AD AO 58670

DDC FILE COPY

Prepared for

N. Sundararaman

October 1976

U.S. DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Environmental Quality Washington, D.C. 20591 28 09 14 068 This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

MA

Maria Andrea Alera

Sel 7 1 2-17 2

. ,

10.11 C. 10.11 C. 10.11

Technical Report Documentation Page 3. Recipient's Catalog No. 2. Government Accession No. FAA-EC Title and Subtitle 376 Octor ermine Oreenizetie Summary of Upper Atmospheric Data / 6 Performing Organizatio MOR TR-1112 N./Sundararaman Operations Research, Inc. Wark Unit No. (TRAIS) 1400 Spring Street DOT-FA76WA-3758 New Silver Spring, Maryland 20910 13. Type of Report and Pariod Covered 12. Sponsoring Agency Name and Address High Altitude Pollution Program Data Report, Office of Environmental Quality Federal Aviation Administration Washington, D.C. 20591 15. Supplementary Notes 16. Abstract Simultaneously observed concentrations of Cl and ClO; NO, NO2, and HNO3; and NO₂, HNO₃, and H₂O are reported. Also included are mixing ratios of HC1, CF2Cl₃, CFCl₂ and N₂O, and photoabsorption cross sections for CCl₂F₂, CCl₃F, CLONO₂, and NC₂. 18. Distribution Statement Absorption cross sections Mixing ratios Atmosphere Stratosphere Solar fluxes Trace gases Data Fluorocarbons 22. Price 20. Security Classif. (of this page) 21. No. of Pages 19. Security Classif. (of this report) 52 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

270 900

Introduction

The following data related to the upper atmosphere are presented in this report:

- 1. Concentrations of O(3P), OH
- 2. Concentrations of Cl and ClO observed simultaneously
- 3. Volume and mass mixing ratios of HC1
- 4. Volume mixing ratios of CF₂Cl₃, CFCl₂ and N₂O
- 5. Concentrations, simultaneously observed, of NO, NO2 and HNO3; and of NO2, HNO3 and H20
- 6. Photoabsorption cross sections, and their temperature dependences, for CCl_2F_2 and CCl_3F
- 7. Photoabsorption cross sections of ClONO2 and of NO2.

The data are displayed in graphical form, and, if readily available, in tabular form. Some comments have been included regarding the observational technique, date, time and location of the experiment and the associated uncertainty. Lists of references are appended immediately after these comments or after the data.

In the "Initial Summary of Upper Atmospheric Data," disseminated in April 1976, two errors have been noted: one, in the improper labeling of the abscissae in the HCl absorption cross section diagram, and the other in the wrong copying of the table of values for the 5 Å - average solar flux values for quiet sun conditions in the 1750-2100 Å region. Both of these oversights have been corrected and the corrected diagram (Figure 17) and table (Table 10) are included in this report.

It is quite likely that the author of this report has missed some of the data; he would be grateful if such data are brought to his attention.

Altitude	0(3P) Con	centration:	
	Observed	Experimental ^a Uncertainty	1938
lcm	cm-3	cm-3 cm-3	A CONTRACT
39	1.0(9)b	7.0(8) - 1.3(9)	s refer
38.5	7.5(8)	5.2(8) - 9.7(8)	
38.0	7.5(8)	5.2(8) - 9.7(8)	aranso.
37.5	6.1(8)	4.2(8) - 7.7(8)	a warman
37.0 to With as interested a	4.4(8)	3.1(8) - 5.7(8)	हत्व उत्तराष्ट्र हत्य हत्य क कार्यहों
36.5	5.2(8)	3.7(8) - 6.6(8)	A DE LA STRUCTURE
36.0	4.6(8)	3 3(8) - 6 2(8)	Trans entres?
35.5	4.9(8)	3,3(8) = 6,2(8)	
35.0	3.4(8)	2.4(8) - 4.4(8)	Contraction of the
34.5 maiangadar an ex of u	2.8(8)	2.0(8) - 3.7(8)	The second
34.0 SLEVISONI HA L INVO IN	3.9(8)	2.7(8) - 4.9(8)	
33.5	2.9(8)	2.0(8) - 3.9(8)	
33.0	3.7(8)	2.5(8) - 4.6(8)	
32.5	3.1(8)	2.3(8) - 4.4(8)	
32.0	2.4(8)	1.8(8) - 3.2(8)	
31.5	2.0(8)	1.6(8) - 2.6(8)	
31.0 states and all calle to	2.8(8)	1.9(8) - 3.7(8)	detabl
30.5	2.9(8)	2.0(8) - 3.8(8)	Tatog
30	2.3(8)	1.6(8) - 3.0(8)	
29	1.2(8)	9.2(7) - 1.6(8)	
28	1.1(8)	6.4(7) - 1.5(8)	
27	8.1(7)	4.1(7) - 1.1(8)	
74	6 0(7)	2 5(7) - 9 5(7)	

8 09 14 068

TABLE 1: Stratospheric Concentration of O(3P)(Values read off published graph)

(Source: Anderson, 1975)

ь

Experimenter's uncertainty 1.0(9) refers to 1.0 x 10⁹

Stratospheric Concentrations of O(³P)

Technique:	Atomic resonance fluorescence of	of O(³ P) at 1304 Å
Date:	25 November 1974	Altitude
Time: Vinta	10:30 a.m. CST	res
Solar Zenith Ang	Le: 56º	97
Location:	Palestine, Texas (32° N)	38.5
Experimental Uncertainty:	±30% from 40 km to 29 km increa	sing to $\pm 60\%$ at 27 km.
Comments:	Structure evident in the profil significant above 30 km.	e is statistically
- 414(8)	Profile measured from 40 to 26	km integrated over 500
(8)8.5 - (8)8.6 -	intervals above 30 km and over 30 km.	1 km intervals below
$= \delta_{+} \mathcal{G}(\mathfrak{B})$ $= \delta_{+} \mathcal{G}(\mathfrak{B})$ $= \delta_{+} \delta(\mathfrak{B})$ $= 4_{+} \delta(\mathfrak{B})$ $= 3_{+} \mathcal{G}(\mathfrak{B})$ $= 2_{+} \delta(\mathfrak{B})$	intervals above 30 km and over 30 km.	1 km intervals below
nderson, T. G., T tratosphere, Geog	intervals above 30 km and over 30 km. The Absolute Concentration of O(³ P) hys. Res. Lett., 2, 231-234, 1975	1 km intervals below

Experimenter's uncertainty 1.0(9) refers to 1.6×10^9 12 et.

di.

OH Concentrations cm ⁻³	Comments
3.6(6) ^a	Rocket measurements on
4.0(6)	22 April 1971.
4.4(6)	Uncertainty: 1 factor
4.4(6)	of 2. (Uncertainty eye-
5.2(6)	ball averaged from published
5.2(6)	graph)
5.2(6)	
5.0(6)	
4.9(6)	
4.2(6)	
4.5(6)	5 State 1 State
2.8(7)	Balloon measurements on
2.15(7)	12 January 1976.
2.2(7)	Experimenter's Uncertainty:
9.5(6)	±35x
1.3(7)	
1.05(7)	
4.2(6)	
2(7)	Balloon measurement on 18 July 1975. Experiment's
1 april	Uncertainty: ±1.5(7) to -1.0(7)
	$\begin{array}{c} 0 \text{H Concentrations}\\ & \text{cm}^{-3} \end{array}$

TABLE 2: Upper Atmospheric Concentrations of OH (Values read off published graphs)

(Source: Anderson, 1971, 1976) ^a 3.6(6) refers to 3.6 x 10⁶

然上自己的复数证据

Upper Atmospheric Concentrations of OH

是一些是1 和名词第五 一场自主了等的了这个

Resonance fluorescence of OH in the wavelength Technique: region 3064-3120 Å (gining range a range (a cacer cainty) 22 April 1971 Rocket (Nike-Apache sounding rocket) Platform: 1816 MST Time: Solar Zenith Angle: 86º 13' White Sands, New Mexico Location: 70 to 45 km Vertical Region Sampled: Uncertainty: ¹ Factor of 2 obtained as an eye-ball average from published graph. 18 July 1975 Platform: Balloon Time: Local noon (at launch)

Solar Zenith Angle: 80° (during measurement)

Location: Palestine, Texas (32° N)

Vertical Region Sampled:

41 to 39 km

Uncertainty: $+1.5 \times 10^7$ to -1.0×10^7 cm⁻³ (Experimenter's uncertainty)

12 January 1976

Platform:	Balloon
Time:	Local noon (at launch)

Solar Zenith Angle: 80° (during measurement)

Palestine, Texas (32° N)

Location:

Uncertainty:

Vertical Region Sampled:

" Footer of a statistic as an age ball storage from publicated

±35% (Experimenter's uncertainty)

43 to 29 km

Anderson, J. G., Rocket Measurements of OH in the Mesosphere, J. Geophys. Res., 76, 7820-7824, 1971

Anderson, J. G., The Absolute Concentration of OH (X^2 T() in the Earth's Stratosphere, Geophys. Res. Lett., 3, 165-168, 1976

Altitude km	C1 Concentration cm ⁻³	C10 Concentration cm ⁻³	Comments
42	2.2(6)*		Experimenter's Uncertainty
41		3.0(7)	for both species ±50%
40	1.4(6)		
39		4.0(7)	
38	8.8(6)	8.0(7)	
37	1.3(6)	1.5(8)	E
36	9.0(5)	2.7(8)	
35	4.1(5)	3.5(8)	
34		5.0(8)	
33		4.0(8)	
32		5.0(8)	
31		4.3(8)	
30	5.4(8)	5.4(8)	
29		5.0(8)	
28		4.5(8)	
27		2.8(8)	

TABLE 3: Stratospheric Concentrations of Cl and ClO Simultaneously Observed (Values obtained from experimenter)

(Source: Anderson, 1976) ^a 2.2(6) refers to 2.2 x 10⁶

Simultaneous Stratospheric Measurements of Cl and ClO Concentrations

のないというないのないである

Technique:	Resonance fluorescence (C10 does not fluoresce; hence it is converted to C1 by adding NO: C10 + NO \rightarrow
Platform:	Balloon Two instruments, one for Cl and the other for Cl0, launched simultaneously on the same balloon
Date:	28 July 1976
Time:	12 Noon CDT
Solar Zenith Angle:	16 ⁰
Location:	Palestine, Texas (32°N)
Uncertainty:	±50% for both species (Experimenter's uncertainty)

Anderson, J. G., A Simultaneous Measurement of Cl and ClO in the Earth's Stratosphere, Paper presented at the International Conference on the Stratosphere and Related Problems, Logan, Utah, September 15-17, 1976.

ALTITUDE (KM)

Stratospheric HCl Mixing Ratios

Ackerman et al., 1976:

The second s

1.

Spectroscopic observations of HCl absorption at three micron-wavelength region with a grille spectrometer.

Platform: Balloon

Date: 2 October 1975

Time: 1623 GMT (at peak altitude of 35 km)

Solar zenith angle: 77°

Location:

Technique:

CNES Range at Aire sur l'Adour, France (44° N, 0° W)

Comments:

HCl volume mixing ratio was $(3.8 \pm 1.5) \times 10^{-10}$ at 20 km increasing with altitude at least up to 30 km where the value was $(1.4 \pm 0.6) \times 10^{-9}$. A maximum number density of $(7.2 \pm 3) \times 10^8$ cm⁻³ was observed at 24 \pm 2 km.

2. Farmer et al., 1976:

Technique:

Spectroscopic observations at three micron-wavelength region with a high speed stepped Michelson interferometer

Platform:

U.S. Air Force NC 135 (11 to 12 km), NASA U2 (21 km) over Continental U.S.; and both the British and the French Concordes (prototypes) over the N. Atlantic at 15.5 km.

Time: Sunrise or Sunset

Location:

Comments:

Maximum concentration was reached at 21 km (the limiting height of the observations) where the local volume mixing ratio was $(7 \pm 1) \times 10^{-10}$.

Continental U.S. and N. Atlantic

Stratospheric HCl Mixing Ratios (cont'd)

3. Lagrus et al., 1975:

State of the second sec

Technique:	In situ sampling using filter capture.
Platform:	Balloon
Time:	Fall 1974, generally in early morning.
Location:	Hollomon Air Force Base, New Mexico
Comments:	The volume mixing ratios were 5.5 x 10^{-10} at 21 km, 3.4 x 10^{-10} at 24 km, 5.1 x 10^{-10} at 26.4 km and 4.0 x 10^{-10} at 27.5 km.

4. Lazrus et al., 1976:

See Lazrus et al., 1975. The times of experiments are given in the figure.

5. Raper et al., 1976:

Technique:	See Farmer et al., 1976
Platform:	Balloon
Date:	September 1975 and May 1976
Location:	Palestine, Texas (32° N)
Comments:	The HCl volume mixing ratio increased from about 6×10^{-10} at 20 km to a maximum of about 1.7 x 10^{-9} at 34-35 km and fell off rapidly thereafter to less than 4 x 10^{-10} at 40 km.

6. Williams et al., 1976:

Technique: Spectroscopic observations at three micronwavelength region with a grating spectrometer at float altitude, 30 km. Platform: Balloon Date: 16 December 1975

Stratospheric HCl Mixing Ratios (cont'd)

Sunset

Location:

Time:

Hollomon Air Force Base, New Mexico

The volume mixing ratio increased from 1.5×10^{-10} Comments: to 1.2 x 10^{-9} in the 13.4 to 27 km altitude range.

Ackerman, M., D. Frimout, A. Girard, M. Gottignies, and C. Muller, Stratospheric HCl From Infrared Spectra, Geophys. Res. Lett., 3, 81-83, 1976.

Farmer, C. B., O. F. Raper, and R. H. Norton, Spectroscopic Detection and Vertical Distribution of HCl in the Troposphere and Stratosphere, Geophys. Res. Lett., 3, 13-16, 1976.

Lazrus, A. L., B. W. Gandrud, R. N. Woodard, and W. A. Sedlacek, Stratospheric Halogen Measurements, Geophys. Res. Lett., 2, 439-441, 1975, as quoted in "The Effect of Fluorocarbons on the Concentration of Atmospheric Ozone" by the Technical Panel on Fluorocarbon Research, Manufacturing Chemists Association, 1825 Connecticut Ave., N.W., Washington, D.C. 20009, 1 March, 1976.

Lazrus, A. L., B. W. Gandrud, R. N. Woodard, and W. A. Sedlacek, Variability of Stratospheric Hydrogen Chloride, Private Communication, 1976.

McCarthy, R., An Industry View of the Scientific Aspect of the Fluorocarbon/ Ozone Issue, Paper presented at the International Conference on the Stratosphere and Related Problems, Logan, Utah, September 15-17, 1976.

Raper, O. F., C. B. Farmer, and R. A. Toth, The Vertical Distribution of HCl in the 20-40 km Region of the Stratosphere, Paper presented at the International Conference on the Stratosphere and Related Problems, Logan, Utah, September 15-17, 1976.

Williams, W. J., J. J. Kosters, A. Goldman, and D. G. Murcray, Measurement of the Stratospheric Mixing Ratio of HCl using Infrared Absorption Technique, Geophys. Res. Lett., 3, 383-385, 1976.

Legend to Figure 6

Zafonte et al., 1975 HE Heidt et al., 1975 HES Hester et al., 1975 K Krey et al., 1976 Lovelock, 1974 E L Lovelock et al., 1973 LE Grimsrud and Rasmussen, 1975 GR G Goldan et al., 1975 W Williams et al., 1975 and and a • S1 Schmeltekopf et al., 1975, 6/75 Laramie, WY Schmeltekopf et al., 1976, 9/75 Denver environs S2

S3 Schmeltekopf et al., 1976, 4/76 Panama
S4 Schmeltekopf et al., 1976, 5/22/76 Alaska
S5 Schmeltekopf et al., 1976, 7/8/76 Laramie, WY

2

WEALTHAN LOUP

Legend to Figure 7

新题

- Zafonte et al., 1975
- Z Zafonte et al., 1975
- T Tyson et al., 1976
- HE Heidt et al., 1975
- HES Hester et al., 1975
- L Lovelock, 1974
- GR Grimsrud and Rasmussen, 1975
- G Golden et al., 1975
- W Williams et al., 1975

S1 Schmeltekopf et al., 1975, 6/75 Laramie, WY

- S2 Schmeltekopf et al., 1976, 9/76 Denver environs
- S3 Schmeltekopf et al., 1976, 4/76 Panama
- S4 Schmeltekopf et al., 1976, 5/11/76 Alaska
- S5 Schmeltekopf et al., 1976, 5/22/76 Alaska
- S6 Schmeltekopf et al., 1976, 7/8/76 Laramie, WY

MEASUREMENTS OF FLUOROCARBON VOLUME MIXING RATIOS UNITS: pptv (10⁻¹²v/v) TABLE 4:

Comments		Rocket-integrated air	Eampling between 40 and 50 km (Ehhalt et al., 1975)	Balloon-borne cryogenic sampling; gas chromatography	with an electron capture detector	more concastration more about		and the set to be a set of a s		Tropopause: 15km (1973)	16.19km (1975)	Average value from 2 flights	Tropopause: 13 km
Date & Location	Terist.	5/23/73	8139" 2329	\$/7/74	5/7/74	6/2/75	6/2/75	6/6/13	6/2/75	9/9/73	9/9/73 Palestine, TX (32 ⁰ N)	5/23/74 36.15 -39.30 Lat. 106.17-106.45 Long.	5/23/74 33.10 - 34.14 Lat. 104.30-105.10 Long
(CF2C12)	areas -	< 5	247112	35	48	1	1	86	1	133	78	98 [±] 18 (110)	140 (140)
(Greit ₃)	99.4	< 0.2	19.83	6 . W	6	n	18	45	95	83	94	60 ± 4 (57)	75 (73)
ka ka		40-45	BALTHON	34.0	31.0	28.6	24.5	23.0	16.9	13.0	12.0	18.3 (18)	12.2
Author		Heidt et al.,	1975				21					Heater et al., 1975	s saltop

Incheduction: 13 Au	Comments	Values in parentheses quoted by Heidt et al., 1975		10 1910 (1915)	Tase (Tatt)		Compressed air sample	leas chromatography analysis	1	Mean concentration averaged	over tatitude interval of	Across out artention of trans-	A But yo we proper a that we stad	Gas chromatography		ACCEMENTS		
	Date & Location	5/23/74 34.45 -33.50 Lat. 106.20-105.00 Long.	4/74 60 ⁰ 4–37 ⁰ S	averate	atto: atto		25/2/4	10/74	e n7-m-C/	671730	21,11,19		213137	6/74, 7/74 U TU	10/73	N. Atlantic	6/74 Central England	9/14 Capetown, S. Africa
	F-12 (CF2CL2)	125 ± 7 (120)			ACT.				•				32	101.7	115.2	(193013)		anda' buta (10-1
	P-11 (CPC13)	80 ± 3 (82)	59	70	65	57	47	69	11	11	66	67	41	79.8	88.6	(care)	101-119	57
1	Altitude, km	••• (6)	13.7	15.2	16.8	18.3	19.2	12.2	13.7	15.3	16.8	18.3	19.2	Surface	24.45		, shuttein	+ Signi
	Author	- 18.2 areas for 81	trey et al., 1976						21			1		ovelock,	- In an in the	Aogaoy		

Comments	Tropopause between 7.5 and	and a star advertised	Oceanographic cruise of	Shackleton Latitude	Aerial concentration averaged over 50 ⁰ N-60 ⁰ S. Concentration ranges from 70 ptv at 50 ⁰ N to 38 pptv at 60 ⁰ S.	Balloon-borne stainless steel grab samplers	Electron capture detector/gas	cirtomatography	Gas chromatography/	wass spectrometry Values as quoted by Sze and u. 1076		Values as quoted by Sze and Wu, 1976.	is a structure of the second	
Date & Location			11/11, 12/11	S009-No05	6110	6/75 Laranie, WY		2×10519	May 1975	erva .	8/75	9/75		8/75
F-12 (CF ₂ C1 ₂)	99	122	128	0.5	12	75 ± 5	135 ± 10	210 ± 10	210-230	100 1 10	90 ± 10	330	230 ± 30	225 ± 30
F-11 (CPC13)	73	100	49	189	011	20	30+3 -F	80 ± 10	120-130	2.5. 2.3	48 ± 5	150	160 ± 15	120 ± 15
Altitude, km	6	7.5	1 Surface	2.5	27.5	26.2 ± 1	22.3 ± 0.7	17.7 ± 0.5	Surface	85.8	Surface	1-4	10	14
Author			Lovelock et	al., 1973	an ma Jola	Schmeltekopf et al., 1975		as are thus	Grimerud	and Rasmussen, 1975	Coldan et al., 1075		are the t	

である

Comments	values as quoted by See and Mu.		grande so draster ph pass and and anot	See Williams et al., 1975.		al court to carriette also also also also	atest guide adquieres	at puet at puet on 12 libra	Electron capture detector/gas	chromatography	The sectors respectively and	(Values read off the graphs nrowided by the evnerimentere)		bus 7.1 mouth for any and a	a S pulsado
Date & Location	8/75	Saskatchewan 8/75	8/75	9/26/75	9/26/75	8/12/68	9/26/75		9/75	Denver	Environs				moltanen å stad
F-12 (CF2C12)	25 ± 3	84 ± 8	100 ± 10	120	160	50-60	140		270	270	260	212	TES	en A	(669010) 8-13
F-11 (CFC1 ₃)	1.3 + 0.7	10 ± 1	7.6 ± 1	23	65	20	110		170	160	170	220	100	12	tosof?) k=1t
Altitude, km	18.5	22	25.5	21	18.5	18.5	IJ	4	1.75	2.5	3.5		2		, short 175A
Author		, is sense.	A2 1. minimum (197	Hiliams	t al., 1975		THE TERT	24	schmeltekopf	et al., 19/0	19 douber				And Pole

Careford and a state of the sta

	F-11 (CFC1 ₃)	F-12 (CF2C12)	Date and Location	Coments
opf 12	125	230	4/76	Electron capture detector/gas
18.5	11	185	Panama	curromero Brabuly
. 23	99	175	A COLOR OF ANY ANY ANY ANY	
27	15	135		(Values read off the graphs provided by the ernorimenters
32	1	06		

		220	5/11/76	
15		180	Alaska	
31		30		
%		25	ALL STAT TIME IN A	the side at pripping at 2013 and anticipite at 1973 and 1873
10	110	220	5/22/76	
19.5	21	100	Alaska	Beautified of age substantingers
24		17		
28.5	and the	14	120 VIEWART	equilation of the set of the
the state	128	1	12,000,000	and the second s
10 10 10 10 10 10 10 10 10 10 10 10 10 1		Starting	Print and her still	A Statistical Annual

Contraction of the local division of the loc

and the second se

Author	Altitude	F-11 (CFC1 ₃)	F-12 (CF ₂ C1 ₂)	Date and Location	Comments
chmeltekopf	9.5	130	240	7/8/76	Electron capture
	14.5	100	220	Laramie, WY	chromatography
	20.3	39	135	•	
	23.3	5	84	and	(Values read off the graphs
	24.5	1.3	\$	2155328	(another tades and to more that
yson et al., 976	18.3		132 ± 3	3/23/76, Oregon 420 08'N, 117º 15'W	Cryogenic Sampling by U-2 aircraft at 18.3 and 21.3
	21.3		84 ± 1	3/23/76, Oregon 42º 13°N, 117º 20'W	km and by balloon at 28.3 and 35.9 km.
	21.3		73 ± 1	2/20/76, Calif. 37º 45'N, 120º 08'W	
	21.3	·	73 ± 2	3/11/76, Calif. 36º 54'N, 119º 38'W	5
	21.3	6	74 ± 10	5/14/76, Canada 55º 50'N, 67º 45'W	(alightering the path of the billing of
	21.3	60	76 ± 2	5/14/76, Canada 61° 00'N, 68° 35'W	second and the same second with
AVOL . IL	Mean at: 21.3	4.8	76 ± 3		current of bridge.
WEDE C	28.3	Acres 1	34 ± 3	1/23/76, Texas 32º 08'N, 92º 26'W	
	35.9	LL I	8 ± 2	1/23/76, Texas 31° 26'N, 94° 05'W	

Zaffonte et al., 0510 0.426 160 130 2//21/73, filverside england afficraft Mole aff eagles by twin- england afficraft 0510 240 1300 Calif, Riatio Haito Haito 0.914 100 130 Calif, Riatio Haito Haito 1.372 130 5 (100 Riatio Haito 1.372 130 6 (100 Riatio Haito 1.372 59 (100 Riatio Haito Haito 1.303 6 (100 Haito Haito Haito 1.303 6 (100 1//13, Haito, daff Haito, daff 1.312 1.4 (100 Haito, daff Haito, daff Haito, daff 1.313 6 (100 1//13, Haito, daff Hole aff and aff 1.312 6 (100 1//13, Haito, daff Hole aff Haito, daff 1.32 (100 11 11 Haito, daff Haito, daff Haito, daff <th>Author</th> <th>Altitude</th> <th>F-11 (CFC1₃)</th> <th>F-12 (CF2C12)</th> <th>Date and Location</th> <th>Comments</th>	Author	Altitude	F-11 (CFC1 ₃)	F-12 (CF2C12)	Date and Location	Comments
0.610 240 130 Catt, Mato Mato 0.914 100 130 Kato Kato 1.172 130 410 Kato Kato 1.172 130 410 Kato Kato 1.173 130 67 410 Kato 1.183 67 410 Kato Kato 1.183 67 700 Kato Kato 1.137 66 410 11/13 Mole aft carbonal after framiliant by teth 1.137 10 7/173 Kato, Catif. Mole aft carbon by teth 1.137 10 7/173 Rato, Catif. Mole aft carbon by teth 1.137 10 7/173 Rato, Catif. Mole aft carbon by teth 1.137 10 7/173 Rato, Catif. Mole aft carbon by teth 1.137 10 6/16 Mole aft carbon by teth Mole aft carbon by teth 1.137 10 11/13 Rato, Catif. Mole aft carbon by teth 1.138	Zafonte et al.,	0.426	160	130	2/23/73, Riverside	Whole air samples by twin-
0.914 100 130 Katio 1.372 130 <100		0.610	240	1300	Calif., Rialto	
1.372 130 < 100	**	0.914	100	130	Rialto	
1.029 58 < 100 Ratio 2.348 67 < 200		1.372	150	< 100	Rialto	
2.348 67 <100 Raito 3.068 59 <100		1.829	58	< 100	Rialto	
3.048 59 <100 Raito 4.267 65 <100		2.348	67	<100	Rialto	
4.267 65 <100 Ratco 0.457 48 <100		3.048	59	< 100	Rialto	AND
0.457 48 < 100 3/7/73, 0.457 48 < 100		4.267	65	<100	Rialto	「「「「「「」」」」
0.457 48 < 100 3/7/73, 3/7/73, Mole air samples by twin- engined aircraft. 1.372 49 < 100		gene (1940) Leith		an a		
1.372 49 < 100 Rtaito, Calif. 1.829 55 < 100		0.457	48	< 100	3/7/73.	Whole air samples by twin-
1.823 55 < 100 3.048 46 < 100		1.372	67	< 100	Rialto, Calif.	
3.048 46 < 100		1.829	55	<100		background levels of F-11
4.268 50 <100		3.048	97	< 100		be 60 and 90 pptv, respect-
4.871 60 <100		4.268	50	< 100		· KTANT
6.096 58 <100 6.248 42 <100 6.706 51 <100		4.877	99	< 100		
6.248 42 <100 6.706 51 <100		960.9	58	< 100		
6.706 51 < 100	•	6.248	42	< 100	fand skart skar skart skart skart skart skat skat skat skat skat skat skat ska	
		6.706	51	< 100	2014 614 612 612 612 612 612 612 612 612 612 612	

- Ehhalt, D. H., L. E. Heidt, R. A. Lueb, and E. A. Martell, "Concentrations of CH₄, CO, CO₂, H₂, H₂O and N₂O in the Upper Atmosphere," J. Atm. Sci., 32, 163-169, 1975.
- Heidt, L. E., R. Lueb, W. Pollock, and D. H. Ehhalt, "Stratospheric Profiles of CC1₃F and CC1₂F₂," Geophys. Res. Lett., 2, 445-447, 1975.
- Hester, N. E., E. R. Stephens, and O. C. Taylor, "Fluorocarbon Air Pollutants," III, Environ. Sci. and Technol., 9, 875-876, 1975.
- Krey, P. W., R. J. Lagomarsino, and J. J. Frey, "Stratospheric Concentrations of CC1₃F in 1974," J. Geophys. Res., 81, 1557-1560, 1976.
- Lovelock, J. E., "Atmospheric Halocarbons and Stratospheric Ozone," Nature, 252, 292-294, 1974.
- Lovelock, J. E., R. J. Maggs, and R. J. Wade, "Halogenated Hydrocarbons in and over the Atlantic," Nature, 241, 194ff, 1973.
- Schmeltekopf, A. L., P. D. Goldan, W. R. Henderson, W. J. Harrop, T. L. Thompson, F. C. Fehsenfeld, H. I. Schiff, P. J. Crutzen, I. S. A. Isaksen, and E. E. Ferguson, "Measurement of Stratospheric CFC1₃, CF₂Cl₂, and N₂O," Geophys. Res. Lett., 2, 393-396, 1975.

Schmeltekopf, A. L., et al., Private Communication, 1976.

- Sze, N. D., and M. F. Wu, "Measurements of Fluorocarbons 11 and 12 and Model Validation: An Assessment," to appear in Atmospheric Environment, 1976.
- Tyson, B. T., R. B. Brewer, J. A. Arveson, and J. F. Vedder, "Concentrations of Freon 12 and Nitrous Oxide in the Stratosphere," Paper presented at the International Conference on the Stratosphere and Related Problems, Logan, Utah, September 15-17, 1976.
- Williams, W. J., J. J. Kosters, A. Goldman, and D. G. Murcray, "Simultaneous Stratospheric Measurements," Paper presented at the fall AGU Meeting, San Francisco, December 1975.

Zafonte, L., N. E. Hester, E. R. Stephens, and O. C. Taylor, "Background and Vertical Atmospheric Measurements of Fluorocarbon-11 and Fluorocarbon-12 over Southern California," Atm. Environ., 9, 1007-1009, 1975.

Legend to Figure 8

T	Tyson et al.	, 1	976		
S1	Schmeltekopf	et	al.,	1975,	6/75 Laramie, WY
S 2	Schmeltekopf	et	al.,	1976,	8/75 Saskatchewan
S 3	Schmeltekopf	et	al.,	1976,	9/75 Denver environ
S4	Schmeltekopf	et	al.,	1976,	12/75 Laramie, WY
S 5	Schmeltekopf	et	al.,	1976,	1/76 Antarctica
S6	Schmeltekopf	et	al.,	1976,	2/76, New Mexico
S7	Schmeltekopf	et	al.,	1976,	4/76 Panama
S 8	Schmeltekopf	et	al.,	1976,	5/11/76 Alaska
S 9	Schmeltekopf	et	al.,	1976,	5/13/76 Alaska
S10	Schmeltekopf	et	al.,	1976,	5/22/76 Alaska
S 11	Schmeltekopf	et	al.,	1976,	7/8/76 Laramie, WY

.. Bailoon-borne grab sampling; electron capture detector/gas chromatography. Values published by experimenters • = . . = . Coments = = = : = TABLE 5: ATMOSPHERIC N₂0 VOLUME MIXING RATIOS Units: ppbv (10⁻⁹ v/v) Date & Location 8/75 Saskatchevan Laramie, WY Laramie, WY 2/76 New Mexico 1/76 Antarctica Denver Environs 12/75 51/6 6/75 300 ± 20 230 ± 20 160 ± 20 2215 215 215 215 215 93 93 73 88 73 88 2290 2290 2590 35 310 320 270 300 (0²N) 17.7 ± 0.5 22.3 ± 0.7 26.2 ± 0.1 Altitude 1.75 2.5 3 16 17.25 114 114 25.5 3.5 15 12 Schmeltekopf et al., 1975 Schmeltekopf et al., 1976 Author 31

Author	Altitude	(N ₂ 0) ppbv	Date & Location	Comeats	
meltekopf al., 1976	17 18.5 23 27.5 32	340 290 238 238 185	4/76 Panaa	Balloon-borne grab sampling; capture detector/gas chromato Values published by experiment	electron graphy . ters
•	7.5 15 31 36	350 300 25	5/11/76 Alaska	•	
	13.5 14.5 16.5	350 290 280	5/13/76 Alaska	•	
10	10 19.5 24.5 28.5	350 220 45	5/22/76 Alaska		
	9.5 14.5 20.25 24.50	320 310 265 135	7/8/76 Laramie, WY	•	
180n et al., 176	18.3	171 ± 12	3/23/76, Oregon 42° 08'N, 117° 15'W	Cryogenic Sampling by U-2 air at 18.3 and 21.3 km and by ba	craft lloon at
Squid Linefal City , in 10	21.3	117 ± 4	3/23/76, Oregon 42º 13'N, 117º 20'W	28.3 and 33.9 km. Values pro experimenters	vided by
	10 M		370 45'N, 1200 08'W		
		1.1.1	sheet of the state		

ちゃく ちょうちょう ちょうちんしんしょう

	21.3	21.3	21.3	Mean at 21.3	28.3	35.9	
ppbv	129 ± 5	143 ± 11	159 ± 9	134 ± 7	85 ± 1	34 ± 2	
Date & Location	3/11/76, Calif. 36° 54'N, 119° 38'W	5/14/76, Canada 54 ⁰ 50'N, 67 ⁰ 45'W	5/14/76, Canada 61º 00'N, 68º 35'W		1/23/76, Texas 32 ⁰ 08'N, 92 ⁰ 26'W	1/23/76, Texas 31º 26'N, 94º 05'W	
Connents	Cryogenic Sampling by U-2 aircraft at 18.3 and 21.3 km and by balloon at	28.3 and 35.9 km. Values provided by experimenters.			tin a		and A. S. Freezont, "Presentated Georges the Lett. I District Scinct anget, A. L., et al. Fra Crass, S. S. K. J. Jiser, J. S. Sitzen, S. S. K. J. Jiser, J. S. Sitzen, S. Sertatis Millors Miles II Logas, Cliff, Sertatis IS II. 19

A REAL PROPERTY OF A REAL PROPER

Schmeltekopf, A. L., P. D. Goldan, W. R. Henderson, W. J. Harrop, T. L. Thompson, F. C. Fehsenfeld, H. I. Schiff, P. J. Crutzen, I. S. S. Isaksen, and E. E. Ferguson, "Measurement of Stratospheric CFCl₃, CF₂Cl₂ and N₂O", Geophys. Res. Lett., 2, 393-396, 1975.

Schmeltekopf, A. L., et al., Private Communication, 1976.

Tyson, B. T., R. B. Brewer, J. A. Arveson, and J. F. Vedder, "Concentrations of Freon 12 and Nitrous Oxide in the Stratosphere," Paper presented at the International Conference on the Stratosphere and Related Problems, Logan, Utah, September 15-17, 1976.

Simultaneous Observations of NO, NO2 and HNO3

Technique:

NO Profile:	direct sampling
	chemiluminescent method by B. Ridley and H. Schiff (York University)
NO ₂ Profile:	inversion analysis of measurements taken by T. McEiroy (University of Toronto) of the differential absorption of the solar spectrum in the 4500 Å region during sunset
HNO ₃ Profile:	by measuring the atmospheric thermal emission in the 11.3 micron band with a liquid nitrogen cooled multi- channel radiometer during balloon ascent.
Platform:	Balloon
Date:	22 July 1974
Location:	Churchill, Manitoba
Comments:	NO volume mixing ratio varied from 2.5×10^{-10} at 19 km to 3×10^{-9} at the float altitude of 34.5 km. NO ₂ volume mixing ratio varied slowly from 2×10^{-10} at 11 km to more than 6×10^{-9} above 30 km.
	HNO_3 volume mixing ratio showed a broad layer peaked at 24 km with a peak mixing ratio of 6 x 10 ⁻⁹ . Total

at 24 km with a peak mixing ratio of 6×10^{-9} . Total HNO₃ above the tropopause was measured to be 320 m. atm. cm. A rocketsonde fired at Churchill on 23 July 1974 indicated the tropopause at 11 km. Total ozone as measured by a Dobson spectrophotometer was 350 m. atm. cm.

Evans, W. F., J. B. Kerr, and D. I. Wardle, The AES Stratospheric Balloon Measurements Project: Preliminary Results, Proceedings of the Fourth Conference on the Climatic Impact Assessment Program, DOT-TSC-OST-75-38, 412-416, Transportation Systems Center, Cambridge, Mass., February 4-7, 1975.

Simultaneous Measurements of H20, NO2 and HNO3

Technique:	Use of Fourier transform spectroscopy with a Michelson interferometer and helium-cooled bolometric detectors to study the emission spectrum of the
	stratosphere in the range 5-45 cm ⁻¹ .
Platform:	Balloon
Date:	12 September 1974 and 20 September 1974
Time:	Local noon \pm 1 hr (at time of observation at 34-36 km altitude)
Location: c	CNES Balloon Facility at Aire sur l'Adour, France. $(44^{\circ} N, 0^{\circ} W)$
Uncertainty:	\pm 15% for H ₂ O, \pm 25% for HNO ₃ , \pm 35% for NO ₂ (Experimenters' stated uncertainty)
Comments:	H_20 volume mixing ratio increased gradually from 3 x 10^{-6} at 15 km to about 5.5 x 10^{-6} at 33 km.
	NO_2 volume mixing ratio was 4 x 10^{-9} at 25 km rising to about 1.8 x 10^{-8} at 33 km.

 HNO_3 volume mixing ratio had a maximum at about 25 km with a value of about 9 x 10^{-9} .

Harries, J. E., D. G. Moss, N. R. W. Swann, G. F. Neill, and P. Gildwarg, Simultaneous Measurements of H_2O , NO_2 and HNO_3 in the Daytime Stratosphere from 15 to 35 km, Private Communication, 1975

1

· ·

4.

	Midpoint of the Wavelength, Interval, A	Absorption Cross	s Section, cm ²
8		CC1 ₂ F ₂	CC1 ₃ F
	2260	< 0.05(-20)ª	0.8(-20)
1.1.1.1	2235	< 0.05	1.2
	2210	0.05	2.1
	2186	0.10	3.0
192	2162	0.19	4.9
	2139	0.32	7.8
	2116	0.53	11.6
	2094	0.90	17.3
23	2073	1.53	24.8
	2051	2.66	34.1
	2030	4.37	45.7
2	2010	6.96	59.0
24	1990	10.9	74.3
19 1	1970	16.8	93.2
	1951	24.9	115
	1932	36.7	141
	1914	51.4	164 ^b
	1896	66.1	197b
	1878	86.5	227b
1	1860	105(-20)	255 ^c (-20)
1 Section 1			

TABLE 6: Absorption Cross Sections for CCl2F2 and CCl3F in the Wavelength Range 1850-2272Å at 296K (Values obtained from the experimenters)

(Source: Chou et al., 1976)

and the second se

0.05(-20) refers to 0.05×10^{-20} 8

^b Taken from Rowland and Molina, 1975
 ^c Interpolated from measurements at 1849 Å resonance line

TABLE 7: Absorption Cross Sections for Chlorine Nitrate (C10N0₂) (Values obtained from the experimenters)

A REAL PROPERTY OF A REAL PROPER

Absorption Cross Section cm ²	0.15(-20)	0.11 0	0.085	0.059	0.042	0.028	0.019	0.013	0.008(-20)					1	THE PARTY OF THE P	T		T
Wavelength	3800	3900	4000	4100	4200	4300	4400	4500	4600									
Absorption Cross Section cm ²	20.2(-20)	14.5	14.5	7.34	5.12	3.91	2.79	2.03	1.45	1.07	0.79	0.61	0.48	0.38	0.34	0.29	0.23	0.19(-20)
Wavelength A	2750	2800	2850	2900	2950	3000	3050	3100	3150	3200	3250	3300	3350	3400	3450	3500	3600	3700
Absorption Cross Section cm ²	995(-20) ^a	069	502	372	344	348	375	376	307	231	159	0 118	85.4	65.7	50.9	40.7	32.8	26.1(-20)
Wavelength	1860	1900	1950	2000	2050	2100	2150	2200	2250	2300	2350	2400	2450	2500	2550	2600	2650	2700

44

(Source: Rowland et al., 1976)
a 995(-20) refers to 995 x 10⁻²⁰

These data are in excellent agreement with the Manufacturing Chemists Association's experimental data quoted by McCarthy, 1976. Note:

t in shorting and the second provide the second of

A State State &

the second se

Wavelength	Absorption Cross Section cm ²	Wavelength	Absorption Cross Section cm ²
212	4.7(-21)ª	233	6 0(-23)
213	3.8	234	3.7
214	3.0	235	28
215	2.5	236	2.2
216	2.2	237	1.74 18 01
217	1.7	238	1.36
218	1.3	239	1.08
219	1.1	240	9.0(-24)
220	9.5(-22)	241	7.4
221	6.9	242	6.2
222	5.2	243	5.2
223	4.7	244	4.5
224	4.3	245	3.3
225	2.8	246	2.9
226	2.4	247	2.3
227	1.92	248	2.1
228	1.50	249	1.6
229	1.20	250	1.4(-24)
230	9.7(-23)		
231	7.4		-

TABLE 8: Absorption Cross Sections of N_2O (Values obtained from the experimenters)

(Source: Johnston and Selwyn, 1975) a 4.7(-21) refers to 4.7×10^{-21}

200

46

WAR HEERS CHINE

Bass, A. M., and A. E. Ledford, Jr.,

Ultraviolet Photoabsorption Cross Sections of CF_2Cl_2 and $CFCl_3$ as a Function of Temperature, Paper presented at the 12th Informal Conference on Photochemistry, National Bureau of Standards, Gaithersburg, MD, June 28-July 1, 1976, as quoted in Chou et. al., 1976.

Chou, C. C., W. S. Smith, H. Vera Ruiz, K. Moe, G. Crescentini, M. J. Molina and F. S. Rowland,

The Temperature Dependences of the Ultraviolet Absorption Cross Sections of CCl_2F_2 and CCl_3F , and Their Stratospheric Significance, Private Communication, 1976.

McCarthy, R., An Industry View of the Scientific Aspect of the Fluorocarbon/ Ozone Issue, Paper presented at the International Conference of the Stratosphere and Related Problems, Logan, Utah, September 15-17, 1976.

Robbins, D., and R. Stolarski, as quoted by Chou et. al., 1976.

Rowland, F. S., and M. J. Molina, Chlorofluoromethanes in the Environment, Rev. of Geophys. Sp. Phys., 13, 1-36, 1975.

Rowland, F. S., J. E. Spencer, and M. J. Molina, Stratospheric Formation and Photolysis of Chlorine Nitrate, ClONO₂, Private Communication, 1976.

Johnston, H. S. and G. S. Selwyn, New Cross Sections for the Absorption of Near Ultraviolet Radiation by Nitrous Oxide (N₂0), Geophys. Res. Lett., 2, 549-551, 1975.

Cast.

入的	(cm ⁻¹ atm ⁻¹)	(x10 ¹⁸ cm ²)	λ (Å)	(cm ⁻¹ atm ⁻¹)	(x10 ¹⁸ cm ²)
1400	56.8	2.11	1775	21.7	0.808
1425	67.4	2.51	1800	15.8	0.588
1450	75.6	2.81	1825	11.6	0.432
1475	87.0	3.24	1850	8.41	0.313
1500	92.7	3.45	1875	5.79	0.215
1525	100.0	3.72	1900	3.90	0.145
1550	102.5	3.82	1950	1.66	0.0618
1575	93.3	3.47	2000	0.688	0.0256
1600	89.1	3.32	2050	0.264	0.00983
1625	79.9	2.97	2100	0.106	0.00395
1650	66.7	2.48	2150	0.0369	0.000137
1675	54.9	2.04	2200	0.0129	0.0000480
1700	43.7	1.63			
1725	35.1	1.31	a state to the		and the second
1750	29.3	1.09			and the second second
	I. M				

TABLE 9: ABSORPTION COEFFICIENTS OF HC1 IN THE CONTINUUM 1400-2200 Å

(Source: Inn, 1975)

 \propto , the absorption coefficient, is defined by I/I₀ = exp. $[-(\propto pT_01)/(p_0T)]$

where I and I_0 are the transmitted and incident intensity, respectively, p the pressure, T the temperature in K, $P_0 = 1$ atmosphere, $T_0 = 273.15$ K and 1 is the absorption path length.

 σ , the absorption cross section, is defined by

J = X/No

where N₀ = 2.687 x 10^{19} cm⁻³ is the Loschmidt's number,

 λ is the wavelength.

Inn, E. C. Y., Absorption Coefficients for HCl in the Region 1400 to 2200 Å, J. Atm. Sci., 32, 2375-2377, 1975.

All actions strength

agenti stict unterna - A.C. its stugit

Mid-point of Wave- length interval, (Å)	FLUX (ergs $cm^{-2}s^{-1}A^{-1}$)	Mid-point of Wave- length interval, (A)	FLUX (ergs cm ⁻² s ⁻¹ Å ⁻¹)
		1927.5	3,49(-1)
1742.5	7.05(-2) ^a	32.5	2.50
47.5	6.89	37.5	2.88
		42.5	4 34
1752.5	8.01	42.5	4.52
57.5	9.18	47.5	4.52
62.5	9.28	1052 5	6 19
67.5	9.40	1952.5	4.10
72.5	1.23(-1)	57.5	4.40
	and an anti-the second	62.5	4.30
1777.5	1.06	07.5	5.33
82.5	1.25	12.5	4.93
87.5	1.31		
92.5	1.26	1977.5	4.90
97.5	1 27	82.5	5.06
57.5	1.27	87.5	5.90
1902 5	1 46	92.5	5.44
07 5	1.40	97.5	5.47
07.5	1.00		
12.5	1.47	2002.5	5.89
17.5	2.08	07.5	5.94
22.5	1.88	12.5	6.36
		17.5	6.96
1827.5	1.83	22.5	7.13
32.5	1.96	2 new (188) These set of	
37.5	2.03	2027.5	6.69
42.5	1.75	32.5	6.23
47.5	1.62	37.5	8.13
		42.5	8.77
1852.5	1.74	47.5	9.16
57.5	2.03		
62.5	2.02	2052.5	9.40
67.5	2.37	57.5	8.96
72.5	2.51	62.5	9.50
25220	weeth ad beaming and	67.5	1.01(0)
1877.5	2.40	72.5	1.10
82.5	2.51	12.5	
87.5	2.69	2077 5	1 10
92.5	2.93	02.5	1 22
97.5	2.70	02.5	1.23
and the second second second	NOR REDUCTION & COL	87.5	1.55
1902.5	2.97	92.5	1.89
07.5	3,17	97.5	2.21
12 5	3.10		2 25/22
17 5	3 30	2102.5	2.25(0)
22 5	3.59	and the state of the provide the	
22.5	3.39	and the state of the	and the second and the second s

TABLE 10:5 Å - AVERAGE SOLAR FLUXES FOR QUIET SUN CONDITIONS
(Values provided by Brueckner et al., 1975)

(Source: Brueckner et al., 1975) a 7.05(-2) refers to 7.05 x 10⁻²

and the second se

5 A - Average Solar Fluxes in the 1750-2100 A Range

Date of Experiment: September 4, 1973 Agency: Naval Research Laboratory Platform: Rocket (Black Brant VC Rocket) Instrument: Double Dispersion Spectrograph Calibration: Preflight, ground calibration against a secondary standard deuterium lamp, (continuous emission for >>1680 Å) which was calibrated against NBS absolute standard, a high-power hydrogen arc. Spectral 0.07 Å Resolution: Accuracy: R. M. S. total error $\pm 20\%$ (down from a factor of 2 or 3 over past measurements). Method: Intensity measurements over selected, inactive areas of the solar disk. Comments: A few representative values of the solar fluxes reported by Ackerman (1971) and Thekaekara (1971) have been included in the figure for comparison purposes.

Ackerman, M., Ultraviolet Solar Radiation Related to Mesospheric Processes, in Mesopheric Models and Related Experiments, G. Fiocco (Ed.), 149-159, D. Reidel, Dordrecht, Holland, 1971.

Brueckner, G. E., J.-D. F. Bartoe, O. K. Moe, and M. E. Van Hoosier, Absolute Solar Intensities 1750 Å - 2100 Å and Their Variations With Solar Activity, E. O. Hulbert Center for Space Research, Naval Research Laboratory, Washington, D.C. 20375, 1975.

Thekaekara, M. P., Solar Electromagnetic Radiation, NASA SP-8005, Goddard Space Flight Center, Greenbelt, Maryland, 1971.