AD-A058 582 CALIFORNIA UNIV SANTA CRUZ INFORMATION SCIENCES F/6 9/2 .

INVERTIBILITY OF LOGIC PROGRAMS.(U)
AUG 78 S SICKEL NOOO14~-76-C~-0682

UNCLASSIFIED TR-78-8=005 NL

4

N“___LO e B

== . 2-2

o EI: umz-zo

m“——l : i lllll—=_—=
e E e

B _;;W‘

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST CMART

e

INVERTIBILITY OF LOGIC PROGRAMS

by

Sharon Sickel

This document has bh2zn
for public release and s} :

N

K8

INFORMATION™ SCTENCESH «
UNIVERSITY OF CALIFORNIA

SANTA CRUZ, CALIFORNIA 95064

e e o
et e i i i

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPCRT DOCUMENTATION PAGE B it

1. REPORT NUMBER 2. GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER

4 Tl{LE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Technical ¢

Ujf INVERTIBILITY OF LOGIC PROGRAMS , / ﬂ :
— — 6. PERFORMING ORG. REPORT NU

7. AUTHOR(s)

8. CONTRACT OR GRANT NUMBER(s)

M’] @ Z NPO14-76-C-0682 7

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Information Sciences ’ A 0 ,7 9
University of California (l z /
Santa cmyz California 95064 9

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPOIT DATE
Office of Naval Research August 1, 1978
Arlington, Virginia 22217 13. NUMBER oa;wa

14. MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS. (of thie report)
Office of Naval Research . Unclassified
University of California
553 Evans Ha'l'l 15a. agfé.okatl{lCATWON/DO'N-GRADING

Berkeley, California 94720

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited. It may be released to the
Clearinghouse, Department of Commerce, for sale to the general public.

¥ }: ™
Ls o) Y

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fromn Report)

18. SUPPLENMENTARY NOTES U;‘

’ F

19. KEY WORDS (Continue on reverse slde if necessasy and identify by block number) and mases b

Logic programming, relational programming, invertible functions,
recursion, analysis of programs.

————— wYNACY (Continue on reverse side If necessary and identity by block number)

Predicates can describe functions; the arguments of the predicates are
the input and output parameters of the function. Logic programs describe
relationships between objects rather than merely sequential instructions, and
it is common for a function and its inverse to be computable by the same
Jogic program Given values for some subset of the arguments to a
function-describing predicate, may be able to decide, in general, which of
the remaining arguments are c P utable by the lo ic prggram ity pn

Continued on nex gge
FORM
0 55 W e e 10 SO0 1

e e e———————————————————————————
SECURITY CLASSIFICATION O' TNIS PAGE (When Mam

78 09 08 024

P s B 1 RN D o

e 3

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

20. (Continued) N

e 0.

The concept of functional inverse can be generalized in the context
of logic programming. A new kind of inverse, called j-inverse, is
defined. Two algorithms which analyze and test the recursive structure
of logic programs for any specific invertibility are presented. A set
of guidelines to help the logic programmer construct j-invertible
programs is given. 3

a

ACCESSION Tor
ms
Wt 2
DD e Seeyj
" 8.-,’;' S i
UNQNNOUM?D c.lon [:
JusTy ATt g I}

By

;qm»’i"i’f?ﬁ.‘,‘! Wy
0.1 : a8

ik

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

INVERTIBILITY OF LOGIC PROGRAMS

by

Sharon Sickel
Information Sciences
and
Crown College
University of California
Santa Cruz

This work was supported by Office of Naval Research Contract #76-C-0682.

St o R AT

ABSTRACT

Predicates can describe functions; the arguments of the predicate are the input
and output parameters of the function. Logic programs describe relationships between
objects rather than merely sequential instructions, and it is common for both a func-
tion and its inverse to be computable by the same logic program [1]. Given values for
some subset of the arguments to a function-describing predicate, we may be able to
decide, in general, which of the remaining arguments are computable by the logic
program.

The concept of functional inverse can be generalized in the context of logic
programming. A new kind of inverse, called j-inverse, is defined. Two algorithms
which analyze and test the recursive structure of logic programs for any specific
invertibility are presented. A set of guidelines to help the logic programmer con-

struct j-invertible programs is given.

b —

1. Introduction

A function is a mapping f:D - R or f(x) = y. f(x) must have a unique value, that
is to say it must map to exactly one value in R for any given element of D. We can
extend that definition by allowing both the input and the output to be tuples. For
example, f:D; x D, x...D + Ry x R, x...R, or f(x‘.....xn) = (yyoeeeay)). We say
that f is invertible if there exists a function f~' such that f’](y) = x iff f(x) = y.

We wish to restrict the notion of functional inverse as follows:

If f(x],...,xn) = y, then we say that f is j-invertible if fj exists as follows:

f](xz,....xn.y) = X
fz(x].x3,...,xn.y) = Xy

fn(xl,...,xn_],y) =%

That is to say, given any n values of the n+l tuple (x],...,xn,y), we can find the
remaining one. fj is the j-inverse of f. The value y maybe a k-tuple but for the
purposes here we do not decompose it as we do the input n-tuple.

If a function f is invertible, then it is j-invertible for all j, 1 <j <n,
since invertibility implies that given y we can find Xyse««sXgs SO ANY values X; that
are provided are redundant. The opposite is not true however. Given a function f,

-1

even if it is j-invertible for all 1 < j = n, f ° does not necessarily exist. A

counterexample is the arithmetic function, add, on integers:
add(a,b) = c

There are, in general, many pairs (a,b) that add maps to c; so there is no way to
define add'l. However, add is 1- and 2-invertible; add,(a.c) = c-a and addz(b.c) = ¢c-b.
A function is invertible, in general, when the functional mapping is 1-1 and

onto. A function is j-invertible if and only if all pairs of (n+1)-tuples (x]....,xn,y)

such that f(x]....,xn) = y differ at position j only if they differ in at least one

S DA .5 e P B A A N GEY 4 N AL RIS S . ST

e e it i ™t

3

more position. There are many interesting functions that are not invertible in general
but that are j-invertible for some j. Given a function, we frequently would like to
be able to define a single program to compute this function that can also compute the

partial inverses.

2. Invertibility of Functions Expressed as Logic Programs.

A logic program [3] is a set of WFs in the form L « R and one WF, the call, of
the form <« R where L is a predicate and R is a conjunction of predicates. All vari-
ables are implicitly universally quantified. Logic programs are theorems describing
relationships among objects. While an interpretation of these logic theorems can
drive a computation, there is no notion of certain parameters for input and others
for output. A nontrivial invertible logic program is given in another paper [2].

We now define some terms that will be needed later. A logic procedure is an
individual implication in logic program, A « B where B may be empty; A is the procedure

head; B is the procedure body. A termination condition of a recursion is a procedure

A « B such that B does not contain a predicate whose name is the same as the predicate
name of A. That is to say, it contains no recursive calls to the procedure. We say
that a variable, x, drives the computation of a procedure, if every recursion causes
the value of x to be nearer a value that will cause the recursion to terminate.

We can write a logic program to compute
exp(x,y) = x¥ = z

by successive multiplications. We assume a 2-invertible predicate MULT(x,y,z) which
is true if and only if x-y = z. This exponential function is defined by predicate
EXP1, which has the semantics that EXP1(x,y,z) is true if and only if X =z,

The logic program is:

EXP1(x+1,0,1) < °

EXP1(x,y+1,w) « EXP1(x,y,Z) A MULT(x,z,w)
The meaning of A « B is the standard logic interpretation "A is implied by B". The
meaning of the program is

(x+1)? =1

(xy*] = xz) « (x¥ = 2)

It is computationally effective as can be seen by the example below. Starting

with the call, we get a terminating sequence of sub-goals:

« EXP1(3,2,answer)
EXP1(3,1,z) A MULT(3,z,answer)
EXP1(3,0,2') A MULT(3,z',2)

The last call to EXP1 gives z' = 1 by the termination condition, MULT then gives z = 3
and then answer = 9 or EXP1(3,2,9), as desired.
Suppose we wish to 2-invert EXP1. For example, evaluate 3Y =9 togety=2.

The sequence of calls starts

« EXP1(3,Y,9)
EXP1(3,y,z) A MULT(3,z,9)

Since MULT is 2-invertible, we get z = 3; hence substituting 3 for z we derive
EXP1(3,y,3) where Y is bound to y+1. Continuing we get new subgoals

EXP1(3,y',z') A MULT(3,z2',3)

with y bound to y'+1. MULT(3,z',3) gives z' = 1. Then in evaluating EXP1(3,y',1)

§ In EXP(x+1,0,1) « the expression x+1 is used to denote a nonzero value. Another
representation for this is

EXP(x,0,1) « (x > 0), but the latter has a slight computational disadvantage.

S AR T\ NN TN b B 41 - —— - S —

e A S AR NSRS Wi

5

the recursive case fails because there is no z" such that MULT(3,z",1). However, the
terminating condition applies; thus, y' = 0, y = 1, Y = 2, and we derive EXP1(3,2,9),

as desired.

3

Suppose we wish to 1-invert EXPi. For example, for what value of X will X~ = 277

The following sequence of subgr*is is generated:

+~ EXP1(X,3,27)

EXP1(X,2,w) A MULT(X,w,27)
EXP1(X,1,w') A MULT(X,w',w)
EXPT(X,0,w") A MULT(X,w",w')

The termination condition gives us w" = 1 and the definition of MULT yields X = w'
giving

EXP1(X,1,X) A MULT(X,X,w)
But we fail here because while MULT can, awkwardly, compute square root by calling
MULT(x,x,C) where C is a given constant natural number, it cannot compute square
roots where the third argument is unknown as well. In effect, the collective calls
to MULT are taking n-th roots of the original third argument, and that is beyond the
capability of MULT.

Now we make a distinction between mathematical invertibility and computational
invertibility. A function f may be mathematically invertible but be specified as a
logic program that will not compute the inverse. If a function is computationally
invertible it is necessarily mathematically invertible.

It may also be the case that a mathematically correct logic program will be
computationally reasonable in one direction and horribly inefficient in the other.
The path of choices in a computation may be forking such that in one direction many
cases are being joined together as in Figure la, and in the other direction a choice

must be made from many alternatives as in Figure 1b. The latter case may require much

backtracking where incorrect choices are made.

[N\
|
AN

(a) (b)

Figure 1

3. MWhen are Logic Programs Invertible?

The process of interpreting a logic program starts at the call, decends recursive-
1y to a termination condition, then returns eventually to the call. The question of
j-invertibility depends upon the sequence of bindings of variables as the recursion is
carried out; success is achieved when the (unbound) j-th variable of the call is bound
to a constant value. More generally, if any subset of the variables is known at the
call, we can ask if all unknown values can be computed.

Parameter 1ist patterns are used to designate in a parameter list which parameters
are known (i.e. constants) and which are unknown (i.e. variables or functions of vari-
ables). Given a parameter 1ist input to a procedure, we can construct an input pattern

or input template by replacing constants in the parameter list by 1's, and replacing
§

variables or functions® of variables by 0's. So, for example, from parameter list
(2,x,y+1) we construct input template (1,0,0). We may tie parameters together if
some of the unknown variables are the same or simple functions of each other, such
that if one can be computed, the other is known as well. E.g. parameter list
(2,x,x+1) corresponds to pattern (1,6:5).

We have two algorithms that map input templates, i.e. known vs. unknown input

§ We assume the only functions that are allowed as part of the parameter lists are
simple constructor functions, e.g. +1.

7
parameters, to output templates that show what total set of values is known after the
computation. For example, for procedure MULT, input pattern (101) maps to (111),
since given one factor and the product, the other factor can be determined.

The first algorithm is a simple, easy to compute, function that gives a strong
indicator of the pattern mapping, but pathological cases can be constructed in which
the computed mapping will be stronger than reality. The second algorithm is similar
to the first, but makes added assumptions that require some meta-analysis of the
given function. The second algorithm is a sufficient test, i.e. at least all of the
values claimed to be known, will be known.

An input pattern tells what input values are known. From that we can show where
known values appear in the entire procedure. For example, input pattern (101) given

to the recursive case of EXP1 gives procedure pattern:
EXP1(101) « EXP1(100) A MULT(101)

or (101) (100) (101) in abbreviated form.
The procedure operates in two stages:
1) Going down the recursion, we check off values when we know that they are
computable. Even though the recursion can go arbitrarily deep, there are
a bounded number of procedure patterns.

2) Once the derivable procedure patterns are found, patterns of the termina-
tion conditions are applied to show which values will be given by termina-
tion. ‘
Throughout both stages, propagate new values for variables wherever the variables
appear, and when applicable, replace the input patterns of sub-functions by the output
patterns to which they map.

Weak-Heuristic Algorithm:

Purpose: To discover the input-to-output mappings of a predicate, Q.

Hypotheses: A1l auxiliary functions' input-to-output mappings are given. The oniy
functions appearing in terms are constructor functions.

1. Set-up.
The input pattern is determined from the call: « Q(pl, ..., pn). We
replace in the call:
a) each constant or constructor applied to a constant by the
value 1.

b) each constructor applied to a variable by the variable itself.

The procedure templates are determined from logic procedures of the

form
Q(tl, ..., tn) « R1 A ... A Rk.
We replace each term in the procedure as in la and 1b, above.

Let PPS be the set containing the input pattern.

2. Propagation of known values.

While there is a conjunct Q(pl, ..., pn) appearing in the body of a
procedure pattern of PPS such that Q(pl, ..., pn) does not appear as the
head of an element of PPS, create new elements of PPS from the procedure
templates as follows:

a) Unify the head of the template with Q(pl, ..., pn).

b) The auxiliary functions are the subgoals of the procedure

template that are not recursive calls to Q. Unify the
inputs to the auxiliary functions with their corresponding

output mapping. (This records which variables become

B ECP AR 2 . S - . S ————————————

i ms e

bound in the course of the computation of the auxiliary
function.) This step is repeated until no more changes are
possible.

c) Add this new procedure pattern to PPS.

3. Applying termination cases.

a) Partition the elements of PPS into recursive and non-recursive.

b) Select a recursive subgoal from the body of an element of PPS,
and unify it with the head of any non-recursive element. Apply
the bindings only to the recursive pattern. Drop the recursive
subgoal that was just unified. The modified recursive proce-
dure may now be non-recursive. If so, move it to the non-
recursive partition.

c) Repeat b) until the recursive partition is empty.

4. Interpretation of results.

The output pattern Q(p1, ..., pn) such that (pl, ..., pn) is the most
specific parameter list that will unify with the parameter lists of all the
heads of the procedures of PPS.

Strong Heuristic Algorithm:

This algorithm is the same as the previous one except that where 1's are unified
with 1's, a case-by-case meta-argument is required to show that the actual constants
are unifiable. If such is not the case, the procedure pattern being generated is
discarded.

For example, check to see if EXP1 is 2-invertible, i.e. whether input template

g

:

R e —

f .

10 !

3

(101) maps to output template (111). !
Procedure template is : (101) (100) (101)
MULT maps (101) to (111): (101) (100) (111)

Fi11 in new value of 2z
wherever it appears 3 (101) (101) (111)

Termination condition
fills iny : (101) (111) (M)

Fil1l in new value of y
wherever it appears : (1) (1) ()

Output template is the
result in procedure head: (111)

So, the original call has gone from (101) to (111), suggesting 2-invertibility.
The preceding algorithms map input templates to output templates, and in
particular check whether a logic program is j-invertible. The following are a i
set of guidelines that help the logic programmer to construct j-invertible programs. 1]
fhese guidelines exclude some j-invertible logic programs and are thus overly restric- (3
tive. More liberal, but less intuitive guidelines, can be derived from the preceding

algorithm.

A. Termination conditions: There should be a set of termination conditions, one

of which can always be reached from a call in which the j-th parameter is the
only unknown, such that each element in the set has the property that the j-th
parameter is known or can be directly computed as a function of some of the
other arguments.
For example, consider the termination condition MULT(x,0,0) +. It is acceptable for
2-invertibility because the second parameter is a constant and we always reach this
termination condition. However, it is not acceptable for 1-invertibility since once
we recur and bottom-out, we still have no way to establish the value of x except by
evaluating algebraic formulas. For example, MULT(x,2,6) calls MULT(x,1,z) where
z = 6-x which calls MULT(x,0,z') where z' = 6-x-x which = 0. So with a little algebra

n

we can deduce that x = 3. However, this is not what is meant by directly computable.
B. Invertible subfunctions: The other functions used in the definition must be

invertible as called.
For example, consider the following predicate:
F(x],x2+1,y) + F(x],xz,y')
A G(y',y)
For F to be 1-invertible, G must be 1-invertible.

C. Driving the Computation: At least one known value must drive the computation.

For example, consider the function F, above. If X, is unknown, it cannot drive the
computation. So for F to be 2-invertible, since Xy does not change, the mapping
y 3 y' must drive toward a termination condition.

A way to guarantee that this property holds for all j, 1 =< j < n is to have at
lease two arguments driving the computation.

D. Preconditions: A deciding precondition must apply to a known value.

A precondition is a predicate, used in the body of a logic procedure, that gives
the criterion for choosing that procedure. The precondition may or may not be essen-

tial to the mathematical definition. But without the aid of preconditions, much

backtracking may, in general, be required.

There is nothing special syntactically about the preconditions, and recognition
of predicates as preconditions is totally a control issue, i.e. something known by
the system that provides an interpretation for the logic program.

The following is an example of logic procedures named F in which the choice among

the procedures is determined by preconditions which test the relative sizes of x and y.

F(x,y,2z) « (x=y) A G,(x.y.z)
F(X.y.l) . (x>.V) A Gz(xoy'z)
F(x,y,2) + (x<y) A G4(x,y,2)

Another example of preconditions is in the FACTOR procedure presented later. GCD

BB RITREIEAS € Sk SIS 0 1.3 100158 PRS- L RBREE

"llllllllllI-l-lI'll!!-ln-!ﬂﬂ!-!---—-----Tu — - - o

12
is necessary to the mathematical definition, but can also be used as both precondition
and termination condition if w and n are given. In the case where p is not given,

i.e. 3-invertibility, its use as a termination condition is essential to the efficiency

of the algorithm.

Since the preconditions determine the efficiency of the algorithm, one must have
some way of tying the preconditions to the parameters such that certain preconditions
are used if certain parameters are known. A way around this problem is to have at
least two preconditions, one of which can always succeed if, at most, one of the n+l

arguments of the original function are unknown. The following is an example:

F(x,y,2) « (x=y) A Py(2)
A G](x,y,z)

F(x,y,2) « (x2y) A Py(2)
A Gz(x,y,z) |

F(x,y,2) « (x<y) A P3(2)
A 63(x.y,z)

Now, so long as at least two out of three of the values x, y, and z are given,

either the relative sizes of x and y can be determined, or the predicate P1 can be
applied to z. So, if the comparisons between x and y and the Pi's serve as precondi-
tions, at least one will always be computable in each procedure. For the Pi's to
efficiently serve as preconditions, exactly one of P](z), Pz(z), and P3(z) should be

true for a given z.

4, Why is EXP1 2-invertible but not 1-invertible?

The 2-invert test on EXP1 succeeds, i.e. (101) maps to (111), but the 1-invert
test fails, i.e. (011) maps to (011). Intuitively, that makes sense according to

the guidelines. EXP1 fails condition A for 1-invertibility since the first parameter
of the termination condition is neither constant nor can be computed from the others.

The guidelines are met, however, for 2-inversion. ;

13

If we wish to achieve 1-invertibility, we can change the termination condition of

EXP1. This defines a new exponentiation program which we call EXP2.

EXP2(1,0,1) «
EXP2(x+1,0,2) « EXP2(x,0,2)
EXP2(x,y+1,w) + EXP2(x,y,z) A MULT(x,z,w)

The computation of EXP2 is similar to that of EXP1 when the second or third parameter
is the unknown.

For 1-inversion, the control is nondeterministic but will succeed. Given values
for the second and third parameters, the third procedure will recur until the second
parameter is reduced to zero. Application of the second procedure serves to guess a
value for x; then the recursive returns test that value. An exhaustive, breadth-
first search will finally discover x. However, this is not a reasonable computation.
It is an example of Figure 1b. The 1-invert test on EXP2 succeeds, since (011) maps
to (111), as does the 2-invert test, mapping (101) to (111). The guidelines, also,

are all satisfied.

5. Another Exponentiation Algorithm.

There is an entirely different approach to exp(x,y) that is more obviously j-
invertible. It is based on the fact that every positive integer, x, is a product of
powers of primes, that is to say

i 2vl 3v2 244 pRVk'

We have z = ¥ iff

AL A

If we are given x and y, and we can factor x, then we can construct z out of the
factors and vice-versa.

We must first provide an invertible factoring predicate. Suppose we have a
predicate, GCD(x,y,z), such that z is the greatest common divisor of x and y, and 2

14

is undefined if x or y is zero. Then FACTOR(W,N,P,R) is true if and only if

W>0,N>0,R>0, W= NP-R, and N does not divide R. FACTOR is defined as follows:

FACTOR(w,n,0,w) <« GCD(w,n,1)
FACTOR(w,n,p+1,r) « GCD(w,n,n)

A MULT(w' ,n,w)

A FACTOR(w' ,n,p,r)

The normal call is, for example, « FACTOR(36,2,p,r) which yields « FACTOR(36,2,2,9).

A 1-invertible call is: FACTOR(answer,2,2,9) which yields FACTOR(36,2,2,9). These
are the only ways that FACTOR will be called by EXP3.

EXP3(X,Y,Z) is true if and only if X'

= Z. We have auxiliary function E such that
E(X,N.Y,Z) is true if and only if X\ = 7 for X > 0,Z>0and forallm, 2<m<N, m
does not divide X.

The formal definitions of EXP3 and E are:

EXP3(x,y,z) « E(x,2,y,z)

E(1,n,y,1) «

E(x,n,y,z) « FACTOR(x,n,p,r)
A FACTOR(z,n,p',r")
A MILT(p,y.p")
A E(r,ntl,y,r')

E repeatedly removes a prime factor, Py» from each of x and z and checks to see

that their powers are in the proper relationship, i.e. piv'i for x and piy'V1 for z.

The semantics of E's two procedures is:

1Y =1 and no m, 2 <m<n divides 1

(nPer)Y = (W Pr)« (W =r')andnom, 2<m<n
divides r

PR i

15

EXP3 is both 1- and 2-invertible. Calling EXP3 with pattern (011) calls E with
pattern (0111). The invert test for E on (0111) yields (1111). Calling EXP3 with
pattern (101) calls E with pattern (1101), and the invert test on (1101) yields (1111).
Notice that E passes the 3-invert test, even though the third parameter of the termi-
nation condition is neither constant nor computable from the other parameters. This
demonstrates the conservatism of guideline A.

Note that E and FACTOR are not j-invertible for all j. However, that creates no
difficulties. E is called with only patterns (0111), (1101), and (1110) and FACTOR
with only patterns (1100) and (0111). A1l of those computations»succeed. The invert
test gives the proper answers for all cases of EXP3, E, and FACTOR, as well as all
other examples in this paper.

If we wished to have a factor program that is j-invertible for all j, we could

define a new one, FACTOR2.

FACTOR2(w,n,p,r) « EXP3(n,p,z)
A MULT(z,r,w)

This new program is totally j-invertible, but will not produce p and r, given w and n,
as FACTOR would. These characteristics of FACTOR2 are demonstrated by the mappings of

the invert test on the input patterns:

(0111) = (111)
(1011) = (1111)
(1101) = (1111)
(1110) = (11M1)
(1100) = (1100)

6. Conclusions

We have defined the concept of j-invertibility for function and given two algo-
rithms to test logic programs for invertibility, and while the answer is not definitive,

it is indicative. The algorithms do more than just test for j-invertibility; they map

16

arbitrary input patterns to output patterns.

We have also presented some guidelines for constructing j-invertible functions.
The guidelines are in terms of the predicate form of definition of the function, and
are syntactic in nature.

The algorithm could also be used by a logic interpreter in choosing the order of
evaluation of subgoals of a given procedure. That is, given a procedure invocation,
including its list of arguments, the interpreter can determine a partial order on the
subgoals which places the most completely evaluable subgoals first, preventing pro-
cedures from being called before they have enough information to carry out their
computations. Such control can be applied dynamically by the interpreter.

Invertibility can be looked at in another way. The number of unique variables
appearing in the parameters of a procedure call is the degree of freedom of that call.
In general, the procedure may be able to reduce the degree of freedom by binding some
of the variables. For example, MULT(x,x,9) has one degree of freedom and in fact the
usual definition of MULT will yield MULT(3,3,9), computing the square root and leaving
zero degrees of freedom. Similarly, MULT(x,1,z) has two degrees of freedom. MULT
will determine that x = z, i.e. MULT(x,1,x), reducing the degree of freedom to one.
Such situations can arise naturally in inverting predicates. How to treat them is an

interesting question for which we do not yet have an answer.

17

REFERENCES

1. Kowalski, Robert. Predicate Logic as a Programming Language. Information
Processing 74, North-Holland Publishing (1974).

2. Sickel, Sharon and McKeeman, W. M. Axiomatic Specification of Syntax-Directed
Translation. Technical Report 78-8-002, Information Sciences,

University of California, Santa Cruz, Ca. (1978).

3. van Emden, M. H. and Kowalski, R. A. The Semantics of Predicate Logic as a
Programming Language. J.ACM 23,4 (October 1976), 733-742.

OFFICIAL DISTRIBUTION LIST

Contract NO0O14-76-C-0682

Defense Documentation Center
Cameron Station

Alexandria, VA 22314

12 Copies

Office of Naval Research
Information Systems Program

Code 437

Arlington, VA 22217

2 Copies

Office of Naval Research
Code 200

Arlington, VA 22217

1 Copy

Office of Naval Research
Code 458

Arlington, VA 22217

1 Copy

Office of Naval Research
Branch Office, Boston
Bldg. 114, Section D

666 Summer Street
Boston, MA 02210

1 Copy

Office of Naval Research
Branch Office, Chicago
536 South Clark Street
Chicago, ILL 60605

1 Copy

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

1 Copy

Naval Research Laboratory
J Code 2627

Washington, D.C. 20375
6 Copies

Technical Information Division

T e e S ——

Dr. A. L. Slafkosky

Scientific Advisor

Commandant of the Marine Corps (Code RD-1)
Washington, D.C. 20380

1 Copy

Naval Ocean Systems Center

Advanced Software Technology Division
Code 5200

San Diego, CA 92152

1 Copy

Mr. E. H. Gleissner

Naval Ship Research & Development Center
Computation and Mathematics Department
Bethesda, MD 20084

1 Copy

Captain Grace M. Hopper (008)
Naval Data Automation Command
Washington Navy Yard
Building 166

Washington, D.C. 20374

1 Copy

