)
RETURN

C**** COMPUTE PRIORITY OF OTHER TASKS

100 CALL GETPR(ITASK,VALUE)
PRIOR=VALUE
RETURN
END

Figure 48. Function PRIOR for SAINT Model of Figure 47.
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However, for any case that you may come across, one of the
above procedures will be the most appropriate and should be
the one that you select.

SAINT also provides the capability for us to change,
during the course of the simulation, the ranking procedure
used in ranking those tasks awaiting scheduling. We can
call subroutine QRANK to change the ranking procedure.
Once the ranking procedure is changed, SAINT automatically
reranks the file of tasks awaiting scheduling according to
the new ranking procedure. The same four ranking pro-
cedures indicated above are available to us for use in con-
junction with a call to subroutine QRANK. This subroutine
is called with a single argument, whose value can be 1, 2,
3, or 4, designating one of the rules listed above.

Summarx

The following SAINT modeling concepts were presented in
this section. If you do not understand these concepts,
re-read this section.

1. Dynamic task priorities can be used to assign
task scheduling priorities to specific trans-
actions at tasks.

2. Function PRIOR is the user-written subprogram
in which dynamic priorities are calculated.

3. If function PRIOR is written by the user, it
must assign the priorities to all tasks in the
network.

4. Function TIMEQ can be called from function PRIOR
to retrieve the time that a transaction has been
awaiting scheduling.

5. Function TIMEQ can only be called from func-
tion PRIOR.

6. To specify dynamic priorities on the task
symbol, the value given to the priority or
the functional relationship that computes the
priority is placed in the right-hand side of
the PRTY row.

7. Subroutine GETPR can be used to retrieve the
task scheduling priority assigned to a task
on input.
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10.

11.

12.

A ranking procedure informs SAINT how to rank
the file of tasks awaiting scheduling.

Task priorities are only used by SAINT when
ranking is high value first (HVF) or low value
first (LVF) based on priority.

The ranking procedure is defined by the user
on input.

Other possible ranking procedures are FIFO
and LIFO.

Subroutine QRANK can be called from any user-
written subprogram to change the ranking pro-
cedure at any time during a simulation.

128

R U S ———

|




SECTION XV

STATE VARIABLE MONITORS

In our latest model, an operator launches two GCVs and
continuously monitors and corrects their status. However,
we notice that in this model we have no way of halting the
simulation. Thus, if we coded up this model, it would
proceed indefinitely. One possible method for stopping
this model is to create a source task and a sink task in a
disjoint network. We could have the performance of the
source task require 0 time units and the performance of the
sink task require 100 time units. When the sink task is
completed, the simulation will end after 100 time units.

However, there are many cases where we would like to
halt a simulation based on the status of the state variables.
For example, in our GCV system, suppose that we want to halt
the simulation only after the GCVs have flown a distance of
500,000 feet due east. Since a SAINT simulation can only
be ended through a sink task, we must have a method for
releasing tasks in the network as a function of state
variable status.

Threshold Functions

Monitors provide the capability for monitoring speci-
fied state variables and comparing their values (either
SS(«) or DD(.)) against prescribed threshold functions. A
monitor will automatically search for the time that a state
variable "crosses" the value of a threshold function, com-
pute the values of the state variables at that time, and
initiate specified actions associated with the monitor.
Such actions may involve the setting of switch values and/or
the signaling of tasks. The threshold function consists of
a multiplicative constant, M; an SS(«) or DD(+) variable
to be used in computing the threshold value, SS(V) or DD(V);
an additive constant, C; a direction indicator, DIR; and a
tolerance, TOL.

The monitored variable is compared against the threshold
value of M*SS (V)+C (or M*DD(V)+C). The direction indicator,
DIR, is important because we may wish to distinguish between
crossing a threshold when the monitored variable is increas-
ing and when the monitored variable is decreasing with
respect to the threshold function. Three direction indi-
cator settings are available:
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UP Monitoring for a crossing when the monitored
variable is increasing with respect to the
threshold function.

DOWN Monitoring for a crossing when the monitored
variable is decreasing with respect to the
threshold function.

BOTH Monitoring for a crossing in either direction.

The tolerance, TOL, allows us to specify how close the
SAINT program is to search for the exact time of crossing.
The tolerance is normally computed as one or two percent of
the threshold value. To illustrate the role of the toler-
ance specification, assume the threshold is 100 and the
tolerance is 1. SAINT will attempt to identify the time of i
crossing so that the value of the monitored variable is
between 100 and 101 if the UP direction is specified and
between 100 and 99 if the DOWN directon is specified. If
monitoring is in both directions, the former tolerance
interval is used for crossings going up, and the latter
tolerance interval is used for crossings going down.

Monitor Symbolism

The symbol which is used to represent a state variable
monitor in a SAINT model is shown in Figure 49, Its design
is similar to that provided for tasks. The left-hand side
of this symbol contains the monitor description, and is
divided into four rows. Each row represents a unique type
of descriptive information, and is identified by one of the
following description codes: LABL, MONF, MTAS, MSWT. The
code LABL identifies a row containing the monitor label.
The code MONF identifies a row containing the threshold s
function to be used. The code MTAS identifies a row con-
taining the task(s) to be signaled as a result of a thresh-
old crossing. The code MSWT identifies a row containing
the switch(es) to be reset as a result of a threshold cross-
ing. By using the description codes, only the information
necessary to describe a monitor need be shown on the moni-
tor symbol.

Use of Monitors for the GCV Model

For our GCV system, we have decided to end the simula-
tion when both GCVs have flown east at least 500,000 feet.
We would like to have a sink task signaled when each GCV has
flown 500,000 feet east. This sink task will be required
to be signaled twice before it can be started. Thus, two
monitors will be included in the SAINT model. The first
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Figure 49. Monitor Symbolism.




monitor will cause one predecessor completion of our sink
task when GCV 1 has flown 500,000 feet east and the second
monitor will cause another predecessor completion of the
sink task when the second GCV has flown that far east.

The SAINT model illustrating this system is depicted in
Figure 50. Note that this model is identical to our previous
model except that we have now included sink task 5. This
task is labeled STOP, requires 0 time units to perform,

and requires two predecessor completions for its release.
These predecessor completions will come from monitors 1 and
2. To indicate this on the network, we place the monitor
number in a square at the input side of the task and have

a dotted line emanating from the square to the task that
will be signaled when the threshold crossing is detected.

Definition of Monitors for the GCV Model

The definitions of the monitors used in the GCV model
are given in Figure 51. Monitor 1 is labeled "STOP GCV 1".
It detects the value of SS(l1), the x-coordinate of GCV 1,
crossing a value of 500,000 feet in the upwards directon,
within a tolerance of 10 feet. No SS(*) or DD(+) variable
is required for computing the threshold value. Since we
have no switching as a result of monitor action, no switch-
ing is shown. The task signaled as a result of this thresh-
old crossing is task 5 of the network depicted in Figure 50.
Similarly, monitor number 2 is labeled "STOP GCV 2". It
detects the value of SS(2), the x-coordinate of the second
GCV, crossing the value of 500,000 feet in the upwards
direction, within a tolerance of 10 feet; and also causes
the signaling of task 5.

As designed, each monitor will be activated when its
associated GCV crosses 500,000 feet east, and will signal
task 5. Task 5 will require two predecessor completions
before it can be released. Thus, the simulation will be
ended only after both GCVs have flown 500,000 feet due east.

Summar

The following SAINT modeling concepts were presented in
this section. If you do not understand these concepts, re-
read this section.

1. State variable monitors detect the time at which
the value of a state variable "crosses" the value
of a threshold function.
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:1
LABL |STOP GCV 1
MONF_|SS (3) 4500000, (TOL=1Q)|
MTAS |5
{
8
3 LABL [STOP GCV 2
3 MONF _|SS (4) $500000(T0L=10.)
{ MTAS |5
3
|
.‘

Figure 51. Monitor Symbolism for SAINT Model of
Figure 50.
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The threshold function is defined by a multipli-
cative constant, M; an SS(*) or DD(*) variable
to be used in computing the threshold value; an
additive constant, C; a direction indicator, DIR;
and a tolerance, TOL.

A monitor detects the time at which the value
of a state variable (either SS(*) or DD(*))
"crosses" the value of M*SS(I)+C (or M*DD(I)+C)
in the direction DIR and within the tolerance
TOL.

The direction indicator distinguishes between
crossings in which the state variable is in-
creasing and decreasing with respect to the
threshold function.

The tolerance informs SAINT how close it is
to search for the exact time of crossing.

Once a monitor detects a threshold crossing,
it may set switch values or signal tasks.

The monitor has its own distinct symbolism.

Task signaling as a result of monitor action

is indicated on the SAINT network by a square
containing the monitor number connected by a

dotted line to the input side of the task to

be signaled.
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SECTION XVI

GCV_HEADING CORRECTION

We now have a virtually complete model of our GCV sys-
tem. The operator launches two GCVs and monitors and cor-
rects their flight, when necessary, until both have flown
500,000 feet due east. 1In this model, we have accounted
for all but one of the necessary interactions between the
state variable and task-oriented components. What we have
not accounted for is how, at task 6, the correction of the
flight equations for the GCVs is made.

Upon completion of task 5 (Figure 5Q), we need to
compute a new heading for the GCV whose flight path needs
correction. This GCV is identified by the information
packet associated with the task. If we are working on
GCV 1, the new heading must be assigned to system attri-
bute 3. If we are working on GCV 2, its new heading must
be assigned to system attribute 4. However, since we do
not know which GCV we will be working on a priori, we em-
ploy a user function ostensibly to compute a value to be
assigned to information attribute 2, but in reality to
determine which GCV we are working on and to make the
necessary system attribute assignment. The information
attribute assignment, employing user function 3, is shown
in Figure 52.

Computation of Heading Correction

Let us assume that the final destination of the GCVs is
the coordinate (500000,0). When an attribute packet
arrives at task 6, we will know (through our state variables)
the current position of the GCV. We also know the desired
final destination of the GCV. Thus, in user function 3, we
compute the heading that is required to take the GCV from
its current position to its final destination, as shown in
Figure 53. If the GCV is at coordinates (X,Y), then the
heading that it must employ to reach coordinates (500000,0)
is -a radians realtive to the X-axis (if (X,Y) is below the
flight path, then the computation will be the same but -u
will be a positive number of radians). In user function 3,
we compute o as the arc sine of the y-coordinate of the GCV
divided by 500,000 minus the x-coordinate of the GCV. The
value of -a then represents the new heading of the GCV.
However, since we know that GCV flight is not perfect (if
we tell it to fly at a heading «, it will not fly exactly
at that heading), we include the random deviate that
represents the navigation system error.
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Figure 53. GCV Deviation Calculation.
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Coding of User Function 3

The user function for this model is shown in Figure 54.
In user function 3 (starting at statement number 30), we
first retrieve the information attribute containing the
GCV number using subroutine GETIA (the arguments are the
information attribute number and the returned value). Once
we know the GCV number, we know the indices of the state
variables which represent its position. We then compute
-a and add a normal deviate from distribution set 4 (navi-
gation system error) to this value to arrive at the new
heading value. We then assign this new heading to the
appropriate system attribute by using subroutine PUTSA with
two arguments: the system attribute number and the value \
to be assigned to that system attribute. ;

" Summary
} This section describes the use of a user function to
4 compute GCV heading corrections and to assign the new head-

ing values to system attributes. If you do not understand
the procedure involved, re-read this section.
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COMMON /COM17/ Ss(100),SSL(100),DD(100),DDL(100),LLRES (100,2)

: FUNCTION USERF (IP)
c
k| e
! GO TO (10,20,30),IP
c
C**** CODE FOR USER FUNCTION 1
c
10 CALL GETIA(1l,VALUE)
IGCV=VALUE
INDX=IGCV+2
USERF=SS (INDX)
RETURN
C
C**** CODE FOR USER FUNCTION 2
C ’
20 CALL GETIA(1,VALUE)
: IGCV=VALUE
i INDX=IGCV+2
g! CALL GETSA (INDX,VALUE)
¥ USERF=VALUE+RNORM (4)
* RETURN
¥ c
E? C**** CODE FOR USER FUNCTION 3
: C
E '\ 30 CALL GETIA(1l,VALUE)
‘ IGCV=VALUE
A X=SS (IGCV)
| Y=SS (IGCV+2)
ALPHA=ASIN (Y/(500000-X))
HEAD=-ALPHA+RNORM (4)
CALL PUTSA (IGCV+2,HEAD)
RETURN
END
i
Figure 54.
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SECTION XVII

REGULATION

In the SAINT model of the GCV system discussed in the
previous section, the operator monitors both GCVs until
both have passed their 500,000 foot x-coordinate. After a
GCV has passed its final destination, we no longer want to
allow corrections on this GCV. One possible way to model
this situation is to reset the state variables for this
GCV so that when the operator checks the deviation of the
GCV at task 4, the deviation of the GCV will always be 0.
In essence, when task 5 (Figure 52) is signaled by monitor
1, indicating that GCV 1 has traveled 500,000 feet, we
would like to set state variable SS(3) (the y-coordinate
of GCV 1) to 0, representing a zero deviation from its due
east heading. In addition, we will set switch 1 to 0 so
that the GCV 1 flight equations are no longer updated.
Similarly, when monitor 2 signals task 5, we would like
to set the value SS(4) and the switch for this GCV (switch
2} o 0.

To do this, we decompose task 5 as shown in Figure 52
into two tasks (5 and 7), as shown in Figure 55. Now,
instead of having a single sink task that requires two re-
leases, we will define two sink tasks that each requires
one release. We also will require two sink task comple-
tions to stop the simulation instead of one, as before.
The first sink task, which will be signaled by monitor 1,
will reset the value of switch 1 for GCV 1 and set SS(3),
the deviation of GCV 1, to zero. Similarly, the second
sink task will reset the switch and deviation values for
the second GCV. However, before we define these tasks and
present the model, we need to know how to change the value
of a state variable when a task is completed.

Regulating State Variables at Tasks

Upon the completion of a task, the values of state
variables can be regulated, i.e., instantaneously changed.
For a task that causes the regulation, we specify the
SS(*) variable affected by the regulation and a regulating
function. The regulating function may be a constant or a
linear function of any SS(:) or DD(+¢) variable. It is
represented by a multiplicative constant, M; the subscript
of the state variable to be used in calculating the regqu-
lation value (SS(V) or DD(V)); an additive constant, C;
and a direction indicator (UP, DOWN, or TO). These
parameters allow the regulation value, VAL, to take one of
the following forms:

141




‘uoT3leTnbay butlealsnIll TSPON INIVYS °GS 2InbTd
e 0=Z’‘SI LIMS
£ etk PP “o=(v)ss| Toad| *
(oo} -4 Q- 179 4 z
Z% dois| qavi]| .
€'dN=Z'VI:W0D| cSvi¥
oy 0=1'S1| 1ims 0°00T| ALdd
¢ [ o=(@ss| moma| "\ 9 Tiawe | wsma| T
0'0S| danIL T S’SA| NIl ¢
14 dois| 71av1 103dd00 | 18wl
(*00T*Z*¥I*‘ADY)
T=2"3 IIM
z'an=v'vs -
Z70S=1'¥1:1 SYIY -
0°TOT| ZI¥d
g T:d 4ST|
\
ZantL | AldAd 1°sq 3WIL o
T'dN=7'YI‘WOD | SYi¥ Z# HONOVT  1T4V]
- v Trane | u@saa| |
il z’sa| FAIL| .
= SALYLS ANIWdAIAI| 7191 Y=1"31] 113
A.ooim.ﬁ.SS\ S PEH ! Z7an=c'4s
e e e T 35=T"¥ITROD
N S 00T| AI¥d
Y £ T:any| dsm| ®
T'Sal @I
T# HONNYI| 1av]




i e .y PP TR TON q il ion .5 P Wl
O R e ORI it L s — B v, 3wt e e . . camains -+ W30 SATL - —

]

VAL M*SS (V) + C, or

VAL

I

M*DD(V) + C

When the direction indicator is UP, the state variable
value will be increased by VAL. When it is DOWN, the state
variable value is decreased by VAL. When it is TO, the
state variable value is set equal to VAL. However, if the
state variable being regulated is not a function of its
past values, then the effect of the regulation is negated
by the next call to subroutine STATE.

Regulation Symbolism

A regulation is identified on the task symbol by the
task description code REGL. The right-hand side of the
REGL row contains the regulating function. 1In Figure 55,
task 5 is the sink task that is signaled by monitor 1 and
task 7 is the sink task that is signaled by monitor 2. At
task 5, we will set SS(3) = 0 and IS(l) = 0. For the
latter, we use the switching capability discussed in Sec-
tion XI. For the former, we need to specify a regulation.
Thus, on the task symbol, we specify the code REGL and the
required regulating function. Similarly, we set SS(4) = 0
and IS(2) = 0 upon the completion of task 7.

Summary of State Variable and Task-Oriented Component
Interactions

With the capability of signaling tasks as a function of
threshold crossings, setting switch values as a function of
threshold crossings, regulating state variables as a func-
tion of task completions, setting switch values as a func-
tion of task completion, and assigning information actri-
butes (through user functions) as a function of system
status, complex systems that include both task and state
variables can be modeled in SAINT. These capabilities
can be used to represent a high degree of interaction be-
tween the state variable and the task-oriented model com-
ponents.

Summary

The following SAINT modeling concepts were presented in.
this section. If you do not understand these conceots,
re-read this section.

1. Upon the completion of a task, state variable
values can be regulated (instantaneously changed).
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Regulation causes the value of a specified state
variable to be increased by, decreased by, or set
equal to the value of a regulating function.

The regulating function may be a constant or a
linear function of an SS(+) or DD(+) variable.

Multiple regulations may be performed based on
a single task completion.

The task description code for regulation is REGL.

The regulating function is shown in the right-
hand side of the REGL row on the task symbol.
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SECTION XVIII

SAINT USER SUPPORT SUBPROGRAMS

In previous sections, we have identified and used a
variety of user support subprograms provided by SAINT.
This section summarizes the SAINT user support Subprograms
that can be called from our user-written subprograms to
assist in SAINT modeling.

Attribute and Priority Manipulation

In the preceding sections, we have defined task
priorities, system attributes, information attributes, and
resource attributes. In addition, we have shown, for cer-
tain cases, how we can retrieve these values from subrou-
tines USERF, MODRF, and PRIOR through the use of SAINT user
support subprograms. For example, in Section X, we have
written subroutine STATE with the use of subroutine GETSA,
which retrieves the value of a system attribute. Besides
retrieving values, SAINT also provides us with the capabil-
ity for setting or resetting values of task priorities and
attributes. For example, in Section XVI, we used subrou-
tine PUTSA to reset the value of the system attribute repre-
senting GCV heading. The following list summarizes the
subroutines that SAINT provides for manipulating attribute
and priority values:

Subroutine Function

GETIA (NAT,VALUE) Retrieves VALUE as the value of
information attribute number NAT
of the information packet associ-
ated with the task now being
processed.

PUTIA (NAT,VALUE) Sets information attribute number
NAT of the information packet
associated with the task now being
processed to VALUE.

GETRA (NRE,NAT,VALUE) Retrieves VALUE as the value of
resource attribute number NAT of
resource NRE.

PUTRA (NRE,NAT,VALUE) Sets resource attribute number
NAT of resource NRE to VALUE.

GETSA (NAT,VALUE) Retrieves VALUE number as the
value of system attribute number
NAT
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Subroutine Function

PUTSA (NAT ,VALUE) Sets system attribute number NAT
to VALUE.
GETPR (ITASK,VALUE) Retrieves VALUE as the task

priority of task number ITASK.

PUTPR (ITASK,VALUE) Sets the task priority of task
number ITASK to VALUE.

Manipulating Task Scheduling and Task Statistics Information

SAINT allows us to retrieve and manipulate information
associated with task scheduling and task statistics. For
example, when we wrote function PRIOR in Section XIV, we
employed function TIMEQ to retrieve the time that the task
and associated attribute packet being considered had been
residing in the file of tasks awaiting the assignment of
resources. The support subprograms that enable us to
manipulate scheduling and statistics information are listed
below:

Subprogram Function
Subroutine QRANK Changes the ranking procedure
(IRANK) used in ranking those tasks await-

ing the assignment of resources
to IRANK, where IRANK is 1 for

low value first based on priority,
2 for high value first based on
priority, 3 for FIFO, or 4 for
LIFO.

Function TIMEQ (IDUM) Retrieves the time that the task
now being processed has been re-
siding in the file of tasks await-
ing the assignment of resources.
This function is only accessible
from frunction PRIOR. The argu-
ment IDUM is a dummy argument
required by ANSI FORTRAN.

Function TMARK (IDUM) Retrieves the mark time contained
in the information packet associ-
ated with the task being processed.
The argument IDUM is a dummy argu-
ment required by ANSI FORTRAN.
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i Using Random Deviates

If we find it necessary to generate random samples when
we write subroutine MODRF, USERF, and PRIOR, we are allowed
to call the SAINT random deviate generators to produce these
values. For the majority of these calls, the random deviate
generator is a function and we must include only the distri-
bution set number as the argument. For example, if in sub-
routine MODRF we want to obtain a sample from a normal dis-
tribution, and the normal distribution is defined in dis-
tribution set 2, we would use the following statement:

XX = RNORM(2). The following list identifies all the deviate
generators contained in SAINT that can be used in this man-

R

ner:
Function Distribution Type
b | BETA Beta or Beta-PERT
1 | ERLNG Erlang
3
;i GAMM Gamma
:; RLOGN Log Normal
g
| RNORM Normal
Ei | TRNGL Triangular'
| UNFRM Uniform
WEIBL Weibull

In addition to the above, we can obtain a pseudo-random
number between 0 and 1 through the use of function DRAND(IY),
which generates a random number DRAND using the computer
system's random number routine. This function is machine
specific. The argument IY is the initial random number seed
(ISEED). Also, we may use subroutine NPOSN (K,NPSSN), which ‘
generates a random deviate (NPSSN) from a Poisson distribu-
tion with parameters in distribution set K.

Summarx

The following SAINT modeling concepts were presented in
this section. If you do not understand these concepts,
re-read the section.

1. Subroutine GETIA (NAT,VALUE) retrieves the values of
information attributes.

2. Subroutine PUTIA (NAT,VALUE) resets tho values of
information attributes.
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Subroutine GETRA (NRE,NAT,VALUE) retrieves the values
of resource attributes.

Subroutine PUTRA (NRE,NAT,VALUE) resets the values
of resource attributes.

Subroutine GETSA (NAT,VALUE) retrieves the values
of system attributes.

Subrouting PUTSA(NAT,VALUE) resets the values of
system attributes.

Subroutine GETPR(ITASK,VALUE) retrieves the values
of task priorities.

Subroutine PUTPR(ITASK,VALUE) resets the values of
task priorities.

Subroutine QRANK (IRANK) resets the ranking pro-
cedure used in ranking tasks awaiting scheduling.

Function TIMEQ (IDUM) retrieves the time that a task
has been awaiting scheduling.

Function TMARK (IDUM) retrieves the mark time
associated with a task awaiting scheduling.

Function BETA (NDIS) generates samples from Beta or
Beta-PERT distributions.

Function ERLNG (NDIS) generates samples from Erlang
distributions.

Function GAMM(NDIS) generates samples from Gamma
distributions.

Function RLOGN (NDIS) generates samples from log
normal distributions.

Function RNORM(NDIS) generates samples from normal
distributions.

Function TRNGL(NDIS) generates samples from tri-
angular distributions.

Function UNFRM(NDIS) generates samples from uniform
distributions.

Function WEIBL (NDIS) generates samples from Weibull
distributions.
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Function DRAND (IY) generates a pseudo-random number

20.

between 0 and 1.

Subroutine NPOSN(K,NPSSN) generates samples from
Poisson distributions.

21.
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SECTION XIX

USER-DEFINED TASK CHARACTERISTICS

With the capability of writing our own moderator
functions, user functions, dynamic task priorities, etc.,
we may require task characteristics other than those de-
fined by SAINT. For this reason, the capability has been
included in SAINT for the specification of user-defined task
characteristics. By using task characteristics 1n conjunc-
tion with moderator functions or other user-written sub-
programs, we are able to model the effect of different
system conditions on task performance.

Using User-Defined Task Characteristics

How can we use task characteristics? Let us consider
one possible use related to our GCV system. Suppose that
we know that the performance of tasks deteriorates when
the amount of light in the room is decreased and that the
amount of deterioration depends on the task being performed.
For example, we have defined tasks where the operator
presses buttons to launch a GCV, obtains the status of the
GCV, and corrects the status of the GCV. We can readily
see that it may be difficult for the operator to press the
appropriate buttons, when he is so required, when there is
insufficient light in the room. However, the task of read-
ing the CRT display will probably not be heavily dependent
on the light level, since the CRT display produces its own
light. Thus, launch and correction may be affected more
by the lack of light than determining the status.

For the above example, we can define a task character-
istic for each task which specifies the minimum light level
for optimum task performance. Also, we can define a system
attribute as the light level in the room. We can then
write a moderator function which computes the difference
between the required light level and the actual light level
and increases task performance time as a function of this
difference. If the light level is less than that required
for a task, the task performance time of the task will be
increased in some fashion to reflect the increased diffi-
culty for the operator in performing his required action.

Retrieving and Resetting User-Defined Task Characteristic
Values

For each task in a SAINT network, we may specify a set
of task characteristics to be stored for later use in
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moderator functions or other user-written subprograms. The
values of these user-defined task characteristics may be
manipulated through the use of user support subprograms
GETTC and PUTTC. The definitions of these subroutines are

as follows:

Subroutine Function
GETTC (NTASK,NCHAR, Retrieves VALUE as the value of
VALUE) user-defined task characteristic

NCHAR of task NTASK.

PUTTC (NTASK,NCHAR, Sets user-defined task character-
VALUE) istic NCHAR of task NTASK to
VALUE.
Summarx

The following SAINT modeling concepts were presented
in this section. If you do not understand these concepts,
re-read the section.

1. The SAINT user may define characteristics of
tasks other than those required by SAINT by
specifying the values of user-defined task
characteristics.

2. Subroutine GETTC retrieves values of user-defined
task characteristics.

3. Subroutine PUTTC resets values of user-defined
task characteristics.
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SECTION XX

USER-GENERATED INPUT AND OUTPUT ]

In the previous sections, we have been shown that we
can write our own subprograms (USERF, MODRF, PRIOR, etc.)
to interact with the SAINT simulation. In writing these
routines, we may define our own variables to serve as coef-
ficients for the state variable equations or conditions for
the user and moderator functions we write; or we may use
resource attributes, system attributes, switch values, etc.,
for the same purpose. In either case, it might prove neces-
sary or beneficial to generate our own input and output
reports relating to these variables.

SAINT includes a number of subprograms that allow us
to manipulate input and output information. Subroutine UINPT
can be coded to read user-defined input data. Subroutines
UCLCT, UTMST, UTMSA, UHIST, and UPLOT are used to generate
statistics. Subroutines CLROB, CLRTP, CLRHI, CLRPT, and
CLEAR are used to initialize statistical information stor-
age arrays. Subroutines ENDIT AND UOTPT are supplied for
the generation of user-required output information.

Desired Statistics Collection for the GCV Model

Let us return to the GCV system that we finalized in
Section XVII. Suppose that we would like to perform a
series of iterations and obtain statistics on the following:

1. The utilization of the operator (averaged over
all iterations).

2. The average flight deviation (in nautical
miles) of each GCV during each iteration.

3. A plot of the deviation (in nautical miles)
of each GCV for each iteration.

4. The average deviation (in nautical miles) of
each GCV from the target when it is at x-
coordinate 500,000 feet (averaged over all
iterations).

The first statistic listed, the utilization of the operator,
is provided automatically by SAINT. For each resource in
cluded in a model, SAINT automatically provides statistics
on the amount of time that the resource is busy and idle
averaged over all iterations. The other statistics listed
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above, however, involve calculations using state variable
values as the iteration progresses. Since these statistics
are not automatically produced by SAINT, and cannot be
requested using task, resource, or state variable statistics
directly, we will use some of the special output routines
available in SAINT to generate these statistics.

User-Generated Input

If we require special input data for moderator tunc-
tions or other user-written subprograms, we employ subrou-
tine UINPT. This subroute is called automatically by SAINT
following the processing of all SAINT data input cards.
Thus, all of the data to be read by this subroutine must
follow the SAINT data cards. The only restriction on the
preparation of subroutine UINPT is that it must be written
in FORTRAN or a compatible language. All standard language
conventions must be observed.

If input information is to be stored for later use,
then we are required to develop this storage mechanism. All
arrays must be dimensioned. In addition, only labeled COMMON
blocks are allowed. We must be certain not to use a SAINT
COMMON variable as storage for our input data. If we have
no special data to input, this subroutine need not be writ-
ten.

Collection of Statistics Based on Observation

To collect sample data for variables based on observa-
tion, we use subroutine UCLCT. The statement CALL UCLCT
(XX, ICODE) causes SAINT to record the value XX as an obser-
vation of the variable with code ICODE. For example, in
our GCV system, we are to record the average deviation (in
nautical miles) of each GCV from the target when it is at an
x-coordinate of 500,000 feet.

Figure 56 (a duplication of Figure 55) illustrates our
most recent GCV model. In that model, task 5 is signaled
when the first GCV is at its 500,000 foot x-coordinate. At
this time, SS(3) is the deviation of the GCV in feet. If we
define statistic code 1 for variables based on observation
(ICODE=1) as the deviation of GCV 1 at this point, we can
compute this deviation and collect the value when task 5 is
started. To accomplish this collection, we request a
moderator function to be active at task 5 which contains the
following statements:

XX = SS(3)/6080. [conversion of SS(3) to nautical miles]

CALL UCLCT (XX,1)
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In this manner, we will record the deviation of GCV 1 in
nautical miles when it achieves its 500,000 foot x-
coordinate.

We use similar statements (referencing SS(4) and setting
ICODE to 2) within a moderator function called at task 7 to
record the deviation of GCV 2.

Statistics based on observation may be collected for

any variable in a SAINT simulation. However, a unique ICODE
must be defined for each unique statistic that we collect.

Collection of Statistics for Time-Persistent Variables

A time-persistent variable is, as one might expect, a
variable whose value persists over time. For example, con-
sider an operator performing tas* in a system. When he
is busy, the operator will be bu: 6 for a certain period of
time (his busy status persists over time). Similarly, when
he becomes idle, he will be idle for a period of time.

Subroutine UTMST

We can use subroutine UTMST to collect sample data for
time-persistent variables that we can assumc do not change
value during the time interval between statistical collection
points. The statement CALL UTMST (XX,T,ICODE) causes SAINT
to record a status change for the time-persistent variable
with code ICODE. The status change is defined as the time
at which the value of the variable is changed, T, and the
new value of the variable, XX. k3l

Remember that the value of XX used as an argument for
UTMST should be the value of the variable after it is
changed by a simulation event. For multiple iterations, the
resetting of the initial value of the variable of interest
is our responsibility (refer to subroutine ENDIT discussion
later in this section). The variable USTPV(ICODE,6) con-
tains the last (or initial) value of the variable.

To illustrate the use of subroutine UTMST, consider
Figure 57, assuming that we have a simulation in which there
are two resources and that we are interested in the number
of the two resources of the system that are busy at any point
in time. 1Initially, both resources are busy. At time 25,
resource 1 finishes the task it is performing and is idle
for the remainder of the simulation. At time 50, resource 2
finishes the task it is performing and the simulation ends.
To record the number of resources busy over time, we use the
following calls to subroutine UTMST with statistic code
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Figure 57. The Use of Subroutines UTMSA and UTMST.

156

L P g A T e 3 £ TR AN 7 O Y T e




ICODE = 1 (the call at time 0 is performed automatically
by SAINT):

Time call
0 CALL UTMST(2.,0.,1)
25 CALL UTMST(l.,25.,1)
50 CALL UTMST(0.,50.,1)

When requested to compute the statistic based on the
above calls, SAINT would compute the area under the curve
in Figure 57 given by the solid line (75) and divide by the
total time (50) to calculate the average number of resources
that were busy at any point in time during the simulation
(1.5).

B Subroutine UTMSA

In addition to the time-persistent variables discussed
above, we may want to collect sample data for time-
persistent variables that may change value during the time
interval between statistical collection points. Subroutine
UTMSA is used for this purpose. It collects information
identical to the information collected by subroutine UTMST,

H except that an average value during the past interval is
assumed as an approximation to the value during the interval.

To illustrate the use of subroutine UTMSA, again con-
sider Figure 57. The variable of interest remains the num-
ber of the two resources of the system that are busy. How-
ever, assume that the resources are busy and idle many times
throughout the time interval 0 to 50, and that the number of
resources busy is sampled at times 0, 25, and 50 as follows:

! 0 CALL UTMSA(2.,0.,1)
25 CALL UTMSA(l.,25.,1)
50 CALL UTMSA(0.,50.,1)

Here, UTMSA is called to approximate the average number
busy from selected samples. When SAINT reports on this
statistic, it would compute the area under the curve given
by the dashed line in Figure 57 (50) and divide by the total
time (50) to calculate the average number of resources that
were busy at any point during the simulation (1.0).
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Statistics on Time-Persistent Variables for the GCV
System

Earlier, we decided to collect statistics on the aver-
age flight deviation (in nautical miles) of each GCV during
each iteration. Ideally, we would like to continuously moni-
tor the deviation of each GCV and integrate the curve of
its deviation over time in order to determine the average
deviation. However, let us treat the deviation of each GCV
as a time-persistent variable and use subroutine UTMSA to
approximate the statistic.

In Figure 56, the operator continuously monitors the
status of the two GCVs (task 4). At the end of the monitor
task, user function 1 is called to determine if the deviation
of the GCV is greater than 100 feet. Within user function 1,
we can execute the following statements (we define statistic
code 1 as the deviation of GCV 1 and statistic code 2 as the
deviation of GCV 2) in order to collect statistics on GCV
deviation:

XX=SS (I+2)/6080.

T=TNOW

CALL UTMSA (XX,T,ICODE)

Note that in the above statements, we used the SAINT COMMON
variable TNOW. At the time the user function is called,
this variable is equal to the current value of simulated
time. By using the above procedure, the statistic for the
deviation of each GCV will be based on the average value of
the deviation between the times that the GCV is monitored by
the operator.

Collection of Histogram Information

In addition to collecting statistics on the values of
variables based on observation, we may also produce histo-
grams of those values that we record. To collect histogram
information, we employ subroutine UHIST. The use of this
subroutine is identical to the use of subroutine UCLCT. For
example, assume that we wish to generate a histogram of the
values of the deviation of each GCV at the times its x-
coordinate is 500,000 feet. To do so, we add the following
statement to the moderator functions associated with tasks 5
and 7:

CALL UHIST (XX,ICODE) .
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By employing subroutine UHIST, we can produce a histogram of
the values of the devaition of the GCVs as well as collecting
statistics on them using subroutine UCLCT.

Collection of Plot Information

With SAINT, we have capability of plotting values of
variables versus an independent variable. We can collect
values of up to 10 dependent variables for each independent
variable, and we may specify multiple plots. Subroutine
UPLOT is used for this purpose. The statément
CALL UPLOT(X,T,IPLOT) causes the values of the variables
contained in the array X to be plotted versus the independent
variable T on plot IPLOT.

For our example, assume that we wish to plot the devia-
tion of the GCVs over time. Thus, in user function 1, when-
ever we monitor the status of the GCV, let us plot out the
deviations of both GCVs at this point in time. To request
this plot, we define variable 1 of plot 1 to be the deviation
of GCV 1 (in nautical miles). We then include the following
statements in user function 1 (the statement DIMENSION X(2)
must also be included).

X(1)=SS(3)/6080.

X(2)=SS(4) /6080.

T=TNOW

CALL UPLOT(X,T,1).

The only restriction on the plotting capability in

SAINT is that the independent variable, T, must be monotoni-
cally non-increasing or non-decreasing.

Reporting Statistics Collected for an Iteration

In the preceding paragraphs, we have seen how to collect
statistics on variables that we have defined in user-written
subprograms. However, since SAINT does not automatically
output the information we desire, we must tell the program
when to do so.

We inform SAINT to output the information that we de-
sire by specifying special values of ICODE and IPLOT in our
calls to UCLCT, UHIST, UTMST, and UPLOT. If the statistic
code is preceded by a minus sign, then SAINT will output a
report on the statistic defined by that code.
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3 For example, the statement CALL UCLCT (XX,-1l) will cause

¢ SAINT to produce an output report for statistic 1 for vari-
ables based on observation. This report consists of the
mean, standard deviation, standard deviation of the mean

- | (assuming independent observations), coefficient of variation,

minimum, maximum, and number of observations of the sampled

variable.

Similarly, the statement CALL UHIST(XX,-2) will cause
SAINT to produce a summary of the number of times the vari-
able defined by statistic code 2 is within prescribed cell
limits (as defined on input). It calculates the observed,
relative, and cumulative frequencies for each cell. It
also provides a plotted histogram displaying the relative and
cumulative frequency of observations.

For variables collected using both subroutines UTMSA
‘ and UTMST, a call to subroutine UTMST is used to obtain out-

x put reports. Whether the time-persistent variable that we
E ! define is collected uring UTMSA or UTMST, the statement
CALL UTMST (XX,T,-3) will cause information on the time-
persistent statistic defined by code 3 to be produced at
time T. The information produced includes the mean, standard
deviation, minimum, and maximum of the sampled variable.
Note that because UTMST and UTMSA are highly related, the
codes for time-persistent variable statistics must be unique,
i.e., we cannot use a call to UTMSA with a code of 1 and
also use a call to UTMST with a code of 1.

el ot e A

To obtain plotted output, the statement CALL UPLOT(X,T,-1)
can be used. When this statement is executed, SAINT auto-
matically provides a plot of the data collected for plot 1.

It should be noted that in the above calls to these
routines, the value XX or the array X is passed as an argu-
ment. However, when the statistic code is preceded by a
minus sign, the values XX and X are not used.

| If we wish to output all histograms, all statistics
1 based on observation, etc., we call the appropriate routine

; with ICODE = 0. For all the user-generated statistical col-
lection routines, a call with the argument ICODE = 0 will
produce output reports for each statistic that we have de-
fined. For example, the statement CALL UCLCT (XX, 0) produces
the statistical output for all user-generated statistics
based on observation.

Epread .

User-Generated Statistics for the GCV System

We have seen how the statistical collection routines can
be used for our GCV system. The following discussion and
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figures summarize these procedures and show the specific
coding of the SAINT model of the GCV system to obtain the
aforementioned statistics. The model of the GCV system is
shown in Figure 58, function USERF in Figure 59, and func-
tion MODRF in Figure 60.

Remember that whenever it is necessary to use a SAINT
COMMON variable in a user-written subprogram, the SAINT
labeled COMMON block that contains the variable must be in-
cluded in the subprogram.

Function USERF

The FORTRAN code for function USERF is shown in Figure
59. This code is unchanged from the previous user function
(Figure 54) except for the inclusion of user-generated
statistical requests. User function 1 is called from task 4
to compute the deviation of the GCV on which the operator
is currently working. Within user function 1, we want to
collect time-persistent statistics (using subroutine UTMSA)
for the deviation of the GCV on which the operator is
working. We have defined time-persistent statistic 1 as the
deviation of GCV 1 and time-persistent statistic 2 as the
deviation of GCV 2. Thus, the statistic code for the call
to UTMSA is equal to the GCV number currently being moni-
tored. To collect statistics on the deviation, (SS(3) for
GCV 1 and SS(4) for GCV 2), we set XX to the appropriate
SS(+) value divided by the conversion factor (feet to nauti-
cal miles), set T to the current time TNOW, set ICODE to the
GCV number, and call subroutine UTMSA.

In addition to collecting time-persistent statistics on
the deviation, we also wish to plot the deviation of both
GCVs. Thus, we set the array elements X(1l) and X(2) to the
deviations of GCV 1 (SS(3)/6080.) and GCV 2 (SS(4)/6080.),
respectively). We then call subroutine UPLOT with the array
elements, the current time, and the plot number (which we
have defined as 1).

Subroutine MODRF

The FORTRAN code for function USERF collects statistics
and plot information on the deviations of the GCVs over
time. To collect the observation statistics on the devia-
tions of the GCVs when they pass the X-coordinate of 500,000
feet, we employ two moderator functions. Moderator function
1l is called from task 5 to record the status of GCV 1, while
moderator function 2 is accessed at task 7 to record the
deviation status of GCV 2. Within each moderator function,
as shown in Figure 60, we set XX to the value of the SS(+)
variable representing the current deviation of the
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e
C
(&
Ch*kx
C

10
C
Chrk*
C

20
C
Chkhkk
C

30

FUNCTION USERF (IP)

COMMON /COM06/ TNOW,TTNCX,MFAD,SEED, ISEED,NCRDR,NPRNT,NPUNCH,

NRNIT,MNDC,NDC,NDTN,NNTC

COMMON /COM17/ SS(lOO) SSL(lOO) DD(lOO) DDL(100) ,LLRES (100, 2) i

DIMENSION X(10)
GO TO (10,20,30),IP
CODE FOR USER FUNCTION 1

CALL GETIA(1,VALUE)
IGCV=VALUE
INDX=IGCV+2
USERF=SS (INDX)
ICODE=IGCV

XX=SS (INDX) /6080.
T=TNOW

CALL UTMSA (XX,T,ICODE)
X(1)=Ss(3)/6080.
X(2)=SS(4) /6080«
CALL GPLOT (X,T,1)
RETURN

CODE FOR USER FUNCTION 2

CALL GETIA(1l,VALUE)
IGCV=VALUE
INDX=IGCV+2

CALL GETSA (INDX,VALUE)
USERF=VALUE+RNORM (4)
CALL CLRTP (IGCV)
RETURN

CODE FOR USER FUNCTION 3

CALL GETIA(1l,VALUE)
IGCV=VALUE

XX=SS (IGCV)

YY=SS (IGCV+2)
ALPHA=ASIN(Y/(500000.-X))
HEAD=ALPHA+RNORM (4)

CALL PUTSA (IGCV+2,HEAD)
RETURN

END

Figure 59. Function USERF for SAINT Model of Figure 58.
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SUBROUTINE MODRF (MODFN ,NTASK)

‘ [ 34
; COMMON /COM06/ TNOW, TTNEX,MFAD, SEED, ISEED,NCRDR,NPRNT,NPUNCH,
* NRNIT,MNDC,NDC,NDTN,NNTC
- COMMON /COM17/ SS(100),SSL(100),DD(100),DDL(100) ,LLRES(130,2)
C
GO TO (10,20), MODFN
C
Cx*x**x CODE FOR MODERATOR FUNCTION 1
C
10 XX=SS(3)/6080.
CALL UCLCT (XX,1)
CALL UHIST (XX,1)
T=TNOW
CALL UTMST (XX,T,-1)
RETURN
(5]
C**** CODE FOR MODERATOR FUNCTION 2

20 XX=SS(4)/6080.
CALL UCLCT (XX, 2)
CALL UHIST (XX, 2)
T=TNOW
CALL UTMST(XX,T,-2)
RETURN
END

RIS S

Figure 60. Subroutine MODRF for SAINT Model of Figure 58.
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appropriate GCV divided by 6080. We then call subroutines 1
UCLCT and UHIST to record the values (statistic 1 is used i
for GCV 1 and statistic 2 is used for GCV 2).

k. The deviation statistics are collected by subroutine
UTMSA from time 0 until the GCV has passed the 500,000 foot
x-coordinate. Thus, the output request for the statistics
collected by subroutine UTMSA is made at the time that the
GCV passes the 500,000 foot x-coordinate. Since we know
that this occurs when moderator function 1 is called for
GCV 1 and when moderator function 2 is called for GCV 2,

we request the output for the time-persistent statistics on
the deviations of these GCVs within moderator functions 1 |
and 2. Remember that the request for output for statistics |
collected by subroutine UTMSA is made through a call to é
subroutine UTMST. The statement CALL UTMST (XX,T,-1) in
moderator function 1, where XX is not defined for this call, 1
T is the current time, and -1 is the negative of the sta-
tistic that we desire, causes SAINT to produce the output

E | report for the time-persistent statistic on the deviation

of GCV 1. Likewise, the call to UTMST (XX,T,-2) in moderator
_ function 2 causes SAINT to report on the deviation statistic
kN for GCV 2.

Subroutine ENDIT

E A We have collected all the desired statistics and have
k| reported on the time-persistent deviation statistics. How-
| ever, we have not yet prepared the plot of GCV deviation

for each iteration. Subroutine ENDIT is the user-written
subprogram employed to request the plotted output. It is
automatically called by SAINT at the end of each iteration
with one argument, the number of the iteration that was just :
completed. This subroutine is particularly useful for ! 8
causing the calculation and reporting of user-generated sta-
tistics and the reinitialization of the statistical storage
arrays. In addition, special iteration summary reports can
be prepared.

The FORTRAN code for subroutine ENDIT is shown in 3
Figure 61. 1In order to cause SAINT to prepare the plot, we
call subroutine UPLOT with an unused but dimensioned X array,
the current time, and IPLOT = -1. When this call is made,

a plot of the deviations of both GCVs will be printed.

Initializing Statistics

P

It was stated above that subroutine ENDIT is also use-
ful for the reinitialization of statistical storage arrays.
We may perform the reinitialization of statistical
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SUBROUTINE ENDIT (ITER) i

c
_COMMON /COMO6/ TNOW, TTNEX , MFAD, SEED, ISEED,NCRDR , NPRNT, NPUNCH,
i NRNIT,MNDC,NDC,NDTN , NNTC
. COMMON /COM23/ LLUGC (20,2) ,USOBV (20,5) , LLUGT (20,2) ,TTCLR (20) ,
* USTPV (20, 6) , LLUGH (20, 2) ,NNCEL (20) , HHLOW (20) ,
* HHWID (20) ,JJCEL (540)
DIMENSION X(10)
c
C**** PROCESS END OF ITERATION STATISTICS
C
T=TNOW
CALL UPLOT(X,T,-1)
‘ c
C**** REINITIALIZE FOR NEXT ITERATION
c
F USTPV (1,6)=0.
k| USTPV (2,6)=0.
¥ RETURN

;| END

e %

S, S S

Figure 61. Subroutine ENDIT for SAINT Model of Figure 58.
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storage arrays by using any of several SAINT subroutines de-
veloped for this purpose. We may call subroutine CLEAR,
which initializes the user-generated statistical storage
arrays for variables based on observation, time-persistent
variables, histograms, and plots. This subroutine is
automatically called by SAINT following the reading of all
data cards associated with user-generated statistics to pre-
pare for statistical collection. However, we may employ
CLEAR at any time during the simulation by a direct call.

In addition to subroutine CLEAR, which initializes all
statistical storage arrays, we may selectively clear sta-
tistical storage arrays through the use of one of four
other subroutines. Subroutine CLROB initializes the sta-
tistical storage arrays associated with the collection of
user-generated statistics for variables based on observation
(collected using subroutine UCLCT); subroutine CLRTP initial-
izes the statistical storage arrays associated with the col-
lection of user-generated statistics for time-persistent
variables (collected using subroutines UTMST and UTMSA) ;
subroutine CLRHI initializes the statistical storage arrays
associated with the preparation of user-generated histograms
(collected using subroutine UHIST); and subroutine CLRPT
initializes the storage arrays and peripheral storage units
associated with the preparation of user-generated plots
(collected using subroutine UPLOT) .

All of the above routines have one argument, IND. This
argument allows us to selectively clear the storage for any
particular statistic or for all statistics. If IND is posi-
tive, then the clearing is done only for statistic number
IND. If IND is 0, then the statistical storage arrays of
all statistics are cleared.

Initialization Performed by SAINT

The statistical storage for user-generated statistics
based on observation and user-generated histograms is
initialized automatically by SAINT only following the read-
ing of user-generated statistics data cards. After that
time, we are totally responsible for any initialization re-
quired, including the end of an iteration and following
computation and reporting.

For time-persistent variables, SAINT automatically per-
forms the initialization at the beginning of each iteration.
However, the SAINT variable USTPV (ICODE,6), the initial
value of the time-persistent variable, must be reset by the
user for each iteration. Otherwise, it will retain its most
recent value.




g SRR

For user-generated plots, the initialization of storage
for all plots is performed automatically by SAINT following
the reading of data cards describing the user-generated
plots and following computation and reporting. Otherwise,
we are totally responsible for initialization of plot stor-
age including the end of an iteration for which we do not
request plotted output.

Initialization of the GCV Model

In our model, we desire the plotting information to be
reinitialized following each iteration. However, since we
request the plot at the end of each iteration, this reinitial-
ization is automatically performed by SAINT.

We desire the statistics for time-persistent variables
to also be reinitialized following each iteration. As this
initialization is automatically performed by SAINT, we do
not have to call subroutine CLRTP from subroutine ENDIT.

Also, since we desire the statistics based on observa-
tion and the histograms to be collected over all iterations,
we need not specify any clearing for these statistics in
subroutine ENDIT.

However, since we are collecting time-persistent vari-
able statistics, we are required to reset the initial value
of each statistic. 1In subroutine ENDIT, we set the initial
values of the deviation of both GCVs for statistical col-
lection purposes to 0. Thus, we set USTPV(1l,6) and
USTPV(2,6), for GCVs 1 and 2, respectively, to 0.

At this point, we should recognize that we are col-
lecting deviation statistics for the GCVs from time 0 until
the time they reach x-coordinate 500,000. It is probable
that we would rather record statistics on the deviations
of the GCVs from the time that they are launched until they
reach their final x-coordinate. We would like to reinitial-
ize the statistical storage arrays for the time-persistent
variables when these GCVs are launched. If we refer to
Figure 58, we note that when either GCV 1 or GCV 2 is launch-
ed, user function 2 is called. Thus, in the FORTRAN code
for user function 2 shown in Figure 59, we want to clear the
statistical storage arrays for the time-persistent variable
of the appropriate GCV. Since the statistic code and the
GCV number are the same, we simply call subroutine CLRTP
with the GCV number as the argument. This accomplishes the
required reinitialization.

168




.

&

L W ——

S T T — or—— T To——
- e M . s —— st A PRS-

Reporting Statistics Collected Over All Iterations

The last statistics of interest that we have yet to
output are the statistics based on observation and the
histograms of the deviation of the GCVs when they reach
their final x-coordinate. To output these statistics after
all iterations have been completed, we employ subroutine
UOTPT. Subroutine UOTPT is automatically called by SAINT
at the end of the entire set of iterations that are exe-
cuted. This subroutine is most helpful for the preparation
of special simulation reports which require information col-
lected over a series of iterations. Thus, in the FORTRAN
code for subroutine UOTPT shown in Figure 62, we request all
the information for user-generated statistics based on ob-
servation and histograms. We request this information by
calling subroutines UCLCT and UHIST with 0 arguments,
causing SAINT to print reports on all user-generated sta-
tistics based on observation and histograms that we have
defined.

Summary

The following SAINT modeling concepts were discussed
in this section. If you do not understand these concepts,
re-read this section.

1. Subroutine UCLCT (XX,ICODE) is used for collection
and reporting of user-generated statistics for
variables based on observation.

2. Subroutine UTMST (XX,ICODE) is used for collection
and reporting of user-generated statistics for
time-persistent variables.

3. Subroutine UTMSA (XX,ICODE) is used for collection
of user-generated statistics for time-persistent
variables.

4. Subroutine UHIST (XX,ICODE) is used for collection
and reporting for user-generated histograms.

5. Subroutine UPLOT (X,T,IPLOT) is used for collection
and reporting of user-generated plots.

6. Subroutine CLEAR is used for reinitialization of
all user-generated statistics and plots.

7. Subroutine CLROB(IND) is used for reinitialization
of user-generated statistics for variables based
on observation.
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SUBROUTINE UOTPT

Ck*** PROCESS END OF SIMULATION STATISTICS

C
f c XX=0.
[~ CALL UCLCT (XX, 0)
E CALL UHIST (XX,0)
RETURN
END

B S

R R N

Figure 62. Subroutine UOTPT for SAINT Model of Figure 58.
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11.
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13.
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Subroutine CLRTP (IND) is used for reinitialization
of user-generated statistics for time-persistent
variables.

The SAINT variable USTPV (ICODE,6) must be reset by
the user when user-generated statistics for time-
persistent variables are reinitialized.

Subroutine CLRHI (IND) is used for reinitialization
of user-generated histograms.

Subroutine CLRPT (IND) is used for reinitialization
of user-generated plots.

Subroutine ENDIT is used to generate reports of
statistical quantities for an iteration and to
reinitialize user-generated statistics for the
next iteration.

Subroutine UOTPT is used to generate reports of

statistical quantities for a set of iterations.
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SECTION XXI

TASK MODIFICATION AND TASK CLEARING

This section and the two following present additional
capabilities that offer us alternatives for modeling in
SAINT. These capabilities are task modification, distribu-
tion set modification, task clearing, resource clearing,
and the specification of a task completion precedence. In
order to provide a more general framework for the discussion
of these concepts, let us expand our model of the GCV system
so that the tasks in the network relate to specific GCVs.

An Expanded GCV Model

Our new GCV model is presented in Figure 63. Opera-
tionally, it is equivalent to the model in Figure 58. How-
ever, the tasks representing monitoring and correcting GCV
status have each been divided into two tasks. Tasks 1 and 2
still represent the launch of GCVs 1 and 2, respectively.
However, task 3 represents the operator monitoring GCV 1,
while task 4 represents the operator monitoring GCV 2. Sim-
ilarly, task 5 represents the operator correcting the status
of GCV 1, while task 6 represents the operator correcting
the status of GCV 2. Tasks 7 and 9 are sink tasks and are
equivalent to tasks 5 and 7, respectively, of the model in
Figure 58. During execution of the model, the operator will
launch GCV 2, then launch GCV 1, then monitor and correct
(if necessary) GCV 2, then monitor and correct (if necessary)
GCV 1, then monitor and correct (if necessary) GVC 2, etc.,
until both GCVs have passed the x-coorindate of 500,000 feet.

When GCV 1 passes its limiting x-coordinate, the opera-
tor continues to monitor this GCV but never corrects its
flight. We have modeled this by setting the state variables
and switch values such that the deviation status of the GCV
will always be 0 beyond that time. However, what if we do
not even want the operator to monitor the status of the GCV
once it has passed the x-coordinate value of 500,000? 1In
that case, when task 7 is signaled (specifying that GCV 1 has
passed its 500,000 x-coordinate), we would like to prevent
him from any further activity on GCV 1. This can be ac-
complished through the use of task clearing and task modi-
fication.

Description of Task Modification

Task modification involves a substitution of the char-
acteristics and output side of one task for those of another

&l
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task upon the completion of a third task. The SAINT repre-
sentation of task modification is presented in Figure 64.

A dashed line is drawn between the original task in the net-
work and the task to be substituted for this task upon
completion of another task. 1In the triangle appearing at
the side of this dashed line is the number of the task whose
completion causes the modification. In Figure 64, the com-
pletion of task 20 causes the substitution of the descrip-
tion and output portions of task 30 for those of task 10.

It should be noted that if task 10 is in progress at the
time the modification is made, then branching will occur
from task 30. However, if the task is not in progress at
the time of the completion of task 20, the entire descrip-
tive section of task 30 is used to determine the resources
required, performance time required, and any other opera-
tions to be performed when task 10 is again scheduled.

Types of Task Modification

There are two types of task modifications which may
appear in a SAINT network: interchange and multiple replace-
ment. We specify the type of task modification to be used
on input. In SAINT, we may only specify a single type for
an entire simulation. Thus, all task modifications within
a network must be of the same type.

Interchange Modification

An interchange modification allows for reflexive
substitution of tasks. Figure 65 illustrates a situation
requiring an interchange modification. In the example, an
input to task 10 causes an output from task 10 and an input
to task 20 causes an output from task 20 if tasks 1 and 2
have not been completed. If task 1 is completed prior to
task 2, an input to task 10 or 20 would result in an output
from task 20. If task 2 is then completed, an input to
task 10 or 20 would result in an output from task 10. If
task 1 is then completed, an input to task 10 or 20 would
result in an output from task 20.

Multiple Replacement Modification

A multiple replacement modification occurs when a task
that has replaced another task is in turn replaced in the
network. Figure 66 illustrates a situation requiring a
multiple replacement modification. In the example, an input
to task 10, 20, or 30 results in an output from task 10, 20,
or 30, respectively, if neither task 1 nor task 2 has been
completed. If task 1 is completed prior to task 2, an input
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LABL | DSTERMINE STATUS
TIME DS, 1
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SAINT Representation of Task Modifications.
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Figure 65. An Example of Interchange Modifications.
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Figure 66. An Example of Multiple Replacement
Modifications.
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to task 10 or 20 results in an output from task 20 and an
input to task 30 yields an output from task 30. If task 2
is then completed, an input to task 10, 20, or 30 results in
an output from task 30. If task 2 is completed prior to
task 1, an input to task 10 yields an output from task 10
and an input to task 20 or 30 results in an output from task
30. If task 1 is then completed, an input to any of the
three tasks would result in an output from task 30.

Selection of the Type of Task Modification

An incompatibility exists between interchange and
multiple replacement modifications. For example, assume
that multiple replacement modification was specified for
the situation in Figure 65. Further, assume that the com-
pletion of task 2 occurs prior to the completion of task 1.
When task 2 is completed, task 20 is replaced by task 10.
An input to task 10 or 20 would result in an output from
task 10. If task 1 is then completed, SAINT would attempt
to replace task 10 with task 20. However, task 20 has
already been replaced by task 10. Thus, if multiple replace-
ment modification had been specified, no modification would
occur following the completion of task 1. Any inputs to
task 10 or 20 would still result in an output from task 10.

It is important to note that the specification of inter-
change or multiple replacement modifications is solely de-
pendent upon the intent behind the modification. SAINT does
allow us to specify multiple replacement modification for
the situation in Figure 65. Likewise, we may specify inter-
change modification for the situation in Figure 66. Because
of this, we should exercise modeling caution to insure that
the desired results are obtained from the modification.

Description of Task Clearing

Task clearing involves the interruption (clearing) of
a task in progress when another task is completed. If a
clearing operation is performed, SAINT allows a task to be
signaled. The number of predecessor requirements for the
signaled task will be reduced by 1. Clearing information
is included as part of the description of the task whose
completion causes the clearing. The task description code
for task clearing is TCLR. 1In the right-hand side of the
TCLR row appears the letter C followed by the resource to be
cleared and, if appropriate, the letter S followed by the
task to be signaled. For example, in Figure 67, the com-
pletion of task 10 causes the clearing of task 20 and the
signaling of task 30. In addition, since we signal a task,
SAINT provides a mechanism for specifyina the signaling
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LABL [CLEAR AND SIGNAL
| TCLR C.20:S,30
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Figure 67. SAINT Representation of Task Cilearing.




operation at the task to be signaled. A circle is connected
to the input side of the task to be signaled by a dotted
line. 1Inside the circle, we place the number of the task
that caused the signaling operation. Thus, in Figure 67,
the circle specifies that task 3 is signaled whenever a
clearing operation is performed upon the completion of task
10.

In summary, if it is desired to halt a task in progress
based on the completion of another task, then a task clear-
ing operation is performed. A task clearing operation halts
the ongoing specified task and assumes that the branches
emanating from the cleared task are not taken. Further,
all resources that were working on the cleared task are set
idle. However, if the task to be cleared is not ongoing at
the time the clearing is requested, no clearing or signaling
takes place. If clearing of the task is required at some
later time, the clearing request must be reinitiated by
another task completion.

o

Task Modification and Task Clearing for the GCV Model

Returning to our SAINT model in Figure 63, we want to
insure that the operator no longer performs tasks 3 or 5 if
task 7 has been completed; and no longer performs tasks 4
or 6 if task 8 has been completed. To model this situation,
we employ a combination of task modification and task clear-
ing. Thus, we specify a clearing operation at task 7 which
clears task 3 and task 5. If either of these tasks are
ongoing at the time, this clearing operation will cause the
halting of these tasks. Since we no longer want the oper-
ator to monitor GCV 1, no signaling operation need be speci-
fied. In the same manner, we specify that the completion
of task 8 causes the clearing of task 4 and task 6.

If, upon the completion of task 7, the operator is not
performing either task 3 or task 5, then the clearing opera-
tion will have no effect. 1In this case, we must resort to
task modification to insure that tasks 3 and 5 are not per-
formed again.

For this situation, the information attribute packet
representing GCV 1 will be awaiting scheduling of task 3 or
task 5. Upon the completion of task 7, we modify task 3
into a task requiring no resources, taking no time, and
having no branching. An information attribute packet waiting
at task 3 will be immediately scheduled for the new task.
Further, the new task will be completed in 0 time. Since no
branching occurs from the task, the information attribute
packet will be destroyed. Similarly, if we specify the
modification of task 5 upon the completion of task 7, we can
destroy the information attribute packet describing GCV 1 if
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it is awaiting scheduling at task 5. Likewise, for GCV 2,
we modify both task 4 and task 6 into a task requiring no
resources, taking no time to perform, and having no branch-
ing, upon the completion of task 8.

All of the above modifications involve the modification
of a particular task into the same type of task. Thus, as
illustrated in Figure 68 task 7 causes the clearing of
task 3, the clearing of task 5, and the modification of
both task 3 and task 5 into task 9 (a task with the char-
acteristics described above). In the same manner, task 8
causes the clearing of task 4, the clearing of task 5, and
the modification of both tasks 4 and 5 into task 9. The
SAINT model illustrated in Figure 68 is a model of the same
GCV system as previously described except that upon the
arrival of each of the GCVs at its x-coordinate of 500,000
feet, the GCV will no longer be monitored by the operator.
Since we have modeled the operator as not considering the
GCV anymore, we do not have to regulate the value of the
deviation to 0 nor reset the switch vector to 0 at tasks 7
and 8 for GCVs 1 and 2, respectively.

Summary

1. Task modification involves a substitution of the
characteristics and output side of one task for
those of another task upon the completion of a
third task.

2. To represent task modifications, a dashed line is
drawn from the modified task to the renlacement
task.

3. The number of the task whose completion causes the
modification is placed inside a triangle alongside
the dashed line.

4. Interchange modification allows for reflexive sub-
stitution of tasks.

5. Multiple replacement modification occurs when a
task that has replaced another task is in turn re-
placed in the network.

6. Only interchange or multiple replacement modifica-
tions may be used in one SAINT model.

7. Task clearing involves the interruption (clearing)

of a task in progress when another task is com-
pleted.
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10.

11.

12.

If a clearing operation is performed, another task
can be signaled (the transaction at the cleared
task is sent to the signaled task and the prede-
cessor requirements are reduced by one).

The task description code for task clearing (at
the task causing the clearing) is TCLR.

The right-hand side of the TCLR row contains the
specification of the task to be cleared and the
task to be signaled.

To indicate a signaling operation, a circle con-
taining the number of the task causing the signal-
ing is connected to the task being signaled by a
dotted line.

No clearing or signaling is performed if the task
to be cleared is not ongoing at the time of the
clearing operation.
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SECTION XXII

RESOURCE CLEARING, DISTRIBUTION SET MODIFICATION,
AND TASK COMPLETION PRECEDENCE

Resource Clearing

Previously, we have discussed the SAINT capability of
task clearing. SAINT also provides a parallel capability
for resources, i.e., resource clearing. Resource clearing
involves halting a task in progress that is being performed
by the specified resource. If the specified resource is
cleared from a task, the task itself is cleared and all
resources working on the task are set idle. However, if
the resource to be cleared is idle at the time the clearing
operation is to be performed, no clearing occurs. The sig-
: naling feature that is a part of task clearing may also be
P\ specified in the resource clearing operation.

i Resource clearing is specified on the task symbol in
y the same manner as task clearing. The task description code
i for resource clearing is RCLR. In the right-hand portion of
‘ the RCLR row appears the letter C followed by the resource
to be cleared and, if required, the letter S followed by the
1 task to be signaled. To display signaling of a task, a
Zn circle is connected to the input side of the task to be
b ) signaled with a dotted line. 1Inside the circle appears the
§ number of the task whose completion causes the signaling
operation. Figure 69 displays the resource clearing speci-
fication at a task. At the completion of task 10, resource
2 will be cleared from either task 20 or 25 and task 30
will be signaled.

Distribution Set Modification

Distribution set modification is similar to task modi-
fication but involves the substitution of one distribution
set for another based on some task completion. Once a
distribution set modification has taken place, the task
(or tasks) which previously used the original distribution
set to generate performance times or attribute assignments
will now use the substitute set. In addition, the same
considerations regarding interchange and multiple replace-
: ment modification as discussed in the last section for task
P modification apply to distribution set modification.

Distribution set modification is described in the task
description section of the task whose completion causes the
modification. The task description code for distribution
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Figure 69. SAINT Representation of Resource Clearing.
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set modification is DMOD. On the right-hand side of the
DMOD row appears the distribution set number to be modi-
fied, the new distribution set to be used, and an arrow
pointing from the old distribution set to the new. The
distribution set modification specification is illustrated
in Figure 70. Upon the completion of task 10, distribution
set 3 will be replaced by distribution set 5 for the re-
mainder of the iteration.

Task Completion Precedence

In SAINT, sequencing of task completions is always based
on the scheduled time of completion. For example, if task
10 is to be completed at time 10, and task 20 is to be com-:
pleted at time 30, then the completion of task 10 will be
processed prior to task 20. However, it is possible to
have two tasks scheduled to be completed at the same time.
Since all distribution set modifications, attribute assign-
ments, task modifications, switching, regulation, branching,
etc., caused by the completion of the first task will be
performed prior to the processing of the completion of the
second task, it is essential that we have control of the
processing sequence of simultaneous task completions. For
this reason, we may assign a task completion precedence to
each task in our SAINT network. The value of the task
completion precedence can be any real value and the task
with the greater task completion precedence will be processed
first if two tasks are completed simultaneously.

The task description code for the task completion
precedence is PREC. On the right-hand side of the PREC row
we simply insert the value of the task completion precedence
for this task. For example, in Figure 71, the task comple-
tion precedence for task 10 is 25.

Summarx

The following SAINT modeling concepts were presented in
this section. If you do not understand these concepts, re-
read this section.

1. Resource clearing involves halting a task in
progress that 1s being performed by a speci-
fied resource.

2. Signaling can be performed after a resource
clearing operation.

3. The task description code for resource clearing
is RCLR.
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Figure 70. SAINT Representation of a Distribution
Set Modification.
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10.

11.

12,

13.

The right-hand side of the RCLR row contains the
specification of the resource to be cleared and
the task to be signaled.

To indicate a signaling operation, a circle
containing the number of the task causing the
signaling is connected to the task being signaled
by a dotted line.

No clearing or signaling is performed if the re-
source to be cleared is not busy at the time of
the clearing operation.

Distribution set modification involves the substi-
tution of one distribution set for another based
on some task completion.

Distribution set modification is described in the
task description section of the task whose com-
pletion causes the modification.

The task description code for distribution set
modification is DMOD.

The right-hand side of the DMOD row contains the
distribution sets involved with an arrow pointing
from the modified set to the replacement set.

The task completion precedence is used to order
the processing of simultaneous task completions.

The task description code for the task completion
precedence is PREC.

The right-hand side of the PREC row contains the
value of the task completion precedence.
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SECTION XXIII

CONCLUSION

As you have progressed from the beginning to the end
of this instruction manual, you have been introduced to the
extensive set of SAINT modeling capabilities and the pro-
cedures required to use them. In addition, you have been
through the process of developing SAINT models of alterna-
tive configurations of the GCV system many times and have
seen all of the SAINT modeling capabilities used in that
context. As a result of this process, you should now be
aware of the power and flexibility of SAINT as a tool for
modeling complex systems.

By reading and studying this manual, you have gained
a high degree of familiarity with the modeling concepts and
procedures embodied in the SAINT technigque and should now
be able to construct SAINT models of the systems you wish
to analyze. The next step is to learn the procedures that
must be followed in order to convert SAINT models into data
cards readable by the SAINT simulation program. These pro-
cedures are described in The SAINT User's Manual (1). 1t
is only after studying the conversion procedures that you
will be able to execute SAINT models.

Once you have executed a SAINT model, take the time to
become familiar with the form and content of the output
information SAINT provides. By doing so, you will gain a
deeper appreciation for the wealth of system performance
data that SAINT produces for you and will be better able to
select and analyze SAINT outputs. Further, you will be
prepared to learn additional procedures for analyzing SAINT
output described in Analyzing SAINT Output Using SPSS (3).

Do not become discouraged if your initial SAINT model-
ing efforts prove to be difficult or frustrating. Modeling
is an art that takes time and patience to master. By
experimenting with the SAINT modeling capabilities and
gaining confidence in your ability to use them, you will be-
come an effective and efficient modeler capable of modeling
a wide variety of complex systems using SAINT.
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