AD=A0S8 630 ARMY COMMUNICATIONS RESEARCH AND DEVELOPMENT COMMAND ==ETC F/6 4/1

TIME-SERIES MODELING AND ANALYSIS OF HIGH FREQUENCY (HF) VERTIC==ETC(U)
JUL 78 R J D'ACCARDI

UNCLASSIFIED CORADCOM=T8=7




em————

[lLlo &
=tok
gL e
e
(22 e e

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A




ADAD 58630

2 2 2 1 S R W - T A W S < T > ST -_— S <GB W A W -

RESEARCH AND DEVELOPMENT TECHNICAL REPORT
CORADCOM-  78-7

TIME-SERIES MODELING AND
ANALYSIS OF HIGH FREQUENCY
(HF) VERTICAL AND SHORT-PATH
OBLIQUE INCIDENCE IONOSPHERIC
SOUNDINGS

Richard J. D'Accardi
CENTER FOR COMMUNICATIONS SYSTEMS

July 1978

{ P e
5 = i 7
DISTRIBUTION STATEMENT W& 2

Approved for public release;
distribution unlimited.

DO FiLE -copy,

CORADCOM
US ARMY COMMUNICATION RESEARCH & DEVELOPMENT COMMAND

FORT MONMOUTH, NEW JERSEY 01703, o) 1, 3 017
§ O R

-W‘;.W:wwa WAL e
& s B—— 3 oA s




NOTICES

Disclaimers

The citation of trade names and names of manufacturers in
this report is not to be construed as official Government
indorsement or approval of commercial products or services
referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not
return it to the originator.

HISA-FM-633-78 &

Vg L



UNCLASSIFIED

SELMR|TY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE o A T S

BEFORE COMPLETING FORM

2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

CORADCOM-78~7

>

ITLE (and Subtitle)

-TIME-SERTES MODELING AND:
HIGH, FREQUENCY “THE) VERTICAL AND,SHORT-PATH
(OBLIQUE_INCIDERCE "TONOSPHERIC_SOUNDINGS .

TYPE OF REPORT & PERIOD COVERED

€

FINAL TECHNICAL REﬁ;aT.

THOR(s) ) 8. CONTRACT OR GRANT NUMBER(s)

4 ichard J:'D'Accardi ,
ookt i

L e ot s

9. PERFORMING ORGAN!ZAT.ION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
gi?ﬁer ngcgoggﬁnagations SystemS AREA & WORK UNIT NUMBERS
US Army Communications R&D Command : —
Fort Monmouth, New Jersey 07703 P GIW‘M
11. CONTROLLING QFFICE NAME AND ADDRESS 12. T
Biqﬁ?r RBC 0@$th8at1ons Systems July X978 | _—
rmy Communications R&D Command [13 ER O
Fort Monmouth, New Jersey 07703 : 140

Do different from Controlling Office) 15. SECURITY CLASS. (of this report)

14. MONITORING AGE] !!,

v
; 15a. DECL ASSIFICATION/ DOWNGRADING
i SCHEDULE

/5;/5 ﬁ;; UNCLASSIFIED

16. DISTRIBUTION STATEMENT (of this Report)

(A) Approved for Public Release
Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, {f different [rom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Ionospheric forecasting, ionospheric analysis, time-series modeling, spectral
_analysis, design of experiments, HF Communications, ionosphere, communications,
\.ionosondes

\
\

20. ABFTRACT (Continue on reverse side If necesasary and identify by block number)

One example of a non-stationary physical process that influences communica-
tions systems can be derived from a millimeter wave link operating over a stable
line-of-sight path. Such a system would encounter a rapid change in its propa-
gation path if a heavy rainstorm suddenly disturbed the 1link. Another example
is derived from the adverse effects on high frequency radio communications
caused by sudden variations in the ionosphere. Due to the random nature of

these phenomena, and due to the time-dependence of experimental information, a J— . ¢

0D 152::.;; 1473 EoiTion oF 1 NOV 6B IS ouor?r:.,»‘ .} UNCLASSIFIED ‘

uy
// 6 SECURITY GUASSIFICATION QF THIS PAE&‘T-#; o Entorad)

Navs

Vs

el B S
——

L

L o




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

. 20. ABSTRACT (cont)
..:_\

logical approach to forecasting these phenomena and interpreting the results
seems to lie within the realm of non-stationary time-series modeling. Con-
sidering the premise that communications operational effectiveness is dependent
on environmental effects, a procedural approach is recommended for characteriz-
ing ionospheric effects on High Frequency (HF) Communications utilizing time-
series modeling. The recommended technique stresses the structuring of the
appropriate difference equations through the criterion of minimum re dual
variance. .

The main objectives of this study are as follows:

(i) The design of a statistical experiment is presented for pulsing the
ionosphere for the purpose of obtaining both vertical incidence and oblique
incidence ionospheric information. The design includes the collection and
coding of the data for time-dependent modeling and analysis.

(i1) Development of a procedure for structuring forecasting models from
non-stationary stochastic realizations. This specifically covers the identi-
fication and fitting of Autoregressive (AR), Moving-Average (MA), and mixed
Autoregressive-Moving Averages models (ARMA).

(iii) It is shown that the widely accepted Ames-Egan method is not very
realistic or useful in the near-real-time analysis and prediction of iono-
spheric soundings. An alternative approach is recommended, which utilizes re-
peated information observed within the same time intervals.

(iv) A spectral analysis of the non-stationary ionospheric information is
performed. This includes the selection of the most appropriate lag window.
Considered were those of Bartlett, Tukey, Parzen and the rectangular lag window.

UNCLASSIFIED i Cisiog

SECURITY CLASSIFICATION OF THIS PAGE(Whta Lot aiered)




T —

TABLE OF CONTENTS

Introduction

Basic Concepts in Time Series and Spectral Analysis

2.

2
2.
2

S W

2.10

Time Series and Stochastic Processes
Stationary Stochastic Processes
The Stationary Stochastic Models

Procedural Approach for Fitting Forecasting Models to
Non-Stationary Realizations

2.4.1 Identification and Filtering

2.4.2 The Fitting Procedure

2.4.3 The Backward Filter and Diagnostic Checks
2.4.4 Forecasting and Updating

The Spectrum

2.5.1 Properties of the Spectrum

Estimate of the Spectrum

The Cross Spectrum

2.7.1 The Squared Coherency Spectrum

The Role of the Lag Windows

Useful Lag Windows

2.9.1 The Rectanguiar Lag Window
2.9.2 Bartlett's Lag Window
2.9.3 Tukey's Lag Window

2.9.4 Parzen's Lag Window

Some Remarks Concerning the Lag Windows

Page

10

13

i3

16 .

18
21
26
28
30
35
39
40

42
43
43
44
44
45

iy -y

e e SRR



3.

3.1
3.2
3.3

3.4

3.5

4.1
4.2
4.3

TABLE OF CONTENTS (Continued)

Page
Modeling and Analysis of Ionospheric Information 47
Introduction 47
Design of the Experiment 48
Forecasting Models for Ionospheric Soundings 51
3.3.1 Model Identification and Filtering 54
3.3.2 Fitting the Model 71
3.3.3 Inserting the Backwards Filter and Diagnostic
Check of the Models 77
3.3.4 Forecasting and Updating 87
A Prediction Process Based on the Sample Autocorrelation
Function 91
3.4.1 Short-Term Prediction 92
3.4.2 Uodating with Fourier Coefficients 94
3.4.3 The Autocorrelation Function %
3.4.4 On the Prediction Process 96
3.4.5 Expected Error in Predictions 98
Summary and Conclusions 99
Spectral Analysis of Vertical Incidence and Short-Path
Oblique Incidence Ionospheric Soundings 101
Introduction 101
Basic Concepts of "Aliasing" 102
Univariate Spectral Analysis of lonospheric Information 103
4.3.1 Estimate of the Spectral Density Function Using
Bartlett's Lag Window 103
4.3.2 Estimate of the Spectral Density Function Using
Tukey's Lag Window 107
4.3.3 Estimates of the Spectral Density Function Using
Parzen's Lag Window 110
ii
— 3

Sk

F —




4.4

4,5
BIBLIOGRAPHY

TABLE OF CONTENTS (Continued)

Bivariate Spectral Analysis of the Ionospheric
Information

4.4,1 Co-Spectrum Estimates Using the Bartlett,
Tukey and Parzen Lag Windows

4.4.2 Choosing the Best Lag Window and Truncation
Point

Summary and Conclusions

Page

114

115

120
134
139




.10

11

.12

«13

.14

LIST OF FIGURES

Representation of a Linear System

Field Tests for a Near-Real Time Ionospheric Forecasting
Scheme

500 Km Path Schematic

A Typical 500 Km Oblique Incidence Ionogram
(Fort Monmouth to Camp Drum)

Schematic 500 Km Oblique Incidence Ionogram

Observed Vertical Incidence Critical Frequencies for
Fort Monmouth, N. J., 5 April 1971

Mean Vertical Incidence Critical Frequencies for
Fort Monmouth, N. J. (22 March - 10 April 1971)

Observed 500 Km Oblique Incidence Critical Frequencies
Between Fort Monmouth, N. J., and Fort Drum, N. Y.
(5 April 1971)

Mean-500 Km Oblique Incidence Critical Frequencies
Between Fort Monmouth, N. J., and Fort Drum, N. Y.
(22 March - 10 April 1971)

Sample Autocorrelation of the Observed Vertical Incidence
Critical Frequencies at Fort Monmouth, N. J. (5 April 1971)

Sample Autocorrleation of the Mean Vertical Incidence
Critical Frequencies for Fort Monmouth, N. J. (22 March -
10 April 1971)

Sample Autocorrelation of the Observed 500 Km Qblique
Incidence Critical Frequencies Between Fort Monmouth, N. J.,
and Fort Drum, N. Y. (5 April 1971)

Sample Autocorrelation of the Mean 500 Km QOblique
Incidence Critical Frequencies Between Fort Monmouth, N. J.,
and Fort Drum, N. Y. (22 March - 10 April 1971)

Sample Autocorrelation of the First Difference Data for

the Vertical Incidence Critical Frequencies at Fort Monmouth,

N. J. (5 April 1971)
Sample Autocorrelation of the First Difference Data of

the Mean Vertical Incidence Critical Frequencies at
Fort Monmouth, N. J. (22 March - 10 April 1971)

jv

49
50

52
53

55

56

57

58

59

60

61

62

64

65

F—y




« 18

.16

A7

.18

.19

.20

.21

.22

.23

.24

29

LIST OF FIGURES (Continued)

Sample Autocorrelation of the First Difference Data
for the 500 Km Oblique Incidence Critical Frequencies
Between Fort Monmouth, N.J., and Fort Drum, N. Y.,

5 April 1971

Sample Autocorrelation of the First Difference Data of
the Mean 500 Km Obtique Incidence Critical Frequencies
Between Fort Monmouth, N. J., and Fort Drum, N. Y.,

22 March - 10 April 1971

Sample Autocorrelation of the Second Difference Data
for the Mean Vertical Incidence Critical Frequencies
at Fort Monmouth, N. J., 22 March - 10 April 1971

Sample Autocorrelation of the Second Difference Data

for the Mean 500 Km Oblique Incidence Critical Frequencies
Between Fort Monmouth, N. J., and Fort Drum, N. Y.,

22 March - 10 April 1971

Model Order vs. Residual Variance for the Vertical
Incidence lonospheric Data, Fort Monmouth, N. J., for
5 April 1971

Model Order vs. Residual Variance for the Vertical
Incidence Ionospheric Data, Fort Monmouth, N. J. --
Mean for 22 March - 10 April 1971

Model Order vs. Residual Variance for the Observed
500 Km Oblique Incidence Ionospheric Data Between
Fort Monmouth, N. J., and Fort Drum, N. Y., for

5 April 1971

Model Order vs. Residual Variance for the 500 Km

Oblique Incidence lonospheric Data Between Fort Monmouth,
N. J., and Fort Drum, N. Y. -- Mean for 22 March -

10 April 1971

Simulated VI Series Using the Autoregressive Model vs;
the Observed VI Critical Frequencies for Fort Monmouth,
N. J., 5 April 1971

Simulated Mean VI Series Using the Autoregressive Model
vs. the Mean VI Critical Frequencies for Fort Monmouth,
N. J., 22 March - 10 April 1971

Simulated 500 Km OI Series Using the Autoregressive Model
vs. the Observed 500 Km OI Critical Frequencies Between
Fort Monmouth, N. J., and Fort Orum, N. Y., 5 April 1971

Page

66

67

69

70

72

74

75

79

80

81




.26

.10

« 1
-

13
.14
15

.16

LIST OF FIGURES (Continued)

Simulated 500 Km Mean OI Series Using the Autoregressive
Model vs. the 500 Km Mean 0I Critical Frequencies
Between fort Monmcouth, N. J., and Fort Drum, N. Y.,

22 March - 10 April 1971

Estimate of the Spectral Density of the Filtered VI Data
Using the Bartlett Lag Window

Estimate of the Spectral Density of the Filtered Ol Data
Using the Bartlett Lag Window

Estimate of the Spectral Density of the Filtered VI Data
Using the Tukey Lag Window

Estimate of the Spectral Density of the Filtered OI Data
Using the Tukey Lag Window

Estimate of the Spectral Density of the Filtered VI Data
Using the Parzen Lag Window

Estimate of the Spectral Density of the Filtered OI Data
Using the Parzen Lag Window :

Smoothed Co-Spectral Estimates Using the Bartlett Lag
Window

Smoothed Quadrature Spectral Estimates Using the Bartlett
Lag Window

Smoothed Cross-Amplitude Spectral Estimate Using the
Bartlett Lag Window for L = 16

Smoothed Phase Spectral Estimate Using the Bartlett Lag
Window for L = 16

Smoothed Co-Spectral Estimates Using the Tukey Lag Window

Smoothed Quadrature Spectral Estimates Using the Tukey
Lag Window

Smoothed Cross-Amplitude Spectral Estimate Using the
Tukey Lag Window for L = 14

Smoothed Phase Spectral Estimate Using the Tukey Lag
Window for L = 14

Smoothed Co-Spectral Estimates Using the Parzen Lag
Window

Smoothed Quadrature Spectral Estimates Using the Parzen
Lag Window

vi

82

105

106

108

109

111

112

116

117

118

119

121

122

123

124

125

e e R

gy




|

4.17

4.18

4.19

4.20

4.21

4,22

4,23

B ———

L15T OF FIGURES (Continued)

Smoothed Cross-Amplitude Spectral Estimate Using the
Parzen Lag Window for L = 20

Smoothed Phase Spectral Estimate Using the Parzen Lag
Window for L = 20

Comparison of the Smoothed Co-Spectral Estimate of the
Bartlett, Tukey, and Parzen Lag Windows

Comparison of the Smoothed Quadrature Spectral Estimate
of the Bartlett, Tukey, and Parzen Lag Window

Smoothed Co-Spectral Estimate Using the Parzen Lag Window
for L = 20

Smoothed Quadrature Spectral Estimate Using the Parzen
Lag Window for L = 20

Smooth Squared Coherency for the Parzen Lag Window for
L=20

vii

Page

127

128

129

130

132

133

136

T




d

~

.10

2§

12

13

LIST OF TABLES

Kendall's Tau Statistics for Trend

Kendall's Tau Statistics for the First Difference
Filtered Data

Kendall's Tau Statistics for the Second Difference
Filtered Data

Approximate Least Squares Estimates of the Best Model
Parameters

Sample Autocorrelations, rzz(k), for the Simulated

13th Day Observed VI Data With a 95% Confidence
[nterval of +0.163

Sample Autocorrelations, rzz(k), for the Simulated

18-Day Averaged VI Data With a 95% Confidence
Interval of +0.163

Sample Autocorrelations, rzz(k), for the Simulated

13th Day Observed OI Data With a 95% Confidence
Interval of +0.163

Sample Autocorrelations, rzz(k), for the Simulated

18-Day Averaged OI Data With a 95% Confidence Interval
of +0.163

Forecasted Values of the 13th Day Observed VI Series
at Origin t = 72, and Updating Under the Assumption X73
Becomes Available

Forecasted Values of the 18-Day Averaged VI Series at
Origin t = 72, and Jpdating Under the Assumption That X73
Becomes Available

Forecasted Values of the 13th Day Observed QI Series at
Origin t = 72, and Updating Under the Assumption That X914
Becomes Available

Forecasted Values of the 18-Day Averaged QI Series at
Origin t = 72, and Updating Under the Assumption That X73
Becomes Available

A Comparison of Forecasts for the 13th Day OI Observations
at Origin t = 72 Between the Ames-Egan and Time Series
Approaches

viii

68

76

83

84

85

86

89

89

90

90

99




LIST OF TABLES (Continued)

Page

4.1 Truncation Point, Bandwidth, Degrees of Freedom, and

Confidence Intervals for Bartlett's Lag Window 104
4,2 Truncation Point, Bandwidth, Degrees of Freedom, and

Confidence Intervals for Tukey's Lag Window 110
4.3 Bandwidth, Degrees of Freedom, and 95% Confidence

Intervals for Selected Values of L for Parzen's Lag

Window 113

ix

S — | eeccsmmiecser———— —

vy o . - (R e A




1. INTRODUCTION

In communications systems analysis, one deals with the characterization
of data for which the underlying process occurs naturally. The development
of natural phenomena is usually monitored with the passage of time. For
example, the surface temperature of the ocean is measured by a ship traveling
in a straight line; rainfall density is monitored as a function of rate/hour;
ionospheric effects in communications are mapped as a function of time of
day, Therefore, in analyzing and modeling such systems, one must regard data
in the form of a time series. A time series is a random or non-deterministic
function, x, of an independent variable, t. In most situations, t will
represent time or some other physical parameter such as space. The charac-
teristic feature of time series is that future behavior can be closely
estimated, but cannot be predicted exactly as would be the case for purely
deterministic functions. In many applications of analysis and modeling, it
is convenient to assume that certain physical processes can be described by
deterministic functions. However, if the underlying process is "stochastic",
then the deterministic point of view may give misleading information with
respect to the independent variables.

The field of statistical analysis as applied to communications is
premised in the fact that classical functional analysis is not adequate in
dealing with a random process. A great deal can be deduced from those random
processes that are stationary, i. e., a process which is in statistical
equilibrium. However, for those physical processes which are non-stationary,
analysis may be untenable and the "randomness" or non-stationarities must be
dealt with in order to bring the process into statistical equilibrium prior
to analysis. If this randomness is not properly approached, then meaningful
results of analysis would be very difficult to obtain. One example of a non-
stationary process is the adverse effects on High Frequency (HF) radio commu-
nications caused by sudden variations in the ionosphere.

The question of characterizing the ionosphere for HF radio communica-
tions has been approached from many points of view, [}], [2]. Primarily,
information gathered over twenty or so years is analyzed by the National
Bureau of Standards, [2], and monthly and yearly summaries in the form of




world contours are published. Ionospheric forecasts are considered to be
either long-term, short-term [2], or real-time. Long-term forecasts usually

predict undisturbed monthly median conditions at a particular hour for some
specified month. They may be prepared to cover a long period of time in the
future, i.e., one year, or even an entire soiar cycle (22 years). Long-term
forecasts are most useful in planning and management of the HF spectrum.
Short-term forecasts usually predict ionospheric conditions in the near
future. They are prepared by modifying long-term predictions by using values
of Tocal magnetic activity to account for disturbances caused by changes in
the geomagnetic field. A true real-time prediction scheme wauld probably
require that forecasts be available concurrently with ionosonde observations.
It should be noted that the jonosphere is composed of definable layers
of differing electron density, namely, the D, E, F1 and F, layers. These are
subject to violent and random changes in altitude and density due to sunspot
activity, diurnal (daily) effects of the sun's radiation, magnetic storms,
sudden ionospheric disturbances, and other natural phenomena. These changes
may either occur suddenly with little warning, or they may take place in a
cyclical manner due to combination of these layers into a single F layer
during night-time (diurna’ effects) hours. This activity of the layers
directly affects the reliability of HF communications to the extent that they
may cause outages for extended periods of time. Due *- the random nature of
this phenomenon, and due to the time dependence of the information, a logical
approach to forecasting and interpreting the results with respect to systems
performance seems to lie within the realm of non-stationary time-series
\ modeling. Therefore, the aim of this report is to develop statistical models
% to forecast in near real-time and to characterize the underlying stochastic
process of short-path oblique incidence (0I) and vertical incidence (VI) high
frequency (HF) information up to sixty minutes in advance.

In Section 2, a systematic presentation is giyen of the essential theory,
philosophy, and modeling, utilizing the time=series methodology. Section 3
is a presentation of the modeling and analysis of 500 Km path ionospheric data
acquired between Fort Monmouth, New Jersey, and Fort Drum, New York. A
Spectral Analysis of the ionospheric information is presented in Section 4.




2. BASIC CONCEPTS IN TIME SERIES AND SPECTRAL ANALYSIS

In this section the basic concepts in time series and spectral analysis
are presented. We explain how a time series can be thought of as a reali-
zation from a stationary stochastic process and, hence, be described by
certain statistical functions. The conditions that insure the stability of
a linear system are developed, and the stationary stochastic models, i.e.,
the autoregressive, the moving average, and the mixed autoregressive-moving
average, are introduced. We also develop a "backward filter" whereby these
stationary stochastic models can be used to describe non-stationary time
series, and we introduce a procedural approach to fit the models to non-
stationary time series.

With regard to spectral analysis, a brief and basic description of some
of the concepts that will be utilized in the analysis of climatological,
ionospheric, and man/machine interface data, will be given. In section 2.5
we shall be concerned with the spectrum in general, with respect to the
aforementioned 1inear stochastic models. In section 2.6 we shall deal with
spectral estimators and illustrate the manner in which the concept of the
window enters the scope of the analysis. The cross spectrwn is defined in
section 2.7 along with its properties and a brief discussion of the role it
plays in spectral analysis. Finally, more complete treatment of the window
(types and properties) will be given in sections 2.8, 2.9 and 2.10.

2.1 TIME SERIES AND STOCHASTIC PROCESSES

A time series can be thought of as a sequence of highly correlated
successive measurements (serially correlated) representing some aspect of a
physical phenomena. Each of the measurements is associated with a moment of
time and, in some cases, some other physical parameter. A time series can
either be continuous or discrete, depending upon whether the observations are
continuous or discrete. In this study we shall be concerned with only
finite discrete time series which are measured at equidistant time intervals,
or those continuous time series that have been digitized to form finite

discrete series. We shall denote such a time series by X - g
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Time series can also be generally classified as being either a
deterministic function or a non-deterministic function of time. A determi-
nistic time series is one that can be described by an explicit mathematical
relationship; hence, the future values of the series can be forecasted
exactly. Many physical phenomena occurring in practice produce deterministic
data, such as the increase in water pressure as one descends into the oceans,
or the path of a spaceship to the moon. However, in most cases, time series
occurring in practice are non-deterministic; that is, they exhibit random or
fluctuating properties. Unlike the deterministic time series, there does not
exist any explicit mathematical relationship with which to forecast exact
values in the future. Hence, for those time series which are random in
nature, we must describe them in terms of probability statements and statis-
tical averages rather than by explicit relationships. The prime area of
interest in this study will be in non-deterministic time series; hence, it
will not be possible for us to precisely forecast future values of the time
series.

Ta describe these non-deterministic time series, we use the concept of
a stochastic process; that is, we consider an observed non-deterministic time
series as a realization of a stochastic process. To explain the relationship
between non-deterministic, or statistical, time series and stochastic
processes, consider the following. A given time series {xt, BTN TR
representing an ordered random phenomenon is assumed to be a single sample
from a particular generating process (Xt’ e o e R e s
This collection, or ensemble, of all possible sample time series which the
random phenomenon might have produced and its associated probability distri-
bution is called a stochastic process. Thus, a given time series X4 from a
random phenomenon may be regarded as one physical realization of the doubly
infinite set of functions which might have been generated by the stochastic
process. The set is doubly infinite because an infinite set of values is
possible at any given time and because there are an infinite number of time
points.

A stochastic process is said to be estrongly stationary, or stationary
in the strict sense, if the joint probability distribution of any set of
observations is not affected by the shifting of all times of observations
forward or backward by any integer amount k. That is, if the joint proba-
bility density function associated with n observations.xx, Xz, “ciy Xn made

4




at any set of times t1, tz, R tn, is the same as that associated with n
observations X4k Xoskr o0 X ek made at times teke tosrr -+ Eoege For
a process to be strictly stationary, it is necessary for the entire proba-
bility structure to be time invariant.

A stationary stochastic process may be described by its mean p, which

can be estimated by

e
X n % Xt ’ (2.].])

the sample mean of the time series, and by the variance, c;, of the stochastic
process, which can be estimated by

n

: (x, - x)%, [2.1.2}
t=1

o'X

S|—

which is called the sample variance of the time series. As mentioned
earlier, the values of the time series at different points in time are
serially correlated. This correlation is of great importance to this study;
hence, the covariance function of the stochastic process is of great impor-
tance to us. The covariance, Yio between X4 and Xt 42 k intervals of time
apart, is called the autocovariance at lag k. Y = cov (Xt, Xt+k) can be
estimated by

-k
ke - - g
xx(k) o tz1 (xt - x)(xt+k = X)y WG Ay oy Bl (2.1.3)

C

the sample autocovariance function of the time series. Of equal importance,
or possibly greater, is the autocorrelation at lag k, Py = Yk/Yo’ which acts
like a correlation coefficient, and can be estimated by

¢, (k)
= XX = ®
rxx(k) E;;TET s E® D, Ny vous Bl (2.1.4)

the sample autocorrelation function of the time series. Note that when

k =0, rxx(o) is 1. Both the autocovariance function and autocorrelation
function are even functions because of the stationary. assumption. In
practice it is only necessary to compute the sample autocovariance and
autocorrelation functions for lags up to n/4.
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One of the most important assumptions made with respect to a time series
is that the corresponding stochastic process is stationary, [3]% In general,
the properties of a stochastic process are time dependent; that is, the
current value Xy will depend only on the time which has elapsed since the
process began. We can make a simplifying assumption that the time series
caorresponding to the stochastic process has reached some form of steady state

or equilibriwm, in the sense that the statistical properties of the time
series are independent of absolute time.

2.2 STATIONARY STOCHASTIC PROCESSES

Stationary stochastic processes are used to model time series of many

practical situations. Consider the discrete process Zt where the random

variables Zt’ t=1, 2, ..., n, are mutually independent and are normal with

mean zero and variance o%--this constitutes the simplest form of a stationary

stochastic process. For this process the autocovariance function is zero for

all lags except the zeroeth. Such a sequence of random variables is called
a purely random process Or white noise.

An important class of stochastic processes can be generated by the
passing of a purely random process through a linear system, (see Figure 2.1).

LINEAR
WHITE NOISE h OUTPUT
k .

FIGURE 2.1: REPRESENTATION OF A LINEAR SYSTEM

If the system is linear, we may express the relationship between the output
process Xt and the input process Zt as

©

Ny iy (S5 el (2.2.1)
r ioo R Ptak
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hk is called the weighting function or the impulse response function of the

linear system. The resulting stochastic process derived from a purely random

process using (2.2.1) is called a linear process.

The variance of the linear process is given by

2 2
cx &= CZ ‘Z hj. (2.2.2)

The convergence of the above series ensures that the linear process has
finite variance. We shall now show an equivalent conditon, [ 4], [3], which
also assures the variance to be finite. We will use Z-transforms, [5 ], to
obtain the characteristic equation of the linear process and, then, by
restricting the roots of the characteristic equation to a certain region, we
will be in a position to establish the conditions necessary to ensure
stationarity and/or invertibility of the process.

Consider the following difference equation:

Yo * Gy ¥ 8l s i F 8IS0t boxr ® e BB s {2.2.3)
where Ay s Aps bo’ e bn are the parameters, and X, is assumed given
for all values of r. The general solution to (2.2.3) is

@

Ny ¥ (2.2.4)
P ogeg KK

where h, is as defined in (22.1).

The x's and the y's in equation (2.2.3) can be considered as being
obtained by sampling the continuous signals x(t) and y(t) at the moments of
time t = ra, (r-1)a, ..., (r-n)a, and t = ra, (r-1)a, ..., (r-m)a,

respectively. Of course, A represents the spacing interval used. We can
now rewrite (2.2.3) as

y(t) - ay(t-a) - apy(t-28) - ... - a y(t-ma)

(2.2.5)
= box(t) + b]x(t-A) SV bnx(t-nA) .




The Fourier transform of (2.2.5) is given by

Ao : (2.2.6)
» [b, + b TP7H o boe I2TM8y x(¢) .
Solving for Y(f), we have
) [bo " b]e-janA i o bne-JZanA]
Y(f) = . - XF) . (2.2.7)
[-l it a]e'JZTTfA SR ame jzﬂfMA]
Hence, the frequency response function:
Hiey = 5 p e FRA (2.2.8)
k=0
which is the Fourier transform of hk’ is given by
-j2nfa -j2nfna
HOF) = [bo + b]’f.zﬂﬂ T F bfe‘zwan ] : (2.2.9)
[1- ae i SO ae J ]

The concept of Z-transforms, [ 5], is used to manipulate the frequency

response function H(f). Substituting
7 = I2rfd (2.2.10)
in equation (2.2.9), one obtains
-1 -n
[b Bl " # $D 2"}
Mz2) « 2l B , (2.2.17)
-1 -m
[] o a]Z bl - amZ ]

which is the Z-transform of the impulse response function hk; that is,

H(Z) = hkz‘k :

(2.2.12}
k=0

e i i



From an operational point of view, Z may be thought of as a shift
operator; that is,

-S 3
YA e ® By o s

dence, the linear difference equation (2.2.3) may be expressed as

-1 ~i x -1 -n
(1 - a1Z - . - amZ )yr (bo + b]Z AT an )xr ; (2.2.13)
Solving for Yps we have
B # b2 % ... 52T
e S 8 ; 2.2.14)
r 1 2-1 Z-m] Xp 3 (2.2.
- a = eie wA
then using (2.2.11), equation (2.2.14) can be written as
Y ™ H(Z)xr . (2.2.15)

H(Z) is called the transfer function of the discrete linear system.
Expanding H(Z) in powers of Z'], yields

o]

-k i
Vo RTE L R, & & k. o s (2.2.16)
P k) k L= k™ r-k
which is the general solution of (2.2.3).
The characteristic equations of a linear process can be obtained as
follows:

(1) by factoring Z™™ out of the denominator of (2.2.14), substituting
v for Z and equating to zero, we have
m 1

¥ . a,wm' = s 0. (2.2.17)

A linear process is said to be stable if the roots 81s Con vees [ of the

above characteristic equation lie inside the unit circle, [3]* If this

condition holds, the process is said to satisfy the stationary condition.
* Chapter 5




(2) by factoring Z™" out of the numerator of (2.2.14), we have

[byZ" + b1z"“ SRR S % ¥ P (2.2.18)

Solving equation (2.2.15) for X,.s One obtains

% -1
K= H(Z) L S (2.2.19)

Now substituting y = Z into (2.2.18) and equating to zero, we
obtain another characteristic equation of the system,

R R (2.2.20)
A linear process of this type is said to be stable if the roots Gys Goseens
%, of equation (2.2.20) Tlie within the unit circle, [3]. If this condition
is satisfied, the process is said to be Znvertible.

Also, note that the invertibility condition is independent of the
stationarity condition, [4 ], [3].

2.3 THE STATIONARY STOCHASTIC MODELS

Consider the special case of the linear difference equation (2.2.3), in
which the first p of the a's are non-zero (p < m), b0 =1, and bi 5 0T
This results in the equation,

Yo * My¥p g *8aVpp * o ¥ 3 ¥r_p X - (2.3.1}

This resulting process is called an autoregressive process of order p. We
shall write the finite autoregressive process in the following form:

X = u® aT(Xt_] -u) + az(Xt_z L8 R otp(Xt_p - u) + Z,. (2.3.2)
Note that u is the mean of the process and Zt is a purely random process.
As we have just shown in the preceding section, the autoregressive process
can be thought of as being stable by satisfying the stationarity condition
that the roots of its characteristic equation (2.2.17) lie inside a unit
circle.
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Next, consider the special case of the linear difference equation
(2.2.3), in which the first q of the b's are non-zero (g < n) with bO =0l
and all the a's are zero. Thus, we have the resulting equation:

e R b1xr_] + ... F qur-q 4 . 18.3:3]
This process is called a moving average process of order g. We shall write
the finite moving average process in the following form:

Xy = u=Zy = B2y q = -oe - B2

By (2.3.4)

Thus, the moving average process is said to be stable if it satisfies the
invertibility condition; that is, the roots of its characteristic equation
(2.2.20) 1ie inside a unit circle.

We now introduce a backward shift operator which will be very useful in

manipulating stationary stochastic models. The backward shift operator B is
defined by

th = xt_]
2 -
By = X4 3
: : (2.3.5)
e
B xt = xt-d .

Using the backward shift operator, it will be shown how a finite auto-
regressive process can be expressed as an infinite moving average process.
Consider a first order autoregressive process with u = 0,

Xy = Xy 1 * 24 s (2.3.6)
or using the backward shift operator (2.3.6) becomes
(1 - a]B)xt = ?t ‘ (2.3.7)
Expressing the x's in terms of the z's, we have -

-1
Xg = (1 - a]B) z, . (2.3.8)




Expanding (1 - aIB)'] we have

Xg = 2yt qZy gt ayZe 5t (2.3.9)

Equation (2.3.9) is an infinite moving average process. Likewise, one can
show that the moving average process can be expressed as an infinite auto-
regressive process.

The point that has been brought out in the above paragraph is that it
may be necessary to include parameters from both the autoregressive and
moving average processes in order to achieve parsimony--employing the
smallest possible number of parameters for adequate representation, [ 6 ]*
0f course, this is due to the fact that a moving average process could not
be parsimoniously represented using an autoregressive process, and
conversely, an autoregressive process could not be parsimoniously represented

using a moving average process. Hence, we will have the stationary
stochastic model,

Xt -y = a1(Xt-] - u) + or.z(Xt_’2 -u)+ ... +a (X

(2.3.10)
+ Zt = B]Zt‘] P gl ar qut“q o

Equation (2.3.10) is called the mized autoregressive-moving average process

of order (p, q). Writing (2.3.10) in terms of the backward shift operator B,
with u zero, we have

p i & t 3 q
(1 -ogB - oo - BP)Xy = (1 -8B~ ... 8,8NZ,
: (1-88-...- sqeq) 5 (2.3.11)
- N R IR
(1 - @8 - ... apB )

Hence, the mixed autoregressive-moving average process can be thought of as
the output Xt from a linear system, whose impulse response function is the
ratio of two polynomials, when the input is white noise Zt'

As previously mentioned; the stationarity and invertibility condition are
independent of each other; thus, we simply have to satisfy the stationarity
* Chapter 1
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condition for the autoregressive process and the invertibility condition for
the moving average process included in the mixed process for the process
(2.3.10) to be stable.

2.4 PROCEDURAL APPROACH FOR FITTING FORECASTING MODELS

TO_NON-STATIONARY STOCHASTIC REALIZATIONS

At present there exist techniques to analyze stationary time series
records. However, the techniques available for the analysis of non-
stationary time series are inadequate and do not lend themselves to mean-
ingful interpretations of physical problems. It is possible, however, to
adjust non-stationary time series so as to be able to apply the existing
techniques of stationary time series analysis directly. This adjustment
takes the form of applying a proper filter to the observed non-stationary
time series to filter out the non-stationary components. (See section 3.3.1).

In this section we shall illustrate the procedure to identify whether
an observed series exhibits stationary or non-stationary properties. If the
time series is non-stationary, we explain how it can be filtered and intro-
duce the concept of a "backward filter." We give a procedural approach to
determine the stochastic model which gives the best fit to the observed
series, and we apply diagnostic checks to determine the goodness-of-fit.

Finally, we discuss how the fitted stochastic model can be employed in fore-
casting and updating.

2.4.1 Identification and Filtering

In a given physical situation, one will have available a stochastic
realization X1s Xos «vns Xpo of n observations. The first concern is to
identify whether the series X¢ exhibits stationary or non-stationary
properties. To accomplish this, we make use of certain statistical methods
in conjunction with the properties of stationary time series. A stationary
time series will have the following properties:

i) it will be in a steady state in the sense that it is in
equilibrium about a constant mean level;
ii) it will contain no trend;

13




iii) 1its sample autocorrelation function will dampen out rapidly.

Hence, we will first plot the series as an aid in exercising some judgment
about the behavior of the information. Next, we shall apply various non-
parametric trend tests to the data. Finally, and of greatest importance, we
calculate the sample autocorrelation function (2.1.4) of the observed data.
From these data-analysis tools, we will have sufficient information to
identify the given observed series as stationary or non-stationary.

If we identify the observed series as exhibiting non-stationary proper-
ties, we need to find a filter that will remove the non-stationary components.
One of the most used and most efficient methods of removing non-stationary

components from a time series is by differencing. A first-order difference
filter is defined by

.Yt = xt b xt_'] ’ (2.4])

where Xy is the observed non-stationary series and ¥y is the resulting
filtered series. Similarly, a second-order difference filter is defined by

We = Xy = 2% 3t X s (2.4.2)

and so on.

Since we will be almost exclusively dealing with non-stationary time
series, and, since either a first-order or second-order difference filter is
usually sufficient to transform most practically occurring non-stationary
series into stationary ones, [ 6], the presentation shall be confined to
determining the degree of differencing necessary to result in a stationary
series. Using the backward shift operator B (2.5.5), we express the differ-
ence filter in the following form:

ye = (1 -8 x, . (2.

N
4
w
~

We must determine a suitable value for d, either 0, 1, or 2; zero will
correspond to the fact that our observed information is stationary; one will
correspond to the fact that a first-order difference filter is necessary to
filter the observed series, and so on.

The procedure to identify the proper value of d is to compute the first
and second differences of the observed series Xer t 2 T¢ @y exn® e THAL 18,
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Xy is processed through a first-order difference filter,
) (1 - B)xt =k = Xelq
which will have (n-1) values and a second-order difference filter,

W, = (1 - B)2xt = Xy~ Wy q ¥ Xe_o s

which will have (n-2) values. For the observed x and the filtered ¥ and
W, series, we calculate the sample autocorrelation functions and conduct
trend tests.

By examining the sample autocorrelation function and the result of the
trend test for the separate series, one should be able to infer a suitable
value for d, specifically, the degree of differencing necessary to induce the
sample autocorrelation function to dampen out fairly rapidly and to cause the
trend test to be insignificant. This will yield a stationary series with
which to continue the analysis. :

It must be noted that in some instances the first-order and the second-
order difference filter may fail to remove the non-stationary components.
When this occurs, we must continue to search for a proper filter that will
Teave us with a stationary series. One alternative is to apply a higher-
order difference filter, or we can try other types of filters. Jenkins and
Watts, [3], 1ist several other types of filters. In some respects, filtering
a non-stationary series is a trial and error procedure in that one attempts
to transform the observed series into a stationary one by the use of a
mathematical function. Unfortunately, this requires us to search for the
proper function to accomplish this purpose. i

From the examination of the sample autocorrelation function and the
sample partial autocorrelation function, which is defined in terms of the
sample autocorrelation function as

o(1,1) = r (1), (2.4.4)
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k-1

A P utk) = 'E] ¢k - 1, j)r  (k - J)
and o(k,k) = e ’ (2.4.5)
1 - j;t] o(k - 1, e, (J)
k=2, 3, ..., nf&, where,
o(k,3) = o(k - 1, 3) - o(k,k) ok -1, k - J), (2.4.6)

we may possibly be able to obtain some insight into the identification of the
stochastic model and its order that will best fit the data, [ 6]. The sample
autocorrelation function of an autoregressive process of order p tails off,
while its sample partial autocorrelation function has a cutoff after lag p.
Conversely, the sample autocorrelation function of a moving average process
of order q has a cutoff after lag q, while its sample partial autocorrelation
function tails off. If both the sample autocorrelations and partial autocor-
relations tail off, a mixed process is suggested.

2.4.2 The Fitting Procedure

The process of fitting any one of the three stationary stochastic
models under consideration usually involves two stages.

i) deciding the order of the process;

ii) estimating the appropriate set of parameters.
The criterion for selecting the order of the process that will give the best
fit is the residual variances of different orders of the process fitted to the
data. To compute the residual variances, it is necessary to estimate the
parameters for the different order processes. The residual variances are then
plotted against the order; the minimum residual variance will correspond to
the correct order for the process. After this has been completed for each
process (the autoregressive, the moving average, and the mixed autoregressive-
moving average), we compare the minimum residual variances; the minimal one
will correspond to the process (and its order) that will best describe the
data. This procedure is quite well suited for use on a high-speed computer.
Note, that when fitting a model to a given set of observations, we keep in
mind the principle of parsimony, [6 ]*

* Chapters 1 and 9
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As pointed out by R. A. Fisher, [ 7], for tests of goodness-of-fit to
be relevant, it is necessary to make efficient use of the data in the fitting
process. Hence, to obtain efficient estimates of the parameters, we shall
use maximum likelihood estimates, or approximate maximum likelihood estimates
for the parameters that constitute the different models. The asymptotic
properties of maximum likelihood estimates are usually derived for independ-
ent observations, but as was shown by Whittle, [ 8], they may be extended to
cover stationary time series.

Suppose there exists a non-stationary series, Xgs t = [ 2 e s A
generated by a mixed autoregressive-moving average process of order (p, q),
whose first difference, Yo t=1,2, ..., n, is stationary. We desire to
fit a stationary mixed process of order (p, q) to the y's; that is

Yo T Mbe i o Blep B BT T ety L T (2.8.7)

Without loss of generality, one can assume that when d > 0, uy = 0. We can
express (2.4.7) as

Zt = yt -a]yt_] S S apyt_p + B]Zt-] ax .A..' E Bth_q " (2.48)

A recursive technique can now be used to obtain the conditonal sum of squares
function. By conditional sum of squares function, we mean that the sum of
squares function is conditional on the starting values assigned to the para-
meters(a's and B's)and for the y's and z's previous to time t. This simple
numerical technique will recursively build up the log-likelihood function.

Now, assuming the Zt process is normal with mean zero and variance G%’
the joint probability density of the Z's is

n
=N 2 2

f(z], Zys wees zn) il exp[- t£1 zt/zcz] . (2.4.9)

Given a particular set of data, Yo t=1, 2, ..., n, the conditional log-

likelihood associated with the parameter values (a1, PR ap. 81, -y Bq,

cz), conditional on the choice of starting values for the y's and z's, is

given by
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Sadiia S(a1, A ap, 67, e Bq)
20

NN

(2.4.10)
and the conditional sum of squares function

S(ags «oos apy Byy ens Bo)

& (2.4.11)

z
t=1

2 s
Zt(al’ Sees O Bys +ees Bq |starting values).

Notice that the conditional likelihood (2.4.10) involves the data only
through the conditional sum of squares function (2.4.11). It follows that
contours of (2.4.10) for any fixed value of a, in the space (a1, g Gl
BT’ Ay Bq, oz) are contours of (2.4.11), that these maximum likelihood
estimates are the same as the least squares estimates, and that, in general,
one can, on the normal assumption, study the behavior of the conditional
likelihood by studying the conditional sum of squares function.
Thus, we will obtain least square estimates (maximum 1ikelihood

estimates) by minimizing the sum of squares function. Note that the para-

‘ meter values are selected to recursively calculate the sum of squares

} function such that they will satisfy the stationarity and/or the inverti-

’: bility conditions of the stationary stochastic model. The residual

| variances can then be obtained by dividing the sum of squares function by

the appropriate degrees of freedom. The fitting procedure will be described

in greater detail for the autoregressive, the moving average, and the mixed

autoregressive-moving average process in Section 3.

2.4.3 The Backward Filter and Diagnostic Checks

Having selected the stationary stochastic model and its order that best
describes the data and having estimated its parameters, diagnostic checks are
conducted on the model to determine its adequacy. If, in the identification
stage of the analysis, a suitable value for d was found to be different from
zero, the model has been fitted to the stationary (filtered) data, not to the
observed non-stationary data. Hence, to use the fitted model to forecast
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future values of the observed non-stationary time series, we introduce the
concept of a "backward filter." The backward filter is essentially a simple,
but very important, technique that allows the analysis of non-stationary time
series using the well-established methods of stationary time series.

For a better understanding of the above concept, consider the following
example: The difference equation,

yt=(]-B)dxt,

was used to filter the observed non-stationary time series, Xgs t = ln s
... n+d. To the stationary series, Yo t=1,2, ..., n, a 2nd order
autoregressive model is fitted; that is

Ve = MqYpq t Ve ot Zy (2.4.12)

To transform the model (2.4.12), fitted to the stationary data, Yp» to the
non-stationary data, Xys We simply replace Yt in the model with (1 - B)d Xy 5
that is
d Rt d = d
(] = B) Xt = U.]U = B) Xt_] * a2(1 - B) xt_z +* Zt .

(2.4.13)
For d = 1 and simplifying, we have

xt = ¢]xt_'l + ¢2xt'2 + ¢3Xt_3 " Zt (2.4.]4)

where ¢] =1+ ;1, ¢2 = ;2 - &1, and ¢3 = -a,. The ¢'s are linear combina-
tions of the a's and will depend upon the degree of differencing needed to
filter the observed series. For example, if d = 2, we have

X % e * V0% T W T Wt t B o (2AIS)

Where¢]’2+&1,¢2=&2'2;]‘]’ ¢3=a]'2&2, aﬂd¢4=&2.

We can now conduct diagnostic checks on the fitted model (2.4.14) to
determine the goodness-of-fit. Using the model (2.4.14), the behavior of the
observed non-stationary series can be simulated. By plotting the simulated
series against the observed series, one can obtain a visual conception of the
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goodness-of-fit. More substantially, one can calculate the residuals
incurred by subtracting the modeled series from the observed series; that is

A ~

2y * Ry = Xy (2.4.16)

-
=

If the model is adequate, the residuals should be the sum ofAthe z, process
plus a factor of 1//n; that is as n increases, the residual zt's should
behave approximately 1ike the white noise zt's. Thus, the study of the
residuals could indicate the existence of model inadequacy, in particular,
the analysis of the sample autocorrelation function of the residuals, [4 ].

I[f the form of the model was known to be accurate and the true parameter
values were known, then, by a result of Anderson, [9 ], the sample autocor-
relations rzz(k) of the zt's would be uncorrelated and distributed, more or
less, normally about zero with variance 1/n. Therefore, we could run a
statistical test to determine if the deviations of these autocorrelations
from their theoretical zero values are significant.

However, in practice, we do not know the correct form of the model nor
the iirue parameter values. The residuals obtained from equation (2.4.16)
will be estimates of the residuals, ;t's, not the zt's. Hence, the accept-
ance of the hypothesis that the sample autocorrelations of the residuals
constitute a purely random process on the assumption of a standard error of
1//8 can be very dangerous, [10].* Further, it is shown in [6]¢ that, by
using 1//n as the standard error for ;Zz(k), the statistical significance of
the deviations from zero of the sample autocorrelations at low lags will be
underestimated, while at moderate or high lags, 1//n will give an acceptable
estimate.

Instead of considering the sample autocorrelations of the residuals
separately, an indication is often needed of whether or not the first K auto-
correlations of the residuals, taken as a whole, indicate inadequacy of the
fitted model, [ 4 ). (The value of K can be taken to be n/10). Now, assume
Ehat we have calculated the residual Et's and their first K autocorrelations,
rzz(k), k=1,2, ..., K, resulting when a fitted mized autoregressive-moving
average model of order (p,q) is used to model the observed series. Then, it
can be shown, [ 6 ], that if the fitted model is adequate,

K A
- 2
Q=n k§1 rzz(k) (2.4.17)
* Chapter 45; ¢ Chapter 38
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is approximately chi-square distributed with (K-p-q) degrees of freedom.
Here, n is the number of cbservations used to fit the stationary model. If
the model is inadequate, the Q value will be inflated. Therefore, one can
make an approximate, general, or "postmanteau" test of the hypothesis of
model inadequacy with the information available by referring a calculated
value of Q to a table of percentage points of the chi-square distribution,
[6].

Note that for fitted autoregressive models of order p and for fitted
moving average models of order q, we would have a chi-square with (K-p) and
(K-q) degrees of freedom, respectively.

2.4.4 Forecasting and Updating

After having obtained a model to describe the observed time series and
having confirmed its adequacy, we desire to use it to forecast future values
of the observed series. We shall now illustrate how the fitted model may be
used to obtain minimum mean square error forecasts. We would like to fore-
cast a value Xp4g L=1,2, ..., L steps ahead, when we are presently at
time t. That is, the forecast is said to be made at origin t for a lead time
2. Of course, the shorter the lead time %, the more accurate one can expect
the forecast to be. Also, the spacing, A, of the data is of importance in
forecasting. That is to say, if the data is recorded daily, then it would
be unrealistic to attempt to forecast weeks in advance.

To derive the minimum mean square error forecasts for any lead time 2,
first consider the general mixed autoregressive-moving average model fitted
to the stationary series Y that is,

Y = 0¥ Y O¥ep tee t aYep * 2t - ByZey = cer - qut—q “
(2.4.18)
Using the backward filter (1 - B)dxt * ¥y, we have

Xp ® OXeq ¥ 0% ¥ oo * 0pugitaped Y 3t < BiRpay T ooe t BgRing o
/ (2.4.19)
or in terms of the backward shift operator B
(1= 0,8 - 087 = ..o = 0, 87 Dk, = (1- 8,8 - 8,88 - ... - 88%z, .
(2.4.20)
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We may write an observation Xt4g generated by the process (2.4.19) either as
a difference equation,

Xpeg = P1%paga1 T 02%pag2 T o0 F OpadXteg-pd
i (2.4.21)
* gt ByZpapar 7 ocor T Boltagaq d
or as an infinite weighted sum of current and previous shocks zj,
Xipg = .E wjzt+1_j s (2.4.22)

where wo = 1 and the weights may be obtained by equating coefficients in

ptd 2 i
(V= 098 = ov = 0, gB7 )T+ 4yB + 8%+ ...)

(2.4.23)
(1-88 - ... - sqaq);

or as an infinite weighted sum of previous observations, plus a random shock,

X = jzl “jxt+2-j * 2oy, - (2.4.24)

Nlow, using equation (2.4.22) and the assumptions of the model, as
discussed previously, it will be shown that the minimum mean square error

forecast at origin t, for a lead time 2, is the conditional expectation of
Xp g at time t; that is,

xp(2) = Eylxppq] - (2.4.25)

Suppose at time t we are to forecast Xeag with a linear function of curvent

and previous observations x., Xi s X¢_ps Then, as shown above, it

will also be a Tinear function of current and previous z,, z, 1, 24 _5»
Suppose the best (minimum mean square error) forecast is given by

o

v

o * * *
Xe(R) ® 9,2, # ¥, 92s 9 * UpunZy o ¥ ¢ov @
t "t TR 417t L+2°t-2 jeu  jRtee-j (2.4.26)
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Now, from equation (2.4.22),

A @
X - K (2 = £ 9.2 - Z w
teg = %¢ jeo 3 -3 T 0, Myt
21 2 | ¥ (2.4.27)
= L 92 % A W, g -
je0 3 2t 40 jug, 3 3 Ctee-j

Squaring the above expression and taking the expected value, we have

A ] 3 e
E[(xy 40 %¢(2) )21 = E[( 20 i o (b5 = ¥3)2449.5)° -

Since E(Zizj) =0, for i#j and o§ for i = j, we have

A 2:'] *
EC(xppy = x4(2))2] = jio vioy + 352 (b - v3)% o} (2.4.28)

The above expression is minimized by sett1nglp = w v d Wk BT, L e
this implies:

xt(l) =Yz, + BosrZpay * ooe - (2.4.29)

Now, it is required to show that xt(z) as given in equation (2.4.29) is,
in fact, the conditional expectation at time t of Xp4q - Since
U s forjis>t
Eelz;] = ' (2.3.30)

zj , for j <t

from equation (2.4.22), we have
Ep(xgag) = t[ Z o Vittee- i

= z w E

j, t[zt+z-j]

3 (2.4.31)
j-z ViZtes-j
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This result also has been shown in [ 6%

For example, if a mixed autoregressive-moving average model of order

(p,q) was fitted to the dth difference series of the observed non-stationary
series Xy

Xt = ¢]Xt_-l L SR ¢p+dxt"p‘d w Zt Sy B1Zt'] = e Sth_q .

(2.4.32)
Now, to forecast ahead by a lead time 2, we replace t with t +2in (2.4.32):

Xerg ™ O1%¢ag-1 F oo T OpadXtagp-d T Ftee T B %teaa1 T v 7 Botegeq -

(2.4.33)
The minimum mean square error forecast will be given by

B Dxpagd = 098 Dxpaq ] * oo * 00gB Dxpag gl + Exlzgsy]
~ A : (2.4.34)
SN RO SRR 1t .

As discussed previously, the conditional expectation can be obtained from

Eplxpag] = X,(2) and E[z,,,] = 0 (2.4.35)
for 8=}, & «uv Ly 204

Et[xt-iL] = Xy_, and Et[Zt-ll L (2.4.36)
for £ =0, 1,2, ..., L. Thus, we can rewrite equation (2.4.35) by using the

following rules:
i) The data points L ) e, & oo ks wgich have not yet been
realized, are replaced by their forecasts xt(z) at origin t.
1) The errors z,,, (2 =1, 2, ..., L), which cannot be calculated unti]

Xt4g is realized, are replaced by their unconditional expectation
of zero. (See section 3.3.4).

We can also rewrite equation (2.4.36) by the following rules:

i) The data points x, , (2 =0, 1, 2, ..., L), which have already been
realized at orig” " t, assume their realized value.

ii) The errors z, , (* =0, 1,2, ... L), which have happened at origin
t, are calculated from x,_, - x,_, 1(1).

* Chapter 5
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The variance of the % steps ahead forecast error for any origin t is the

expected value of

e%(z) = [Xt+l' xt(l)]2 . (2.4.37)

It has been shown, [12], that the variance of the lead time & is given by
2-1 :
var(2) = [1 + ¢ 63] c; (2.4.38)
3=

where the weights ej are given by

ej =0, g0< 0
8y = 1
9 = ¢ - B

8y = 918y * 95 - By

(2.4.39)

GJ=¢16J_] +...+¢p+dej_p_d'8j: j=]! 2’ --+5 Q

For j greater than q and p+d-1% equation (2.4.39) can be reduced to:
R LT R o+d®5-p-d ° (2.4.40)

Note that when one has an autoregressive model, the §'s are zero; similarly,
when one has a moving average model, the ¢'s are zero.

We may express the accuracy of the forecasts by calculating probability
1imits on each forecast. The probability 1imits are such that when the
realized value of the time series occurs, it will be included within these
limits with the stated probability. An estimate sg of the variance o2 in

z
(2.4.38) is obtained from the time series data. s2 will be the residual sum

Z
of squares obtained in the fitting procedure divided by the number of obser-
vations used in calculating it. When the number of observations is, say, at

least 50, one can approximate the (1-a) probability limits as,

* That is, j > p+d-1 if p+d-1 > q; j > q if p+d-1 < q
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2-1
R

1
27 /2
& ej] S

Xppq = xt(l) £ty [+ (2.4.41)

7
where ta/2 is the deviate from the student's t-distribution.

We are usually interested in forecasting values of an observed series
for ¢ =1, 2, ..., L lead times in the future from some origin t. Once these
forecasts are obtained and a new piece of information is realized, we may
adjust or update the original forecasted values. The new forecast will be
related to the old by

~

xt+](2) = xt(2 + T)+6£zt+] L (2.4.42)

From the above equation, we see that the t-origin forecast of Xppg4] MY be
updated to become the t + 1 origin forecast of the same Xt4g+]° by adding a

constant multiple of the one-step-ahead forecast error 2y where Ze 4 is
given by

Zt+] = Xt+] T Xt(]) ) {2.4.43)

and the multiplier 8, is given by (2.4.39) and (2.4.40).

2.5 THE SPECTRUM

After fitting the appropriate model to the data, additional information
can be obtained from the filtered (stationary) series concerning the distri-
bution of the variance with respect to frequency. The Fourier transform of
the autocovariance function is another means by which a stationary stochastic
process can be characterized. One is forced to conclude, however, that
Fourier analysis breaks down when it is applied to non-stationary time series.
The reasons are rather obvious; the theory behind Fourier analysis is based
on the assumptions that the amplitudes are fixed, as well as the frequencies
and phases. This is not the case when we have to deal with time series.
Random changes in frequencies, amplitudes, and phases are found here due to
the nature of time series.

The sample spectrum is the Fourier transform of the sample autocovari-
ance function. Its graph shows how the variance of the realization of a
stochastic process is distributed with respect to frequency. Furthermore,
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having the sample spectrum, one can obtain the sample autocovariance function
by taking the inverse Fourier transform of the sample spectrum. That is, the
sample spectrum of cxx(f) is given by

Cxx(f) = IITCXX(u)e-JZ‘"fudUQ 1908 f S ’ (2.5-])

and the sample autocovariance function of Cxx(f) is given by

c..(u) = e (F)ed?™Uge. T<cy<T (2.5.2)
XX -0 XX e - _

for a continuous time series x(t), while for the discrete case,

N-1 :
E il ed T8 e et e Lo (2.5.3)
k=-(N-1)
and
] SO,
CoyU) =J 2§ €y (F)eI“MUaE, NA < u < Na | (2.5.4)
- 2a

The theoretical spectrum is defined by taking the limit, as the period
T tends to infinity, of the expected value of the sample spectrum. That is,

N

"

lim ELC,, (f)]

T

XX(

12.5.5)

0

(u)e

Similarly, the theoretical autocovariance function of the Qpntinuous time
series x(t) is obtained by taking the inverse Fourier transform of the theore-
tical spectrum. That is,

= (® jenfu
Yxx(“) f_mFxx(f)e e (2.5.6)

The graph of the spectrum Fxx(f), as a function of frequency, shows how
the variance of the x(t) process is distributed with respect to frequency.
Similarly, the graph of the sample spectrum Cxx(f) shows how the variance of
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a realization of a stochastic process is distributed with respect to
frequency over a period of length T.

Quite frequently in practice we have to compare time series with differ-
ent scales of measurements. Thus, it is necessary to normalize the spectrum.
Normalization in this case is done simply by dividing the theaoretical spec- )
trum given by equation (2.5.5) by the variance of the process c;. That is,

P .4T)

El Bl o S, (2.5.7)
X
where
2. 2 = [~
O = Vo lOF = S T (FIdF..

The expression given by equation (2.5.7), gxx(f), is called the spectral
density function. The function Exx(f) represents the Fourier transform of
the autocorrelation function due to the relationship between the autocovari-
ance and the autocorrelation function. The spectral density function is
non-negative and integrates to unity, thus resembling the definition of a
probability density function.

2.5.1 Properties of the Spectrum

Sometimes it is highly desirable to obtain the spectrum of the output
from a linear system when the input is a stationary process. In the present
study, we will be primarily interested in the case where the input is white
noise. The general rule is given in Jenkins and Watts [3]% which states that
“the spectrum of the output from a linear system is obtained from the spectrum
of the input by multiplying by the square of the frequency response function."
Thus, in our case, the input to the system will be white noise denoted by
z(t) whose spectrum is given by I'__(f) = 02, and the output process x(t) is

22 2
a linear process and its spectrum is given by

Pxx(f) = o§|H(f)i2, < f<cw (2.5.8)

* Chapter 6
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or

T (F) = H(F)2T,,(6), - g < f < 3o (2.5.9)

where H(f) is the frequency response function.

In our presentation of the spectral analysis of the ionospheric,
man/machine interface,and climatological information, we shall utilize the
spectrum of the three basic models we discussed in sections 2.1 through 2.4,
namely, the autoregressive, the moving averages, and a mixture of auto-
regressive-moving averages. Thus, in what follows, we shall give the basic
definitions of the above models for both the continuous and the discrete
case.

i) Continuous First Order Autoregressive Process
The spectrum of a continuous realization of a stochastic process x(t) is
given by

2
c’Z

T () » s v« F <, (2.5.10)
AL 1+ (2nfT)2

Note that from the form of the theoretical spectrum, Pxx(f), one can conclude
that most of the power (variance) is concentrated at low frequencies.

i1) Discrete First Order Autoregressive Process
The spectrum of a discrete realization of a stochastic process x(t) is
defined by

() Ao} 1 1 )
r.(F) = Seliddelds e
XX 1+a2-20;cos 2mfA 2 2

It should be mentioned that if 4 is negative, the spectrum has most of its
power concentrated at higher frequencies, while when a is positive, the
power will be concentrated at lower frequencies.

iii) Continuous Second Order Autoregressive Process
The spectrum of a continuous realization of a stochastic process x(t) is
given by

o.2
Ty (F) = 2 , @< f<w, (2.5.12)
(30-5241\'2f2 )2 + (2“fa~| )
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Here the distribution of the power of the process will depend on how 3y 3,
and a, are inter-related. This relationship is inherent in the form of the
characteristic equation of the process.

iv) Discrete Second Order Autoregressive Process
The spectrum of the continuous realization of a stochastic process x(t) is

given by

Aoz 1
F(f)= a‘—<f<2-
X 1+a+a3-2a, (1-0,)cos 2wfA-2a,cos 4mfa el ol
st 2 2

(2.5.13)
Again, the Tocation of where most of the power is concentrated is character-
ized by the values of aq and a,. '
V) General Autoregressive-Moving Average of a Continuous Process
The spectrum of a continuous realization of a stochastic process x(t) is
given by ry

e

I‘xx(f) e Tt B

z ] m
anta, . 2nf+. . .+a_(j2nf)
L - (2.5.14)
vi) Ceneral Autoregressive-Moving Average of a Discrete Process
The spectrum of a continuous realization of a stochastic process (x(t) is
defined by

. .+Bze-j2ﬂ'fA2 2

= 2 1 1
Tex(f) = 407 P e | % sfim
-a.le - .‘ame

(2.5.15)

In the last two definitions, various peaks or spikes will appear in the
spectrum if the roots of the corresponding characteristic equations are
complex. The behavior of the above will be displayed in Section 4.

2.6 ESTIMATE OF THE SPECTRUM

In the previous section, we have given a brief discussion of the basic
definitions and properties of the theoretical spectrum. With respect to the
aims of the present study, we shall give in this section a smoothed estimate
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of the theoretical spectrum and some of its properties that are essential in
the final analysis of the experimental data. ]

Bartlett, [11], introduced a very useful procedure for estimating the
spectrum of a stochastic realization. This estimate of the spectrum for a
purely random process is given by '

n-1 n-1
C,,(f) = g [{ T z.cos 2nfta}? + {tz z,sin 2nfa}?]
=an =-n
2.6.1)
-4 rp2 2 1 1 (
=8 [A2(f) +B2(A)] . - Jr < Fear
where
n-1
A%2(f) = { £ z4c0s 2rftal? (2.6.2)
t=-n
and
n-1
B2(f) = { ¢ _ztsin 2ufalt . (2.6.3)
=-n

Bartlett's procedure consists of splitting up the series of length N
into k sub-series of length %, evaluates a sample spectrum sz(1)(f) for each
of the k sub-series, i =1, 2, ..., k, and finally takes the mean of the sub-
series as his estimator at frequency f. That is,

; k .
%4 (1)
T,,(f) = 1‘516” YF) . (2.6.4)

The estimate given by equation (2.6.4) is called a smoothed spectral estimate
at frequency f and the method to obtain (2.6.4), Bartlett's smoothing
procedure. More generally, Bartlett's smoothing procedure suggests that a
smoothed spectral estimator of a stochastic realization x(t) is given by

LA ff;w(u)cxx(u)e'jz"f”du . ff;E;x(u)e'jzwf“du : (2.6.5)

The smoothed sample spectrum will have a smaller variance than the
unsmoothed sample spectral estimator, Cxx(f). The smoothed estimate of the
spectrum is a function of the type of lag window, w(u), one utilizes.
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However, in all cases the following properties hold with respect to w(u):

i) w(0) = 1;
ii) w(u) = w(-u);
iii) w(u) =0, |u|] > T;
iv) w(u) =0, [ul >M, M<T.

In section 2.8 the above concept of the window will be explored
extensively. As will be stated, the bandwidth of a spectral window will be
defined as follows:

Ba 1

= (2.6.6)
ST Wi (f)df

Another form of the bandwidth is the standardized bandwidth, b1, which
is given by placing

and

b:l_)l. ..]_.
M
L WA(F)df
We can conclude that the variance of a spectral estimator is inversely
proportional to the bandwidth of the spectral window. Also the degrees of
freedom, v, of the smoothed estimator are directly proportional to the band-
width of the spectral window due to the relationship

2T = 2(

bt NG
S_w*(u)du

-
ﬁ)b1 " (2.6.7)

On the other hand, the bias is directly proportional to the bandwidth of the
window.

The notion of the smoothed spectral density estimate denoted by ﬁ;x(f)
shall now be introduced. This estimate is defined as follows:
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N

L-1

R (fl=2{1+2 ¢z

1
= rxx(k)w(k)cos 2nfk}, 0<f <3 (2.6.8)

k=1
where,
cxx(k)
rxx(k) = W . (26.9)
The mean smoothed spectral density f;x(f) is given by
e
o]
X
‘r‘xx(f) L-1
221+ ¢ o . (k)w(k)cos 2nfk] . (2.6.10)
i a8 ‘

Equation (2.6.10) is the expected value of the smoothed spectral denisty
estimator. By plotting Fxx(f) versus T;X(f) , as shall be done with the

B —
o]
c)( X

ionospheric phenomenon under investigation, one will be able to detect how
the bias varies with frequency.

Also, the variation of bias with bandwidth can be observed by simply
plotting different curves for the different values of L, the truncation
point. One other relationship can be plotted as well. This plot consists

of ﬁ;x(f) versus Fxx(f) and displays how the variance varies with respect to

frequency. Yo

Similarly, the variation of variance with bandwidth can be observed
simply by plotting the estimate with different values of L.

Jenkins and Watts, in their efforts to point out the criteria for
determining optimal lag windows, argue that window carpentry is not as
important as window closing. In Section 4 of the present study, we will
examine these factors in detail with actual data to determine an optimal lag
window.

Two criteria, which would seem logical at first §ight but whose value
is debatable in determining an optimal lag window, are listed as follows.
(They are classified as the "optimality approach to smoothing."):
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i) The mean squared error criterion,

EL(T,, (f) - I, (1)),

and

ii) The integrated mean squared error,
= Il 2
§o E[{Cxx(f) - Fxx(f)} 1df .

Nevertheless, the above optimality criteria are rejected, a fact which
brings into play the formulation of high stability and high fidelity as
useful criteria. They are widely accepted in practice. The previous
criteria, namely, the mean squared error and the integrated squared error,
are not useful because they are arbitrary; they have no flexibility (strictly
mathematical); they do not allow an a priori design and analysis of the data;
and they only indicate what is best on the average. Therefore, the two main
requirements for estimating the theoretical spectrum Fxx(f) as accurately as
passibie are:

i) High fidelity, which implies that

T (F) = T (F) = B()
be small, and
ii) High stability, which implies that

Pt
Var(T, (f)] = 2E— ({;11

be small.

High fidelity and high stability are two conflicting requirements. In
minimizing the covariance, we increase the bias; and, conversely, by mini-
mizing the bias, we increase the variance. An ideal situation would be one
where M is large enough for high fidelity and M is small enough for high
stability. The logic here dictates a compromise of some form.

In summary, we can say that smoothing the estimate of the theoretical
spectrum consists of determining the shape or the mathematical form of the
window (section 2.8 discusses window carpentry) on one hand and the value of
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the bandwidth (window closing) on the other. By window closing we mean
computing window estimates using a wide bandwidth and then progressively
using narrower bandwidths until we achieve a state of high fidelity and high

stability. The numerous and various problems involved will be studied in
subsequent chapters.

2.7 THE CROSS SPECTRUM

In this section, the concepts we have already dealt with shall be
extended so as to be able to treat pairs of time series xl(t) and Xz(t)'

The autocovariance function of the stochastic realization is given by
YX]X](u) 2 E[(X](t)-u]) (xl(t+u)'u])] = Y]] 9 (2-7-1)

where the expression for Yop Can be obtained by changing the subscripts,
and the cross-covariance function is given by:

Yx]xz(u) - E[(X1(t)‘u1)(Xz(t+u)-u2)] =Yy {(2.7.2)
where
we = EDR ()]s 4 = 3, 2,
The cross correlation function is given by

Y]Z(u) le(u)

DIZ(U) = o — 3 {2.7.3)
0 0 1°2
'/;n( )YzzT)

The cross covariance function is estimated by

T/2-u
Jr I_T . (Xq(£)=X;) (Xp(t+u)-Xy)dt, 0 cu < T
c (u) =
X-'Xz T/2
T iy I VglitaioRdds, B 26 59,

(2.7.4)
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where

— e ] et
A f X Celdh, o=, (2.7.5)
-T/2

An estimate of the cross correlation function is obtained by

(2.7.86)

ve, . (0)c (0)
o

Using the above equations as a foundation, one can define the theoretical
autospectrum, T]](f), and sample autosgpectrum, C1](f), by

© «j 4
Lyq(F) = /%y (we 38 ey (2.7.7) 1
and

Cp(F) = sleq (we ¥y, (2.7.8)

respectively. Hence, we arrive at the notion of the cross spectrum. As in

the univariate case, the sample cross spectrum is the Fourier transform of 1
the sample cross covariance function. That is,

el -j2nfu & (2.7.9)
C12(f) = f_Tc]Z(u)e du

Note that the inverse Fourier transform of C]z(f) gives rise to Clz(f)'
Another form of C12(f) *that i< commonly used is

3Fy,(1) :
Cip(f) = Ap(fle = Lyp(f) = 3Qy,(F) (2.7.10)

which is the product of a real function A12(f), called the sample cross
amplitude spectrum, and a complex function called the sample phase spectrum,

3Fy,(F)
Vi i
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The theoretical cross spectrwm is the Fourier transform of the
theoretical cross-covariance function; that is,

-jonfuy J9,(f)

"

F]Z(f) = fwa]Z(u)e alz(f)e

"

Ayp(F) - jV]Z(f) : C {2.2.%)

which is the product of the cross amplitude spectrum and the phase spectrum.
The expected value of the cross spectrum estimate is given by

Etcx]xz(f)] = fIT(l - l%l-)vx‘xz(u)e‘jz“f“du : (2.7.12)

As T goes to infinity, the above mean value approaches the cross spectrum.
Therefore,

i g -j2rfu
limElC,  (F)I =T . (f)=/"y, , (e w<fcw,
T  M%2 X1 X9 X1 X5

(2.7.13)
Furthermore, the co-spectrum, A12(f)’ is defined as
Ap(F) = /7 A, (u)e 38 gy
=-% ffm{y12(u) *+ Yy5(-u) cos}2nfudu , (2.7.14)
where
Mzm)=%ﬁzm)+ﬁzbw}. (2.7.15)
Similarly, the sample co~-spectrum, L12(f), is defined by
Lyp(F) = ety (u)e 8 gy
=) fT {¢y,(u) = €q,(-u)}cos 2mfudu (2.7.16)
e “=1""12 12 i Gt
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L
where

2p(u) = 12—{c12(u) - cpp(-u)} . (2.7.17)

On the other hand, the quadrature spectrum, W]Z(f), is defined by

Ya(F) = 17 (w)e 5 Mgy

= 3 /2 0175(0) - vyp(-u) sin2nfudu (2.7.18)
where i
]
W]z(u) = %'{Y]z(U) = Y]Z(‘U)} ’ (2.7.19) {
and the sample quadrature spectrum, Q]Z(f)’ is defined by ]

Q1z(f) = IITQ]Z(U)Q-JZqudU

= 5 T eglu) - cqpl-u)dsin nfudu (2.7.20)

where

q]z(u) » %{clz(u) - c]z(-u)} .

Thus, with the above definitions, we can define the cross amplitude
spectrum as follows: :

ay,(F) = [P (F)] = VAL + 950F) . (2.7.21)

Also, the sample cross amplitude spectrum is defined by
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On the other hand, the phase spectrum can be written by

-¢12(f)
¢]2(f) = arctan —-KTET?T s (2.7.23)

and the sample phase spectrum is given by

. ‘le(f)
F]Z(f) = arctan —ETE(FY x (2.7.24)

Having a graph of the cross amplitude spectrum, one can detect whether
frequency components in one series are assocjated with large or small ampli-
tudes at the same frequency in the other series. The graph of the phase
spectrum helps to determine whether frequency components in one series are
in phase or out of phase (lag or lead) with the components at the same
frequency in the other series.

The cross amplitude spectrum and the phase spectrum would suffice to
provide a complete description of a bivariate stochastic process. However,
a more efficient spectrum, namely, the coherency spectrum, will be introduced
in sub-section 2.7.1 to take the place of the cross amplitude spectrum.

For the discrete case, we simply replace the integral with a sum and
make the necessary notational changes.

2.7.1 The Squared Coherency Spectrum

The squared coherency, k%z(f), is

oo (f) 1

k2,(f) = E : (2.7.25)
127 = Tt 1+(Tpy (F)/G2(F)T4(£))

The squared coherency spectrum is the plot of k%z(f) versus frequency.
The cross amplitude spectrum a]z(f) is a measure of the covariance between
the two time series x](t) and x2(t) at frequency f. r]](f) is the variance
of the input at frequency f, and G(f) is the gain of the spectrum defined by
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_/83(0) +ul(R) apylh)

G(f) ) * 7T (2.7.26)

In general, the coherency spectrum plays the role of a correlation
coefficient with respect to the frequencies. When Fzz(f) = 0, the squared
coherency is equal to one. When the output is nothing else but noise, the
squared coherency is equal to zero.

The usefulness of the squared coherency spectrum lies in the fact that
dimensions do not enter the picture when the correlation is measured with
respect to frequency. Unlike the squared coherency spectrum, the cross
amplitude spectrum depends on the dimensions of x1(t) and xz(t). This is the
reason why the squared coherency spectrum is preferred over the cross ampli-
tude spectrum, and, together with the phase spectrum, it gives us a complete
picture of the cross correlation properties of two time series.

2.8 THE ROLE OF THE LAG _WINDOWS

One of the goals of the present study is to perform spectral analysis
on univariate and bivariate stochastic realizations obtained from ionospheric
soundings. The purpose of such an analysis is important to the systems
design engineer and to the communication/ADP scientist. One of the basic and
essential factors which enters in the mathematical formulation of the power
spectrum is the lag window. There are specifically four lag windows that are
commonly used in spectral analysis. These lag windows are as follows:
i) rectangular window
ii) Bartlett's lag window
iii) Tukey's lag window
iv) Parzen's lag window.
The object of this section is to briefly introduce these lag windows.
A specific discussion about their behavior in estimating the spectrum will
be given in Section 4, where we consider the analysis of vertical incidence
and oblique incidence ionospheric information.
An exact determination of the autocovariance function or the power
spectrum function is quite impractical since it would require both a collec-
tion of pieces of infinite length and an infinite number of computations.
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An approximate determination is therefore proposed in order for workable
estimates to be obtained. The results obtained by Tukey, [12], show that,
although the autocovariance function and the power spectrum are Fourier
transforms of each other, the latter, in most practical situations, is
preferred as yielding better results. By reducing the data, the estimates
will be subject to the usual sampling variations and statistical biases. It
should be pointed out again that estimates of the power spectrum exhibit bias
and sampling variability characteristics much easier to study than estimates
of the autocovariance function.
The unsmoothed sample spectrum is given by

€ () = /Te (e gy, = < fca. (2.8.1)
The first moment of Cxx(f), the unsmoothed sample spectrum estimator, is
given by

ELC, ()] = /1 Elc,, (u)]e 32 ay (2.8.2)

which can be written as

ELC,, ()] = P Lt iTiqe'Jz“f“ : (2.8.3)

using the fact that

Yo (1 -0, <t

xx(“)] 3 (2.8.4)
0 o T .

Efc

Therefore, using the convolution theorem, the expected value of the unsmoothed
sample spectrum can be written as

ELC,, ] =/ T{——-—T—-ﬂ}z Moy (F-9)dg . (2.8.5)

In expression (2.8.5) the quantity




in the integrand is referred to as the spectral window of the sample spectrum.
The Fourier transform of the spectral window is the lag window which will be
denoted by w(u).

In actual practice we utilize a smoothed form of expression (2.8.5) to
obtain an estimate of the theoretical spectrum given by

L-1
B (8l = 2le (0] * 2 E

X (u)w(u)cov 2w fk], 0<f <~% ,

]cxx

(2.8.6)
where cxx(k) is the sample autocovariance at lag k, w(k) being the lag
window, and L the truncation point of the series.

[t is clear from a practical point of view that the resulting estimate
of the power spectrum, equation (2.8.6) depends on the choice of the lag
window that we are utilizing in our estimate. In what follows, these lag
windows shall be defined and, for a more thorough investigation of their
origin and properties, the recent books of Jenkins and Watts, [3], and Box
and Jenkins, [ 6], are recommended.

2.9 USEFUL LAG _WINDOWS

In this section the basic useful windows mentioned above shall be
defined, namely, the rectangular, Bartlett's, Tukey's, and Parzen's lag
windows. A specific comparison of these lag windows in actual problems will
be given in Section 4.

We shall denote W(f)asthe portion of the integrand given by

T{______Sig gf”}z of equation (2.8.5). That is,

w(r) = 1L Ihe (2.9.1)

Equation (2.9.1) is called the spectral window. Its Fourier transform is
called the lag window.
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2.9.1 The Rectangular Lag Window

Definition 2.9.1 The function given by

1. Jui<¥ ;
wR(u) = (2.9.2)
0, otherwise

is called the rectangular lag window. The Fourier transform of wp(u) is

uo(F) = aM[ELEEMy o ca (2.9.3)
and is called the rectangular spectral window. The above lag window was the
first window that was used by many scientists, especially engineers. However,
due to its mathematical simplicity in being able to characterize complicated
phenomena, it is not very useful. Further details to this addendum will be
given in a later discussion.

2.9.2 Bartlett's Lag Window

Definition 2.9.2 The function defined by the expression

= lEL s U<M

M =
wB(u) = (2.9.4)

0, otherwise

is called Bartlett's lag window. The Fourier transform of wB(u) is given by
in wfM
Wg(F) = M[ZT2io (2.9.5)
and is called Bartlett's spectral window. The above lag window, which was
introduced in the 1950's, has been used extensively in spectral analysis.

It possesses some interesting features that will be discussed later. However,
its side Tobes are much larger than any of the other windows known.
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2.9.3 Tukey's Lag Window

Definition 2.9.3 The function W s defined by the following expression,

%{1 + cos %%), lul < M

w.r(u) = (2.9.6)

0 , Otherwise,

ﬁs called Tukey's lag window. The Fourier transform of equation (2.9.6) is
called Tukey's spectral window and it is given by

i 1
uplf) = weslpZatty o 2 ot

2mM(f + %-M)

(2.9.7)
sin 2nfM
+ M( 2TTM

)(W).-@ifim.

Tukey's window possesses the property of having most of its power concen-
trated at low frequencies. Furthermore, Tukey's window results in smaller
bias in the spectral estimate than Bartlett's window.

2.9.4 Parzen's Lag Window

Definition 2.9.4 The function defined by

160 Wl3m e op il 3o, juj <

21 - Lul g B < qul <M (2.9.8)

0 o ul > M

is called Parzen's lag window. The Fourier transform of equation (2.9.8) is
called Parzen's spectral window and is given by

Up(f) = 3w [(SILIH/2)]e, < fcw . (2.9.9)
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The above window, which was introduced in the early 1960's, gives much wider
lobes and its power is not concentrated primarily at lower frequencies as in
the previous window.

2.10 Some Remarks Concerning the Lag Windows

Scientists who have been involved in choosing the shape of a lag window,
w(u), have taken into consideration the fact that the spectral window, W(f)
(that is, the Fourier transform of the lag window), should be concentrated
near the zero frequency. Blackman and Tukey, [13], looking at the problem
from the communications engineering point of view, almost identified it with
that of choosing the intensity distribution along an antenna, so that the
variation will fall in a narrow beam. The principal maximum and the
subsidiary extrema of W(f) are called, respectively, main and side lobes.

A window should be an even function so that it can equally treat positive and
negative values of the spectral density function on both sides of a given
point of the time series. [t should integrate to unity; that is,

S M(F)E =1, (2.10.1)

and should achieve a maximum value at the frequency f = 0. That is,

[W(f)| < W(0), for all f.

It should be concentrated as much as possible about f = 0 so that the
behavior of the spectral density function is concentrated as much as possible
in that_ neighborhood.

It is my opinion that there is no agreed valid criterion for comparing
the degree of concentration of any window. One criteria could be the ratio
nf the size of the second largest peak to the size of the largest peak.
However, again this would be powerful only in the case where the second
largest peak would occur at the same point. This fact explains why one has
to consider all the different windows, in addition to the most popular, in
one's search for the most appropriate case.

For the main lobe of W(f) to be concentrated, the graph of w(u) should
be flat due to the way the two concepts are related. Also, for the side
lobes to be small, w(u) should be smooth and should not change rapidly as in
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the case of the rectangular window. Therefore, one should compromise. The
above authors' investigations have been done along the lines of compromise,
and as a result, there exist numerous windows among which to choose.

Taking Bartlett's spectral window, wB(f), as an example, we find that
when it is graphed against frequency, it is found to be symmetric about the
origin and has zeros at f = t&; 153 i%3 i

The distance between the first zeros on either side of the origin is
called base width. The base width for Bartlett's window is equal to %z It
is inversely proportional to M and also to the variance. On the other hand.
by increasing the base width, the bias, B(f), increases as well. Thus, one
is forced to compromise between bias and variance in choosing a particular
window.

The rectangular window is more concentrated about the center frequency
than any of the other windows under consideration. Nevertheless, although
it has the smallest bandwidth, which implies small bias, it also has the
largest side lobes. This makes it very impractical. The first side lobe is
about 1/5 of the height of the main lobe which shows unrealistic characteri-
zation of the estimate of the power spectrum. g

Tukey claims that the window he proposed with Blackman, the use of which
is called "Hanning" after the Austrian meteorologist Ju.ius Von Han, is
simple and convenient. Two facts about it are: that the wain lobe is four
times as wide as the side lobes; and that the side lobes are 1% or 2% of the
height of the main lobe.

The above remarks will be extensively examined with the analysis of the
ionospheric information in Section 4.
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3. MODELING AND ANALYSIS OF IONOSPHERIC INFORMATION

3.1 INTRODUCTION

HF communications are provided by systems not specifically limited by
line-of-sight, extended distance, or intervening terrain obstacles. However,
ionospheric disturbances, both natural and man-made, complicate the use of the
HF media, [2]. The HF communicator had as his only propagation aid, the
monthly predictions for undisturbed conditions prepared three months in advance
by the Department of Commerce, and distributed by the U. S. Army Strategic
Communications Command. While valid for long range planning, they do not
account for diurnal variations or disturbed ionospheric conditions that may
degrade communications. It is, therefore, necessary to develop a system to
provide tactical communicators with propagation predictions in near real-time,

and prepared specifically for medium and long range distances.

The aim of this section, therefore, is two-fold:

a. to introduce a widely accepted statistical concept for the prediction
of oblique incidence soundings including application for the prediction of
vertical incidence soundings, and

b. to develop more suitable statistical models to forecast either the
oblique or vertical incidence soundings over specific paths or at specific
terminals, one, two, three, ..., k time slots ahead, beginning with a certain
origin.

It is shown that for a 500 Km path, both oblique and vertical incidence
recordings are non-stationary stochastic realizations. That is, they form a
discrete time series that is not in statistical equilibrium. A procedure is
proposed to handle this type of information and to investigate the possibility
of characterizing the data with either an autoregressive process, a moving
average model, or a mixture of autoregressive-moving average processes.

A systematic presentation of recording ionospheric soundings for the
purpose of forecasting is given in section 3.2. An autoregressive model has
been developed for the discrete realization representing the 13 day vertical
incidence (VI) and oblique incidence (0I) critical frequencies observed for
the 500 Km path, Fort Monmouth, N. J. - Fort Drum, N. Y., in section 3.3. The
complete procedure of fitting the models is given, along with the associated
confidence intervals. Also included in this section is the development of
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another autoregressive model that characterizes the behavior of the 18-day
overall VI and QI soundings for the experiment. A prediction process based
on the widely accepted Ames-Egan approach, [1], is given in section 3.4. In
this section, the limitations of the process and suggested improvements are
covered. Finally, in section 3.5, a summary and conclusion are presented.

3.2 DESIGN OF THE EXPERIMENT

To accomplish the task of developing both a functional relationship
between OI and VI maximum observed frequencies (MOF) and a forecasting model,
the Communications/ADP Laboratory, of the U. S. Army Electronics Command, had
been involved in an extensive collection of VI and short-path OI ionospheric
data at three different distances with Fort Monmouth, N. J., as the base
station. Experimentation was performed in the 2-16 MHz range, using two
jonosondes, one as a fixed terminal and the other as a mobile terminal, as
shown in figure 3.1. The mobile terminal was situated at Fort Dix, N. J.,
establishing a 60 Km path; at Aberdeen Proving Ground, Md., to establish a
200 Km path; and at Camp Drum, N. Y., to establish a nominal 500 Km path
(figure 3.2). This section will address only the 500 Km experiment.

Each terminal made scheduled soundings every ten minutes for an 18-day
experiment. While the fixed terminal was transmitting ans receiving its own
signal, the mobile terminal would simultaneously receive the same transmis-
sions. The same procedure was followed for the mobile terminal with respect
to the fixed terminal (figures 3.1 and 3.2). Both ionosondes were synchro-
nized to the WWV (HF) time standard (National Bureau of Standards) so that the
"remote” sounder scans would be precise with the Fort Monmouth terminal. The
number of days each experiment was performed has no significance with respect
to the results obtained, but was a matter of funding.‘ The basic instruments
used were two Granger Associates Model 3905-5 Ionospheric Sounders, matched
with wide responde delta antennas.

The frequency range of the ionosondes was limited from 2-16 MHz, in {hree
octaves, with 400 discrete frequency channels per octave. Transmissions
consisted of successively "stepping" through the channels of each octave with
a pulse width of 100 micro-seconds to maximize the system sensitivity. The
data is a recording of the time delay from ionosonde to ionospheric reflecting
layer and return. Time delay is a measure of the virtual height of reflection
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from the layer. The trace of the returned pulse on a scale of frequency
versus time delay (virtual height) is the ionogram record, figure 3.3.
Ionogram records of the data were taken on 35mm film at Fort Monmouth and on
light sensitive oscillograph paper at the remote terminals. After collection
and development, the ionograms were scaled for the extraordinary critical
frequencies, foZ’ as shown in figure 3.4. The foz data was then compiled
for computer analysis and for comparison between the observed VI and observed
OI critical frequencies. ‘

The experiment results were dependent upon ionospheric conditions and
man-made noise. Conditions were characterized by the Space Disturbance Fore-
cast Center, Institute of Telecommunication Sciences, Boulder, Colorado, as
generally undisturbed, but some interference occurred. Some data (ionograms)
were unreadable due to man-made noise, and solar and geomagnetic activity.
For those few records that were unreadable (though signal was detected),
simulated data was prepared. The occurrence of obscured data was negligible
over the experiment.

3.3 FORECASTING MODELS FOR IONOSPHERIC SOUNDINGS

In this section, we shall propose a step-by-step procedure in:

a. identifying and filtering the ionospheric information,

b. fitting the most appropriate model to the data,

c. applying the backwards filter technique and diagnostic checking, and

d. forecasting and updating of the appropriate model.

Specific reasons and mathematical formulations for this sequence of steps
are stated in Section 2. Therefore, the basic idea and philosophy of this
section is the implementation of the procedural approach proposed in this
study for analyzing non-stationary information. The approach has yielded
better results for fitting and forecasting than those obtainable with other
methods, [1], 04], (151, (161, (171, (18], that exist in the literature.

In the previous section, the manner in which our time series were
generated was outlined for the vertical incidence (VI) and oblique incidence
(0I) ionospheric soundings. Specifically, we have available 18 days of data
where each day is divided into 144 time slots. The data was taken over
consecutive days under the same conditions; however, due to diurnal ionospheric
changes, there is an inherent and uncontrollable diurnal variation in the
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soundings. Thus, the observed data is a stochastic realization that consists
of 144 data points with the corresponding time of day. In view of the diurnal
differences in the data, it was .appropriate to choose one of the 18 days at
random for each of the observed ionospheric series for the time series
analysis. Furthermore, we felt that it was appropriate to also consider the
average of the 18 days for the time series analysis. The 13th day (April 5,
1971) was chosen at random for the statistical analysis. This amounts to
doing a very explicit time series analysis with respect to identifying the
appropriate stochastic process that characterizes these four phenomena. We
shall begin by following the procedural approach detailed in Section 2, which
we believe is a very good procedure for both short-term and near-real-time
forecasting for this type of information.

3.3.1 Model Identification and Filtering

The initial step in the procedural approach, as was stated previously,
is the identification of the stochastic realization. Primarily, we ask, "is
the information that we have to analyze stationary or non-stationary?" By
stationary we mean that the data will be in equilibrium around a constant
mean without any trends. The original information shown by figures 3.5, 3.6,
3.7, 3.8, which represent, respectively, the ]3th day observed VI, mean VI,
13th day observed 0I, and mean QI data, visually represent non-stationary
stochastic realizations. In order to justify this fact, the sample autocor-
relation function was plotted and a statistical test was performed to see if
there were any non-linear components in the data. Figures 3.9, 3.10, 3.11,
and 3.12 show that in all cases the sample autocorrelation function does not
dampen out very rapidly. This is certainly, as stated in section 2.4, an
indication that there are non-linear components within the observations.
Secondly, Kendall's Tau statistic, [19]F for each series at the a = .05 level

of significance (as shown in table 3.1, p. 63) indicates that there are non-
lTinear trends.

* Chapter 5
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Table 3.1 Kendall's Tau Statistics for Trend

Ionospheric Series Calculated Z.OS Decision
Statistic

13th day VI observed 5.192 t1.645 reject Ho

18;day VI averaged 4.874 +1.645 reject Ho

13" day OI observed  5.641 +1.645 reject H_

18-day 0I averaged 4.964 +1.645 reject Ho

Thus, we are certain that the ionospheric information is not in statis-
tical equilibrium. The next step in the proposed procedure is to develop a
filter that will eliminate the non-stationary components from the series. The

initial step towards this end is to implement a first difference filter,
namely:

Ye T X = Xgye E =1, .00, 144

to each of the four realizations. Upon applying this filter, the sample auto-
correlation functions were computed for the four cases and are shown in

figures 3.13, 3.14, 3.15, and 3.16. It is evident by inspecting these autocor-
relation functions that the 13th day observed OI and VI information dampen out
fairly rapidly about the zero axis except at the zero point. Kendall's Tau
test was conducted on the filtered data. Results indicate that in both of

these cases the non-stationary components had been removed as shown in
table 3.2.

Table 3.2 Kendall's Tau Statistics for the
First Difference Filtered Data

Ionospheric Series CaIcgla@ed Z.05 Decision
: Statistic
13th day VI observed -0.379 +1.645 accept HO
18-day VI averaged -4.577 +1.645 reject H°
13" day OI observed  -0.574 +1.645 accept H_
18-day OI averaged -4.616 +1.645 reject H0
63
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Thus, Kendall's Tau test and the visual interpretation of the sample
autocorrelation function indicate that we have reduced the two 13th day
observed stochastic realizations (0I and VI) into stationary series. Thus,
they are in the proper form to proceed in identifying the appropriate model
that characterizes their behavior. However, since the average of the 18 days
of OI and VI soundings do not pass the criteria for Kendall's Tau test, then
one concludes that trends still exist in these series. Furthermore, the
sample autocorrelation functions in these cases do not indicate that there
is rapid enough dampening to insure stationarity (see figures 3.14 and 3.16).
Therefore, we must proceed to use a second-difference filter, namely:

wt = Xt b zxt_'l + xt_.zg t L ‘l, ey 144 .

As shown in figures 3.17 and 3.18, the sample autocorrelation functions
of the second-difference averages, the dampening behavior seems to have been
improved. Furthermore, Kendall's Tau test (as shown in table 3.3 below) seems
to have reduced the original non-stationary realizations into proper form;
thus, we can proceed to model the information.

Table 3.3 Kendall's Tau Statistics for the
Second Difference Filtered Data

Ionospheric Series Calculated VA

Decision

Statistic -05
18-day VI averaged 0.053 +1.645 accept H0
18-day 0l averaged -0.093 +1.645 accept Ho

It is appropriate at this time to emphasize that the 13th day observed 0I and
VI data needed only the first-difference filter. The non-stationarities that
occur in each of the 18 days seemed to have increased the non-stationary
components during the averaging process, requiring a second-order filter.
However, as shown in figures 3.17 and 3.18, the improvement in the sample
autocorrelation function was slight. Since we feel that there is a stronger
decision with the second-difference filter for the averaged series, the
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procedural approach will be continued with the first-order filter in
analyzing the 13th day observed data, and with the second-order filter in
analyzing the averaged information.

3.3.2 Fitting The Model

Now, having reduced the stochastic realizations into stationary form,
the next step in the procedural approach is the fitting process. Specifically,
we are interested in identifying the appropriate model, and secondly, having
identified the model as either autoregressive (AR), moving-averages (MA), or
a mixture of the two (ARMA), the order of the particular process must be
determined. In deciding on the order of a particular process, one has to be
concerned with estimating the parameters that are associated with the specific
model. Specifically, with regard to the four ionospheric series, we have a
simultaneous investigation of both the model that fits that data and the esti-
mation of the parameters associated with the model. As indicated in the
recommended procedure for identifying the model, graphic displays have been
structured as shown by figqures 3.19, 3.20, 3.21, and 3.22, for each of the
four realizations that give the residual variance of each of the realizations
as a function of the order of the three models involved. The decision as to
which model best characterizes these series resulted from the criterion of
minimum residual variance as stated in section 2.4.2.

As shown in the four graphs, the order (m,q) refers to the order m of the
autoregressive process and the order q of the moving averages process. Thus,
for example, (3,0) is a purely AR process of order 3; (0,2) is a purely MA
process of order 2; and (3,2) is a mixture of a third order AR and a second
order MA process. As depicted in the figures, with respect to the residual
variance, it is clear that the "best" models that should be selected are:

i) (2,0) process for the 13th day observed VI soundings,

ii) (3,0) process for the 18-day mean VI soundings,
iii) (3,0) process for the 13th day observed OI soundings,
iv) (3,0) process for the 18-day mean OI soundings.

It will be shown later, that the difference equations that have been
identified above are the most appropriate ones to characterize our data. Of
course, in reaching the decisions with respect to the selection of these
models, the principle of "parsimony" was also taken into consideration.
Specifically, this means that if there was a lower order model (refer to
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figures 3.19 through 3.22) that had an equal or slightly higher residual vari-
ance than a higher order model, the lTowest order model would be selected
because the number of parameters and convenience that such a model offers
computationally is desirable, and will usually have little effect on the near-
real-time forecasts of the data.

The parameter estimates of the specified model are simultaneously
obtained with the determination of the order. To calculate the least squares
estimates of the parameters, the procedure discussed in section 2.4 was fol-
lowed. The estimates of the AR parameters, B> Gos wvny Qs and those of the
MA process, 81, 62, e g Bq, must satisfy the stationarity and invertibility
properties, respectively. Briefly stated, for each model (m,q) considered
(see figures 3.19 through 3.22), one finds the stationary region for the m
autoregressive parameters and the invertibility region for the q moving-
average parameters, and forms the joint region for both. This region is then
"gridded" over all parameters and the residual variance is computed for each
point (a1, Gy vy O 81, 32, oy Bq). One then finds the point of minimum
residual! variance. Thus, we choose the model (m,q) and the parameters associ-
ated with it, which result in minimum residual variance. To do this we used a
grid program which computed the residual variance for all possible combina-
tions of parameters for each of the three processes. Therefore, for the
appropriately filtered series, the estimates of the true states of nature are
shown in table 3.4.

Table 3.4 Approximate Least Squares Estimates
of the Best Model Parameters

x A 2y X

Model Series Order (m,q) u N

i. 13" day VI observed  (2,0) 0.0020 0.289  0.395 —

ii. 18-day VI averaged (3,0) 0.0004 -0.676  -0.559 -0.258

544 13th day 0I observed (3,0) 0.0000 0.484 -0.102 0.266

iv. 18-day OI averaged (3,0) 0.0008 -0.574 -0.352 -0.070_

These results yielded, respectively, the following difference equations in
terms of the first difference filtered series, Yio and the second difference
filtered series W !
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.002) = .289 (y,_; - -002) + .395 (y, , - .002) +Z

t
(3.3.1)
ii. (w, - .0004) = -.676 (w,_ ; - .0008) - .559 (w,_, - .0004)
- 258 (w,_5 - .0004) + Z, (3.3.2)
iii. (y, - 0.000) = .484 (y, , - 0.000) - .102 (y,_, - 0.0000)
+.266 (y, 5 - 0.000) +Z, (3.3.3)
iv. (w, - .0008) = -.574 (w, ; - .0008) - .352 (w,_, - -0008)
- .070 (w,_y - .0008) + Z, (3.3.4)

3.3.3 Inserting the Backwards Filter and Diagnostic Check of the Models
The next step in the procedural approach to forecasting is the implemen-
tation of the backwards filter and diagnostic check of the models. Having
selected the appropriate stationary stochastic model and its order, a diag-
nostic check must be performed to determine the adequacy of the models. As
indicated in Section 2, if the original information was filtered to put it
into the proper form to perform time-series analysis, we must, at this point
incorporate back into the model the non-stationarities that the filter has
eliminated. That is, we must introduce the concept of the backward filter
into our model. This backward filtering concept is very important because
it puts back into the model some of the basic characteristics that the
initial data contained so that the final interpretation of the observed

realizations would be more meaningful. Thus, we insert the appropriate
filter, either:

Y 75 B =Xy
or
W = Xp = 2% g+ Xy

into equations (3.3.1), (3.3.2), (3.3.3), and (3.3.4).

Given below are the forecasting models, having been modified to include
the filtering concept. That is,
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. x, = 1.289x,_; + 0.106x,_, - 0.395x,_5 + 0.007 + Z, (3.3.5)
1. xp = 1.324x, 1 - 0.207x, _, + 0.184x, 5 - 0.043x, , - 0.258x, :
+.001 + 2, (3.3.6)
11, x, = 1.484x,_; - 0.586x,_, + 0.368x, 5 - 0.266x, 4 + Z, (3.3.7)
iv. x = 1.426x, ; + 0.208x, , - 0.060x, 5 - 0.212x, _, - 0.070x, ¢
+.0016 + Z, (3.3.8)

Having formulated the above difference equations for the stochastic realiza-
tions, the next step is to investigate the goodness-of-fit of the structured
models. This is done as outlined in section 2.4 by calculating the residuals

incurred, that is, by subtracting the modeled series from the observed series.

In other words, if Xy is the observed series and Xy is the modeled series,
then theirAdifference Fes is the residual (equation 2.4.16); that is:

Fp =&y =X The residuals should behave as a purely random process, with
a zero mean and a variance in the order of 1/n. As a first step in simulat-
ing the Xy the unknown value of Zt is set to its unconditional expectation
of zero in equations (3.3.5) through (3.3.8), and it is assumed that the
values of Xpo17 Xpops Xpo3s +ovs Xp_pe are known. As shown by figures 3.23%
3.24, 3.25, and 3.26, we have an excellent fit of the estimated models with
respect to the observed series. One, of course, can perform a statistical
test to justify the fit. That is, the resulting residuals should behave
approximately 1ike a purely random process; in other words, they should be
normally distributed with a mean of zero and a variance of 1/n. Clearly, for
this sample size, the variance becomes very small. Thus, the standard devia-
tion of the sample autocorrelation is 1/vn = 1//144 = .0833. The 95%
confidence intervals of the sample autocorrelation rzz(k) are +1.96 (.0833)

= £0.163. At the 5% level of significance, one could expect (.05)144 or 8
out of the sample autocorrelations to lie outside the confidence interval.
Only two autocorrelations for the 13th day observed VI and OI, and

two autocorrelations for the 18-day averaged information lie outside

of the confidence interval (see tables 3.5, 3.6, 3.7 and 3.8). Hence, one

*Note: In the simulation graphs, the lines connecting the points are aids
to see the relationship of the points.
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Table 3.5 Sample Autocorrelations rzz(k) for the Simulated 13th Day
Observed VI Data With a 95% Confidence Interval of #0.163

%%?mg Sample Autocorrelation r__(k) x10F2
Slots)

1-10 | -14.1 -31.8 -.003 -.001 -.051 .040 -.023 -.023 -.037 -.039
11-20 | -.005 -.033 -.021 .008 .01 .036 -.010 .010 -.038 -.019
21-30 | -.008 -.026 .007 -.008 -.002 -.008 -.093 -.069 .157 -.096
31-40 | -.097 -.031 .042 -.002 .056 .103 .166 .094 .069 .103
41-50 .072 .045 -.051 .003 .058 -.033 -.055 -.077 -.089 .155
51-60 157 025 ~.010° .017 .039 .037 -.027 -.020 -.084 -.111
61-70 | -.120 .095 .122 .029 .003 .072 -.021 .036 -.004 -.024
71-80 | -.111 -.153 .002 .042 .039 .055 .026 .021 .025 .007
81-90 .009 .005 .038 -.023 -.013 .021 .019 .009 -.099 -.119
91-100} -.059 .025 -.018 .035 .057 .023 .009 -.009 -.019 -.074

101-110} .066 .000 -.039 -.035 -.079 -.067 .041 07T~ - 63 - 032
111-120f .019 .073 -.121 -.037 -.05% -.040 -.097 -.119 -.014 .056
121-130§ -.032 -.087 -.011 -.006 -.023 .018 .041 -.096 -.106 -.041
131-140| -.038 -.027 .009 -.040 .005 -.051 -.087 -.029 .025 ~-.036
141-143| -.455 -.342 1.147
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Table 3.6 Sample Autocorrelations, rzz(k) for the Simulated 18-Day
Averaged VI Data With a 95% Confidence Interval of £0.163

Lag k
(Time Sample Autocorrelation r, (k) x10%?2
Slots)

1-10 | -13.5 .84 -17.1 -20.2 -.050 .032 .067 -.005 .035 -.064

11-20 .014 -.011 -.003 .017 .032 -0.21 .017 -.044 -.002 .048

21-30 | -.037 .028 -.097 .072 -.068 .180 -.095 -.031 -.078 -.023

31-40 .060 .046 -.106 .067 .014 .099 .008 -.028 .018 -.059
41-50 .033 -.006 .008 .005 -.033 .000 -.019 .031 -.011 .013
51-60 .000 -.015 .035 -.032 .027 -.043 .004 -.013 .013 .012
61-70 | -.016 .001 -.003 .002 -.009 .033 .015 .016 -.023 -.029
71-80 | -.059 .08 -.031 .075 -.003 -.018 .017 -.029 -.011 .019
81-90 | -.011 .007 -.011 .012 .020 .00S -.001 -.045 .001 -.013
91-100 | .021 -.004 -.014 -.006 .008 .018 .012 -.008 -.009 .OM

101-110 ! -.019 .025 -.037 .002 .018 .013 .003 .013 -.017 .029
111-120 | -.001 -.004 .000 -.018 -.003 -.016 -.013 .000 -.005 .015
121-130} -.031 .035 -.022 .031 .014 -.016 -.009 -.021 -.027 .006
131-140 | .006 -.006 .034 -.010 .018 .000 -.Q]4 .098 .028 .028
141-143 | .086 -.417 .206
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Table 3.7 Sample Autocorrelations, rzz(k), for the Simulated 13th Day
Observed OI Data With a 95% Confidence Interval of #0.163

Lag k
(Time Sample Autocorrelation r (k) x10t 2
Slots)

1-10 | -42.5 17.5 -20.2 -.031 -.021 -.052 -.018 -.031 -.044 -.033
11-20 | -.041 -.004 -.009 .002 .002 -.017 .022 -.045 .015 -0.55
21-30 .013 -.011 .004 .024 -.033 .007 =-.033 -.021 -.044 -.061
31-40 | -.046 -.013 .09 .079 .062 .151. .19 .189 .208 .093
41-50 | -.021 .041 .007 .08 =-.023 .010 -.089 .033 -.018 .048
51-60 .033 .121 .029 .044 .031 -.002 -.009 -.160 -.009 -.095
61-70 .145 .022 .058 -.004 .085 .026 .073 -.104 -.116 -.090
71-80 | -.042 .088 -.032 .088 .019 .059 .032 -.038 .050 .031
81-90 .044 027 -.025 .026 .093 .010 .026 -.106 -.049 -.097
91-100| -.051 -.040 -.003 .099 .059 .044 .009 -.017 .025 -.018

101-110| -.018 =-.917 .003 -.004
111-120| .078 .022 .090 -.047 -.012 -.211 -.092 -.149 .046 -.009
121-130| -.035 -.054 -.058 .049 -.008 .046 -.062 -.002 -.083 -.036
131-140} -.037 -.102 -.005 -.076 -.002 -.036 -.033 .005 .012 ~-.399
141-143 | .088 -.758 1.42

.013 -.105 -.055 -.044 .101 .062
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Table 3.8 Sample Autocorrelations, rzz(k) for the Simulated 18-Day
Averaged OI Data With a 95% Confidence Interval of +0.163

Lag k
(Time Sample Autocorrelation r__(k) x10" 2
Slots) :

1-10 | -18.9 -6.59 -19.1 -5.33 -.012 .018 .006 .009 -.013 -.010
11-20 | -.007 .000 .029 -.016 -.009 -.005 -.004 .008 -.010 .019
21-30 [ -.005 .006 .000 -.028 .041 -.017 .011 -.063 ;.001 .004
31-40 011 .001 -.025 .024¢ .O\S .036 .009 .00C -.021 ~.022
41-50 .023 .008 .003 -.019 -.001 -.015 .000 .000 .012 .008
51-60 .003 -.014 .000 .011 .000 -.012 -.018 .014 .000 .007
61-70 | -.019 .004 -.008 .013 .005 -.004 .008 -.020 .016 -.018
71-80 |-.008 .013 .019 -.003 .000 -.012 .007 -.006 .003 ~-.006
81-90 .004 -.001 .005 .002 .006 -.009 =-.002 -.011 .004 .000
91-100 | -.002 -.007 -.007 .003 .012 .000 .013 -.012 -.001 -.002

101-110 { -.004 .001 -.009 -.018 .022 .004 .015 .018 -.014 .001
111-120 | -.010 .007 -.004 -.009 -.005 .003 -.013 .013 -.009 .01
121-130 | -.015 .008 -.004 .020 -.005 -.006 -.009 -.011 -.009 .0l
131-140 |-.004 .017 -.002 -.007 -.005 -.006 .012 -.073 -.272 -.135
141-143 | -.385 1.17 -.319
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can conclude that the residuals constitute a purely random process and that
the fitted models give satisfactory representation of the observed series.

There is a further statistical test described in section 2.4.3 that
reflects on the accuracy of our models. From equation (2.4.17), the calcu-
lated value of Q v Xi-m-q for the first K autocorrelations, where K = n/10,
m = the order of the AR process, Q = the order of the MA process. When this
value is tested against the appropriate x? value, and if

Q = X;_m_q (] e a/z) ,

then the fitted model is adequate, [12]. For the stationary stochastic
ionospheric realizations,
i. for the 13t day observed VI data, Q = 16.67< X%z (.975) = 24.7
ii. for the 18-day averaged VI data, Q =12.72< X%Z (.975) = 24.7
i1i. for the 13™" day observed OI data, Q = 21.29< x3, (.975) = 23.3
iv. for the 18-day averaged OI data, Q =10.41< X%Z (.975) = 24.7.

Clearly, then, the four estimated models are adequate.

By the mean approaching zero, it is meant that in using these types of
models there is a tendency to either under- or over-forecast a particular
estimate at a given time slot. However, in the long run, if the over- and
under-estimates are averaged, this average would be zero. The basic idea of
the "purely random process" means that as n - =, the variance approaches
zero. This is not the case, however, because if the variance is zero, we
would have a degenerate phenomenon where the mass would be concentrated at
a point, and interpretation would be impossible.

3.3.4 Forecasting and Updating

The final step in the procedural approach to time series modeling is to
state the model in such a form that forecasts & steps ahead are possible,
where 2 =1, 2, ..., n. Given below are the four estimated ionospheric
models in the appropriate form for % step-ahead forecasts:

i. for the 13t day observed VI information, xt(z) = ]'289Xt+z-]

+ 0.106 - 0.395

g, R O (3.3.9)

t+e-2 t+e-3
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ii. for the 18 - day averaged VI information, Qt( y = 1.324x

t+e-1

= 0.207% ¢, o * 0.184x, 0 3 - 0.043x, ., , - 0.258x,,, &
+.001 +Z,., (3.3.10)

iii. for the 13 day observed OI information, ;t(z) = 1.484x, 0 4
- 0.586X,,0 o + 0.368x,,, 3 - 0.266x,., 4 + Zy,, {3.3.11)

iv. for theT8 - day averaged 0l information, ;t(z) = 1.426x

t-i
- 0.208x, 0 5 +0.060xy,, 3 = 0.212x,,, 4 = 0.070x,,, ¢
2., + 0016 . (3.3.12)

Of course, the accuracy of these models will be much better for small &. As
2 becomes large, i.e., & >> m +d + q, where d is the order of the filter and
m and q are as previously defined, the accuracy decreases substantially.
Howeve}, one can forecast any number of steps ahead and update the forecasts
as additional information becomes available.

To illustrate how one may update the forecasts for a time t (origin),
suppose that a new piece of data, Xe41? becomes available. With the new
origin at time t+1, we update the time t forecasts by equation (2.4.42) as:

~

xt+](z) = xt(z+1) + 922 Ty Be sueg 1h,

t*1’

where Zt+1 . ;t(l) and 92 is as described in section 2.4.

Given in tables 3.9, 3.10, 3.11, and 3.12 below are & steps ahead fore-

casts (up to 2=11) at an arbitrary t = 72 origin, with updating, along with
; their 95% confidence intervals.
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Table 3.9 Forecasted Values of the 13th Day Observed VI Series at
Origin t = 72 and Updating Under the Assumption X73 Becomes Available

ACTUAL LEAD 95% PROBABILITY UPDATED
TIME VALUE TIME FORECAST LIMITS FORECAST
1150 9.00 B e T R -
1200 8.80 i 8.875 LA 3 R
1210 8.70 2 8.885 + .596 8.788
1220 9.00 3 9.022 + .778 8.889
1230 9.20 4 9.047 + .962 9.198
1240 9.40 5 9.064 +1.139 9.235
1250 9.60 6 9.086 +1.310 9.270
1300 9.70 7 9.106 +1.474 9.302
1310 9.80 8 9.127 £1.631 9.331
1320 9.90 9 9.148 +1.782 9.359
1330 9.90 10 9.169 +1.926 9.386
1340 10.00 n 9.190 +1.926 9.411

Table 3.10 Forecasted Values of the 18-Day Averaged VI Series at
Origin t = 72 and Updating Under the Assumption X73 Becomes Available

ACTUAL LEAD 95% PROBABILITY UPDATED
TIME VALUE TIME FORECAST LIMITS FORECAST
1150 8.79 -~ eee=e- e
1200 8.71 1 8.721 +.214 eeee-
1210 8.90 2 8.729 : .29¢ 8.879
1220 8.96 3 8.752 N 8.969
1230 9.00 4 8.749 't .473 8.949
1240 9.13 5 8.737 + .562 8.987
1250 9.16 6 8.745 + .616 9.005
1300 9.17 & 8.752 + .641 8.972
1310 9.19 8 8.752 t .644 8.902
1320 9.19 9 8.753 t .656 8.803
1330 9.24 10 8.758 : 735 8.868
1340 9.25 n 8.763 t 735 9.043
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Table 3.11 Forecasted Values of the 13th Day Observed OI Series at
Origin t = 72 and Updating Under the Assumption X713 Becomes Available

ACTUAL LEAD 95% PROBABILITY UPDATED
TIME VALUE TIME FORECAST LIMITS FORECAST
1150 9.20 -- ————— ce==  eeee-
1200 9.30 1 9.305 t .586 @ eee--
1210 9.60 2 9.439 + 791 9.509
1220 9.60 3 9.467 + 1.006 9.547
1230 9.90 4 9.495 *1.229 9.585
1240 10.10 5 9.541 + 1.438 9.651
1250 10.20 6 9.568 + 1.638 9.678
1300 10.20 /. 9.584 # 1.831 9.704
1310 10.20 8 9.601 + 2.016 9.721
1320 10.60 9 9.615 + 2.193 9.745
1330 10.70 10 9.624 + 2.362 9.754
1340 10.60 11 9.631 + 2.362 9.761

Table 3.12 Forecasted Values of the 18-Day Averaged 0I Series at
Origin t = 72 and Updating Under the Assumption X93 Rzcomes Available

ACTUAL LEAD 95% PROBABILITY UPDATED
TIME VALUE TIME FORECAST LIMITS FORECAST
1150 9.26 S R cwe=  eeee-
1200 9.25 1 9.249 +.198 0 eeees
1210 9.42 2 9.260 + .287 9.360
1220 9.5 3 9.274 $ .395 9.474
1230 9.55 4 9.283 + .514 9.483
1240 9.62 5 9.294 * .652 9.59%4
1250 9.66 6 9.307 + .801 9.347
1300 9.69 " 9.320 + .959 9.360
1310 9.71 8 9.334 +1.129 9.384
1320 9.75 9 9.349 +1.649 9.399
1330 9.75 10 9.365 +1.495 9.425
1340 9.78 1 9.382 +1.495 9.442
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It is clear from tables 3.9 and 3.11 that, for a small number of steps, i.e.,
2 =1, 2, 3, our forecasts of the observed series are quite good. For
larger L, the forecasted values generally tend to underestimate the future
values. Updating the forecasts in these cases improves the estimates. The
2 step ahead forecasts for the 18-day averaged series are also very good for
2 =1, 2, 3, steps ahead. The necessity for updating in these cases is
obvious since, here again, updating yielded an excellent gain of accuracy.

3.4 A Prediction Process Based on The Sample Autocorrelation Function

Ames and Egan, [1], have developed a prediction process based upon the
sample autocorrelation function to make short-term predictions for the maxi-
mum observed frequency (MOF), the lowest observed frequency (LOF), and other
high frequency (HF) propagation parameters dealing with the ionosphere. The
acquisition of the data for their model was similar to the 500 Km experiment
described in section 3.2.

Their data was collected from oblique incidence soundings which were
transmitted every 10 minutes from the U. S. Naval Station at Lualualei,
Hawaii, and received at Palo Alto, California, a distance of about 4400 Km.
The analysis was based on ionograms recorded from January 7 through March 12,
1965. For each 24-hour period, there were 144 increments and, in duration,
there were 45 days of data available.

For each 10-minute increment of the 24-hour period, the mean and the
standard deviation were calculated for the MOF and LOF. It was pointed out
that the standard deviation represents the variation of the MOF and LOF from
day to day within each particular time slot and not fluctuations with time
on a single day. [t was discovered that the standard deviation of the MOF
was higher during the day than at night by a factor of 2.17, while the MOF
ratio between these periods was 2.4 to 1. The plot of the MOF vs. standard
deviation further demonstrated the dependence of the standard deviation upon
the MOF.

Next, the sample autocorrelation function of the MOF was calculated with
values from five previous 10-minute periods and then plotted as hourly
averages. It was found that the autocorrelation of the MOF was high during
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the morning and evening ionospheric transition periods. The autocorrelation
is a measure of the current stability relative to the mean-value function,
whereas the standard deviation is a measure of the day-to-day variance.

3.4.1 Short-Term Pr Jiction

Ames and Egan fitted forecasting models to the maximum observed
frequency series and to the lowest observed frequency series to be able to
predict eight successive 10-minute periods following each observation. Their
prediction (or forecasting) model is, [1],

x(E+T) = X(t +T) + [x(t) - X(£)] olt,T) , (3.4.1)

where t is the present time; T is the lead time; x(t) is the observed value
for time t; x(t) is the mean value for the time slot t; x(t + T) is the long-
term mean value for a prediction T minutes in the future; o(t,T) is the
sample autocorrelation between values at t and t + T; and ;(t+T) is the
future value of the MOF or the LOF predicted for any of eight 10-minute
periods following each observation. That is, equation (3.4.1) states that

a prediction for T minutes in the future consists of the long-term mean value
for that time plus a weighted term correcting it for the present difference
between observed and average values.

The input data Ames and Egan used in equation (3.4.1) consisted of
current MOF and LOF running averages and standard deviations determined only
from previous data (except for the first few days of “start up"), and values
of autocorrelation derived from all the data. The MOF and LOF running
averages were computed and stored separately for each of the 10-minute incre-
ments of the 24-hour day; the standard deviations were computed for each
10-minute increment and then combined into hourly averages. These values

were then updated when a new measurement was realized by the running average
function:

L 1, = . 0 1,n-1 1 b 1,n-1
dERLRE B BTl el SO N oh- il s

(3.4.2)
It was stated that for the means, Xn represented an observed value and for

the standard deviation, it represented the absolute value of the difference
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between an observed value and the corresponding mean. The value of K was
set equal to 10 for the means, and 100 for the standard deviations.

Data was used from the full experimental period in calculating the
sample autocorrelation function in order to obtain relatively smooth esti-
mates of the autocorrelation. The following equation was used to estimate
the autocorrelation:

| N [, (8) - X(O)I0xg(t - T) - &(t - )]

o(t,T) = 2

/ N [x,(t) - X(£)]* £ [xg(t - T) - &(t - I
1=

i=]

(3.4.3)
where N is the number of days measurements were available. In real-time,
values of the autocorrelation could be computed once each month and then when
new values are realized, they could be updated using equation (3.4.2).

The 24 hourly values of the autocorrelation, p, for a delay of 10
minutes plus a set of corresponding time constants, t, derived from the least
squares fit to the p data between delays of 10 to 60 minutes, were used as
input to the prediction process. For delays greater than 10 minutes, values
of p were calculated from:

0 =0y exp-(T - 10)/< (3.4.4)

The values of p calculated from equation (3.4.4) were found to be a few
percent larger than the observed values of autocorrelation. Ames and Egan
concluded that the smoothing of the measured p values over 1-hour periods
plus the abstracting of all delays greater than 10 minutes into corresponding
time constants appears to have reduced the unrealistic benefit from this
partial view of the future to a negligible amount.

Ames and Egan express the expected error in predicting with the process
(3.4.1) in terms of the autocorrelation. The expected error is given by:

cp(t +7)
T - T AT R (3.4.5)

The above equation predicts the degree to which the variance of the observed
values about the corresponding predicted values will be less than that of the

g = | cenat il S, —— —— b " e
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observed values about the mean. It was concluded that to make a substantial
reduction in ! relative to o, say one-half, p must be greater than 0.86.
However, it was stated that L.2dictions should be considered "useful" for
values of p down to about 0.5 since even though ¢ is not much reduced, the
predicted value itself is adjusted from the long-term mean by one-half the
presently observed difference.

3.4.2 Updating with Fourier Coefficients

In a later article, Ames, Egan, and MacGinitie, [20], use Fourier
coefficients to update the data to eliminate the random variability in the
input data. The random variability caused unavoidable growth of irregular-
ities in the diurnal (daily) curves of the long-term function. Thus, instead
of using the technique of running averages (equation 3.4.2) to update the
hourly averages when a new measurement is realized, the long-term data is
converted to a limited number of Fourier coefficients from which the desired
values are found as needed. For the mean values, eight harmonics were used;
for the standard deviations, four harmonics were used.

The following equation was used to derive the Fourier coefficients from
the set of data with a 24-hour period of 144 10-minute intervals:

a (NEW) = a_(0LD) + & & [x(t) - R(t)] cos (FmE) , (3.4.6)

where ¢ = 0.0944 and T = 144. The value of ¢ was chosen so as to allow
the Fourier coefficient to follow long-term ionospheric changes with a time
constant of approximately 11 days.

Ames, Egan, and MacGinitie comment that this conversion to Fourier
coefficients not only improves the prediction quality, but also substantially
reduces the required amount of computer memory capacity. Also, the data
storage requirement is reduced by the approximation of the autocorrelatson
function by a decaying exponential.

3.4.3 The Autocorrelation Function

Ames and Egan throughout their paper take the position that the auto-
correlation that they have calculated is the true state of nature, that is,
that they have the true parameter value, not just an estimate of it. This

94




is most clearly shown in their constant refercnce to the calculated
autocorrelation as p, not ;, or r, which has become the widely-accepted
symbol for the sample autocorrelation function in time series analysis. This
can also be seen later in section 3.4.5 when the expected error in predic-
tions is discussed; Ames and Egan's expected error depends solely on the
autocorrelation they have calculated. They also take this position when,
after using a negative exponential function to approximate the autocorrela-
tion, they then compare it to their estimate of p concluding that the
approximation is only a few percent larger than the observed values of the
autocorrelation. They simply compare two different estimates of the true
state of nature.

In the appendix of their paper, Ames and Egan, [1], give the following
equation to compute the autocorrelation:

IV (t) = K(B)] Dxg(eT) = R(e-T)]
oft,T) = L

(3.4.7)

.z? [x;(t) - X(t)]? .z? [x; (£-T) - X(t-T)]?
i= i=

Of course, they do not obtain p(t,T) the true state of nature, but just an
estimate of it, say r(t,T). The estimate (3.4.7) is a function of the time
t and the prediction lead time T.

The above estimate of p(t,T) is essentially equivalent to the estimate
given by the following expression:

N-k s o
ol (xg = X7 ) (Xgpe = Xp)
Fuglk) = e = : vk (3.4.8)
@ ST i s
EtE] (xg = %) tfl (Xeqp = %p)]

where i] and iz are the means of the first and the last (N-K) observations,
respectively. Equation (3.4.8) expresses the lead time in terms of lag k
where rxx(k) is a function only of the lag k. The estimates (3.4.8) and
(3.4.7) are not recommended [3] in estimating the autocorrelation of the
grounds that, although it gives a reasonable estimate of p when considered
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in isolation from other values of the autocorrelation function, it does not
give a satisfactory estimate when a set of estimates is required. The main
disadvantage of (3.4.8), and hence (3.4.7), is that two means are used for
the mean correction and that these change with lag; in addition, the normal-
izing factor changes with lag k. The net result of these modifications is
that these estimates are not positive definite which violates the property
of the autocorrelation function.

We suggest the following estimate, [3], [6 ], which gives the most
satisfactory estimate of the sample autocorrelation function:

cxx(k)
rxx(k) = -C—X-XT-(TT ’ (3.4.9)
where
= l_ N-k v - X = -
Cxx(k) T N tz] (Xt - X) (Xt+k X), k O, 1, v ey N ]

(3.4.10)
(cxx(k) is the autocovariance function). Equations (3.4.9) and (3.4.10) are
functions only of the lag k and are independent of time.

3.4.4 On the Prediction Process

Recall that Ames and Egan use the following equation to forecast future
value of the ionospheric data:

x(t+T) = X(t+T) + [x(t) - x(£)] o(t,T) . (3.4.11)

Further, recall how the ionospheric data is collected. This is essentially
what occurs: first a day is divided into 144 10-minute increments; then
ionospheric soundings are transmitted, then received and recorded for each
10-minute increment throughout the day; this is repeated for several dzys.

The jonospheric series, unlike the series usually encountered in practice,
have several realizations for each time slot. Initialiy, to begin the predic-
tion process using (3.4.11), it is necessary to speculate or reckon the
predictions for the first four or five days until sufficient information
becomes available. Once four or five days of data have been collected,
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“fairly" smooth estimates of x(t+T), x(t), and p(t,T) can be obtained and the
prediction process (3.4.11)Area11y begins. We question how good the esti-
mates of x(t+T), x(t), and po(t,T) are from samples of only four or five
points. In view of this, we are lead to the statement by Yaglom, [4 ], "“If
the number of observed values of a series is small (<10 say), then the
entire formulation of the problem is clearly quite unrealistic, since we
would not be able to make a suffictently reliable determination of the auto-
correlation function."

Also, we feel that the prediction model (3.4.11) is quite unrealistic
with respect to the expression x(t+T). It would appear that Ames and Egan
use the value they are trying to predict in calculating the mean of the t+T
time slot. The paper was extremely vague in how this mean was calculated.

We question the use of Fourier coefficients in converting and, hence,
in reducing the data for computer memory capacity for two reasons. First,
we fail to see how the required means, autocorrelation, etc., can be removed
so easily from the Fourier coefficients as needed. Secondly, the ionospheric
data appears to exhibit non-stationary properties (this has been verified by
the examination of other ionospheric data), and Fourier analysis breaks down
when applied to data which exhibit random changes of frequencies, amplitudes,
and phases, since Fourier analysis is based on the assumption of fixed
frequencies, amplitudes, and phases.

We feel that the prediction process of Aaes and Egan is quite limited
in several respects due in part to the criticisms presented above. First,
very few practical problems (in time series) arise such that we would have
more than one realization for a specific time slot. Ames and Egan's predic-
tion process (3.4.11) is developed solely from the viewpoint of having
several realizations for each time slot. Secondly, as we mentioned in the
previous paragraphs, it is quite unrealistic to estimate the parameters in
the prediction model with so small a sample. (Ames and Egan make no refer-

ence as to how much previous data is necessary when utilizing their approach).

Finally, it seems very expensive to require so many previous days of data
(at least 10) in order to properly employ the model.
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3.4.5 Expected Error in Predictions

Ames and Egan state that the expected error depends on the autocorrela-
tion and is given by:

Sp(t+r) = o(t+T) /1 - p2(t,T) . (3.4.12)

8(t+T) is the sample standard deviation computed for the t+T time slot.
Under the premise that the expected error depends on the autocorrelation,
they are able to conclude that the expected reduction of variance is achieved
when p is greater than 0.86.

Then, to measure the performance of the prediction model (3.4.T1), they
used the following expression:

. b
///z MOF(t) - MOF(t)]? Y (AT

and compared the results to (3.4.12). From this comparison, Ames and Egan
were able to conclude that the prediction process performed nearly as well
as was theoretically expected. To have the theorectically expected error,
it would have been necessary to have the true states of nature in equation
(3.4.12). It is apparent that Ames and Egan have again assumed the errone-
ous position that they have the true states of nature, whereas, they have
only estimates.

It appears that the expected error would depend to a certain extent on
the autacorrelation function due to its presence in the prediction model
(3.4.11). However, Ames and Egan are quite vague on this point and give no
derivation of the dependence of the expected error on the autocorrelation,
equation (3.4.12).

It seems that a better criterion to determine the gocdness-of-fit of
a fitted model or a prediction process would be given by the squared airror
loss; that is,

M.S.E. = z:‘ Ix(t) - x(£)12 (3.4.14)
ts

where x(t) is the observed series and ;(t) is the predicted (modeled) series.
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Regardless of the criticisms that we have made in this section, some
interesting ionospheric predictions were obtained using Ames and Egan's
prediction process. In table 3.13, a comparison is made between the best
4 predictions obtained from the use of Ames and Egan's model, made for the 13th
b day of the experiment, for lead times of 1, 2 and 3 steps ahead against the
time-series approach without updating.

Table 3.13 A Comparison of Forecasts for the 13th Day 0I
Observations at Origin t = 72 Between the
Ames-Egan and Time Series Approaches

TIME OBSERVED LEAD AMES-EGAN DIFFERENCE TIME SERIES DIFFER-

VALUE TIME  FORECAST FORECAST ENCE
1150 9.30 1 9.12 =18 9.17 -.13
1200 9.60 2 9.14 -.46 9.13 -.47
1210 9.60 3 10.09 +.49 9.17 <43

The t = 72 origin occurs at the most stable time of day for the ionosphere.
Therefore, from the Ames-Egan point of view, these forecasts are among the
best possible over the 24-hour period. Other times of day yield much poorer
forecasts with their method. C(learly, the time-series approach is better not
only from the theoretical point of view, as we have shown, but also from the
actual excercising of the models.

3.5 SUMMARY AND CONCLUSIONS

In this section, the procedural approach developed in Section 2.4 was
followed precisely in characterizing actual data. Namely, ionospheric data
obtained by sounding the ionosphere in the HF range was modeled and analyzed.
Specifically, the eiberimental design and acquisition of data over the 500 Km
path between Ft. Monmouth, N. J., and Ft. Drum, N. Y., was discussed. The
resulting information, which was time dependent, consisted of collecting VI
and 0I soundings every ten minutes throughout a 24-hour period. We justified
that the data were indeed non-stationary stochastic realizations, and then
proceeded to perform a time series analysis. The thrust of this section was
towards analyzing four stochastic realizations, two of which were randomly
selected VI and OI diurnal series, and two of which were the 18-day averaged
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VI and QI series. The random selection process yielded the 13th day
ionospheric observations for analysis along with the averaged information.
Following the procedural approach recommended in Section 2.4, the

following stochastic processes were formulated as the most appropriate
characterizations of the given information: A
Xy = 1.289xt_1+ 0.106xt_2 - 0.395xt_3 + 007 + Zt for the 13th

day observed VI,
2 Xy 1.324x - 0.207x

t-1
+ .001 + Zt for the 18-day averaged VI.
= 1.484xt_1 - 0.586xt_2 + 0.368xt_3 - 0.266xt_4 + Zt for the

pop *0-188x, 5 - 0.083x, _, - 0.258,

-

—e

e

.

>
I

13th day observed 0I,

fv. xg = T.426x,_y - 0.204x,_, - 0.060x; 3 - 0.212x,_, - 0.070x; ¢

+ .0016 + Z_ fBr the 18-day averaged OI.
t

In selecting these models, we utilized the criterion of minimum residual
variance because, as indicated in Section 2, we believe this to be the most
appropriate criterion for decision with respect to identifying the actual
difference equations which characterize the ionospheric information.
Furthermore, we have structured tables that show the short and long-term
forecasts of VI and OI soundings along with their confidence limits. These
models, in addition to being useful for prediction purposes, can be utilized
in formulating the theoretical spectrum. Such a spectrum would be extremely
useful in comparing the smoothed spectral density of the raw information with
respect to identifying the most useful spectral density estimate which will
convey information concerning the distribution of variance as a function of
time. Such information will be useful in designing more efficient HF commun-
ications systems.

In addition, we have discussed the Ames-Egan model for predicting
jonospheric conditions. The shortcomings concerning the relevance of this
model were discussed in some detail in section 3.4.
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4, SPECTRAL ANALYSIS OF VERTICAL INCIDENCE
and
SHORT-PATH OBLIQUE INCIDENCE IONOSPHERIC SOUNDINGS

4.1 INTRODUCTION

In Section 3.3, a detailed modeling procedure was illustrated that yielded
appropriate time series models for the ionospheric data described in section
3.2. It was concluded that the models obtained did characterize the true
underlying stochastic processes to a high degree. However, additional anal-
ysis of this information is necessary to utilize the ionospheric media more
efficiently. Additional information, therefore, will be sought with regard
to the distribution of the variance of the filtered data with respect to
frequency. Thus, we will utilize the power spectra to describe in detail how
the variance of the non-stationary realizations are distributed with
frequency of occurrence (not the observed critical frequencies).

Ionospheric information is usually collected at individual stations as
VI data, and, for the benefit of communicators operating over specified paths,
is usually translated into equivalent OI information through the classical
Secant ¢ Law, [2]. Since there are an infinite number of oblique paths that
can be utilized by communicators, one can see the importance of converting
the VI information. Also, consider that the number of VI sounder stations
is Timited throughout the world. This means that any such data acquired at
one station may also be translated into VI information suitable for interpre-
tation at other geographical locations within reason. Relationships for
various translations that have been developed in the United States by the
National Bureau of Standards, [2], and used by communicators throughout the
world, can be traced back to at least 1941.

The classical Secant ¢ Law is a widely used linear relationship between
OI and VI data. With Secant ¢ used as the obliquity factor, the law simply
stated is:

XOI = xVI - Secant ¢,

where xvI is the observed vertical incidence information, ¢ is the angle of
incidence of the radio wave path at its entrance into the ionosphere, and
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XOI is the equivalent information over an oblique path. The linear
relationship certainly cannot be expected to yield suitable equivalent OI
information in view of the highly stochastic nature of the ionosphere. The
Secant ¢ Law relies on the assumptions of a spectral reflection of energy _
from the ionosphere (actually, reflections are dispersive in nature) and on
the concept of stratified ionospheric layers. This implies homogeneous iono-
spheric layers, where boundaries between layers of electron density are always
definable. This, of course, is not the case since the ionosphere is random
and inhomogeneous, and it is affected by a variety of anomalous activity,
i.e., sunspots, magnetic storms, diurnal and seasonal changes in structure.
The Secant ¢ Law, [2], also implies that as path distance increases, the
oblique information becomes more uncorrelated with the vertical incidence
information. At the 500 Km path distance, over the specified Fort Monmouth
- Fort Drum path, the difference between QI and VI became significant with
respect to forecasting ionospheric conditions over the path using VI data
alone.

Thus, one can see that additional information as to the distribution of
the variance of the fiitered OI and VI information is extremely important,
and that information on the bivariate behavior of the t:7 is essential in
order to gain a more realistic view of the relationship between VI and OI.
In the succeeding sections, a detailed spectral analysis of the 13th day
observed O and VI information will be performed. In section 4.2, the basic
concept of "aliasing" will be presented. The univariate spectral analysis
will be addressed in section 4.3. The bivariate analysis, which consists of
co-spectral, quadrature spectral, cross-amplitude spectral, phase, and
coherency spectral estimates, will be presented in section 4.4. A summary
and conclusions are given in section 4.5.

4.2 BASIC CONCEPTS OF "ALIASING"

With regard ta the three windows described in detail in section 2.9, the
concept of aliasing is predicated on the suppositions that:
i) the window should not be too wide, exposing a significant amount of
disturbances (peaks and valleys of the power spectra), and,
ii) at the same time, the window should not be closed too far so as to
avoid seeing the disturbances.
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A significant point is that one should utilize ingenuity to detect the
appropriate window length, L, so that irrelevant information is not exposed
and relevant information is not eliminated. One can, by visually inspecting
the power spectra as L is varied, determine the optimum L that will play the
critical role in interpretation of the final, smoothed spectral estimates.

As L increases, the associated confidence intervals decrease. Since we
wish to minimize the confidence interval, so as to more closely approach the
true state of nature, a precise analysis is done for each window with respect
to L. This is done by using the theoretical spectrum as a guide to the
relevant peaks and valleys. Having analyzed each of the lag windows, i.e.,
those of Bartlett, Tukey, and Parzen (refer to section 2.9), the decision is
then made as to the most appropriate L to be used for the filtered data. As
a result of our analysis, the most appropriate L (each window may have a
different optimal L) is the one that identifies itself with the optimal
window.

In the following sections, we will utilize this philosophy and the
detailed procedure of sections 2.5 through 2.9 to obtain the univariate and
bivariate spectral estimates.

4.3 UNIVARIATE SPECTRAL ANALYSIS OF IONOSPHERIC INFORMATION

In this section, an analysis of two univariate time series will be
presented. Specifically, the series corresponding to the 13th day VI and OI
information (refer to section 3.2) will be analyzed by the method of power
spectra, described in sections 2.5 through 2.9. The ionospheric data was
obtained every 10 minutes throughout the day (24 hours) for a total of 144
recordings. Estimates of the spectral density function are obtained from the
filtered data using the Bartlett, Tukey, and Parzen lag windows described in
section 2.9.

4.3.1 Estimate of the Spectral Density Function Using Bartlett's Lag Window

The values of the estimate of the spectral density function using
Bartlett's lag window, equation (2.9.4), were calculated and plotted versus
frequency for L = 8, 12, 16, 24, and 32 units. As a basis of comparison, the
estimates were plotted on the same set of axes. For these values of L, and
for L = 20, we calculated the bandwidth, the confidence intervals, and the
degrees of freedom which are shown in table 4.1.
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Table 4.1 Truncation Point, Bandwidth, Degrees of Freedom, and
Confidence Intervals for Bartlett's Lag Window

L Bandwidth d.f. 95% C.I. for Log I'xx(f)
8 .188 54 -.154 176
12 .125 36 -.179 .226
16 .094 27 -.204 .267
20 .075 22 -.223 .301
24 .063 18 -.243 .340
32 .047 13 -.279 414

The formula used for the bandwidth of the estimate of the spectral density
function is given by:

b=.bl.=]'5
A

and the equation for the degrees of freedom is given by:
v =2 b= 2Tb = 2(144)b = 288b .

Note that since we have chosen A = 1, we have L = M.

Figures 4.1 and 4.2 give a comparison of the theoretical spectral
density functions of the AR processes which characterize the VI and 0I series,
respectively (equations 3.3.1 and 3.3.3), and the smoothed estimates for the
various truncation points, along with the 95% confidence intervals.

It is a known fact that increasing the bandwidth of the estimate of the
spectral density involves increasing the amount of bias and decreasing the
variance; thus, a compromise has to be reached as to which is the best value
of L. In making such a decision, one should take into consideration the
confidence interval, the degrees of freedom, and the visual appearance of the
plot of the estimates. For L = 8, the plots are very smooth and have a shape
wirich follows the trend of the theoretical spectrum with the bandwidth being
wide enough to conceal any peaks that may be present. In poth cases, by increas-
ing L to 12, we obtain an indication of other peaks appearing at f = .20 and
.44 cycles per second for the OI spectrum and at f = .20, .30, and .39 cycles
per second for the VI spectrum. These are in addition to the major peaks in the
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theoretical spectral densities. The plots are still quite smooth and the
bandwidth is wide enough to give a great deal of faith to the estimates. By
increasing L to 16, the bandwidth seems to be in a very shakey range. In
this case, both spectra display the peaks of the theoretical spectral densi-
ties and also those of the L = 12 spectra. However, the curves have changed
very little from those for which L = 12. Since larger values of L produce
many small erratic peaks, we chose L = 16 to estimate the spectral densities
of the VI and 0I filtered data using Bartlett's lag window.

4.3.2 Estimate of the Spectral Density Function Using Tukey's Lag Window

Using Tukey's lag window given by equation (2.9.6) the smooth spectral
density estimates R;x(f) for the VI and OI filtered data were calculated for
L =8, 12, 14, 16, and 24 units. Figures 4.3 and 4.4 show the spectral
density estimates and the theoretical spectra for the filtered data using the
Tukey lag window for the various truncation lengths along with the 95% confi-
dence intervals and the various bandwidths associated with these truncation
points. It is clear that for L = 8, the sample spectra have the same general
shape as the theoretical spectra and the curves are very smooth. By
increasing the truncation value to 12, the plots are still fairly smooth, but
peaks appear in both estimates at about f = .19, .31, and .39 cycles per
second, and at f = .21 and .45 cycles per second, respectively. At L = 16,
the peaks are slightly more pronounced, and as L is increased above 16, more
peaks appear at higher frequencies. This indicates that the variances are
increasing and, thus, the sample spectra are becoming more erratic for
L > 16. On this basis, it was decided to try to obtain better estimates than
those calculated by computing additional spectral density estimates for
L = 14 units. ;

Table 4.2 shows, for the various truncation points, the bandwidth,
degrees of freedom, and confidence intervals using Tukey's lag window. The
bandwidth b = 1.33/L.
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Table 4.2 Truncation Point, Bandwidth, Degrees of Freedom, and
Confidence Intervals for Tukey's Lag Window

L Bandwidth d.f, 95% C.I. for Log I'xx(f)
8 .166 47 -.159 .195

12 A1 31 -.192 .246

14 .Q95 27 -.204 .267

16 .083 23 -.219 .294

20 .067 19 -.238 .329
24 .055 15 -.263 .380
32 .042 12 -.288 .436

Table 4.2 is quite helpful in deciding that for L = 14 units, we will have
the best estimate of the spectrum using Tukey's lag window. The degrees of
freedom, v = 27, are sufficient for fairly small 95% confidence intervals,
and this gave a bandwidth of .095 so that peaks in the time spectrum of band-
widths larger than .095 will be detected. Decreasing the bandwidth to .083,
that is, L = 16, causes a loss of four degrees of freeom and a slight
increase in the confidence interval width. For L = 12, the bandwidth is
considerably larger (.111), and there is not much change in the confidence
interval even though there are 31 degrees of freedom. Therefore, for a
truncation length of 14 units, we obtain the best estimate for both spectra
using Tukey's lag window.

As we mentioned previously, the plot of the estimate of the spectral
density is given in the logarithmic scale to show more detail in the spectrum
over a wider amplitude range.

4,3.3 Estimates of the Spectral Density Function Using Parzen's Lag Window

Using Parzen's lag window, given by equation (2.9.8), we obtained esti-
mates of the spectral density functions for the two first order filtered VI
and OI data, for various truncation points. As before, we shall let A =1,
so that L = M, the truncation points of the smoothed spectral estimator. L
was varied from 8 to 32 in intervals of four and eight units.

Figures 4.5 and 4.6 show the spectral density estimates of both the VI
and 0I filtered series for the various truncation points along with the
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theoretical spectral density of the respective autoregressive processes.
In addition, 95% confidence intervals and the corresponding bandwidths are
displayed. The bandwidth using Parzen's lag window is given by:

The degrees of freedom for the confidence intervals were found using the
following relationship:
gomt i
\)-Zﬁb]-288b b
where b1 = 1.86 for the Parzen window and T = total of observations, which
in these cases is 144 soundings. Table 4.3 gives, for the various truncation
points, the corresponding bandwidths, degrees of freedom, and a 95% confi-

dence interval for the theoretical spectrum, Txx(f), for the Parzen lag
window.

Table 4.3 Bandwidth, Degrees of Freedom, and 95% Confidence Intervals
for Selected Values of L for Parzen's Window

L Bandwidth d:f. 95% C.I. for Log Ixx(f)
8 .233 67 -.135° .160
12 .155 44 -.164 .203
16 .116 33 -.186 .235
20 .093 27 -.204 .267
24 .078 22 -.223 .301
32 .058 16 -.255 .365

In selecting a proper value for L for the spectral densities, one should
be able to detect peaks in the spectra, have reasonable confidence intervals,
and a bandwidth that provides a reasonable bias. For an L value of 8 units,
the spectral densities were much too smooth, and we were unable to detect
peaks less than .233 wide. Increasing the L values from 16 to 20 units gave
a fairly reasonable display of both spectral densities. At L = 20, two major
peaks occur that are quite similar to those of the respective theoretical
densities. For a truncation point of 24 units, very small peaks began to
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appear which indicate that the variances may be influencing each of the
densities. This was also evident at L = 32, where the peaks became very
erratic and very noticeable. Thus, the choice was narrowed very quickly to
choosing either L = 16 or 20 units. The confidence intervals for L = 16 and
20 are .421 and .471, respectively. The bandwidth for L = 20, however, is
smaller by about 20% from that of L = 16. Therefore, the spectral densities
corresponding to L = 20 units were selected as the most reasonable. The
spectral density estimates clearly show, for both the VI and OI filtered
series, that most of the power is concentrated at low frequencies. For
example, a major peak for the OI spectrum is located at f = .15 cycles per
second with smaller peaks located at f = .30 and .41 cycles per second. The
bandwidth for L = 20 units is .093, which means that we can detect peaks with
a width of this value or greater. The above remarks are graphically verified
in figures 4.5 and 4.6 where the theoretical spectral density for the respec-
tive autoregressive models are compared with the spectral estimate for L = 8,
12, 16, 20, and 24 units. In addition, the 95% confidence intervals and the
corresponding bandwidths for the truncation points are given.

4.4 BIVARIATE SPECTRAL ANALYSIS OF THE IONOSPHERIC INFORMATION

In this section, we shall be concerned with analyzing the bivariate
behavior of the 13th day observed vertical and oblique incidence ionospheric
soundings for the 500 Km experiment. More specifically, estimates of the
smoothed quadrature, phase, and cross-amplitude spectra will be obtained
using the three lag windows discussed in section 2.9. In addition, estimates
of the coherency spectrum will be obtained.

Having calculated and plotted the cross-amplitude spectrum, one can
detect whether or not frequency components in the vertical incidence sound-
ings are associated with large or small amplitudes at the same frequency in
the OI series. The estimate of the phase spectrum of the two stochastic
realizations helps us in determining whether or not frequency components in
the VI series are in phase or out of phase (lag or lead) with components at
the same frequency in the OI series. The cross-amplitude spectrum, Ayz(f),
is a measure of the covariance that exists between the OI and VI soundings
at frequency f, and is the square root of the sum of the squares of the
co-spectral and coquadrature spectral estimates. An estimate of the
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ecrosg-amplitude spectrum and the phase spectrum would suffice to provide a
complete description of the behavior of the two series.

In general, the squared coherency spectrum plays the role of a correla-
tion coefficient with respect to frequency. Its usefulness lies in the fact
that dimensions do not enter the picture when the correlation is measured
with respect to frequency. Unlike the squared coherency spectrum, the cross-
amplitude spectrum depends upon the dimensions of the OI and VI soundings.
This is the reason the squared coherency spectrum is sometimes preferred over
the cross-amplitude spectrum and, together with the phase spectrum, will give
a complete picture of the cross correlation behavior of the 0I and VI
soundings.

With respect to the aims of the present study, we will only give the
equations (estimates) that characterize the above concepts, and we will not
discuss the theoretical implications. For complete details of these concepts,
refer to sections 2.5 through 2.9.

4.4.1 Co-Spectrum Estimates Using the Bartlett, Tukey, and Parzen Lag
Windows

We shall, in what follows, obtain estimates for the co-spectral, quadra-
ture, phase, and cross-amplitude spectral estimates using Bartlett's lag
window. These smoothed estimates were obtained using the truncation points
L=M=23, 12, 16, 24, and 32 units. These truncation points correspond to
decreasing the bandwidth to b = b]/L = 1.5/L.

Figure 4.7 shows the smoothed co-spectral estimates. Similarly, figure
4.8 shows the various smoothed quadrature spectral estimates. It is clear
that for L > 24 units, the estimates in both cases become very erratic. As
we mentioned previously, compromising between bias and variance, it appears
that for L = 16 units, we have the best estimate using Bartlett's lag window
with b = .094 and v = 27 degrees of freedom. The smoothed cross-amplitude
spectral estimate and the smoothed phase spectral estimate, plotted for
L = 16, each on separate sets of axes to enhance the details of the series,
are shown in figures 4.9 and 4.10, respectively.

The smoothed co-spectral, quadrature, phase, and cross-amplitude spec-
tral estimates were similarly obtained using Tukey's lag window. The
truncation points used for the co-spectral and quadrature spectral estimates
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were L = 8, 12, 14, 16, 20 and 24 units. Figure 4.11 displays the smoothed
co-spectral estimates. The smoothed gquadrature spectral estimates are
plotted in figure 4.12 for the same truncaticn points. For both of these
cases, the estimates become more erratic as L is increased beyond 20 units.
Taking the bandwidth into consideration, we choose the estimate for which
L = 14 units as the best compromise between bias and variance. Thus, for
L = 14, the bandwidth resulted in b = 1.33/L = .095 and v = 27 degrees of
freedom for the Tukey lag window. DOecreasing b to .083, the degrees of
freedom are decreased considerably; therefore, L = 14 units will give the
best estimate of the co- and quadrature spectra for the Tukey lag window.
The smoothed phase and smoothed cross-amplitude spectra were then plotted for
L = 14 units to enhance the details. Figures 4.13 and 4.14 display the
smoothed cross-amplitude spectral estimate and the smoothed phase spectral
estimate, respectively, using the Tukey lag window for L = 14.

A similar analysis was performed to obtain smoothed estimates for the
co- and quadrature spectra using Parzen's lag window for L = 8, 12, 16, 20
and 24 units. Figures 4.15 and 4.16 display the above smoothed estimates.
The bandwidths for the Parzen lag window are given by b = 1.86/L and the
degrees of freedom can be obtained from v = 288b. For values of L > 24, the
estimates become somewhat erratic and the bandwidth and degrees of freedom
are decreased. However, the decrease in bandwidth from .093 to .078
(co-spectral estimate) for L = 20 and 24 units, respectively, is not worth
the decrease in variance. Hence, we choose L = 20 as our best estimates of
the co- and quadrature spectra. This gives a bandwidth of b = .093. Figures
4.17 and 4.18 show the smoothed cross-amplitude and phase spectral estimates,
respectively, for L = 20, using the Parzen lag window, along with the corres-
ponding bandwidth. Note that since F]z(f) is small, le(f) . sz(f).

4.4.2 Choosing the Best Lag Window and Truncation Point

To compare the estimates obtained for the Bartlett, Tukey, and Parzen
lag windows, the estimates corresponding to the best value of L (chosen for
each window) were plotted on the same axes (see figures 4.19 and 4.20). The
estimates for the co-spectra coincided almost exactly. Each estimate has
27 degrees of freedom for the autospectrum analysis. The Parzen lag window
has a slightly smaller bandwidth than the others. It was difficult to choose
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the best window, but since Parzen's lag window for L = 20 units gave a band-
width of .093, it was chosen as the best smoothed estimate of the co- and
quadrature spectra. The smoothed estimates for the phase and cross-amplitude
spectra are also best represented by the lag window of L = 20 units. The
smoothed sample co-spectral estimate estimates the covariance due to the
in-phase components. There are peaks at about .20 and .31 cycles per second
which correspond to the peaks in the autospectra due to the fact that the
variance is a special case of the covariance (see figure 4.21). At frequen-
cies less than .15 cycles per second, the covariance between the VI and OI
realizations is fairly large and constant over the frequency range 0 to .15
cycles per second. The variance at most frequencies in the autospectra is
fairly large. However, the covariance distribution of the in-phase compo-
nents of the filtered ionospheric series is small, and therefore, the series
in-phase components are not very dependent. The larger value of the sample
cospectrum is near 0 cycles per second corresponding to variance values of
autospectra of about 10 at the same frequency for the Parzen lag window.
However, L = 20 units, and hence, the.correlation is small as will be veri-
fied by the squared coherency spectral estimate.

The smoothed quadrature spectral estimate estimates the covariance of
the out-of-phase components of the two filtered time series. This also shows
that there is small covariance between the out-of-phase components of the two
filtered series and, hence, that they are not very correlated. The largest
value of the estimate is 012 for the chosen lag window (Parzen, L = 20), and
the smallest value is -.011 (see figure 4.22). One can conclude, therefore,
that there is Tittle covariance exhibited throughout the range 0 to .50 cps.,
but the out-of-phase components vary in a sinusoidal manner at all frequen-
cies.

The smoothed phase spectral estimate estimates the phase angle in
radians by which the VI filtered time series leads or lags the filtered OI
series (see figure 4.18). At frequencies 0 to .05 cps., the phases are
approximately the same (phase spectral estimate near 0). At frequencies
between .05 cps. and .20 cps., the in-phase components of the two time series
lag the out-of-phase components very slightly. From .20 cps. to approxi-
mately .27 cps., the out-of-phase components lag the in-phase components.
From .27 cps. to .37 cps., the in-phase is lagging, and from .37 cps. to
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.5 cps., the out-of-phase components lag the in-phase components of the two
time series. Since the phases alternate leading, there is no reason to )
assume or conclude that one time series leads or lags the other at all
frequencies.

The smoothed cross-amplitude spectral estimate shows whether or not the
amplitude of the components at a particular frequency in one time series is
associated with a large or small amplitude of the same order at the same
frequency in the other time series. The spectral density of the autospectra
shows that the variance is about 10 in both filtered series so that, at
frequencies from 0 cps. to .15 cps., the amplitude of the components of one
time series is associated with corresponding large or small amplitudes at the
same frequency in the other. Again, this seems to indicate that the covari-
ance between the component amplitudes is neér zero at other frequencies.

4.5 SUMMARY AND CONCLUSIONS

A plot (see figure 4.19) is given for the selected best estimates of the
co-spectral densities for each of the three lag windows, namely, those of
Bartlett, Tukey, and Parzen. Although the truncation is different for each
lag window, the bandwidth, degrees of freedom, and conficcnce intervals are
almost identical. Thus, it is quite difficult to choose which lag window
gives the best smoothed estimate of the spectral density function. However,
calculating the approximate bias for each of the above lag windows, it was
found that the bias for Parzen's lag window is somewhat smaller than those
of the Tukey and Bartlett lag windows. That is:

SERWE

By(f) = yy

Furthermore, the variance ratio, that is, the proportional reduction in vari-
ance as the result of using the smoothed estimator as compared to the sample
spectrum estimate, is approximately equal to .128. On the basis of these

two criteria, the best estimate of the spectral density was chosen using
Parzen's lag window. In addition, the bandwidth of this lag window is
slightly smaller than those of the Tukey and Bartlett lag windows. There-
fore, the best estimate of the spectral density of both the observed VI and

01 soundings was obtained using Parzen's lag window for L = 20 units. This
value of L resulted in a 95% confidence interval width of .471 with 27 degrees
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of freedom, and a bandwidth of b = .093. The bandwidth is less than 1/5 of
the total frequency range over which the spectral density function is esti-
mated. Since we are detecting peaks with widths of .093 or more, the peaks
appearing in the estimated spectral density of the QI spectrum at frequencies
f = .15, .30, and .40 cps., are valid peaks and they should be taken into
consideration in interpreting the behavior of the observed QI soundings (see
figure 4.6). The process generating the soundings exhibits a large variance
around these three frequencies for the filtered data. These freguencies
approximately coincide with the most critical times of day for ijonospheric
support of HF communications. They are: the pre-dawn dip (ionosphere
stratifies into D, E, F] and F2 layers due to the sun's energy); mid-day
(where stability is a function of various natural and man-made anomalies);
and twilight (where the ionosphere recombines into one F layer). Such infor-
mation should be taken into account in the design and operation of an HF
communications system. Frequencies above f = .200 cps. on the spectral
estimates gives the lowest power, that is, the least variance.

The Parzen lag window for L = 20 units and b = .093 was used to obtain
smoothed estimates of the co- and quadrature spectra. The smoothed estimates
of the phase and cross-amplitude spectra were also obtained using the same
lag window and L = 20 units.

The smoothed sample co-spectral estimate estimates the covariance due
to the in-phase components. There is a peak at about .20 cps. and one at
.31 cps. which correspond to the peaks in the autospectra. At frequencies
above .150 cps., the covariance is reasonably small and approximately
constant over the frequency range of .15 to .50 cps. The variance at most
frequencies in the autospectra is fairly large. However, the covariance
distribution of the in-phase components of the two filtered series is small
and has, due to the ionospheric series, in-phase components that are not very
dependent. The larger value of the sample spectra is near 0 cps., corres-
ponding to variance values of the autospectra of about 10, at the same
frequency, using the Parzen lag window for L = 20 units. Hence, the correla-
tion between the OI and VI soundings is small as was verified by the squared
coherency spectral estimate (figure 4.23).

The smoothed quadrature spectral estimate estimates the covariance of
the out-of-phase components of the filtered VI and OI soundings. It showed
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that the covariance between the out-of-phase components of the two filtered
series is small, and hence, that they are not very correlated. The largest
value is .012 for the chosen lag window, and the smallest value is -.011.
There is 1ittle or no covariance exhibited throughout the range from 0 to
.50 cps., but the out-of-phase components vary in a sinusoidal manner at all
frequencies.

The smoothed phase spectral estimate estimates the phase angle in radi-
ans by which one filtered time series leads or lags another. At frequencies
0 to .05 cps., the phases are approximately the same; that is, the phase
spectral estimate is near zero. At frequencies between .05 cps. and .20 cps.,
the in-phase components of the two time series lag the out-of-phase compo-
nents very slightly. From .20 cps. to approximately .27 cps., the out-of-
phase components lag the in-phase components. From .27 cps. to .37 cps., the
in-phase components are lagging, and from .37 cps. to .50 cps., the out-of-
phase components lag the in-phase components of the two ionospheric time
series. Since the phase is alternately leading, there is no reason to assume
or conclude that one time series leads or lags the other at all frequencies.

The smoothed cross-amplitude spectral estimate shows whether or not the
amplitude of the components at a particular frequency in one time series is
associated with a large or small amplitude of the same order at the same
frequency in another time series. The spectral density of the autospectra
shows that the variance is about 10 in both the filtered VI and Ol soundings,
so that, at frequencies from O cps. to .15 cps., the amplitude of the compo-
nents of cne time series is associated with corresponding large or small
amplitudes (at the same frequency) of the other. Again, this indicates that
the covariance between the component amplitudes is near zero at other
frequencies.

In order to obtain a better representation of the important peaks and
a confidence interval, the squared coherency was calculated and plotted (see
figure 4.23).

A 95% confidence interval was obtained using the following expression:

yyx(f) +1.96 v[7251N
= +1.96 ¢20/2(1.86)14% = £.379 ,
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and is shown on the graph of the smoothed squared coherency spectrum. This
squared coherency spectral estimate gives the correlation between the
observed VI soundings and the observed 0l soundings for the 500 Km experiment.
At low frequencies, we have very little correlation between the two filtered
series (maximum of ~ .004) as shown by the expanded scale.

One can conclude
that there is virtually no correlation.

The fact that, at all frequencies,
the squared coherency approaches zero indicates that the noise level is high

in the filtered series for all components at all frequencies. This indicates
high variance in the autospectra for the corresponding frequencies. There-

fore, we conclude that the O0I and VI filtered series are not correlated
within the 0 to .50 cps. range.
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