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Order-Disorder Transformations in Cheinisorbed bayers: Oxygen onW(ll0)

W. Y. Ching and D. L. Huber
Department of Physics

M. G. Lagaiiy~~ and C. -C. Wang
Department of Metallurgical and Mineral Engineering

and Materials Science Center

University of Wisconsin, Madison, WI 53706

Abstract

We have investigated the order-disorder transformation in oxygen

adsorbed on W(llO). An analysis of the ordering at 1=0 using the lattice

gas formalism shows that there must be significant three-particle interactions

to break the particle-hole symmetry. This is necessary since there is a

p(2x2) phase at three-quarter coverage which is not present at one-quarter

coverage. Monte Carlo techniques are used to obtain estimates of the strength

of the two and three-particle interactions by matching calculated and measured

LEED intensity curves. The qualitative characteristics of the phase diagram

are discussed with emphasis on the multicritical points which must be present

if the transition at half coverage is second order. Evidence in support of

a second order transition is reviewed.

• 78 Os ~~
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I. Introduction

The development of low energy electron diffraction (LEED) techniques

has led to many important discoveries in surface science . Recently, increasing

attention has been paid to the study of order-disorder transformations in

chemisorbed layers)9 From measurements of the diffraction patterns it

has been possible to infer the symmetry of the ordered phase as well as

to obtain estimates of the size of the regions of coherent scattering,10’11

The experimental investigations have led to a number of theoretical studies

of order-disorder transformations in two dimensional systems in which

numerical and analytic techniques have been employed)~°’~
2
~~
6

One of the n~ re interesting of the order-disorder systems involves

oxygen atoms adsorbed on the (110) face of tungsten (O/~ (llO)) . Various
6 ,8 ,9LEED studies have established many of the features of the phase diagram.

The availability of data for the temperature dependence of the LEED

intensities has stimulated numerical investigations of lattice gas medels

for the adsorbed layer)7’18 The temperature dependence of the LEED

intensity can be calculated numerically using Mente Carlo techniques)0

By matching the calculated curves with experiment it has been possible to

obtain estimates for the strengths of the two-particle interactions

between the oxygen atoms)7 ’18

The theoretical studies of 0,1W (110) mentioned previously were limited

to coverages 8 in the interval 0 < 8 < 0.5. In this paper we extend the

analysis to the entire range 0 < 0 < 1. Our main results pertain to the

asymmetry of the phase diagram about half coverage. We show that to account

for the asymmetry it is necessary to include significant three-particle
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interactions in the lattice gas Flamiltonian. By fitting the LEED intensity

curves we are able to obtain estimates for the strengths of these interactions.

The second part of this study relates to the phase diagram. We outline the

general features of the phase diagram in the temperature-chemical potential

plane. Particular emphasis is placed on the multicritical points which

must be present when the transition at half coverage is second order.

Evidence in support of this interpretation is reviewed. The

data are found to be compatible with a second order transition, but a weak

first order transition can not be ruled out.

The remainder of the paper is divided into three sections. In Sec. II

we analyze the asymmetry and its implications for the medel Hamiltonian

while in Sec. III we discuss the phase diagram. We comment on our findings

in Sec. IV.

II. Asymmetry

LEED studies of O/W(1lO) have shown that at low coverages (0 < 0 . 3 5 )

there is a first order phase boundary separating a disordered “gas” phase

from a coexistence region consisting of “islands” of oxygen atoms ordered in

a p(2xl) structure.6’8’9 In the vicin~Jy of 0 = 0.35 there is a jump in the

transition temperature from 460K to 690K followed by a gradual increase to

720K at 0 = 0.5. Above half coverage there is evidence of a p(2x2) phase

coexisting with the p(2x 1) and disordered phases. Unfortunately, experimental

studies in this region are handicapped by the difficulty of obtaining accurate

estimates of the coverage.

The lattice gas calculations mentioned earlier (Refs. 17 and 18)

invo1~ximdel Ilamiltonians with pairwise interactions as shown in Fig. 1,

where we also indicate the arrangement of the atcms in the p(2x1) phase.

- —.~~~~~~ •~ - - -~~- —— .— --- -~~~~~~~~ - — — - —.- .— ..-
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In the models studied there was an interaction between nearest neighbors,

£2 between second nearest neighbors, €3 between third nearest neighbors,

and €4 between fi fth nearest neighbors , which are in the same direction as

the nearest neighbors. A reasonable fit to the data was obtained in

Ref. 17 with the values = -0.072 eV, c
~ 

= 0.080 eV, and = 0, and

= -0.049 eV. In Ref. 18 comparable fits were obtained with = -0.09 eV

= = 0.075 eV and = -0.03 eV. Although it is clear that unique

values for the can not be obtained in this way the Monte Carlo studies

do provide semi-quantitative estimates of the interactions

As mentioned in Refs. 17 and 18 a lattice gas model with only pairwise

interactions generates a phase diagram which is symmetric about half coverage

when particles and vacancies are interchanged)9 In order to break the

particle-hole symmetry there must be three-particle (or, more generally,

n-particle with n an odd integer) interactions in the Hamiltonian. Moreover,

when the asymmetry is such that there are p1~iases present at 0 > 0.5 which

do not appear at less than half coverage (or vice versa), as is the case

for O/W(llO), it is often possible to obtain lower bounds on the strengths

of the three-particle interactions from an analysis of the ordering at

1=0.

The bounds on the three-particle interactions come from a study of the

grand potential cl(T,ii)= U-TS-ijN, where U is the internal energy, I is the

temperature, S is the entropy, i is the chemical potential, and N is the

nunber of atoms. Standard themodynamic arguments show that ~2 is a

minimum at equilibrium when the system is in contact with a reservoir which

maintains it at constant I and i.

In order to see the consequences of the minimization principle we

consider model three-particle interactions of the form displayed in Fig. 2

‘ .4
—,

~~
.-- ~~~~~~~

-- - _______ -- 
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where we also indicate the arrangement of the atoms in the p(2x2) phase.

It should be emphasized that there are likely to be three-particle inter-

actions other than those shown . However from arguments based on bond length

we expect €.~~~ and to be the most important . With couplings as indicated

in Figs. 1 and 2 the zero temperature limit of the grand potential per site

of the fully occupied lattice (p( lxl)) is given by

~2~ (O,1i) ?E l + C 2 + C 3 + 2 C 4 + 4 C Tp P , (1)

where = + c~~). Equation S is obtained by calculating n1,

number of interactions of type i. At zero temperature the entropy i.s zero

while internal energy is given by the sum E1c 1c~
n
~ 

where (to avoid double

counting) c~ = 1/2 and 1/3 for two-particle and three-particle interactions ,

respectively. The grand potential of the p(2 x2) phase associated with three-

quarter coverage takes the form

~O.75
(0,
~~ 

= 

~l 
+ + + + - u. (2)

The zero temperature limit of the grand potential of the p(2x1) phase is

written

= 2 ~l 
+ 

~4 
- (3)

while the complementary p(2x2) phase at 0 = 0.25 has a grand potential

given by

= 2 ~4 - (4)

Finally, we note that the grand potential of the empty lattice

is equal to zero.

At T0 the boundary, u12, between the p(lxl) and p(2x2) phases is

obtained by equating c21(0,u) and ~2075(0,~). We have

-~~~~ - _ _ _ _ _ _  - - - ~~ • --- • - — - - S - -

—4
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U]2 • 4(c~ + + + 2~4 + 3 .
~~
). (5)

Likewise , the boundary between the p(2x2) and p(2x].) phases , 
~23’ foll ows

from equating (3) and ‘i) .  We find

U23 4 C 1 +
~~~2 + 2C 3 +

~~~4 + 6TP) (6)

Finally, the boundary between the p (2xl) phase and the empty lattice , ~~~~~~ which

follows from equating c20 5 (O ,p) and c~0 (0 ,p ) ,  is given by

(7)

Assuming there are no phases other than those so far observed the

phase diagram of 0,441(110) in the zero temperature limit will Consist of a

p(lxl) phase at 0 - 1, a p (lxl) and p(2x2) coexistence region for 0.75 <0< 1,

a p(2x2) phase at 0 = 0.75 , a p(2x2) and p(2x1) coexistence region for

0.5 < 0 < 0.75 , a p(2xl) phase at 0 = 0.5 ~nd a p(2x 1) and empty lattice

coexistence region (i.e. p(2x1) islands) for 0 < 0 < 0.5. This particular

sequence of phases requires p12> ~23 
> p34. In addition, it is necessary that the

postulated phases have a grand potential which is lower than the grand potentials

of the other phases.

At T=0 the grand potentials of the different phases, cz0(0,p), are
linear functions of p with slope equal to -0, as shown in Fig. 3. Because

of the difference in slopes, if 
~12 

> p23> p34 we will have

~11(0,p)<~ 0~75(0,p), ~0•5(0,p), ~o(0,p) for ~ > p12~ ~~~~~~~~ 
<~1~0,pj ,

~~~~~~ ~0
(0,p) for p23 <p< p12~ ~o.s~

0’~ 
<c~1(0,p), c~0 7 5 (O,p),

for p34 <p< p23 ; and c20(0,p) <~1(O,p), ‘~0~75(0,u), ~o~s(0,p)

for U<UM. The absence of the p(2x2) phase at one-quarter coverage will

be ensured if in addition we have ~0•5(0,p34) <~0•25(0,p34).

_________________  _~~~ ~~
_ — - — - - -.
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The inequalities for the chemical potentials lead to the equations

+ ~ ~~~~~ (8)

coming from p12>p23, and 
-

+ 2c2 + 2C3 
+ 4?~~>0 , (9)

coming from The inequality for the grand potential, Q05 (0,p34)

will be satisfied if we also have

c~<0. (10)

Equation (10) indicates that there must be an attractive interaction

between nearest neighbors . From Eq. (8) we infer that there must also be

a repulsive three-particle interaction with - From Eq. (9)

we see that + can be negative but not less than -~-(c~ + ~~~~~
We have carried out a series of Monte Carlo calculations with both

two-particle and three-particle interactions . The former were constrained

by the conditions = -0 . 072  eV , c
~ 

= 0, and = -0.049 eV (the values

inferred in Ref. 17 assuming only two-particle interactions), while

€2, €,~~~, and were varied in such a way as to reproduce the

temperature dependence of the normalized intensities of the LF.E1)

patterns at 0 = 0.25, 0 = 0.5, and 0 = 0.75. Reasonable fits were

obtained with = 0.056 eV and c.1?j~ = = 0.052 eV, the former value being

only slightly smaller than the estimate = 0.080 eV obtained with

4~,
b 

= ~•
17 On the basis of the Monte Carlo calculations we have concluded

that our model three-particle interactions have only a small effect on the

LEED intensity for 0 < 0.5, but become increasingly import ant at higher

coverages.

The analysis in this section has been limited to zero temperature.

We postpone comment on the significance of our results until after a

discussion of the phase diagram at finite temperatures.

—a —S - - - --..-- - — .~~~~ ~~r- - — -
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III .  Phase Boundaries

In this section we consider the phase diagram of O/W(1l0) . Since there

is insufficient experimental infor’qtion to establish the location of the

boundaries over the entire range of coverage we will confine our discussion

to the general features of the diagram . Such an analysis is most easily

carried out in the p-I plane where the phase diagram has the form shown

schematically in Fig. 4. A fundamental problem relating to the diagram

involves the nature of the phase transitions associated with various segments

of the boundary . From group theoretic arguments, i.e. Landau rules,12 ’13 we

conclude that the boundary of the p(2x2) phase, EDF , must be lines of first

order transitions. As in the familiar liquid-vapor system the lines of first

order transitions open into twojliase coexistence regions when the corresponding

diagram is plotted in the 0-T plane . Exceptions to this can occur at special

values of 0 which represent saturation coverages for one or the other of the

phases (e.g. 0 = 0.5 for the p(2xl) phase) . For these values of 0 there is

no coexistence region so that the order parameter associated with the saturated

phase changes discontinuously at the boundary when the transition is first order.

The interesting segment is ABCD, the boundary between the p(2x1) phase and

the disordered phase. Experimental evidence mentioned earlier8’9 indicates

that at low coverages there is a two-phase coexistence region below 460K. The

coexistence of the p(2xl) and disordered phases means that at least part of
0

ABCD is a line of first order transitions. The question then arises as to

whether the first order l ine extends all the way to D or terminates at B. If

the latter is the case, which is allowed by symmetry,12’~
3 then there are two

possibilities : either the line of second order transitions extends ~ ily from

B to C and the segment CD is a line of first order transitions or the segment

BCD is entirely second order. (More than one second order segment is also

possible but seems unlikely.) As will be discussed in more detail below the

______________ — - -——
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experimental data are compatible with there being a line of second order

transitions. However there is insufficient evidence to come to any con-

clusions about the nature of the transitions along ~he segment CD.

When there is a line of second order transitions which changes into a

first order line the end points of the second order line are mult icritical

points.20 If only the segment BC is a second order line then points

B and C are tricritical points or critical end points.21 (Fourth order

critical points21 are also allowed.) Although it can not be completely

ruled out on the basis of available experimental evidence the existence

of critical end points appears to be unlikely . A critical end point ,

where the second order line intersects the boundary of the coexistence

region in the 0-I plane at an arbitrary point, implies the coexistence of

two distinct p (2x1) phases of different density as well as a bicritical

end point.21 Such features have not been observed.

If the segment BCD is a second order line then the point C has no

special significance. However the point D, instead of being a triple

point , is now a critical or tricritical end point, the latter being assoc-

iated with the coalescing of the p(2x1) phase and the disordered phase in

coexistence with the p(2x2) phase.20

The evidence in support of a second order segment comes from a study

of the phase transition at half coverage. Were the transition at this

coverage first order the intensity of the LEED pattern associated with the

p(2x1) ordering would drop discontinuously to zero at the transition temp-

erature . As is apparent from the data from Ref. 8, which is reproduced

in Fig. 5, no such discontinuity is observed. However we can not rule out

a small discontinuity which is obscured by rounding.

The rounding itself is an interesting phenomenon . We attribute at

least part of it to finite size effects . As a result of surface .1~.ihomogeneities

the oxygen layer is divided into a large number of quasi-independent

thermodynamic subsystems. In order to obtain a lower estimate of the

— 

- 
- -. - e- — - - __________________________ - 

- - -
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characteristic size of these subsystems we haye carried out a series of

Monte Carlo calculations with different size arrays. Our results are

shown in Fig. 5 where we plot experimental data at half coverage and

Monte Carlo data for 30x30, 20x20, and lOxlO arrays with periodic boundary

conditions. From this figure we conclude that the observed intensity

curves are consistent with a rounded second order transition involving

subsystems with at least 102 
- l0~ sites. In connection with this point

it should be mentioned that the mini.miun size of the thermodynamic subsystems

is approximately the same as the mean size of the regions of coherent scattering

which is inferred from the width of the diffraction spots at half coverage)’

IV. Discussion

A number of conclusions can be drawn from the theoretical studies of

the order-disorder transformation in O/W(llO). First, in order to reproduce

the transitions with a lattice gas model it is necessary to have attractive

interactions between nearest neighbors as well as attractive and repulsive

interactions involving more d~stant neighbors. Second, the appearance

of the p(2x2) phase when 0 > 0.5 implies the presence of significant
• repulsive three-particle interactions in the lattice gas Hamiltonian.

Third, the most importan t two and three-particle interactions have strengths per

particle on the order of 0.015 - 0.04 eV. The existence of indirect three-

particle interactions in model systems has been discussed before.22’23

To the best of our knowledge our results provide the first (albeit crude)

quantitative estimates of three-particle interactions in a real chemisorbed

system. However it should be noted that the estimates of the relative

iniportant ance of the two and three particle interactions inferred in Ref. 23

on the basis of model calculations are in qualitative agreement with our own

f indings. 

- - - - - -

~ 

-
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Concerning the phase diagram we note that if there is a segment of

the p(2x1)-disorder phase boundary which is a line of second order transitions,

a result consistent with the Monte Carlo analysis and compatible with the

expei9.mental data at half coverage, then there are at least two multicritical

points in the phase diagram. It should be emphasized that the arguments

about the character of phase boundaries do not depend on the applicability

of the lattice gas model but are a consequence only of the interplay of
- symmetry and thermodynamics.

Because of the complexity of the lattice gas Hamiltonian we are not

optimistic about obtaining definitive values for the interactions using Monte

Carlo techniques . Moreover numerical attempts to map out phase boundaries

in the 0-I plane are prohibitively expensive. However additional experi-

mental studies focusing on the existence , location , and character of the

multicritical points would be of considerable interest.

Acknowledgments

We would like to thank E. Domany , T. L. Einstein, P. J. Feibelman

and M. B. Webb for helpful comments on this work . The research was supported

by the Office of Naval Research and the National Science Foundation

(Grant No. t1~1R 77-01057).

_ _ _ _ _ _ _  - ~~—~~~~~~~~~~~-— —~- - - 
-
~~---~ -- ----- 

- • • -  - .--.
~~

- -



- 12

References

(a) H. I. Roim~es Fellow

1. A. V. MacRae , Surf. Sci. 1, 319 (1964).

2. P. J. Estrup, in “The Structure and Chemistry of Solid Surfaces” (Ed .

G. A. Somorjai, Wiley, New York , 1969) p. 19.

3. J. C. Tracy and J. M. Blakely, Surf. Sci. 15, 257 (1969).

4. C. Fedorus, A. G. Naumovets , and Yu. S. Vedula, Phys . Stat. Solidi (a)

13, 445 (1972) .

5. J. C. Tracy, J. Chem. Phys . 56 , 2736 (1972) .

6. J. C. Buchholz and M. C. Lagally , Phys . Rev. Lett . 35, 442 (1975) .

7. 1. Engel , H. Niehus, and B. Bauer, Surf. Sci. 52 , 237 (1975) .

8. TiM. Lu, CrC. Wang , and M. C. Lagally, Phys. Rev. Lett. 39, 411 (1977).

9. CrC. Wang, t-M. Lu, and M. G. Lagally (to be published) .

10. G. Doyen , G. Erti, and M. Plancher, J. Chem. Phys. 62 , 2957 (1975) .

11. H. C. Lagally , G.-C. Wang, and TrM. Lu, CRC Reviews of Solid State

Sciences (to be published) paper presented at the 3rd International

Institute in Surface Science, Milwaukee, 1977.

12. K. Binder and D. P. Landau , Surf. Sci. 61, 577 (1976) .

13. E. Domany, M. Schick, and J. S. Walker, Phys. Rev. Lett. 38, 1148 (1977).

14. A. N. Berker, S. Ostlund, and F. A. Putnam, Phys. Rev. (to be published).

- :  15. S. Krinsky and D. Mukamel, Phys. Rev. B 16, 2313, (1977) .

16. 13. Domany and E. K. Riedel, Phys. Rev. Lett. 40, 561 (1978).

17. W.Y. Ching, D. L. Huber , M. Fishicis , and M. G. Lagal -‘, J. Vac. Sci.

Technol. (to be published) , paper presented at the AVS Symposium,

Boston, 1977.

- - 

- 

~
• - _ :



13
S

18. E. D. Williams, S. L. CunningJ~am , and W. H. Weinberg, J. Vac. Sci.

Technol. (to be published) , paper presented at the AVS Symposium,

Boston , 1977. An expanded account of their work has been submitted

for publication in J. Chem. Phys.

19. This was pointed out to us by P. J. Feibelman (private communication

to MGL). For an early reference see I. D. Lee and C. N. Yang, Phys.

Rev. 87, 410 (1952).

20. D. Furman, S. Dattagupta, and R. B. Griffiths, Phys. Rev. B 15, 441

(1977).

21. J. M. Kincaid and E. C. D. Cohen, Phys. Reports 22, 57 (1975).

22. 1. B. Grimley and S. M. Walker, Surf. Sci. 14, 395 (1969).

23. T. L. Einstein, Phys. Rev. B 16, 3411 (1977).

_ _ _- - --~~~~~~~• -
..~~ -•. l~. — ~~ - —



14

Captions

Fig. 1. Two-particle interactions, c~,... ,c~. The arrangement of particles

(solid circles) and vacancies (open circles) characterizes the

p(2x1) phase.

Fig. 2. Three-particle interactions. The triangles indicate the three-

particle interactions used in the calculations. The arrangement

of particles (solid circles) and vacancies (open circles)

characterizes the p(2x2) phase.

Fig. 3. Grand potential vs. ~i at T=0 (schematic). The grand potentials

of the phases discussed in Sec. II are denoted by c20 (0,u),

0 = 1, 0.75, 0.5, 0.25, 0. The point p12 denotes the boundary

between the p(lxl) and p(2x2) (0=0.75) phases, 
~23 

is the boundary

between the p(2x2) (0=0.75) and p(2x1) phases, and p34 is the

boundary between the p(2x1) phase and the empty lattice.

Fig. 4. Oxygen on W(1l0) schematic phase diagram , p-T plane . The points

~l2~ ~23~ 
and p34 mark the boundaries along the chemical potential

axis (see Fig. 3). The points A,... ,F are discussed in Sec. III.

Note that first order lines in the i’-T plane become coexistence

regions in the corresponding phase diagram in the 0-I plane.

Fig. 5. Normalized intensity of the p(2x1) LEED pattern vs. temperature

•at 0-0.5. Solid curve, experiment; 0, 30x30 Monte Carlo

results with periodic boundary conditions; x 20x20 Monte Carlo

results with periodic boundary conditions; ~~~, lOx lO

Monte Carlo results with periodic b’iizidary conditions. Dashed,

chain and dotted curves havel~en drawn through the 30x30, 20x20

and lOxlO Monte Carlo data as a guide to the eye. The experimental

- - -- % - 

~~ 
—-- —
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data are from Ref. 8. The Monte Carlo data were obtained with

interaction parait~ ters Cl = -0.072 eV; c2 0.056 eV, c3 
— 0,

c4 = -0.049 eV and c,.1~ =c.~~ = 0.052 eV.
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