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Order-Disorder Transformations in Chemisorbed Layers: Oxygen on W {110)

W. Y. Ching and D. L. Huber
Department of Physics

' and
M. G. Lagally(a) and G.-C. Wang
Department of Metallurgical and Mineral Engineering
and Materials Science Center

University of Wisconsin, Madison, WI 53706

Abstract

We have investigated the order-disorder transformation in oxygen
adsorbed on W(110). An analysis of the ordering at T=0 using the lattice
gas formalism shows that there must be significant three-particle interactions
to break the particle-hole symmetry. This is necessary since there is a
p(2x2) phase at three-quarter coverage which is not present at one-quarter
coverage. Monte Carlo techniques are used to obtain estimates of the strength
of the two and three-particle interactions by matching calculated and measured
LEED intensity curves. The qualitative characteristics of the phase diagram
are discussed with emphasis on the multicritical points which must be present
if the transition at half coverage is second order. Evidence in support of

a second order transition is reviewed.
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I. Introduction

The development of low cnergy electron diffraction (LEED) techniques
has led to many important discoveries in surface science. Recently, increasing
attention has been paid to the study of order-disorder transformations in

1-9

chemisorbed layers.” ° From measurements of the diffraction patterns it

has been possible to infer the symmetry of the ordered phase as well as
to obtain estimates of the size of the regions of coherent scattering,m’11
The experimental investigations have led to a number of theoretical studies
of order-disorder transformations in two dimensional systems in which
numerical and analytic techniques have been employeél.m’lz'16

One of the more interesting of the order-disorder systems involves
oxygen atoms adsorbed on the (110) face of tungsten (O/w(110)). Various
LEED studies have established many of the features of the phase diagram.6’8’9
The availability of data for the temperature dependence of the LEED
intensities has stimulated numericél investigations of lattice gas models

17,18

for the adsorbed layer. The temperature dependence of the LEED

intensity can be calculated numerically using Monte Carlo techniques.10
By matching the calculated curves with experiment it has been possible to
obtain estimates for the strengths of the two-particle interactions
between the oxygen atoms.17’18

The theoretical studies of OM (110) mentioned previously were limited
to coverages © in the interval 0 < & < 0.5. In this paper we extend the
analysis to the entire range 0 < & < 1. Our main results pertain to the
asymmetry of the phase diagram about half coverage. We show that to account

for the asymmetry it is necessary to include significant three-particle
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interactions in the lattice gas Hamiltonian. By fitting the LEED intensity

curves we are able to obtain estimates for the strengths of these interactions.

The second part of this study relates to the phase diagram. We outline the
gene}al features of the phase diagram in the temperature-chemical potential
plane. Particular emphasis is placed on the multicritical points which
must be present when the transition at half coverage is second order.
Evidence in support of this interpretation is reviewed. The
data are found to be compatible with a second order transition, but a weak
first order transition can not be ruled out.

The remainder of the paper is divided into three sections. In Sec. II
we analyze the asymmetry and its implications for the model Hamiltonian
while in Sec. III we discuss the phase diagram. We comment on our findings

in Sec. IV.

II. Asymmetry

LEED studies of O/W(110) have shown that at low coverages (6 < 0.35)
there is a first order phase boundary separating a disordered ''gas' phase
from a coexistence region consisting of '"islands' of oxygen atoms ordered in

a p(2x1) structure.6’8’9

In the vicinﬂ]y of 6 = 0.35 there is a jump in the
transition temperature from 460K to 690K followed by a gradual increase to
720K at © = 0.5. Above half coverage there is evidence of a p(2x2) phase
coexisting with the p(2x1) and disordered phases. Unfortunately, experimental
studies in this region are handicapped by the difficulty of obtaining accurate
estimates of the coverage.

The lattice gas calculations mentioned earlier (Refs. 17 and 18)

involvad model Hamiltonians with pairwise interactions as shown in Fig. 1,

where we also indicate the arrangement of the atoms in the p(2xl1) phase.
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In the models studied there was an interaction 1 between nearest neighbors,
€y between second nearest neighbors, €g between third nearest neighbors,

and €4 between fifth nearest neighbors, which are in the same direction as
the néarest neighbors. A reasonable fit to the data was obtained in

Ref. 17 with the values € = -0.072 eV, € = 0.080 eV, and €g = 0, and

€4 -0.049 eV. In Ref. 18 comparable fits were obtained with € = -0.09 eV

€, = €5 = 0.075 eV and €4 = -0.03 eV. Although it is clear that unique
values for the €; can not be obtained in this way the Monte Carlo studies
do provide semi-quantitative estimates of the interactions

As mentioned in Refs. 17 and 18 a lattice gas model with only pairwise
interactions generates a phase diagram which is symmetric about half coverage
when particles and vacancies are interchanged.lg In order to break the
particle-hole symmetry there must be three-particle (or, more generally,
n-particle with n an odd integer) interactions in the Hamiltonian. Moreover,
when the asymmetry is such that there are pﬁases present at 6 > 0.5 which
do not appear at less than half coverage (or vice versa), as is the case
for 0/W(110), it is often possible to obtain lower bounds on the strengths
of the three-particle interactions from an analysis of the ordering at
T=0.

The bounds on the three-particle interactions come from a study of the
grand potential Q(T,u)= U-TS-uN, where U is the internal energy, T is the
temperature, S is the entropy, u is the chemical potential, and N is the
number of atoms. Standard themodynamic arguments show that Q is a
minimum at equilibrium when the system is in contact with a reservoir which
maintains it at constant T and u.

In order to see the consequences of the minimization principle we

consider model three-particle interactions of the form displayed in Fig. 2




. )
where we also indicate the arrangement of the atoms in the p(2x2) phase.
It should be emphasized that there are likely to be three-particle inter-
actions other than those shown. However from arguments based on bond length
we expect e?b and e%% to be the most important. With couplings as indicated
in Figs. 1 and 2 the zero temperature limit of the grand potential per site

of the fully occupied lattice (p(1x1)) is given by

Ql(O,p) =2, *egtegt 2, + 4ETP -y, 1)

where E&P = %{e;; + c%%). Equation S5 is obtained by calculating n,

number of interactions of type i. At zero temperature the entropy is zero
while internal energy is given by the sum Lja.e.n, where (to avoid double
counting) ay = 1/2 and 1/3 for two-particle and three-particle interactions,
respectively. The grand potential of the p(2x2) phase associated with three-
quarter coverage takes the form

5 1 1 3 NS
Q,75(0,1) =€) *+ 7€, + Feg+ 54+ Ep - T M (2)

The zero temperature limit of the grand pofential of the p(in) phase is
written

.50 = 7e t ey - 7w, 5
while the complementary p(2x2) phase at 6 = 0.25 has a grand potential
given by

R.250M) = F ey - Fu - )
Finally, we note that the grand potential of the empty lattice QO(O,u),
is equal to zero.

At T=0 the boundary, Hip0 between the p(1x1) and p(2x2) phases is
obtained by equating Ql(O,u) and Qo 75(O,u). We have




& 1 1 1 —_
Mpz = 4ley *7ep * E3 T 3E * Fepp). (5)
Likewise, the boundary between the p(2x2) and p(2x1) phases, Hozs follows

from equating (3) and 7¢). We find

s = (361 * 762 * 365 * 74 * Epp) (6)
Finally, the boundary between the p(2x1) phase and the empty lattice, g which
follows from equating % s(O,u) and QO(O,u), is given by

gq ™ €p ¥ 2¢, (7)

Assuming there are no phases other than those so far observed the
phase diagram of O/W(110) in the zero temperature limit will consist of a
p(1x1) phase at 6 = 1, a p(1x1) and p(2x2) coexistence region for 0.75 <8< 1,
a p(2x2) phase at 6 = 0.75, a p(2x2) and p(2x1) coexistence region for
0.5 <6 <0.75, a p(2x1) phase at 8 = 0.5 and a p(2x1) and empty lattice
cocxistence region (i.e. p(2xl) islands) for 0 < 6 < 0.5. This particular
sequence of phases requires Hyp> Hyz > Hgye In addition,-it is necessary that the

postulated phases have a grand potential which is lower than the grand potentials

of the other phases.

At T=0 the grand potentials of the different phases, Qe(o,u), are
linear functions of u with slope equal to -8, as shown in Fig. 3. Because
of the difference in slopes, if Hyp > Mp3> gy We will have
2 (0,1)<2 § 75(0,u), 25 ¢(0,u), Q4(0,u) for u > uy,; Qy 75(0,u) <@ (0,1),
QO_S(O,u), Qp(0,1) for uys <u< uyn; @y 5(0,u) < (0,1), Q) 55(0,1),
2,(0,u) for ug, <u< uyz; and Q4(0,u) <@, (0,u), Q4 75(0,1), Q4 5(0,1)
for H<lgye The absence of the p(2x2) phase at one-quarter coverage will

be ensured if in addition we have QO.S(O’”34) <Q0.25(0.u34)-

—— - —
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The inequalities for the chemical potentials lead to the equations

€ *+ 4 €20, (8)

1

coming from H127Ha3s and

€ * 26, + 264 ¢ 4E&p>0, (©)]

coming from u,;>Mz,. The inequality for the grand potential, QO.S(O’U34)

<QO.ZS(0’“34)’ will be satisfied if we also have

el<0. (10)

Equation (10) indicates that there must be an attractive interaction
between nearest neighbors. From Eq. (8) we infer that there must also be
a repulsive three-particle interaction with E%p> - 51/4. From Eq. (9)

: 1 Y
we see that €, + €7 Can be negative but not less than -7{81 + 4eTP).

We have carried out a series of Monte Carlo calculations with both

two-particle and three-particle interactions. The former were constrained

by the conditions € = -0.072 eV, €; = 0, and €y = -0.049 eV (the values
inferred in Ref. 17 assuming only two-particle interactions), while
€)» e;;, and e%; were varied in such a way as to reproduce the

temperature dependence of the normalized intensities of the LEED

patterns at 6 = 0.25, 6 = C.5, and © = 0.75. Reasonable fits were

obtained with €)= 0.056 eV and e;; = C?p = 0.052 eV, the former value being

only slightly smaller than the estimate €, = 0.080 eV obtained with
a,b 17

1P

that our model three-particle interactions have only a small effect on the

= 0. On the basis of the Monte Carlo calculations we have concluded
LEED intensity for 6 < 0.5, but become increasingly important at higher
coverages.

The analysis in this section has been limited to zero temperature.
We postpone comment on the significance of our results until after a

discussion of the phase diagram at finite temperatures.




III. Phase Boundaries

In this section we consider the phase diégram of 0/W(110). Since there
is insufficient experimental information to establish the location of the
boundaries over the entire range of coverage we will confine our discussion
to the general features of the diagram. Such an analysis is most easily
carried out in the u-T plane where the phase diagram has the form shown
schematically in Fig. 4. A fundamental problem relating to the diagram
involves the nature of the phase transitions associated with various segments

12,13
we

of the boundary. From group theoretic arguments, i.e. Landau rules,
conclude that the boundary of the p(2x2) phase, EDF, must be lines of first
order transitions. As in the familiar liquid-vapor system the lines of first
order transitions open into two-phase coexistence regions when the corresponding
diagram is plotted in the 6-T plane. Exceptions to this can occur at special
values of 6 which represent saturation coverages for one or the other of the
phases (e.g. 8 = 0.5 for the p(2x1) phase). For these values of 6 there is
no coexistence region so that the order parameter associated with the saturated
phase changes discontinuously at the boundary when the transition is first order.
The interesting segment is ABCD, the boundary between the p(2x1) phase and 1

8,9 indicates

the disordered phase. Experimental evidence mentioned earlier
that at low coverages there is a two-phase coexistence region below 460K. The
coexistence of the p(2x1) and disordered phases means that at least part of
ABCD is a line of first order transitions. The question then arises as to
whether the first order line extends all the way to D or terminates at B. If
the latter is the case, which is allowed by symmetry,lz’13 then there are two
possibilities: either the line of second order transitions extends only from
B to C and the segment CD is a line of first order transitions or the segment

BCD is entirely second order. (More than one second order segment is also

possible but seems unlikely.) As will be discussed in more detail below the




experimental data are compatible with there being a line of second order
transitions. However there is insufficient evidence to come to any con-
clusions about the nature of the transitions along che segment CD.

When there is a line of second order transitions which changes into a

first order line the end points of the second order line are multicritical

points.20 If only the segment BC is a second order line then points

B and C are tricritical points or critical end points.21 (Fourth order
Critical po'mtsz1 are also allowed.) Although it can not be completely
ruled out on the basis of available experimental evidence the existence
of critical end points appears to be unlikely. A critical end point,
where the second order line interéects the boundary of the coexistence
region in the 6-T plane at an arbitrary point, implies the coexistence of
two distinct p(2x1) phases of different density as well as a bicritical

21 Such features ha&e not been observed.

end point.
If the segment BCD is a second order line then the point C has no
special significance. However the point D, instead of being a triple
point, is now a critical or tricritical endjpoint, the latter being assoc-
iated with the coalescing of the p(2x1) phase and the disordered phase in
coexistence with the p(2x2) phase.20
The evidence in support of a second order segment comes from a study
of the phase transition at half coverage. Were the transition at this
coverage first order the intensity of the LEED pattern associated with the
p(2x1) ordering would drop discontinuously to zero at the transition temp-
erature. As is apparent from the data from Ref. 8, which is reproduced
in Fig. 5, no such discontinuity is observed. However we can not rule out

a small discontinuity which is obscured by rounding.

The rounding itself is an interesting phenomenon. We attribute at

least part of it to finite size effects. As a result of surface inhomogeneities

the oxygen layer is divided into a large number of quasi-independent

thermodynamic subsystems. In order to obtain a lower estimate of the
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characteristic size of these subsystems we haye carried out a series of

Monte Carlo calculations with different size arrays. Our results are

shown in Fig. 5 where we plot experimental data at half coverage and

Monte Carlo data for 30x30, 20x20, and 10x10 arrays with periodic boundary
conditions. From this figure we conclude that the observed intensity

curves are consistent with a rounded second order transition involving
subsystems with at least 10z - 103 sites. In connection with this point

it should be mentioned that the minimum size of the thermodynamic subsystems

is approximately the same as the mean size of the regions of coherent scattering

which is inferred from the width of the diffraction spots at half coverage.11

IV. Discussion

A number of conclusions can be drawn from the theoretical studies of
the order-disorder transformation in 0/W(110). First, in order to reproduce
the transitions with a lattice gas model it is necessary to have attractive
interactions between nearest neighbors as wéll as attractive and repulsive
interactions involving more distant neighbors. Second, the appearance
of the p(2x2) phase when 6 > 0.5 implies the presence of significant
repulsive three-particle interactions in the lattice gas Hamiltonian.
Third, the most important two and three-particle interactions have strengths per
particle on the order of 0.015 - 0.04 eV. The existence of indirect three-
particle'interactions in model systems has been discussed bef‘ore.zz’23
To the best of our knowledge our results provide the first (albeit crude)
quantitative estimates of three-particle interactions in a real chemisorbed
system. However it should be noted that the estimates of the relative
importantance of the two and three particle interactions inferred in Ref. 23
on the basis of model calculations are in qualitative agreement with our own

findings.




S — ———

11

Concerning the phase diagram we note that if there is a segment of
the p(2x1)-disorder phase boundary which is a line of second order transitions,
a result consistent with the Monte Carlo analysis and compatible with the
experimental data at half coverage, then there are at least two multicritical
points in the phase diagram. It should be emphasized that the arguments
about the character of phase boundaries do not depend on the applicability

of the lattice gas model but are a consequence only of the interplay of

" symmetry and thermodynamics.

Because of the complexity of the lattice gas Hamiltonian we are not
optimistic about obtaining definitive values for the interactions using Monte
Carlo techniques. Moreover numerical attempts to map out phase boundaries
in the 6-T plane are prohibitively expensive. However additional experi-
mental studies focusing on the existence, location, and character of the

multicritical points would be of considerable interest.
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Fig. 2.
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Captions

Two-particle interactions, €greee2€yn The arrangement of particles
(solid circles) and vacancies (open circles) characterizes the
p(2x1) phése.

Three-particle interactions. The triangles indicate the three-
particle interactions used in the calculations. The arrangement
of particles (solid circles) and vacancies (open circles)
characterizes the p(2x2) phase.

Grand potential vs. u at T=0 (schematic). The grand potentials

of the phases discussed in Sec. II are denoted by Qe o,u),

=1, 0.75, 0.5, 0.25, 0. The point iz denotes the boundary
between the p(1x1) and p(2x2) (6=0.75) phases, Moz is the boundary
between the p(2x2) (6=0.75) and p(2x1) phases, and My is the
boundary between the p(2x1) phase and the empty lattice.

Oxygen on W(110) schematic bhase diagram, u-T plane. The points
Higs Hp30 and Mz4 mark the boundaries along the chemical potential
axis (see Fig. 3). The points A,...,F are discussed in Sec. III.
Note that first order lines in the u-T plane become coexistence
regions in the corresponding phase diagram in the 6-T plane.
Normalized intensity of the p(2x1) LEED pattern vs. temperature

at 6=0.5. Solid curve, experiment; O, 30x30 Monte Carlo

results with periodic boundary conditions; * 20x20 Monte Carlo
results with periodic boundary conditions; 4, 10x10

Monte Carlo results with periodic bvundary conditions. Dashed,
chain and dotted curves haveteen drawn through the 30x30, 20x20
and 10x10 Monte Carlo data as a guide to the eye. The experimental
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data are from Ref. 8. The Monte Carlo data were obtained with
interaction parameters € = -0.072 eV; €, = 0.056 eV, €; = 0,

€ = -0.049 eV and e, = e.I'BP = 0.052 eV.
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