
OF MANAGEMENTC
I

U

_ _

U
END
DM1

I p -78

N

10
~

2.8
~~

_________ lisis 112 2

~I~~~ 3.5
I I 2 01.1

~~i:~
—=_

IIIPL~1)11125 iin~ 1ir ~~
NATIONAL BUREAU OF STANDARDS

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -~~~~~~ 
— 

~.-- —~~~—- -— ------ -

I

~~~~~~)
/

:
Center for Information Systems Research

Massachusetts Institute of Technology
Alfred P Sloan School of Management

50 Memorial Drive
Cambridge. Massachu setts , 02139

617 253-1000

ContractcL~6~~~~ eOo 39_78_G_el6o /
Internal Report Numbe r P0 10—78 06—07

Deliverable Numbe r 003

I

LLV(L L

G

~ 1 C ~~~~~~~~~~~~~~~~~~~~~

- Y~
-
~/ ~~~~~~~

—:.=- - -.---~~-—
An Extended Model

for a

Systematic Approach

to the

•
-
.

~~~ Design of Complex Systems ( _________

_ _ _ _ _ _  

/a 
~~~~~~~ical~~~~~~t. 

-

S. L./Huff

(
~
. E./Madnick

C,

(?9L~~~~T

Princ ipal Investigator:

Prof. S. S. Madnick

- -. c~~
.

~~~~~~~~~~~~~~~~~~

~

Systems Co~~andWashington, D.C.



—.w _____  -~~~~~~~--+~~-- - ‘.- -~ -~~~~—-_ -. -~

- 

~~ UNCLASSIFIED
SECURITY CLASSIFICATI ON OF THIS PAGE (Wh.n bat . En(.r.d) 

___________________________________

D~~ Da~~~~Y ~~f~# I I & , ~~ IJrATIf lh i  ~~ A f  READ IN STRUCTIONS
I Lr-VI~ I LPU’I..URILfl I ~~ I 11.111 U 1W BEFORE COMPLETING FORM

~ . REPORT NUMBER -J 2. GOVT ACCESSION NO 3. RECIPIENTS CATALOG NUMBER

Technical Report #7 /
4. TITLE (ond SubUti.) 5. TYPE OF REPORT & PERIOD COVERED

“An Extended Model for a Systematic Approach
to the Design of Complex Systems” 

_____________________________

7 6. PERFORMING ORG. REPORT N~bM$ER
P010—7806—07

7. A uT~~~ R(I) S. CONTRACT OR GRANT NUMBER(.)

~~~ 
~~~ Madnick N00039—78 G—0160

5. PERFORMING ORGANIZATION NAM E AND ADDRESS IC. PROGRAM Et.EMENT. PROJECT . TASIC
AREA S WORK UNIT NUMBERS

Center for Information Systems Research
Sloan School of Management , M.I.T. ,1~

Cambridge , Mass. 02139 ____________________________
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DAl E

• Naval Electronic Systems CommanU ,~~. NUMBER OF ‘AGES

14. MONITORING AGENCY NAME & ADDRESS(I1 dlfl.rw t item Con (,olling Offlc•) IS. SECURITY CLASS. (*1 lAS. r.pot t)

Unclassified

tSa . OECLASSIFICATION/DOWNGRADING 
-

SCHEDULE

15. DISTRIBUTION STATEMENT (oi eM. R.por t)

Approved f or public release; distribution unlimited .

77. DISTR190IION STATEMENT (ol IA. .b.t,.cS .,et.,. d i.e Block 2O~ it dlti. r.nI from R.potf)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (ConIlnu. on r.v.ra. aid. St n.c...my ond Id.nIiiy b~. block nemb.r)

Software requirements analysis; functional requirements specification;
- - software architecturh design; problem design structuring;

mathematical graph modelling

ABSTRACT (CQnSiJlu. on ray.,., aid. It n.c•.. y med ld.fffluT b~ block numeb~ )

~~~~~~~~~~~~~ The objective of this study is to develop a systematic approach to the arch-
itectural design of complex software systems. This contract builds on
earlier work, in which a graph modelling and decomposition methodology was
used to operate upon a set of functional requirements and their interrela-
tionships to generate an architectural design. In this report, certain ex-
tensions to the graph model employed to model the requirements are analyzed.
Proposed extensions include: (a) implementation nodes; (b) weights on inter—

~~a

DO ~~~~~~~ 1473 EDITION OP I NOV 65 IS OBSOLETE

•
S/N 0102-014- 6601

SECURITY CLAI~ PICATION OF THIS PACE (S~~~~ D~~.* I .S.S

I
1)

. 2 . - . . ——---
~~ -

-

(p.i.~u~ .t’Q U.$L& 3~~Yd SIH.~ iO NOl ~ I~~ISSV 13 A.~ IMn~~as

~~~~. ~~— ai dependency links; (c) links, between implementation nodes; and (d) various typer of directed links. The proposed extensions are applied to a small design
problem (the design of a 22—requirement database management system) used in

• earlier work, and found to be implesnentable — that is, the information that
must be supplied by a software designer to establish the model structure
in a particular case can be determined in a reasonable length of time.

1 ”
I

• 
- ~CCE 0~_~~ 

\~~i~~5

~ 
N1~ s.~tt ~e~t\ofl ~~

~gOC
% t~~-~~ t~

r ~ 
- -  —

• • -

(p.ro,u5 .1VQ “ SM)30Vd SIIIJ. 40 NOI~~y~~I4IS5~~1~ A~~Ihfl~~~ 

• .:::.:~ 
j



- .— -. . - ~~~~~~~~~~~~~~~~~~~~~~~~~~ - • •

— 1 —

PREFACE

The Center for Information Systems Research (CISR) is a
research center of the M.I.T. Sloan School of Management.
It cons ists of a group of management information systems
specialists, including faculty members , full—time research
staff , and student research assistants. The Center ’s general - —

research thrust is to devise better means for designing,
implementing , and maintaining application software,
information systems, and decision support systems.

Within the context of the research effort sponsored by 
, -. -

~

the Naval Electronics Systems Command under contract
N00039—78-q~-tl60, CISR has proposed to conduct basicresearch -di~ a systematic approach to the early phases ofcomplex systems design. The main goal of this work is the
development of a well—defined methodology to fill the gap
between system requirements specification and detailed 4
system design. •

The research being performed under this contract builds
directly upon results stemming from previous research
carried out under contract N00039—77—C—0255. The main
results of that work include a basic sdheme for modelling a
set of design problem requirements, techniques for
decomposing the requirements set to form a design structure,
and guidelines for using the methodology developed from
experience gained in testing it on a specific , realistic
design problem.

The present study aims to extend and enhance the
previous wor k, primarily through efforts in the following
areas :

1) additional testing of both the basic methodology ,
and proposed extensions, through application to other
realistic design problems;

2) investigation of alternative methods for effectively
coupling this methodology together with the preceding
and following activities in the systems analysis and
design cycle;

• • 3) extensions of the earlier representational scheme to
allow modelling of additional design—relevant
information;

4) development of appropriate graph decomposition
techniques and software support tools for testing out
the proposed extensions.

- - - - • - - --------  



-•••--~ --~~~—~~~~~~~~~~~~~ • .• .• - • •—-.

~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— 2 —

This document, which relates pr imarily to category (3)
above, includes an investigation of various possible
extensions to the network model used to represent the system
requirements and their interrelationships. These extensions
are assessed in terms of the additional design—relevant
information they allow a system designer to express. k
small example design problem is analyzed using the proposed
extensions.

-- .- . -
I - . - - •-- -• ,. .-• •,—-..• •-—••- -~~~~~~~~~~~--, •-~~ -~~~~-- -. --•- -~~~~~~~~~ • - •

C - . • -
, -

~~~~~~~~~~~~

-; - . - — 3 —

EXECUTIVE SUMMARY

Complex des ign problems are charac ter ized by a
multitude of competing requirements. System designers
frequently find the scope of the problem beyond their
conceptual abilities, and attempt to cope with this
difficulty by decomposing the original design problem into
smaller , more manageable sub—problems. Functional
requirements form a key interface between the users of a
system and its designers. In this research effort, a
systematic approach has been proposed for the decomposition
of the overall set of functional requirements into
sub—problems to form a design structure that will exhibit
the key characteristics of good design: strong coupling
within sub—problems, and weak coupling between them.

In this report, certain extensions to the graph model
employed to model the requirements that make up the problem
specification , are analyzed. The graph model used
previously in this research was constrained in that it only
included one type of node (correspond ing to system
functional requirements) and one type of link (binary links,
representing implementation interrelationships).

A number of extensions are proposed , including:

- weights on interdependency links, to represent
interdependency strength ;

- an additional node type - the implementation node —
• to represent implementation issues explicitly;

— links between implementation nodes, to represent
commonalities among implementation issues;

— directed links between requirements, to represent
implication relationships;

— directed links between requirements, to represent
hierarchical relationships;

— directed links between implementation nodes, to
represent implication relationships between
implementation issues.

The proposed extensions are investigated further in the
• context of a small design problem , a 22—node database

management system (DBMS) specification. The extensions are
all found to be implementable. That is, the types of
questions that a designer would have to answer (to his own
satisfaction) in order to elicit the information necessary
for constructing the extended graph model:

-- -~~~.-• —•~ -• _ _



—- • -•--- -. .—-—--—- .--—----- -——

(1) could in fact be answered satisfactorily , and

(2) could be addressed in a reasonable length of time.

In this report, the relative value of each of the
various extensions is not directly addressed, pend ing
further experience with application of the methodology.
Neither is the extended graph model of the 22—node DBMS
specification analyzed further. Such analysis (graph
decomposition, interpretation, etc.) requires some new tools

- • currently under development, and will be presented in a
future report.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
-



— 5 —

TABLE OF CONTENTS

Pa~

1. Introduction. 7

2. Overview of the Basic Model. 9

2.1 Generation of Nodes in the Basic Model. 9

2.2 Generation of Links in the Basic Model. 10

2.3 An Example. • 11

3. Extensions to the Basic Model. 14

3.1 Interdependency Weights. 15

3.1.1 Scaling Problems. 17

3.2 Information Linking Implementation Issues~ 20

3.2.1 Similiarity Links Among Implementation Issues. 22

3.2.2 Graph Representation of Implementation Issue

Commonality. 23

3.3 Representation of Implication Information. 26

3.3.1 Logical Implications Between Requirements. 28

3.3.1.1 Lateral Implications. 28

3.3.1.2 Examples. 29

3.3.1.3 Hierarchical Implications. 31

3.3.2 Logical Implications Between Implementation

Issues. 32

3.3.3 Logical Implications Between R—nodes and

I—nodes. 34

I



--•• . - - • -.-~~

— 6 —

Page
4. Application of the Extended Model to the 22—node

DBMS Requirements Set. 36

4.1 Sample Set of 22 DBMS Requirements. 39

4.2 Requirements Interdependencies and Weights. 41

4.3 Interdependency Similarity Assessments. 45

4.4 Implication Relationships Between Requirements. 46

4.5 Implication Relationships Between Implementation

Issues. 47
• 4.6 Comments on Assessments. 49

5. Summary. 53

REFERENCES. 57

APPENDIX. The 22—node DBMS Requirements: Comparison of

Or iginal Statements and Template Form. 58



—- ~~7~~ -
_ —•~~

•
~~~~~~~~

•-
~~

— 7 —

1. Introduct ion.

The problem of designing quality software systems has

existed practically as long as computers theis~ e1ves. Only

recently , however , have efforts been made to develop techniques

to aid software designers in their jobs — in e f fec t , attempting

to add an element of science to the sof tware design c r a f t . One

such effort is the Systematic Design Methodology (SDM), a set of

concepts and techniques currently under development at the Center

for Information Systems Research (CISR) , at the Sloan School of

Management, M.I.T. The SDM is oriented toward assisting software

designers (or design teams) in the task of structuring the

architecture — the preliminary design — for a complex system

(Madnick and Andreu , 1977).

Underlying the SDM approach is a technique for modelling the

design problem by representing a system ’s functional requirements

and their interdependencies as an undirected graph with

unweighted (binary) links. This basic model and methodology have

been applied to some experimental systems ((Andreu , 78), (Holden ,

7 8)) , and have been found to be an effective means of determining

an initial design problem structure.

The purpose of this study is to examine the representational

scheme used within the Systematic Design Methodology, and to

suggest certain extensions to enhance the modelling power of this

scheme. The SDM basic model, together with the extensions

discussed in this report, will be referred to as the °extended

• model.”
.

The extended model is applied to a simple design problem,

• •-• . ~~~~~~~~ ---~~~-

—.—- —. — -.———-‘-——• .—•—.——— — — . ~- •—~— - •—• - ———•—• .•—•— ••—•——• •. — -— . —•-——-•••—————-,——-- .—.— ..•• • . -.•--—•——•-~~ •----— —••~—•.-•———~~~~~— - •-

— 8 —

featur ing 22 requirements for the design of a database management

• system. This system was also stud ied earlier by Andreu (And~eu,

77). Comparisons with Andreu ’s representation are drawn . Later

reports will further this investigation by examining graph

partitioning methods that might be used with the extended model,

and measures to reflect the goodness of such a partition.

~

.• - _ _ _

— -.•.—- —-—-- ——- —--•- --~
•- - - -

— 9 —

2. Overview of the Basic Model.

The design structur ing methodology reported in (Andreu , 78)

forms a basis for the present work. At the core of this

methodology is a simple model (the “basic model”) used to

represent general design structur ing problems.

The basic model is an undirected graph: a set of nodes,

together with a set of unweighted connecting links. Each

functional requirement in the system specification is represented

as a separate node(1). A link joining two nodes corresponds to

an interdependency between these nodes. Ways in which both nodes

and l inks are determined are discussed below.

2.1 Generation of Nodes in the Basic Model

Each node represents a single functional requirement of the

target system. Desirable properties of these functional

requirement statements include:

(a) unifunctionality — each statement describes a single
funct ion (not multiple funct ions) to be featured in the
target system;

(b) implementation independence — each statement should be
implementation free, i.e., ought to specify what is required
of the target system but not how that requirement is to be
met.;

(c) common conceptual level — all requirement statements
should be, to the extent possible, at the same level of
generality , or abstraction.

In Andreu ’s research , the problem of creating the functional

(1) Functional requirement statements must be in an appropriate
; form. This issue is discussed in (Andreu , 78) and further in

(Huff, 78).

— - - . - - - --•-- . — - - - - - •--- - ------ • - -•----- • - - — .-- ---- —• -- — — ---- --=•- •- - — - --•- — • - - -

- •—“ . -•.~~~~~

— 1 0 —

requirements for a system has not been directly addressed;

instead , they were taken as given(2). One scheme for mapping

English—language prose requirement specifications into an

appropriate set of functional requirement statements according to

the above guidelines is discussed in (Huff 78). Additional work

on this problem is planned. -

For the purposes of this report, the assumption will again

be made that appropriate functional requirement statements are

given to the system designer.

2.2 Generation of Links in the Basic Model.

Interdependencies between pairs of requirements are

represented as links, or “edges” , in the basic graph model.

Andreu and others have discussed in some detail the

interpretation of design interdependencies. For example, Andreu

writes:

“In essence, two requirements are interdependent
when one can think of plausible implementation
schemes in which the two ought to be considered
simultaneously for design purposes, the reason
being that if such an implementation scheme was to
be adopted, meeting these requirements would be
one of the central considerations that the
designer should take into account to tailor the

• scheme to the characteristics of the design in
progress.” (3)

•
Furthermore, interdependencies fall naturally into two

(2) Andreu did discuss giidelines for inspecting and verifying
the requirement statements.

(3) see (Andreu , 78, page 70).

p.- •

— 1 1 —

groups, termed concordant and discordant. (4) A concordant

interdependency exists between requirements A and B if the

implementation of requirement A would tend to simplify , assist,

• or otherwise make easier the implementation of requirement B. In

contrast, a discordant interdependency exists between the two

requirements if implementation of A would hamper , jeapordize, or

otherwise make more difficult the implementation of B.

The basic a~proach suggested by Andreu for actually

determining the interdependencies has the designer consider each

requirement pair in turn , and mentally consider the alternative

approaches he might follow in implementing the two requirements.

The various implementation schemes so conceived are termed

“mental models” of implementation. If the designer perceives a

significant degree of interaction , in the context of his mental

models, between a given requirement pair , he interprets the

requirement pair as being interdependent.

The actual determinat ion of interdependencies and their

nature (concordant or discordant) is heavily designer—dependent.

There is no intent within the methodology to remove or

de—emphasize the designer ’s experience or judgment from the

design activ ity. Rather , the methodology attempts to provide

structure and simplification to the decisions the system designer

must make. By only having to consider a pair of requirements at

• one time, rather than the entire set, the cognitive demands on

the designer are greatly reduced . There is a pr ice to be paid

(4) Andreu used the terms “concurrency” and “tradeoff”.

••- • - •

— 1 2 —

for this simplification , however: now the designer has easier

decisions to mak’ (pairwise comparisons), but more of them.

While not as formidable a task as might appear at first glance,

the complete assessment of interdependencies for a non—trivial

problem involves considerable effort.

2.3 An Example.

To illustrate more concretely the ideas discussed in this

paper , a specific real (but small) design problem will be studied

in terms of both the basic model and the extended model. The

problem concerns the design of a database management system

(DBMS). A set of 22 functional requirements is assumed given

(refer to Section 4.1 for a listing of these requirements).

Requirement interdependencies were assessed for this

requirement set in the fashion described in the previous section.

A total of 38 interdependencies were determined . Descriptions of

each interdependency are given in Section 4.2 of this report,

where the example system is examined in more detail.

These requirements and interdependencies may be displayed as

a graph , following the basic model, as shown in Figure 2.1. Of

course, determining the graph structure for the system

requirements is only the first step in the basic design

methodology. Further steps, including partitioning the graph

appropriately, and interpreting design subproblems and their

interactions, would normally follow. As this report is only

concerned with representational issues, fur ther steps such as

these will be analyzed in later reports.

•

~

•

~

-. ••~~~~~~~
. •. ~~~~~~~~~~~~~ • • .~~~~~~

~ i —
t

Figure 2.1

Graph representation of 22—node DBMS design problem

I

— 14 —

3. Extensions to the Basic Model.

The guiding philosophy of this research is to simplify and

s t ruc tu re the system design task in order to obtain better

designs. This simplification is achieved by asking the designer

to exercise his experience and judgment — to make design

decisions — in many small bits rather than in one or a few large

chunks. Structure is achieved by providing a framework — a set

of explicit steps to be followed — for the design process so as

• to reduce or eliminate the extent to which a design “just

happens”.

For the proposed methodology to be effective, designers

using it must be able to express, within the provided framework,

as much of their relevant knowledq~ and judgment as possible.

The basic representational model employed in Andreu’s orig inal

study limits this expression of designer information to the

determination of interdependencies between pairs of requirements.

In fact, a designer will generally possess considerable

additional knowledge not captured by the basic model. In the

remainder of this report, ways of extending the basic model to

include representation of various aspects of this “additional

designer knowledge” are presented and discussed .

tt should be made clear that the intention of this report is

to lay out and analyze various possible kinds of extensions that

could be made to the basic model. No choices will be made at

• this time as to which, if any , of these extensions will in fact

be adopted for further research in this problem area. However ,

-
•

in conjunction with the example discussed in Section 4, the ease

_ ___ - -

— 15 —

of application of each extension is examined briefly, and

tentative conclusions about priorities regarding extensions to

the basic model are drawn.

t -

3.1 Interdependency Weights.

In the basic model, an interdependency either exists or it

doesn ’t — there is no middle ground , no notion of the “strength”

of an interdependency. Links within the graph representation of

a design problem are binary in nature: the adjacency matrix is a

matrix of ones and zeros.

There is nothing inherent in the design problem

representation that necessitates binary links, other than a

desire to work with as simple and parsimonious a model as

possible. On the other hand , there is good reason to relax this

requirement, namely, that important aspects of designer knowledge

might thereby be included in the design problem model.

One possible extension of the basic model would be the

association of a “weight” W(i,j) with each link . The inclusion

of such link weights in the graph model can be likened to course

grading : binary links would correspond to pass—fail grad ing,

whereas weighted links correspond to standard (letter or

numer ical) grad ing. Just as standard grading allows an instructor

to express more information about his or her students, so

• weighted links would serve to capture more of the designer ’s

judgment concerning the relationships among system requirements.

t There is a variety of possible ways in which such a weight

could be defined and justified. For example, the weight W(i,j)

- -~~ -•- -

p•~~ - — -~~~~~ — — - ..r .W .5 ~~~~~~~~~~~~~~ •—•~~••••~••— •~ ~~•~
• •~ •~ ~ •••••—• -••--•.— — ••—•

~
•
~
•—•— .-—-——

— 1 6 —

could be taken to represent the “closeness”, or “strength of

• interdependence” of the requirements i and j in the context of
• the interdependency represented by link L(i,j). With this

interpretation , two requirements that are seen to be closely

related , in implementation terms, would be connected by a link

with a relatively high assigned weight.

Alternatively , link weights could be defined in a subjective

probability sense. In this case, the weight W(i,j) would

represent the degree of uncertainty in the designer ’s mind that

the requirements i and j will interact in implementation. This

interpretation would be consonant with the uncertainty inherent

in the interdependency assessment process itself. With this

definition , a designer who is quite certain that two requirements

• i and j would be coupled in implementation would assign a

relatively high weight (close to 1) to the link L(i,j); whereas

if the designer believes that there is only a fairly small

liklihood of the requirements being coupled , the assigned weight

would be lower.

These alternative definitions of link weight give rise to

four logical combinations, as displayed below.

• -‘--- • •: .. - — _ - ~
;- -‘

~~rW-9~Th~ -
~~~~~~~~~~~~~~~~~~~ r~~~~~~~-— —~ • —— rr ~~~~~~~~~~~~~~ - . - - -~~~ 

— 17 —

Subjective probability
- 

low high

- Strength low A B
of

Interaction

• high C D

Figure 3.1

In fact, these definitions are not completely “orthogonal”.

If, for example, two requirements are seen to be strongly

related , according to the first definition, then there will be a

• tendancy for designers to view the probability of their being

related as high. Thus, it is reasonable to assume that most

- designers’ weight assignments would fall in cells A and D in the

above diag ram.

3.1.1 Scaling Problems.

A decision to include link weights in the graph model gives

rise to certain scaling problems. First, a range must be

specified over which weights will be allowed to vary . While not

absolutely necessary , compatability with the basic model , among

• other reasons, suggests that link weights be chosen from the

numerical range (0,lJ

A choice must also be made between requiring the designer to
- 

choose from ‘pre—set” weight values (e.g., low, medium , high)

_ _ _ _ _ _ _ _ _  _ _ _ _ _  

I 
~~~~~. - - --~~~— . —- —--•..- _•_ • • _ _••_:~~~•_____ ____ =_ ~~_ _ ~~~~ -~~~~~~~~ -- --~~~~~


- ?~~~ F ••_?• —
~~

— - • -

— 1 8 —

versus a continuous range of values. If pre—set weights are

used , some mapping to numerical values must also be chosen (e.g.,

“low” corresponds to a numerical weight of 0.2, and so forth).

All link weights must eventually be encoded numerically , for use

in the graph partitioning algorithms.

Also, it may prove desirable to assign special meaning to

certain weight values. For instance, a special “very high”

weight category might be defined to allow a designer to express

his conviction that two requirements absolutely must be included

in the same sub—problem.

In contrast, a “very low” weight may be used to specify that

two requirements must be in different sub—problems. However ,

there are also certain arguments for avoiding such deterministic

weight assignments, in that they reduce design flexibility are

partially preempt the design structur ing methodology itself.

For the purposes of implementing extensions to the basic

model, hard choices need not always be made among alternative

representation issues ahead of time. A software package that

designers would use to apply these arch itectural design methods

could allow the user to select, from various option., those

alternatives that most appealed to him, that he found easiest to

use, etc.

Our experiences to date indicate that system designers most

likely would not require the capability of specifying weights

directly in numerical terms. The following scheme, using a

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • — - - • - • • • , —• --
~
- -- — ---- - - ---- ---- - - -



— 1 9 —

simple three—way breakdown, has proven effec tive and easy to use:

Designer’s Judgment
About Weight Code Numerical Value

Strong S 0.8

Average A 0.5

Weak W 0.2

This particular encoding of weights achieves a number of useful

results. First, the three basic weightings may be easily

interpolated , as shown below :

Weight: S+ S S- A+ A A- W+ W W

Numerical value: 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Secondly, all weights fall in the [0,11 range, a fact useful

for normalization and later decomposition purposes. Finally , the

end points in the range (the values 0 and 1) may be reserved for

“must be included” and “must not be included” categories , if so

desired .

There is another, more subtle, set of scaling issues that

involves the correc tness, or accuracy, of link weight

assignments. If, in assessing a set of requirements, a designer

assigns a weight of, say, 0.85 to a certain link , how does he

know that it should be 0.85, and not 0.84 or 0.86? Of course, he

doesn ’t know for sure; he is simply trying to quantify as best he

can what is inherently a ill—defined issue. This accuracy problem

did not first arise with the introduction of link weights into

the model. It was present in th* basic model as well, in the

I 
_ _ _ _ _ _- -  

I. 1•~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— 20 —

guise of decid ing whether particular links should or should not

be included at all .

The original motivation for augmenting the basic model

through the inclusion of link weights (as well as other

extensions to be discussed shortly) is that designers could

provide additional information , relevant to the design

s t ructur ing  problem , that is not captured by simple b inary  l inks .

The fact that this information is not one hundred percent

“accurate” should not prevent it from being used. (1)

3.2 Information Linking Implementation Issues.

In the basic model , two nodes (requirements)  are joined by a

link when they are deemed to be “implementation interdependent”

by the designer. In essence , l inks represent implementation

considerations. In this view of requirements and implementation

considerations, the focus is upon the nodes, with links being a

kind of implementation “glue” which binds the nodes together.

A different way of viewing links is as “things”, or logical

entities , in their own right , rather than just bindings. To some

extent, the appropriateness of viewing an implementation issue as

a logical entity depends on the specificity of the statement

describing that issue . Not all interdependencies can be

specified by a designer with the same level of precision. In

(1) There is a strong similarity between this argument and that
put forth by Bayesian statisticians in defend ing the use of
personal , or subjective, prcbabilitiea in statistical nradels.

~~~ - _
,
•_ _ • _ _ ~~~~~~

_ _ • __• • •
~~
- - . - - - ---•• - • • • -. • -

~~~~
— ---- - - - • - -•— - - - - ..

~~~~~ 
—

~~~~~~~
,—



~~•• -~~ -~~—-- • -- --- ~~~~~~ - -. --- .~~—-•—------ .-- -- -~~~~~-• • — - -••-- -~~~-•  — - -~~~~~~~~~~~
- —

— 21 —

some cases, it is possible for designers to indicate in some

detail the nature of the interaction that he believes will occur

in the process of implementing a given pair of requirements.

Requirements for “fast direct—access retrieval response” and for

“ability to perform sequential file processing efficiently” may

be assessed as concordant requirements since, the designer may

believe, the use of the Indexed Sequential Access Method (ISAM )

file organization is required in both cases. In such a

situation, the link joining this pair of requirements represents

more than just general implementation interdependence; in

particular , it represents the use of ISAM file organization , a

rather specific implementation scheme.

In other cases, a designer will not be able (at this stage

in the design process) to be so specific. He may believe that a

pair of requirements will prove to be discordant (interfere with

each other) as the design proceeds, but may not, as yet, be able

to specify how this interference will come about.

It is useful to treat interdependencies as separately

identifiable issues for another reason also, namely , for

documenting project design decisions. It often happens in design

and development projects (especially large projects) that e ’rly

design decisions are made by one person or group, and left

undocumented. The responsible individuals may leave the project,

or otherwise become “disassociated ” from that aspect of the

system. Later designers and implementors often come to question

what the motivation might have been underlying earlier decisions. j
Having a well—documented “track” for each design decision would 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~-~~~~---- - -- - • - ~~~~~~. 


____________ - -

— 2 2 —

be quite valuable for determining how later design issues or

system modif icat ions ought to be implemented .

Now, viewing links as representing logical entities leads to

cer ta in questions about such ent i t ies : can these ent i t ies

themselves be related in ways meaningful to designers and to the

design s tructur ing problem? The answe r is yes, and the

incorporation of such l ink relationships into the basic model

provides additional useful extensions.

There are two d i f f e r e n t kinds of relat ionships between

implementation issues discussed in this r eport. In this section ,

s imi la r i ty relationships are addressed ; implication relationships

are addressed la te r .

3.2.1 Similarity Links Among Implementation Issues.

Two or more l inks may represent the same, or closely

related, implementation issues. A simple example of this

possibil i ty is i l lus t ra ted in Figure 3.2. The l inks joining

requirements 1 and 2 , and requirements 2 and 3 , both represent

the interdependency “ISAM organiza t ion ” , an implementation

consideration through which both re quirement pairs (1 ,2) and

(2,3) are deemed by the designer to be interdependent.

In this example , the two links represent entirely the same

iirplementation issue. In general , however , the degree of

“sameness” between two or more implementation issues will usually

be less than 100 percent in the eyes of the designer , due to

inherent fuzziness in the specification of both functional

requirements and implementation schemes. The judgment as to

r .~
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

-‘ ‘

— 23 —

2 Ability to perform efficient
sequential file processing

ISAM ISAM
organization organization

1 Very fast 3 Single—key file direct
retrieval access capability
response

Figure 3.2

whether a given pair of l inks “ really ” represent the same

implementation issue is , again , a designe r decision .

Go ing one step f u r t h e r , a we ight factor could be associated

• with the s imi la r i ty assessment to represent the extent to which

the designer judges the two implementation issues to be the same .

That is , such a we ight would correspond to the extent of overlap

between the implementation issues , in the designer ’s estimation.

3.2.2 Graph Representation of Implementation Issue Commonality .

Probably the ea.iest approach to the schematic

representation question is to avoid it, by not actually

incorporating implementation similarity information into the

graph at all. Rather , the associated information could be kept

in a table or matrix , to be included in the model but not

actually depicted schematically .

An alternative approach, which would lend itself to easy

display , would be to define a new type of node — an

~

~ TiT~~~~. • ~ •~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .

— 24 —

“implementation node”. This definition would extend the

diagrammatic power of the graph representation. It would also

provide a simple mechanism for representing various kinds of

relationships between implementation schemes: as links between

implementation nodes. Such links would , of course , be different

in kind from links between requirement nodes; the latter would

represent interdependencies between pairs of requirements, the

former would represent relat ionships between the implementation

schemes themselves.

As a diagrammatic technique, requirement nodes (R—nodes,

henceforth) ought to be dis t inguished from implementation nodes

(I—nodes). One simple approach would be to use circles for the

former (as in the basic model) and , say , squares for I—nodes.

Similar i ty relationships between implementation issues may then

be represented by undirected links between the corresponding

I—nodes. Furthermore , the degree of similarity could be

represented as a link weight, similar to the “strength of

interdependence” weights discussed in Section 2.

These diagrammatic ideas are i l lustrated in Figure 3.3.

Figure 3.3(a) shows a simple four—node graph using the style of

the basic model. In Figure 3.3(b), implementation nodes are

formally indicated and labelled (the specific implementation

concept that each such node is intended to represent would

presumably be described in accompanying documentation). In

Figure 3.3(c), the fact that certain of the I—nodes are judged to

represent similar implementation schemes is depicted using links

connecting those I—nodes. Finally , in Figure 3.3(d), weight~i are

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -—~~~~~~~~~~ -- -.— -• -~~~~~~~~~~ 

.



— 25 —

(a) (b)

(C) (d)

Figure 3.3

L 
•

-

• 

•~•f •~- - . -
~~~~ __ __


— 2 6 —

attached to these links to describe the extent of overlap , or

similarity , be1tween the implementation issues, as perceived by

the designer.

• Viewing implementation issues as network nodes makes a new

kind of interdependency — a multi—requirement interdependency -
representable. For instance, requirements 1, 2, and 3 may all be

interdependent , as a group , via some implementation issue X.

That is, a single implementation issue may interrelate all three

requirements at once , as illustrated in Figure 3.4 (a). This

kind of relationship would be different from a trio of similar

pairwise interdependencies (see Figure 3.4 (b)), as it would more

strongly suggest the appropriateness of clustering the three

requirements into a common design sub—problem.

Additional kind s of info rmation that may be represented

using relationships between implementation nodes are discussed in

the following section .

3.3 Representation of Implication Information.

It may prove useful in some cases to include still more kinds

of semantic information regarding relationships among the various

requirements and implementation schemes. Additional

considerations not captured in the model extensions discussed so

far include:

a) logical implications between requirements at the same
level of abstraction, and between requirements at different
levels of abstraction ;

b) logical implications between implementation concepts;

c) logical relationships between requirements and

~~~~~~~~~~- - -~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~• — -• --



••‘1~~

- 

-27 -

1. 2

H 3

(a)

A multi—requirement interdependency

(b)

A trio of similar pairwise interdependencies 

Figure 3.4

•~~I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  ----- ----- • —~~--- - ---~~~- --- . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



— 28 —

implementation schemes.

3.3.1 Logical Implications Between Requirements.

It may be the case that a designer possesses information

concerning relationships that exist between pairs of

requirements , even with no consideration being given to

implementation issues. Perhaps the most common type of such a

“functional” relationship (as compared with relationships derived

from implementation considerations) is implication: “requirement

1 implies requirement 2” ; or, stated somewhat differently , “if

requirement 1 is to be included in the system specification, then

it follows that requirement 2 must be included also.”

It is important to note that such a functional relationship,

as defined here, may exist independently of how requirements 1

and 2 are to be implemented. The logic of the relationship is

contained in the semantics of the functional requirement

statements alone, without consideration being given to

implementation alternatives.

3.3.1.1 Lateral Implication.

Implication relationships may be further categorized as

being either “la tera l” or “hierarchical” . The difference between

these two types depends on the relative level of abstraction (2)

(2) The concept “level of abstraction” is widely used in the
system specification and system analysis literature. It is,
however , rarel y def ined , and is generally taken as a kind of
pr imitive concept. 

•



• - - • 
- -

• — 2 9 —

of the two requirements, as seen by the designer. Implication

relationships between requirements that exist at the same level

• of abstraction are laterally related , while those between

requirements at different level are hierarchically related.

To make the above ideas clearer , some examples are developed

below.

3.3.1.2 Examples.

As an example of logical implications between requirements,

consider the pair of requirements

— “capability for collecting resource usage statistics for
each submitted job” , and

— “able to charge users by department and group for
r esources used ”.

• These functional requirements are seen to be logically related

even without considering implementation alternatives: fulfilling

the second requirement implies fulfilling the first. Unless a

system is able to account for resource usage, it will have no

rational mechanism for meeting the second requirement.

Furthermore, the designer would probably view these requirements

as existing at a common level of abstraction — i.e., neither is

logically contained within the other.

In passing, it might be noted that these requirements are

also interrelated at the implementation level, since the

implementation of the resource statistics collection subsystem 
- 

-

will undoubtedly be affected by considerations of the lines along

which charges are to be collected and distributed . It is

conceivable, although unlikely , that two requ iremen ts could be

I

~~~~~T T1I. • ~~~~~~~~~~~~ • • —_ 
~~~ • . . ET . . _ •



_____________ _______________ — -

— 3 0 —

related through logical implication at the functional level, ye t

not be related at the implementation level.

As well as one-way implication, each requirement of a pair

could logically imply the other. A possible example of such a

pair might be the requirements

- “system must be accessible in conversational mode” , and

— “system must be convenient to use”.

The designer may feel that an on—line system should always be

more convenient to use than a batch system; contrariwise, in

order for a system to be truly more convenient to use, it must

provide an interactive user interface — i.e., it must be an

on—line system.

Diagrammatically , these logical implications between

requirement nodes could be represented with a conventional

directed link , thus:

(a) (b)
One-way Si—directional

Figure 3.5

An arrowhead is used to distinguish implication - rela tionships

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~ •


• . r ~. — ~~-~~- —.—-~~- - -———• -——--— —— — ——-—-- • - ‘~~~ - -~~~~~~
- — .

— 31 —

f rom implementation—level relationships.

• 3.3.1.3 Hierarchical Implication.

Requirements may be related in an implication sense and also

exist at different (hierarchical) abstraction levels. For

example , a requirement A may be logically part of another

requirement B.

Consider , for instance, the pair of requirements:

— “capability for report formatt ing ” , and

— “ report fo rmatting optionally automatic. ”

These requirements are arguably related in a functional sense,

but not in the ear l ier sense of one implying the other at the

same level of abstraction. Rather , the first requirement is

logically “greater than ” the second ; the second does not make

sense without the f i r s t .

- It is not necessarily easy to distinguish hierarchical

• implications from lateral implications. Nevertheless, the

differences do seem to be distinguishable in some cases. Since

these two types of relationships may be seen to carry different

kinds and amounts of design structur ing information , it is

appropriate to make a differentiation for the purposes of this

report.

Hierarchical implication relationships could be represented

schematically as shown below, the double line being used to

• distinguish from both lateral implications and from

j
-

implementation relationships.

— 32 —

Requirement 1
hierarchically implies
requirement 2.

Figure 3.6

3.3.2 Logical Implications Between Implementation Issues.

An • argument has been made for the representation of

similarity information joining pairs of implementation nodes

(I—nodes) . Other kinds of relationships between I—nodes may also

be represented in the extended model.

The previous arguments regarding logical implication between

pairs of I—nodes may be carried across to implementation nodes

also. That is, the assumed existence of some implementation

scheme X may be viewed by the designer as implying the inclusion

of some other scheme, Y. -

While it may even be possible to extend the distinction

between lateral and hierarchical relationship types to this case,

for practical purposes the designer generally does not have ~
clear enough picture of ultimate detailed implementation

techniques during arch itectura l des ign activ ity to make such

relatively fine distinctions. Therefore, only one

“general—purpose” type of logical implication relationship

~
_ 1

• - - - .~~~i-• - - -
~~~~~

-- -- - -—~~~~~~~~~~~
---

~~~~~~~~~~~~~~ — - - ~~~-• -- - --• ~~~~~~ — - -~~~~~~~~~~~~~~ -~~~~


— 33 —

between I—nodes is considered for inclusion in an extended graph

model.

As an example of such a relationship between I-nodes,

consider the following three requirements:

1: “Very rapid record retrieval” ;

2: “Ability to produce sequential listing efficiently ” ;

3: “Ability to access records based on value of key field” .

Now , a designer might assess requirements 2 and 3 as being

related via an implementation issue X: “ISAM file organization”.

Simi la r ly , 1 and 3 may be seen to be related via Y: “In—core

index tables”. Finally , for the sake of illustration , the

designer may believe that implementation issue X logically

implies implementation issue Y; that is, the use of indexed

sequential file organization as an implementation technique

implies the use of in—core tables for record lookup.

Borrowing again from the earlier arguments regarding

implications among requirements, a straightforward way of

portraying I—node implications would be to make use of a directed

link joining two implementation nodes. The example discussed

above is so illustrated in Figure 3.7.

—-- -- - ~~- - -•~~
--- --• -- --—-- - - ~~~ ---~~ -~~~~~~~- -— --_- - -- - - •—~~—

This directed link symbo1 -i za~ the factthat, while implementation issues X and
Y are not the same issue, the existence
of X implies the existence of Y.

Figure 3.7

1.L3 Logical Implications between R—nodes and I—nodes.

In the previous section, ar guments have been given for

includ ing in the extended model various means for representing

logical implication relationships between R—node pairs, and

between I—node pairs. For completeness ’ sake, consideration

should also be given to implications between an R-node and an

I—node.

It is possible, in theory , to differentiate implication

semantics from the conventional implementation coupling already

included in the model between R—nodes and I—nodes. Nevertheless,

it is unlikely that there would be a real need for a capability

to represen t suc h implica tion informa tion, for two reasons.
First, presumably all implications would have the same

“or ientation ”: from R—node to I—node. After all, the requiremen t
nodes are the starting point for the whole process, and

~~~- v--— -- - - - .  -~~~~~~~~~~ •



- —•,- —--——•-——-• ----—-— —,•-—- -~~
—- -—-— - •— — -—•- ————-•--•-—---—

— 3 5 —

implementation issues normally follow from requirements.

Second ly , it is unl ikely  that a designer would perceive a

relationship between an R—node and an I-node that would not

— correspond to an implementation link , and hence already be

included in that form. Of course, the implementation link would

represent somewhat different information , but the fact that they

join the same nodes means that the implication link would

probably have little additional design structur ing impact. For

these reasons, it is concluded that there is probably little

additional R—to—I—node (or vice versa) semantic information that

a designer would want , or be able, to include in the design

model , that is not captured already in the form of conventional

implementation links. Therefore , the alternative of logical

implication between R—node and I-node will not be included in the

extended design structur ing model.

— — - — - — -  —! •~~~~~~~
• —— -•——— —— • •—— -—— - -— - ——



,~~—‘----— — - - -- - - - -----•--— •-------

— 36 —

4. Application of Extended Model to the 22—node DBMS

Requirements Set

In order to illustrate an application of the extended

architectural  design mode l described in this pape r , a set of 22

requirements for a data base management system (DBMS), stud ied

earlier by Andreu (see (Andreu , 78)), are analyzed here. The 22

requirements , given in Section 4.1 below , are only skeleton

requirements for a real DBMS, but they are quite satisfactory for

demonstration purposes. In a later report, the extended model

will  be applied to a larger , more realistic requirements set.

In making the assessments r eported here , the following steps

were followed.

(1) The cequirements as used by Andreu were adopted in their

entirety . The requirement statements were then transformed

into “template form ” (see (Huff 78) and the Appendix for

more informat ion regarding requirement statement templates) .

(2) The interdependency assessments made by Andreu in

earlier analysis of these requirements were also used here.

While this author (and, for present purposes, DBMS designer)

does not necessarily agree completely wi th  the

appropriateness of the interdependency assessments reported

by Andreu , no significant changes were made so as to

maintain comparability with the earlier results. The

descriptions of these interdependencies, given in Section

4.2, were clarified and expanded from their original form.

- I - - - - ---- -~~- - - - ~~~~~--~~~~~~~~~~~~~~~~



— 37 —

(3) Weights were assigned to each interdependency. The

weight interpretation used here was that of strength of

interaction, as described in Section 3.1. Assigned weights

were either W (weak), A (average), or S (strong).

(4) Interdependencies were reviewed to determine

similarities. This review was conducted as follows: first,

an interdependency between, say, requirements n and m was

selected . Then , the concept underlying the description of

this interdependency was compared , mentally , to the

underlying concepts for all other interdependencies in which

either requirement n or in was involved. Similarity

assessments were rated W , A , or S , s imilar  to

interdependency assessments.

(5) Requirements were again reviewed pairwise to search for

implication relationships , both lateral and hierarchical .

Because this experimental requirements ’ set is quite small,

each requirement statement is rathe r highly abstracted .

Hence the likl ihood of many logical interactions is small.

In fact, only three such relationships were identified .

(6) Finally, interdependencies were reviewed pairwise to

determine logical relationships. For the same reason as

given in (5) above, few such relationships were expected

(only one was identified-).

-

~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

.•

~~~~~~~~~~~~
- -- 

~~~~
- - • -

•- —— --- - — ,• - — - — -- - - -- —--•-•- ----•-- -- - - - - -- -•------- — -— - - - - - - ---

— 3 8 —

The results of these analyses are reported in the following

five sections. Section 4.1 lists the original DBMS requirements

(in template form); 4.2 describes the assessed interdependencies

and the weights assigned ; 4.3 gives the interdependency

commonality assessments and their assigned weights; 4.4 describes

implication relationships between requirements; and , 4.5 gives

the implication relationships between interdependencies.

Figure 4.1 is a schematic representation of the extended

model as applied to the 22—node DBMS design problem , using the

diagrammatic techniques discussed in Section 3. Section 4.6

includes comments on the process of making the various kinds of

assessments demanded by the extended model.

I -~~~~~~~ ~~ -- ~~~~~~~~~~ • . • -~~~~ - - -- - --- --- -

_
~~

••-
~
—-- --——---- - ,-.~-- - - ,, -- - , --- —•--~~ •- —--•--•- — — —•,- —

— 39 —

4.1 Sample Set of 22 DBMS Requirements.

The requirements given below are modified versions of the 22

requirements analyzed in (Andreu, 78). For a brief explanation

of the nature of, and the motivation behind , the modifications,

refer to the Appendix.

SAMPLE SET OF 22 DBMS REQUIREMENTS.

1. The database can have multiple logical organizations.

2. There can be user—meaningful logical data—item groups.

3. There can be user—meaningful relationships among data items.

4. There can be algorithmic relationships among data items.

5. There wi l l be logical operations involving data items,
groups, and relationships.

6. Data items will be organized physically in a unique way.

7. There will be certain specific queries.
•

- 8. Frequencies of queries will be non—uniform.

9. Data items may be referenced according to logical group
membership.

10. Data items may be referenced according to item value.

11. Data item retrieval will be as fast as possible.

12. The distribution of data items across queries can be
significantly non—uniform.

13. There will be an English—like language for expressing
queries.

14. The query language will be unambiguous.

15. Query expressions will be non—procedural.

: 16. There will be different data item types (e.g., integers,
character strings).

17. Same type data items can be combined using certain operations

L~ -—

‘ -~~ , -

— 4 0 —

(e.g., addition , for integers; concatenation , for character
strings).

18. Certain data items may be represented using alternative data
types.

19. There will be a specific value range for each data item.

20. Data items can take values from a subse t of their value
range.

21. Data redundancy will be minimized .

22. Storage costs will be minimized .

~~ I
~~~~

- _ _ _



~ - - --~~ -- -• - ---•--•,--——~~.~~~~~
--——— - — - - “••-.~-—

-—•—-— --- —.----—•— • ---_ - ---- - —,•-------- ----------•---

— 4 1 —

4.2 Requirements’ Interdepende-ncies and Weights.

The assessed interdependencies and assigned weights for the

22 DBMS requirements are given below. The numbers in the

“requirement pair ” column refer to requirement statements from

the previous section. Weight codes are:

W-weak

A — average

S — strong.

INTERDEPENDENCIES BETWEEN DBMS REQUIREMENTS

Requirement Weight Interdependency Description
Pair

(1,2) A Logical views are definable in
terms of logical groups

(1,3) A Logical views are definable in
terms of relationships among

• data items.

(1,5) A Logical operations are carried
out in the context of the
logical view.

(1,6) S Various logical views must be
obtainable from a unique physical
view.

F (1,21) A Data redundancy would otherwise
be useful in implementing
multiple logical views.

(2,3) W Relationships may exist both
within and between logical

• groups.

(2,5) A Logical groups may participate
in logical operations.

(3,5) S Logical relationships may be
involved in logical operations.

7 
- - _ _ _ _ _ _ _ _



- — - - - c- • - — - -,
~~~ 

‘ ‘
~~~~~

— ——
~~
- — — ------ - - - — — 

- .

— 4 2 —

(4,17) A Algorithmic relationships among
data items must be consistent
with allowable operations.

(4,18) A Algorithmic relationships must be
defined in terms of allowable
alternative data types. - 

-

(4,21) A Depending on how implemented ,
algorithmic relationships can
help to avoid redundancy .

(4,22) S By virtualizing certain data, storage
requirements may be reduced through
use of a lgor i thmic relationships.

(5 ,7) S Queries must be compatable using
defined operations.

(5 ,15) A Mapping(s) must exist between non—
procedural queries and the set of
logical operations.

(6,9) W Logical group membership should
unambiguously correspond to
membership in some part of the
unique physical organization .

(6,21) W A unique physical organization
favors non—redundancy .

(7 , 13) W All queries should be expressible
in the English—like query language.

(7,14) W All queries should be unambiguous.

(7,15) W All queries should be expressi—le
in non—procedural fashion.

(8,11) S Data physical organization should
reflect query type frequency
to minimize lookup time.

(8,12) A Frequencies of queries and
frequencies of data items within
queries determ ine frequencies
of data items’ references.

(9,11) S Data item location via logical
group membership can affect
query response time.

(9,12) W Database searching mechanisms
should take into account



— 4 3 —

distribution of data items in
logical groups.

(9,21) A Representing every logical group
physically is an alternative that
goes against avoiding redundancy .

(10,11) V Alternative mechanisms for locating
data items by value have
efficiency implications.

(10,12) A Alternative mechanisms for locating
data items by value should take
into account their frequency of
reference in queries.

(10,19) A Bounds checking can be used to
resolve references by data type.

(10,20) W A data reference value may fall
within the relevant range for that
data item, yet not be in the data
base.

(11,19) A Bounds checking can enhance
response time for certain queries.

(11,20) W Knowledge of relevant target
values may help in choice of
most efficient search strategy.

(11,22) S More efficient lookup strategies
usually require more memory.

(13,14) W The more English—like a query
language, the greater the scope
for ambiguous queries.

(14,15) W The less procedural the- query
language, the greater the oppor-
tunity for ambiguity .

(16,17) A Operations must be consistent with
the type of data item upon which
they act.

(16,18) A as for (16,17)

(16,22) W Certain data types may be stored
more compactly than others.

(17,18) S Operations must al5ay. be consistent
with the data types used.

-.-

~

- -



—. — — -
~~

- - — - —-
~~ 
-

~~~
-- V --- -—

~~~~~~~~~
-

~~ 
--- - -- - -

~~~~~

— 4 4 —

(18,22) A Certain data types may be
stored more compactly then others.

(21,22) A Decreased redundancy means
decreased storage costs.

_ - -- --~~~
--

~ -~~~~~~-- - - -- -----—- - - - ~~

~~
--

~~~~~~~
- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— 45 —

-

4.3 Interdependency Similarity Assessment.

Assessed similarity relationships and weights between pairs

of interdependencies are given below. The numbering scheme for

interdependency pairs refers to the original requirements’

numbers. For example, (1,2) corresponds to the interdependency

between requirements 1 and 2. The weight codes used are the same

as used for interdependency weights (see Section 4.2).

INTERDEPENDENCY SIMILARITY ASSESSMENTS

Interdependency Weight Description of Nature
Pair of Similarity

(1,2),(l,3) A Common issue regarding
definition of logical groups.

(2,5),(3,5) A Participation in logical operations.

(4,17),(4,l8) S Common virtualization issue.

(4,2l),(4,22) A Common virtualization issue.

(lø ,ll),(lO ,12) A Similar efficiency issues.

(lO ,ll),(le,l9) A Both related to value
representation.

(10,l9),(l0,20) A Both related to data
reference by value~

(l3 ,l4),~ 14,l5) S Both concern query language
design.

(16,l7),(l6,l8) S Same issue.

(l6,22),(l8,22) S Both related to data type selection
issue.

-

- - - - _ ___, _~~~~~~~~~~~~ _ _ -_-_ -.. :_ - — -

— 46 —

4.4 Implication Relationships Between Requirements.

Three implication relationships between requirements were

determined , shown below. The first two are one—way lateral

implications, the third is a two—way lateral implication. No

hierarchical implication relationships were detected in the

22—node DBMS set. -

IMPLICATION RELATIONSHIPS BETWEEN REQUIREMENTS

I

Requirement Nature of
Pair Relationship Comments

6,21 21 ——> 6 To minimize data redundancy ,
the system ought to support
a unique physical organiza-
tion of data.

16,18 18 ——> 16 In order to be able to repre-
sent certain items using
various data types, the system
must support an appropriate
variety of data types.

- -

21,22 21 ——> 22 Reducing data redundancy
tends to reduce storage costs.

____ —

-
—~~~~~~~ — - - —- - - - — -

— 47 —

4.5 Implication Relationships Between Implementation Issues.

A single one—way implication relationship between

interdependencies was assessed , as given below.

IMPLICATION RELATIONSHIPS BETWEEN INTERDEPENDENCIES

Interdependency Nature of
Pair Relationship Comments

(lO,ll),(lO ,12) (10,12) — — > A~ implementation of a
(10,11) mechanism for locating data items

by value that takes into account the
items’ distribution across queries
will generally also be more effic-
ient in terms of retrieval response.

I i

- - - - -- V
~~~~~ 

- - —.- —V- ,•- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

— 48 —

~~~~~~

1

6

i_I ~~~~~~~ ~~21

9 A
A

4
- 22

11 5
. -

“4

S

S
19 1615

—
8 c’V

12
(

2 ~ 18 17

(iJ Requirement Node

—j~3--- Implementation link, node, and
weight

0...e~0 Similarity link and weight

— — — + Implication link

Pigure 4.1

Graph Lhiagram of DBMS Design Problem Using Extended Model.

~~~ -_ _ l _ _ _  - 
- - _ — _— - -- — - -- ---- --_ —~~~~-- - ——----- ---_ — - - — -- -

~~~~
--

~~

V.—. ~~~~~ —- V~
V_

~
V
~ ~~~~~~~~~~~~~~~~~~~ ~~ —

— 49 —

4.6 Comments on Assessments.

In reporting his experiences applying the basic model,

Andreu commented on two aspects of assessing requirement

interdependencies. First , he pointed out that, although the

number of actual comparisons between pairs of requirements

increases as the square of the number of requirements, the actual

designer effort involved in making the assessments is not nearly

so large as this would seem to imply. The pr imary reason is that

most of the requirements have no sign i f i can t interdependencies,

and may be assessed quite rapidly . In working throug h an

experimental design consisting of over 100 requirement

statements , Andreu found over 93 percent of the requirement pairs

were of this “easy” variety .

The second point Andreu made was that it turned out to be

relatively easy to conjure up “mental models”, or implementation

schemes, for pairs of requirements:

“From a personal experiential viewpoint, we must
say that the models emerged rather naturally from
confronting pairs of requirements, and more easily
than expected .” (1)

In the course of the analysis performed on the 22—node DBMS

requirement set in this report, Andreu ’s two points were found to

hold. Also, experience gained in the determination of the

additional kinds of information - interdependency weights,

interdependency similarities and associated weights, and

(1) see (Andreu 78, page 234)

- V - V ~~~~~~~~~~~~~

r
— 5 0 —

implication relationships — is summarized as follows:

(1) We ight Assessments.

It was earlier suggested by Andreu that it might be

possible to me~.ke weight assessments by counting the numbe r

of d i f f e r en t implementation schemes that underly a given

interdependency , then assigning a weight value based on the

total number of such schemes. This approach was not found

to be very use fu l , for two reasons.

First , most of the related requirement pairs were

actual ly related via a single interdependency . However , in

a numbe r of cases , the strengths of these sing le

interdependencies were judged significantly different, hence

deserved different weight values. Andreu ’s proposed

approach would not properly handle this situation.

The other main reason is that many of the conceptual

models of interdependence were sufficiently general in

na ture that it wouldn ’t be meaningfu l to try to “ count” them

as individual implementation schemes.

Rather than attempt to use a mechanical approach to

determining the we ights to be assigned to each

interdependency , the assessment was made judgmentally , i.e.,

by mentally examining the same conceptual models used in

determining the interdependencies themselves in the first

place. It must be granted that such a jud gmental appr oach

to eliciting the strengths of interdependencies would

probably lead to a fairly high variability among different

II.— ~~ ------ -V.- - - V---- ~~~~~~~~~~~~ V . - - - - -

— 51 —

designers in practice. However , this variability could be

reduced somewhat, possibly using a Delphi—like technique

which would have the designer re—think his assessments in

light of assessments made by other designers. (2) Also, some

variability among different designers is to be expected ,

inasmuch as the different designers perceive the many design

issues in different ways.

The above comments also apply to assessment of the

strengths of similarity relationships between implementation

considerations.

(2) Implication Relationship Assessments.

Few implication relationships were detected in the set

of 22 DBMS requirements. The main reason for this is that

the requirement statements were few in number and broad in

scope. It is expected that a more realistic (i.e., larger)

requirements set would exhibit a higher proportion of

requirement and implementation issue implication

relationships.

Those relationships that were assessed in the 22—node

requirement set were actually identified rather easily . The

scanning of requirements statements or interdependency

description statements to locate implication relationships

• (2) There are many similarities between the Delphi technique used
in forecasting and “opinion averaging” analysis, and some of the
modern programming management methods such as “structured
walkthroughs”.

-

_ _-

- _— — - - - - - --. — - V --
-- - - - -— - --- - --- -

- - -—--~~
. - -~~~ —----- - -.—“ — ~~~

— 5 2 —

could be done rapidly , and related statements generally

stood out quite plainly .

On balance, the additional assessment time and effort needed

to determine the extra information required by the extended model

was somewhat less than that needed to determine the original

basic interdependencies. The demands that would be placed on a

designer to supply this data are non—trivial , but not out of the

realm of reason , assuming the designe r believes that the final

quali ty of the design structure will be significantly improved as

a resul t .

~

- —_ V — ~~~~~~~~~ - - - - -

- V. V~~~_ - - - - - -. ~~~~~~~~~~~~~~~~~~~~~~~~~ —V.--- - - . —~~~ — -. -

— 53 —

5. Summary.

The argument in this paper has been that there are important

additional kinds of information designers generally possess that

cannot be represented in the basic architectural design framework

developed originally by Andreu. Certain classes of such untapped

information , believed to be most relevant and accessable via

designer judgment and knowledge, have been identified . Possible

schemes for representing much of this additional information in

the context of an extended graph model have been discussed.

To summarize the various kinds of information proposed for

the extended architectural design framework, consider Figure 5.1.

Shown here is the schematic representation of certain design

information , using the basic design model , involving five

functional requirements (1,2,3,4, and 5). A designer , hav ing

stud ied the 10 requirement pairs , has identified five

implementation interrelationships (1—2, 1—3 , 2—3 , 1—4, and 1—5).

Adding extension 1 to the representation — weights on the

implementation links — the designer ’s assessments might be as

shown in Figure 5.2.

Extension 2 is then added : the implementation issues are

explicitly represented as I—nodes, and similarities among them

are determined and added to the diagram . Assuming a single such

similarity relationship, suppose implementation nodes (1—2) and

(1—3) are determined to represent similar issues (within

estimated 50 percent average overlap). This information is

portrayed in Figure 5.3.

Finally , additional semantic information , in the form of

-~~~~~~~~~~~~~

2 V.

4

3
V

Figure 5.1

A i S
2 .

~ 5

S A W

(
~
)

Figure 5.2

I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--—-- --V. ---V. ~~_~V___ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 5 5 —

2 A 1 S
‘~ ~, a 

___
/ \,.~~,Iw l  F

s A

4

3

Figure 5.3

2 S 5

‘i r
(:j
~
::lII:r::
~
iit.. ~ ( 2)

V. 
Figure 5.4

_______________________________  --
~~~~~~~~~~~~~~

—

~~~~~~~~~~

-

~~~~~


— - ----— V. -- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
—---—

~
~V - ~~ - -

— 56 —
-

logical implications at both functional level and implementation

level are assessed and added to the schematic. In Figure 5.4,

(1) represents a lateral implication from requirement 1 to

requirement 4; (2) represents a bi—directional lateral

implication between requirements 3 and 4; (3) is a hierarch ical

functional implication from 1 to 2; finally, (4) is a logical

implication relationship between implementation issues (1,4) and

(1,5).

It was not the intention of the discussion in this report to

imply that all alternatives under consideration have to be

brought to bear in modelling design structur ing information —

only that they might be useful. Specifically , ways in which such

information could be incorporated into design structur ing

algorithms will be the subject of a later report.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - V  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~



_ _ _  
-

~
-—- - ---V——-- --- -—V—

~~ - - - --- V.---—-

— - - - — -— ——

— 57 —

REF ERENC ES

1. Alexander , C.:  Notes on the Synthesis of Form , Harvard
Universi ty Press , 19617

2. Andreu , R. C.: “A Systematic Approach to the Design and
• Structur ing of Complex Software Systems”, PhD Thesis, MIT

Sloan School of Management , 1978.

3. Holden, T.: “A Systematic Approach to Designing Complex
Systems: An Application to Software Operating Systems”, MIT
Center for Information Systems Research, Technical Report *5,
NTIS No. AD—A055481, May 1978.

4. Huff, S. L.: “An Approach to Constructing Functional
Requirement Statements for Preliminary Systems Design”, MIT
Center for Information Systems Research, Technical Report $6,
June 1978.

5. Madnick , S. E., and R. C. Andreu: “Research on a Systematic
Approach to the Design of Complex Systems: Application to Data
Base Management Systems”, Research Proposal submitted to the
Naval Electronic Systems Command , November 1977.

1

~~~

_____________________________ 4

V. V.V.VV.V.7V.~
_ —-V.- - — ~~~~~~~~~~~~~~~~~~~~ -.-•.—- ~~~~~~~~~~~~~~~~~~ -- --V. V

~VV~V. —V.- V.---
-

— 5 8 —

APPENDIX

The 22—node DBMS Requirements: Comparison of

Original Statements and Template Form

Functional requirement statements are usually expressed

in standard English descriptive prose. However, in order to

apply the graph representation and decomposition techniques

developed in the course of this research , it is necessary to

express requirements as short (one—sentence) statements having

the properties outlined in Section 2.1 earlier. One approach

to transforming prose—form requirement statements into this

unifunctional statement form has been investigated and

reported in (Huff 78). That scheme involves the use of a set

of six requirement statement “templates” , or general statement

patterns, which can be used to map prose specifications into a

relatively standardized set of statements suitable for further

analysis using the graph partitioning methodology.

In order to better couple this report to the earlier one,

and to illustrate the applicability of the template scheme,

each of the 22 DBMS—requirements is given in Appendix A.2

below, expressed first as orig inally stated by Andreu , then in

template form. Appendix A .l first defines the six statement

templates used to restructure the DBMS requirements. V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~ : V ~~~~~~~~~~~~~~~~~~~~~



- — V,V—- .-—- — - ~~~~~~~~~~~~~ -— - V V —~~ V.VV ~~~~_ V_V V_V__VV.? 
~~~~~~~~~~~ 

VV. — VV — VVVV_-V V V ~~~~~~~~~~~~~~~~ -

— 59 —
V

A l Functional Requirement Specification Templates.

The six types of requirement specification templates,

originally identified and discussed in (Huff 78), are given

below:

A. Existence.

There (can/will) be <modifier> <object>

B. Property.

<Mod> <object> (can/will) be <mod> <property’

C. Treatment.

<Mod> <object> (can/will) be <mod> <treatment>

D. Ti ming .

(Mod> <object> (can/will) <timing relationship> <mod> <object>

E. Volume.

<Mod> <object> (can/will) be <order statement> <index> <count>

F. Relationship.

a. Subsetting.

<Mod> <object> (can/will) contain <mod > <object>.

b. Independence.

<Mod> <object> (can/will) be independent of <mod> <object>

~~~~~~~~~~~~~~~~~~~~ ~~~ -- _ _ _  V. ~~~V ~~~~~~~~~- - - - —  - ____________



V V ~~~—
—-_

~~

— 60 — V

A.2 Transformation of the 22 DBMS Requirements to Template Form.

Each of the 22 DBMS requirements defined originally by

Andreu, and used in this and earlier reports, was transformed

to one of the six template forms. Given below are each of the

original (as per (Andreu 78)) statements, followed by the

revised statement in template form. The revised statements

are the same as those given in Section 4.1 earlier. The

template type used to re—write each statement is also noted.

Two points are worth noting here. First, it turned out

that only three of the six templates — Existence, Property,

and Treatment - were actually used in performing these

translations. The main reason for this is simply that this

requirements’ set is a small, experimental one. (All six

template forms were used in transforming a more realistic,

larger set of DBMS requirements, as reported in (Huff 78)).

On the other hand, as a practical matter , the absence of

instances of certain templates might suggest that some classes

of requirements for the target system had not been adequately

specified. Recognition of this possibility should lead to a

better , more complete functional specification.

ORIGINAL AND TRANSFORMED REQUIREMENTS STATEMENTS

1. Original: The collection of data items that is to be supported
should be perceivable as logically organized in more than one
way .

Transformed (Existence): The database can have multiple
logical organiza tions.

2. Or iginal : Data items should be perceivable as forming logical

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~~~~~~~~~~~~:~~~ -



- -
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

groups, meaningful to the user.

Transformed (Existence): There can be user—meaningful logical
groups of data items.

3. Original: Relationships exist among data items, meaningful to
the user.

Transformed (Existence): There can be user—meaningful
relationships among data items.

4. Original: Algorithmic relationships among data items should be
supported.

Transformed(Existence): There can be algorithmic relationships
among data items .

5. Original : There is a collection of logical operations
involving data items, groups, and relationships (the data
manipulations) that must be supported.

Transformed (Existence) : There will be logical operations
involving data items, groups , and relationships.

6. Original : Data items are to be organized physically in a
unique way.

Tr ansformed (Treatment) : Data items will be organized
physically in a unique way.

7. Or iginal: There is a number of specific queries to be
supported.

Transformed (Existence): There will be certain specific
queries.

8. Or iginal: Query frequency is not uniform — i.e., there are
certain critical queries.

Transformed (Property): Frequency of queries can be
non—uniform. -

9. Original: In a query, references to data items may be made by
• logical group membership.

Transformed (Treatment): Data items may be referenced
according to logical group membership.

10. Or iginal: In a query , re ferences ~o data items may be made byitem value.

Trans formed (Treatment): Data items may be referenced
according to item value.

~~ I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V.-- - ~~~~~~~~~~~~~~~~~~~ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



- r~~~~~~~-- --- - -w- . - — - -
- - V - -

— 62 —

11. Or iginal: The expected time spent in locating thee data items
appearing in a given query should 

V
be minimized .

Transformed (Property): Data item retrieval time will be as
short as possible.

12. Or iginal: The distribution of data items across queries (data
items appearing in a query) is far from uniform , in general.

Transformed (Property): The distribution of data items across
queries can be significantly non—uniform.

13. Or iginal: Queries are to be expressed in an English—like
language.

Transformed (Existence): There will be an English—like
language for expressing queries. V 

-

14. Or iginal: The query language should be unambiguous.

Transformed (Property): The query language will be
unambiguous.

15. Or iginal: Query expressions should be non—procedural.

Transformed (Property): Query expressions will be
non—procedural.

16. Or ig inal : D i f f e r e n t  type s of data items must be supported
(e.g., integers, character strings).

Transformed (Existence): There will be different data item
types (e.g., integers, character strings).

17. Or iginal: Data items of the same type can be combined by
means of certain well—defined operations (e.g., addition , for
integers; concatenation , for character strings).

Transformed (Treatment): Same type data items can be combined
using certain operations (e.g., addition , for integers;
concatenation , for character strings).

18. Or iginal: Alternative data types may be employed, if
necessary, for certain data items.

Transformed (Treatment): Certain data items may be
represented using alternative data types.

19. Or iginal: Each data item takes values in a specific range of
its data type.

Transformed (Existence): There will be a specific value range
for each data item. 

V

_ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

-

- -

. --— -

- - - - -

— 6 3 —

20. Or iginal: Data items do not necessarily take on all values in
their value range.

V
Transformed (Property) : Data items can take values from a

• subset of their value range.

-
21. Or iginal: Data redundancy should be avoided.

Transformed (Treatment): Data redundancy will be minimized.

22. Or iginal: Storage costs should be minimized .

Transformed (Treatment): Storage costs will be minimized .

~~ VV.VV~~~~~~~~~~~~~~~~~ — V . —- -~~~~~

