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INTRODUCTION

Detailed low altitude measurements of precipitating protons at energies above
100 keV, and at lower, ring current energies have been reported by a number of authors
(e.g., Amundsen et al., 1972; Mizera, 1974; Sgraas and Berg, 1974; Hauge and Sdraas,
1975; Sgraas et al., 1977). From these measurements the following picture has emerged:
During geomagnetically quiet conditions there exists at high latitudes in the evening-
midnight sector a region where the protons have a roughly isotropic pitch angle
distribution. Equatorward of the isotropic region there is a latitude interval where the
pitch angle distribution is anisotropic (with no particles in the loss cone).. At still lower
latitudes there appear again protons in the loss cone, indicating weak to moderate pitch
angle diffusion. During geomagnetically disturbed times the equatorward boundary of

the isotropic region moves to lower latitudes and has been observed as low as L =3

(Lindalen and Egeland, 1972).

Low altitude measurements reveal only a small part of the equatorial pitch angle
distribution. However, near equatorial measurements of energetic protons on the
Explorer 45 (83) satellite by Williams and Lyons (1974a, 1974b) confirm the picture
described above. During the geomagnetic storm recovery phase they observed isotropic
pitch angle distributions with a nearly empty loss cone above the plasmapause region. In
the region of the plasmapause they observed a transition from flat to rounded pitch angle
distributions, indicating weak pitch angle scattering. Apogee of Explorer 45 was not high
enough to observe the outer region of strong turbulence except during the geomagnetic
storm main phase when this region moves to lower altitudes. During one geomagnetic
storm Williams and Lyons (1974b) reported observations of flat pitch angle distributions
with a full loss cone in the storm main phase at L ~4.2.
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In this report we present observational data on precipitating protons which
confirm these earlier results and, for the first ti.. 2, data on pi-ecipitating alpha particles
and heavy ions with Z >4. Composition measurements of energetic particles in the

magnetosphere are still rare (for recent reviews see, e.g., Fennell and Blake, 1976; Fritz,

1976), and new data on this subject should provide additional insight into the origin and

dynamics of magnetospheric particles.
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SATELLITE AND INSTRUMENTATION

The data presented in this paper were obtained from a proton and a heavy ion
telescope on board the polar orbiting S3-Z satellite (inclination 96.3°, perigee ~ 230 km,
apogee ~1500 km). The satellite is spin-stabilized with the spin axis maintained normal
to the orbital plane; the spin period is 18.8 seconds. The two instruments are mounted

with their apertures orthogonal to the spin axis.

Because of the large differences of proton, alpha particle and heavy ion fluxes in
the radiation belt, the dynamical range required to measure all ion species simul-
taneously with reasonable statistical significance could not be achieved with a single

detector system. Therefore two different instruments were employed.

The proton spectrometer uses a single silicon semiconductor detector of 200 um
thickness for energy analysis, followed by a solid state anticoincidence detector. The
particle acceptance angle is limited to 18° fun angle, resulting in a geometrical factor
of 0.04 cm2 ster. The 5 integral proton channels pl to p5 and the one integral alpha

channel a0 are listed in Table 1.

The alpha particle and heavy ion telescope is similar to the ULET instrument of
the University of Maryland/Max-Planck-Institute experiment on IMP 7 amd IMP 8
(Hovestadt and Vollmer, 1971). The telescope is a three detector device. The first
detector is a thin proportional counter filled with 125 1.lg/cm2 of isobutane. In this
detector the specific energy loss AE of the penetrating particle is measured. The
residual energy E is deposited in the second detector, a silicon semiconductor of 800 um

thickness. Particles penetrating the second detector, are rejected by an anticoincidence




st

o i i b s i S A e

detector. The field-of-view is 49° full angle; the geometric factor is 0.52 cm2 ster. This
telescope provides a unique identification of protons, alpha particles and heavy ions (Z >4
and Z>16). The etffective threshold for both C and O in the Z>4 channel is
=0.25 MeV/nucleon. The channels are listed in Table 1. All channels are read out once
per sec, except for the proton channels pil and pi2, the alpha particle channel a6 and
the single rates in the three detectors. The latter channels are multiplexed in an 8-
channel multiplexer with a 1 sec simultaneous accumulation time. A randomly selected

sample of the heavy ion events is pulse height (2D) analyzed with up to 3 analyses per

sec.

Because of the large geometrical factor of the ion telescope, the proton cﬁannels
pil and pi2 saturate when passing through the outer radiation belt. Therefore, these
channels are used only for a consistency check with the proton telescope measurements
in r‘egions of space where suitable fluxes were encountered. These checks reveal an
excellent agreement of the proton fluxes measured by the two different systems. The
saturation effects mentioned above oceur in the proton logic and not in the detectors,

amplifiers or diseriminators; the saturation effects do not impair the heavy ion channels.

The alpha particle channels al to a6 consist of two groups with different
thresholds in the AE signal. The low energy channels a1 to a3 have a AE-threshold 5.6
times higher than the AE-threshold utilized in the high energy channels a4 to a6.
Where the proton single rates are very high in the radiation beits, some chance

coincidence and pile-up effects contaminate the alpha particle channel c4. Only o4 is

affected.

The excellent background rejection capability of the ion telescope is demonstrated
by the following: In the inner radiation belt the a1 rate is < 1 count/sec in spite of the
high singles rates in the AE and E channels of ~5 X 104/sec and ~ 105/sec, respectively.

-10-
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In this paper we use only the rates with high AE thresholds. The Z >4 channel has a AE
threshold of 4.5 times the a1 to a3 thresholds and is therefore even less sensitive to

pile-up and chance coincidence background than g1 to a3.

-11-
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OBSERVATIONS

The data presented in this paper cover the period March 24-28, 1976. A large
geomagnetic storm (Dst =-2307) and an energetic solar particle event occurred within
this time period. The top panel of Figure 1 shows the Dst value; the bars in the top panel

indicate the time intervals of data retrieval.

The large geornagnetic storm occurred after the SSC on March 25, 2339 UT. The
Dst index remained quiet until ~ 0200 UT on March 26, then started to decrease
suddenly and reached -2307 at 0800 UT. Thereafter the Dst index slowly recovered to
reach —80?‘ to -907 . on March 28, 1976. In the following, we will investigate the time
development of fluxes and pitch angle distributions of protons, alpha particles, and heavy
ions measured at low altitudes during the formation and decay of the equatorial ring
current. Examples of the particle measurements during various satellite passes are

shown in Figures 2 to 4.

Figure 2a is an example of the fluxes measured during a pre-storm crossing of the
outer radiation belt. The pitch angle distribﬁtions are strongly peaked at 90° to the
geomagnetic field. The alpha particle and proton channels of the two instruments do not
cover the identical energy per nucleon range. In order to determine the «/p ratios at
the same energy per nucleon we have adopted the following procedure: The measured
fluxes in adjacent channels are connected by power lau;s. The spectral exponents and the
absolute intensities are determined by the fact that the integrals over the power laws
between the channel boundaries must be equal to the measured fluxes. From the power
laws we then derive a/p ratios at different energy per nucleon values.. During the pre-
storm quiet time we find at L = 3.87, B = 0.307 G that the «/p ratios (perpendicular to

the geomagnetic field) are ~ 1.2 x 10'3, 6.1x 1074

‘and 3.3x 1074 at 0.4, 0.5, and 0.6

meV/nucleon, respectively.

-13-
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With the formation of the ring current, the L-location of the flux maximum of the
trapped alpha particles moves to slightly lower L-values, the absolute fluxes increase
considerably and the a/p rétio perpendicular .to the geomagnetic field is enhanced. At
L =2.48, B =0.368 G we find ratios of ~ 1.8 x 102, 5.9 x 10>, 2.3 x 10”3 at 0.4, 0.5, and
0.6 MeV/nucleon, respectively.

Precipitating protons, alpha particles and heavy ions are seen in the main phase
and in the recovery phase of the storm. The L-locations of the precipitation maxima
exhibit a strong time dependence which can be seen in the bottom panel of Figure 1. In
the main phase of the ring current a precipitation maximum is observed at L = 2.8,
accompanied by precipitation of heavy ions. A second broad maximum with lower flux
values is located at higher L-values (L = 4.5-7.0). In the recovery phase of the storm the

precipitation at the low L-value disappears and the precipitation is limited to high

latitudes.

Figure 3a shows a crossing of the radiation belt on the night side during the main
phase of the storm. Until L = 2.53 the flux is modulated twice per spin period of the
satellite, indicating empty upward and downward loss cones. At L = 2.59 precipitating
particles can be seen in the upper loss cone; from there poleward the upber loss cone is
filled up, suggesting that the particle distribution is in strong pitch angle scattering. The
a/p ratio in the maximum of the precipitation (L = 2.71) is ~ 8 x 10'3, 2.1x 10'3, and
5.8 x 10'4 at 0.4, 0.5, and 0.6 MeV/nucleon, respectively. Figure 5 shows detailed pitch
angle distributions of protons and alpha particles at the equatorial edge of the
precipitation region. The transition from rounded (peaked at 90° to the geomagnetic
field) pitch angle distributions to flat (filled upper loss cone) distributions occurs at
L =2.59. The higher energy protons (p4) and alpha particles (3) show filled loss cones,

-18-
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whereas the lower energy alpha particles still show a trapping distribution. In the lowest
proton channel (pl) we already see precipitating particles. Note that the protons
channels are integral whereas the alpha particle channels are differential (see Table 1).
Figure 6 shows the proton and alpha particle spectra at L = 2.59 for particles moving
parallel to the geomagnetic field. The absence of strong pitch angle scattering at lower
energies leads to a turn-over of the spectrum at some characteristic energy. If the
equatorial particle spectra are monotonic with energy to energies below that of the
turnover observed at low altitude, then the energy where the turn-over occurs should
indicate the transition from strong to weak pitch angle scattering. As can be seen from
Figure 6, the turn-over occurs at ~ 2.0 MeV for protons and ~ 0.5 MeV/nucl. for'alpha
particles. At L = 2.71 all distributions exhibit a filled loss cone, implying the presence of
strong pitch angle scattering. Figure 7 shows the proton and alpha particle spectra

during the precipitation event observed at L = 2.71.

Extremely high heavy ion fluxes with J (>3 Mev) = 5.23 x 1()2 particles/cm2 sec
ster are encountered in the maximum of the precipitation at L =2.71. In a AE vs E piot
of the heavy ion events that are 2D pulse height analysed, there is no track separation
into individual species due to the fact that the events are just above the sensor threshold.
Thus an ion identification is impossible in spite of the high ion rate. However, the ions
fall into the CNO regime within the AE vs E area, so it can be safely assumed that they
belong to the CNO group. This heavy ion channel responds to the integral flux of CNO
nuclei above 250 keV/nucleon. Integration of the alpha particle spectrum (Fxgure 7
above 250 keV/nucleon gives a CNO/« ratio of ~ 6.5 x 10~ 2

In the high latitude precipitation regions (L ~3.8) during the main phﬁse, we

derive a/p of ~ 9.1 x 1074 and 2.1x10™* at 0.4 and 0.5 MeV/nucleon, respectively.
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Thus, the ratio is considerably smaller than in the low latitude precipitation region. This
ratio increases in the recovery phase of the storm by more than an order of magnitude,
although the absolute fluxes are decreasing. Figure 8 shows proton and alpha particle
spectra of Lrecipitating particles on day 87 at L = 4.8 (seol Figure 4). From Figure 7 we

2 2 3

derive flux ratios of the two species of ~ 4.6 x 10~ and 6.7 x 10" ° at 0.4, 0.5

, L7x10°
and 0.6 MeV/nucleon, respectively. The heavy ion flux has decreased to 2.3 + 0.94
peu-ticle:’./cm2 sec ster above .25 MeV/nucleon, resulting in a CNO/a ratio of

(1.1 £ 0.5) x 10”2 above 0.25 MeV/nucleon.

No events were seen in the Z > 16 channel. Thus we can only set an upper limit of

0.5% for CNO/(Z > 16).
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SUMMARY OF OBSERVATIONS

The low-altitude data presented in this report can be summarized as follows:

1. Precipitating protons, alpha particles, and heavy ions have been observed during
the storm main phase down to L values of =~ 2.7 at the night side. The pitch angle dis-
tributions are iostropic except for the downward loss cone, implying the existence of

strong wave turbulence down to very low L values.

2. The transition from the isotropic to the rounded pitch‘angle distributions occurs at
an L value that decreases with increasing proton and alpha particle energy. At the time
the precipitation is seen at the lowest latitudes, at L = 2.6, ~ 0.6 MeV/nucleon particles
are in strong pitch angle diffusion while 0.3 MeV/nucleon particles are only weakly

scattered. The transition from strong to weak scattering occurs at about the same total

energy for protons and alpha particles.

3. A two zone night side precipitation pattern exists during the storm main phase,

with a maximum at L = 2.7 and a second broad maximum at higher latitudes (L ~ 4). The

o /p ratio is ~ 8 x 10'3 in the equatorward region and ~ 9 x 10’4 in the high latitude

precipitation zone at 0.4 MeV/nucleon. Precipi’tating heavy ions of energies

> .25 MeV/nucleon, presumably CNO nuclei, are found in the lower latitude precipitation

zone. A CNO/c ratio of ~6.5 x 10'2 above x0.25 MeV/nucleon is derived.

Ol




IR v

4, The low latitude precipitation zone disappears in the storm recovery phase. The
a/p ratio in the high latitude zone considerably increases during the recovery phase with
values up to ~ 5 x 1072 at 0.4 MeV/nucleon, and a CNO/a ratio of ~ 1.1 x.m'2 above
0.25 MeV/nucleon has been found.

5. No counts were seen in the Z > 16 channel, giving an upper limit of 0.5% for
CNO/(Z > 16) actually (Z >4)/(Z > 16) at = 0.25 MeV/nucleon.
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DISCUSSION

The energy dependence of the low altitude equatorial boundary of the precipita-
tion region has been previously described by Mizera (1974) and Sgraas and Berg (1974) for
protons. The relation of the equatorward extension of the strong precipitation to D -+ has
been found by Mizera (1974) and by Hauge and Sgraas (1975). Williams and Lyons (1974b)
report equatorial pitch angle measurements of protons from which they also conclude
that the outer region of strong turbulence penetrates closer to the earth during the storm
main phase than during the recovery phase. Sgraas and Berg (1975) propose that the
proton precipitation is caused by self-excited ion cyelotron waves. In this case the
condition for resonance with a growing wave is

E >E,A2(1+A)"! (1)

P M

where Ep is the energy of the resonant protons, Ey = BZ/8ﬂN is the magnetic energy per
particle, B is the magnetic field strength, N is the total plasma density and A is a
measure of the proton pitech angle anisotropy. Since EM decreases sharply with
decreasing L at the plasmapause, proton precipitation by self-excited ion cyclotron
waves would explain the energy dependence of the equatorward precipitation boundary.
The equatorward precipitation zone should not be confused with the high latitude strong
precipitation zone. The latter exists also during magnetic quiet times, and only a weak

energy dependence of the low latitude boundary between one and several hundred keV
(Sgraas et al., 1977) has been observed there.
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Let us now assume that the strong pitch angle scattering is due to a resonant
interaction with electromagnetic waves. Whether these waves are self-generated by the

protons or the interaction is parasitic, the resonance condition (see, e.g., Kennel and

Petschek, 1966) reads

W = Von (14 2" 1w)] (2)

where v, is the component of the particle velocity parallel to the magnetic field, vph is
the phase velocity of the waves causing pitch angle scattering, .Q+ is the particle
gyrofrequency and w/27 is the wave frequency. In the low frequency approximation the

phase velocity is the Alfven velocity v A and the resonance frequency is

f = w/2 = .Q*vAlzzrv“ (3)

Since’ the gyrofrequency of protons and alpha particles differs by a factor 2, the
resonance frequency for particles of the same total energy is equal. In the caserf

Alfven waves propagating parallel to the magnetic field the pitch angle diffusion

coefficient is given (e.g., Hasselmann and Wibberenz, 1968) by

F2v 2
1 A 1-
Dupy =5 §) v ) o @

where u is the cosine of the pitch angle and P(f) is the power spectrum of the waves at

the resonant frequency. This implies that the diffusion coefficient of alpha particles is
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half the diffusion coefficient of protons at the same energy. The minimal condition for

strong scattering is
Dyy (strong) 2 2 aLZ/ Ts (5)

where ay is the eguatorial loss cone and T8 is the bounce period. Since the bounce
period is inversely proportional to velocity we have finally the result that if protons of a
certain energy are in strong pitch angle diffusion, then the same is true for alpha
particles of the same total energy and vice versa. This discussion is valid for the case of
s;ripped helium ions, i.e., He''. The radiation belt helium ions are expeéted to be both
singly ionized and doubly ionized (Cornwall, 1972; Spjeldvik and Fritz, 1978a). What has
been said above of H' and He"'+ is equally true of He' at 1/4 of the energy. Heavier
ions, CNO jons in particular, will not be totally stripped in the energy range of = 0.25
MeV/nucleon (Spjeldvik and Fritz, 1978b). Thus the value of e/m for the CNO ions will
be <1/2 and they will be in strong pitch angle diffusion at energies below that of He' "
and H'. As can be seen from Figure 7, the turn-over in the spectra, i.e., the lowest
energy where particles are still in strong diffusion, is at about the same energy for
protons and alpha particles but the change in slope of the alpha particle spectrum is less
than that of the proton spectrum. This result would be expected if the helium ions are a

mixture of He' and He'* and there are significant abundances of both ionization states.

We have interpreted the isotropic distributions as hzing due to strong pitch angle
diffusion. If the pitch angle diffusion process occurs in the near equatorial region, the
ratios of different species should be characteristic of equatorial ratios. The a/p ratios

of equatorially mirroring particles have been reported by Blake et al. (1973) and Fennell
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and Blake (1976) for L < 2.5 and by Fritz and Williams (1973) for-larger L values. At
L =3 Fritz and Williams (1973) observed a ratio of ~ 8 x 10'3, which compares favorably
well with our ratio measured at L = 2.7 at the end of the main phase. The ratio of ~ 10'3 b
at L =4 during the storm main phase is low compared with a ratio of ~ 10'2 given by
Fritz and Williams; however, during the storm recovery phase our ratio increases up to
~5x 10-2. Large increases of the o /p ratio at low altitudes coincident with
geomagnetic disturbances have been observed (Van Allen and Randall, 1971; Krimigis and
Verzariu, 1973; Randall, 1973). If our interpretation of the precipitation events as being

due to near-equatorial strong scattering is correct, the & /p ratio near the equator also

can show large variations. Large variations at low altitudes thus are not necessax;ily the

e o b ¥ 3 e e o NN S el e e

result of relative changes of the pitch angle scattering strength for protons and alpha

particles.

The first measurements of magnetospheric ions heavier than alpha particles ﬁere ‘
made by Krimigis et al. (1970) and Van Allen et al. (1970). From these low altitude
measurements they derived (in the range 3.0 < L <3.5, 0.15 < B <0.2) a ratio of CNO/a
of ~3x1073 above = 0.3 MeV/nucleon. Our measurements at the end of the storm main
phase at L = 2.7 result in a CNO/a ratio above =~ 0.25 MeV/nucleon which is about one
order of magnitude higher. Interpreting the ratio in the precipitation event as
characteristic of the near equatorially mirroring paricles, we would expect a higher
CNO/a ratio at large equatorial pitch angles than at small equatorial piteh angles during
quiet conditions. Fritz and Wilken (1976) observed at the geostationary orbit an injection
of heavy ions during an isolated substorm with a (Z > 2)/a& ratio of ~1.2 x 107! at 0.15-

0.23 MeV/nucleon; thus the equatorial CNO/& ratio may well be time dependent. A

definite conclusion about the origin of the heavy particles is not possibie since the ratio <
of number densities of CNO to He is similar in the solar wind (Bame et al., 1975) and in '
the ionosphere (Taylor, 1973), as is also the H to He ratio. A conclusive test would be ';
the measurement of the C to O ratio (Blake, 1973).
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THE IVAN A. GETTING LABORATORIES

The Laboratory Operations of The Aerospace Corporation is conducting
experimental and theoretical investigations necessary for the evaluation and
application of scientific advances to new military concepts and systems. Ver-
satility and flexibility have been developed to a high degree by the laboratory
personnel in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems. Expertise in the latest scientific devel-
opments is vital to the accomplishment of tasks related to these problems. The

laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry ae. )dynamics, heat trans-
fer, reentry pRyn'\cs. chemical kinetics, structural mechanics, flight dynamics,

atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmos-
pheric optics, chemica[ reactions in pol‘uted atmospheres, chemical reactions
of excited species in rocket plumes, chemical thermodynamics, plasma and
laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum
and radiation effects on materials, lubrication and surface phenomena, photo-
sensitive materials and sensors, high precision laser ranging, and the appli-
cation of physics and chemistry to problems of law enforcement and biomedicine.

Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, including plasma electromagnetics; quantum electronics,
lasers, and electro-optics; communication sciences, applied electronics, semi-
conducting, superconducting, and crystal device physics, optical and acoustical
imaging; atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal
matrix composites and new forms of carbon; test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in

nuclear weapons environment; application of fracture mechanics to stress cor-
rosion and fatigue-induced fractures in structural metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-
tion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow; magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields; space astronomy, x-ray astronomy; the effects of nuclear explosions,
magnetic storms, and solar activity on the earth's atmosphere, ionospherc, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems.

THE AEROSPACE CORPORATION
El Segundo, California




