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ABSTRACT

Predicate logic is applied to the specification of syntax-directed translation.
Context-free grammars are shown to be representable by logic programs, and a transla-
tion from grammars to logic programs is presented as a logic program. Coupled gram-
mars are introduced, shown to be interpretable as translators, shown to be represent-
able as logic programs, and translation from coupled grammars to logic programs is
presented via logic programs. Mixed grammars, a concisely representable special case

of coupled grammars, are given in terms of coupled grammars.

1. Introduction

We define grammars to be coupled iff they are context-free and there is a 1-1
correspondence between their productions. Two different interpretations are given
for them. The first is a generalization of the syntax-directed transductions of

Lewis and Stearns [2]. Their productions take the form

A->a, B

where the parts of the form

A->a

constitute the underlying input grammar, and the string p specifies the output. The
nonterminals of each g must be a permutation of those in the corresponding a. As

A -+ a is applied during the parse, the value of A is given by B where each nonterminaj

is replaced by its own value. Our paired productions take the form
A-+>a and A-B

but we relax the requirement of a 1-1 corresponderce between nonterminals in a and B.

A missing nonterminal in B is ignored, its value being discarded. An extra nontermi
in p is kept literally, standing in the output for any string derivable from it by
productions in the second grammar.

The second interpretation of coupled grammars links input to output via the parﬂ
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sequence. Aho and Ullman [1, Vol. II] present a similar scheme based on the production

form

A+a, B
where again the nonterminals in « and g must correspond. Our productions take the form
A->a and B->p

where there are no restrictions on the form or correspondence of symbols within the
productions.

The logic program corresponding to a grammar provides a static statement of the
meaning of the grammar; that is, an axiomatic specification of it. Each predicate in
the logic program specifies a relation among its arguments.

Mixed grammars are a concise notation for the simple syntax-directed translation
schemata presented by Aho and Ullman [1, Vol. I]. There is a nonterminal vocabulary
VN and two terminal vocabularies, VI for the input and VO for output. Mixed grammars
are a directly executable notation on a simple pushdown stack machine. They have a
concise representation in logic. They are, furthermore, self-describing, and self-

translating.

2. Logic Representations of Grammars

A context-free grammar G is a four-tuple [VN,VT,P,S] as usual. P is a set of

productions of the form

where we have used the symbol = instead of -+ to avoid confusion with - for implication,
A € VN and a € (VN ] VT)*.

The empty string is denoted by e. We assume a function, start(G) = S. We further
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follow the conventions that nonterminals are denoted by capital letters and terminals

by any other symbols except Greek letters which we sometimes use to denote strings.
Because of these conventions and the existence of the function, start, we can complete-

ly specify a grammar as a sequence of productions, and we frequently do.

E | A logic program [4] is a set of WFs in the form

t L+R

| : t and one WF, the call, of the form

« R

where L is a predicate and R is a conjunction of predicates. A1l variables are im-
plicitly universally quantified.

Table 2.1 is an example of a context-free grammar and a corresponding logic pro-
gram. Terminal symbols in'the grammar are delimited by double quotes, and the paramete i
to the predicates are strings of symbols represented by the juxtaposition of variable
names and constants delimited by double quotes. We may drop the quotes when the meaning{

is obvious.

G = RG G(x1 x2) « R(x1) A G(x2)
G=R G(x1) « R(x1)
R = L"="F R(x1 "=" x2) « L(x1) A F(x2)
F = PF F(x1 x2) « P(x1) A F(x2)
F=P F(x1) « P(x1)
o Al | : P(""" x1 """) « U(x1)
P=1L P(x1) « L(x1)
P=1U P(x1) « U(x1)
L="G" L("G") «
L="R" L("R") «
LW E" L("F") «
S R L("P") «
e RET L("L") «
L="u" L("u") «
U=1L U(x1) « L(x1)
e u(*=") «
v =" u(""") «
Table 2.1: Grammar GG and its logic program representation LPGG.
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The interpretation of the grammar GG is obvious [3]. It is in fact self-describ-
ing. The correspondence between each production of grammar and Horn clause is straight.

forward. For example,
G(x1 x2) « R(x1) A G(x2)

states that if R is true on string x1 and G is true on string x2, then G is necessarily

true on the concatenation of x1 and x2, which is also the meaning of

G = RG
in the grammar.

L(uGu) -

states that L is always true for the letter G, and so on.§

3. Translation from Context-free Grammars to Their Logic Interpretations

Predicate TGL formally defines the relationship between context-free grammars
and their interpreting Togic programs, and also the translation process between the
two, i.e., TGL(G,LP) is true iff LP is the logic program representation of grammar ;
G. In the example of Table 2.1, TGL(GG,LPGG).

TGL(e,e) «
TGL((A = B)*G, New_rule'LP) «
TGL(G,LP)

A TPL(B,1,Iparam,Conj)

A New_Rule = (A "(" Iparam ") « " Conj)t

§ In examples we occasionally optimize logical formulas to remove the value true
where it is formally present but contributes no meaning. In particular A A true = A
and (A « true) « (A +).

b The symbol “+" appears frequently in parameters of logic programs. u-v denotes !
a parameter that is subdivided into components u and v. For strings we denote such
decomposition simply by juxtaposition of symbols, e.g. uv. The use of “-" denotes d
composition of more complicated structures, such as grammars. The first use here,

(A = B)+G, denotes a grammar that is subdivided into its first production A = p and
the remaining productions, grammar G. ]
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Given B, the r.h.s. of a production, TPL(B,1,Iparam,Conj) yields both a parameter
list, Iparam, and a conjunction of predicates, Conj. More specifically

TPL(B,n,Iparam,Conj) is true iff B = I BiBreq € (VN U VT)* where each p, € V.*

ntl"’ T
and B, € Vy and Iparam = B x 8 .. ...X. By > and Conj = Bn(xn) A Bn+1(xn+1) A ...Bk(xk).

TPL(e,n,e,true) «

TPL(s B,n,s Iparam,Conj) « T(s)
A TPL(B,n,Iparam,Conj)

TPL(S B,n,X(n) Iparam,S "(" X(n) ") A " Conj) « N(S)
A TPL(B,n+1,Iparam,Conj)

T(s) is true iff s is a terminal symbol.

N(S) is true iff S is a nonterminal symbol.

X(n) is the letter x subscripted with the value of n, and similarly
for Y(n) which will be used later.

4. Functional Interpretation of Coupled Grammars

Coupled grammars have an input grammar and an output grammar. As each production
of the input grammar is used, an output is associated with it as specified by the
corresponding production of the output grammar. This relation can be specified by a
Togic program as shown in Table 4.1 for coupled grammars B and U translating binary

to unary notation.

A=Al A=AAT A(xy Toyyy, 1) < Alxysyy)
A=ADO A = AA A(x) 0,¥q;) « Alx;s¥,)
A N A(1,1) «
A=0 A=c¢ A(0,e) «

grammar B grammar U lTogic program LPBU

Figure 4.1: Coupled grammars B and U and their logic program representation LPBU.
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It is obvious that the input grammar describes all binary strings, and the output
grammar (ambiguously) describes all unary strings. The translation doubles the value
of the output string for each shift in positional notation and adds a further "1" if
the number is odd.

The logic program predicates have two parameters, one for input and one for output.

For example, the interpretation of the clause

says that if Xy is an acceptable string producing output Yq» then Xy 1 is an acceptable

string producing y]y] 1 as output.

5. Translation of Coupled Grammars to Their Functional Interpretation

Given coupled grammars G] and Gz, one can construct a program that will perform
a functional interpretation on a string, using G] as the input grammar and G2 as the
output grammar. FI(G],GZ,LP) is true iff LP, a logic program, performs that interpre- i

tation. For example, from Figure 4.1, FI(B,U,LPBU).

FI(esese) «
FI((A = )Gys(A = v)-Gy,2-LP) «
F1(6;56,,LP)
A FIP(AsByys2)

FIP(A,8,v,C) means that the functional interpretation of coupled productions A = ¢ and .
A = vy is the logic procedure C where A is a single nonterminal and g and
y are strings in V*. In the program below, Iparam and Oparam are each
strings of variables and terminals and represent the input parameter and

output parameter, respectively. R is a conjunction of predicates.

S ey




FIP(A,B,v,A "(" Iparam "," Oparam ") « " Conj) «
IN(B,1,Iparam,Conj)
A 0UT(Conj,y,Oparam)

IN(B,n,Iparam,Conj) serves a similar function to TPL(B,n,Iparam,Conj) except that we

are producing two parameters instead of one to the predicates of
Conj, i.e. whenever P(xi) appears in Conj of TPL, then P(xi.yi)

appears in Conj of IN.

IN(e,n,e,true) «

IN(s B,n,s Iparam,Conj) « T(s)
A IN(B,n,Iparam,Conj)

IN(S B,n,X(n) Iparam,S “(" X(n) "," Y(n) ") A " Conj « N(S)
A IN(B,n+1,Iparam,Conj)

OUT(Conj,y,Oparam): Oparam is the output parameter and if v = Y{¥2+ - Yp then Oparam

denotes
s]sz...s where

S; = Ty if t(Yi)

Yy

j if N(Yi) and j is the least integer such that

Yi(xj’yj) is a literal in Conj

s; if N(Yi) and Yi(xj’yj) is not in Conj

0UT(Conj,e,e) +

OUT(Conj,s v,s Oparam) + T(s)
A OUT(Conj,y,Oparam)

OUT(Conj,S v,y Oparam) « N(S)
A FIND(S,Conj,y)
A OUT(Conj,y,Oparam)

PO
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FIND(S,Conj,z): For nonterminal S, and conjunct Conj,

z = y for leftmost predicate in Conj that is of the form S(x,y)

} = z if no such predicate exists in Conj

FIND(S,true,S) «

FIND(S,S "(" x "," y ") A " Conj,y) «

FIND(S,R "(" x “," y “) A “ Conj,z) « (S#R)
A FIND(S,Conj,z)

X

B A o A s S
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For example, if A, B, C and D are nonterminals and # and ! are terminals, then

the following are true:

— ot ———_

FIP(A,#BCD,CB! s A(#x,X,%3,¥,¥1!) « B(x15¥7) A Cxp.¥5) A Dlx3,¥4))
IN(#8BCD, 1, #x1X X35 B(xl.y]) A C(xz,yz) A D(x3,y3))

6. Parse Sequence Interpretation of Coupled Grammars

Given a grammar G, with each string in L(G) is associated one (or more) parse

sequences. A parse sequence is a sequence of integers corresponding to the production

numbers as they are applied in a left-to-right parse.

. ' Suppose we have two arbitrary coupled grammars, and each is used to parse a string

in its language. The strings are defined to be equivalent if they have a parse sequence

in common, as shown in Figure 6.1.

PS

Figure 6.1: Parse sequence interpretation with the parse sequences not used
intermediately.
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Alternatively, take the same two coupled grammars, where the input grammar is used

to generate a parse sequence and then that parse sequence is used with the output gram-

mar to generate output as shown in Figure 6.2. We have then defined a means of trans-

lation.
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Figure 6.2: Parse sequence interpretation with the parse sequence vsed as an

intermediate form.

E+T

1}
—

e 3h

n
o

CE)

O O oo oo 4 4 mm
noon
o

n
w N~

D=9

input
grammar

Table 6.1:

A 53 D e

© )
* #

7.~ e - e - S - T - [ - IR - T -
. n
W o = &5 U U VU v v,

P=9

output
grammar

Parse sequence coupled grammars.




-

The coupled grammars in Table 6.1 relate infix expressions and Polish expressions.

The input grammar is unambiguous; every parse sequence from it is a parse sequence for

the output grammar. Thus, there is a Polish form for every infix expression. Because

e ——

of rules P = P in the output grammar, it is ambiguous. For every Polish string there
are infinitely many parses which are also parses for the input grammar. Each defines
a correct translation. There are also parses from the output grammar which are mean-

é : ingless relative to the input grammar.
3

7. Translation of Coupled Grammars to Their Parse Sequence Interpretation

1 PSI(G],GZ,s,t) is true iff grammar G] parsing string s and grammar 62 parsing string
i t give the same parse sequence. We give two different definitions for

PSI. The first generates an explicit parse sequence from an input

string and its relevant grammar, then uses that sequence to generate
: a corresponding string in the language of the other grammar.

}

% PSI(Gy2Gy0sst) «

) PARSE(G1,s,PS)

L A GENERATE(G,,PS,t)

?f | PARSE(Gl,s,PS) is true iff PS is a parse sequence of string s in grammar G]. The parse ﬁ
is accomplished by creating an associated grammar GS, then using logic
program FI to translate G] and GS into a logic program that carries out

a functional interpretation between the grammars, and, finally, to ex-

ecute that logic program with string s as input to produce parse sequence

PS8,

SESUPIISD—.

PARSE (6 ,5,PS) «
SEQ(G],I,GS)
] 3 A FI(G],GS,LP)
: A exgc(("e" Start(Gy) "(" s "," PS ")" )

*LP)

y R i el LRI S
i b S L e e sty e
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SEQ(G],n.GS) is true iff G-.I and GS are context-free grammars, n is a positive 1nteger.’
and by considering the productions of G] sequenced starting at n, GS
consists of corresponding productions in which each r.h.s. is the non-
terminals, in order, of its corresponding production in G]. followed by
the sequence number of that production.

Formally, SEQ is defined:

SEQ(e,n,e) «
SEQ((A = «)*G,n,(A = Bn)-GS) «
SEQ(G,n+1,GS)
A STRIP(a,p)

STRIP(a,B) is true iff a is a string in V*, and B is a with terminals stripped away.

STRIP(e,e) «
STRIP(s a,B) « T(s)
A STRIP(a,p)
STRIP(S a,S B) « N(S)
A STRIP(a,p) ;

exec(P) is a meta-procedure that executes logic program P. For an example of PARSE,

consider
G]: s:
E = E+T a*a + a*a
E=T
T =Tk
T=a

the calls and computed values are:
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SEQ(G] »1,GS) in which GS becomes:

= ET
T2
T3
=4

E
E
T
T
FI(G],GS,LP) in which LP becomes:

E(x]""'"xza.y]yz ]) * E(X] ’y]) A T(XZ"VZ)
E(xys¥y 2) « T(xs¥4)

T(x] “*“amy].yz 3) « T(X] sy])

T(a»4) S

exec(+E("a*a+a*a",PS) * LP) in which PS becomes:
432431

Now this completes the first half of the definition of PSI. Given the parse
sequence constructed in the above process we can use it to drive a right-most deriva-
tion in Gz, to create string t.

We now define the predicate GENERATE. We know intuitively that parsing and gen-
eration of strings are inverse operations. That would say that we could define

GENERATE in terms of PARSE, thus:
GENERATE(GZ.PS,t) “«— PARSE(Gz,t,PS)

The way we have used PARSE (and think of parsing) is that the string in the language
is given and we generate the parse sequence as a side-effect of the recognition pro-
cess. Suppose the parse sequence and the grammar are given. Can we use PARSE to
create the input? A useful property of logic programs is that they describe truth
about relationships, and while they can drive computations, the direction of the

computation is usually arbitrary. Let's follow the computation to see if the string

t can be appropriately computed.

9

i
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Continuing the example above, let G2 be:

PspPP»
P=P
P=PFP*
P=a

Then PARSE(Gz.t,43Z43I) calls SEQ(Gz.l.GS') which produces GS':

P=PPI
P=P2
P=PP3
P=4

Then FI(GZ,GS'.LP') computes LP':

P(xx; +2¥7¥, 1) « P(x15¥7) A Plxy,y,)
P(x] 9y] 2) o P(x] o.y'l)

P(XIXZ *,y]yz 3) + P(x] ,.Y]) A P(xzﬁyz)
P(a94) =

Executing LP' with call « P(t,432431), we compute t = aa*aa*+, the desired answer.

Therefore, we could have defined PSI as:

PSI(G],Gz,s,t) N
PARSE(G],S,PS)-
A PARSE(Gz,t,PS)

And, we see that our original claim of the equivalence of the two definitions is re-

flected in their having a single formal specification.

8. Mixed Grammars

Suppose we have a set of nonterminals VN and two disjoint sets of terminals
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vI and VO’ and a context-free grammar
[VN, VI U VO’ P, S] .

The productions in P are of the form

where

They are equivalent to the coupled grammars

where all elements of V, are deleted from the productions of P to give P and vice-
versa for PO.

The grammars can be interpreted either as functionally coupled or parse sequence
coupled. They are equivalent to the simple syntax-directed translation schemata of

Aho and Ullman [1, Vol. I].

Notationally speaking, it is convenient for VI n V0 to be nonempty, thus we
establish the convention of double quotes delimiting the members of Vi (as in earlier

sections of this paper) and single quotes delimiting the members of V.

E=E"+" T |'+|
E=T
T = T "*v wgh gt '

T = |Iall Ial

Table 8.1: A mixed grammar describing the translation from infix to Polish.

; | ', : For example, the mixed grammar in Table 8.1 has the same effect as the coupled

grammars in the preceding examples. It will also accept other strings but its behavi

js then of no interest.
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The advantages of mixed grammars are that they are directly‘executable on a
simple pushdown store machine, and that their notation makes implicit, unavoidable
and natural the constraints for simple syntax-directed translation schemata. One

can produce a logic program similar to PSI and FI to translate mixed grammars to

logic.

9. Conclusions

We have established some relationships among context-free grammars, translation
schemata, and logic. The interpretation of paired grammars has been extended in
several ways. We have defined a set of translation programs that are actually sets
of logic theorems. They are concise, and the correctness of each program can be
established by proving each theorem individually. The process of parsing and the

process of generation which are inverses are shown to have the same formal specifica-

tion.
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