
N

“ AD—USa 571+ CALIFORNIA UNIV SANTA CRUZ INFORMATION SCIENCES F/ti 9/2
AXIOMATIC SPECIFICATION OF SYNTAX—DIRtCTED TRANSLATION . (U)
AUG 78 S SICKEL. W H MCKEEMAN N000l1+—76—C—0682

UNCLASSIFIED TR 78 8 002 NI..

OF / -

~~~~~~ fl 
__________________________

Im END

L k TS I

II



1.0 :~ ‘~ 
i~~

_ _  

2.2

11111 ‘‘
M’ ~~~~~~~~ iIIII~ ~~

MICROCOPY RESOLUTION TEST
NATIO~AL BUREAU CF

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

is.

r

CO S

/~AXIOMATIC SPECIFICATION J
OF

SYNTAX-DIRECTED TRANSLATION

Sharon Sickel 1EVW.M. Mc Keeman

-‘ Technical Report No. 78-8-002

• _ _ _ _ _

• ~~~~- ~~~~~ I
•

•

-
~~~~~ ~*t1I~~~~~~ ~~~~~~~



SECURITY CLASSIFICAT ION OF T HIS PAGE fWh.n Dat a Enta,.d)

REPORT DOCUMENTA T ION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENVS C A T A L O G  NUMBER

4. TIT L E (mid Subliti.) S. TYP OF REPORT 4 PCRIOO COVERED

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~

T AUTHOR(.) I. CONTRACT OR GRANT NUMBER(I)

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~l4-76-C-~682 f
9. PERFORMING O R G A N I Z A T I O N  NAME A NQ.A~~bRESS SO. PROGRAM ELEMENT PROJECT . TASK

A R E A  S WORK UNIT NUMBERSInformation Sciences
University of Cal ifornia
Santa Cruz, California 95064 ____________________________

II. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

Office of Naval Research August 1 , 1978
Arl ington, Virginia 22217 13. NUHBER OP

I~~~
AGES

14. MONITORING A GENCY NAME & ADDRESS(II dill.r.nt from Contr ollind Offi c.) 15. SECURITY CLASS. (of Ala r.port)

Office of Naval Research Unclass ifiedUniversity of California __________________________
rr~, r Ii 11 ~~ DECLA $SIFICATION/DOWNGAADING

~.vans nai SCHEDULEBerkeley, California 94720
IS. DISTRIBUTION STATEMENT (of t hu .  Raport)

n c*~i~
ro:;

~i1 SEP 13 ]97~

L~Uti

Il. DISTRIBUTION STATEMENT (of flu. .b.tr act .nt.r .d In Block 20. II dlii! ran t from R.port)

• Distribution of this document is unl imi ted. It may be released to the
Clearinghouse, Department of Commerce, for sale to the general public.

1$. ~~~~~~~~~~ TA Sf~~~ !~ 2 j  
~~~~~

6~fl~aHT~~~
L)

IS. KEY WOR DS (Cnntl nu. on r~ v.ra. aid. SI n.c.aaary and ld.nf fly by block øumb.r) and Phrases:
Syntax—directed translation, context-free grammars, logic prograniiiing,

program specification.

•
~O. ABSTRACT (Conlffi ua en r.r.ra. aida Ii n.c...a,y aid id.ntily by block numb.,)

‘
~Predicate logic is applied to the specification of syntax-d irected translation.
Context-free grammars are shown to be representable by logic programs, and a
translation from grammars to logic programs is presented as a logic program.
Coupled qramars are introduced , shown to be Interpretable as translators,
shown to be representable as logic programs, and translation from coupled
grammars to logic programs is presented via logic programs. Mixed grammars,
a concisely representable special ~~~ coupled• grammars, are given in terms• I of coupled grammars. .~ -

lI ~I ~~~
DD ~~ 1473 EDITION OF ~\NOV 6$ IS OBSOLET E ~j

(,
‘5~~~~~~~

•

- ‘ S/N 0102 .I.FO 14-6601

~~~ 
~~
,, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ OF ‘I4IS PAQI (PSum

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~



AXIOMATIC SPECIFICATION

OF

SYNTAX-DIRECTED TRANSLATION

by

Sharon Sickel

W.M. Mc Keeman

Information Sciences and Crown College

University of Cal ifornia

1~ 
Santa Cruz, Ca. 95064

• _ _ _ _ _ _ _ _ _ _

• 6. U Se. on 0

J S ’ ~ ’ - ! I  .•..—-.•.

I”.

ei~~~~~~ *~ri~
y cofls 

This work was supported by Office of Naval Research Contract # 76—C-0682

_____________ _____________

- _ _ _ _ _  — •
~~

. 
-,. •

~~ 

•

~~

.• . - ‘
• • .. . .

~~~~~~a. - - - .— . - _ _ __ ._ _•.. q
— —.5. ~~~~~~~~~~~~~

~~~~~~~ ... —
- ~,1 -‘

~~ 
~ a ~ e-

-~~~~~~~ ~~~~~~~~~~~~~~~~~~ •



-

1

ABSTRACT

Predicate logic is applied to the specification of syntax-directed translation.

Context-free grammars are shown to be representable by logic programs, and a transla-

tion from grammars t~ logic programs is presented as a logic program. Coupled gram-

mars are introduced , shown to be interpretable as translators , shown to be represent-

abl e as log ic programs , and translation from coupled grammars to logic programs is

presented via logic programs. Mixed grammars, a conc isely representable special case

• of coupled grammars, are given in terms of coupled grammars.

j 1. Introduction

We define grammars to be coupled 1ff they are context-free and there is a 1-1

correspondence between their productions . Two different Interpretations are given

for them. The first is a generalization of the syntax—directed transductlons of

Lewis and Stearns [2]. Their productions take the form

r. A -+a ,~~

where the parts of the form

A -pa

constitute the underlying input grammar, and the string p specifies the output. The

• nonterminals of each p must be a permutation of those in the corresponding a. As

• A -+ a is appl ied during the parse, the value of A is given by p where each nonterminal1

is replaced by its own value. Our paired productions take the form

A -t. a and

J but we relax the requirement of a 1-1 correspondence between nonterrninals in a and p.
A missing nonterminal in p is ignored , its value being discarded . An extra nontermii

in p is kept literally, standing in the output for any string derivable from it by ti

• productions In the second grammar.

The second interpretation of coupled grammars links input to output via the par

~~~ t. .±:~ .TTT . 
~

- -—~~- - ~ -—-—-—~~~

2

sequence. Aho and Ulima n [1, Vol . II] present a similar scheme based on the production

form

where again the nonterminals in a and p must correspond. Our productions take the form

A -+a and B-+ p

where there are no restrictions on the form or correspondence of symbols within the

productions.

The logic program corresponding to a grammar provides a static statement of the

meaning of the grammar; that i s, an axiomatic specification of it. Each predicate in

the logic program specifies a relation among its arguments.

Mixed grammars are a concise notation for the simpl e syntax—directed translation

schemata presented by Aho and Ulima n [1, Vol . I]. There is a nontermina l vocabulary

and two terminal vocabularies, V 1 for the input and V0
for output. Mixed grammars

are a directly executable notation on a simple pushdown stack machine . They have a

concise representation in logic. They are, furthermore, self-describing, and self-

• translating .

2. Logic Representations of Grammars

A context-free grammar G is a four-tuple (VN,VT,P,S) as usual . P is a set of

productions of the form

A a

where we have used the symbol = instead of -# to avoid confusion with -~ for implication

A E V N and a E(V N U V T)*.

The empty string Is denoted by e. We assume a function, stert(G) = S. We further

—U

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—-.- — - — —.5.-- -__—

i__a- __~ •- .5 -S —
•..•~ ~ • a

F I
• • • -..--—

~~

3

•
.

follow the conventions that nonterminals are denoted by capital letters and terminals

by any other symbols except Greek letters which we sometimes use to denote strings .

Because of these conventions and the existence of the function , start , we can complete-
ly specify a grammar as a sequence of productions , and we frequently do.

A logic program [4] Is a set of WFs in the form
L~ - R

• and one WF , the call , of the form

4-R

where L is a predicate and R is a conjunction of predicates. All variables are im-

• plicitly universally quantified .

Table 2.1 is an example of a context-free grammar and a corresponding logic pro-

gram. Terminal symbols in the gramar are delimi ted by double quotes, and the parameter

to the predicates are strings of symbols represented by the juxtaposition of variabl e

names and constants delimited by double quotes. We may drop the quotes when the meaning

is obvious.

G = RG G(xl x2) R(xl) n G(x2)
G = R G(xl) R(x l)

• R = L” =”F R(xl “= ‘ x2) ~ L (xl) A F(x2)
F = PF F(xl x2) +- P(x l) 1¼ F(x 2)
F = P F(xl) P(xl)
p = ,i~ l P(”” ’~ xl II .I II

) ~ - U(xl)
P = L P(xl) a- L(xl)
P = U P(x l) U(x l)
L = lUG11 L (IIGII) 4-

L = “R” L(”R”)
L = ‘1F” ~~(UI~~~I)

L = ~P” L(”P”)
L = L(”L”)
L “U” L(”U”)

• ~
.

. U I U(xl) ~ L(xl)
U = U (11=11)

• =
Ilui ll U(” ’’”) 4—

Table 2.1: Grammar GG and its logic program representation LPGG.

_ _ * j

r _ _ _ _ _ _

4

The interpretation of the grammar GG is obvious [3). It is in fact self-descrlb-

ing. The correspondence between each production of grammar and Horn clause is straight

forward . For example,

• G(xl x2) ~ R (x l) A G(x2)

states that if R is true on string xl and G is true on string x2, then G is necessarily

true on the concatenation of xl and x2 , which Is also the meaning of

• G = R G

in the grammar.
• . L(”G”) ~

states that I is always true for the letter G, and so on.~

3. Translation from Context-free Grammars to Their Logic Interpretations

Predicate TGI formally defines the relationship between context-free graninars

and their Interpreting logic programs, and also the translatfon process between the

two , i.e., TGL(G,IP) Is true iff LP is the logic program representation of grammar

G. In the example of Table 2.1, TGL(GG,LPGG).

TGL(€ ,e)

TGL((A = p)G , New ru1e~LP)

• TGL(G,LP)
• A TPL(p,l ,Iparam,Conj)

A New_Rule = (A D (hl Iparam °) a- Conj)

§ In examples we occasionally optimize logical formulas to remove the value true
where it fs formally present but contributes no meaning. In particular A A true A -

and (A true) (A .‘-) . S

The symbol I(~~Il appears frequently in parameters of logic programs. u v denotes
a parameter that Is subdivided into components u and v. For strings we denote such a’
decomposition simply by juxtaposition of symbols, e.g. uv. The use of ‘ • “ denotes di
composition of more complicated structures, such as granii~ars . The fi rst u se here,

• (A = p) .G , denotes a grammar that Is subd iv ided into Its first production A = p and
the remaining productions, grammar G.

,• ~~~~1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~ *

rr , ~~ .5
~~~~~~~~~~ -- 5—.— -5,...— —— .—,.—5.•.-••—•—.———— • - — -5,.. —— —.• 

5

Given p, the r.h.s. of a production, TPL(p l ,Iparam ,Conj) yields both a parameter

• 

• 

list , Iparam, and a conjunction of predicates, ConS. More specifically

TPL(p,n,Iparam,Conj) is true iff p = pflBflPfl+l...Bkpk+l E 
~~ 

u v
1
)* where each E VT*

and B1 K VN and Iparam 
= pflxflpfl+l...xkpk÷1~ and Conj = Bn (x n ) A Bn+i (Xn+i) A ...Bk(x k).

TPL(E ,n,C ,true) 4-

TPI(s p ,n,s Iparam,Conj) a- i(s)

A TPL(p,n,Iparam,Conj)

TPL(S p,n,x(n) Iparam~S 11 (0 X(n) II) A II ConS) N(S)

A TPI(p,n+l,Iparam ,Conj)

T(s) is true 1ff s is a terminal symbol .

• N(S ) is true iff S is a nonterminal symbol .

X(n) is the letter x subscripted with the value of n, and similarly

for Y(n) which will be used later.

4. Functional Interpretation of Coupled Grammars

Coupled grammars have an input grammar and an output grammar. As each production

of the input grammar Is used , an output is associated with It as specified by the

correspondt ng production of the output grammar. This relation can be specified by a

• logic program as shown in Table 4.1 for coupled grammars B and U translating binary

to unary notation.

A = A 1 A = AA 1 A (x 1 l ,y1y1 1) ~~- A(x 1,y1)

• A = A 0 A = AA A (x 1 O ,y1y1) a- A(x 1,y1)

A = 1 A = 1 A(1 ,1)

A 0 A c  A (O,e)i-

• 

• 

grammar B grammar U logic program LPBU

Figure 4.1: Coupled grammars B and U and their logic program representation LPBU.

1. 
.5 — —

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --.~ —- . 
~

- . —
~~~~ ~., ~~. .. -~-



6

• It Is obvious that the input grammar describes all binary strings, and the output

grammar (ambiguously) describes all unary strings. The translation doubles the value

of the output string for each shift in positiona l notation and adds a further “1” If

the number Is odd.

The logic program predicates have two parameters, one for input and one fOr output.

For example , the interpretation of the clause

A(x1 l,y1y1 1) ÷ A(x 1,y1)

says that if x1 Is an acceptabl e string producing output y1, then x1 1 is an acceptable

string producing y1y1 1 as output.I
• 5. Translation of Coupled Grammars to Their Functional Interpretation

Given coupled grammars G1 and G2, one can construct a program that will perform

a funct ional interpretation on a string, using G1 as the input grammar and as the

output grammar. FI(61,G2,LP) is true 1ff LP, a logic program, performs that interpre—

tation . For example, from Figure 4., FI(B ,U,LPBU).

4-

FI((A = p).G1 ,(A 
= T)G2,Z LP) 4-

FI(G1,G2,LP)

A FIP(A,p,y,z)

FIP(A ,p,y,C) means that the functional Interpretation of coupled productions A = p and

A ~ is the logic procedure C where A is a single nonterminal and p and

~ are strings In V*. In the program below, Iparam and Oparam are each

strings of variables and terminals and represent the Input parameter and

• output parameter, respectively. R is a conjunction of predicates.

—--5- - - .

_______ ~~~~~~~~~~~~~~~~~~~~~~~~ • — •- - _-J-5—~ 

. 
-

, 
J- 

-- 3- ••
- 5~~~.5~•55.5._ -55-5,-5~ ., S U ~~~~‘* ~~~~ .* •A...... ._.___ .—;. - _. s_ - • - ... - — • . • t-_ 1 - - - -



— ‘rs.’ ,. ~~~~~~~~~~ - ‘—‘-~,.‘-‘-- ‘“r”.-’.. ,,_ -. ._~_.55.. ~~5-,_—• —‘ -5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FIP(A ,~ ,y,A 11
(

hI Iparam 11
,

11 Oparam ~
) It Conj)

- : 
- - IN(p ,l ,Iparam,Conj)

-: A OUT(Conj,y,Oparam)

IN(p ,n,Iparam,Conj) serves a similar function to TPL(p,n,Iparam ,Conj) except that we

are producing two parameters instead of one to the predicates of
Conj, i.e. whenever P(x1) appears in Conj of TPL, then P(x ,,y1)

appears in Conj of IN.

IN(e ,n,~,true) 4-

IN(s ~,n,s Iparam ,Conj) ~ - T (s)

- -
- A IN(p,n ,Iparam ,Conj)

IN(S p,n,X(n) Iparam,S “(“ X (n) “
,
“ Y(n) “) A “ Conj a- N(S)

A IN(p ,n+l ,Iparam ,Conj)

S OUT(Conj,y,Oparam): Oparam is the output parameter and if ~~ 
= . 

~~~~~ 
then Oparam

denotes

s1s2. . .s~ where

S
i

= r1 If t(11)F
,

= y. if N(y.) and j is the least integer such that3 1

is a literal in Conj

= S
1

if N(y1) and ~~~~

(X
j
,y~) is not in Conj

OUT(Conj , , 4-

OUT(Conj,s y,s Oparam) ~- I(s)

A OUT(Conj,y,Oparam)

OUT(Conj,S ~,y Oparam) 4- N(S)

A FIND(S ,Conj,y)

A OUT(Conj,~,Oparam)

-
- - - -

8

F1ND(S ,Conj,z): For nonterminal S, and conjunct Conj,

z = y for leftmost predicate in Conj that is of the form S(x y)

= z if no such predicate exists in Conj

F1ND(S,true,S)

FIND(S ,S 11
(

11 x 11
,

11 y “) A Conj,y)

FIND(S ,R h1
(

hI x áI
,
II y It) A “ Conj,z) ~ (SIR)

n FIND(S,Conj,z)

For example, If A, B, C and D are nonterminal s and # and ! are terminals , then

the following are true:

FIP(A,#BCD,CB! , A(#x
1
x2x3,y2y1!) ~ - B(x 1,y~) A C(x 2,y2) A D(x 3,y3))

IN(#BCD, 1, #x 1x 2x3, B(x 1,y1) A C(x 2,y2) A O(x 3,y3))

OtJT ((B(x1,y1) A C(x 2,y2) A D(x3,y3)) , CBS , y2y1!)

6. Parse Sequence Interpretation of Coupled Grammars

Gi ven a grammar G, w ith each str ing in 1(G) is associated one (or more) parse

sequences . A parse sequence is a sequence of integers corresponding to the production

numbers as they are applied in a left—to-right parse.

Suppose we have two arbitrary coupled grammars, and each is used to parse a string

in its language. The strings are defined to be equivalent if they have a parse sequence

in common, as shown in Figure 6.1.

5 t

~~~~~~~~~
/

G2

Figure 6.1: Parse sequence interpretation with the parse sequences not used
jntermedlately.

5- ~~~~~ - -.5---_— -_---.-—-- -

—.5 ~~~~~~~~~~~~~~~~~~~~ -
~
;-- - ~~~~~~~~~~~~~~~~~~ 

— - 
____

— -5I
~ti~...~55-~ 1* S -, k • ~. ~~- ~



- ~~~~ 
- - —.-. ..-.______.;-

9

Alternatively, take the same two coupled grammars, where the inpu t grammar is useC
to generate a parse sequence and then that parse sequenc e is used with the output gram-
mar to generate output as shown in Figure 6.2. We have then defined a means of trans-
lation.

.1

‘I,
PS

1

Figure 6.2: Parse sequence interpretation with the parse sequencc .~ced as an
: Intermediate form.

E = E +T P = p P +
E = T  P = P
T = T *D p = p p *
T = D  P P
D = ( E ) P = P

- , D = 0  P 0
D = l  P 1
0 = 2  P = 2

-. - 

0 3

D = 9  P = 9

input output-j grammar grammar

I Table 6.1: Parse sequence coupled grammars.

-~1 
f 

_ _  _ _ _  

_ _

4 

- _ _ _ _ _

______ — 
—‘— — .

~r 
- 

• 

- 

* ~~‘ ‘~

___________ ‘—i -3-. .._1.. ~~~~ ~~~ ~~~~ ____



- 
- - - - - ...s._.. -.~ 5-, S .. ..W.~~~~~~~~ —-—_ .-.--5 ._-.. -_-~~ ,_ - -‘- -.- . ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - -

10

The coupled grammars in Table 6.1 relate infix expressions and Polish expressions.

The input grammar is unambiguous ; every parse sequence from it is a parse sequence for
- 

the output gramar. Thus, there is a Polish form for every infix expression. Because

of rules P = P in the output grammar, it is ambiguous. For every Polish string there

are infinitely many parses which are also parses for the input grammar. Each defines

a correct translation. There are also parses from the output grammar which are mean-

ingless relative to the input grammar.

7. Transla tion of Coupled Grammars to The ir Parse Sequence Interpreta tion

PSI(G1 G2,s,t) is true iff grammar G1 parsing string s and grammar G2 parsing string

L~ j t give the same parse sequence. We give two different definitions for

PSI. The first generates an explicit parse sequence from an input

string and its relevant grammar, then uses that sequence to generate

a corresponding string in the language of the other grammar.

PSI(G 1,G2,s,t) 4-

PARSE(G1,s,PS)

A GENERATE(G2,PS ,t)

PARSE(G1,s,PS) is true iff PS is a parse sequence of string s in grammar G1. The parse

i s accompl i shed by crea ting an assoc iated grammar GS, then using logic

program El to translate G1 and GS into a logic program that carr ies out

a functional interpretation between the grammars, and, finally, to ex-
- . - 

. 

ecute that logic program with string s as input to produce parse sequence

• PS.

4 PARSE(G1,s,PS) 4-

- 

- 

S SEQ(G1,l ,GS)

A FI(G 1,GS I LP)

A EXEC((”-~-” Start(G1) 
11
(

11 
~ 

Si ll p5 II)” )
•LP)

4 -~~ 

- - - - - - - - - - -.- - - • - -.

~ 

_ _  _ _ _ _ _ _ _ _ _



•• .5 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -_5-••• ._.- - -‘ ---.5----.. •••5-~~•~~ — - .5..—-- .5_. .—

SEQ(G1,n,GS) is true 1ff G1 and GS are context-free grammars, n Is a positive integer,
~
‘ and by considering the productions of G1 sequenced starting at n, GS

consists of corresponding productions in which each r.h.s. is the non-

terminals , in order , of its corresponding production In G1, followed by

4
the sequence number of that production.

Formally, SEQ is defined:

SEQ(€ ,n ,~)

SEQ((A = c) G ,n,(A = pn).Gs) 4-

SEQ(G ,n+l ,GS)

A STRIP(a,p)

STRIP(a,p) is true 1ff a is a string in V*, and p is a with terminals stripped away.

STRIP(~ ,c) ~
STRIP(s a,~) i- T(s)

A

STRIP(S a,S p) N(S)

A STRIP(a,p)

EXEC(P) Is a meta-procedure that executes logic program P. For an example of PARSE,

consider

-
G1: s:

E = E+T a*a + a*a
E = T
T = T t a
T = a

the calls and computed values are:

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
_
~_S~.5• _ __ _ _ _ . ___ • __ ’_ _ _ _S _

~ 



~~~~.5 .5 -‘—~~ ——-—- ---~—-——~ -

4
... -

12

SEQ(G1,l ,GS) in which GS becomes:

E = ET1
E = 12
T = T 3

1 = 4

FI(G1,GS,LP) in which IP becomes:

E(x 1
0+”x2,y1y2 1) 4- E(x1,y1) A T(x 2,y2)

E(x 1,y1 2) T(x1,y1)

T(x 1
H*h*a ,y1y2 3) T(x1,y1)

T(a,4)

ExEc(4~E(H a*a+a*&’,PS) . IP) in which PS becomes:

432431

Now this completes the first half of the definition of PSI. Given the parse

sequence constructed in the above process we can use it to drive a right-most deriva-

tion in G2, to create string t.

We now define the predicate GENERATE. We know intuitively that parsing and gen—

eration of strings are Inverse operations. That would say that we could define

o GENERATE In terms of PARSE, thus :

GENERAT E(G2,PS,t) 4+ PARSE(G2It,PS)

-.
-

The way we have used PARSE (and think of parsing) is that the string in the language

is given and we generate the parse sequence as a side-effect of the recognition pro-

cess. Suppose the parse sequence and the grammar are given. Can we use PARSE to

create the input? A useful property of logic programs is that they describe truth

about relationships , and while they can drive computations, the direction of the

computation is usually arbitrary. Let’s follow the computation to see If the string

t can be appropriately computed.

~~~~~~~~

, 

~~~~~E~’T~~~ ~E -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A~~~
-

• - .~: ~~~ ~~~1’~
-

Pr ,—
~~

——- — — . 5 ~~~~~~~~~~~~~~~~~~~~~ .- .—-— ..-‘.--.~~~ — . 5 — . - — , - - . — , --.—

11
-

~~~~~~~~~~~~~~

13

Continuing the example above , let G2 be.

P = P P +
P = P
P = P P *
P = a

Then PARSE(G2,t,432431) calls SEQ(G2,l ,GS’) which produces GS’:

P = P p l

P z P 2
P = P P 3

Then FI(G2,GS’,IP’) :~~:tes IP’:

- - 
P(x1x2 +,y1y2 1) ~ P(x1,y1) A P(x2,y2)

• 
P(x1,y1 2) ~ P(x 1,y1)

P(x1x2 *,y1y2 3) a- P(x 1,y1) A P(x 20y2)

Executing LP’ with call ~~- P(t,432431), we compute t aa*aa*+, the desired answer.

Therefore , we could have defined PSI as:

PSI (G1,G2,s,t) ~ - 
-

PARSE(G1,s,PS).
- ‘k;. - -

- 

• - - - 

- A PARSE(G2,t,PS)

And, we see that our original cla im of the equivalence of the two definitions is re-

flected in their having a single formal specification.

8. Mixed Grammars

Suppose we have a set of nonterminals VN and two disjoint sets of terminals

.-- . -5-.- 

. 
— S -- -—--—-_ _ _ _ _ _ _

—~~~-
,
- —~~-oI

--
-3~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~



14

V 1 and V0. and a context-free grammar

(V N, V IU V O. P,S ] .

— The productions in P are of the form

A = a

where
a K (V N U V 1 U V0)*.

They are equivalent to the coupled grammars

(VN, V I, P1, S] and 1
~N’ V0, P0, s~

where all elements of V 0 are deleted from the productions of P to give P1 and vice-

versa for P0.

The grammars can be interpreted either as functionally coupled or parse sequence

coupled. They are equivalent to the simple syntax-directed translation schemata of

Aho and Ullma n [1, Vol . I].

Notational ly speaking, it is convenient for V 1 fl V0 to be nonempty, thus we

t establish the convention of double quotes delimiting the members of V-1 (as in earlier

sections of this paper) and single quotes delimiting the members of V0.

E = E ~~~ T

E = T

T = ~ 
11*11 “a0 ‘a ’ ‘~~~‘

T = ”a ” ‘a ’

Tabl e 8.1: A mixed grammar describing the translation from infix to Polish.

For example, the mixed grammar In Table 8.1 has the same effec t as the coupled

grammars in the preceding examples. It will also accept other strings but Its behavi

Is then of no interest.

~~~~~~~ 

. -
-~~~~~~~ - 4

.5 -:-r~~~-----

-S
- 4. — - - - —I- — -J . - - - -—-S

, 55~~~~~*. ~•~w -
~ , - - - ,

‘-—.5- ...--. - ~~~~~~~~~~~~~~~~~~~~~~~~~ —•~~~ - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~=~~ .-•~--‘~~ -

15

The advantages of mixed grammars are that they are directly executable on a

simple pushdown store machine , and that their notation makes implicit , unavoidable

and natural the constraints for simple syntax-directed translation schemata . One

can produce a logic program similar to PSI and Fl to translate mixed grammars to

logic.

9. Conclusions

We have established some relationshi ps among context-free grammars , translation
schemata, and logic. The interpreta tion of paired graninars has been extended in

severa l ways . We have defined a set of translation programs that are actually sets

of logic theorems . They are concise , and the correctness of each program can be

established by proving each theorem individually. The process of parsing and the

process of generation which are inverses are shown to have the same formal specifica-

tion.

• ~~

;

~t~~~

•

~~ 

\~- 
_ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

— ~~~~**.. - - S 
._ - ‘~~~ “- 

- -.....~~
, a I. * I -

—

~~~

-
_________________ ~~~ ~~~~~~~~~~~~~ ~

—
~~

-
~
- -

~
- -

~~~
—-

~~



r - - - - - -,--—,...

-——- .5 - -—

16

REFERENCES

1. Aho, A. E. and J. 0. Iiilman. The Theory of Parsinq, Translation and Compiling,

Vo ls. I & II , Prentice-Hall (1972 ,1973), especially Chapters 3, 6 & 9.

2. Lewis , P. M. II and R. E. Stearns. Syntax-Directed Transduction, J.ACM 15:3

(July 1968), pp. 464-488.

3. Mc Keeman, W. M. Concise Extensible Translator Notations, Technica l Report No.

78-8—001, Information Sciences (August 1978).

4. Van Emden, M. H. and R. A. Kowalski . The Semantics of Predicate Logic as a

Programming language, J.ACM 23:4 (October 1976), pp. 733-742 .

- i

~~~~~~ 
.
~~~ 

_ _ _ _ _ _  

_ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~5-j - • - ~ ~~~~_•_3_ -~~‘ -
. - --,- -

~ 4~~~ __ 5
•

_ - ~~~ .5 -5- - - - ~~~~~ - -

,

--

.5.5-— ~~ - ~~~~~.— .5 ‘~~ ~ a

_~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~

_ — - - .5--.5_~.5---’-.5.--.

OFFICIAL DISTRIBUTION LIST
— Contract N000i 4-76-C-0682

Defense Documentation Center Dr. A. 1. Slafkosky
Cameron Station Scientific Advisor
Alexandria, VA 22314 Commandant of the Marine Corps (Code RD-l )
12 Copies Washington , D.C. 20380

1 Copy
Office of Naval Research
Information Systems Program Naval Ocean Systems Center
Code 437 Advanced Software Technology Division
Arl ington, VA 22217 Code 5200
2 CopIes San Diego, CA 92152

1 Copy
Office of Naval Research
Code 200 Mr. E. H. Gleissner

H Arlington, VA 22217 Naval Ship Resea rch & Development Center
1 Copy Computation and Mathematics Department

Bethesda , MD 20084
Off ice of Naval Researc h 1 Copy
Code 458
Arlington, VA 22217 Captain Grace M. Hopper (008)
1 Copy Naval Data Automation Command

Washingt on Navy Yard
I Office of Naval Research Building 166

Branch Office, Boston Washington, D.C. 20374
Bldg. 114, SectIon D 1 Copy
666 Summer Street

- ~~
- Boston, MA 02210

1 Copy

Office of Naval Researc h
Branch Office, Chicago
536 South Clark Street

— Chicago , ILL 60605
l Copy -

Office of Naval Research
Branch Office , Pasadena
1030 East Green Street
Pasadena, CA 91106
1 Copy

Naval Research Laboratory S
Technical Information Division
Code 2627j Washington, D.C. 20375
6 CopIes

_________________________ 4 a 
5-

.5 -5 — ~ I. ~~~ ~~—. ~~~~~ ..•4-.i.


