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ABSTRACT

— This paper presents an algorithm that rewrites into efficient form some
• recursive functions that contain redundant calls (e.g. the Fibonacci function).

Burstall and Darlington have optimized such recursions via their unfold ,

abstract, fold process [3]. This paper generalizes that method and eliminates

the need for the user intervention. We give formal definitions for the

optimization of functions for both linear and multi-dimensional data types.

The algorithm depends upon the arguments of the recursive function being

defined by a structural inducti on , and defines a measure of distance on argu-

ments that determines when and how the rewrite can be carried out. This paper

is not concerned with the imp lementation issues arising from the relative

efficiency of recursive and iterative mechanisms in programing languages , but

rather with restructuring the algorithms themselves.

1. Background

Intuitively, a function is recursive if it is defined in terms of itself.

More precisely, suppose we have known functions g and h, and write

f(x) = g(f(h(x)),

then f is said to be recursive. -The recursion takes the parameter value x,

modifies it in some way via h, appl ies f and then uses the result in some fur-

ther computation g. In a more famil iar special case, we might have

f(x) = g(f(x-l))

where h merely subtracts one from the argument.

Id

L ______________ 
_ _ _  . _ _ _  _ _ _
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The recursive formula, alone , is not sufficient to define f; we must

always have at least one basis case which is a value of f that is directly

computable without reference to f.

Programing languages implement recursion of this sort via procedures

in which each application of the definition consumes some time (and perhaps

space). In this environment , reduc ing the number of appl ications leads to

increased efficiency. This is the primary objective of this paper. There

has been a great deal written about transforming recursion into iteration

[e.g. 1 ,2] and the analysis of recursion [e.g. 3,4,6]. Burstall and

Darl ington [3] introduced the concept of removing redundant recursive calls

from the computation altogether by transforming the program into an equiva-

lent, optimized form. This work is extended and formalized here.

We shall first define recursion formally for constructed data types,

and give some examples of recursive functions. We then formally define the

rewriting algorithms and the classes of recursions that can be rewritten to

reduce the number of function applications and give examples of such rewrit—

ings.

The domain D of a constructed data type consists of a set of constants A

and a set of constructor functions S together with all values from repeated

applications of constructor functions to the constants. Suppose s1 ‘is a

constructor function and x is in D. Then we define s1(x) > x. The transitive

closure of the relation “ >“ defines a partial order (sometimes a total order)

• on D. For example , if S = {successor} and A = {O} , then

D = {O,successor(O),successor(successor(O)),...) = Z , the non—negative integers .

The intuitive ordering of the non-negative integers is the same as the order

defined above.

~
j  
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3

Assume that a and al are constants , s and 5 j are constructor functions ,

and x and x1 are variables that can take on any value in the domain.

We define three types of functions :

1) Successor

s(x1 ) = x2 i.e. any constructor function .

2) Constant

c(x15... ~x~) = a

3) Pick—out

p (x1,.. . ,x,.~) = x 1 for any particular i , 1 s 1 ~ n. For

example, the identity function.

Two methods of building functions :

4) Composition

f(x1~
...
~
x
~
) = g(hi (xii ... ,xn),...hm(xi,...,xn)) where

g: Dm
~ ,D

h1: Dn -
~~ D for 1 < i ~ m

i.e. the function f is defined wholly in terms of the composition

of other functions .

5) Primitive Recursion: for n ~ 1 ,

f(a0x2,...0x~) = g(x 2,...,x~) (basis case)

f(s(x 1),x21... ~x~) =

S I X l ,X2,. . . ,X~ ,

5m 1 )
~

)(2~~~~1X n~ 
(induction case)

where

s1(x1) < s(x1) for 1 < I s m

While this definition of primitive recursion appears more general than usual

-
- - .

~~ I
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[7], It is merely a convenience and does not increase the power of primitive

recursion.

A primitive recursive function is defined for a basis value. One of the

arguments of f is used to “control ” the computation. If it equals a basis

value, then the function is evaluated as a constant or as the value of another

function . If the value of the control variabl e x is not a basis value , then

f is expressed in terms of f applied to a smaller value than x.

We define the set of primit ive recurs ive funct ions :

1) Successor, Constant, and Pick-out functions are primitive recur-

sive.

2) If f is composed of primitive recursive functions then f is

primitive recursive.

3) If f is defined by primitive recursion in terms of only i tself

and other previously defined primitive recursive functions then

f is primitive recursive.

Primitive recursive furctions always terminate since they are defined over

constructed data types and remove at least one level of structuring with each

recursive application .

The Fibonacc i function def ining the sequence 1, 1 , 2, 3, 5, ... where

each new number is the sum of the preceeding two can be defined as follows :

— 

• 
f ib(O) = 1

fib(l) = 1

f ib(x +2) = fib(x+l) + fib(x)

using two basis cases and a primitive recursion . Or , suppose we have a domain

D where A = {empty_tree } and S = {graft : D x Z x 0 -~~ D} . The constructed data

type Is the set of binary trees with nodes having non-negative integer values.

— --—-4- — ~~~~~~~~ — — ~~. ~~O i.. at ~~..
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The function defined below sums the values of all the nodes of a tree.

sum(empty_tree) = 0

sum(graf t(t1,v ,t2)) = sum(t 1) + v + sum(t2 )

2. Recursion El imination

Recursive functions can be classified as linear or non-linear according

to m = 1 or m > 1 in the definition of primitive recursion . The factorial

function , fact: Z -+ Z, defined by

fact (O) = 1

fact(n+l) = (n+1 ) * fact(n)

is linear. The Fibonacc i function is non-linear.

Recursive functions can also be classified as redundant or not redundant

according to whether the function is ever appl ied more than once to the same

input in the course of evaluating some particular case. Factor ia l is not

redundant , and Fibonacci is redundant.

If a recursive function is redundant, there is the possibility of collaps-

ing the repeated function evaluations. In its simplest form, a course-of-values

Induction [5], by saving all previous values , gives the model demonstrating

the possibility . Course-of-values induction requires , in general , an unbounded

amount of storage . The method presented here , when appl icable , requires only

a bounded amount of storage. 
-

A linear recursion is never redundant since if a value were to be repeated,

the recursion would have been Improperly defined , violating the condition that

the subcall be on a simpler argument than the original argument. Thus, we are

4 interested here only in non-linear redundant recursions. One way to make them

not redundant is to rewrite them as linear recursions.

_ _ _  _ _ _ _  

. 
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A function of n arguments can be definet~ as a predicate of n+l arguments

by letting the predicate stand for the relation between arguments and value .

Suppose F is a predicate that is true iff F(x,f(x) ) for all x in the doma in

of function f. Then F Is a definition of f. Such predicates can be recur-

sively defined . For example, the predicate FACT(x,y) defined by:

FACT(O ,l)

FACT(x+l ,(x+1)*y) ÷- FACT(x ,y)

gives the factorial function .

The implication “ i- ” i s used the same as the relat ion “ = “ in primitive

recurs ion , thus, we can extend our definition of primitive recursion to pred-

I
-t The function d (n) = 2” can be defined by

d(O) = l

d(n+l ) = d(n) + d(n)

which is non-linear and redundant. In predicate form it becomes

0(0,1)

D(n+l ,y+y) ÷- D(n,y)

which is linear (hence not redundant). This is the simplest case of recursion

el imination. Note that it did not depend upon the properties of “ +“ ;

d (n+l ) = h(d (n),d(n)) for any function h becomes D(n+1 ,h(y,y)) +- D(h ,y).

More interesting is the Fibonacci function for which a linearizati on was

found by Burstall & Darlington [3]. The definition presented previously gives

rise to the pred icates

FIB(0,l) ~—

FIB(l ,l) ÷-

FIB(n+2,x+y) 4- FIB(ri+l ,x) A FIB(n ,y)

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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which are still non—linear and redundant. However, we modify the definition

of FlB to be

FIB(O ,l ,Q)

FIB(l ,i ,1 )
FIB(n+l ,x+y,x) 4— F IB(n ,x ,y)

where ~ denotes the value “undefined” . The meaning of FIB is:

FIB(n ,fib(n),fib(n—l)) for n ? 0.

The new computation of Fibonacci is not redundant . This paper generalizes

upon the above method .

3. Method

We make the following assumptions about the functions we are trying to

optimize. Any exceptions to these assumptions will be noted explicitl y in

the various cases. Descriptions of criteria are in terms ~f u function f

whose recurs ive formu l as are express ions :

F f(x) = g (f(x 1 ),... ,f(x~)),n ~ 2,g not dependent on f

1. Recursion based on decomposition. The recursive calls to the function

should have inputs that are substructures of the original input , i.e. the

resul t of pee li ng away at l eas t one l evel of construc tor appl ications.~ For

examp le ,

sum(graft(t1,r,t2)) = sum(t 1 ) + r + sum(t2)
-5

§ 
All that is really essential is that the domain be countable and have

a lower bound . If that is the case, a structura l construction can be defined.

. —-p——  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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- satisfies recursion based on decomposition for binary trees since t1 and

are substructures of the ori gi nal . However , the function

f(2*i) = f(i) + f(i+l )

on natural numbers does not satisfy the constraint , since the breakdown of

input 2*i is not based on the constructor, successor , for natural numbers .

This latter example would also fail condition 3 below.

2. Multip le, simpler calls. The recursive definition of the function

should make two or more subcal l s to the function, each of which has an input

simpler than the origina l , i .e.

f(x ) = g (f (x 1 ) ,f (x 2) ,... ~f(x~)) where

x > x 11 l s i s n.

For convenience , it may also be assumed that x1 ~ x~ if I 
~ 
j . If

redundancy of thi s sort occurred , one could remove it by replacing function

g by function g ’ that computes the same mapping , but accepts fewer arguments.

E.g. if f(s(n)) = g(f(n),f(n)) where g(x,y) = x2+y, then we could

rewrite f: f(e(n)) g’(f(n)) where g ’ (x) = x 2+x.

3. Bounded span. Intuitively, span is the structural distance between

two data objects, i.e. the amount of construction required on the second

• argument to obtain the first. E.g. where g is a constructor

span(g(g(x,y),z), y) = 2 since y is a subterrn of g(g(x,y), z), inside 2 levels
- . 

- of Construction.

Given constant b and constructor c, span is formally def ined:

span( b ,y)= oo f o r b $ y
. 

-‘ span(x ,x) = 0
k

- 
. span (c(xl,...,xk),y) = l+min(span(x~,y))i=l - -

~~ 

--—fl - 
- :... T T ‘

~I-~ 
- - 

-
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For example , span(g(x,g(x,y)),x) = 1, demonstrating the disambiguation If the

subterm in question appears twice.

The requirement for bounded span , means that there is a bounded distance

from the original call of the recursive function to- each of the inputs of its

subcalls, i.e. for function f to satisfy this criterion , there exists an inte-

ger, I, that is constant for f such that for

f (x ) = g(f(x 1),... ~f(x~))

max(spa n(x ,x1)) s I.
1=1

The importance of bounded span is that it implies that there is a finite limi t

to the amount of previous knowledge required at any point to compute 1.

If a subcall is not a bounded distance from a cal l , but is a bounded dis-

H tance from the basis , then we may want to revise the function definition to

include these bottom cases, by replacing the recursive calls to those cases

by their computed values.

4. Single constructor. Our definition of primitive recursion made no

requirement that there be a single constructor function. All of the data types

we have seen have a single constructor, e.g. successor for natural numbers and

graft for trees. This criterion will be varied later .

5. Linearly constructed objects. A linear constructor takes a single

argument. All objects built from a linear constructor , c, have the form ck (b)

where b is a basis constant and k > 0. Binary trees are not linearly construct-

ed. This criterion will also be varied later .

~~~~~~~~~ 

- -
.
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.0 

~



F~~
_
~~ 

- - -
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

10

6. Single parameter functions. At the beginning of this section, f is

described as a function taking only one argument. That argument is the one

that drives the recursion. Variations on this cri terion will be discussed

later.

7. Single recursive formula. The definition for f may contain only one

recursive formula. The following function , g, would be excl uded:

g (O)=l

g(s(x)) = g(x) if x odd

g (s(s(x)))  = g (x) + g(s(x)) if x even

- : This criterion will be varied later.

Case 1. Simplest case: assumes all of the above. Let the single con-

structor be c. As a shorthand notation, let c(c...c(x)...) be denoted x+m.
- -S---

Then m

f (x) = g(f(x 1
) ,... ~f(x~)) can be rewritten as

f(x+k~) 
= g’(f(x+k~~1 ),.. .,f(x+k2),f(x+k1 ),f(x ))

& where k
~ ~

. k1, if i > V and j = k,1. I.e. the arguments to the sub-

calls of f are in decreasing order, j = max(span(x,x.)), and g ’ similar to
1=1

g but with reordered arguments.

Knowing the values of f applied to the j previous values less than x may

not be a necessary condition for - computing f(x), but it is a sufficien t one .

The following predicate form of the function f carries along the last j

valu es computed. Then to compute f(x+l), all requ ired information is con-

tam ed in f (x), so a single recurs ive call is required. All except the oldest

of the j values is passed along to be stored ~ith x +l for use in the next

computation.

L 
________________________________

-
. -  ~~~~~~~~~~~~ 4-- ~~~~~~
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Now to formalize the construction of the optimized predicate:

if for bas is constant a

f(a) = a0
• f(a+l) = a1

f(a+j-l) a~~1
f(x+j) =

then define predicate F taking j+l arguments :

~~~~~~~~~~~~ 4-

I-

4-

F(a+j -l ,a~~1,...,a 15 a0 )

4-

F(x +j-1 ,z~~1,...,z1,z0)

g” is a function similar to g but it takes exactly j arguments which is possibly
more than the number required by g. The added values are simply ignored.

For example, consider the original example that motivated this kind of

optimi zation , Fibonacc i.
- 

-

fib(O)= l

fib(l ) = 1

fib(x+2) = fib(x+1) + fib(x)

The new predicate is:

FIB(O ,l,Q) 4-

~~ FIB(l ,l,l) i-

FIB(x +2,z1+z2,z1
) 4-

FIB(x+l,z1,z2 ) 

‘I
~~~~~~~~~~~~~ 

- -
~~~.
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Modulo Optimization of Case 1. In the previous case, we have kept the

resul ts of f applied to all val ues over the ful l span, even though some may

never be needed. The reason to keep all val ues is to guarantee that values

needed further up the chain will exist. For example ,

f(x+3) = f(x+l) . f(x)

does not need f(x+2), but that value needs to be kept so it can be passed on,

because the computations of f(x+4) and f(x÷5) require it.

If we had some way to guarantee that certain values would never be needed,

we could optimize the predicate form. For example,

f (O) = a0
f(1) = a1
f(2 ) = a2
f(3) = a3
f(x+4) = f(x+2) + f(x)

Then values of f on even input will be used only for larger even val ues and

similarly for odd values. So long as the shift distance between any two

success ive increments , i.e. the k1 s, and between k~_1 and j, is a non-zero

multiple of a given constant, then we can reduce the chain of temporaries.

In general , given definition of f as follows :

f(0)=a0
f(l) = a l

;(jl ) = a
~_l

f(x+kn) = g(f(x+k n_ 1 )
~~~* , f(x+k1),f(x ))

where k1 > k 1 , If i > I’ and k~ > 0 for all I, and j = ~~
r 

~

I
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we define

modulo(f) = gcd(k~~k~~1,...~k1)

where “gcd” denote s greatest comon divisor. Letting in denote modulo(f), then

— 
we can represent I as predicate F , described semantically:

~~~~~~~~~~~~~~~~~~~~~~~~ 
,f(x +2m),f(x +m))

F takes p+l arguments where p = j/m.

The full definition for F is:

Termination cases , for 0 5 t s j-l :

F(t ,ak,ak~~~. . . ,a~ mod m’~’” 
,2)

Recurs ive formula:

F(x+j,g’(z~,.. . ~z1)~z~~...5z2) 4-

F(x+j-m ,z~,z~~1,...,z1)

where g ’ is a function similar to g, but it takes, perhaps, more arguments,

since every in th value between x and x+j is included.

For examp le, given f:

f(O)=0

f(l) = 10

f(2)=20

f(3)=30-

f(4)=40
• I

f (5) = 50
f(x+6) = f(x+2) + f(x)

span(x+6,x) = 6

modulo(f) = gcd(6,2) = 2

# arguments = (6/2)+l = 4

. 

-~~~~~-~~~~~

— A i~~~~~ __T. - ‘
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and F is:

F(O ,O,2,S~)

- • 
- 

F(1 ,l0,S~,2) 4-

• F(2 ,20,O,2) ~~
-

F(3 ,30 10,2) 4-

F(4 ,40,20,0) 4—

F(5 ,50,30,10) 4-

F(x+6,(z2+z1 ),z3,z2)

F(x+4,z3,z2,z1)

If we had not done this optimization , we would have needed six values of f in

the predicate rather than three.

Case 2. Use above assumptions except that more than one recursive formula

is allowed in the definition of I. Define:

span(f) = the maximum of the spans of the individula formulas

moduIo (f) = the greatest comon divisor of the modulos of the

IL indiv idual formulas

Then construct an F predicate for each recursive formula (plus basis cases,

— of course) but use these general definitions of span and modulo for each m di-

vidual formula. Then add necessary basis cases that will fill in for formulas

with smaller spans. 
-

The following example shows two recursive formulas and their corresponding

predicate. Since the basis cases are handled the same as before we have not

bothered to include them here. Function f has two recursive formulas d1 and

d2. (The two formulas may provide alterna te methods of computation , perhaps

H based on some case breakdown, e.g. a criterion on the input. Presumably, they
P t do not allow different answers for a given input.)

I

~~~~~~— ~~~~~~~- _i~~ ~1... ~~L ~ ..
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d1: f(x+6) = g(f (x))

d2 : f(x+9) g ’(f(x +6), f (x ) )

span(f) = max(span (d1),span(d2))
= max( 6,9) = 9

modulo(f) = gcd(modulo(d ),modulo(d ))

= gcd(6 ,3) = 3

Then the two recursive predicates are :

F(x +9 ,g(z2),z3,z2 )

F(x+6,z31z2,z1)

F(x +9,g ’ (z 3,z1),z3,z2 ) 4-

F(x +6,z3,z2,z 1)

Now since we have increased the lowest value which the recursive case can take

as input from 6 to 9, we need to add bas i s cases :

F(6 ,g(a0),a3,a0)

F(7,g(a 1 ),a4,a1 ) 
4-

F(8 ,g(a 2),a5,a2 ) 4--

where a 1 = f( i ) for basis cases at least as high as 5.

Case 3. Multiple parameter functions. In our definition of primitive

recursion we allowed multiple arguments to the functions , but only one argument

drove the recursion . For our purposes here , additional arguments are simply

~ 
carried along , i.e. if f(y) maps to ~~~~~~~~~~ then f ’ (x 1~ ...~x~,y) maps to

~~~~~~~~~~~~~~~~~~ 
where the arguments Xl~~~•~

Xn are passed from one cal l

of F’ to the next.

However , consider the possibility that more than one argument drives the

I
,

0 - -_ _ _  - -

_____ I ~~~ 

— --
.. — — .. ~~‘ ~

_______________ ______ ~~~~~ ~~~~~~~~~~~~~~~~ -
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recursion, e.g.

f(x+l,y+l) = h(f(x+l ,y), f (x ,y+1),f(x ,y))
• 

There clearly is redundancy here , since f(x ,y) will be called as a subgoal by

each of f(x +l ,y) and f(x ,y+l). However , we do not optimize here because there

is no way to defi ne a total ordering on pairs of natural numbers such that for

all x and y there exists some constant I such that:

(x +l ,y+1) > (x+l ,y) > (x,y)

and

(x+l ,y+l ) (x ,y+l) (x ,y)

and

span((x+l ,y+l),(x,y)) s I.

Therefore , the example fails the hypotheses .

There are some functions that appear to be driven by multiple arguments

but could easily be mapped onto functions that are driven on a single argument.

For example,

f(x +l ,y+l) = h(f(x ,y))

could be described

f ’ ( (x ,y)+l) = h’ ( f ’ (x ,y))

where the ordered pair is incremented as a unit. And in fac t , this is key to

• the decisions 1) of whether a function driven by multiple arguments is primi-

tive recurs ive or 2) of the applicability of our reduction procedures .

In general , a functional description whose recursion is driven by n

arguments is prim itive recursive if there is a total ordering on n-tuples of

the data-type such that the input of the goal is st rictly greater than each

of Its subgoals. Then replace each referenc e to an n-tuple by a reference to

I 
-

~~ ~~~~~~~~~~~~~~ ~~JJ~~ ~~~~~~ _ _  ~~
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its Index in the order ing. That makes the description-follow the syntax of

primitive recursion.

If one wants to remove redundancy in such a function, one maps It onto a

function on the natural numbers through the enumeration of its n-tuples , then

proceeds as for single parameter func tions.

Case 4. Multiple constructors. When there is more than one constructor

function, the definitions get complicated to the extreme. It also may be too

far-fetched to consider except in some particular uses of combinations.

If cons tructors are used only in certa in combinations , it might be pos-

sible to rephrase in terms of a single constructor.

If multiple constructors are used but never mixed , it may be possible to

use the simplification techniques on each constructor separately.

Otherwise, there is no method given for removing the redundancies with

— which we are concerned here.

Case 5. Use original assumptions except that the constructed objects may

be multi-dimensional , i.e. non-l inear. For example, consider the data-type

Family Tree. The simplest family tree is a person; so the set of constants is

the set of people. We use constructor function gr, which is similar to graft

used previously, with added semantics that the left sub-t ree is the mother ’s

sub—tree and the right sub—tree is the father ’s sub-tree.

The expression gr(gr(Amy,Ann ,Ted), Sue ,Jack) denotes the family tree shown

in Figure 1.

Sue

/ \
Ann Jack

/ \
Amy Ted

FIgure 1: Sue ’s family tree .

_ _ _ _  
•

•

~

• g

~

1 —-~~~~- - - ~~~~~~
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Now we define a Fibonnaci- like function on family trees.

f(gr(gr(x,y,z),u,v)) = h(f(gr(x ,y,z)) , f(x))

• 
- That is , f is a function that is called recursively on the mother ’ s sub—tree

and the maternal grandmother ’s sub-tree.

We remove the redundancy here in predicate F having semantics

F(gr(gr(x,y,z),u,v),f(gr(gr(x,y,z),u,v)),f(gr(x ,y,z))) ,

i.e. F(x,f(x),f(x ’s mother))

• and formally define the recursive component of F as:

F( gr(x ,y,z),h(w 1,w2),w2) 
4--

F(x ,w2,w1)

Example 2 is only sl i~ht1y different from the first.

f(gr(gr(t1,r1 ,t2),r2,gr(t3,r3,t4)))

= h(f(gr(t1,r1,t2)), f(gr(t3,r3,t4)),f(t1),f(t3))

The input is shown in tree-form in Figure 2, and a rrows point from the goal

to its sub—goals.

tl t2 t3 t4

Figure 2: Dependency relationships in Example 2.

- 

- In this example , the sub-goal s lower than level one that need to be remembered

- - 
- 

are all first arguments, i.e. mothers. So, we only need to change the newly

- — -

-— c — — “ ~ ~ — 
. ~~~• ~ • - - -
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-

~~~~~

computed value in the last version of F and add a recursive call for the second

argument to get the F for this new function , i.e.

• 

- 
F(gr(x ,y,z) ,h(w2,w4,w1 ,w3) ,w2) ~~-

F(x ,w2,w1)

A F(z ,w4,w3)

The resulting recursion is still non-linear , but the redundancy is gone . The

mul tiple calls at the sub-goal l evel are on disjoint objects, i.e. the origi-

-

~ 
nal input gr(x,y,z) is partitioned into three objects, x, y, and z, and recur-

sive calls are made on x and z.

In general , if a funct ion on a cons tructed object c(x 1,.. . ,x~) is defined

in terms of recursive calls to x1,.. . ~~ and no other objects , then the struc-

ture has been cleanly partitioned and there is no redundancy of the type we

are concerned with here . It is when the sub-goal inputs overlap that the

redundancy occurs .

Considering another example, Example 3:

f(gr(gr(t 1 ,r1 ,t2 ) ,r2,gr(t3,r3,t4)))

= h(f(gr(t1,r,t2),f(gr(t3,r3,t4)),f(t1),f(t4)),

i llustrated in Figure 3.

~~~~~~~~~~
r2~~~~~~~~~

LI t1 t2 t3 t4
I -

Figure 3: Dependency relationships in Example 3.

• • - - ,  ‘
~~ ~~~~~~~~ 

-
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• In this case , the val ues below level one that must be remembered are in both

argument positions , i.e. a fi rst argument Ct 1) and a second argument (t4).

Since when we compute f on any given input we don ’t know how that input may

be called from other places , we need to remember all potentially required

values. So, F in this case semantically is:

F(x ,f(x),f(X ’s mother) ,f (x ’s father))

Formally:

F( gr(x ,y,z),h(w3,W6,W2,W4),W3,W6)

F(x ,w3,w2,w1)

A F(z ,w6,w5,w4)

Example 4:

f(gr(t1 ,r1 ,gr(gr(t2,
r2,t3),r3,t4

)))

= h(f(t1),f(gr(gr(t2,r2,
t3),r3,t4)),f(t2)),

as shown in Figure 4.

- 

-
~ 

- 

~

Y r (t4

•HH t2 t3

Figure 4: Dependency relationships in Example 4.

In this case , we need only remember a left descendant, but we have to remember

_ _  
_ _ _ _ _ _  _ _

- ~— ~~~~~~~~~~~~~~~~~~~ .--.— ~ ~~~~~~~ ~~~~~ 0
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it two levels away. Semantically F is:

F(x ,f(x),f(x’s mother),f(x’s maternal grandmother))

Formally:

F( gr(x ,y,z),h(w3,w6,w4),w3,w2) 4-

F(x ,w3,w2,w1 )

A F(z ,w6,w5,w4)

Notice that in each of the four examples , above , the optimized form is

not only more computationally efficient , but also has added clarity, s ince

the input argument is , in each case, either a basis object (not shown) or

the simplest form of constructed object, i.e. only the outer structure must

be shown in the function definition .

The previous exampl es provide examples of 1) span and 2) breadth . Span

is the same as before: the distance from the input to the smallest sub-goal .

The formal definition given in section 3 still holds. Breadth is defined

informally as the collection of parameter positions of the sub-goals that are

deeper than level one.

Given f(c(x1 ,. ,x~)) 
= h(f(yl ),...,f(yk))

Breadth(f) = {iIB (c (x 1o ...~
xn )oYjo i ) for some j, 1 s j s k}

where

B(c (x 1,...,xn),xj;i) 1 s i < n

B(c(x 10 ...~x~)~Y~0i) +- y~ $ x~ for any m, 1 ~ m ~

. 

A B(x 1,y~,i)

B(c (x
~
,.. . ~x~),y~,i) ~- y~ $ xm for any m, 1 s m ~ n

A B(x ,.~Y~~i)

— - -

• — ~~~~~~- ‘~~~‘ 
•
~~~~:~~~~~~~~
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• 
Then the s~~ of remembered va lues required i s a tree of depth = (span-l )

and branching determined by breadth. For example , if Breadth = {l ,2 ,4}, and

span = 3 then the tree of temporaries is as shown in Figure 5.

Figure 5.

For Example 4, Breadth = {l }, Span = 3. The tree of temporaries is of

H depth 2 and does not branch , i.e. as in Figure 6.

1

1

Figure 6.

The semantic descr ipti on of F in general is :

F(x ,f(x), tree of his tory inc l uding all descendants indexed

by Breadth , (Span-l)deep).

- I - Formally, the recurs ive case of F is :

f(Xn)~
Tn)~

T) 4-

F(x 1,f(x 1 ),T1 ) 
A REMOVE LEAVES(T1,T1 ’)

• 
A F(x ,f(x ),T ) A REMOVE LEAVES(T ,T’)

- n Construc t tree( f(x 1 ),T1 ’ ,f(x 2),T2’,...f(x ),T ’ ,T)

L 
_ _  _ _ _ _
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and the basis cases are defined appropriately as far as there is history, and

S~, the value “undefined” , is used to fill out the tree to the leaves.

Case 6. Up to this point we have restricted discussion to definition

of a single function. We now extend it to the case of multiple functions

being computed simul taneously on a single input. There are two cases; one is

substantially eas ier than the other.

In the f irst case , the functions are independent, i.e. they are defined
recursively but not in terms of each other, and the parameters for the sub-

goals are identical . For example , assume the data type of binary trees of

integers, and define two functions , one of which finds the sum of the nodes of

the tree and the other computes the product.

sum(empty_tree ) = 0

sum(graft(t1,v,t2)) = sum(t1
) + v + sum(t2)

and

prod(empty tree) = 1

prod(graft(t1,v ,t2
)) = prod(t 1) * v * prod(t2)

-H We can compute both functions with one pass over the tree using predicate

SUMPROD(empty_tree ,O,l) 4-

SUMPROD(graft(t10 v ,t2),z1 + z3,z2 * z4 ) ~-

:. . 
- SUMPROD(t1 ,z1 ,z2)

A SUMPROD( t2,z3,z4)

Formally, for functions 
~~~~~~~ 

such that for the recursive formulas of the f1
1 s:

f1(x) =

f~(x) = 
~~~~~~~~~~~~~~~~

for all i- , j, 1 s I, j s n, and for all x , 
~k’ ~ s k s m.

I — —- .- •— .- - 
_
. 
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and the domain of the f1
t s contains only constant a, then construct predicate F:

F(a ,f1(a),... 
~~~~~

F(x ,h1(z11,... ~~~~~~~~~~~~~~~ 
ozmn ))

A

A F(ym ,zmi,...,zmn)

Now consider the case where the functions are either not independent or

they don ’t generate exactly the same parameters to the subgoals e.g. consider

functions fact and factlist:

fact(0) = 1
fact(n+l) = (n+l ) * fact(n)

factlist(O) = [fact(0)]

factlist(n+l ) = fact(n+l) ® factlist(n)~

• We can compute the functions together in predicate F, having semantics

F(x ,fact(x) , fact list(x)), as follows :

F(O ,1 ,[l])

F(n+l ,z,z 0 z2)

F(n ,z1,z2)

• A z = ( n + l )* z1

• I

§ 
o denotes an infix “cons ” of an object to a list.

hEL=~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _  _ _ _ _  

~~~~~~~~~~~~~~~~~~~~ 
:.~~~
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Formalizing this mapping, assume a set of funct ions S =

and n recurs ive definitions :

f
~

(x) = h
~

(g11(y11),. ‘9im~
’im~

where E S, and y13 s x and if y~ 
= x , then gj j  = where m < i.

I.e. the functions are mutually defined and if any function has a subgoal

whose input is not decreased , then the function of that subgoal must be com-
puted first. E.g. in the above example , fact(n) must be computed before

factlist(n).

Given the above hypotheses, we construct predicate F having semantics

- 

- 

F(x ,f1(x),... ~f~(x)) as follows :

F(a ,f1(a),... ,fn(a)) 4-

F(x ,w1,... ,wn) 4-

A

A F(Y 0Zn l~~~•~Z )

A W
1 

= hl ’(zlll ,...,zflmn)

A W
2 

= h2 ’(z 111,...

n hn’(z lll,...,znmn,wl,...,wn l )

where h1 ’ is similar to h
~ 

but may accept , and ignore, extra arguments. What ,

in reality, should happen is that the original h1 ’s are used and appl ied to
the relevant subset of values.

The previous two constructions allow simul taneous computation of multiple

S-- - - 
- - 

• •• - ——~~~ •• -————- --•— - • • --__— -
__

~~•c SS -

-- - - 
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functions. Many redundancies are automatically omitted, but we may be able

to further optimize by treating the resulting predicates as functions D -÷ D
Ill

and appl ying improvements described in cases 1-5.

. 
Conclus ions

We have defined some concepts of optimizing redundant recursion and

given algorithms to perform the optimization . One result is that the computa-

tion of the funct ion runs faster , (perhaps exponentially), and the recurs ive

structure is simplified .

~~~~~~~~~~~~~~~~~~~~~~~ 
—
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