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1. INTRODUCTION

A Geotech Model KS 36000-01 seismic system was obtained on loan fr om the

USGS in Albuquerque and operated in our La Jolla labs for several months

during 1977. We endeavored to study the system’s response characteristics

over its operating band and develop methods of modeling that response. We

have developed a rapid and very accurate method of linear calibration which

results in a compact representation of the system response.

Due to the extremely high ambient noise in the La Jolla site, we

were not able to investigate system nonlinearities and had planned to carry

out that part of the research project with the instrument installed in a

bore hole at Pi~on Flat Observatory , however, this part of the research was

not funded.

We began by developing a parametric linear system model using the

instrument description provided by the manufacturer’s ~nanua1s. We then

tested these models to discover if they accurately described the system which

we had installed.

In the linear approximation, we show that the system models yield an

input-output equation (in Laplace transform domain)

H E0~t
(s) = T

v
(s) LAg(S) — G

k 
E
~
(s)J~ 

(1.1)

where A
s
(S) is ground acceleration, G~ is the forcing constant acting on

calibration voltage Eu
(s) and T

v
(s) (p for parameterized) is the system

transfer function. Furthermore, T
v
(s) is itself the ratio of two polynomials

in $ with real coefficients that depend on known instrument parameters

T
v
(s) 

~~~ 
. (1.2)

l’~ Ø9~~j 4  ~Q4
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We d.scribe how the coefficients of polynomials -N and D in Eq. 1.2 are more

or less accurately found, but conclude that this is not a good calibration

aethod. We have found that better results can more easily be obtained by

inserting pseudo random signals for E0 , estimating TUw) by cross- H

spectral analysis and finall y deriving T(s) by analytic continuation into

the complex s-plane.
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2. THE PARAMETRIC MODEL

The SRO instrument is a 3-axis seismograph system (the Geotech Model

KS 36000-01), designed for installation in a borehole. We present here an

abbreviated discussion of the vertically oriented accelerometer, but the

behavior of the horizontal sensors is not significantly different. The

SRO system manuals (Teledyne-Geotech , 1975) give a more complete discussion.

(See also McCowan and Lacoss, 1978.)

The vertical a.-elerometer is built around a La Coste-type pendulum

with a highly underdamped 5 to 10 sec period. The position of the

mass is sensed by a capacitive transducer and the feedback force is

applied electromagnetically through a coil magnet arrangement. Electronic

feedback is used to alter the system characterist ics so that the response

matches that of a 1 Hz pendulum damped 0.8 of critical.

There is no provision for mechanically adjusting the equilibrium

position of the mass and therefore the dynamic range of the electrical

force must be sufficient to null the gravitational force at any latitude.

From the pole to the equator, g changes by about 5 x 10-2 ms 2 . Thus, with

a 20V dynamic range available, the closed loop response at dc cannot exceed

400 volts m-1 ~2 without restricting where the instrument can operate. This

low loop gain makes it difficult to resolve ground noise at the low end of

the normal mode band 10~~ Hz to 10-2 Hz as the equivalent voltages on the

loop are about 3 x 10-10 V rms over this band (Agnew and Berger,1978). -

For shorter period., the loop signal is high passed with a corner at 50 sec

and amplified by 2000 before it is sent “up-hole.” Thus at the surface, the

basic data channel has a sensitivity of 106 V m~ ~2 from 50 sec to 1 sec.

-
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The SRO circuits are described elsewhere (Geotech , 1975), so we

give just an abbreviated development of the loop response starting with the

block diagram of Figure 1.

The response of the pendulum to an external acceleration is

s 2cQ~~ s fl~e1 = ag 
— af (2.1)

where e1 is the displacement of the mass , ~ the damping and £~ the

radian frequency of oscillation. The transfer function of the transducer

is

T (s) 2 ~ 21 a t 2CQs + .fl

-
- 

- The displacement transducer , modulator and amplifier have a total transfer

function , G2 , which is frequency~ independent over the range of interest.

- 
The next three blocks in the loop block diagram (see Figure 2 ,

upper panel) must be examined i~n total to obtain their overall transfer

function. Referring to Figure 2

Ce2 
s ej)A e0~~ and e

2 
= —e1

(2.2)

(ej  e1)A eout

Taking Laplace transforms

S + E  St -
- :  = 

D out 1 (2.3)
I 1 + s r 1

where = R
1
C
1 
. However, ED = -A E

~ 
and so

si S
£ 1 out _ 

• (2.4)
1 ( 1 *  A ) P 5 t 1



__________________ r~ w -  
~~~~~~~~~~~~~~~~~~~~~~ -~~‘~~ -- - -

~~.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
__ __

4 5

Using the Laplace transform of (2.2)to eliminate

r 1+  A + s rout 1 (2 5)A 
[(1 9 A) (1 + st 1)

The demodulator amplifier, here represen~ed by A consists of a s!ngle pole

• low pass filter with transfer function -

G p
A :  S D  ( 2 .6 )

•

and gain G 5 is 200, with = 100 s~~ . We then write (2 .5) as

5out GSpD 1~
2 + 3

~ D ~ z,PD •J 
(2.7)

~ ~D L~ ~~~~~~~~~ J
where , p = lit and the approximation G 5 >> 1 is used .

The numerator of (2 .7)  can be approximately factored as

(,2 + + ~ (a p z2 ) C s + p~~) since z ,

so finally we have to good accuracy

5out ~S ~D [~ +s + G SP D L~ 
+

The part outsidd the brackets is the response of low pass filter with reciprocal time

constant G SpD 2 x ~~~~ and hence may be ignored .

Thus we write the transfer function T2 as

r s + z 1
T2 (s ) G

2[~ •
~
. a (2 .8 )
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The remaining elements in the feedback loop are shown in the luwer’

panel of Figure 2 • At frequencies of interest, the resistive impedance of

the forc ing coil i~ much greater than the inductive impedance. Further, the

resistive impedance is much smaller than either the impedance of the coinpen-

sator or • With these approxit ations

a s s
T3(s) G

3
R ( 

+ 
3)

where
p3 1 1G3 = R 2 z3 ‘ ~3 R3C2 

and 
~~ + 

~~ ~2

RC -and T =cal ~~~~

The forcing coil constant is G~ (ms 2/atnp) so that Tk ~~

given by

H

We may now draw the simplified signal flow graDh shown in

Figure 3 • The closed loop transfer function obtained from this is

T1(s) T2(s)
T(a) = 1 s T1~s) Tj(s) T3(s) T4[iJ

(2.9)
02(s 

p s
2) ~ + p3)

• Cs~+ 2~fls s Q2 ) ( s  + p2) Cs + p3) s G2G3G,(s ~~~~ 
(
~ 9.~3) •
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At low frequencies, the loop response tends to the constant

urn  Us) - G2z2p3 
- - 

-

+ G2G3G45253 
-

With the suite of instrumental parameters given in Table 1 , 3t is clear

that 
-

u r n  T(s) _.!L = ~~ = 516 V m~~ $2 (2.10)G3G,~z3 C4

The data output 5D is related to the system output E0~~ by

(2.4);

- 
at1

ED 
- A (1 + A) 9 St

1

Using (2.6) and substituting p for G5/t1 
we obtain

____ 

GSPDS

5out 
- 

32 + 
~D5 + 

~D~5 
+ ~2 -

where we have made the approximation G5 
>> 1 . This can be factoree~i

approximately by noting that >> p5 , p2 to yield

GSpDS
T
5
(s) 

~~ + PD~ ~ 
+ p )  • (2.11.)

This describes a band pass filter with a gain of 200 betweea 50 sec and 16 H’~.

The response of the system may be analyzed with the help of a

root locus plot, Figure 4 , of the transfer function, Eq. (2.9). The

poles of the system are the solutions of

(s2 + 2~fls ~~
) (a + p2) Cs s p3) + GC3 + z2 ) Cs + z3) 0 (2.12) 

~ -- —-— — - - -~~~~-•~~~~~~~~ ~~~~~~~~~
- - ~- - - - - -
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where ~ = ~~~~~~ and the root locus follows these roots as the open loop - 
-

gain C is varied . The loch of the roots move from the solutions for

C ~~O to the roots when G * . Th.open loop poles (G :0) are 
- 

-

at

s~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

and a complex conj ugate pair correspond ing to the unfedbac k pendulum

of

s *~~.2.21 x 10 2 ± 1.2S i .

Table 1 gives the values of parameters for the particular Model

36000 system we analyzed . With the exception of C2 , all param~ter values

given in this table were taken from the Geotech manual. If we take fl 1.25

and ~ .0177 and use the 02 given in the manua l ( 1.968 * i0’ V ~r
1) we

find a polynomial for T
v
(s) close to that of McCowan and Lacoss (1978)

with the exceptions pointed out by Berger at al. (1978). This implies

an operating point marked by G on the root locus of Figure 4.

However, we calibrated a Model 36000 and found that the

- 
polynomial which best f it the measured response was significantly

different with an implied operat ing point near A in Figure 4. A careful

study of the operating manuals led us to the conclusion that all parameters

except 02 are accurately controlled or measured for each individual unit .

Vs,~ therefore, made our own estimate of C~ as follows.

The roots of the denominator of the transfer function polynomial

(Z12) are approximately solutions of

•“ i~p3
s3 +(p

3
Q2 +GZ3

) s +G Z 2Z3 *0

where C a 020304 . Taking the parameter values from Table I with ~ 1.25

• 
. 

. 
I~i-~
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and leaving G2 as a variable we solve for the value of G2 which gives

a pair of complex roots closest in the rms vector sense to the corresponding

pair we recovered experimentally, letting the other two roots lie where —

they may. The proces~ leads to our estimate of G2 1,31 x jØ4 V m 1

‘ 5 percent. Using this value, we have the overall transfer function for

J the mass position output of

T~~(s) 
=[S2 

] 
{ } ~ -‘ 2 (2.13)

where a factor of 2 is included to account for the down hole line driver

on this signal. -

The corresponding expression for the data output channels is obtained

by multiplying (2.13)by T
5 

(2.9) to yield

- 
- 

T ( )  2.59 x io~ ] f s(s + 50) 
1V m 1 S2

pD [s2 * 8.50 ~ 
,. 32.6J 1(

~ + 41.4) (s + .118) (s i- 100)J

- - (2.14) $
where we have included the gain of 10 in the data output line drivers.

As noted by Berger at al. (1978) the differences in response between

these expressions and those of McCowan and Lacoss (1978) are significant

for frequencies above 1 Hz.

• Figure 5 shows the sensitivity ~f the position of one of the

dominant poles as certain system parameters are varied. Figure 6 shows

the node plots of the two system outputs.

- 1  -
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Table 1

Nominal SRO instrumental parameters

.628 to 1.25 0
2 ~~~ X io~’ V m

1

- 

~ � .0177 0 2.14 x ~~~ ohm~

R 25 ohm C 13.95 ms 2 arnp 1

7204 ohm 65 200

= 1.6 x P2 6.25 x

• R3 S00 0hm p3 50

C2 = 40 i~fd 
p5 .125

• p ~~100

2
2 

.125

- S 3.24

. 

.

r
I
~

- -  --- -•—



- -
~~~~~

.
~~~~~

---.-
~~~ ~~~~~~ 

-- ~
—

~~~ . -- 
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3. THE CROSS-SPECTRAL CALIBRATION TECHNIQUE

The essence of th is technique to determin e the system ’s frequency

response (or transfer function) is the calculation of the cross-spectrum

between a known calibrating signal and the system output. The use of cross-

spectral methods minimizes the effects of noise which are unavoidably present

in the form of ground noise or internally generated electronic noise. The

transfer function calculated from the cross-spectrum, though adequate , is not

the most convenient way to express the frequency response of the system. The

results of the parametric modeling suggest a more compact representation,

namely the ratio of two complex polynomials (or equivalently, their roots).

We have developed a method for finding these polynomials from the cross-

spectral estimates.

In the followinj~ sections we deal with the type of input function to

be used, the cross-spectral methods , and the techniques for finding the

system polynomial. Finally, we illustrate the method on the system

installed in our labs.

3.1 The Ca1ibratin~ Signal

To measure the frequency response across the instrumental passband requires

that the calibrating signal be more powerful than the noise (ground and instru-

mental) throughout that band. The most common choices for input signals are

impulses and steps. Impulses are broad band, but must be applied at low ievel

to ensure the peak signal does not exceed the dynamic range of the system. Steps

may be input at much higher levels, but the spectral power density of a step
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falls off as w 2 so that much of the power is confined to low frequencies .

Because we use cross-spectral methods , there is no premium on using simple

signals. The calibrating signal we use is a pseudo-random binary signal (RB),

which can be input at the high level used for a step, but has power distrib-

uted over a broad band of frequencies .

The RB signal (MacWilliams and Sloan, 1976), and its relative the

random telegraph (RT) signal (Jenkins and Watts, 1968 p. 170) are well known

to electrical engineers and have seen seismological application by Moore and —

Farrell (1970), among others. There is a vast literature so we give just the

salient properties. 
-

The RB and RT signals can be viewed as sequences of step functions of

fixed amplitude but alternating polarity . The duration of each step is a

random function of time . The probability density function for the step

durations of the RT signal is uni formly distributed over continuous time , but - 

-

for the RB singal the length of each step is a (random) integral multiple of

some basic time interval t . Stated differently , the RB signal is a binary

signal which has a 50% chance of changing state at discrete times nt

( ni ,2 . . . ) . .
.

Random binary signals are easily generated by periodically clocking H
a long shift register at fixed interval t • For a shift register of specified

length, a particular feedback arrangement exists (Lancaster, 1975) which assures

that the output for all practical purposes is equivalent to a RB signal.

(A feedback shift register of n stages has at most n - 1 distinct states,

so the output is actually periodic, but a modest number of stages ensures that the

period will be orders of magnitud. longer than the duration of our experiments.)
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The power spectrum of a section of RB signal of amplitude V volts

peak to peak and clocked at interval t is approximately

P( i~i) 
V2t ( sin i~i/ 2 

)
2 

volts 2/Hz (3.1)
wi/2

In Equation (3.1) we neglect the spectral discreteness caused by the shift

register periodicity . It is unimportant compared with the discreteness

caused by the truncation of the sequence which always occurs it-i practice , and

we assume that the spectrum of any sample extracted from the sequence is the

same as the spectrum of the entire sequence. The important point is that

the spectrum is quite flat up to the -3 db frequency w 2/i .

Even though the RB sequence is a broad band signal, its special form

allows it to be more infrequently sampled than the Nyquist theorem. As the

shortest possible pause in either state is the clock period i , samples

taken at interval i allow exact reconstruction of the entire

waveform. This reconstruction is vastly simplified if the sample times are

synchronized to the shift register clock as is our practice. —

3.2 Calibration Using Random-Binary Signals

The eyusctric voltage generated by the RB generator is added to the

system feedback ioop. The RB period is set so that the first “hole”

in the RB sp.ctr’im occurs at a frequency higher than that of the dominant

poles of the system (see Section 2). The RB amplitude is set to the

highest level possible without instrument (or data filter) saturation.
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The RB generator is synchronized with the data recorder clock to avoid

aliasing problems and assist in the reconstruction of the signal form. Both

the RB input and the systems output are recorded at an appropriate sample

interval for a total period of something like 10 times the longest period of

interest.



r - ‘
~ 

-

~~~~~~~ 
- _ 

— — - • - -
~~

15

4. CROSS-SPECTRUM ESTIMATION OF TUE TRANSFER FUNCTION

Using a RB signal to perturb the closed loop accelerometer , we

calculate an estimate , T( iw) , of the transfer function T(s) evaluated along

the real (radian ) frequency axis s = iw by calculating the cross spectrum

between e0 , the calibration signal, and e0~~ 
the sy stem output signal.

In the noise free case the transfer function can be found simp ly by dividing

the output spectrum by the input spectrum , but when there is noise , such a

procedure leads to bias (Hunk and Cartwright , 1966). This bias may be

reduced by dividing the cross-spectrum by the input spe~;t rum to determine the

transfer function. However, sample cross-spectral estimates are themselves

biased if there are large delays between the input and output series (Jenkins

and Watts, 1968, Ch. 9), so that we must use a more complicated procedure .

What we do is to modify the input function in a known way so as to make it

look like the output. The delays between the two signals (and hence the

phase of the cross-spectrum) will then be small, and the bias in the cross-

spectrum greatly reduced. Jenkins and Watts (1968 , Ch. 9 ) discuss one way

to do this , which is to shift one series relative to the other, a technique

they term alignment . This simple device has proved insufficient for our

needs , and we have used a more elaborate technique , which we call prefiltering.

We convolve the record of the calibrating voltage (ce , Figure 7)

with an approximation cf the system impulse response. (Bec au se of the

form of our input , we actually use a first-differcnced step response rather

than an i npulse response; this is discussed in Section 2.) The predicted

output so produced (e ut) closely resembles the actual recorded output .

Since the system acts essentially as a low pass fi lter, e
~ut 

has much

_____________________________ _ _ _  — A ~~
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1’
less bandwidth tha n the RB signal so that aliasing is unimportant. We then

form the cross-spectrum between the predicted output (e
~~~
) and recorded

output (e0~~), and use it to correct our approximate response. This corrected

response gives us our estimate of the trarsfer function.

Recalling Equation (1.1)

E T (A - G E ) - (4.1)out g 4 C

where T is the transfer function we are to calculate, A and E theg c
Fourier transforms of the ground acceleration and RB voltage signal respectively,

and the feedback constant. The Fourier transform of the predicted

output is

(4.2)

where T0 is our first guess of T .

Let be the spectrum of E~~t , C22 the spectrum of E
t and C12

the cross -spectrum. Then

C~~ I~~4 T0I
2

E~ E0

C - E ~ E (~~ 4)22 out out

C : _ G T* E~ E 
(~~5)q 0 c out -

where , in the equations , the frequency dependence of the functions has been

• supp ressed , the asterisks denote complex conjugation and ~ denote the

magnitude of the enc3oaed quantity .

Using Equation (4.1) we rewrite Equation (4.5)

‘ G~T~ T(-E Ag + G~E E
~

) . 

- 

(4.6)

-

~ 

- - -- - -~~~ - - J
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The cross-spectrum , C
12 , contains an unwanted contribution from

earth noise , A~ , but because e0 and a~ arc uncorrolated, estimates of

the cross power term E:A2 , separated in frequency by the reciprocal record

length or more, are statistically independent. Thus , the earth noise term in

Equation (4 .6) can be reduced by smoothing in the frequency domain .

The method of segment averaging is used to obtain smoothc~i spectral

est imates (Bendat and Piersol, 1971, p.328; Haubrich, 1965). In this method

the original series is divided into H sections . Each section is tapered

and Fourier transformed to yield H estimates of the powers C~~ . The

imdividua l estimates at each frequency are averaged, yielding smoothed

spectral estimates with approximately 211 degrees of freedom.

Using an overbar to-denote the smoothed spectra , we get

~~~~~~~~ 
2 r 1 2

~1I — 

‘ ‘5~ 0

c22 = 1T 1 2 ( 
1
~’g 1 + G5

2 1E0 1 2 ) (4.8 )

C1.~ C5 IT TI 
~~C ’~ 

(‘4.9)

We have assumed here that perfect averaging has made E Ag = 0 in going from

(‘4.6) to (4 .9) ,  which is never true for a finite amount of data , a point we

return to later.

Let TA be the ratio of the cross spectrum to the (modified ) input

spectrum

TA 
(4 .10) 

— -- - - - —
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I
Then we take as the estimate of the transfer function

• T = TO TA ( ‘4.n)

where we have assumed that T
0 is so close to T that the ratio of the averaged

spectra is the same as the average of the ratio.

If TA differs significantly from 1. , then T can be used as a

next approximation to T and the procedure repeated, but we k~,ave

never had to use this iterative refinement.

4.1 Confidence Limits on the Transfer Function Estimates

The estimated and true transfer functions will in general be

:1 different because of tl~, noise in the measured signal. The random variable

r2 IT — Tj
2 

(4.12)

(which is a measure of this difference) follows an ~~~~~ distribution

(see Jenk!ns and Watts, 1968, pp.SS-87) where v is the 2M , the number

of segments into which the series is divided for analysis. Jenkins and

Watts (1968, Sec. 10.3) further show that

= [
~

. F2v2 .o 5 }” [!~J½ (4 .13)

where r95 is the expected value of r at a 95 percent confidence level,

and is the estimated coherence between E0~t 
and E~~t
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Obviously we d~sire r,5 to be as small as possible. Figure s

shows how th. expected error varies with the number of data segments and the

coherence. We see that to obtain an error of j .  percent with a reasonable

nwDber of data segments a very high coherence 
~~~~ 

> .999 ) is required.

Fortunately it is not hard to achieve such high levels of coherence , because the 
- -

great dynamic range of most instruments permits the use of a strong RB calibration

signal (50 db above earth noise) without danger of saturating the system.

It is worth observing here that without prefiltering estimated coherences are - -

biased downwar d , making the error estimate unnecessarily pessimistic; pre-

filtering substantially eliminates phase shift between the output signal and

input thereby allowing the estimated coherence to attain its true value (see

Figure 9).

We generally work with v ~ 50 and under these conditions of large

v the r 2 2 distribution closely approximates X2 with two deg~’ees of

freedom. This suggests that our conditions now approach those analyzed by

Hunk and Cartwright (1966, Appendix B) who showed that error in the real

and imaginary parts of the transfer function are independent , and normally

distributed with the same variance. This assumption is extremely useful in

fitting the transfer function with a rational approximation as we shall see

in the next section.
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— 5. RATIONAL FUNCTION APPROXIMATION TO THE TRANSFER FUNCTION

The linear analysis of the seismometer in Sec. 2 leads us to the

representation of T in terms of a ratio of two polynomials in s , or

equivalently iw . Having estimated the transfer function T at frequencies

k = 1 , 2 . . . m , along the imaginary S-plane axis as described in

the previous section , we can now obtain estimates of the coefficients of the

polynomials by fi t t ing T to the model given by the liflear theory. As a

function of frequency the complex response must be of the form:

T(iw) d 
(5.1)

D0 + D~1~ + . . . + D~( iw)

N(iw) /D(iw ) = N(s) /D(s)

where the coefficients N1 , are rea l consta,ita, and where n and d are

the number of zeros and poles in the theoretical response. Briefly, we per-

form a least-squares fit of the estimated empirical function = T w ~)

weighting each measurement inversely as the estimated variance. The

coefficients N
1 
, now give a compact and accurate description

of the system’s behavior, which can be computed at any desired frequency

through (5.1). Furthermore, the roots of the polynomials N(s) and

D(s) can be found by one of the standard algorithms (we used Bairstow’s;

see Acton, 1970), and these are good approximations to the zeros and

poles of the actual system. They can be compared with the design

values and in our experience the agreement has been gratifying.

It might be thought that a better way to find the poles and zeros would

be to fit them directly to • without going through th. intermediate

step of determining the rational polynomial MID. In our application (and
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perhaps in many others) the d~termination of the real parameters N1 , D1 

—

can be achieved through iterative solution of a linear least-squares system, - 

-

which is highly stable.

Let us now consider the algorithm for finding N1 and D1 in

more detail. The difference between the true response T(iwk) and the -

estimated one Tk is assumed to be normally and independently distributed

in the real and imaginary parts with the same standard deviation

The value of is approximated from Equation (4.12) by

r95/1.96 . (5.2)

The estimates at each frequency are independent so that the sum of squared 
- 

-

misfits will be distributed as ; therefore we choose the values of

N2 , D
1 

that minimize -

- 

~ ~r 
IT(
~~k
) — TkI (5.3)

Here the moduli correctly account for the complex nature of the variables

and their statistics. This is not a linear system in the unknowns N1 , D1 ‘ -I - -

b.it if we express T(iw) in terms of N( iw) and D(iw) , the resultant

equation can be solved by iteration : ~-

2 ~ IM(iw~.)  - T D(iw~.) l 2

2 2 • (5 4)
kal 0k JD C iw k I - :  

- - - - ~~~-~~~ - - -  - -
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This equation can be viewed as a weighted linear least-squares system in which

the weights are the denominator terms ak l D(iw k ) I  ; of course D is

also unknown , but we assume an initial guess value (say D(iw) 1) and then

solve the linear system for N1 , D1 , thus obtaining N( iw) and D (iw )

The corrected value for D is used again in the denominator and the process

is repeated several times. This procedure has been found to converge very

rapidly in practical cases. It can be shown, rather surprisingly, that

the value of X2 to which this process converges is not the true minimum ,

but is nonetheless rather close . To complete the calculation, we perform

a linear least-squares solution to the first-order perturbation of Equa-

tion (17) (Gauss-Newton method, p.267, Ortega and Reinboldt , 1970).

The overdetermined linear systems are solved by the Q-R method of 
- 

- 

-

successive Householder rotations (Lawson and Hanson, 1974). It is important

to realize that the classical treatment via solution of the “normal equations”

often fails completely because of finite computer precision, and this is a

defect almost entirely avoided by the Q-R algorithm.

We may test the fitting procedure and the statistics of the errors in

the value of X2 . The number of degrees of freedom is clearly given by

2w - n — d - 1 , since we fit n + d + 1. parameters, the coefficients in the 
- 

-

polynomials . The expected value of X2 is v # and if the actual value in

a particular calibration falls too far from this we must suspect one of our

assumptions. In our experience the behavior of X~ has been very satisfactory,

thus confirming the validity of our analysis . 

- 
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6. DATA LOGGER

The data system for this experiment was constructed around a DEC

PUP 11/10 mini-computer. Figure 10 shows a block diagram of the system.

The salient features of the various subsystems are listed in Table 2.

In its data logging mode, the system can record up to 16 channels

at 100 times per second or less with an arbitrary mix of sample rates on

different channels within the limits. The system is controlled by the

real time clock which issues interrupts to the CPU every 10 ms. Various

software counters in the CPU determine the command sequence issued to

the multiplexer, A-D converter and the tape drive . The tape drive serves

as the data storage medium while the floppy disk drive is used for

program storage and initial CPU loading. It is not operated during the

actual data logging activities.

The real time clock also generates the RB signal in synchroniza-

tion with the interrupts it issues to the CPU. Thus, we are able to know

the precise time at which transitions occur without a high data sampling

rate on the RB signal. The data sampling rate is then set by consideration

of the instrument output characteristics.

-— -
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Table 2.

CPU Digital Equipment Corporation PD? 11/10 with 32KB of

core memory, 9 track tape interface, real time clock

interface, data acquisition system interface.

Tape Cipher Data Products Mark I tape system. 9 track,

800 BPI, 45 IPS 2400 ft. reel.

Clock Our design real time clock with integral random binary

generator. Outputs days, hours minutes , seconds crystal

controlled with ±10~~ accuracy. Separate interrupt

output 10 ms or 50 ins and time interval output

1 sec to 15 mm adjustable.

Data A-fl Phoenix Data Systems. 16 channels, 15 bit , 4 kHz

throughput rate.

4
’ 

Disk Drive Sykes model , dual floppy disk.

Operator’s DEC LA36 Decwriter (TTY equivalent), 300 Baud,
Console

132 columns.
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7. CALIBRATION PROCEDURE -

The zero frequency system (loop) response we have shown to depend

upon four instrument parameters. The nominal value of 516 Vm~~ 
2 was not

verified experimentally but presumably could be via a tilting technique as

is done with the IDA systems .

The cross-spectral calibration using a random binary signal gives

the system’s relative response as a function of frequency. Experimentally

— we calibrated the feedback loop in two steps, a high frequency run to determine

the parameters with time constants shorter than 1 sàcond and a low frequency

run principally to determine the frequency response of the high pass data

filter that is part of the down-hole package. The long period filter was

calibrated separately.

The RB voltage is summed with the loop voltage through the cali-

bration attenuator and the system ’s output voltage recorded along with

the RB signal. It is the system ’s response to this first step which is

subsequently used to estimate its impulse response.

The computational procedure that follows is illustrated in ~

block diagram in Figure .li.

Step 1: When the calibrating voltage is applied to the system at

time zero an initial step occurs. The next step does not occur

until 25 clock cycles of the RB generator. The system output for this

period is considered to be its approximate step function response.

Step 2: The step funcU.~~ response is fir ’st-diffex’enced to

approximate the impulse response . This first-dif~erenced step is then input

into two separate procedures: Step 3 and Step 5.

- _ —.~—--~ ~~
— -
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Step 3. The differonced step is convolved with the RB signal to

form e
~~.t 

(Figure 7), the approximate system output, which can be seen

to be very close to eout , the actual output .

~~~p 4. The cross-spectrum between e0~~ 
and 

~~~ 
is forined,

which repates the actual output to the approximate output . Figure 12

illustrates how these two series are related as a function of frequency. F
Step 5. The Fourier transform of the differenced step is corrected

for the effect of differencing (versus true differentiation) and multiplied - 
-

by the complex transfer function produced in Step 4 to yield the overall

system transfer function. The associated errors are those of Step 4.

Step 6: The ratio of two polynomials of specified degree are least-

squares fit to the system’s transfer function . The degree of these polynomials

is dictated by the parametric model. For the SRO systems the numerator has

degree 1, corresponding to one zero and the denominator has degree 4,

corresponding to 4 poles. The locations of the poles and zeros in the

complex plane are:

Zero: s~~~O ;

Poles: s = -.117 ; —112 ; —4.08 ± i 3.67 . 
- - -

The parametric model of the SRO system yielded

T 2.59 X lO~ 1.1 s(s + 50) 3p 2 
~ 8.50 s + 32.SJ ~. (s + 100) (s + .118) (s + 41.4) J - -

for the “data output”, that is the signal that is input to the L? and SP

filters. 
.
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The zeros of this expression and the poles at s = -100 are deter-

mined by 1 percent circuit components. The pole at s -0.118 is nearly

independent of 1oop gain, varying from 0.120 to 0.117 for all reasonable

values of that parameter. Therefore, in our high noise environment, our

calibrating strategy was to assume the nominal positions for these poles and the

two zeros. We evaluate

iw( iw + 50)
(10 s .1181 (iw s 100)

at each Fourier harmonic and divide this out of the measured response.

We then f i t  a 3 pole , no zero polynomial to the result. Recombining this

result with the expression above we find the best fitting polynomial for

the data output is
(7.1)

1 2.59 x 10~ 11 - - s(s + 50) 1 —1 2
Ls~ + 8.52 $ + 31.7J1.(s + 41.0) (s + .118 ) (s + 100)1 

V m s

and we may then deduce the mass position output polynoi~ial by dividing this

by T5 
(Equation (2 .9 ) )  to give 

-

T (~) = f 2.59 x 10k’ 1 f ( s  + SC) (s + .125) i v nr 1 S2 
(7.2)

N L~ 2 + 8.52 s + 31.7J L(s + 41.0) (s + .118 )J

The quantity in the brackets is the dominant two pole approximation

to the transfer function . It describes the response of a pendulum with a

free period of .90 seconds damped .76 of critical . This is only an approxi-

mation, however , as the quantity in the braces contributes significantly it

to the response above 1 Hz.
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It must be emphasized that in our calibration procedure we determined

only the complex conjugate pole pair’ that constitutes the dominant two pole

approximation and the pole at -s = -.41.0 • The numerator constants in

Equations (7.1) and (7.2) were estimated as described in Section 2.

The output vo~.tage eD is passed through two shaping filters before

being recorded as the long period (LP) channel and the short period (SP) channel.

In addition the LP channel passes through an anti—aliasing filter. The LP

filter is an 8 pole, 4 zero network and the anti—aliasing filter is a 4 pole

network (McGowan and Lacoss, 1978). Thus the overall LP transfer function

may be written as

TLP(s) = ~~ k~0 
ak~/~~ bksk 

(7.3)

where

a0~~~ 0 b5 2.8133 x 104

a~ = 0 b6 1.4031 x iG~

a2 0 b7 4 .9221 x

*3 
: 54.8 b8 ~ 1.2388 x 106

1.096 b9 ~ 2.2481 x

- a5 50.0 2.9322 X 106

*6 = 1.00 b11 2.6564 x 106

~ 1.5301 x

1.7042 x io—~ = 4.7162 x IO~

b1 ~ 3.0062 x l0~~ ~~~~~~ 7.7037 x 10~

b
2 

1.5458 x 101 b15s 6.3416 x

a 3.2677 x 102 1.5617 x 102

a 3.8120 x 10 ~~ 1.00

- A
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- The field calibration procedure (Jon Peterson , personal communicat ion)

is to set all- stations to have an amplitude response of 5 x counts per

micron of ground displacement at a 25 second period. Thus in Equation (7.3)

we set and solve

J 5 T LP(so)I 5 x 10~ counts m4 (7 .4)

to get

a 6.516 x 1012 counts sr’ ~2

- The overall SP transfer function may be written as

= Ksp k~0 
aks
,
,/’~~: bksk ( 7•5 )

where

*0 = 0 - b2 = 1.5518 x 10~

= 0 b3 a 1.5598 x 1O9

*2 = 0  - bk
:8.3095 x 10?

*3 = 50.0 b5 = 2.&s229 x 106

*k = l .O b6
a 3.8548 x 101’

b7 3.1216 x 102

b0 = 1.7696 x 1011 b8 
1.00

b1 
7.6799 x 1010

For this channel, the outputs are normalized during field calibration to

produce 2 x 106 counts per micron of ground displacement at a one second

period. Thus in Equation (7.5) we set ~~ a i2w and solve -‘
~~~~

I5o
2Tsp(80)I 

a 2 X 1012 counts m~~ (7.6)
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to get

= 2.090 x ~~~ counts m~~ ~2 
• -

The stations at Taipai, Guam and South Karori have a 1O3 lower gain due to

excessive local noise, so for these stations

a 2.090 x 102 counts m~~ ~
2

____________________________________________ 
—------ -~- --  —-~--- -----——-—--- ~~~~~AA4
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APPENDIX A

Digital Convolution of Random Binary Sequences

and Calculation of

A crucial step in the practical implementation of the cross spectrum

calibration method is the digital filtering of the RB sequence to produce - 
-

the signal e ut . We want to make ~~~~ very much like the actual

recorded output, eout , so that the transfer function estimate is unbiased.

Because of the broad band nature of the RB signal, it is not obvious that

the digital convolution is permissable because of the problem of aliasing.

We establish here the sampling requirements on the RB signal, and the

method of approximating digitally the impulse response of the seismograph

system so that the digital convolution yields exactly the sampled values

of the- output of the continuous system. It is also sl’own how to calculate - 
-

T0 , the initial estimate of the system transfer function by digital

Fourier transforms.

If e0(t) is the random binary sequence, and h(t) is the seismo-

graph impulse response then the seismograph output at discrete times n~t is

e0~~ (nat) = J h(t) e0(nAt-t) dt • 
(Al )

- 

- 

For a suitable digital sequence g(n~t )  , the filtered version of the sampl ed

RB sequence is 
-

(n~ t)  ~ g(k~t)  e0(n~t — k~t)  . (A2 )
k:-..

and we now give the conditions on g and e~ so that ~~~~ = e0~ 
.

S - - --~ -S~--~~~ -~- — - - - - -  — - --  — --- - - -----S - ~~~ - -- - 
—- 

_g_
~
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Consider first the seismograph response to the unit step function

s(t) = h(r) U(t-t) d~ . (A3)

A noisy record of s( t )  is provided by the first long interval of the RB

sequence (see Figure ~~ for’ 0 � t ~ 200s).

Let g(n~t) be the first backward difference of the sampled record

of aCt )

g&*~t~ a L h ( r )  ~U(n~t -t )  - U (nA t_ ~t_t ) } dt - (A’4 )

Using Equation (A4) in (A2) and exchanging the order of su~unation and integration

e
~~~

(n) = f h(t) 

~~~ 
(U(k_t) - U(k_1_r))e0 (n-k) dt (A5)

where we have set ~~ 1 . For Equation (AS) to equal (Al) we must show

. 
~~~~ (U (k_ t )  — U (k— 1—t ) ) e0 (n—k ) = e ( n — r )  . (AB )

Viewed as a function of continuous variable t ,

- - - ,0 t < k — 1
U(k— r ) — U(k_ 1_t ) j l k — 1 � ~ k - (A7 )

0 t > k

But for k - 1 � t � k ,

(n-t) = e~ (n-k) (As )

provided that a) the RB clock period is an integral multiple of the sample

interval at , and b) the RB clock is synchronized to the sample clock.

Under these conditions Equation (A6) holds establishing the equality between

Equations (Al) and (A2). Note thct if the RB sequence were passed through

an analog filter before sampling, Equation (AS) would not be true, and it is

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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only the binary nature of the RB sequence wh ich makes the procedure work .

With suitable relationships between the RB clock and the sample clock ,

higher order differences could be used for g(n) but we have found the

simple first order difference satisfactory.

The differenced step function response is a good approximation to

the system impulse response, but the digital Fourier transform of g(n)

unast be slightly modified to obtain T0 , the first estimate of the transfer

function. Since

g(n) s(n) — s(n—1) (Ag)

application of the shift theorem (Bracewell , 1965) yields

S(f) = 
— ~~~~~~~~~~~~ 

~~ 

- 

- 

C A b )

- but T0 is i2itf times the transform of the system step response.

- 

Thus, for discrete frequencies f n/N

T0 a 
- e~~

2
~~~~ 

. (All)

- - —SSS~~~S- -~~~~~ —---S-~~ - -—— - -~~ -~~~-—— ~~ -~~~~_________



- — - - —- — 
~~~ f l r  — — —  -- — — - -

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - — --

34

REFERENCES

Acton , F. S. (1970), Nwnarica l Methods That Work , Harper and Row,

New York .

Agnew, D. C. and J. Berger.(1978). Vertical seismic noise at very low

frequencies, J. Geop hye. Rca. , in press.

Berger, J.,, McCowan, D. W., Farrell, W. E. and R. T. Lacoss (1978) Comments

on ~~~~~~~ functions for the Seismic Research Observatory seismograph

system’ by D. W. McCowan and R. T. Lacoss, Bull.  Seism. Soc. Am. ,

in press.

Bendat, J. S. and A. G. Piersol (1971). Random Da ta : Analysis and fleasurement

Procedure s , Wiley, New York.

Haubrich, R. (1965). Earth noise 5 to 500 inillicycles per second; Part I,

Spectral stationarity, normality , and nonlinearity, .T. Ceophye.

Rca. , 70 , 1415-1427.

Jenkins , G. N . and D. G. Watts (19C8). Spectral Analysis and its Applications ,

Holden Day, San Francisco.

Lancaster, D. (1975). TTL Cookbook. Howard W. Sams F Co., Indianapolis.

MacWilliams, F. J. and N. J. Sloan (1976). Pseudo-random sequences and arrays,

Pro c. ZE~E , 64, 1715—1729.

$cCowan, D. W. and R. T. Lacoss (1978). Transfer functions for the Seismic

Research Observatory seismograph system, Bull. Seism. Soc. Am., 68

501—512.

Moore, R. D. and W. E. Farrell (1970). Linearization and calibration of

electro-statically fedback gravity meters, J. Geophys. Rca., 75,

928—932. 

_ _ _ _ _ _ _ _ _ _ _ _



- 
~~

- - ,, - 
~
-, — 

~-

- - - -- - ——~~--~~— -—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --
~ — ~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

35 ~-Iii
I

Hunk W. H. and D. E. Cartwright (1966). Tidal spectroscopy and prediction, 
-

Phil. Trans . Roy. Soc. tend. A 259, 533-581. -~

Ortega , J. N . and W. C. Rheinboldt (1970). Iterative Solution of Nonlinear’ -
~

Eqziatione in Several Variables , Academic Press, New York .

Teledyne Geotech (1975). Operation and Maintenance Manual, Borehole Seismometer

System Model 36000, Part I.

-

i

- 
- 

-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  __  - - i_i 
-



. ,-_ -— -~~~~ Y * ~~4(-- ,-,t r - - - - -

36

FIGURE CAPTIONS

Block diagram of the SRO system. Accelerations ag and af
are summed by the inertial mass. The mass motion is detected and amplified

to yield two outputs, e and e . Voltage e is filtered andout D out

summed with calibration voltage e
~ 

to produce a feedback acceleration

on the mass.

The top panel shows details of the system circuit enclosed

in dashed lines in Figure 1. The lower panel shows details of the

feedback portion of the loop.

SRO signal flow graph. This figure shows how Equations 2.1

through 2.8 are connected in the closed loop model. Unlabeled branches

have a transfer function of unity.

Figure 4. Root locus plot of SRO system. This figure shows the second

quadrant of the complex s-plane (Re(s) 0 , Im(s) > 0) . The open loop

(G = 0) poles (x) occur at s = —p~ and the zero (0) at s .-z~

where p~ , Z
j 

are listed in Table 1. As G increases, the poles move

along the indicated curves. At an operating gain of G 352 , the

dominant closed loop pole in this quadrant occurs at the position marked t~ .

~~~~~~~~ Sensitivity of the dominant second quadrant SRO system pole to

variations in ac gain, G2 , compensator pole p3 and zero z3 . The

portion of the root locus enclosed in the box in Figure 4 is expanded

in this figure to show the effects of parameter variations from 5 percent

below their nominal values (the labeled end of the curves) to 5 percent

above their nominal values. Other loop parameters have a much smaller

inf ’uence on the dominant pole positions .

— --— — ---- --------—-“~~— -----~~~~~ — - —  —-—___
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Figure 6. SRO system Bode plots. These plots show the transfer function

modulus (upper panel) of the system model outputs.

~~~~~~~ 
Voltage waveforms. e0 is an example of 

the random binary

calibrating signal. An initial downward half step occurs at time zero

followed by a long quiescent period before the next full step occurs.

~~~ is the system output voltage and the response to the initial half

step is used as an approximation to the system step response. e
~ut 

is

the predicted system output . The wave forms illustrated were obtained

from an IDA system .

The expected errors on system gain and phase as a function of

the cross-spectral coherence and the number of degrees of freedom

v or the number of groups into which the time series are divided .

Figure 9. The expected phase and gain errors at a 95% confidence level ,

as a function of frequency with (lower trace) and without (upper trace)

frequency dependent alignment. The large increase in the errors near

100 mHz corresponds to the first “hole” in the RB calibrating signal

spectrum .

Block diagram of the data logging system.

~~~~~~~~~ Block diagram of the calibration computation. Up to the

“cross-spectrum” box all computations are done in the time domain.

~~~~~~~ The results of the cross-spectrum of e0~~ 
and e

~ut 
. The

two traces show the 95% confidence limits on phase (upper panel) and gain

(lower panel). The deviations of the quantities from 00 and 1.0 indicate

the errors in the initial prediction of the system ster response. As in 
—

Figures 3 and 6 the large fluctuations in these quantitites near 100 mHz

are due to the decrease in input energy at the first “hole” of e~ 
. Note

that f~ represents the operational Nyquist frequency for 20 second samples. 
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