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1. INTRODUCTION

In cornunications systems analysis , one deals wi th the characteri zation
of data for which the underlying process occurs naturally. The development

of natura l phenomena is usually monitored wi th the passage of time. For

example , the surface temperature of the ocean is measured by a ship traveling
in a straight line ; rainfall density is monitored as a function of rate/hour;
ionospheric effects in comun ications are mapped as a function of time of
day. Therefore, in analyzing and model ing such systems, one must regard data

in the form of a time series. A time series is a random or non-deterministic

function , x, of an independent variable , t. In most situations , t will
represent time or some other physical parameter such as space. The charac-

teristic feature of time series is that future behavior can be closely
estimated , but cannot be predicted exactly as would be the case for purely
deterministic functions. In many applications of analysis and modeling , it

is convenient to assume that certain physical processes can be described by
deterministic functions. However, if the underlying process is “stochastic”,

then the deterministic point of view may give misleading i nformation with
respect to the independent variables.

The field of statistical analysis as appl ied to comunications is
premised in the fact that classical functional analysis is not adequate in
deal ing with a random process. A great dea l can be deduced from those random
processes that are stationary , i. e., a process which is in statistical

equilibrium. However, for those physical processes which are non—stationary ,
analysis may be untenable and the “ran domness ” or non—stationarities must be
dealt with in order to bring the process into statistical equilibrium prior

to analysis. If this randomness is not properly approached , then meaningful

S resul ts of analysis would be very difficult to obtain. One example of a non—
stationary process is the adverse effects on High Frequency (HF) radio comu-
nications caused by sudden variations in the ionosphere.

The question of characterizing the ionosphere for HF radio communica-
tions has been approached from many points of view , jlj, [2). Primarily,

info rmation gathered over twe nty or so years is analyzed by the National
Bureau of Stan dar ds , E21, and monthly and yearly suninaries in the form 

of1



world contours are publis hed . Ionospheric forecasts are considered to be
either long-term , short-term [2], or real—time . Long-term forecasts usually
predict undisturbed monthly median conditions at a particular hour for some
specified month. They may be prepared to cover a long period of time in the
future, i.e., one year, or even an entire solar cycle (22 years). Long-term
forecasts are most useful in planning and management of the HF spectrum.
Short-term forecasts usually predict ionospheric conditions in the near
future. They are prepared by modifying long-term predictions by using values
of local magnetic activity to account for disturbances caused by changes in

the geomagnetic field. A true real-time prediction scheme would probably
require that forecasts be availabl e concurrently with ionosonde observations.

It should be noted that the ionosphere is composed of definable l ayers
of differing electron density , namely, the D, E, F1 and F2 layers. These are
subject to violent and random changes in altitude and density due to sunspot
activity , diurnal (daily) effects of the sun ’s radiation , magnetic storms,
sudden ionospheric disturbances , and other natural phenomena. These changes
may either occur suddenly with littl e warning , or they may take place in a
cycl ical manner due to combination of these layers into a single F layer
during night—time (diurn ~

’ effects) hours. This activity of the layers
directly affects the re’iability of HF coninunications to the extent that they
may cause outages for extended periods of time. Due ~ the random ndture of
this phenomenon , and due to the time dependence of the information , a logical
approach to forecasting and interpreting the results with respect to systems
performance seems to lie within the realm of non—stationary time-series
model ing. Therefore, the aim of this report is to develop statistical models
to forecast in near real-time and to characterize the underlying stochastic
process of short—path oblique incidence (01 ) and vertical incidence (VI) high
frequency (HF) information up to sixty minutes in advance.

In Sec tion 2, a systematic presentation is gi~en of the essential theory, S

philosophy , and modeling, utilizing the time—series methodology. Section 3
is a presentation of the modeling and analysis of 500 Km path ionospheric data

acqu i red between For t Monmou th, New Jersey, and For t Drum , New York. A

Spectral Analysis of the ionospheric information is presented in Section 4. *

2
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2. BASIC CONCEPTS IN TIME SERIES AND SPECTRAL ANALYSIS

In this section the basic concepts in time series and spectral analysis
are presented. We expla in how a time series can be thought of as a reali-
zation from a stationary stochastic process and , hence , be described by
certain statistical functions. The conditions that insure the stability of
a l inear system are developed , and the stationary stochastic models , i.e.,
the au toregress i ve , the mov ing average , and the mixed autoregressive-moving
average, are introduced . We also develop a “backward filter ” whereby these
stationary stochastic models can be used to describe non-stationary time
ser ies , and we introduce a procedura l approach to fit the models to non-

S 
stationary time series.

With regard to spectral analysis , a brief and basic description of some
of the concepts that will be utilized in the analysis of climatologica l ,
ionospheric , and man/machine interface data , will be given. In section 2.5
we shall be concerned with the spectrwn in general , with respect to the
aforementioned linear stochastic models. In section 2.6 we shall deal with
spectral estimators and illustrate the manner in which the concept of the
window enters the sco pe of the anal ys i s. The cross spectrum is defined in

section 2.7 along with its properties and a brief discussion of the role it
pla ys in spectral analysis. Finally, more complete treatment of the window
(types and properties) will be given in sections 2.8, 2.9 and 2.10.

2.1 TIME SERIES AND STOCHASTIC PROCESSES
0

A time series can be thought of as a sequence of highly correlated
successive measurements (serially correlated) representing some aspect of a
physical phenomena. Each of the measurements is associated with a moment of

• time and , in some cases , some other physical parameter. A time series can
either be continuous or discrete, depend ing upon whether the observations are
continuous or discrete. In this study we shall be concerned with only
fini te discrete time series which are measured at equidistant time intervals ,

H or those continuous time series that have been digitized to form finite
S discrete series . We shall denote such a time series by X t .

_ _  

3 
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Time series can also be generally classified as being either a
deterministic function or a non—deterministic function of time . A determi-
nistic time series is one that can be described by an explicit mathematical
relationship; hence, the future values of the series can be forecasted
exactly. Many physical phenomena occurring in practice produce deterministic
da ta , such as the increase in water pressure as one descends into the oceans,
or the path of a spaceship to the moon. However, in most cases, time series
occurring in practice are non-deterministic; that is , they exhibit random or
fluctuating properties . Unlike the deterministic time series, there does not
exist any explicit mathematical relationship with which to forecast exact
values in the future. Hence, for those time series whi ch are random in
nature, we must describe them in terms of probability statements and stati s-
tical averages rather than by explicit relationsh ips. The prime area of
interest in this study will be in non—deterr ~~nistic time series; hence, it

S 
will not be possible for us to precisely forecast future values of the time
series.

Th describe these non-deterministic time series , we use the concept of
a stochastic process; that is , we consider an observed non-deterministic time

I

S 
series as a realization of a stochastic process. To expla in the relationship

5 

between non-deterministic , or statistica l, time series ano stochastic
5
. processes , consider the followi ng. A given time series Cx

~
, t = 1 , 2, ..., n}

representing an ordered random phenomenon i s assumed to be a single sample
from a particular generating process {Xt, t -

~~~~, ..., -1 , 0, 1 , ..., co} .
This collection , or ensemble , of all possible sample time series which the

H random phenomenon might have produced and its associated probabi lity distri-

bution is cal l ed a stochastic process. Thus, a given time series X
t 
from a

random phenomenon may be regarded as one physical realization of the doubly
infinite set of functions which might have been generated by the stochastic
process. The set is doubly infinite because an infinite set of values is
possible at any given time and because there are an infinite number of time
points . 4

A stocha stic process is said to be etrong ~y stationary, or stationary
in the strict sense, if the joint probability distribution of any set of
observations is not affected by the shifting of all times of observations
forward or backward by any Integer amount k. That is , if the joint proba-.

bility density function associated w ith ii observat ions X , X , ..., X ,.~ made

4

5 . 
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at any set of times t1, t2, . . .,  t~, is the same as that associated with n
observations X l+k~ 

X 2+k, ..., ~~~ made at times tl+k, t24k, ..., tfl4.(~. For
a process to be strictly stationary , it is necessary for the entire proba-
bility structure to be time i nvariant.

A stationary stochastic process may be described by its mean 
~~~, 

which
can be estimated by

1 ~‘

x ~~
. 2~ x~ ‘ (2.1.1)

t= 1

the sample mean of the time series, and by the variance , o~, of the stochastic
process, which can be estimated by

~ 1
= ~~- 

~~ 
(xt - ~~)Z , (2.1.2)

t= 1
5 

which is called the sample variance of the time series . As mentioned
earlier , the values of the time series at different points in time are
serially correlated . This correlation is of great importance to this study ;
hence, the covariance function of the stochastic process is of great impor-
tance to us. The covariance , 

~k’ 
between x~ and Xt÷k~ 

k intervals of time
apart , is called the autocovar iance at lag k. 1k coy (Xt, Xt+k ) can be 

S

estimated by

c
~~
(k) ~~

- z (x~ - 

~
) (X t4k - ~

), k 0, 1 , ..., n-l , ( 2 . 1 . 3 )

the sample autocovariance function of the time series. Of equal importance ,

or possibly greater, is the autocorrelatio n at lag k, = 1k/Yo~ 
which acts

l i ke a correlation coefficient, and can be estimated by

H c (k)
r
~~

(k) = c (O) , k 0, 1 , . . . ,  n— l , (2.1.4)

the sample autocorre la tion function of the time series. Note that when
k = 0, r

~~
(O) is 1. Both the autocovariance function and autocorrelation

function are even functions because of the stationary assumption. In
practice it Is only necessary to compute the sample autocovariance and

5 autocorrelation functions for lags up to n/4.

5

~~~~~~~~~~~~~~~~~ .55~~~~~ S . S S  - . - -  .-—- -

—5 -. —5-— 5 5 5 . - . - . 5. .. ..



One of the most important assumptions made with respect to a time series
is that the correspond i ng stochastic process is stationary , [3 j’

~ In general ,
the properties of a stochastic process are time dependent; that is , the 5

current val ue x~ will depend only on the time which has elapsed since the
process began. We can make a simplifying assumption that the time series 5

corresponding to the stochastic process has reached some form of steady state 
S

or equilibrium, in the sense that the statistical properties of the time
series are independent of absolute time . 

I

S

2.2 STATIONARY STOCHASTIC PROCESSES

Stationary stochastic processes are used to model time series of many
practical situations. Consider the di screte process Z~ where the random
variables Z,~, t=1 , 2, . . .,  n , are mutually independent and are normal with

S mean zero and variance cf--this constitutes the simplest form of a stationary
stochastic process. For this process the autocovariance function is zero for
all lags except the zeroeth . Such a sequence of random variables is called
a pure ly random process or white noise .

An important class of stochastic processes can be q~nerated by the
passing of a purely random process through a linear system, (see Figure 2.1).

5 
LINEAR

Z~ SYSTEM X~
WHITE NOISE hk 

OUTPUT

FIGURE 2.1 : REPRESENTATION OF A LINEAR SYSTEM

If the system is linear , we may express the relationship between the output
process X~ and the input process Z~ as

X~ - = E h k Zt_k. (2.2.1)
k=0

* Chapter 5
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hk is called the &,eighting func tion or the impulse response function of the
linear system. The resulting stochastic process derived from a purely random
process using (2.2.1) is called a linear process .

The variance of the linear process is given by

2 ... Z 2

j=O ~

The convergence of the above series ensures that the linear process has
finite variance. We shall now show an equivalent conditon , [4 ] ,  [3] , which

also assures the variance to be finite . We will use Z-transfor ms , [5 ] ,  to
obtain the characteristic equation Of the linear process and , then , by 

S

I

restricting the roots of the characteristic equation to a certain region , we

will be in a position to establish the conditions necessary to ensure
stationarity and/or invertibility of the process.

Consider the following difference equation: -

= alyr_l + a2yr 2  + . . .  + a
~~r_m 

+ b0x~ + . . .  + bnXr n  , (2.2.3)

where a1, . . . ,  a~, b0, . . . ,  b~ are the parameters, and i s assumed giv en
for all values of r. The general solution to (2.2.3) is

y = Z h~x k (2 .2.4)r k=O r-

where hk is as defined in (2.2.1).
The x ’s and the y ’s in equation (2.2.3) can be considered as being

obtained by sampling the continuous signals x ( t )  and y(t) at the moments of
time t = r~, (r-l)~, . . . ,  (r-n)~ , and t = r~, (r-1 )~ , . . . ,  (r-m)A,
respectively. Of course, ~ represents the spacing interva l used . We can
now rewrIte (2.2.3) as

y ( t )  - a1y(t-~ ) - a2y(t- 2A) - . . .  - a~ i(t-mA )
(2.2.5)

= b0x( t )  + b1x(t-~) + ... + b~x(t _ n~)

7
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The Fourier transform 0f (2.2. 5) is given by

- a e~~
21
~~ - . . .  - a e

_
~
2
~~

m
~) Y(f)m 

(2.2.6)
= [b0 + b1e~~

2
~~ + . . .  + b~e

32
~~’~] X(f)

Solving for Y( f ) ,  we have

+ b1e~~
2
~~ + . . .  + b e~~

2]
~~~~Y(f) = 0 

j2~f~ - - ~2~fm~] 
X(f) . (2.2.7)

Hence , the frequency response function:

H ( f )  = 

k=O 
hke 2

~~~ 
, (2.2.8)

which is the Fourier transform of hk, is given by

[b + b ~-j2Trfft~ + . . .  + b e~~
2
~~~]H(f) 

[1- a1e~~
2
~~~- . . .  - ame~~

2
~~
M] 

. (2.2.9)

The concept of Z-transforms , [5], is used to manip ulate the frequency
response function H(f). Substituting

z = ~~~~~ (2.2.10)

in equation (2.2.9), one obtains

+ b1Z~ + ... + b Z]~~H(Z)  = ° 
, (2.2. 11)

[1 - a 1Z~ - .. .  — amZ _m] 
S

which is the Z-transform of the impulse response function hk; that is ,

H(Z) = z hkZ~~ 
. (2 .2 .12)

k=O

8



From an operational point of view , Z may be thought of as a shift
operator; that is ,

Z
~

5Xr = Xr s

Hence , the linear difference equation (2.2.3) may be expressed as 
S

( 1 - a12
” - ... - amr~

)yr = (b0 + b1Z~ + . . .  + bnZ~~
)Xr . (2.2.13)

Solv ing for 
~r’ 

we have

[b + b1Z
1 
+ . . .  + b Z ”J

= ° x ; (2.2.14)
[1 — a1Z 

— . . .  - amZ
_m
] r

then using (2.2.11), equation (2.2.14) can be written as

= H(Z)Xr . (2.2.15)

H(Z) i s called the transfer f trnc tian of the discrete linear system .
Expanding H(Z) in powers of 2

_i
, yields

= E ~~~~~ = ~~~~~ , (2.2.16)
k=O k=O

which is the general solution of (2.2.3) .
The charact eristic equations of a linear process can be obtained as

follows :

• (1) by factoring Z.m out of the denominator of (2 . 2 . 1 4 ) ,  substi tuting

~j.’ for 2 and equating to zero , we have

- a1~
m
~ - ... - am = 0 . (2.2.17)

A linear process Is said to be stable if the roots 
~~ 

of the
above charact eristi c equation lie Insi de the unit circl e , (3)~ If this
condition holds, the process is said to satisfy the stationary condi tion .

* Chapter 5
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(2) by factoring Z~~ out of the numera tor of (2.2.14), we have

[b0Z~ 
+ b1Z~~ + ... + b~] Z~~ . (2.2.18)

Solv ing equation (2.2.15) for X
r * one obtains

X r = H(Z)
~

1
Yr . (2.2.19)

Now substituting ~, = Z into (2.2.18) and equating to zero, we
obtain another characteristic equation of the system,

b0~ + b1~~~ + + b~ 0 . (2.2.20)

A linear process of this type is said to be stable if the roots C1~
of equation (2.2.20) lie within the unit circle , [3]. If this condition

is satisfied , the process is said to be invertible.
Al so , note that the invertibility condition is independent of the

stationarity condition , [4 J, [3].

2.3 THE STATIONARY STOCHASTIC MODELS

Consider the special case of the linear difference equation (2.2.3), in
which the first p of the a ’s are non—zero (p < in), b0 = 1 , and b~ = 0 i > 1.
This results in the equation,

= alyr_1 + a2yr..2 + . . .  + apYr..p + X r (2.3.1)

Thi s resul ting process is cal led an autoregressive process of order p. We
shall write the finite autoregressive process in the following form:

- = ct1 (X~ _~ - p) + cs2 (X t_ 2 - u) + . . .  + ~~~~~~ - 
~j )  + Z~ . (2 .3 .2)

Note that ii Is the mean of the process and Z~ is a purely random process.
As we have just shown in the preceding section , the autoregressive process
can be thought of as being stable by satisfying the statlonarlty condition
that the roots of Its characteristic equation (2.2.17) lie inside a unit
ci rc 1 e.

10
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Next, consider the special case of the linear difference equation
(2.2.3), in which the first q of the b’s are non-zero (q < n) with b0 = 1 ,

and all the a ’s are zero. Thus, we have the resulting equati on :

= Xr 
+ bl Xr_l + ... + bqXr_q . (2.3.3)

Thi s process i s cal l ed a moving c~verage process of order q. We shall write
the finite moving average process in the following form:

- i.i Z~ — 81Z~_1 - ... - 8qZt_q . (2.3.4)

Thus, the moving average process is said to be stable if it satisfies the
invertibility condition ; that is , the roots of its characteristic equation
(2.2.20) lie inside a unit circle.

We now introduce a backward shif t  operator which will be very useful in
manipulating stationary stochastic models. The backward shift operator B is
defined by

Bxt xt_l

B2x~ = x~~2

(2.3.5)

Bdxt Xt d  .

Using the backward shift operator, it will be shown how a finite auto-
regressive process can be expressed as an infinite moving average process.
Consider a first order autoregressive process wi th i.i = 0,

X
t 

Cil xt_l + z~ 
, (2 .3 .6)

or using the backward shift operator (2.3.6) becomes

(1 — 

~i
B)x t = . (2.3 .7)

Expressing the x ’ s in terms of the z ’ s , we have

— l= (1 — ~1B) z
~ 

. (2.3.8)
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Expanding (1 - ~l B)
_l 

we have

X~~ Z
~~ 

+ cLi zt i  
+ c

~2
Zt 2 + (2.3.9)

Equation ( 2 . 3 . 9 )  is an infinite moving average process. Likewise , one can
show that the moving average process can be expressed as an infinit e auto-
regressive process.

The point that has been brought out in the above paragraph is that it
may be necessary to include parameters from both the autoregressive and
moving average processes in order to achieve parsimony--employing the 

S

smallest possible number of parameters for adequate representation , [6 ]~Of course, this is due to the fact that a moving average process could not
be parsimoniously represented using an autoregressive process, and
conversel y, an autoregressive process could not be parsimoniously represented
using a moving average process. Hence , we will have the stationary
stochastic model ,

- 

~1(~~
_1 - u) + a2(Xt 2 — j.~) + ... + —

(2.3.10)
+ - - .~~~~ . 

- ~qZ~_q .

Equation (2 .3 . 10)  is called the mixed autoregr~’sive—moving average process

of order (p ,  q) .  Writing (2.3.10) in terms of the backward shift operator B ,
wi th ~i zero, we have

(1 - cz1 B - . . .  - cLpB~
)Xt = (1 - 8

~
8 - . . .  - 8qB~)Z~

(1 - 
~~ B - . . .  - ~ 8

q) (2.3.11)1 g
~ (1 — ct1B — .. .  - c&~B

P) t

Hence , the mixed autor egressive-moving average process can be thought of as
the output X~ from a l inear system, whose impulse response functi on i s the
ratio of two polynomials , when the input is white noise Z~.

As previously mentioned , the stationarity and invertib ility condition are
independent of each other; thus, we simply have to satisfy the stationarity
* Chapter 1
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condition for the autoregressive process and the i nvertibi lity condition for
the moving average process included in the mixed process for the process
(2.3.10) to be stable.

2.4 PROCEDURAL APPROACH FOR FITTING FORECASTING MODELS

TO NON-STATIONARY STOCHASTIC REAL IZATIONS

At present there exist techniques to analyze stationary time series
records. However, the techniques available for the analysis of non-
stationary time series are inadequate and do not l end themsel ves to mean-
ingful interpretations of physical problems . It is possible , however , to
adjust non-stationary time series so as to be able to apply the existing
techniques of stationary time series analysis directly. This adjustment
takes the form of applying a proper filter to the observed non-stationary
time series to fi l ter out the non-stationary components.(See section 3.3.1).

In this section we shall illustrate the procedure to i dentify whether
an observed series exhibits stationary or non-stationary properties . If the
time series is non-stationary , we explain how it can be fi l tered and intro-
duce the concept of a “backward filter. ” We give a procedural approach to
determine the stochastic model which gives the best fit to the observed
series, and we apply diagnostic checks to determine the goodness-of-fit.
Finally, we discuss how the fitted stochastic model can be employed in fore—
casti ng and updating .

2.4.1 Identification and Filtering

In a given physical situation , one will have available a stochastic

H . realization x1, x2, . . . ,  x 1~, of n observations. The first concern i s to
identi fy whether the series x~ exhibits stationary or non-stationary

properties. To accompl ish this, we make use of certain statistical methods
In conjunction with the properties of stationary time series . A stationary
time series will have the following properties :

i) It will be in a steady state in the sense that it is in

equilibrium about a constant mean level ;
ii) it will contain no trend ;

13
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iii ) its sample autocorrelation function will dampen out rapidly.
Hence, we will first plot the series as an aid in exercising some judgment
about the behavior of the information. Next , we shall apply various non-
parametric trend tests to the data . Finally, and of greatest importance, we
calculate the sample autocorrelation function (2.1.4) of the observed data .
From these data-analysis tools, we will have sufficient information to
identify the given observed series as stationary or non-stationary .

If we identify the observed series as exhibiting non—stationary proper-
ties , we need to find a fi l ter that will remove the non-stationary components .
One of the most used and most efficient methods of removing non-stationary
components from a time series is by differencing. A first-order difference
filter is defined by

= - , (2.4.1 )

where x~ is the observed non-stationary series and is the resulting
filtered series . Similarly, a second-order difference filter is defined by

= x t - 2x~_1 + x1 2  , (2.4.2)

and so on.
Since we will be almost exclusively dealing with non-stationary time

series, and , since either a first-order or second-order difference filter is
usually sufficient to transform most practically occurring non-stationary
series into stationary ones, [6], the presentation shall be confined to

5 

determining the degree of differencing necessary to result in a stationary
series. Using the backward shift operator B (2.3.5), we express the differ-
ence filter in the following form:

= (1 - 9)d x
~ 

. (2.4.3)

We must determine a suitable value for d , either 0, 1 , or 2; zero will
correspond to the fact that our observed information is stationary; one wi ll
correspond to the fact that a first-order difference filter is nece ssary to
filter the observed series , and so on.

The procedure to identify the proper value 0f d is to compute the first
and second differences of the observed series x~ , t ‘ 1 , 2, . . . ,  rt . lh.~t is ,

14
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x .~ is processed through a fi rst-order difference filter ,

~ 
(1 _ B)xt xt

_ x
t.i

which will have (n—i) values and a second-order difference fi l ter,

W
t 

= (1 - 8) 2x t = x~ - 2X t l  +

which will have (n—2 ) values . For the observed x~ and the filtered and
w~ series, we calcula te the sample autocorrelation functions and conduct
trend tests .

By examining the sample autocorrelation function and the result of the
trend test for the separate series , one should be able to infer a suitable
value for d , specifically, the degree of differencing necessary to induce the
sample autocorrelation function to dampen out fairly rapidly and to cause the
trend test to be insignificant. This will yield a stationary series with
which to continue , the ana lysis.

It must be noted that -in some instances the first-order and the second-
order difference filter may fail to remove the non-stationary components.
When thi s occurs, we must continue to search for a proper filter that will
leave us with a stationary series. One alternative is to apply a higher-
order difference filter , or we can try other types of filters . Jenkins and
Watts, [s ] , list several other types of filters . In some respects , filtering
a non-stationary series is a trial and error procedure in that one attempts
to transform the observed series into a stationary one by the use of a
mathematical function . Unfortunately, this requires us to search for the
proper function to accomplish this purpose.

H From the examination of the sample autocorrelation function and the
sample partial autocorrelation function , which is defined in terms of the
sample autocorrelation function as

~(1 ,l) = r
~~ ( l )  , (2.4.4)
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k-i
r
~~

(k) - ~(k 
- 1 , ~)r~~(k - j )

and ~(k,k) = k~i~~ 
‘ (2,4.5)

- 1 , j)r,~ (j)

k =  2 , 3 , . . .,  n/4 , where ,

~(k ,j) = ~(k - 1 , j )  - ~(k ,k)  ~(k  - 1 , k - j) , (2.4 .6)

we may possibly be able to obtain some insight into the identification of the
stochastic model and its order that wil l best fit the data , [6]. The sample
autocorrelation function of an autoregressive process of order p tails off,
while its sample partial autocorrelati on function has a cutoff after lag p.
Conversely, the sampl e autocorre lation function of a mov ing average process
of order q has a cutoff after lag q, while its sample partial autocorrelation
function tails off. If both the sample autocorrelations and partial autocor-
relations tail off, a mi xed process is suggested .

2.4.2 The Fitting Procedure

The process of fi tting any one of the three stationary stochastic
models under consideration usually invo l ves two stages.

i) deciding the order of the process;
ii) estimating the appropriate set of parameters.

The cri terion for selecting the order of the process that will give the best
fit is the residual variances of different orders of the process fitted to the
data. To compute the residual variances , it is necessary to estimate the
parameters for the different order processes. The res id ua l var iances are then
plotted against the order; the minimum residual variance will correspond to
the correct order for the process. After this has been completed for each
process ( the autoregressive , the moving average , and the mi xed autoregressive-
moving average), we compare the minimum residual variances ; the min ma l one
will correspond to the process (and its order) that will best describe the
data . This procedure is quite well suited for use on a hi gh-speed computer.

Note , that when fi tting a model to a given set of observations , we keep I n 5

mi nd the principle of parsimony, £6 ]~
* Chapters 1 and 9
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As pointed out by R. A. Fisher , C 7] ,  for tests of goodness-of-fit to
be relevant , it is necessary to make efficient use of the data in the fitting
process. Hence, to obtain efficient estima tes of the parameters , we shall
use maximum likel ihood estimates , or approximate maximum likelihood estimates
for the parameters that constitute the different models. The asymptotic
properties of maximum likelihood estimates are usually derived for independ-
ent observations , but as was shown by Whittle , [83, they may be extended to
cover stationary time series .

Suppose there exists a non-stationary series , X t. t 1 , 2, . . . ,  n +1 ,
generated by a mixed autoregressive-moving average process of order (p. q),
whose first difference , y~, t = 1 , 2, ..., n , is stationary . We desire to
f i t  a stationary mixed process of order (p, q) to the y ’ s; that is

+ + 
~p~

’t-p + ~t 
- 

~i
zt~l - - 8qZt_q . (2.4.7)

Without loss of generality , one can assume that when d > 0, = 0. We can
express (2.4.7)  as

= Y~ 
-ct~Y~-~ 

- . . .  - 

~~~~~ 
+ 

~ 1
Z~~_ -~ + .. .  + 

~q
Zt_q (2.4.8)

A recursive technique can now be used to obtain the conditona l sum of squares
function . By conditional sum of squares function , we mean that the sum of

S 

squares function is conditional on the starting values assigned to the para- -

meters (ct’s and ~‘s)and for the y’s and z’s previous to time t. This simple
numerical technique will recursively build up the log—l i kelihood function .

Now , assuming the Z~ process is normal wi th mean zero and variance
the joint probability density of the Z’ s is

f(z 1, z2, . . . ,  z ) a ” exp [- E z 2 /2~
2] . (2.4.9)n z tzl Z

Given a particular set of data , 
~~ 

t = 1 , 2, . . . ,  n, the conditional log—
likelihood asso ciated with the parameter values (cL1, ...

~~~conditional on the choice of starting values for the y ’ s and z ’ s , is

given by
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. . .,  , B , . . .,  B , ~ 
) = -n~.n - 

S(cx1, ,.., ctp~ ~~ . . .
~~~ Bg)

I p 1 q z Z 2~
2
z

(2.4.10)
and the conditional sum of squares function 

-

ctp~ B1, ~~~ Bq )

(2.4.1 1)
= E z~(ct1, . . .,  , 

~~~~~

, ..., ~ ~starting values).q

Notice that the conditional likelihood (2.4 .10) involves the data only
through the conditional sum of squares function (2.4. 11). It follows that
contours of (2.4.10) for any fixed value of in the space (a1, ...,

B1, 
~~
“‘ Bq~ ~~ 

are contours of (2.4.11), that these maximum likel ihood
estimates are the same as the least squares estimates , and that, in general ,
one can , on the normal assumption , study the behavior 0f the conditional
likelihood by studying the conditiona l sum of squares function.

Thus, we will obtain least square estimates (maximum likel i hood
S estimates) by minimizing the sum of squares function . Note that the para— -

meter values are selected to recursively calculate the sum of squares
function such that they wil l satisfy the stationarity and/or the inverti-
bility conditions of the stationary stochastic model . The residua l
variances can then be obtained by dividing the sum of squares function by

S the appropriate degrees of freedom. The fitting procedure will be described
in greater detail for the autoregressive , the moving average , and the mixed

autoregressive—moving average process in Section 3.

2.4.3 The Backward Filter and Diagnostic Checks

Having selected the stationary stochasti c model and its order that best S

describes the data and having estimated its parameters , diagnostic checks are
conducted on the model to determi ne its adequacy. If , in the identification
stage of the analysis , a suitable value for d was found to be d i fferent from
zero , the model has been fi tted to the stationary (filtered ) data , not to the
obse rved non—stationary data . Hence, to use the fi tted model to forecast
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future values of the observed non-stationary time series , we introduce the
concept of a “backward filter.” The backward fi l ter is essentially a simple ,
but uery important , technique that allows the analysis of non-stationary time
series using the well-established methods of stationary time series.

For a better understanding of the above concept, consider the following
example: The difference equation ,

• yt (1 _ B) d xt ,

was used to fil ter the observed non-stationary time series , X t ,  t = 1 , 2,
n + d. To the stationary series, 

~~~~ 
t = 1 , 2, . . .,  n , a 2nd order

autoregressive model is fitted ; that is

= 
~l~

’t-l 
+ 

~2~
’t-2 

+ (2.4.12)

To transform the model (2.4.12), fitted to the stationary data , 
~t’ 

to the
non-stationary data , x~, we simply replace 

~~ 
in the model with (1 - 8)d xt;

that is

(1 - B)d X
t 

= 
~i

(1 - 9)d 
~~~ 

+ - 3)d X t 2 + .

(2.4.13)
For d = 1 and simplifyi ng ,-we have

X~ = + 4)
2
X t 2  + 4)3X t 3 + Zt (2.4.14)

where 4).~ 
= 1 

~ ~~~~ ~2 = 
~2 - ct.~, and 4)3 = -a2. The 4) ’ s are l i near combina-

tions of the ct’s and will depend upon the degree of di-fferencing needed to

filter the observed series. For example , if d = 2 , we have

X
t 

= 4)1X~ _ 1 + 
~2X t_2 + + 4)4x t_4 + Z t (2.4.15)

where 2 + 
~l’ 2 = a2 - 2t

~i 
- 1 , 

~ 
- 2a2, and a2

We can now conduct diagnostic checks on the fitted model (2.4.14) to
determine the goodness-of-fit. Using the model (2 ,4.14), the behavior of the
observed non-stationary series can be simulated . By plotting the simulated
series against the observed series , one can obtain a visual conception of the
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goodness-of-fit. More substantially, one can calculate the residuals
i ncurred by subtracting the modeled series from the observed series; that is

Z
t 

X
t 

- . 

- 

(2.4.16)

If the model is adequate , the residuals should be the sum of the z~ process
plus a factor of l/v4~; that is as n i ncreases, the residual zn ’ s shoul d
behave approximately like the white noise zr’s. Thus , the study of the
residuals could indicate the existence of model Inadequacy , in particular ,
the analysis of the sample autocorrelation function of the residuals , [4 3.

If the f orm of the model was known to be accurate and the true parameter
values were known , then , by a result of Anderson , [9 3, the sample autocor-
relations r

~~
(k) of the zr ’s would be uncorrelated and distributed , more or

l ess , normally about zero wi th variance 1/n. Therefore, we coul d run a 
S

statistical test to determi ne if the deviations of these autocorrelations
from their theoretical zero values are signifi cant.

However, in practice , we do not know the correct form of the model nor
the true parameter values. The residuals obtained from equation (2.4.16)
will be estimates of the residuals , zr ’s, not the zr ’s. Hence, the accept-
ance of the hypothesis that the sample autocorrelations of the residuals
consti tute a purely random process on the assumption of a standard error of

can be very dangerous , [10]~ Further, it is shown in [6]~ that, by
using l/I~ as the standard error for r~~

(k), the statistical significance of
the deviations from zero of the sample autocorrelations at low lags will be
underestimated , while at moderate or high l ags, l//~ wil l give an acceptable
estimate. -

Instead of considering the sample autocorrelations of the residuals
separately, an indicati on is often needed of whether or not the first K auto-
correlations of the residuals, taken as a whole, indicate inadequacy of the
fi tted model , [4  ~~~. (The value of K can be taken to be n/ 10). Now , assume
that we have calcula ted the residual zr ’s and their first K autocorrelations,
r
~~
(k), k 1 , 2, ..., K, resulting when a fitted mired autoregressive-moving 5

average model of order (p,q) is used to model the observed series. Then, i t
can be shown , [6 ], that if the fitted model is adequate ,

Q = n Z r2 (k) (2.4.17)
k=l U

* Chapter 45; ~ Chapter 8
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is approximately chi-square distributed with (K-p-q) degrees of freedom.
Here, n is the number of observations used to fit the stationary model . If
the model is inadequate , the Q va l ue will be inflated . Therefore, one can
make an approximate , general , or “postmanteau” test of the hypothesis of
model inadequacy wi th the information available by referring a calculated
value of Q to a table of percentage points of the chi-square distribution ,

[6].

Note that for fitted autoregressive models of order p and for fitted
moving average models of order q, we would have a chi-square with (K-p) and
( K-q) degrees of freedom, respectively.

2.4.4 Forecasting and Updating

After having obtained a model to describe the observed time series and
having confirmed its adequacy , we desire to use it to forecast future values
of the observed series. We shall now illustrate how the fitted model may be 

S

used to obtain minimum mean square error forecasts. We would like to fore-
cast a value 2. 1 , 2, .. . ,  L steps ahead , when we are presently at
time t. That is , the forecast is said to be made at origin t for a lead time
2.. Of course, the shorter the lead time 2., the more accurate one can expect
the forecast to be. Also , the spacing, ~~~, of the data is of importance in
forecasting. That is to say , if the data is recorded daily, then it would
be unrealistic to attempt to forecast weeks in advance.

To derive the minimum mean square error forecasts for any lead time 2.,
first consider the general mixed autoregressive-moving average model fitted
to the stationary series that is,

= 
~l~
’t-l + ~2~t-2 + + 

~p~
’t-p 

+ - Bizt..i - . . .  - BqZt_q

(2.4.18)
Using the backward filter (1 - B) dxt ~t’ 

we have

4)ixt..i + 4)2x t_2 + ... + ~~~~~~~~ 
+ - Bi zt 1  - . . .  - BqZ t..q

- (2.4. 19)
or in terms of the backward shift operator B

( 1 - - *2
B2 - - .~~ 

- 4)P+dBP’
~

)X t (1 - 81B 
- 82B2 

- ... - BqB~ )Z~
(2 .4.20 )
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We may write an observation x~~2. generated by the process (2.4.19) either as
a di fference equation ,

S 

X t+2. 
= 4)1x t+2. i + 4)2x t+2. 2 + ... + 4)p+dXt+2._p_d

+ ~ 
. (2.4.2 1 )

- 

l~ t+2.~l ~~~~~ 
- q t+2.-q

or as an infinite weighted sum of current and previous shocks z~ ,

xt÷2. = 
j~O ~~~~~~ 

(2.4.22 )

where 1 and the weights may be obtained by equating coefficients in

( 1 - - ... - 4)p+d8
~~~

) ( l  + + ~28 2 + . . .)  =

(2.4.23)
(1 - - . . .  -

or as an infinite weighted sum of previous observations , plus a random shock , S

• 
= 

j~1 ~~~~~~ 
+ z

~+2. , (2.4.24)

now , using equation (2.4.22) and the assumptions of the model , as
discussed previously, it will be shown that the minimum mean square error
forecast at origin t, for a lead time 2., is the conditional expectation of

at time t; that is , -

E~ [X~~~ ] . (2.4.25)

Suppose at time t we are to forecast 
~~~ 

wi th a linear function of current
and previous observati ons x~ , x

~_ i~ 
X t ...2 Then , as shown above , i t

will also be a linear function of current and previous z~, z~_ 1 , z.~,2 
Suppose the best (minimum mean square error) forecast Is given by

X
t
(L) = + 

~L +l~t~l + ~;+2~~~2 + = 

i~~ 
. (2.4.26)
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Now , from equation (2.4.22) ,

X
t÷2. 

- xt(2.) = 
j~Q 

~~
zt÷~~ j 2.

(2.4.27)2.-l 
*

~~ 
~~z~~2.~~+ 

~ 
(
~p~ 

-

Squaring the above expression and taking the expected value, we have

2.-i 
*E [(x t+2.

_ xt (2. ) )~
] = E[( Z  + 

j 2 .  ~~ 
-

Since E(z
~

z .)  0, for i 
~
j and for i = j, we have

- xt(2.))2] = ~ ~~2~~2 + 

~~ 

(
~ - ~~~ )2 

~~~ (2.4.28)

The above expression is minimized by setting 
~ 

j = 2., 2. + 1 , ...,
this implies:

xt(2.) = 
~2.z~ 

+ 

~2.+1z
~~1 + . . .  . (2.4.29)

Now , it is required to show that x t (2.) as given in equation (2.4.29) is , S
in fact , the conditional expectati on at time t of x t+2.. Since

Co , for j > t
EtC Z . ] = 

, (2.4.30)
, for J < t -

from equation (2.4. 22), we have 
S

Et[Z ~~~~~~~

: 
~~~~ 

:t~~
t:2.i 

(2.4.31)
.j2L j -J
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This result also has been shown in [ 6]~
For example , if a mixed autoregressive-moving average model of order

(p,q) was fitted to the dth difference series of the observed non-stationary
series x~,

= 4)i xt i  + + 4)p+dXt~p_d 
+ - 

~l
zt_1 - - 

~q
Zt~q

(2.4.32)

Now, to forecast ahead by a lead time 2., we replace t wi th t +2.i n (2.4.32):

= 4)1x~~2.,~1 + . . .  + 4)p+dXt+2._p_d + Z .t~~ 
- 8

1
X~~~~~~.1 

- ..

(2.4.33)
The minimum mean square error forecast will be given by

E
~ 
[X t~~

] = 4)i Et[X t÷2. i~ 
+ . ..  + 4)p+dEtCx t+2.~p~d~ 

+

E [ -‘ 

E r . (2.4.34)
t ~~~~~ - - 

~q t~~t+2.-q~

As discussed previously, the conditiona l expectation can be obtained from

Et[xt+2.] x
~
(z) and Et[zt+2.] = 0 (2.4.35)

for 2.. = 1 , 2, ... L, and 
-

Et[x t_2.] X
t_ 2 .  

and Et [z t_ 2.) ~~~ 
(2.4 .36 )

for 2. = 0, 1 , 2, . . . ,  L. Thus , we can rewrite equation (2.4.35) by using the
followi ng rules :

i) The data points x .~4.2. (t = 1 , 2, . . .,  L), which have not yet been
realized , are replaced by their forecasts X

t
(t) at origin t.

ii) The errors z.
~÷2. (2. = 1 , 2, . .. ,  L) , which cannot be calculated !ntil

X t+L is realized , are replaced by their unconditiona l expectation
of zero. (See section 3.3.4).

We can also rewrite equation (2. 4 .36) by the followi ng rules : S

i) The data points x .~~2. (2. 0, 1 , 2, . . . ,  L), which have already been
realized at orlg~ - t , assume their reali zed va lue .

Ii) The errors z
~~2. (

~ 0, 1 , 2, . . .  L), which have happened at origin
t , are calculated from x

~_ 2. -

* Chapter 5 
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The variance of the 9. steps ahead forecast error for any origin t is the
expected value of

= [X t+2.~ 
xt(2.)]2 . (2.4.37)

It has been shown , [12] , that the variance of the lead time 2. is given by

2.-i -

var(2.) [1 + E G2.] ~ (2.4.38)
• 

. 

j=l ~

where the weights are given by

j < O

e0 = l

e2 =~~1e1 ~~ 
82

(2.4.39)

= + 
~~ .. + 

~p+d
0j~
.p..d 

- j = 1 , 2, . . .,  q

For j greater than q and p+d-1~ equation (2.4.39) can be reduced to:

= + 

~
‘26j-2 + + 

~~~~~~~ 
(2.4.40)

Note that when one has an autoregressive model , the 8’ s are zero ; similarly ,
when one has a moving average model , the ~‘ s are zero .

We may express the accuracy of the forecasts by calculating probability
limi ts on each forecast. The probability limi ts are such that when the
reali zed value of the time series occurs , it will be included wi thin these
limits with the stated probability . An estimate s~ of the variance in
(2.4.38 ) is obtained from the time series data . s~ will be the residual sum
of squares obtained in the fitting procedure divided by the number of obser-
vations used in calculating it. When the number of observations is ,-say, at
least 50, one can approximate the (i-ct ) probability limi ts as ,

* That is, ,j > p+d-l if p+d-l > q; j > q if p+d-l < q
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± t~12 [1 ÷ z 02J
’/2 

5~~ , (2.4.41)

where t 12 is the deviate from the student’s t-distribution.
We are usually interested in forecasting values of an observed series

for 2. = 1 , 2, .. ., L- lead times in the future from some origin t. Once these
forecasts are obtained and a new piece of information is real i zed, we may
adjust or update the original forecasted values . The new forecast will be
related to the old by

xt+1 (9.) = X t (9 .  + l)÷e9.z~+1 .. (2.4.42)

From the above equation , we see that the t-origin forecast of x.
~+9.+i 

may be
updated to become the t + 1 origin forecast of the same Xt÷9.+l, by adding a
constant mu1t~ple of the one-step-ahead forecast error ~~~~ where z~÷1 is
given by

Z t÷l = x t÷i - X t
( l )  , (2.4.43)

and the multiplier e 9. is given by (2.4.39) and (2.4.40).

2.5 THE SPECTRUM

- S After fi tting the appropriate model to the data , additional information
can be obtained from the fi l tered (stationary) series concerning the distri-
bution of the variance with respect to frequency. The Fourier transform of

S the autocovariance function is another means by which a stationary stochastic
process can be characterized . One is forced to conc l ude , however, that

H Fourier analysis breaks down when it is applied to non—stationary time series.
The reasons are rather obvious ; the theory behi nd Fourier analysi s is based

on the assumptions that the ampl i tudes are fixed , as wel l as the frequencies
and phases. This is not the case when we have to deal wi th time series.
Random changes in frequencies , amplitudes , and phases are found here due to

H the nature of time series .
The sample speotrwn Is the Fourier transform of the sample autocovari—

ance function. Its graph shows how the variance of the real i zation of a
stochastic process is distributed wi th respect to frequency. Furthermora ,
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having the sample spectrum , one can obtain the sample autocovariance function
by taking the inverse Fourier transform of the sample spectrum . That is , the
sample spectrum of c

~~
(f) is given by

C
~~

( f )  = fT
Tcxx ( u ) e~

J2
~

fu du, - ~ <f < , (2.5.1)

and the sample autocovariance function of C
~~
(f) is given by

c (u) = f~~C (f)e~
2
~~”df , -T < U < T (2.5.2)

for a continuous time series x(t), while for the discrete case,

C
~~
(f) = , - < f (2.5.3)

1

.1 

and 

c
~~

(u) =J~ 
Cxx(f)e

J2
~
fudf, -NA < u < NA . (2.5.4)

The theoretical spectrum is defined by taking the limi t, as the period
I tends to infinity , of the expected value of the sample spectrum. That is ,

- • r~~( f )  = u r n  E[C
~~

(f)]

(2.5.5)
.1

~~co 
~xx

i2
~~~~

Similarly, the theoreli.cal autocovariance function of the continuous time
series x(t) is obtained by taking the inverse Fourier transform of the theore-
tical spectrum. That is ,

‘r
~~
(u) = I r

~~
(f)e32’

~~
df - (2.5.6)

The graph of the spectrum r~~( f ) ,  as a function of frequency, shows how
the varIance of the x(t) process is distributed with respect to frequency.
Similarly, the graph of the sample spectrum C

~~
(f) shows how the variance of

_ _  -- 
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a realization of a stochastic process is distributed with respect to
frequency over a period of length I.

Qu i te frequently in practice we have to compare time series with differ-
ent scal es of measurements. Thus , it is necessary to normalize the spectrum .
Normalization in this case is done simply by dividing the theoretical spec-
trum given by equation (2.5.5) by the variance of the process ~~~~~ . That is ,

r (f )
= XX 

, (2.5.7)
x

where

= v (0)  ~ r (f)dfx ~xx

The expression given by equation (2.5.7), ~~~~~ is ca l led  the spectra l
density function. The f u n c t i o n  ~•~ (f) represents the Fourier transform of
the ~utocorrelation function due to the relationship between the autocovari-
ance and the autocorrelation function. The spectra l density function is
non-negative and integrates to unity , thus resembling the definition of a
probability density function .

2.5.1 Properti es of the Spectrum

Sometimes it is highly desirable to obtain the spectrum of the output
from a linear system when the input is a stationary process. In the present
study , we will be primarily interested in the case where the input is white
noise. The general rule is given in Jenkins and Watts [3)’~ which states that
“the spectrum of the output from a linear system is obtained from the spectrum
of the input by multiplying by the square of the frequency response function .”
Thus , in our case, the input to the system will be white noise denoted by
z(t) whose spectrum is given by r2~

(f) = ci~, and the output process x(t) is
a l i near process and its spectrum is given by

rxx (f) = ~~~~~~~~ -~~~ < f < (2.5.8)

* Chapter 6
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or 

rxx ( f )  = 1H(f) 12 r
~2(f) ,  - ~~~< f < ~~~ (2.5.9 )

where H ( f )  is  the f r equency response function .
In our presentation of the spectral analysis of the ionospheric ,

man/machi ne interface,and climatological information , we shall utilize the
S 

spectrum of the three basic models we discussed in sections 2.1 through 2.4,
namely, the autoregressive, the moving averages , and a mixture of auto-
regressive-moving averages. Thus, in what follows , we shall give the basic
definitions of the above models for both the continuous and the discrete
case.

i )  Continuous First Order Autoregressive Process
The spectrum of a continuous realization of a stochastic process x(t) is
given by S

F (f) = 
z 

, -
~~~ < f < . (2.5 .10)XX 1+ (27rfT )2

Note that from the form of the theoretical spectrum, F~~(f), one can conclud e
that most of the power (variance) is concentrated at low frequencies .

i i )  Discrete First Order Autoregressive Process -

The spectrum of a discrete realization of a stochastic process x(t) is
defined by

Aa2
= 
1+a~-2ct1c s  2~fA 

- < f . (2.5.11)

It should be mentioned that if ct1 is negative , the spectrum has most of its
power concentrated at higher frequencies, whi le when i s positive, the
power will be concentrated at l ower frequencies.

I i i )  Continuous Second Order Autoreqreeeive Process

The spectrum of a continuous realization of a stochastic process x(t)  is
given by

Ca
r (f) = , —

~~~~~ < f . (2 .5.12 )XX (a 0— a 24,T2 f 2 )2 + (2irfa 1)
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Here the distribution of the power of the process will depend on how a0, a1
and a2 are inter-related . This relationship is inherent in the form of tht
characteristi c equation of the process.

i v )  Discrete Second Order Autoregressive Pro cess
The spectrum of the continuous realization of a stochastic process x(t) is
gi ven by

Ac2
r I~~~ Z 1 1

~f) , -
~~~~~

— <  f < ~~— .XX 
- 

l.~
z
~~2 2 ( l ) 2irfA-2ct2cos 4irfA — —

(2.5. 13)
Again , the location of where most of the power is concentrated is character-
ized by the values of and C2 .

v) General Autoregressive-Moving Average of a Continuous Process
The spectrum of a continuous realizati on of a stochastic process x(t) is
given by

-- b0+b1 .27rf+ . . .+b 2.(j2iif) 2. 2

F ( f ) = c 2 .3
XX Z a0+a~ .2irf+.. . +~ (J2ITf)m — —

iJ m (2.5 .14)

v i )  General Autoregressive-Moving Average of a Discrete Process
The spectrum of a continuous realization of a stochastic process (x(t) is

S 
defined by 

-

.+$2.e~~
2
~~~ 

2

r
~

(f) = Aa~ 1 e~~
2
~~~- a ~~~~~~ 

f <~~~~~~~~

C
1

(2.5.15)

In the last two definitions , various peaks or spikes will appear in the
spectrum If the roots of the corresponding characteristic equations are
complex . The behavior of the above will be displayed in Section 4.

2.6 ESTIMATE OF THE SPECTRUM

In the previous section , we have given a brief discussion of the basic
definitions and properties of the theoretical spectrum. With respect to the
aims of the present study , we shall give in this section a smoothed estimate

30
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of the theoretical spectrum and some of its properties that are essential in
the final analysis of the experimenta l data .

Bartlett, [ifl, introduced a very useful procedure for estimati ng the
spectrum of a stochastic realization . This estimate of the spectrum for a
purely random process is given by 

-

n—i n—i
• C

~~
( f )  = Z z~cos 2,rftA}2 + C E ztsin 2irfA}2]

t -n t=-n

(2.6.1)
= ~~[A2(f) + B2(ffl -

where

n— i
A 2 (f )  = C E z~cos 2rrftA}2 (2.6.2)

t= -n

and
n—l

B2(f) = C z z
~
sin 2irfA}2 . (2 .6.3)

t=— n

Bartlett ’s procedure consists of splitting up the series of length N

into k sub-series of length ~~
.
, evalua tes a sample spectrum C~~~~(1) (f) for each

of the k sub-series , j = 1 , 2, .. ., k, and finally takes the mean of the sub-
series as his estimator at frequency f. That is,

S 

= 
~~~ 

z C ~~~~ (f) . (2.6.4 )

The estimate given by equation (2.6.4) is called a smoothed spectra l estimate
at frequency f and the method to obtain (2.6.4), Bartlett’s smoothing

• procedure . More generally, Bartlett’s smoothing procedure suggests that a

smoothed spectral estimator of a stochastic realization x(t) is given by

= 
~~~~~~~~~~~~~~~~~ 

= f 
~~~~~~~~~~~ 

. (2.6.5)

The smoothed sample spectrum will have a smaller variance than the
unsmoothed sample spectral estimator , C

~~
(f) .  The smoothed estimate of the

spectrum is a function of the type of lag window , w(u), one utilizes. S
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However, in all cases the following properties hold with respect to w(u):

i ) w(O) = 1 ;
ii) w(u) = w(—u);

ii i ) w(u) 0, uI > 1;
I S  

iv) w(u) 0, lu l > M , M < T.

In section 2.8 the above concept of the window will be explored
extensively. As will be stated , the bandwidth of a spectral window will be
defined as~ follows :

b =  . (2.6.6)
f~~w 2(f)df

Another form of the bandwidth is the standardized bandwidth , b1, which
is given by placing

and

b = M~~
=
I w2(f)df

We can conclude that the variance of a spectral estimator is inversely
proportiona l to the bandwidth of the spectral window. Also the degrees of
freedom, v, of the smoothed estimator are directly proportional to the band-
width of the spectral window due to the relationship

2T 
— = 2(I.)b . (2.6.7)

f~~W2(u)dU 
M 1

On the other hand , the bias is directly proportional to the bandwidth of the
window .

The notion of the smoothed spec tra l density estimate denoted by ~~~~f)
sha l l  now be introduced . This estimate Is defined as follows :

— 
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L-1
~ (f) = 2 {l + 2 E r (k)w(k)cos 2irfk}, O < f < ~~

. , (2.6.8)XX k=l X

where ,
c ( k )

r
~~
(k) = c

~~
(O) (2.6.9)

The mean smoothed spectral density f,~ (f) is given by

F (f)XX = 2 Cl + ~ ~ (k)w(k)cos 2irfk] . (2.6.10)C x k l  XX

Equation (2.6.10) is the expected value of the smoothed spectral denisty
estimator. By plotting F

~~
(f) versus ‘Fi~ (f) , as shall be done with the

c’x
ionospheric phenomenon under i nvestigation , one will be able to detect how
the bias varies with frequency.

Also , the variation of bias with bandwidth can be observed by simply
plotting different curves for the different values of L , the truncation
point. One other relationship can be plotted as well. This plot consists
of ~~~(f) versus r~~(f) and displays how the variance varies with respect to

frequency. C

Similarly, the variation of variance wi.th bandwidth can be observed
simply by plotti ng the estimate wi th different values of L.

Jenkins and Watts , in their efforts to point out the criteria for
determining optima l lag w i ndows , argue that wi ndow carpentry is not as
important as wi ndow closing. In Section 4 of the present study , we w i l l

examine these factors in detail wi th actual data to determine an optimal lag
window.

Two cr iter ia , which w9uld seem logical at first sight but whose value

is debatable in determining an optimal lag wi ndow , ~re listed as follows 5.
(They are classified as the “optimality approach to smooth i ng.”):
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i) The mean squared error criterion ,

E[R
~~

(f) - r
~~
(f)}2] ,

and
ii) The integrated mean squared error,

f ~~ E[C~~,~(f) - F
~~
(f)}2]df . 

S

Never theless , the above optimality criteria are rejected, a fact which
brings into play the formulation of high stability and high fidelity as
useful criteria. They are widely accepted in practice. The previous
criteria , namely, the mean squared error and the integrated squared error ,
are not useful because they are arbitrary ; they have no flexibility (strictly
mathematical); they do not allow an a priori design and analysis of the data ;
and they only indicate what is best on the average. Therefore, the two main
requirements for estimating the theoretical spectrum F,0~(f) as accura tely as
possibte are:

i) High fidel i ty, which implies that

- r
~

(f ) B( f)

be sma ll , and
ii ) High stability , which implies that

i’~ (f)
~~~~~ , ~~~~~~~~~ xx Mvar~L IT)J —

1

be small.
High fidelity and high stability are two conflicti ng requirements. In

minimizing the covariance , we increase the bias; and , conversely, by mini-
S mizing the bias , we increase the variance. An ideal situation would be one

where M is large enough for high fidel ity and M is small enough for high
stability . The l ogic here dictates a compromi se of some form.

• In sumary, we can say that smoothing the estimate of the theoretical
spectrum consists of determining the shape or the mathematical form of the
window (section 2.8 discusses window carpentry ) on one hand and the value of
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the bandwidth (window closing) on the other. By window closing we mean
computing window estimates using a wide bandwidth and then progressively

using narrower bandwidths until we achieve a state of high fidelity and high

stability . The numerous and various problems invol ved will be studied in

subsequent chapters.

2.7 THE CROSS SPECTRUM

In this section, the concepts we have already dealt with shall be

extended so as to be able to treat pa i rs of time series x1 (t ) and x2(t).
The autocovariance function of the stochastic realization is given by

E[(X 1(t)-~i1 ) (X 1 (t+u)-~i1 )] = y~ , (2.7.1)

where the expression for y2.~ can be obtained by changing the- subscripts ,
and the cross-covariance function is given by:

‘
~,, (u) Et (X1 (t)— ’ii1 ) (X 2(t+u)—p2)) = 

~12 
(2.7.2)..1x 2

where

= E(X
~
(t)], I = 1 , 2.

The cross correlation function is given by

y 12 ( u )
p1,(u) = 

_____________ 
= . (2.7.3)

~
[ (0) ~0) ~l~2‘

~
‘ii  Y22

The cross covariance function is estimated by

1/2-u -

• . 

~r J (X 1(t )-~1) (X 2 (t+u)-~2 )dt, 0 < u < T
-1/2

c (u) *
X
1
X
2 1/2

f (X 1 (t)-~1) (X 2(t+u)-~2)dt, -T < u < 0
‘
~ -T/2+u ‘

(2.7.4)

35

S S “.-- -
- -

~ ---
~ - - - - 



where
1/2

= 

~ J X~(t)dt~ I = 1 , 2 . (2.7.5)

-TI 2

An estimate of the cross correlation function is obta ined by

~ 
( k )

r (k) 1 
~~ (2.7.6)X lx2 /c (OJ c (0)Xlxi x2x2

Using the above equations as a foundation , one can define the theoretical

~2utosp ectrum, ~11 ( f ) ,  and sample au tospectrum, C 11 ( f ) ,  by

= P (u )e J27TfUdu , (2.7.7)

and

C11(f) fT
1c 11 ( u ) e~

32TT f
~
1du , (2 .7.8)

respecti vely. Hence , we arrive at the notion of the cross spectrum. As in
the univariate case, the swnple cross spectrum is the Fourier transform of
the sample cross covariance f u n c t i o n . That i s ,

C12 ( f )  = f T c (u)e
_J27Tfudu . (2.7.9)

Note that the inverse Fourier transform of C12(f) gives rise to c12(f).
Ano ther form of C12(f) that i~ c’~nmionly used is

jF12(t)C12(f) A 12(f)e = L12(f) - jQ12(f) , (2.7.10)

which is the product of a real function A 12 ( f) ,  called the sam p le cross
r~j npl itude spectrwn, and a compl ex function called the sample p hase sp ectrwn,
jF12(f)e
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The theoretica l cross spectrum is the Fourier t ransf orm of  the
theoretica l oross-covar iance function ; that is ,

~2 f ~~l2= f °°~0y 12 ( u) e 3 iT Udu

= A12 ( f )  — i~i’12 ( f )  , (2.7.11)

which is the product of the cross- amplitude spectrum and the phase spectrum.
The expected value of the cross spectrum estimate is given by

E[C (f)] = !~ (1 
- 

~*~
-)
~ 

(u)e~~
2
~~ du . (2.7.12)X1x2 - x1x2

As T goes to infinity , the above mean value approaches the cross spectrum.
Therefore ,

l im E[C (ffl = 1’ (fl = 
~~~~~~~~~ 

~~ 

(u)e _32
~~

Udu -~~~ < f <
T-~ ~l~2 ~~~ ~ 2

(2 . 7.13)
Furthermore, the co—spectrum, A12 (f) , is defined as

A12(f) = P A (u)e _J2
~

fL
~du

= 
~~
. 1 { y 12 ( u )  + y12(-u ) cos}2irfudu , (2 .7.14)

where

• A 12(u)  ~{y12 (u)  + y12(-u )} . (2.7.15)

Similar ly, the samnple co—spectrum, L12(f), is defined by

l.12(f) 2

- c 12(— u)}co s 2irfudu , (2.7 .16)

37

_______________________________ — —•-—.- •,-~~~~~~~~~ —— — -

- - .~~.‘. .•~ - 
- 

- S - 
--



where

~12~~ 
= ~{c12 (u) - c12 (-u)}  . (2.7.17)

On the other hand, the q~adra ture spectrum, ‘i~12(f), is defined by

= f~~~ 12 ( u ) e _32hT
~~ du

= ~ f~ ,{y12 (u) - y12 (-u ) sin }2irfudu , (2.7.18)

where

~12 (u )  = 
~~~ ~~l2~~ 

- y12(-u)} , (2 .7 .19)

and the sample qytath ’ature spectrwn, Q12(f), is defi ned by

= f I
1q12 ( u ) e _ 32

~~tl du

= 
~~
. !11tc12 (u) — c12(-u) }sin irfudu , (2.7.20 )

where

q12(u) = 
~Cc 12 (u) - c 12 (- u)}

Thus, wi th the above definitions , we can define the cross amplitude
spectrum as follows :

= 1r 12 (f) I = /A ~2(f) 
+ ~12 (f) . (2.7.21)

Also , the sample cross amplitude spectrum is  def ined  by

A12(f) = ~C12 ( f ) t  = / A12(f) + Q~2(f) . (2.7.22)
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On the other hand , the phase spectrum can be written by

~12 (f) = arctan A ‘f 1 (2.7.2 3)
12’ /

and the swn’p le p hase spectrum is given by

( )
F12(f) = arctan L tf~ 

. (2.7.24)
12’ /

Havi-ng a graph of the cross amp litude spectrum, one can detect whether
frequency components in one series are associated wi th large or smal l ampli-
tudes at the same frequency in the other series. The graph of the phase
spectrum helps to determine whether frequency components in one series are
in phase or out of phase (lag or lead) wi th the components at the same
frequency in the other series.

The cross amplitude spectrum and the phase spectrum would suffice to
provide a complete. description of a bivariate stochastic process. However,

a more efficient spectrum , namely, the coherency spectrum, will be introduced

in sub—section 2.7.1 to take the place of the cross ampl i tude spectrum.
For the discrete case, we simply replace the integral with a sum and

make the necessary notational changes.

2.7.1 The Squared Coherency Sj ectrum

The squared coherency , k~2(f), is

___________ 
1k~2(f) = r11 ( f )r 22 ( f )  = 

1+(r22(f)/G2(f)r11(f)) 
. (2 .7 .25 )

The e.p.~ared coherency spectr um is the plot of k~2(f) versus frequency.
The cross amplitude spectrum c*12(f) is a measure of the covariance between

S 

the two time series x1 ( t )  and x2(t) at frequency f. r11(f) i s the var iance
of the Input at frequency f , and G(f) is the gain of the spectrum defi ned by
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11 11

In general , the coherency spectrum plays the role of a correlation
coefficient with respect to the frequencies. When F

~~
(f) = 0, the squared

coherency is equal to one. When the output is nothing else but noise , the
squared coherency is equal to zero. S

The usefulness of the squared coherency spectrum lies in the fact that
dimensions do not enter the picture when the correlation is measured wi th
respect to frequency. Unlike the squared coherency spectrum , the cross
amplitude spectrum depends on the dimensions of x1 (t) and x2(t). This is the
reason why the squared coherency spectrum is preferred over the cross ampli-
tude spectrum , and , together wi th the phase spectrum , it gives us a complete
picture of the cross correlation properties of two time series.

2.8 THE ROLE OF THE LAG WINDOWS

One of the goals of the present study is to perform spectral analysis
on univariate and bivariate stochastic realizations obtained from ionospheric
soundings. The purpose of such an analysis is important to the systems
design engineer and to the coninunication/ADP scientist. One of the basic and
essential factors which enters in the mathematical formulation of the power
spectrum is the lag wi ndow. There are specifi cally four lag windows that are
comonly used in spectral analysis. These lag windows are as follows :

i) rectangular window
ii) Bartlett ’s lag window

iii) Tukey ’s l ag window
iv) Parzen ’ s lag wi ndow .
The object of this section is to briefly introduce these lag wi ndows .

A specific discussion about their behavior In estimating the spectrum will
be given in Section 4 , where we consider the analysis of verti cal incidence
and oblique incidence ionospheric information.

An exact determination of the autocovar lance function or the power
spectrum function is quite impractical since it would require both a collec-
tion of pieces of infinite length and an infinite number of computations .
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An approximate determination is therefore proposed in order for workable
estimates to be obtained . The results obtained by Tukey , [12], show that,
al though the autocovariance function and the power spectrum are Fourier
transforms of each other , the latter , in  most practical situati ons, is
preferred as yielding better results . By reducing the data , the estimates
will be subject to the usual sampling variations and statisti cal biases . It
should be pointed out again that estimates of the power spectrum exhibit bias
and sampl ing variability characteristics much easier to study than estimates
of the autocovar iance function.

The unsmoothed sample spectrum is given by

C
~~
(f) = xx~~~~~

2
~~~~’

°
~ 

< f <~~~ . (2.8.1)

The first moment of C
~~
(f), the unsmoothed samp le spectrum es timator , is

given by

E[SCXX
(f)] = ;TTECcxx (u))e

_32
~~~du , (2.8.2)

which can be written as

EtC
~~

(f)J = fT1~~~(u)( l - ~
.
~-1-)e~~

2
~~ du , (2.8.3)

using the fact that

~~
(u)(l i.. ~ .L), u i < T  S

E[c
~~

( u ) ]  (2.8.4)
0 , ~u ( > I

-
~ . 

Therefore, using the convolution theorem, the expected value of the unsmoothed
sample spectrum can be written as

s in  it T
EEC

~~
(f) ] = 

~ Tg 
g}2 r

~~
(f-g)dg . (2.8.5)

In expression (2.8.5) the quantity

s in it I
T{ 

1TT
g~~~

_ _ _ _ _  -- S



in the integrand is referred to as the spectral window of the sample spectrum.
The Fourier transform of the spectral window is the Zag window which will be
denoted by w(u).

In actual practice we utili ze a smoothed form of expression (2.8.5) to
obtain an estimate of the theoretical spectrum given by

~xx~~ 
2[c

~~
(O) + 2 E c

~~
(u)w(u)co v Zit 

~k~’ 
~~ 

< 
~~ 

1

(2.8.6)

where c
~~

(k ) i s the sample autocovar iance at lag k, w(k) being the lag
window , and L the truncation point of the series.

It is clear from a practical point of view that the resulting estimate
of the power spectrum, equation (2.8.6) depends on the choice of the lag
window that we are utilizi ng in our estimate. In what fol l ows, these lag
wi ndows shall be defined and , for a more thorough investi gation of their
origin and properties , the recent books of Jenkins and Watts, [3], and Box
and Jenkins , [6], are recoimiended .

2.9 USEFUL LAG WINDOWS

In this section the basic useful windows mentioned above shall be
defined , namely , the reotang~ lar , Bartlett ’s, Tukey ’s, and Par sen ’s lag
windows. A specific comparison of these lag windows in actual problems will
be given in Section 4.

We shall denote W(f)4sthe portion of the integrand given by

~~~~ ~~
Ifl2 of equation (2.8.5). That is,

W( f ) = TC 51
~ 

iT Tf }Z (2.9 .1)

Equation (2.9.1) is called the spectral window. Its Fourier transform is
called the lag window.

- - -

—
- 
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2.9.1 The Rectangular Lag Window

Definition 2.9. 1 The function given by

(i~ Iu1~~.M
WR(U) = (2.9.2)

(o , otherwise

is called the rectangulai ’ lag window. The Fourier transf orm of Wg(u) is

WR(f) = 2ME~~~~~
fM
3 -~~~ < f < , (2.9.3)

and is called the rec tangular spe ctral window. The above lag  window was the
first window that was used by many scientists , especiall y engi neers. However,
due to its mathematical simplicity in being able to characterize complicated
phenomena, it is not very useful . Further details to this addendum will be
given in a later discussion.

2.9.2 Bartlett’s Lag Window
- 

Definition 2.9.2 The function defined by the expression

- 

~~~~ , u < M
wB(u) 

= .1 (2.9.4)

10, otherwise

I s  ca l led  Bart lett’s lag window. The Fourier transform of w3(u) is given by

WB(f) * Mt~~~~fr32 (2.9.5)

and is called Bartlett ’s spectral window. The above lag window , which was
Introduced in the 1950’s, has been used extensively in spectral analysis.
It possesses some interesting features that will be discussed later. However,
Its side lobes are much larger than any of the other windows known.

• ~~~~~~~~~~~~~~ -~~S- 
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2. 9.3 Tukey’s Lag Window

Definition 2.9.3 The function defined by the following expression ,

+ cos !~L), lu l < M

WT(U) = (2.9.6)

otherwise,

is called Tukey’s Zag window. The Fourier transform of equatIon (2.9.6) is
called Tukey’s spectral window and it is given by

— sin 2irfM 1 sin 27rM(f + ~
. M)

W1(f) — M{ 2irfM ~ + 

~~ 2itM(f •4- 
~~
. M)

(2.9.7)

~~~~~~~~~~ ~l-E2fMr’~~ 
~~~~~~~~~~~~~~~~~~~

Tukey ’s window possesses the property of having most of its power concen-
trated at low frequencies. Furthermore, Tukey ’s window results in smaller
bias in the spectral estimate than Bartlett’s window.

2.9.4 Parzen ’s Lag Window

Definition 2.9.4 The function defined by

l-6[ J*L 32 ÷ 6[ .4~L 33 , l u l ~~~

w~( u )  2(1 - J*L
]3 

, ~~~< ju) < M  (2.9.8)

, Lul > M  -

is called P arzen’e lag window. The Fourier transform of equation (2.9.8) is
called P arzen’s spectral window and is given by

W~(f) = ~~ csing~~
/2)r, ~~~~~~~~ (2 9 9) 

— 

I
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The above window, which was introduced in the early 1960’s, gives much wider
lobes and its power is not concentrated primarily at lower frequencies as in
the previous window.

2.10 Some Remarks Concerning the LaQ Windows

Scientists who have been involved in choosing the shape of a lag window ,
w(u), have taken into consideration- the fact that the spectral window , W(f)
(that Is, the Fourier transform of the lag window), should be concentrated
near the zero frequency. Blackman and Tukey, [13], looking at the probl em
from the cotmiunications engineering point of view , almost identifi ed it with
that of choosing the intensity distribution along an antenna , so that the
variation will fall in a narrow beam. The principal nuxl:mwn and the
subsidiary extreirsrz of W(f) are called , respectively, mai n and side lobes.
A window should be an even function so that it can equally treat positive and
negative values of the spectral density function on both sides of a given
point of the time series. It should integrate to unity ; that is ,

1 W(f)df = 1 , (2.10.1)

and shoul d achieve a maximum value at the frequency f = 0. That is ,

W(ffl <W( 0), for all f.

It should be concentrated as much as possible about f = 0 so that the
behavior of the spectral density function is concentrated as much as possible
in that.neighborhood .

It is my opinion that there is no agreed valid criterion for comparing
the degree of concentration of any window. One criteria could be the ratio
r~f the size of the second largest peak to the size of the largest peak.
However, again this would be powerful only in the case where the second
largest peak would occur at the same point. This fact explains why one has
to consider all the different windows , in addition to the most popular , in
one’s search for the most appropriate case.

For the main lobe of W(f) to be concentrated , the graph of w(u) should
be flat due to the way the two concepts are related . Also , for the side
lobes to be small , w(u) should be smooth and should not change rapidly as in
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the case of the rectangular window . Therefore, one should compromi se. The
above authors’ investi gations have been done along the lines of compromise ,
and as a resul t, there exist numerous wi ndows among which to choose.

Taking Bartlett ’s spectral window, WB(f), as an example , we find that
when it is graphed against frequency, it is found to be syninetric about the
orig in and has zeros at f = ±~ç~ 4. 4 

The distance between the first zeros on either side of the origin is
called base width. The base width for Bartlett’s window is equal to ~~~ . It
is inversely proportional to M and al so to the variance. On the other hand ,.
by increasing the base width , the bias , 8(f), increases as well. Thus, one
is forced to compromise between bias and variance in choosing a particular
wi ndow.

The rectangular window is more concentrated about the center frequency
than any of the other windows under consideration . Nevertheless, although
it has the smallest bandwidth , which imp l ies small bias , it also has the
largest side l obes. This makes it very impractical . The first side lobe is
about 1/5 of the height of the main lobe which shows unrealistic characteri-
zation of the estimate of the power spectrum. 

-

Tukey claims that the window he proposed with Blackman , the use of which
i s called “Hann ing” after the Austrian meteorologist Ju. ~us Von Han , is
simple and convenient. Two facts about it are: that the ~iain lobe is four
times as wide as the side lobes; and that the side l obes are~ 1% or 2% of the

S 
height of the main lobe.

The above remarks will be extensively examined with the analysis of the
ionospheric information in Section 4.
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3. MODELING AND ANALYSIS OF IONOSPHERIC INFORMATION

3.1 INTRODUCTION
HF coninunications are provided by systems not specifically limi ted by

line-of-sight , extended distance , or intervening terrain obstacles. However ,
ionospheric disturbances , both natural and man-made, complicate the use of the
HF media , [2). The HF communicator had as his only propagation aid , the
monthly predictions for undisturbed conditions prepared three months in advance
by the Department of Commerce, and distributed by the U. S. Army Strategic
Coninunications Command. While valid for long range planning, they do not
account for diurnal variations or disturbed ionospheric conditions that may
degrade communications. It is , therefore, necessary to develop a system to
provide tactical communicators with propagation predictions in near real-time ,
and prepared specifi cally for medium and long range distances.

The aim of this section , therefore, is two—fold:
a. to introduce a. widely accepted statistical concept for the prediction

of oblique incidence soundings including application for the prediction of
vertical incidence soundings , and

b. to develop more suitable statistica l models to forecast either the
oblique or vertical incidence soundings over specific paths or at specific
terminals , one , two , three, . .. ,  k time slots ahead, beginning wi th a certain
origin.

It is shown that for a 500 Km path , both oblique and vertical incidence
recordings are non-stationary stochastic realizations. That is , they form a

S discrete time series that is not in statistical equilibrium . A procedure is
proposed to handle this type of information and to investigate the possibility
of characterizing the data wi th either an autoregressive process, a mov i ng
average model , or a mixture of autoregressive-moving average processes.

A systematic presentation of recording ionospheric soundings for the
purpose of forecasting is given In section 3.2. An autoregressive model has
been developed for the di screte realizati on representing the 13th day vertical
incidence (VI) and oblique incidence (01) critical frequencies observed for

the 500 Km path, Fort Monmouth, N. J. — Fort Drum, N. V., in section 3.3. The
complete procedure of fitting the models Is given , along with the associated
confidence intervals. Also included In this section is the development of
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another autoregressive model that characterizes the behavior of the 18-day
overall VI and 01 soundings for the experiment. A prediction process based
on the widely accepted ftmes—Egan approach, [1], is given in section 3.4. In
this section , the limi tations of the process and suggested improvements are
covered. Finally, in section 3.5, a summary and conclusion are presented.

3.2 OESIGN OF THE EXPERIMENT
To accomplish the task of developing both a functional relationship S

between 01 and VI max imum observed frequencies (MOF) and a forecasting model ,
the Corrmunications/ADP Laboratory, of the U. S. Army Electronics Command , had
been involved in an extensive collection of VI and short-path 01 ionospheric
data at three different distances with Fort Monmouth , N. J., as the base
station . Experimentation was performed in the 2—16 MHz range, using two
ionosondes, one as a fixed terminal and the other as a mobile terminal , as
shown in figure 3.1. The mobile terminal was situated at Fort Dix , N. J. ,
establishing a 60 Km path; at Aberdeen Proving Ground , Md., to establish a
200 Km path; and at Camp Drum, N. V., to establish a nominal 500 Km path
(figure 3.2). This section will address only the 500 Km experiment.

Each terminal made scheduled soundings every ten minutes for an 18—day
experiment. While the fixed terminal was transmitting ani receiving its own
signal , the mobile termina l would simultaneously receive the same transmis-
sions. The same procedure was followed for the mobile terminal with respect
to the fixed terminal (figures 3.1 and 3.2). Both ionosondes were synchro-
nized to the WWV (HF) time standard (National Bureau of Standards) so that the
“remote” sounder scans would be precise with the Fort Monmouth terminal. The
number of days each experiment was performed has no significance with respect
to the results obtained , but was a matter of funding. The basic instruments
used were two Granger Associates Model 3905—5 Ionospheric Sounders, matched

0 
with - wide responde delta antennas.

The frequency range of the ionosondes was l imited from 2-16 MHz, in three
octaves, with 400 discrete frequency channels per octave. Transmissions
consisted of successively “stepping” through the channels of each octave with
a pulse width of 100 mIcro-seconds to maximize the system sensitivity . The
data is a recording of the time delay from lonosonde to ionospheric reflecting
layer and return. Time delay is a measure of the virtual height 0f reflection
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from the layer. The trace of the returned pulse on a scale of frequency
versus time delay (virtual height) is the ionogram record, figure 3.3.
tonogram records of the data were taken on 35mm fi lm at Fort Monmouth and on
l ight sensitive oscillograph paper at the remote terminals. After collection
and develo pment, the ionograms were scal ed for the extraordinary critical
frequencies , f

~
F2, as shown in figure 3.4. The f

~
F2 data was then compiled

for computer analysis and for comparison between the observed VI and observed
- 01 critical frequencies. S

The experiment results were dependent upon ionospheric conditions and
S man-made noise. Conditi ons were characterized by the Space Disturbance Fore-

cas t Center , Institute of Telecommunication Sciences, Boulder , Colora do, as
generally undisturbed , but some interference occurred . Some data ( ionograms )
were unreadable due to man-made noise , and solar and geomagnetic activity .
For those few records that were unreadable (though signal was detected),
simulated data was prepared. The occurrence of obscured data was negligible
over the experiment.

3.3 FORECASTING MODELS FOR IONOSPHERIC SOUNDINGS
In this section , we shall propose a step—by—step procedure in:
a. identi fying and filtering the ionospheri c information ,
b. fitting the most appropriate model to the data ,
c. applying the backwards fil ter technique and diagnostic checking, and
d. forecasting and updating of the appropriate model .
Specific reasons and mathematical formulations for this sequence of steps

are stated in Section 2. Therefore, the basic idea and philosophy of this
section is the implementation of the procedural approach proposed in this
study for analyzing non—stationary information. The approach has yielded
better results for fitting and forecasting than those obtainable with other

* methods , [1), a4], [15), [16), [17-), [18)~ that exist in the literature.
In the previous section, the manner in which our time series were

generated was outlined for the vertical incidence (VI) and oblique incidence
(01) ionospheric soundings. Specifically, we have available 18 days of data
where each day is divided into 144 time slots. The data was taken over
consecutive days under the same conditions; however, due to di urnal ionospheric

changes, there is an inherent and uncontrollable diurnal variation in the
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soundings. Thus , the observed data is a stochastic realization that consists
of 144 data points wi th the corresponding time of day. In view of the diurnal S

differences in the data , it was .appropriate to choose one of the 18 days at
random for each of the observed ionospheric series for the time series
analysis. Furthermore, we felt that it was appropriate to also consider the
average of the 18 days for the time series analysis. The 13th day (Apri l 5,
1971) was chosen at random for the statistical analysis. This amounts to
doing a very explicit time series analysis with respect to identifying the
appropriate stochastic process that characterizes these four phenomena . We
shall begin by following the procedural approach detailed in Section 2, which
we believe is a very good procedure for both short-term and near-real-time
forecasting for this type of information.

3.3.1 Model Identificati on and Fi1terinq~
The ini tial step in the procedural approach , as was stated previously,

is the identification of the stochastic realization. Primarily, we ask , “is
the information that we have to analyze stationary or non—stationary?” By
stationary we mean that the data will be in equilibri um around a constant
mean wi thout any trends. The origina l information shown by figures 3.5, 3.6,
3.7, 3.8, which represent, respectively, the 13th day observed VI , mean VI ,
13th day observed OX , and mean 01 data, visually represent non-stationary
stochastic realizations. In order to justify this fact, the sample autocor-
relation function was pl otted and a statistical test was performed to see if
there were any non— linear components in the data. Fi gures 3.9, 3.10, 3.11 ,
and 3.12 show that in all cases the sample autocorrelation function does not
dampen out very rapidly. This is certainly, as stated in section 2.4, an
indication that there are non—linear components within the observations.
Secondly, Kendal l ’ s Tau statistic, [19]~ for each series at the ~ = .05 level
of signifi cance (as shown in table 3.1, P.63) indicates that there are non—
l inear trends.

* Chapter 5
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Table 3.1 Kendall’ s Tau Statistics for Trend

Ionospheric Series Ca lcula ted Z 05 Decision
Statistic

13th day V I observed 5.192 ±1.645 reject H0
18—day V I averaged 4.874 ±1.645 reject H0

day OX observed 5.641 ±1.645 reject H0
18-day 01 averaged 4.964 ±1 .645 reject H0

Thus , we are certain that the ionospheric information is not in statis-
tical equilibri um. The next step in the proposed procedure is to develop a 

S

filter that will eliminate the non-stationary components from the series. The
initial step towards this end is to implement a first difference filter ,
name ly: S

t = l , ... , 144,

to each of the four realizations . Upon applying this fi l ter, the sample auto—
correlation functi ons were computed for the four cases and are shown in
figures 3.13, 3.14 , 3.15, and 3.16. It is evident by inspecti ng these autocor-
relation functions that the 13th day observed 01 and VI information dampen out
fairly rapidly about the zero axis except at the zero point. Kendall’ s Tau
test was conducted on the fil tered data. Results indicate that in both of
these cases the non—stationary components had been removed as shown in
table 3.2.

Table 3.2 Kendall’ s Tau Statistics for the
First Difference Filtered Data

Ionospheric Series - Calculated Z Decision
- Statistic

13th day VI observed -0.379 ±1.645 accept H0
18-day VI averaged -4.577 ±1 .645 reject H0
13th day 01 observed -0.574 ±1.645 accept H0
18-day 01 averaged -4.616 ±1.645 reject H0
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Thus, Kendall’ s Tau test and the visual interpretation of the sample
autocorrelation function indicate that we have reduced the two 13th day
observed stochastic realizations (OX and V I) into stationary series. Thus,
they are in the proper form to proceed in identifying the appropriate model
that characterizes their behavior. However, since the average of the 18 days
of 01 and VI soundings do not pass the cri teria for Kendall’ s Tau test, then
one conc ludes that trends still ex i st in these series. Furthermore, the

sample autocorrelation functions in these cases do not indicate that there
is rapid enough dampening to insure stationari ty (see figures 3.14 and 3.16).
Therefore, we must proceed to use a second—difference filter , namely: 

5

— 2X t 1  + X t 2 ,  t = I , ..., 144

As shown in figures 3.17 and 3.18, the sample autocorrelation functions
of the second-difference averages, the dampening behav ior seems to have been
improved . Furthermore, Kendall’ s Tau test (as shown in table 3.3 below) seems
to have reduced the original non—stationary realizations into proper form;
thus, we can proceed to model the information.

Table 3.3 Kendall ’s Tau Stati stics for the
Second Difference Filtered Data

Ionospheric Series Calcula ted Z 05 Dec i s ion
Statistic

18-day VI averaged 0.053 ±1 .645 accept H0
18-day 01 averaged -0.093 ±1.645 accept H0

It is appropriate at this time to emphasize that the 13th day observed 01 and

• VI data needed only the first-difference fi l ter. The non—stationarities that
occur in each of the 18 days seemed to have Increased the non—stationary
components during the averaging process, requiring a second-order fil ter.
However, as shown in figures 3.17 and 3.18, the improvement in the sample
autocorrelation function was slight. Since we feel that there is a stronger

S 
decision with the second-difference filter for the averaged series, the
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procedural approach wil l be continued with the first-order fil ter in
anal yzing the 13th day observed data, and with the second-order fi l ter in
analyzing the averaged information .

3.3.2 Fitting The Model
Now, having reduced the stochastic realizations into stationary form,

the next step in the procedural approach is the fitting process. Specifically,
we are interested in identifying the appropriate model , and secondly, having
identified the model as either autoregressive (AR), moving—averages (MA), or
a mixture of the two (ARMA), the order of the particular process must be
determined. In deciding on the order of a partictJar process, one has to be
concerned with estimating the parameters that are associated wi th the specific
model . Speci fically, with regard to the four ionospheric series, we have a
aimuitaneouB investigation of both the model that fits that data and the esti-
mation of the par~metero associated wi th the model. As indicated in the
reconinended procedure for identi fying the model , graphic displays have been
structured as shown by figures 3.19, 3.20, 3.21, and 3.22 , for each of the
four realizations that give the residual variance of each of the realizations
as a function of the order of the three models involved . The decision as to
which model best characterizes these series resulted from the criterion of
minimum residual variance as stated in section 2.4.2.

As shown in the four graphs , the order (m ,q) refers to the order rn of the
autoregressive process and the order q of the moving averages process. Thus ,
for example, (3,0) is a purely AR process of order 3; (0,2) i s a purely MA
process of order 2; and (3,2) is a mixture of a thi rd order AR and a second
order MA process. As depicted in the figures , with respect to the residual
variance, it is clear that the “best” models that should be selected are:

1) (2,0) process for the 13th day observed VI soundings ,
ii) (3,0) process for the 18-day mean VI soundings ,

Ii i) (3,0) process for the 13th day observed 01 soundings ,
iv) (3,0) process for the 18-day mean 01 soundings.
It will be shown later, that the difference equations that have been

identified above are the most appropriate ones to characterize our data. Of
S course , In reaching the decisions wi th respect to the selection of these

models , the principle of “parsimony ’ was also taken i nto cons ideration.
Specifically, this means that if there was a lower order model (refer to
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figures 3.19 through 3.22) that had an equal or slightly higher residual vari-
ance than a higher order model , the l owest order model would be selected
because the number of parameters and convenience that such a model offers
computationally is desirable , and will usually have little effect on the near-
real—time forecasts Of the data .

The parameter estimates of the specified model are simultaneously
obtained wi th the determination of the order. To calculate the least squares
estimates of the parameters, the procedure discussed in section 2.4 was fol-
lowed. The estimates of the AR parameters, x1, ct~, ~~~~

, and those of the
MA process , B~ ~~~ 

Bq i must satisfy the stationarity and i nvertibility
properties, respectively. Briefly stated, for each model (m,q) considered
(see figures 3.19 through 3.22), one finds the stationary region for the ni
autoregressive parameters and the invertibility region for the q moving -
avera ge parame ters , and forms the joint region for both . This region is then
“gridded ” over all parameters and the residual variance is computed for each
point 

~ 1’ ~2’ ~~~~~ ~m’ 
B1~ B2, ..., Sq)~ One then finds the point of minimum

residual variance. Thus, we choose the model (m ,q) and the parameters associ-
ated with it, which result in minimum residual variance. To do this we used a
grid program which computed the residual variance for all possible comblna—
tions of parameters for each of the three processes. Therefore, for the
appropriately filtered series , the estimates of the true states of na ture are
shown in table 3.4.

Table 3.4 Approximate Least Squares Estimates
of the Best Model Parameters

Model Series Order (m,q) U a2 a3

~ l3 ’
~ day vi observed (2,0) 0.0020 0.289 0.395

ii. 18-day VI averaged (3 ,0) 0.0004 -0.676 —0.559 -0.258

iii. l3~
I
~ day 01 observed (3,0) 0.0000 0.484 -o.iaa 0 266

iv . 18—day 01 averaged (3,0) 0.0008 -0.574 -0.352 -0.070

These results yielded , respect ivel y, the fol1ow i n~ d ifference equa tions in
terms of the first difference filtered series , ‘

~~
‘ and the second difference

filtered series wt:

—— 
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i. (
~‘~ 

- .002) = .289 
~
‘t-l 

- .002) + 
~~~~~~~ 

~‘t-2 - .002) +

(3.3.1)

11. (w ,~ - .0004) = -.676. (wt 1  - .0004) - .559 (w~_~ - .0004)

— .258 (Wt 3 - .0004) + Z~ (3.3.2)

iii . (
~t 

- 0.000) = .484 
~ t-i - 0.000) - .102 

~ t-2 
- 0.0000)

- 4- .266 
~‘t-3 - 0.000) 1- (3.3.3)

iv. (w
~ 

— .0008) = — .574 (~v~~1 - .0008) - .352 - (w t_2 - .0008)

— .070 (Wt 3  — .0008) + (3.3.4)

3.3.3 Inserting the Backwards Filter and Diagnostic Check of the Models
The next step in the procedural approach to forecasting is the implemen-

tation of the backwards fil ter and diagnostic check of the models. Having

selected the appropriate stationary stochastic model and its order, a diag-
nostic check must be performed to deter~ñirte the adequacy of the models. As
indicated in Section 2, if the original information was filtered to put it
into the- proper form to perform time—series analysis , we must, at this point
incorporate back into the model the non-stationarities that the fil ter has
el iminated. Tha t i s ,. we must introduce the concept of the backward filter
into our model . This backward fil tering concept is very important because
it puts back into the model some of the basic characteristics that the
initial data contained so that the final interpretation of the observed
real izations would be more meaningful . Thus, we insert the appropriate
fil ter, either:

xt - xt_l ,

or 

wt = x~ - 2x
~_1 

+

into equations (3.3.1), (3.3.2), (3.3.3), and (3.3.4).
Given below are the forecasting models, having been modified to inLl~de

the filtering concept. That is,

p 
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i. x~ = l.289x ,~_ 1 + O.lO6Xt 2 - 0.395xt 3  + 0.007 + Z,~ (3.3.5)

ii. ~ = l.324x~~1 — O.2 O 7x~~2 + 0.l84x~_3 - 0.043x t_4 -

+ .001 + (3.3.6)

iii. xt = l.484x~~1 — O.586x~ ~ 
+ 0.368xt_3 — O.266xt_4 + Z~ (3.3.7)

iv. x~ = l.426x~_ 1 + O.2O4x~~2 - 0.O6Oxt_3 - OS.2l2x t_4 
— 0.07ox,~ 5

+ .0016 ÷ (3.3.8)

Having formulated the above difference equations for the stochastic realiza-
tions , the next step is to investiga-te the goodness-of-fit of the structured
models. This is done as outlined in section 2.4 by calculati ng the residuals
incurred , that is, by subtracting the modeled series from the observed series.
In other words , if x.~ is the observed series and x~ is the modeled series ,
then thei r difference rt, is the residual (equation 2.4.16); that is:
r
~ 

= x~ - x~. The residuals should behave as a purely random process, with
a zero mean and a variance in the order of 1/n. As a first step in simulat-
ing the x,~, the unknown value of Z~ Is set to its unconditional expectation
of zero in equations (3.3.5) through (3.3.8), and it is assumed that the
va l ues of x~_ 1 , x~~2, ~~~~ ..., X~;_ ~~ are known . As showrl by figures 3.23~
3.24 , 3.25, and 3.26, we have an excellent fit of the estimated models with
respect to the observed series. One, of course , can perform a statistical
test to justify the -fit. That is, the resul ti ng res iduals  shoul d behave
approximately like a purely random process; in other words, they should be
normall y distributed with a mean of zero and a variance of 1/n. Clearly, for
this sample size, the variance becomes very small. Thus, the standard devia-
tion of the sample autocorrelation is l/~~ = l/~Ti~4~ = .0833. The 95%
confidence intervals of the sample au tocorrela tion r

~~
(k) are ±1.96 (.0833)

= ±0.163. At the 5% level of significance , one could expect (.05)144 or 8
out of the sample autocorrelations to lie outside the confidence interval.
Only two autocorrelations for the 13th day observed VI and 01, and
two autocorrelations for the 18—day averaged information lie outside
of the confidence interval (see tabl es 3.5, 3.6 , 3.7 and 3.8). Hence, one

*Note : In the simulation graphs , the lines connecting the points are aids
to see the relationship of the points.
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Table 3.5 Sample Au tocorrela tions r
~~
(k) for the Simulated 13th Day

Observed V I Data With a 95% Confidence Interva l of ±0. 163

Lag k
(T ime Sample Autocorrel ati on r

~~
(k) x10~

2
Slots)

1— 1 0 —14.1 —31.8 — .003 — .001 -.051 — .040 -.023 — .023 — .037 — .039

- 
11-20 — .005 — .033 — .021 .008 .011 -.036 -.010 .010 -.038 -.019

21—30 — .008 — .026 .007 - .008 - .002 - .008 — .093 - .069 .157 - .096

31—40 — .097 — .031 .042 — .002 .056 .103 .166 .094 .069 .103

41—50 .072 .045 — .051 .003 .058 - .033 — .055 - .077 - .089 .155

51-60 .157 .025 -.010 .017 .039 — .037 -.027 -.020 -.084 -.111

61— 70 — .120 .095 .122 .029 .003 .072 - .021 .036 - .004 - .024

71-80 — .111 — .153 .002 .042 .039 .055 .026 .021 .025 — .007

81-90 .009 .005 .038 — .023 -.013 .021 .019 .009 -.099 -.119

91—100 — .059 .025 -.018 .035 .057 .023 .009 -.009 — .019 -.074

101 -110 .066 .000 -.039 -.035 -.079 -.067 .041 .077 .031 -.032

111— 120 .01 9 .073 — .121 — .037 — .056 -.040 — .097 - .119 -.014 .056

121— 1 30 -.032 -.087 — .011 -.006 -.023 .018 .041 -.096 -.1 06 - .041

131—140 — .038 — .027 .009 — .040 .005 — .051 - .087 -.029 .025 -.036

141—143 — .455 — .342 1.147
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Table 3.6 Sample Autocorrela tions , r
~~
(k) for the Simulated 18-Day

Averaged VI Data With a 95% Confidence Interval of ±0.163

Lag k
(Time Sample Au tocorrelation r

~~
(k) xl0~

2
Slots)

1-1 0 -13.5 .84 -17.1 -20.2 -.050 .032 .067 -.005 .035 -.064

11-20 — .014 — .011 -.003 .017 .032 -0.21 .017 -.Q44 - .002 .048

21-30 — .037 .028 — .097 .072 -.068 .180 -.095 -.031 -.078 - .023

31-40 .060 .046 — .106 .067 .014 .099 .008 - .028 .018 - .059

41-50 .033 -.006 .008 .005 - .033 .000 -.019 .031 - .011 .01 3

51-60 .000 — .015 .035 -.032 .027 — .043 .004 -.013 .013 .012

61-70 -.016 .001 - .003 .002 -.009 .033 .015 .016 -.023 -.029

71-80 -.059 .058 - .031 .075 — .003 -.018 .017 -.029 -.011 .019

81-90 -.011 .007 -.011 .012 .020 .005 -.001 — .045 .001 — .013

91-100 .021 -.004 -.014 -.006 .008 .018 .012 -.008 -.009 .011

101-110 I -.019 .025 -.037 .002 .018 .013 .003 .013 -.017 .029

111-120 - .001 — .004 .000 — .018 -.003 -.016 -.013 .000 -.005 .015

121-130 -.031 .035 -.022 .031 .014 -.016 -.009 -.021 -.027 .006

131-140 .006 - .006 .034 -.010 .018 .000 -.014 .098 .028 .028

141-143 .086 -.417 .206

• 
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Table 3.7 Sample Autocorrelations, r
~2
(k), for the Simulated 13th Day

Observed 01 Data With a 95% Confidence Interval of ±0.163

Lag k
(Time Sample Autocorrelation r

~~
(k) xl0’~

2
Slots)

1—1 0 —42.5 17.5 —20.2 -.031 — .021 -.052 -.018 — .031 -.044 -.033

• 11— 20 —.041 — .004. —.009 .002 .002 -.017 .022 — .045 .015 -0.55

21—30 .013 —.011 .004 .024 -.033 .007 — .033 -.021 — .044 — .061

31—40 -.046 — .013 .019 .079 .062 .151 .195 .189 .208 .093

41—50 —.021 • 041 .007 . 086 - .023 . 010 - .089 .033 — . 018 . 048
51—60 .033 .121 .029 .044 .031 -.002 -.009 -.160 -.009 -.095

61—70 .145 .022 .058 — .004 .085 .026 .073 -.104 -.11 6 -.090

71-80 — .042 .088 -.032 .088 .019 .059 .032 -.038 .050 .031

81—90 .044 .027 — .025 .026 .093 .010 .026 — .106 -.049 -.097

91—100 — .051 — .040 —.003 .099 .059 .044 .009 -.017 .025 -.018

101—110 — .018 — .017 .003 — .004 —.013 -.1 05 - .055 -.044 .101 .062

111— 120 .078 .022 .090 —.047 -.012 — .211 -.092 — .149 .046 — .009

121-130 -.035 -.054 -.058 .049 — .008 .046 -.062 -.002 -.083 -.036

131-140 -.037 — .102 -.005 — .076 -.002 — .036 -.033 .005 .012 -.399

141-143 .088 -.758 1.42
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Table 3.8 Sample Autocorrelations , r
~~
(k) for the Simulated 18-Day

Averaged 01 Data Wi th a 95% Confidence Interval of ±0.163

Lag k
(Time Sample Autocorrelation r

~~
(k) x1O~

2
Slots)

1— 10 —18.9 -6.59 —19.1 -5.33 — .012 .018 .006 .009 -.013 -.010

11-20 —.007 .000 .029 -.016 -.009 -.005 -.004 .008 -.010 .019

21—30 — .005 .006 .000 -.028 .041 -.017 .011 — .063 -.001 .004

31-40 .011 .001 —.025 .024 .015 .036 .009 .000 -.021 -.022

41-50 .023 .008 .003 — .019 — .001 - .015 .000 .000 .012 .008

51-60 .003 -.014 .000 .011 .000 -.012 -.018 .014 .000 .007

61-70 — .019 .004 -.008 .013 .005 -.004 .008 -.020 .016 -.018

71-80 — .008 .013 .019 — .003 .000 — .012 .007 — .006 .003 — .006

81-90 .004 -.001 .005 .002 .006 -.009 — .002 -.01 1 .004 .000

91-100 —.002 -.007 — .007 .003 .012 .000 .01 3 -.012 -.001 -.002

101-110 — .004 .001 -.009 -.018 .022 .004 .015 .018 -.014 .001

111-120 -.010 .007 -.004 -.009 -.005 .003 -.013 .013 -.009 .011

121-130 — .015 .008 -.004 .020 -.005 - .006 -.009 -.011 -.009 .011

131-140 — .004 .017 -.002 -.007 -.005 - .006 .012 — .073 -.272 - .135

141—143 — .385 1.17 — .319
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can conclude that the residuals constitute a purely random process and that
the fitted models give satisfactory representation of the observed series.

There is a further statistical test described in section 2.4.3 that
reflects on the accuracy of our models. From equation (2.4.17), the calcu-
lated value of Q ‘

~

.. 4..m q for the first K autocorrelations , where K = n/l0,
m = the order of the AR process, q = the order of the MA process. When this
value is tested against the appropriate x2 value , and if

< -m—q (1 
- ct/2)

then the fitted model is adequate, [12]. For the stationary stochastic
ionospheric realizations ,

i. for the 13th day observed VI data, Q = 16.67< x~2 (.975) 
= 24.7

ii . for the 18—day averaged VI data, Q = 12.72< x2 (.975) = 24.7
iii. for the 13 day observed 01 data, Q = 21 .29< 4~ 

(.975) = 23.3
iv. for the 18—day averaged 01 data, Q = 10.41 < x~2 (.975) 

= 24.7.

Clearly, then, the four estimated models are adequate.
By the mean approaching zero, it Is meant that in using these types of

models there is a tendency to either under— or over-forecast a particular
estimate at a given time slot. However, in the long run , if the over- and
under-estimates are averaged, this average would be zero. The basic idea of
the “purely random process” means that as n -+ 

~~~, the variance approaches
zero. This Is not the case, however, because if the variance is zero, we
would have a degenerate phenomenon where the mass would be concentrated at
a point, and Interpretation would be impossible.

3.3.4 Forecasting and Updating
The final step In the procedural approach to time series modeling is to

state the model in such a form that forecasts 9. steps ahead are possible ,

where 9. = 1 , 2, ... , n. Given below are the four estimated ionospheric
models in the appropriate form for 2. step-ahead forecasts:

1. for the 13th day observed Vt information , xt(2.) l.289Xt+t...l

+ 0.106 t+L-2 - 0.395 t÷L-3 + .007 + 
~~~ 

(3.3.9)
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ii. for the 18 - day averaged VI information, X t (& )  
= l.324Xt+9._l

- O.2Olxt+9....2 + O.l84Xt+9._3 
- O..O43xt+9._4 - O.258xt+9._5

+ .001 + ~~~ (3.3.10)

iii. for the 13th day observed 01 information , X t (9 . )  
=

- O.586x t+2.a + O.368x~÷9._3 - O.266xt+2._4 + Z~42. (3.3.11)

iv. for the t8 — day averaged 01 information, X t (L) lø426xt+9.~
— O.204xt+9....2 + O.O6OXt+L....3 

- O(.2l2x 1~ 9._4 —. O.07Qx~~9._5

+ Zt+L 4 .0016 . (3.3.12)

Of course, the accuracy of these models will be much better for small 2.. As
2. becomes large, i.e., 9. >> iii + d + q, where d is the order of the fil ter and
rn and q are as previously defined , the accuracy decreases substantially.
However, one can forecast any number of steps ahead and update the forecasts
as a&litional information becomes available.

To illustrate how one may update the forecasts for a time t (origin),
suppose that a new piece of data, x~~1, becomes available. Wi th the new
origin at time t+l , we update the time t forecasts by eq~4tion (2.4.42) as:

= x
~
(2.+1) + Q9.Z1~ 1, £ 1 , 2, .. ., 11 ,

where = x~~1 — Xt(l) and 99. is as described in section 2.4.

Given in tables 3.9, 3.10, 3.11 , and 3.12 below are £ steps ahead fore-
casts (up to 9.=ll) at an arbitrary t = 72 origin, with updating, along with
their 95% confidence intervals.

P
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Table 3.9 Forecasted Values of the 13th Day Observed VI Series at
Origin ~ = 72 and Updating Under the Assumption x73 Becomes Ava i lable

ACTUAL LEAD 95% PROBABILITY UPDATED
TIME VALUE TIME FORECAST LIMITS FORECAST

1150 9.00 -- ----
1200 8.80 1 - 8.875 ± .404
1210 8.70 2 8.885 ± .596 8.788
1220 9.00 3 9.022 ± .778 8.889
1230 9.20 4 9.047 ± .962 9.198
1240 9.40 5 9.064 ±1.139 9.235
1250 9.60 6 9.086 ±1.310 9.270
1300 9.70 7 9.106 ±1.474 9.302
1310 9.80 8 9.127 ±1.631 9.331
1320 9.90 9 9.148 ±1 .782 9.359
1330 9.90 10 9.169 ±1.926 9.386
1340 10.00 11 9.190 ±1 .926 9.411

Table 3.10 Forecasted Values of the 18—Day Averaged VI Series at
Origin t 72 and Updating Under the Assumption x73 Becomes Ava ilable

ACTUAL LEAD 95% PROBABILITY UPDATED
TIME VALUE TIME FORECAST LIMITS FORECAST

1150 8.79 —— ----
1200 8.71 1 8.721 ± .214
1210 8.90 2 8.729 ± .292 8.879
1220 8.96 3 8.752 ± .371 8.969
1230 9.00 4 8.749 ‘

± .473 8.949
1240 9.13 5 8.737 ± .562 8.987
1250 9.16 6 8.745 ± .616 9.005
1300 9.17 7 8.752 ± .641 8.972
1310 9.19 8 8.752 ± .644 8.902
1320 9.19 9 8.753 t .656 8.803
1330 9.24 10 8.758 t .735 8.868
1340 9.25 11 8.763 ± .735 9.043
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Table 3.11 Forecasted Values of the 1 3th Day Observed 01 Series at
Origin t = 72 and Updating Under the Assumption x73 Becomes Available

ACTUAL LEAD 95% PROBABILITY UPDATED
TIME VALUE TIME FORECAST LIMITS FORECAST

1150 9.20 -— ----— ----

1200 9.30 1 9.305 ± .586
1210 9.60 2 9.439 t .791 9.509
1220 9.60 3 9.467 t 1.006 9.547
1230 9.90 4 9.495 ± 1.229 9.585
1240 10.10 5 9.541 ± 1.438 9.651
1250 10.20 6 9.568 ± 1.638 9.678
1300 10.20 7 9.584 ± 1.831 9.704
1310 10.20 8 9.601 ± 2.016 9.721
1320 10.60 9 9.615 ± 2.193 9.745
1330 10.70 10 9.624 ± 2.362 9.754
1340 10.60 11 9.631 ± 2.362 9.761

Table 3.12 Forecasted Values of the 18-Day Averaged 0! Series at
Origin t = 72 and Updating Under the Assumption x73 ~:comes Ava ilable

ACTUAL LEAD 95% PROBABILITY UPDATED
TIME VALUE TIME FORECAST LIMITS FORECAST

1150 9.26 —— --— —
1200 9.25 1 9.249 ± .198
1210 9.42 2 9.260 ± .287 9.360
1220 9.56 3 9.274 ± .395 9.474.
1230 9.55 4 9.283 ± .514 9.483
1240 9.62 5 9.294 t .652 9.594
1250 9.66 6 9.307 t .801 9.~~7
1300 9.69 7 9.320 ± .959 9.360
1310 9.71 8 9.334 ±1.129 9.384
1320 9.75 9 9.349 ±1.649- 9.399
1330 9.75 10 9.365 ±1 .495 9.425
1340 9.78 11 9.382 ±1 .495 9.442
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It is clear from tables 3.9 and 3.11 that, for a smal l number of steps, i.e.,
£ = 1, 2, 3, our forecasts of the observed series are quite good. For
larger L, the forecasted values generally tend to underestimate the future
values . Updating the forecasts in these cases improves the estimates . The
2. step ahead forecasts for the 18-day averaged series are also very good for
2. 1 , 2, 3, steps ahead. The necessity for updating in these cases is
obvious since, here agai n , updating yielded an excellent gain of accuracy.

3.4 A Prediction Process Based on The Sample Autocorrelation Function

Ames and Egan , [1], have developed a prediction process based upon the
sample autocorrelatlon function to make short—term predictions for the maxi-
mum observed frequency (MOF), the lowest observed frequency (LOF), and other
high frequency (HF) propagation parameters dealing wi th the ionosphere. The
acquisition of the data for their model was similar to the 500 Km experiment
descri bed in section 3.2.

Their data was collected from oblique incidence soundings which were
transmitted every 10 minutes from the U. S. Naval Station at Lualualei ,
Hawai i , and received at Palo Al to, Cal ifornia, a distance of about 4400 Km.
The analysis was based on ionograms recorded from January 7 through March 12 ,
1965. For each 24—hour period, there were 144 increments and , in duration ,
there were 45 days of data available.

For each 10-mi nute increment of the 24-hour period , the mean and the
standard deviation were calculated for the MOF and LOF. It was pointed out
that the standard deviation represents the variation of the MOF and LOF from
day to day within each particular time slot and not fluctuations wi th time
on a single day. It was di scovered that the standard deviation 0f the MOF
was higher during the day than at night by a factor of 2.17, whi le the MOF
ratio, between these periods was 2.4 to 1. The plot of the MOF vs. standard
deviation further demonstrated the dependence of the standard deviation upon
the MOF.

Next, the sample autocorrelation function of the MOF was calculated wi th
values from five previous 10—minute periods and then plotted as hourly
averages. It was found that the autocorrelatlon of the MOF was high during
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the morning and evening ionospheric transition periods. The autocorrelation
is a measure of the current stability relative to the mean-value function,
whereas the standard deviati on is a measure of the day-to-day variance .

3.4.1 Short-Term Pr diction

Ames and Egan fitted forecasting models to the maximum observed
frequency series and to the lowest observed frequency series to be able to
predict eight successive 10-minute periods following each observation. Their
prediction (or forecasting) model is , [ij,

x(t+T) = ~(t 4- 1) + [x(t) — ~(t)~ ~(t ,T) , (3.4.1)

where t is the present time; T is the lead time; x(t) is the observed value
for time t; ~(t) is the mean value for the time slot t; ~(t + T) is the long—
term mean value for a prediction 1 minutes in the future; g(t,T) is the
sample autocorrelation between values at t and t + T; and x(t+T) is the
future value of the MOF or the LOF predicted for any of eight 10-minute
periods following each observation . That is, equation (3.4.1) states that
a prediction for 1 minutes in the future consists of the long-term mean value
for that time plus a weighted term correcting it for th~ present difference
between observed and average values.

The input data Ames and Egan used in equation (3.4.1) consisted of
current MOF and LOF running averages and standard deviations determined only
from previous data (except for the first few days of “start up”), and values
of autocorrelatiori derived from all the data. The MOF and LOF running
averages were computed and stored separately for each of the 10-minute incre-
ments of the 24-hour day; the standard deviations were computed for each
10-minute increment- and then combined into hourly averages. These values
were then updated when a new measurement was realized by the running average
function:

1 1 1  1 1(1 - 
~~ ~n-1 

+ = (1 - R~ 
x1 # t~ (1 - 

.~ )
fl _ 1 

~1

(3.4.2)
It was stated that for the means, x,,~ represented an observed value and for
the standard deviation , It represented the absolute value of the difference
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between an observed value and the corresponding mean. The value of K was
set equal to 10 for the means, and 100 for the standard deviations.

Data was used from the ful l experimental period in calculating the

sample autocorrelation function in order to obtain relatively smooth esti-
mates of the autocorrelation. The following equation was used to estimate
the autocorrel ati on:

- EN [x~(t) - ~
(t)][x

~
(t - T) - ~(t - 1))

p(t ,T) i=l

/zN [x (t) - ~(t) ]2 zN [x~(t - 1) - ~(t - fl]2
/ i=1 I i=l

(3.4.3)
where N is the number of days measurements were available. In real-time,
values of the autocorrelation could be computed once each month and then when
new values are realized, they could be updated using equation (3.4.2).

The 24 hourly values of the autocorrela-tion , p, for a delay of 10
minutes plus a set of corresponding time constants, t , derived from the least
squares fit to the p data between delays of 10 to 60 minutes , were used as
input to the prediction process. For delays greater than 10 minutes , val ues
of p were calculated from:

= 
~~~~~~~ 

exp-(T - lO)/ T (3.4.4)

The val ues of p calculated from equation (3.4.4) were found to be a few
percent larger than the observed values of autocorrelation. Ames and Egan
concluded that the smoothing of the measured p values over 1-hour periods
plus the abstracting 0f all delays greater than 10 minutes into corresponding
time constants appears to have reduced the unrealistic benefit from this
partial view of the future to a negligible amount.

Ames and Egan express the expected error in predicting with the process

- 
(3.4.1) In terms of the autocorrelation. The expected error is given by:

a~(t +T)

a(t + T) 
= /1 — p2 (t , 1) . (3.4.5)

The above equation predicts the degree to which the variance of the observed
values about the corresponding predicted values will be less than that of the
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observed values about the mean. It was concluded that to make a substantial
reduction in relative to ~~~, say one-half , p must be greater than 0.86.
However, it was stated that ~,~ dictions should be considered “useful” for
values of p down to about 0.5 since even though ~ is not much reduced , the
predicted value i tself is adjusted from the long-term mean by one—half the
presently observed difference .

3.4.2 Updating wi th Fourier Coefficients

rn a l ater article, Ames, Egan, and MacGinitie, [20), use Fourier
coefficients to update the data to elimi nate the random variability in the
input data. The random variability caused unavoidable growth of i rregular-
ities in the diurnal (daily) curves of the long—term function. Thus, instead
of using the technique of running averages (equation 3.4.2) to update the
hourly averages when a new measurement is realized , the long-term data is
converted to a limited number of Fourier coefficients from which the desired
val ues are found as needed. For the mean values , eight harmonics were used ;
for the standard deviations , four harmonics were used.

The followi ng equation was used to derive the Fourier coefficients from
the set of data with a 24-hour period of 144 10-mi nute ~~tervals:

a~(NEW) = a~(OLD) + 
~ 

4. [x(t) — ~(t)] cos (
27Tflt) 

, (3.4.6)

where c = 0.0944 and I = 144. The value of c was chosen so as to allow
the Fourier coefficient to follow long-term ionospheric changes with a time
constant of approximately 11 days.

Ames, Egan , and MacGinitie coninent that this conversion to Fourier
coefficients not only improves the prediction quality , but also substantially
reduces the required amount of computer memory capacity. Al so, the data
storage requirement is reduced by the approximation of the autocorrelat~on
function by a decaying exponential .

3.4.3 The Autocorrelation Function

Ames and Egan throughout their paper take the position that the auto—
correlation that they have calculated Is the true state of nature, that is ,
that they have the true parameter value , not just an estimate of it. This
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is most clearly shown in their constant refercnce to the calculated
autocorrelation as p, not p, or r, which has become the widely-accepted
s~,inbol for the sample autocorrelation function in time series analysis. This
can also be seen later in section 3.4.5 when the expected error in predic-
tions is discussed ; Ames and Egan ’ s expected error depends solely on the
autocorrelation they have calculated. They also take this position when ,
after using a negative exponential function to approximate the autocorrela—
tion, they then compare it to their estimate of p concluding that the
approximation is only a few percent larger than the observed values of the
autocorrelation. They simply compare two different estimates of the true
state of nature.

In the appendi x of their paper , Ames and Egan , [1], give the following
equation to compute the autocorrelati on :

zN [x
~
(t) - ~(t)] [x~(t-T) - ~(t-T )]

~(t,T) = 
_________________________________________ 

(3.4.7)

/ E
N [x.(t) - ~(t) ]2 ~

N [x
~
(t-T) -

i=l 1 i=l

Of course, they do not obtain p (t,T) the true state of nature, but just an
estimate of it , say r(t,T). The estimate (3.4.7) is a function of the time
t and the prediction lead time 1.

The above estimate of p (t,T) is essentially equivalent to the estimate
given by the following expression :

— x1 ) (xt+k -
r (k) = 

t=l 
, (3.4.8)

XX r r1’1 k — 12 rN k  — 
—

4 • I. ~ ~~~ X 11 ~ 
Xt+k X 2,J

t=l t=1

where and are the means of the first and the last (N-K) observations,
respectively. Equation (3.4.8) expresses the lead time in terms of lag k
where rxx(k) is a function only of the lag k. The estimates (3.4.8) and
(3.4.7) are not reconinended [3] in estimating the autocorrelation of the
grounds that, although it gives a reasonable estimate of p when considered
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in i solation from other values of the autocorrelation function , it does not
give a satisfactory estimate when a set of estimates is required . The main
di sadvantage of (3.4.8), and hence (3.4.7), is that two means are used for
the mean correction and that these change wi th lag; In addition , the normal-
izing factor change.s with lag k. The net result of these modifi cations i s
that these estimates are not positive definite which violates the property
of the autocorrelation function.

We suggest the following estimate, [3], [6 1~ which gives the most
satisfactory estimate of the sample autocorrelation function:

c (k)
rxx(k) = 

c
~~

(O) (3.4.9)

where

c (k) = 

~~~~~~ 
~~ 

- 

~
) (x~÷~ - ~~~~~~‘ 

k = 0, 1 , . . . ,  N-i

(3.4.10)
(Cxx(k) is the autocovariance function). Equations (3.4.9) and (3.4.10) are
functions only of the lag k and are independent of time.

3.4.4 On the Prediction Process

Recal l that Ames and Egan use the following equation to forecast future
value of the ionospheri c data :

x(t+T) = ~(t÷T) 4- [x(t) - ~(t)] q(t,T) . (3.4.1 1)

Further, recall how the ionospheric data is collected . This is essentially
what occurs: first a day is divided into 144 10-minute increments; then
ionospheric soundings are transmitted, then received and recorded for each
10-minute increment throughout the day; this is repeated for several days.
The ionospheric series, unl ike the series usually encountered in practice,
have several realizations for each time slot. Initially, to begin the predic-
tion process using (3.4.11), it is necessary to speculate or reckon the —

predictions for the first four or five days unti l sufficient information
becomes available. Once four or five days of data have been col lected,
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“fairl y” smooth estimates of ~(t+T), ~(t) , and p (t,T) can be obtained and the
prediction process (3.4.11) really begins. We question how good the esti-
mates of ~(t+T), ~(t), and p(t ,T) are from samples of only four or five
points. In view 0f this , we are lead to the statement by Yaglom , [4 3, “If
the number of observed values of a series is small (< 10 say), then the
entire formulation of the problem is clearly quite unrealistic , s ince we
would not be able to make a sufficientZ.y re l iabte determination of the auto—
correlation function .”

Al so, we feel that the prediction model (3.4.11) is quite unrealistic
with respect to the expression ~(t+T). It would appear that Ames and Egan
use the value they are trying to predict in calculating the mean of the t+T
time slot. The paper was extremely vague in how this mean was calculated .

We question the use of Fourier coefficients in converting and , hence ,
in reducing the data for computer memory capacity for two reasons . First ,
we fail to see how the required means , autocorrelation , etc., can be removed
so easily from the Fourier coefficients as needed. Secondly, the ionospheric
data appears to exhibit non-stationary properties (this has been verified by
the examination of other ionospheric data), and Fourier analysi s breaks down
when applied to data which exhibit random changes of frequencies, amplitudes,
and phases, since Fourier analysis is based on the assumption of fixed
frequencies , ampli tudes , and phases.

We feel that the prediction process of A..ies and Egan is quite limi ted
in several respects due in part to the criti ci sms presented above. First,

very few practical problems (in time series) arise such that we would have
more than one realization for a specific time slot. Ames and Egan ’s predic-
tion process (3.4.11) is developed solely from the viewpoint of having
several real i zations for each time slot. Secondly, as we mentioned in the
previous paragraphs, it is quite unrealistic to estimate the parameters in
the prediction model wi th so small a sample. (Ames and Egan make no refer—
ence as to how much previous data is necessary when utilizing their approach).
Finally, it seems very expensive to require so many previous days of data
(at least 10) tn order to properly employ the model.

- ~~-~~-
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3.4.5 Expected Error in Predictions

Ames and Egan state that the expected error depends on the autocorrela-
tion and is given by:

c~~(t+T) = a(t+T ) /~ - p2(t,T) . (3.4.12)

,(t+T) is the sample standard deviation computed for the t+T time slot.
Under the premise that the expected error depends on the autocorrelation,
they are able to conclude that the expected reduction of variance is achieved
when p is greater than 0.86.

Then , to measure the performance of the prediction model (3.4.l’fl-,they
used the following expression :

/E
NLM0FLt) - MOF(tfl2 

/OMOF t (3.4.13)

and compared the results to (3.4.12). From this comparison , Ames and Egan
were able to conclude that the prediction process performed nearly as well
as was theoretically expected. To have the theorectically expected error,
it would have been necessary to have the true states of ~ature in equation
(3.4.12). It is apparent that Ames and Egan have again assumed the errone-
ous position that they have the true states of nature, whereas, they have
only estimates.

It appears that the expected error would depend to a certain extent on
the autocorrelation function due to its presence in the prediction model
(3.4.11). However , Ames and Egan are quite vague on this point and give no
derivation of the dependence of the expected error on the autocorrelation ,
equation (3.4.12).

It seems that a better criterion to determine the goc~ness-of-fi t of
a fitted model or a prediction process would be given by the squared error
loss; that is ,

M.S.E. = zN [x(t) - x(t)]2 , (3.4.14)
t~l

where x(t) is the observed series and x(t) is the predicted (modeled) series.
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Regardless of the criticisms that we have made in this section , some
interesting ionospheric predictions were obtained using Ames and Egan ’ s
prediction process. In table 3.13 , a comparison is made between the best
predictions obtained from the use of Ames and Egan ’ s model , made for the 13th

day of the experiment , for lead times of 1, 2 and 3 steps ahead against the
time—series approach without updating.

Table 3.13 A Compari son of Forecasts for the 13th Day UI
Observations at Origin t = 72 Between the

Ames-Egan and Time Series Approaches
- TIME OBSERVED L EAD AMES—EGAN DIFFERENCE TIME SERIES DIFFER-

VALUE TIME FORECAST FORECAST ENCE

1150 9.30 1 9. 12 - .18 9.1 7 — .13
1200 9.60 2 9.14 - .46 9.13 — .47
1210 9.60 3 10.09 + .49 9.1 7 - .43

The t = 72 origin occurs at the most stable time of day for the ionosphere .
Therefore , from the Ames-Egan point of view , these forecasts are among the
best possible over the 24-hour period. Other times of day yield much poorer
forecasts wi th their method. Clearly, the time—series approach is better not
only from the theoretical point of view , as we have shown , but also from the
actual excercising of the models.

3.5 SUMMARY AND CONCLUSIONS

In this section , the procedural approach developed in Section 2.4 was
followed precisely in characterizing actual data. Namely, ionospheric data
obtained by sounding the ionosphere- in the HF range was modeled and analyzed.
Specifically, the experimental design and acquisition of data over the 500 Km
path between Ft. Monmouth , N. J., and Ft. Drum, N. V., was discussed. The
resulting information, which was time dependent, consisted of collecting VI
and -O l soundings every ten minutes throughout a 24-hour period. We justified
that the data were indeed non-stationary stochastic realizations , and then
proceeded to perform a time series analysis. The thrust of this section was
towards analyzing four stochastic realizations , two of which were randomly
selected VI and or diurnal series, and two of which were the 18-day averaged
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V I and 01 series. The random selection process yielded the 13th day
ionospheric observations for analysis along with the averaged information .

Following the procedural approach reconinended in Section 2.4, the
following stochastic processes were formulated as the most appropriate
characterizations of the given information: -

i. x~ = l.289X t l + O.lO6x~ 2 - 0.39Sx~_3 
+ .007 + Z.~ for the 13

th

day observed Vt ,
ii. x.~ = l.324x~~ — O.2O7x~_2 + O.184x

t 3  
- O.O43x~_4 - O.258x~_5

+ .001 + i.~ for the 18-day averaged Vt .
iii. x~ = l.484x~~1 - O.586x t_2 + 0.368x~• 3 - O.Z66x

~ ~ 
+ for the

13th day observed 01)
iv. x.~ = l .426x ~~1 - O.2O4x

~~2 - O.06Ox~~3 - O.Zl 2x t_4 - O.O70x t_5
+ .0016 + Z~ f~r the 18-day averaged 01.

In selecting these models , we utilized the criterion of minimum residua l
variance because , as indicated in Section 2 , we believe this to be the most
appropriate criterion for decision with respect to identi fying the actual
difference equations which characterize the ionospheric information.
Furthermore, we have structured tables that show the short and long-term
forecasts of VI and 01 soundIngs along wi th their confidence limits . These
models , in addi tion to being useful for prediction purposes , can be utilized
in formulating the theoretical spectrum. Such a spectrum would be extremely
useful in comparing the smoothed spectral density of the raw information wi th
respect to identi fying the moat useful spectral density estimate which will
convey information concerning the distribution of variance as a function of
time. Such information will be useful in designing more efficient HF conrun—
ications systems.

In addition, we have discussed the Ames-Egan model for predicting
— ionospheric conditions. The shortcomings concerning the relevance of this

model were discussed tn some detail in section 3.4.

______________  - 
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4. SPECTRAL ANALYSIS OF VERTICAL INCIDENCE
and

SHORT-PATH OBLIQUE INCIDENCE IONOSPHERIC SOUNDINGS

4.1 INTRODUCTION

In Section 3.3, a detailed modeling procedure was illustrated that yielded
appropriate time series models for the ionospheric data described in section
3.2. rt was concluded that the model s obtained did characterize the true
underlying stochastic processes to a high degree. However , additional anal-
ysis of this information is necessary to utilize the ionospheric media more
efficiently. Additional information, therefore, will be sought with regard
to the distri bution of the variance of the fil tered data wi th respect to
frequency. Thus, we will utilize the power spectra to describe in detail how
the variance of the non-stationary realizations are distributed with
frequency of occurrence (not the observed critical frequencies).

Ionospheric information is usually col lected at individual stations as
Vt data , and, for the benefi t of coimiunicators operating over specified paths,
is usually translated into equivalent 01 information through the classical
secant • law, [2]. Since there are an infinite number of oblique paths that
can be utilized by conrunicators , one can see the importance of converting
the VI information . Al so, consider that the number of V I sounder stations
is limi ted throughout the world. This means that any such data acquired at
one station may also be translated into VI information suitable for interpre-
tation at other geographical locations wi thin reason. Relationships for
various translations that have been developed in the United States by the
National Bureau of Standards, [2], and used by coninunicators throughout the
world , can be traced back to at least 1941.

The c lassical Secant $ Law Is a widely used l.inear relationship between
01 and VI data . With Secant $ used as the obl iquity factor , the law simply

• stated Is:

X01 — X~,,1 Secant •

where X,,,1 Is the observed vertical incidence information , $ is the angl e of
Incidence of the radio wave path at its entrance into the ionosphere , and
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X01 is the equivalent information over an obl ique path. The linear
relationship certainly cannot be expected to yield suitable eo~ivalent 01
information in view of the highly stocha stic nature of the ionosphere . The
Secant ~ Law rel ies on the assumptions of a 8p ectra~ reflection of energy
from the ionosphere (actually, reflections are dispersive in nature) and on
the concept of strati fied ionospheric layers. This implies homogeneous iono-
spheric layers, where boundaries between layers ofelectron density are always
definable. This, of course, is not the case since the ionosphere is random
and inhomogeneous , and It is affected by a variety of anomalous activity ,
i.e. , sunspots , magnetic sto rms, diurna l and seasonal changes in structure.
The Secant ~ Law, [2], also implies that as path distance increases , the
obl ique information becomes more uncorrelated wi th the vertical incidence
information. At the 500 Km path distance, over the specified Fort Monmouth
- Fort Drum path, the difference between 01 and V I became significant wi th
respect to forecasting ionospheric conditions over the path using VI data
alone.

Thus, one can see that additional information as to the distribution of
the variance of the filtered 01 and VI information is extremely important ,
and that information on the bivariate behavior of the t-:-~ is essential in
order to gain a more realistic view of the relationship between VI and 01.
In the succeeding sections, a detailed spectral analysis of the 13th day
observed 01 and V I information will be performed. In section 4.2 , the basic
concept of “aliasing ” will be presented . The univariate spectral analysis
will be addressed in section 4.3. The bivariate anal ysis, which consists of
co—spectral , quadrature spectral , cross-amplitude spectral , phase , and
coherency spectral estimates, will be presented in section 4.4. A suninary
and conclus ions are given in section 4.5.

J 4.2 BASIC CONCEPTS OF “ALIASING”

With regard to the three windows described in detail In section 2.9, the
concept of aliasing is predicated on the suppositions that:

I) the window should not be too wi de , exposing a significant amount of
disturbances (peaks and valleys of the power spectra), and ,

I i ) at the same time, the window should not be closed too far so as to
avoid seeing the disturbances.

_ _ _  -- ~~~~~~~ - ~~~~~~~~~~~~~ -~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~
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A signifi cant point is that one should utilize i ngenuity to detect the
appropriate wi ndow l ength, L, so that irrelevant information is not exposed
and relevant i nformation is not el iminated. One can , by visually inspecting
the power spectra as L is varied , determine the optimum L that will play the
critical role in interpretation of the final , smoothed spectral estimates.

As L increases, the associated confidence intervals decrease. Since we
wish to minimize the confidence interval , so as to more closely approach the
true state of nature, a precise analysis is done for each window wi th respect
to L. This is done by using the theoretical apectx~ m as a guide to the
relevant peaks and valleys . Having anal yzed each of the lag wi ndows , i.e. ,
those of Bartlett, Tukey, and Parzen (refer to section 2.9), the decision is
then made as to the most appropriate L to be used for the fi l tered data . As
a result of our analysi s, the most appropriate L (each window may have a
different optimal L~ is the one that identifies itsel f with the optimal
window.

In the following sections , we will utilize this philosophy and the
detailed procedure of sections 2.5 through 2.9 to obtain the univariate and
bivariate spectral estimates.

4.3 UNIVARIATE SPECTRAL ANALYSIS OF IONOSPHERIC INFORMATION

In this section, an anal ysis of two univariate time series will be
presented. Speci fically, the series corresponding to the ~~~ day VI and 01
information (refer to section 3.2) will be ana lyzed by the method of power

spectra, described in sections 2.5 through 2.9. The ionospheric data was
obtained every 10 minutes throughout the day (24 hours) for a total of 144
recordings. Estimates of the spec tra l density func tion are obtained from the
fil tered data using the Bartlett, Tukey, and Parzen lag windows described in

section 2.9.

- 4.3.1 EstImate of the Spectral Density Function Using Bartlett ’s Lag Window

The values of the estimate of the spectral density function using
Bartlett ’ s lag window, equation (2.9.4), were calculated and plotted versus
frequency for L a 8, 12 , 16, 24, and 32 units. As a basis of comparison, the
estimates were plotted on the same set of axes. For these values of L, and
for L — 20, we calcula ted the bandwidth , the confidence intervals, and the
degrees of freedom which are shown tn table 4.1.
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Table 4.1 Truncation Point, Bandwidth , Degrees of Freedom, and
Confidence Intervals for Bartlett’s Lag Window

L Bandwidth d.f. 95% C.I. for Log rxx Cf)

8 .188 54 - .154 .176
12 .125 36 -.179 .226
16 .094 27 — .204 .267
20 .075 22 —.223 .301
24 .063 18 - .243 .340
32 .047 13 — .279 .414

The formula used for the bandwidth of the estimate of the spectral density
function is given by:

b1 1.5b - ~~ .=- - ~--

and the equation for the degrees of freedom is given by:

v = 2 ~~b1 = 2Tb 2(144)b = 288b

Note that since we have chosen ~ = 1 , we have L = M.
Figures 4.1 and 4.2 give a comparison of the theoretical spectral

density functions of the AR processes which characterize the VI and 01 series,
respectively (equatIons 3.3.1 and 3.3.3), and the smoothed estimates for the
various truncation points , along with the 95% confidence intervals.

It is a known fact that increasing the bandwidth of the estimate of the
spectral density involves increasing the amount of bias and decreasing the
variance; thus, a compromise has to be reached as to which Is the best value
of L. In making such a decision , one should take into consideration the
confidence Interval , the degrees of freedom, and the visual appearance of the
plot of the estimates. For L = 8, the plots are very smooth and have a shape
-which follows the trend of the theoretical spectrum wi th the bandwidth being
wide enough to conceal any peaks that may be present. In-both cases, by increas—
Ing L to 12 , we obtain an Indication of other peaks appearing at f = .20 and
.44 cycles per second for the 01 spectrum and at f .20, .30, and .39 cycles
per second for the VI spectrum. These are In addition to the major peaks in the
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theoretical spectral densities . The plots are still quite smooth and the
bandwidth is wide enough to give a great deal of faith to the estimates. By
increasing L to 16, the bandwidth seems to be in a very shakey range. In
thi s case , both spectra display the peaks of the theoretical spectral densi-
ties and also those of the L = 12 spectra. However, the curves have chan ged
very little from those for which L = 12. Since larger values of L produce
many smal l erra tic peaks , we chose L 16 to estimate the spectral densities
of the Vt and 01 fil tered data using Bartlett ’s la g w indow.

4.3.2 Estimate of the Spectral Density Function Using Tukey ’ s Lag W i ndow

Using Tukey’s lag window given by equation (2.9.6) the smooth spectral
density estimates W (f) for the VI and 01 fil tered data were calculated for

L = 8, 12, 14, 16, and 24 units . Figures 4.3 and 4.4 show the spectral
density estimates and the theoretical spectra for the filtered data using the
Tukey lag window for the various truncation l engths along wi th the 95% confi-
dence intervals and the various bandwidths associated with these truncation
points. It is clear that for L = 8, the sample spectra have the same general
shape as the theoretical spectra and the curves are very smooth. By
increasing the truncation value to 12, the plots are still fai,rly smooth, but
peaks appear in both estimates at about f .19 , .31 , and .39 cycles per
second, and at f = .21 and .45 cycles per second, respectively. At L = 16 ,
the peaks are slightly more pronounced , and as L i s i ncreased above 16, more
peaks appear at higher frequencies. This indicates that the variances are
Increasing and , thus , the sample spectra are becoming more erratic for
L > 16. On this basis , it was decided to try to obtain better estimates than
those calculated by computing additional spectral density estimates for
L 14 units .

Table 4.2 shows, for the various truncation points , the bandwidth ,
degrees of freedom, and conf idence intervals us ing Tukey’s lag w indow. The
bandwidth b 1.33/L.
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Tabl e 4.2 Truncation Poi nt, Bandwidth , Degrees of Freedom, and
Conf idence Intervals for Tukey’s Lag Win dow

L Bandwidth d.f. 95% C I . for Log rxx(f)

8 .166 47 — .159 .195
12 .111 31 — .192 .246
14- .095 27 — .204 .267
16 .083 23 — .219 .294
20 .067 19 — .238 .329
24 .055 15 — .263 .380
32 .042 12 — .288 .436

Table 4.2 is quite helpful in deciding that for L = 14 units , we will have
the best estimate of the spectrum using Tukey’s lag window. The degrees of
freedom, u = 27, are sufficient for fa irly small 95% confIdence i ntervals ,
and this gave a bandwidth of .095 so that peaks in the time spectrum of band-
widths larger than .095 will be detected. Decreasing the bandwidth to .083,
that is, L = 16, causes a loss of four degrees of freeom and a slight
increase in the confidence interval width. For L = 12, the bandwidth is
considerably larger (. 111), and there Is not much change in the confi dence
interval even though there are 31 degrees of freedom. Therefore, for a
truncation length of 14 units , we obtain the best estimate for both spectra -

using Tukey ’s lag window.
As we mentioned previously, the plot of the estimate of the spectral

density is given i~ the logarithmic scale to show more detail in the spectrum
over a wider amplitude range.

4.3.3 Estimates of the Spectral Density Function Using Parzen ’s Lag Window

Using Parzen’s lag window, given by equation (2.9.8), we obtained esti-
mates of the spectral density functions for the two first order fil tered VI
and 01 data, for various truncation points. As before, we shall let ~ = 1
so that L = M, the truncation points of the smoothed spectral estimator. L
was varied from 8 to 32 in intervals of four and eight units.

Figures 4.5 and 4.6 show the spectral density estimates of both the Vt
and 01 filtered series for the various truncation points along wi th the
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theoretical spectral density of the respective autoregressive processes.
In additIon , 95% confidence i ntervals and the corresponding bandwidths are
displ ayed. The bandwidth using Parzen’s lag wi ndow is gi ven by:

b _ L86
~~~

L86

The degrees of freedom for the confidence intervals were found using the
follow ing relat ionship :

= 288b

where b1 1.86 for the Parzen window and I = tota l of observations , which
in these cases is 144 soundings. Table 4.3 gives , for the various truncation
points , the corresponding bandwidths , degrees of freedom, and a 95% confi-
dence interval for the theoretical spectrum, rxx(f), for the Parzen lag
w indow.

Table 4.3 Bandwidth , Degrees of Freedom, and 95% Confidence Intervals
for Selected Values of L for Parzen ’ s Window

L Bandwidth d.f. 95% C.I. for Log rxx(fl

8 .233 67 - .135 .160
12 .155 44 - .164 .203
16 .116 33 -.186 .235
20 .093 27 - .204 .267
24 .078 22 -.223 .301
32 .058 16 -.255 .365

In selecting a proper val ue for L for the spectral densities, one should
be able to detect peaks In the spectra, have reasonable confidence intervals,
and a bandwidth that provides a reasonable bias. For an L value of 8 units ,
the spectral densities were much too smooth, and we were unable to detect
peaks less than .233 wide. Increasing the L values from 16 to 20 units gave
a fairly reasonable display of both spectral densities. At L 20, two major
peaks occur that are quite similar to those of the respective theoretical
densities . For a truncation point of 24 units , very small peaks began to
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appear which indicate that the variances may be infl uencing each of the
densities . This was also evident at L = 32, where the peaks became very
erratic and very noticeable. Thus, the choice was narrowed very quickly to
choosing either L = 16 or 20 units . The confidence intervals for L a 16 and
20 are .421 and .471 , respectively. The bandwidth for L a 20, however , is
smaller by about 20% from that of L = 16. Therefore, the spectral densities
corresponding to L = 20 units were selected as the most reasonable. The
spectral density estimates clearly show , for both the Vt and 01 fi l tered
ser ies , that most of the power is concentrated at low frequencies. For
example , a major peak for the 01 spectrum is l ocated at f .15 cycl es per
second with sma ll er peaks located at f = .30 and .41 cycles per second. The
bandwidth for L = 20 units is .093, which means that we can detect peaks wi th
a width of this va l ue or greater. The above remarks are graphl’cally verified
in figures 4.5 and 4.6 where the theoretical spectral density for the respec-
tive autoregressive model s are compared with the spectral estimate for L = 8,
12 , 16 , 20, and 24 units . In addition , the 95% confidence intervals and the
corresponding bandwidths for the truncation points are gi ven.

4.4 BIVARIATE SPECTRAL ANALYSIS OF THE IONOSPHERIC INFORMATION

In this section, we shall be concerned wi th analyzing the bivc.riate
behavior of the 13th day observed vertical and obl i que incidence i onospheric
soundings for the 500 Km experiment. More specifically, estimates of the
smoothed quadrature, phase , and cro eB—ainpU tude spectra will be obtained
using the three lag windows discussed in section 2.9. In addition, estimates
of the coherency apectrwn will be obtained .

Having calculated and plotted the cross-amplitude spectrum, one can
detect whether or not frequency components in the vertical incidence sound-
ings are associated wi th large or small amplitudes at the same frequency in
the 01 series. The estimate of the phase spectrum of the two stochastic
real izations helps us in determining whether or not frequehcy components In
the VI series are in phase or out of phase (lag or lead) wi th components at
the same frequency in the 01 serIes. The cross-ampl itude spectrum,

Is a measure of the covarlance that exists between the 01 and VI soundings
at frequency f, and is the square root of the sum of the squares of the
co-spectral and coquadrature spectral estimates . An estimate of the
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croea—~ nplitude spectrum and the p hase spectrum would suffice to provide a
complete description of the behavior of the two series.

In general , the squared coherency spectrum plays the role of a correla-
tion coefficient with respect to frequency. Its usefulness lies in the fact
that dimensions do not enter the picture when the correlation is measured
wi th respect to frequency. Unlike the squared coherency spectrum , the cross-
amplitude spectrum depends upon the dimensions of the 01 and VI soundings .
This is th’ reason the squared coherency spectrum is sometimes preferred over
the cross-ampl i tude spectrum and , together wi th the phase spectrum, will give
a complete picture of the cross correlation behavior of the 01 and VI
soundings.

Wi th respect to the aims of the present study , we will only give the
equations (estimates) that characterize the above concepts , and we will not
discuss the theoretical implications. For complete details of these concepts ,
refer to sections 2.5 through 2.9.

4.4.1 Co—Spectrum Estimates Using the Bartlett, Tukey, and Parzen Lag
Windows

We shall , in what fo l lows , obtain estimates for the co-spectral , quadra-
ture, phase, and cross—ampl itude spectral estimates using Bartlett’s lag
window . These .smoothed estimates were obtained using the truncation points
L = M = 3, 12 , 16, 24 , and 32 units . These truncation points correspond to
decreasing the bandwidth to b b1/L = l.5/ L.

Figure 4.7 shows the smoothed co-spectral estimates. Similarly, figure
4.8 shows the various smoothed quadrature spectral estimates. It is clear
that for L > 24 units , the estimates in both cases become very erratic. As
we mentioned previously, compromising between bias and var iance , it appears
that for L = 16 units , we have the best estimate using Bartlett’s lag window
with b .094 and v a 27 degrees of freedom. The smoothed cross-ampl itude
spectral estimate and the smoothed phase spectral estimate, plotted for
L a 16, each on separate sets of axes to enhance the details of the series,
are shown in figures 4.9 and 4.10, respectively.

The smoothed co-spectral , quadrature , phase, and cross-amplitude spec-
tral estimates were similarly obtained using Tukey ’s lag window . The -

truncation points used for the co-spectral and quadrature spectral estimates
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were L 8, 12, 14, 16, 20 and 24 units . Figure 4.11 displays the smoothed
co-spectral estimates . The smoothed quadrature spectral estimates are
plotted in figure 4.12 for the same truncation points . For both of these
cases , the estimates become more erratic as L is increased beyond 20 units .
Taking the bandwidth into consideration , we choose the estimate for which
L = 14 units as the best compromi se between bias and variance. Thus , for
L = 14, the bandwidth resulted in b = l.33/L = .095 and v = 27 degrees of
freedom for the Tukey lag wi ndow. Oecreasing b to .083, the degrees of
freedom are decreased considerably; therefore , L = 14 units will give the
best estimate of the co— and quadrature spectra for the Tukey lag window .
The smoothed phase and smoothed cross-amplitude spectra were then plotted for
L = 14 units to enhance the details. Figures 4.13 and 4.14 display the
smoothed cross-amplitude spectral estimate and the smoothed phase spectral
estimate, respectively, using the Tukey lag window for L = 14.

A similar analysis was performed to obtain smoothed estimates for the
co- and quadrature spectra using Parzen ’ s lag window for L = 8, 12 , 16 , 20
ana 24 units. Fi gures 4.15 and 4.16 display the above smoothed estimates.
The bandwidths for the Parzen lag wi ndow are given by b l.86/L and the
degrees of freedom can be obtained from V = 288b. For va lues of L > 24 , the
estimates become somewhat erratic and the bandwidth and degrees of freedom
are decreased. However, the decrease in bandwidth from .093 to .078
(co-s pectral estimate) for L = 20 and 24 units , respectively, is not worth
the decrease in var iance. Hence , we choose L = 20 as our best estimates of
the co- and quadrature spectra. This gives a bandwidth of b = .093. Figures
4.17 and 4.18 show the smoothed cross-ampl i tude and phase spectral estimates,
respectively, for L = 20, usIng the Parzen lag window , along with the corres-
ponding bandwidth. Note that since F12 (f) is small , L12 (f) A12(f).

4.4.2 Choosing the Best Lag Window and Truncation Point

To compare the estimates obtained for the Bartlett , Tukey, and Parzen
lag windows, the estimates corresponding to the best value of L (chosen for
each window) were plotted on the same axes (see figures 4.19 and 4.20). The
estimates for the co-spectra coincided almost exactly. Each estimate has
27 degrees of freedom for the autospectrum analysis. The Parzen lag window
has a sl ightly smaller bandwidth than the others. It was difficult to choose
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the best window , but since Parzen ’ s lag window for L = 20 units gave a band-
width of .093, it was chosen as the best smoothed estimate of the co- and
quadrature spectra. The smoothed estimates for the phase and cross-ampl itude
spectra are also best represented by the lag wi ndow of L = 20 units . The

smoothed sample co-spectral estimate estimates the covariance due to the
in-phase components. There are peaks at about .20 and .31 cycles per second
which correspond to the peaks in the autospectra due to the fact that the
variance is a special case of the covariance (see figure 4.21). At frequen-
cies less than .15 cycles per second , the covar iance between the V I and 01
realizations is fairly large and constant over the frequency range 0 to .15
cycles per second. The variance at most frequencies in the autospectra is
fairly large . However, the covariance distribution of the in-phase compo-
nents of the fi l tered ionospheric series is small , and therefore, the series
in-phase components are not very, dependent. The larger value of the sample
cospectrum is near 0 cycles per second corresponding to variance values of
autospectra of about 10 at the same frequency for the Parzen lag window.
However , L 2 20 units , and hence , the correlation is small as will be veri-
fied by the squared coherency spectral estimate.

The smoothed quadrature spectral estimate estimates the covariance of
the out-of-phase components of the two fi l tered time series. This also shows
that there is small covariance between the out-of-phase components of the two
filtered series and , hence , that they are not very correlated . The largest
value of the estimate is .012 for the chosen lag wi ndow (Parzen, L = 20), and
the smallest value is - .01 1 (see figure 4.22). One can conclude , therefore,
that there is little covariance exhibited throughout the range 0 to .50 cps.,
but the out—of-phase components vary in a sinusoidal manner at all frequen-
c ies.

The smoothed phase spectral estimate estimates the phase angle in
radians by which the VI filtered time series leads or lags the fi l tered 01
series (see figure 4.18). At frequencies 0 to .05 cps., the phases are
approximately the same (phase spectral estimate near 0). At frequencies
between .05 cps. and .20 cps., the in—p haae ~omponenta of the two time series
Zag the out-of-phase components very slightly. From .20 cps . to approxi-
nately .2.7 cps., the out—of—p haae oonrponente Zag the in-phase components .
From .27 cps. to .37 cps., the in—p hase i8 lagging, and from .37 cps. to
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.5 cps., the out—of—p haee components lag the in-phase components of the two
time series. Since the phases al ternate l eading, there is no reason to
assume or conclude that one time series l eads or lags the other at all
frequenc ies

The smoothed cross-amplitude spectral estimate shows whether or not the
amplitude of the components at a particular frequency in one time series is
associated with a large or small ampl i tude of the same order at the same
frequency in the other time series. The spectral density of the autospectra
shows that the variance is about 10 in both filtered series so that, at
frequencies from 0 cps. to .15 cps., the amplitude of the components of one
time series is associated wi th corresponding large or small ampl i tudes at the
same frequency in the other. Again , this seems to indicate that the covari-
ance between the component ampl itudes is near zero at other frequencies.

4.5 SUMMARY AND CONCLUSIONS

A pl ot (see figure 4.19) is given for the selected best estimates of the
co-spectral densities for each of the three lag wi ndows , namely, those of
Bartlett, Tukey, and Parzen . Although the truncation is different for each
lag w indow , the bandwidth , degrees of freedom, and confii~~ice i ntervals are
almost identical . Thus, it is quite difficult to choose which lag wi ndow
gives the best smoothed estimate of the spectral density function. However ,
calculating the approximate bias for each of the above lag wi ndows , it was
found that the bias for Parzen ’ s lag wi ndow is somewhat smaller than those
of the Tukey and Bartlett lag windows. That is:

B~(f) = 
~~~~

Furthermore , the var iance ratio , that Is , the proportional rekiction in vari-
ance as the result of using the smoothed estimator as compared to the sample
spectrum est imate , is approximately- equal to .128. On the basis of these
two criteria , the best estimate of the spectral density was chosen using
Parzen ’ s lag window. In addition , the bandwidth of this lag wi ndow is
slightl y smaller than those of the Tukey and Bartlett lag wi ndows. There-
fore , the best estimate of the spectral density of both the observed VI and
01 soundings was obtained using Parzen ’s la g wi ndow for L = 20 units . This
value of L resul ted in a 95% confidence interval width of .471 wi th 27 ~ grees
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of freedom, and a bandwidth of b = .093. The bandwidth is less than 1/5 of
the total frequency range over which the spectral density function is esti-
mated. Since we are detecting peaks wi th widths of .093 or more, the peaks
appearing in the estimated spectral density of the 01 spectrum at frequencies
f .15 , .30, and .40 cps., are valid peaks and they should be taken into
consideration in interpreting the behavior of the observed 01 soundings (see
figure 4.6). The process generating the soundings exhibits a large variance
around these three frequencies for the fi l tered data. These frequencies
approximately coincide wi th the most critical times of day for ionospheric
support 0f HF comunications. They are: the pre—dawn dip (ionosphere
stratifies into D, E, F1 and F2 layers due to the sun ’ s energy); mid-day
(where stability is a function of various natural and man-made anomalies);
and twilight (where the ionosphere recombines into one F l ayer). Such infor-
rnation should be taken into account in the design and operation of an HF
comunications system. Frequencies above f = .200 cps. on the spectral
estimates gi ves the lowe st power , that is , the least variance.

The Parzen lag wi ndow for L = 20 units and b = .093 was used to obtain
smoothed estimates of the co- and quadrature spectra . The smoothed estimates
of the phase and cross-amplitude spectra were also obtained using the same
lag w indow and L = 20 units.

The smoothed sample co-spectral estimate estimates the covariance due
to the in—phase components. There is a peak at about .20 cps . and one at
.31 cps . which correspond to the peaks in the autospectra . At frequencies
above .150 cps., the covariance is reasonably small and approximately
constant over the frequency range of .15 to .50 cps . The variance at most
frequencies in the autospectra is fairly large . However, the covariance
distribution of the in-phase components of the two filtered series is small
and has , due to the ionospheric series, in-phase components that are not very
dependent. The larger val ue of the sample spectra is near 0 cps., corres-
ponding to variance val ues of the autospectra of about 10 , at the same
frequency, using the Parzen lag window for L = 20 units . Hence, the correla-
tion between the 01 and VI soundings is small as was verified by the squared
coherency spectral estimate (figure 4 . 2 3 ) .

The smoothed quadrature spectral estimate estimates the covariance of
the out-of-phase components of the fil tered VI and 01 soundings. It showed
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that the covariance between the out-of-phase components of the two filtered
series is small , and hence , that they are not very correlated . The largest
value is .012 for the chosen lag window , and the smallest value is - .011
There is little or no covariance exhibited throughout the range from 0 to
.50 cps., but the out-of-phase components vary in a sinusoidal manner at all
frequencies.

C 
The smoothed phase spectral estimate estimates the phase angle in radi-

ans by which one filtered time series leads or lags another. At frequencies
O to .05 cps., the phases are approximately the same ; that is , the phase
spectral estimate is near zero. At frequencies between .05 cps. and .20 cps.,
the in-phase components of the two time series lag the out-of-phase compo-
nents very slightly. From .20 cps . to approximately .27 cps., the out-of-
phase components lag the in—phase componE.nts . From .27 cps . to .37 cps., the
in-phase components are lagging, and from .37 cps. to .50 cps., the out-of-
phase components lag the in-phase components of the two ionospheric time
series. Since the phase is alternately leading , there is no reason to assume
or conclude that one time series leads or lags the other at all frequencies .

The smoothed cross-amplitude spectral estimate shows whether or not the
ampl itude of the components at a particular frequency i n one time series i s
associated wi th a large or small ampl i tude of the same order at the same
frequency in another time series. The spectral density of the autospectra
shows that the variance is about 10 in both the fi l tered VI and 01 soundings ,
so that, at frequencies from 0 cps. to .15 cps., the ampl i tude of the compo-
nents of one time series is associated with corresponding large or small
ampl i tudes (at the same frequency) of the other. Again , this indicates that
the covar iance between the component amplitudes i s near zero at other
frequenc ies.

• In order to obtain a better representation of the important peaks and
a confidence interva l, the squared coherency was calculated and plotted (see
figure 4.23).

A 95% confidence interval was obtained using the followi ng expression :

y~~(f) ±1.96 ~t/Zb1N

= ±1 .96 /20/2(1.86)144 = ±.379
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and is shown on the graph of the smoothed squared coherency spectrum. This
squared coherency spectral estimate gives the correlation between the
observed VI soundings and the observed 01 soundings for the 500 Km experiment.
At low frequencies , we have very littl e correlation between the two filtered
series (maximum of ~ .004) as shown by the expanded scale. One can conclude
that there is virtually no correlation . The fact that, at all frequencies ,
the squared coherency approaches zero indicates that the noise level is high
i n the filtered ser ies for all components at all frequenc ies. Th i s indi ca tes
high variance in the autospectra for the corresponding frequencies. There-
fore , we conclude that the 01 and Vt filtered ser ies are not correla ted
within the 0 to .50 cps . range.
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