
T
~~~

AS5IFIED
A

~~~~~~
TR

~~~~~~~
OO5 NL

O~ Sb82 _______ I ___________ ______________________

I 
_

~~~~~~~ END

I 79

/1

fl~fl 10

~: 11~L~I~~~~ 3.5
2 01•1 :~

• i
~

I:.:

• 11111.25 IM~1’~
#

.

NATIONAL BUREAU OF STAN~~RDS
~~CAOCCPV RESOLUTION TEST CN*RT

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -

V.

LI ~~~~~~~~~~~~~~~~~~~~~~~ I It~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~r ~i r
INVERT IBILITY OF LOGIC PROGRAMS ~71~

b il~Sharon Sicke l

Techn ical Report No. 78-8-005

;E. .

•
.

~~~~~~ 
7~ ~~ ..

.

.

~~~~

,.
.

•.~ This document has h33n a-- ~~~ 
- 

- 

-

for p’ lie release ard s~ : I - 
-

-:. is unlimited. ~

— .  I 
.

• >-;

~~ . 

.

~~~~~~

—‘ •~~r

~~~~~~~~~~~~~~ ~~~~

•~~ 
a • • -

S a a

a a — a a •

_ _ _ _ _  _ _ _ _ _ _ _ _ _  4



SECURITY CLA SSIF I CATI f lN  Or T1415 PAGE fb~i.n flat . FnI...d )

READ INSTRUCTIONS 
—

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I REPORT NUMBER 

r- 

GOVT ACCESSION NO 3. RECIPIENT S CATALOG NUMSER

4. TITL E (and SubtStl.) I. TYPE OF REPORT k PERIOD COVERED

~~~~

J

~

VERTIBILITY OF J..OGIC PROGRANS/.~~/ PE
~~~ i hnica1 Ir J l~

;1
~~f;) 7_ _ _  - —

RFORMING ORG. REPOA1’~~

7. AUTHOA(a) S. CONTRACT OR GRANT NUMSER(.J

~~~~~~~~
1S1ckel

—7 ~~~~~~~l4-76~C~~682 7
AREA S BORIC UNIT NUMURI

L PERFORMING ORGANIZATION NAME ANO A/PRESS 10. PROGRAM ELEMENT. PROJECT . TASK -

Information Sciences
University of California (~~~~ f/~~

~~Santa Cruz, California 95064 ___________________________

II. CONTROLLING OFFICE NAME AND A DORESS Ii. REPORT DATE

Off ice of Naval Researc h August 1, 1978
Arlington, Virginia 22217 ¶3. NUNSER OF PAGES -

17
IS. MONITORING AGENCY NAME a AODRESS(I1 dIU. ,w’ f rom Con(,olIJng OUlc.) IS. SECURITY CLASS. (of Ala r. 0.f)

Office of Naval Researc h . Unclass ified
University of California __________________________

553 Evans Hal l IS.. DECLASSIFICAT ION/DOWNGRADING
SCHEDU E

Berkeley, California 94720 __________________________
16. DISTRIBUTION STATEMENT (of sAga R.porl)

Distribution of th is documen t is unl imited. It may be released to the
Cleari nghouse, Department of Conmierce, for sale to the general publ ic.

STRISUTIO N STATEMEN t (of fAa ab.tracI mit.r.d hi Slack 20, II dlff.r.nl from R.poic)

/
~/~~~~~~13 I9~~~~~ 1IS. SUPPLEMENT ARY NOTES

IS. kEY WORDS (Continua V.’.” . atda SI nac... y .,d td.~st~ by block mm~~~t and Phrases : -

4
Logic progranmiing, relatiOnal progranining, Invertible functions,

recurs ion , analysis of programs.

S~.~~~ 3TNACT (ContInua mi ravar.. ~Id If si.c..aa’y aid Id.n(S~ ’ by bl.. k monb.f)

Predicates can describe functions ; the arguments of the predicates are
the input and output parameters of the function. Logic programs describe
relationships between objects rather than merely sequential Instructions , and
it Is conmion f~~~~Xh a function and Its Inverse to be cou~utable by the same
logic program Given val ues for some subset of the arguments to a

0.’ €.~function-describing predlcate,,we may be abl e to decide, In general, which of
the remaining arguments are co~~utable by the ionic program.

(Continued on next page)

DD ,
~~~~~

,, 1473 EDITION OF I NOV SS IS OSSOI.ETE 
1/~j.. ~

) ~~~~~~~
• SIN 0107 IF 014 6601

StCU~~ ?Y CI. AS~~PICATIOIS OP THIS PAQE (1I~ .n O rion10
_ _  

78 N)
.om ~~~~~~~~~~~~~~~~ - 

. .-“ -



... .

SE4~URITY CLASSIFICAT ION OF THIS PAGE(ITh.n Daia Eniar.d)

20. (Continued) -

>‘ The concept of functional inverse can be generalized in the context
of logic progranmiing. A new kind of inverse, called i-inverse, is
defined. Two algorithms which analy2e and test the recursive structure
of logic programs for any specific Invertlbility are presented. A set
of guidelines to help the logic progranmier construct i-Invertible
programs is given.

~ 
DD~ ~~~~~~~~~ 178. :

- 

JUSr~ IC4 T~’~ ~~

BY

I,.

— 
.

SE(~URITY CLASSIFICATION OF THIS PAOE(bbon Oat. tnt.. ,d) 

_



- - -
~~ —~~--—

• INVERTIBILITY OF LOGIC PROGRPINS

by

Sharon Sickel

Information Sciences

and

Crown College

University of California

Santa Cruz

. 1
This work was supported by Office of Naval Research Contract #76-C-0682.

— w .-.. - . - . . . . - - —~~- — ------a--

• - - -~~~~~~~~~~—



ABSTRACT

Predicates can describe functions; the arguments of the predicate are the input

and output parameters of the function. Logic programs describe relationships between

objects rather than merely sequential instructions , and It is conmion for both a func-

tion and its inverse to be computable by the same logic program [1]. GIven values for

some subset of the arguments to a function-describing predicate, we may be able to

decide, -In general , which of the remaining arguments are computable by the logic

program.

The concept of functional inverse can be generalized in the context of logic

programing. A new kind of inverse, called j-inverse, Is defined. Two algorithms

which analyze and test the recursive structure of logic programs for any specific

invertibility are presented. A set of guidelines to help the logic prograniner con-

struct i-invertible programs Is given.

______-  .~~~S——-.. . .- -~~~~--- -.- . .-----_ _ _ _  . - ,-

-- — .. -



2

1. IntroductIon

A function Is a mapping f:D -‘- R or f(x) = y. f(x) must have a unique value, that

is to say It must map to exactly one value In R for any given element of D. We can

extend that definition by allowing both the Input and the output to be tuples. For

example, f:D1 x D2 
x...D~ R1 

x R2 
x ...Rk or f(x 1~...~x~) 

= 

~ 1’ •.’
~k~

• We say

that f is invertible if there exists a function ~~ such that f~~(y) = x 1ff f(x) = y.

We wish to restrict the notion of func tiona l inverse as follows :

If f(x1,...,x,~) = y, then we say that f Is j—invertible if f~ ex i sts as follows :

f1(x2 . . .,x~,y) = x1
f2(x 1,x31. ~~~~~~ = x2

fn~~i~~~~
Xn~ia~~ 

=

That is to say , given any n value s of the n+l tuple ~~~~~~~~~~~ we can find the

remaining one. f~ is the i-inverse of f. The value y maybe a k-tupie but for the

purposes here we do not decompose it as we do the input n-tupie.

If a function f Is Invertible, then it Is i-invertible for all j, 1 s j s n,

since invertibility Impl ies that given y we can find x1,... ,x~, so any values x1 that

are provided are redundant. The opposite is not true however. Given a function f,

even ii~ ft Is i—invertible for all 1 s i ~ n, f
1 does not necessarily exist. A

counterexample is the arithmetic function, add , on In tegers :

add(a,b ) m c

There are, in general , many pairs (a,b) that add maps to c; so there Is no way to

define add~~. However, add Is ‘I- and 2-invertible; add1 (a ,c) c-a and add2(b ,c) c-b.

A function is invertible, in general , when the functional mapping is 1-i and

onto. A function Is i-Invertible If and only if all pairs of (n+1)-tuples ~~~~~~~~~~

such that f(x1~....x~) y differ at position j only if they differ In at least one 

.- .. - - ,- .-.- , . ,~~~-- -- — - .-*.-----— --a-’ --



_ ________

more position. There are many Interesting functions that are not invertible in general

but that are i-invertible for some j . Given a function, we frequently would like to

be able to define a single program to compute this function that can also compute the

partial Inverses.

2. Invertibllity of Functions Expressed as Logic Programs.

A logic program [3] is a set of WF5 in the form L R and one WF , the call , of

the form ~ - R where I is a predicate and R is a conjunction of predicates. All vari-

ables are implicitly universally quantified. Logic programs are theorems describing

relationships among objects. While an interpretation of these logic theorems can

drive a computation , there is no notion of certain parameters for input and others

for output. A nontrivial invertible logic program is given in another paper [2].

We now define some terms that will be needed later. A 1oqj~ procedure is an

individual implication In logic program, A ~ - B where B may be empty; A is the procedure

head; B is the procedure body. A termination condition of a recursion is a procedure

A ~- B such that B does not contain a predicate whose name is the same as the predicate

name of A. That is to say, it contains no recursive calls to the procedure. We say

that a variable, x , drives the con~utation of a procedure, if every recursion causes

the value of x to be nearer a value tha t will cause the recurs ion to terminate.

We can write a logic program to compute

exp(x,y) = x~ = z

by successive multiplications . We assume a 2-invertible predicate MLILT(x,y,z) which

Is true if and only if x’y z. This exponential function Is defined by predicate

EXP 1, which has the semantics that EXP1(x,y,z) Is true if and only If x~ z.

_____ —~~~~~~~
-= .—- —‘-_ - —‘~ -- . —‘-•.——-. ...-‘~

-.--‘—---—-



The logic program is:

EXP 1(x +l ,O,1) 4- 

§

EXP1(x,y+l ,w) #- EXP1(x,y,z) A tIULT(x ,z,w)

The meaning of A B Is the standard logic interpretation “A is implied by B”. The

mean ing of the program is

(x+l )0 = 1

(x~
”1 = x~z) ~ — (xi’ = z)

It Is computationally effective as can be seen by the example below. Starting

with the call , we get a terminating sequence of sub-goals:

-4-- EXP 1 (3,2,answer)

EXP1(3,l ,z) A MUIT( 3,z,answer)

EXP1(3,O,z’ ) A MULT (3,z’,z)

The last cal l to EXP1 gives z ’ = 1 by the termination condition, MULl then gives z = 3

and then answer = 9 or EXP1(3,2,9), as desired.

Suppose we wish to 2-invert EXP1 . For example, evaluate = 9 to get Y = 2.

The sequence of calls starts

EXP1(3,Y,9)

EXP 1 (3,y,z) A MUIT(3,z,9)

Since MIJIT is 2-Invertible, we get z = 3; hence substituting 3 for z we derive

EXP 1 (3,y,3) where V Is bound to y+1. Continuing we get new subgoals

EXP1(3,y’,z’) A MtJIT(3,z’,3)

with y bound to y’+l. 14J1T(3,z’,3) gives z’ 1. Then in evaluating EXP1(3,y’,l)

* In EXP(x+l,O 1 )  ~
— the expression x+1 Is used to denote a nonzero value. Another

representation for this is

EXP (x ,O,l) ~ - (x ,. 0), but the latter has a slight computational disadvantage.

I 
_ _ _ _  

a- —~~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

5

the recursive case fails because there is no z” suc h that MIJIT (3,z” l). However, the

terminating condition applies; thus , y 1 = 0, y = 1 , V = 2, and we derive EXP1(3,2,9),

as desired.

Suppose we wish to 1-invert EXP1. For example, for what value of X will X3 = 27?

The following sequence of subgr s is generated:

EXP1 (X ,3,27)

EXP 1 (X ,2,w) A MUIT (X ,w,27)

EXP1 (X ,l ,w’) A MULT (X ,w’,w)

EXP1 (X,0,w”) A MULT(X ,w”,w’)

The termination condition gives us w’ = 1 and the definition of MULT yields X =

giving
EXP 1( X ,l ,X ) A MULT(X ,X ,w)

But we fail here because while MULl can, awkwardly, compute square root by calling

PIJLT(x ,x,C) where C is a given constant natural number , it cannot compute square

roots where the third argument is unknown as well. In effect, the collec tive calls

to Mliii are taking n-th roots of the original third argument, and that is beyond the

capability of Mliii.

Now we make a distinction between mathematical invertibility and computational

invertibility . A function f may be mathematically Invertible but be specified as a

logic program that will not compute the inverse. If a function is coniputational ly

invertibl e It is necessarily mathematically invertible.

It may also be the case that a mathematically correct logic program will be

coinputatlonally reasonable in one direction and horribly Inefficient In the other.

The path of choices in a computation may be forking such that in one direction many

cases are being joined together as In Figure la , and in the other direction a choice

must be made from many alternatives as in Figure lb. The latter case may require much 

_ _ _ _ _ _



6

backtracking where incorrect choices are made.

(a) (b)

Figure 1

3. When are Logic Programs Invertible?

The process of interpreting a logic program starts at the call , decends recursive-

ly to a termination condition, then returns eventually to the call. The question of

j -invertIblllty depends upon the sequence of bind ings of variabl es as the recursion is

carried out; success is achieved when the (unbound) j-th variable of the call is bound

to a constant value. More generally, if any subset of the variables Is known at the

call , we can ask if all unknown values can be computed.

Parameter l ist patterns are used to designate in a parameter list which parameters

are known (i.e. constants) and which are unknown (i.e. variables or functions of varI-

ables). Given a parameter list input to a procedure, we can construct an input pattern

or Input template by replacing constants in the parameter list by l s , and replacing

variables or functlons* of var iables by 0’s. So, for example, from parameter l ist

(2,x,y+l) we construct input template (1,0,0). We may tie parameters together if

some of the unknown variables are the same or simple functions of each other, such

that if one can be computed, the other is known as well. E.g. parameter list

(2,x,x+l) corresponds to pattern (1 ,6~~).

We have two algorIthms that map input templates, i.e. known vs. unknown input

§ 
We assume the only functions that are allowed as part of the parameter lists are

simple constructor functions, e.g. +1.

________________ _____________________________ _________



7

parameters, to output templates that show what total set of values is known after the

computation. For example, for procedure MIJIT, input pattern (101) maps to (111) ,

since given one factor and the product, the other factor can be determined.

The first algorithm is a simple, easy to compute, function that gives a strong

indIcator of the pattern mapping , but pathological cases can be constructed in which

the computed mapping will be stronger than reality. The second algorithm is simi lar

to the first , but makes added assumptions that require some meta-analysis of the

given function. The second algorithm is a sufficient test, i.e. at least all of the

values claimed to be known, will be known.

An input pattern tells what input values are known. From that we can show where

known values appear in the entire procedure. For example, input pattern (101) given

to the recursive case of EXP1 gives procedure pattern:

EXP1(lOl) EXP1(lOO) A MULT(lOl)
e

or (101) (100) (101) in abbreviated form.

The procedure operates in two stages:

1) Going down the recursion, we check off values when we know that they are

computable. Even though the recursion can go arbitrarily deep, there are

a bounded number of procedure patterns.

2) Once the derivable procedure patterns are found, patterns of the termina-

tion conditions are applied to show which values will be given by tennlna-

ti on.

Throughout both stages, propagate new values for variables wherever the variables

appear, and when applicable, replace the input 7atterns of sub-functions by the output

patterns to which they map.

( 
_ _ _ _



F-

8

Weak-Heuristic Algorithm:

Purpose: To discover the input-to-output mappings of a predicate, Q.

Hypotheses: All auxiliary functions’ input-to-output mappings are given. The only

functions appearing in terms are constructor functions.

1. Set-up.

The input pattern is determined from the call: ~ - Q(pl, ..., pn). We

replace in the call:

a) each constant or constructor applied to a constant by the

value 1.

b) each constructor applied to a variabl e by the variable itself.

The procedure templates are determined from logic procedures of the

form

Q (tl , .. ., tn) I— Ri A ... A Rk.

We replace each term in the procedure as in 1a and lb , above .

Let PPS be the set containing the input pattern.

2. Propagation of known val ues.

While there is a conjunct Q(pl , ..., pn) appear ing in the body of a

procedure pattern of PPS such that Q(pl , ..., pn) does not appear as the

head of an element of PPS , create new elements of PPS from the procedure

templa tes as follows : -

a) Uni fy  the head of the template with Q(pl, . . . ,  pn).

b) The auxiliary functions are the subgoals of the procedure

template that are not recursive calls to Q. Unify the

inputs to the auxiliary functions with their corresponding

output mapping. (This records which variables become

- — - .  — —4. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -‘-..-~ - .—



- - -  .~~ ---  

-
~~~~~~~~~~

9

bound in the course of the computation of the auxiliary

function.) This step is repeated until no more changes are

possible.

c) Add this new procedure pattern to PPS.

3. Applying termination cases.

a) Partition the elements of PPS into recursive and non-recursive.

b) Select a recursive subgoal from the body of an element of PPS,

and unify it with the head of any non-recursive element. Apply

the bindings only to the recursive pattern. Drop the recursive

subgoal that was just unified . The modified recursive proce-

dure may now be non-recursive. If so, move it to the non-

recursive partition.

c) Repeat b) until the recursive partition is empty.

4. Interpretation of results.

The output pattern Q(pl , ..., pn) such that (p1 , ..., pn) is the most

specific parameter list that will unify with the parameter lists of all the

heads of the procedures of PPS.

Strong Heuristic Algorithm:

This algorithm is the same as the previous one except that where l’s are unified

with l’s, a case-by-case meta-argLanent is required to show that the actual constants

are unifiable. If such is not the case, the procedure pattern being generated Is

discarded.

For example, check to see if EXP1 is 2-Invertible, -I.e. whether input template

-.— . - ~~~~~~~~ Ii

-- ..--—-------—- ---—.----
~~
-

10

(101) maps to output template (ill).

Procedure template is : (101) (100) (101)

MULl maps (101) to (111): (101) (100) (111)

Fill in new value of z
wherever it appears : (101) (101) (111)

Termination condition
f i l l s in y : (101) (l ii) (111)

Fill in new value 0f y
wherever it appears : (111) (111) (111)

Output template is the
result in procedure head: (ill)

So, the origi nal cal l has gone from (101) to (111) , suggesting 2-invertibility.

The preceding algorithms map input templates to output templates, and In

particular check whether a logic program Is j-invertible. The following are a

set of guidel ines that help the logic prograniner to construct j-invertible programs.

These guidelines exclude some j-invertible logic programs and are thus overly restric-

tive. More liberal , but less intuitive guidel ines, can be derived from the preceding

algorithm.

A. Termination conditions: There should be a set of termination conditions, one

of which can always be reached from a call in which the j-th parameter Is the

only unknown, such that each element in the set Pas the property that the j—th

parameter is known or can be directly computed as a function of some of the

other arguments.

For example, consider the termination condition MULT(x,0,O) ‘-. It is acceptable for

2-lnvertibillty because the second parameter is a constant and we always reach this

termination condition. However, It is not acceptable for l—invertlbility since once

we recur and bottom-out, we still have no way to establish the value of x except by

evaluating algebraic formulas For example, MULT(x ,2,6) calls $JLT(x,l,z) where

z — 6—x which calls PSILT(x,0,z’) where z’ = 6—x—x which — 0. So with a little algebra
1-~

L~~~~~

__________________ _

~ -- --—~ - - ---~
~ —~~~~~

--— - -.- -—- -~~~ - - _ - - — - - - ---_- -,----— - -

11

we can deduce that x = 3. However, this is not what is meant by directly computable.

B. Invertible subfunctions: The other functions used In the definition must be

invertible as called.

For example, consider the following predicate:

F(x 1,x2+l ,y) F(x~,x2,y’)

A G(y’,y)

For F to be 1-Invertible, G must be 1-invertible.

C. Driving the Computation: At least one known value must drive the computation.

For example , consider the function F, above. If x2 Is un known, it cannot drive the

computation. So for F to be 2-invertible, since x 1 does not change, the mapping

y -
~~ y’ must drive toward a termination condition.

A way to guarantee that this property holds for all j, 1
~
j ~ n is to have at

lease two arguments driving the computation.

0. Preconditions: A deciding precondition must apply to a known value.

A precondition is a predicate, used in the body of a logic procedure, that gives

the criterion for choosing that procedure. The precondition may or may not be essen-

tial to the mathematical definition . But without the aid of preconditions, much

backtracking may, In genera l , be required.

There is nothing special syntactically about the preconditions, and recognition

of predicates as preconditions is totally a control Issue , i.e. something known by

the system that provides an interpretation for the logic program.

The following Is an example of logic procedures named F in which the choice among

the procedures is determined by preconditions which test the relative sizes of x and y.

F(x ,y,z) ~ (x=y) A G1(x,y,
z)

F(x ,y,z) 4- (x>y) A G2(x ,y,z)
F(x ,y,z) 4- (x.zy) A G3(x ,y,z)

Another example of precondItIons Is In the FACTOR procedure presented later. 6W

I
_ _ _

_ _ _

t
- —-.———— -—-—.—— -——-— .-__,*- • ~~~~~~~ ~. - .— ._.-, — .,-——---- ---——— — _ - - . - . -

12

is necessary to the mathematical definition but can also be used as both precondition

and termination condition if w and n are given. In the case where p is not given ,

i.e. 3-invertibility , its use as a termination condition Is essential to the efficiency

of the algorithm.

Since the preconditions determine the efficiency of the algorithm, one must have

some way of tying the- preconditions to the parameters such that certain preconditions

are used if certain parameters are known. A way around this problem is to have at

least two preconditions , one of which can always succeed if , at most, one of the n+l

arguments of the original function are unknown. The following is an example:

F(x ,y,z) (x=y) A P1(z)

A G1 (x ,y,z)

F(x ,y,z) - (x>y) A P2(z)

A G2 (x ,y,z)

F(x ,y,z) 4— (x y) A P3(z)

A G3(x y,z)

Now, so long as at least two out of three of the va l ues x, y, and z are given,

either the relative sizes of x and y can be determined, or the predicate P1 can be

applied to z. So, if the comparisons between x and y and the
~
‘i’~

serve as precondi-

tions, at least one will always be computable In each procedure. For the P1’s to

efficiently serve as preconditions , exactly one of P1(z), P2(z), and P3(z) should be

- true for a given z.

4. Why Is EXP1 2-invertible but not 1-invertible?

The 2-invert test on EXP1 succeeds, i.e. (101) maps to (ill), but the 1—Invert

test f a i l s, i.e. (011) maps to (011). Intuitively, that makes sense according to

-
the guidelines. EXP1 fails condition A for 1-Invertlbllity since the first parameter

of the termination condition Is neIther constant nor can be computed fro. the others.

The guidelines are met, however, for 2-Inversion.

5-- 7-
_

-
--~~-‘ - -- . - - _________________

- -

r --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

13

If we wish to achieve 1-Invertibllity , we can change the termination condition of

EXP1. This defines a new exponentiation program which we call EXP2.

EXP2(l ,0,1)

EXP2(x +1,0,z) ~ EXP2(x ,O,z)

EXP2 (x ,y+l ,w) ~ EXP 2(x ,y,z) A MULT(x ,z,w)

The computation of EXP2 is similar to that of EXP1 when the second or third parameter

is the unknown.

For 1-inversion, the control is nondeterministic but will succeed. Given val ues

for the second and third parameters , the thi rd procedure wi ll recur un ti l the second

parameter is reduced to zero. Application of the second procedure serves to guess a

value for x; then the recursive returns test that value. An exhaustive, breadth-

first search will finally discover x. However , this is not a reasonable computation.

It is an example of Figure lb. The 1-invert test on EXP2 succeeds , since (011) maps

to (lii), as does the 2—invert test , mapping (101) to (ill). The guidelines , also,
are all satisfied.

5. Another Exponentiation Al gorithm.

There is an entirely different approach to exp(x ,y) that is more obviously j-

invertible. It is based on the fact that every positive integer, x, is a product of

powers of primes, that is to say

= ~v l 3v2 pk
vk .

We h a v e z = x~~iff

— 2yvl 3y•v2 y~vkZ

If we are given x and y, and we can factor x , then we can construc t z out of the

factors and vice-versa .

We must first provide an invertible factoring predicate. Suppose we have a 
S

predicate, GCD(x ,y,z), such that z Is the greatest coninon divisor of x and y, and z 

.—; - .--. —_-; —-—-— --— — --—
~~~~~~~

- ~~~~~~~ - - - 5-.. .~~ -

_ _ _ _ _ _ _ _
--- -~~~~~~~~ - --.— - - -- -~~~~~~~~~~~~~ — .-

-~~~~ 14

is undefined if x or y is zero. Then FACTOR(W,N,P,R) is true if and only If

W > 0, N > 0, R >- 0, W = N~.R , and N does not divide R. FACTOR is defined as follows:

FACTOR (w,n,0,w) GCD(w ,n,l)

FACTOR(w,n ,p+l,r) GCD(w,n,n)

A MULT(w ’,n,w)

A FACTOR (w ’ ,n,p,r)

The normal call js~ for example , ~ - FACTOR(36,2,p,r) which yields FACTOR(36,2,2,9).

A 1- invertibl e call is: FACTOR(answer,2,2,9) which yields FACTOR(36,2,2,9). These

are the only ways that FACTOR will be called by EXP3.

EXP3(X ,Y,Z) is true if and only I f X~ = Z. We have auxiliary function E such that

E (X ,NI Y,Z) is true if and only if X~ = Z for X ~ 0, Z > 0 and for al l m, 2 ~ m < N, m

does not divide X.

The forma l defin itions of EXP 3 and E are :

EXP 3(x ,y,z) E(x ,2,y,z)

E(l ,n,y,l)

E(x ,n,y,z) -i- FACTOR(x,n,p,r)

A FACTOR(z ,n,p’,r’)

A MIJLT(p,y,p’)
A E(r ,n+1,y,r’)

E repeatedly removes a prime factor, p , from each of x and z and checks to see

that their powers are In the proper relationship, i.e. p Vi for x and ~ y.vI for z.
The ~ mantics of L’ s two procedures is:

l~~= l a n d no m , 2 5m < nd iv i des l

(~Y P .,.I) (rb’ = r’) and no m, 2 ~ m -
~~ n

divides r

- - I~7IiE’ :1:~1~,.I~

~ —— --5 —-..— —--S- - -_--—. -- -- --—-—-.-- -5-----—

15

EXP3 is both 1- and 2-invertible. Calling EXP3 with pattern (011) calls E with

pattern (0111). The invert test for E on (0111) yields (1111). Calling EXP3 with

pattern (101) calls E with pattern (1101), and the invert test on (1101) yields (1111).

Notice that E passes the 3-Invert test, even though the third parameter of the termi-

nation condition is neither constant nor computable from the other parameters. This

demonstrates the conservatism of guidel ine A.

Note that E and FACTOR are not j-invertible for all j. However, that creates no

difficulties. E is called with only patterns (0111), (1101), and (1110) and FACTOR

with only patterns (1100) and (0111). All of those computations succeed. The invert

test gives the proper answers for al l cases of EXP 3, E, and FACTOR , as well as all

other examples in this paper.

If we wished to have a factor program that is j-inverti ble for all j , we could

define a new one, FACTOR2.

FACTOR 2(w ,n,p,r) EXP3(n,p,z)

A MULT(z ,r,w)

This new program is totally j-lnvertible , but wi ll not produce p and r, given w and n ,

as FACTOR would. These characteristics of FACTOR2 are demonstrated by the mappings of

the invert test on the input patterns:

(0111) (1111)

(1011) (1111)

(1101) (1111)

(1110) (1111)

(1100) (1100)

6. Conclusions

We have defined the concept of j-invertibllity for function and gIven two algo-

rithms to test logic programs for invertibility , and while the answer is not definitIve,

it is indicative. The algorithms do more than just test for j-invertIbIlIty ; they map

- ~~~~~~~~~ •

- - -~~~~~.-- -~~~~-- - -~~~~~~~~~~~~~~ - . - .- - -~~~~~~~~-

S arbitrary input patterns to output patterns.

We have also presented some guidelines for constructing j-invertible functions.

The guidel ines are in terms of the predicate form of definition of the function, and

are syntactic in nature.

The algorithm could also be used by a logic interpreter in choosing the order of

evaluation of subgoals of a given procedure. That is, given a procedure invocation,

including its list of arguments , the interpreter can determine a partial order on the

subgoals which places the most completely evaluable subgoals first, preventing pro-

cedures from being called before they have enough information to carry out their

computations. Such control can be applied dynamically by the interpreter.

Invertibility can be looked at in another way. The number of un ique var iables

appearing in the parameters of a procedure call is the degree of freedom of that call.

In general, the procedure may be able to reduce the degree of freedom by binding some

of the variables. For example, ~4JLT(x ,x,9) has one degree of freedom and in fact the

usual definition of Mull will yield MULT(3,3,9), computing the square root and leaving

zero degrees of freedom. Similarly, M(JLT(x,l ,z) has two degrees of freedom. MUIT

will determine that x = z, i.e. MIJLT(x,l ,x), reducing the degree of freedom to one.

Such situations can arise naturally in inverting predicates. How to treat them is an

interesting question for which we do not yet have an answer.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . - -~ 



—- ~~---

r
~~L 17

REFERENCES

1. Kowalski, Robert. Predicate Logic as a Progranining Language. Information

- Processing 74, North-Holland Publishing (1974).

2. Sickel , Sharon and Mc keeman, W. M. Axiomatic Specification of Syntax-Directed

Translation. Technical Report 78-8-002, In formation Sciences,

University of California, Santa Cruz, Ca. (1978).

3. van Emden , M. H. and Kowalski , R. A. The Semantics of Predicate Logic as a

Prograneting Language. J.ACM 23,4 (October 1976), 733-742.

I

I

- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ — — -  ~~ — - .



- r~~~~~~~~~~~~
- - - -

~~~~ 
—

OFFICIAL. DISTRIBUTION LIST

Contract 140001 4-76-C-0682

Defense Documentation Center Dr. A. 1. Slafkosky
Cameron Station Scientific Advisor
Al exandria, VA 22314 Coninandant of the Marine Corps (Code RD-i)
12 Copies Washington, D.C. 20380

• l Copy
Off ice of Naval Research
Information Systems Program Naval Ocean Systems Center
Code 437 Advanced Software Technology Division
Arl ington, VA 22217 Code 5200
2 Copies - San Diego, CA 92152

1 Copy
Office of Naval Research
Code 200 Mr. E. H. Gleissner
Arlington, VA 22217 Naval Ship Research & Development Center
1 Copy Computation and Mathematics Department

Bethesda , MD 20084
Office of Nava l Research 1 Copy
Code 458
Arl ington , VA 22217 Captain Grace N. Hopper (008)
1 Copy Naval Data Automation Cosneand

Washing ton Navy Yard -
-

Office of Naval Research Building 166
Branch Office, Boston Washington, D.C. 20374
Bldg. 114, Section 0 1 Copy
666 Sumner Street
Boston, I’~ 02210
1 Copy

Office of Naval Research
Branch Office , Chicago
536 South Clark Street
Chicago, ILL 60605
l Copy

Office of Naval Research
Branch Office, Pasadena
1030 Last Green Street
Pasadena, CA 91106
i Copy

Naval Research Laboratory
Technical InformatIon Division
Code 2627
WashIngton, D.C. 20375
6 Copies

