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ABSTRACT 

1

This paper uses log ic programing to describe numerical integration In a general

way. Axioms are added to the basic logic programs to define specific, known numerical

integration algorithms . Using a slightly different formalization , we construct logic

programs for adaptive Romberg integration and for a new algorithm for adaptive inte-

gration.

The logic programs provide a formal basis for classi fying numerical quadrature

algorithms (recall Rice ’s conmient that there are 1,000,000 useful ones). The logic

programs are also more understandable than the corresponding programs in conventional

programing languages.

In terms of logic programing there are several novel points in this paper. The

4 data type, real number, is not defined by a recursive constructor function. Termina-

tion is decided by error bounds , rather than by reaching some basis case of the data

constructor. The problem itsel f seems to demand concurrent execution and global

variables but in fact is solved in a linear fashion.

1.1 Review of Adaptive Quadrature

The numerical approximation of integrals goes back to the early Greeks and the

• approximation of ii. An excellent survey of the problem and modern solution methods

is found in Numerical Integration [21.

Ul timately, all numerical approximations take the form

a n—l

f 
f(x)dx = (b_a )

~~
wkf(xk)r b

where n Is the number of Intervals, and where

n-l

~~
Wk l.

k~O

- I~ JI~ ~~~~. ~~~ 
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That is, the approximation is a weighted sum of function values over the interval

of Integration. The probl ems are:

1. choosing the sample points (xk)

2. choosing the weights (W k
)

3. knowing how accurate the result is.

Adaptive algor ithms cluster the points X k wi thin regions where the intergrand Is

most intt actable. The strategies for doing so, and the resulting programs, have tend-

ed to become increasingly opaque and complex [4].

It is usual to present only deterministic numerical algorithms. They vary by

the kind of approximation used, the order of applying approximations , and the strategy

for termination. If we broaden our view to inc lude nondeterministic algorithms , we

can arrange them hierarchically; the lower in the hierarchy, the more deterministic

the algorithm . The hierarchy defines families of algorithms and Is a natural resul t

of us ing logic programing for specification.

1.2 Review of• Logic Progranining

Logic programs are a subset of well-formed-formulas (WFs) Of first-order predi-

cate calculus that define a function or relation and that can be used to drive the

computation of a function or one or more missing values of a relation [3,8].

The WFs of logic programs are restricted to the clausal form

B+- A1 A A 2 • . .  An

where the A1
1 s are predicates of the form

name (parameter1 ,parameter 2,.. . ,parameter,~)

and B Is either a predicate or empty. Each parameter is either a constant, a variabl e,

or a simple function of variables or constants. The variables are all assumed to be

universally quantified . It has been shown [1] that all WFs of first-order predicate 

-
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calculus are formalizable within this restriction.

The procedural interpretation of logic programs Is as follows :

+ - A A . . . A A1 n

is the main program which is successfully executed when each A1 is known to be true.

Each A 1 is interpreted as a procedure call.

B ~
- A1 A A2 .••  An

is a procedure definition. B is the head including the procedure name and its parame-

ters; the A1 s are the procedure body and correspond to procedure calls as In the main

program.

j A call is accomplished by matching the parameters of the call , A1 , to a procedure

head B of the same name, binding the parameters of the call and the procedure head .

Each call has the effect of establ ishing the A1
1 s as subgoals.

B~-

is a basis case where, having been cal led, it establishes no further subgoals. In the

predicate sense, B +- is an assertion that B is true for the parameters given .

A call P(x l,...,x k) is carried out by finding a procedure definition of the form

A Q2 n • . .  A Q~
and then unifying (Xi,Yi ) 1 ~ i ~ k. This has the effect of assigning values to the

local variables of the procedure, but may also cause values to be passed to the call-

ing procedure.

Example. Consider the logic program for the factorial function :~
1) FACT(O ,l)
2) FACT(n+l,z)  +- FACT(n ,x) A TIMES(n+1,x ,z)
3) +- FACT(2,ANS)

~ FACT(x ,y) is true if and only if factorial(x) = y.
TIMES(x ,y,z) is true if and only If x.y = z.

_
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Clauses 1) and 2) are two separate procedures that together define the factortal

function. Clause 1) is the procedure that terminates the computation by assigning

the output to be 1 if the input is 0. Clause 2) Is the procedure that reduces a

factorial computation to a simpler factorial and a multiplication . We assume here

that TIMES has been appropriately defined by other axioms or is considered a primi-

tive function. The form of the parameters will determine which procedure definition

is actually used for each call. Clause 3) is the Initial call and serves the role

of forcing a computation of factorial (2) and leaving the answer In variable APIS.

Let ’ s fol low the computation . FACT(2,ANS) is a cal l to a procedure. It cannot

call clause 1) because 2 and 0 cannot be made to unify since they are two distinct

constants.~ So a call to clause 2) is made. FACT(2,ANS) must be made to match

FACT(n+l,z). This can happen if we bind n to 1 and ANS to z. The procedure with

local variables assigned looks like:

FACT (2,ANS ) ~ - FACT(l ,x) n TIMES(2,x ,ANS)

i.e. APIS = 2.factorial(l). This gives us two new calls:

H. FACT(l ,x) and

§ Normally data types , e.g. the natural numbers used here, are defined constructive-
ly, as Peano did , e.g.

NATF4UM(O)
NATNIJM(n) -~ NATNUM(s(n)).

Then clause 2) would be:
FACT(s(n ) ,z) i- FACT(n,x) A TIMES(s(n~~y,z).

The above can either be interpreted as a shortcut notation for Peano ’s axioms, or for
efficiency, we can take the natural numbers and a few functions on natural numbers as

• primi tives. 

i.. . .~.I ~~~~~~~ ~~ . L .:T,.~’ * ’  , • 
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Let us first consider only the calls to FACT . FACT(1 ,x) cannot call clause 1) because

constants 0 and I will not unify; clause 2) is called again. The matching process

produces:

FACT(l ,x) ~~- FACT(O,x’) A TIMES(1,x ’,x)

which, in turn, produces two new calls. Considering again only the call on FACT:

FACT(O ,x’) calls clause 1). Clause 2 will be excluded if we have properly defined

the natural numbers , I.e. 0 $ n+l . After the binding, the procedure produced from

clause 1 is:
FACT(O ,1)

which Is unchanged , but the binding binds 1 with x ’ in the calling procedure . Since

j clause 1) has no body, we simply return. Now TIMES(l ,l ,x) is able to be called and

binds 1 with x, giving a fully defined procedure

FACT(1 ,l) -
~
- FACT (O,l) A TIMES(l ,l,l).

In addition , x is now bound in the previous stage and as we return we find

FACT(2,ANS) FACT(1 ,l) A TIMES(2 ,l,ANS).

TIMES again is called to yield APIS 2, and finally FACT(2,2) as desired.

We use arithmetic expressions in the parameter lists for ease of readability.

It is possibl e to compute such expressions using predicates, e.g.

rn-a
~~~~

could be computed:

SIJB(m,a,x) A SUB(b,a,y) n DIV(x,y,z) A TIMES(z ,~,c1)

where

SUB(u,v,w) is true 1ff u-v = w

DIV (u,v,w) is true 1ff u/v = w

TIMES(u,v,w) is true iff z~ = 

~l

The shorthand notation is only syntactic sugar and does not change the essential

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ •
~~~~~~~~~
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character of logic programs.

The implementation of logic programing systems raises some points not directly

relevant to this paper, i.e., how, in general , to select procedures, what order to

evaluate subgoals, how to achieve efficiency, and so on. To some extent our logic

programs reflect these considerations , where we use the logic itself to force selec-

tion and order. The reader interested in thi s aspect should read Warren ’s description

of an operational logic program compiler interpreter [9].

2.1 Formal Specification of Adaptive Quadrature

The specification is a set of axioms which predetermine the desired result. The

first is a formal identity from the calculus .

Jf(x)dx = Jf(x)dx + Jf(x)dx

a a m

From the above we can derive the fol lowing theorem:

mm. 

IIf dx 

b 

$ A jJ fxdx - 

~2I 
$ (1)

~J
f(x)dx - (y1+y2)~ ~

Proof: 

a 

X A Iti ~ y ~
S+t I 5 X+~ .

j  
Formula (1) gives the basic step of the adaptive routine, reducing the whole

probl em to two, presumably simpler , subgoals. The subdivision process terminates

when it is determined that a numerical approximation can be used Instead. There

are many ways to make the determination , each depending upon a pair of formulas,

named here quad and err.

______  -. - .-. .. 
. ~:: , ;,
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For example, given the basic trapezoidal approximation

trap(f,a,b) = (f(a)+f(b)).(b-a)/2

we may use

quad(fa ,b) = trap(f ,a,!k) + trap (f,~j.~-,b)

and -

err(f,a,b~ = ~quad(f ,a,b) - trap(f,a,b)I
We make the assumption:

lJf(x)dx - quad(f,a,b) s err(f,a,b) (2)

While neither formula (1) nor formula (2) Is true in general , they are two of the

assumptions upon which numerical quadrature routines are based and therefore have

the status of axioms here.

So, given interval (A,B), function F, and error bound EPS, we would like to
find a y such that

1fF dx - y~~s EPS (3)

A

We accompl ish this by subdividing the interval and error bound , as descr ibed in (1’)
below unless err(f ,a ,b) is less than or equal to the error bound al lotted for that

- interval , in which case we evaluate using quad and then return that answer to aid in

bu ilding up the , integral for the next inclusive interval.

The structure of the problem can be seen more easily perhaps if it is written in

predicate form. Define the predicate:

b

I(a ,b,f,6,y) fJf(x)dx - y~ ~

~~~ _ _ _ _ _ _ _ _ _ _ _



_ _ _
_ __ _

~~~~
________..1 - —-~~~~~ _ —

Then consider the following:

Logic Program 1:

I(a ,b,f,61+62,y1+y2) +- err(f,a,b) >- 61+62 (1)

A I(a ,m,f,61,y1)

A I(m,b,f,e2,j’2)

I(a ,b,f,c ,quad(f,a,b)) +- err(f ,a,b) ~ 6 (2’)

I- I(A ,B,F,EPS ,answer) (3’)

(1’) is the recursive case; (2’) is the termination case; (3’) is the main program,

i.e. it is a cal l to I for inputs A , B, F, EPS , and output answer.

The above logic program describes , mathematically, a large ciass of integration

algorithms. However, the methods for splitting the i nterval and the error bound are
-
, . unspecified and the computation will be highly nondeterninistic. Specifying the

splitt ing methods w ill gi ve us particular algor ithms, and, in generai more determin-

ism. In addition , we may not even get closer to a solution at eaci~ step. Suppose,

for example, that we always chose a “midpoint” , m , outside the interval (a,b). Then

instead of reducing the interval size at eac h step, we may actually be increasing it.

Nothing in the log ic program, as it stands, contradicts this behavior. So, let us

consider some ways to increase the efficiency of this algorithm by further specifica-

tion.

Given a clause C and a property p, we can tighten or restrict C by p by replac ing

clause C by clause C ÷- p. For example, to require that “midpoint” m be strictly be-

tween points a and b, change clause (1’) to:

(l’) a- (a<m .z b)

which is equivalent to adding the restriction to the list of subgoals of (1’):

~~~ rT~. 
- -- .5 -,- -. - —_ — _ 
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- I(a ,b,f,61+621y1+y2 ) 4- err(f,a,b) >

A I(a ,m,f,61,y1)

A I(m,b,f,c2,y2)

A ( a < m < b )

Consider the particul ar algorithm in which the intervals and error bounds are

both halved.

Logic Program 2:

. I(a ,b,f,€,y1+y2) 4- err(f,a,b) > ~~

, a+b e
A ~a,—~—— , ,•2-,y1

,a+b 6
A 

~~~~ 
‘

plus (2’) and (3’).

If we want to modularize the program, so that there is a procedure to dec ide how

to split the interval and error bound , we could write the program:

Logic Program 3:

I(a ,b,f€ ,y) err(f,a,b) > 6

A I(a ,m,f,61,y1)
A I(m,b,f,c2,y2)

- 

•

‘ A MID (a,b,m)

A ER_DIV (a ,b,m,6,61,62)

together with (2’) and (3’), and procedures defining MID and ER DIV.

If we are dividing the intervals and the error bounds proportionately, as in the

earl iest adaptive quadrature routines [5], then we could define ER DLV:

ER_DIV(a ,b,m ,c,61,62) 4- 6.~ 
=

*1 ,b—m~A £ 2 =

- * . 
I 
— 

‘~~
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If we define

MID(a b,m) m =

then with this definition of ER DIV . Logic Program 2 and 3 are equivalent, as can
easily be proven. Note that the equality symbols represent equality and not assign-

ment. Procedure ER_DIV expresses a relation that holds among its arguments; the

value computed depends upon which arguments are already bound. E.g. if you called

ER_DIV with values for a, b, 6 , then it could compute m and 62. For more dis-

cussion of varying the orientation of functions , see [3,7].

3. Global Al gorithms

The usual measure of efficiency Is the number of times the function Is evaluated

In the quadrature sunination . Assumptions 1 , 2 & 3 defIne a class of adaptive quadra-

ture algorithms. While it would be nice to choose an optimal member from the class,

it is not possible. Rice [6] claims that there are at least 1 ,000,000 algorithms ,

each optimal in its own domain. Furthermore, by the Mean Value Theorem, one function
evaluation is enough for continuous integrands, if only one knew how to choose the

single sample point in the interval .

There are other measures of efficiency, in particular the amount of memory

needed, which can be applied . Measures of this sort are Implementation dependent.

Nevertheless , one can pick a strategy which is both intuitively attractive and

performs well experimentally. Since at each spl itting of a sub-interval the estimate

of the truncation error over the whole sub-interval Is known, we may choose to split

the pending sub-Interval having largest error estimate. This strategy Is new as far

as known to the authors and is presented below.

The next two algorithms are considered global because there Is a sense of having

to know about many subgoals at once.

In this algorithm , we continue to use the notion of subdividing intervals, but

I

4 ,  

~~~~~~~~~—. 5.— _,_• .-. — —_. ~ ._.L.&&.~~sisI~~~t*L .. ,_~~~~~ ~~.4
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instead of di stributing the error bound evenly over the interval , we would like to

reserve most of the error for the trouble spots by taking advantage of the accuracy

in the easy spots. We think of the interval having been broken into sub-intervals

already, and associated with each sub-interval is an approximation of the integrand

and an error approximation. If the sum of the error approximations is greater than

the total error bound allowed (c) across the interval , then we divide the sub-interval

having the largest error estimate. We redefine I to use this method , and we call I

as before. Logic Program 4 is a formal specification for this algorithm.

Logic Program 4:

I(a ,b,f,e,area )

G(f ,6,{(a,b,err(f,a,b))},err(f ,a,b) ,area )

G(f ,6,fntset errsum,area ) 4- errsum s

A zQUAD(intset ,f,area )

G(f,c,intset,errsum,area ) errsum > 6

A GREATE$T(intset,(a,b,e))

A MID(a ,b,m)

A lntset ’ = intset
— {(a,b,e)}

-~~~ 

, 
U {(a,m,err(f,a,rn)) ,(m,b,err(f,m ,b))}

n errsum ’ = errsum-e + err(f,a,m) + err(f ,mb)

A G(f,e,Intset’ ,errsum ’ ,area )

The semantics of the predicates used in Logic Program 4 are given in

Table 1. Logic program definitions of EQUAD and GREATEST are given below.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~
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Compute the sum of quad appl ied to all elements of an INTSET.

• I :QUAD (~,f ,0) ~
ZQUAD(T ,f,area) 4- T = T’U{(a,b,e)}

A T - {(a ,b,e)} = 1’ §

A zQUAD(T’,f,area ’)

A area = (area’ + quad(f a,b))

Find a sub-Interval with the greatest error approximation.

GREATEST({(a,b,e)},(a,b,e))

GREATEST(T ,(a ,b,e))
T — r’ i,c (  I.
I — I

T II h ~~~~~—~~ r ’,~ 
— 

~~~ ~
‘
~1 ,e1 , ~ 

—

A GREATEST(T ’,(a2,b2,e2))
A MAX((a 1,b1,e1 ),(a2,b2,e2),(a,b,e))

where

MAX((a 1,b1,e1),(a2,b2,e2 ),(a 1,b1,e1)) e1 ? e2
MAX((a 1,b1,e1),(a2,b21e2 ),(a 2,b2 e2 )) ~~ e1 < e2

The predicate C will compute exactly the same values , in the same order, as one

of the (nondetermini stic) paths of Logic Programs 1 or 3. If MI0(a,b,m) in =

then C will compute exactly the same values as one of the paths of Logic Program 2.

- ;  These first two conditions are needed to create a choice function for sets
They mean slightly different things and both are required.
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predicate semantics

• _______________________________ ____________________________________________________

Va l ue, area, is the sum of the integrals
over the intervals of intset under function
f, within error c. Value, errsum, is the

G(f,&,lntset,errsum,area) sum of the error components Of the elements
of intset. Errsum is redundant, since we
could recompute it each time, but it is use-
ful both for efficiency and clarity.

ZQUAD(intset,f,area) [ quad(f,a,b) = area

(a ,b,e) E intset

(a ,b,e) is an element of intset having the
GREATEST (intset ,(a,b,e)) highest third component, i.e. error approxi-

mation.

as used before, given interval (a,b) this

MID(a ,b,m) procedure selects a midpoint m for subdivis-
-

~~~ 

ion.

Table 1

Program 4 can be Improved by reducing the number of evaluations of f and quad .

• Every time err(f,a,b) is called, quad(f,a,b) must be evaluated, which forces evalua-

tion of f(a),f((a+b)/2) and f(b). The quad and f values are computed redundantly and

are discarded. The next program saves f and quad values in such a way that for any

• points a and b, f(a) and quad(a,b) are computed at most once. The saved values make

the resulting formulas a little more cumbersome, but no more complex.

• ~~
-—- -

-~~ - • —- ;•~~~~~~~ - - -~~~~ - - ~~~~~~~~~~~~~~~~~~ ~~~~~~ - -I—5--— 
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Four other changes have been made to Program 4:

• 1) Intervals are expressed as left endpoint and width rather than left

and right endpoints.

2) Instead of keeping a set of Intervals and finding the one with the

greatest error estimate, we keep a list of intervals in decreasing

order of error estimate. The symbol ® denotes an infix “cons ” of an
element to a list.

• ~

- - 
- 3) In order to prevent redundant computations of f in deriving the value

of quad , we have to fix the quadrature rule; we have chosen the

trapezoidal rule, but we could have chosen others.

4) ZQUAD is redefined to use the information that has been saved in

intlist.

Logic Program 5:

I(a ,b,f,e,area )

G(f ,€ ,(a ,h,fa,fm ,fb ,q,e),e,area )

n h = b - a

Afa=f(a)

A fm = f((a+b)/2)

A f b f (b)

A q = ( f a + 2fm+fb).h/4 -

~1. I

~:~i •

~~

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~
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(Logic Program 5 Cont’d):

G(f,€ ,intl ist,errsum area) errsum 5 6

A ZQUAD(intlist,area )

G(f ,6,intlist,errsum,area ) -~- errsum > 6

A intlist = (a,h,fa,fm,fb,q,e) ® list

A fm1 f(a + h/4)

A q1 = (fa + 2fm1 + fm).h/8

A e1 = q1 
- ((fa + fm).h/4)I

A MERGE(list (a,h/2,fa ,fn%1,fm,q1,e1),list’)

A fin2 = f(a + 3h/4)

A q2 = (fin + 2fni2 + fb)h/8

“ e2 = q2 - ((fm + fb) h/4)~
A MERGE(list’ ,(a + h/2,h/2,fm,fm2,fb,q2,e2),list”)

A errsum ’ = errsum - e + e1 + e2
A G(f ,e,list” ,errsum ’,area )

ZQUADW ,0) ~~

ZQUAD((a ,h,fa ,fm,fb,q,e) ® list , q + area)
• 

~ - zQUAD (list,area)

MERGE(Cl,i,i) 4-

MERGE((a 1,h1,fa1,fm11 fb1,q1,e1)® list , (a2,h2,fa2,fm21fb2,q2,e2),
• (a2,h2,fa2,fm2,fb2,q2,e2) ® (a1,h1,fa 1,fm1,fb1,q1,e1) ® list)

MERGE((a 1,h1,fa 1,fm1,fb1,q1,e1) ® list , (a2,h2,fa2,fm2,fb2,q2,e2),

(a 1,h1,fa1,fm1,fb1,q1,e1) ® list’)

A MERGE(list ,(a2,h2,fa2,fm2,fb2,q2,e2) , list’)

hii11111 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~ ~~~~~~~~
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4. Romberg Integration

One can improve the accuracy of the integral over a given set of sample points

by either resorting to higher order rules or by applying the Romberg convergence

• formulas to the trapezoidal rule values . Romberg Is preferable because it is numeri-

cal ly stable [2]. Romberg cannot be appl ied over arbitrarily spaced sample points ;

in its usual form the interval of integration must be uniformly divided into 2k sub—

interval s for some exponent k. This property has generally precluded its use in

adaptive routines.

In the algor i thms previously descr ibed, there may be sub-intervals which are in

fact subdivided exactly 2k times for some k. Romberg can be applied to them giving

improved approximations. Then all of the approximations can be summed to give the

final result , which is almost always an improvement over the unaccelerated val ues.

There is no new information on the error estimate so it remains the same. The adap-

tive Romberg algorithm is the same as Logic Program 5 in the subdivision of the

‘1 intervals, but different in the computation of the integral. It is intuitively

attractive to identify the powers of 2 arising naturally out of the subdivision

process with those needed by Romberg, particularly where recursion is used since the

• calling routine contains some values of use in the Romberg rule. The algorithm

presented here does not make that identification and as a result, is better able to

apply the Romberg rule. The reason is that 2k contiguous sub-intervals may break

across the recursive structure but are availabl e in the lists used here.

Logic Program 6:

• Change the termination case (clause 2) of Logic Program 5 to:

G(f ,6,intlist ,errsum,area ) errsum 5 6

A SORT ( intl ist,intlist’)

A EVAL (0,~),0,intlist’ ,area )

i
_________ _______ 5- — — 5- 4 ~~~~
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and add the following procedures:

1) Procedure SORT(x,y) takes list of interval s x and sorts it based on the first

• value of the 7—tupl e representing each interval to form list y, i.e. the left

endpoint of the interval . The actual program for sort is not included here.

It is a simple program, and operates similarly to MERGE .

2) Procedure EVAL(left,mid ,ints ize ,valist,area) takes a sorted list (valist) of

interval s and determines if there are any sequences of sub-interval s (mid)

to which Romberg acceleration can be applied. Any adjacent intervals of

equal width (intsize) are eli gible.~ EVAL collects in “mid” contiguous se-
quences of equal sized intervals In modified form, then sends them to REDUCE

for evaluation. The value , left, is the sum of the Romberg approx imations

of the integrals of the intervals to the left of mid. The value, area , is

the sum of left, and the Romberg approximations of the integrals of the in-

tervals in mid and valist.

EVAL(left,mid ,intsize ,Q,lef t + x)
4— REDUCE(1),mid,x)

EVAL(left,mid ,intsize ,(a,h,fa ,fm,fb,qamb,e) ~ valist ,area )
intsize = h

A qab = (fa + fb).h/2
A qlist = qab ® qamb

* A EVAL(left ,nr i d ® (h,fa ,fb,qlist),ints ize,valist ,area )
EVAL(le ft,mid ,intsize,(-a ,h,fa,fm,fb,qamb,e) ® valist ,area )

A intsize ~ h
A qab = (fa + fb).h/2

- 
A qlist = qab ® qamb
A EVAL(left + x,(h,fa ,fb,qlist),h,valist ,area )
A REDUCE(1),mid ,x)

§ The equality test on real numbers makes sense here because if the numbers being
compared are mathematically equal , they are computed exactly the same way (repeated
division by 2) hence will al so be numerically equal .

_ _ _ _— .  
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3) Procedure REDUCE(list1 ,list2,area) takes the trapezoidal approximations pro-

- vided by EVAL and computes the values needed to apply Rainberg acceleration,

that is to say the zero-level Romberg values, by pairwise combining contigu-

ous intervals of the same step size until a single interval is constructed.

The formula

T~(a,h) + T~(a+h ,h) Tk 1 (a ,h)

• where T~(a,h) is the trapezoidal approximation 
on interval (a,a+h) with 2~+l

- sample points provides the basic computation of REDUCE. The final result is

• a l ist of the form

T°(a ,h) ® T1 (a,h) ® T~(a,h) ... ® T’1(a ,h)

REDUCE pairw ise combines the intervals of list2 and places the result in

list1. When list2 is exhausted
, list1 and l ist2 are exchanged and the pro—

cess repeated until the l ist has been reduced to a single interval . If the

starting list is not of length equal to a power of two, there will be left-

over intervals when the intervals are pairwise combi ned. These are passed

to ROMB at that time, thus are not considered for further Romberg accelera-

-

~~ tion.

- 1 REDUCE(O,O,O) ÷.

- 

REDUCE(ilist,(h,fa,fb ,qllst),area1+area2)
÷5 ROMB(1,qlist,area 1)

‘ 
- 

A REDUCE(Q,ilist,area2)

REDUCE(ilist,Q,area) ‘- ilist $ ()

A REDUCE(O,llist ,area )

REDUCE (ilist,(h,fa ,fm,qllst 1) ~ (h,fm,fb,qlist2) ® illst ’,area )

qab = (fa + fb) h/2

A SUMLIST(qlist1 ,qliSt2,qliSt3)

A qlist — qab ® qlist3
A REDUCE(ilist ® (2.h ,fa ,fb ,qllst),illst’ ,area )

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~ 
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• . where SUMLIST (qllst1,qllst2,qlIst3) takes two lists, qlist1 and qlist2, and

pairwise sums their corresponding components to form qllst3.

SUMLIST(Q, I),~~)) 4-

SUML1ST(q ® L,r ® L’,(q+r) ® x)

• 4- SIJMLIST(L,L’,x)

4) Procedure ROMB(k,qlist ,area) takes the list provided by REDUCE, which Is

also the set of values

Rg(a,h) ® R~(a ,h) ® R~(a ,h) ... ® R~(a ,h)

where R~(a ,h) is the k~~- acceleration on interval (a,a+h) using 2
n41

function values. We have

R~ = (4kRk_l - R~~~),(4
k_l) for k>O

and R~(a ,h) is the desired result. The parameters of ROMB are k, the level

of accel eration, qlist , the l ist of values at that state, and area, the

ultimate answer.

ROMB(k,~~,r,r) 4- length(r) = 1

ROMB(k ,L,r1 ® r2 ® R,area)

= (4 kr r ) /(4k l)
- • 

A ROMB(k ,L ® y,r~ ® R,area )

ROMB(k,L,r,area) L$() A length(r) = 1

A ROMB(k+l ,() ,L,area )

• 5. Correctness

The logic programs given are verifiable since each procedure is an easily proved

• theorem, (in fact many are theorems found in numerical analysis texts). For example,

Logic Program 1 consists of two procedures that correspond to the two theorems:

:~~ 
“

-
~~~~~~~~~~~ 
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The.

• (err(f,a,b) s e) ~ IJf(x)dx - quad(f ,a,b)J 5 6

2i~
formula (2) and transitivity

L -

- 
• (err(f a,b) ~

A IJf(x)dx - y1~ 
s £ 1

: 

IJ~
(
~~~

x - (y
1 
+ y2) s 61+62

A fJf(x)dx — s

-; .
~
.

21. 
-

I Theorem of section 2.

- 

:• So long as the compiler/interpreter preserves the logical meaning, we are assured of

correctly integrating.

To have total correctness, we must al so prove that the algorithms terminate. If

the looping or recursion of a program Is governed by counting down a natural number

Li -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . 
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to zero, or decomposing a constructed object until an atomic or primitive object is

reached, then you can easily prove termination . In the examples here, the reduction

of an error term to a specified bound causes the algorithms to stop. The proofs of

termination, therefore, are more difficul t here. Proof of termination of Logic

Programs 2 and 3 can be achieved by proving:

Given interval (A,B) and function F, there exists an interval size d such that

for all a and b such that (A s a s b ~ B) A (b-a) s d

,b-aerr(F,a,b) ~

5. Conclusions

We have shown several numerical integration algorithms and their specifications

In logic. The logic programs are unusually conc ise, compared with most specifications

of numerical integration algorithms . Each procedure must represent a theorem in nu-

merical analysis. Partial correctness is thus assured, by definition . Termination

• is trickier, both in deriving a mathematical guarantee of termination and termination

when dealing with truncated reals, as on a computer.

• We have extended logic programs to use on real numbers and error-bound termina-

tion, and except for proof of termination and deciding how to reduce a problem into

subproblems , this use of logic programming is not significantly different from logic

algorithms on constructively defined data types.
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