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ABSTRACT

LS

,;:>The diffusion model of reaction

tes), originally due to H. Kramers,
is rederived and extended. The
derivation~follows the work of Il'in
and Khasmi%§KII—Eﬁa’is based on a
clear physical picture of the mole-
cular events. The origin of the
stochastic forces is also clearly
treated. Classical mechanics is
used throughout. this paper,
/’:weruseg;he Einstein-Smoluchowski

approximation and, thus, considerg

a diffusion model in position space
only. -We—non-dtmenSIonaitzg,the
diffusion equatlons and a
numbeg*pa“gggular perturbation
problems, Yy using the diffusion
model, one can treat a number of
problems involving reaction rate
theory. 3 new gprm of
transition state theory, Wq,cal-
culate reaction rate constants,
transmission coefficients and
the llfetlmg of the activated
complexZ Kramers®“result is the
leading®“term in the asymptotic
expansion of the rate constant
that we calculate. |We show how
absorption spectra éan also be
derived by use of th@ diffusion

model.
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INTRODUCTION

Almost forty years ago, H.A. Kramers (l) introduced a
Brownian motion model for the calculation of reaction rate constants.
The picture involved in this formulation is one in which the mole-
cules undergo a diffusion process in reaction space while moving
in physical space. Kramers' theory is particularly applicable to
reactions in solution, and reactions of relatively large molecule.
Kramers compared his theory with the then new transition state
theory (TST) or activated rate theory associated with the names
Wigner, Eyring, and Polayni. The Kramers theory has been relatively
unnoticed by the chemical and physical community, while TST and
other, more complex theories have developed (2).

As a consequence, there are excellent classical, semi-
classical, and quantum mechanical methods available to calculate
rate constants for the reactions of small molecules in the
gaseous phase. On the other hand, when large molecules or polymers
react in solution a complete theory is lacking. The Kramers
diffusion model can fill this gap(an example is in (3)). 1In this
paper and the following one (4), we extend Kramers theory and show
how the diffusion model can be used to calculate many properties
connected with reaction phenomena, not just reaction rates.

The diffusion approach is based on a Brownian motion model

in the reaction phase space of the molecule. The use of such
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phase space distributions was initiated by Wigner in 1932 (5).
By the use of Wigner's technique coefficients in the differential
equations describing the evolution of the phase space distribution
function can be given approximate quantum interpretations (6). Our
interest here, however, is the solution and application of the
diffusion equations, rather than derivation of the equations,
Consequently, we use classical mechanics throughout. The extension
to Wigner equivalent formalism is straightforward and will be
considered in a later paper (7). By using classical mechanics,
we also use an implicit Born-Oppenheimer assumption about the
potential energy surface.

Kramers was motivated by a desire to develop an alternative
to transition state theory (1). In TST, one obtains a reaction
rate constant of the form:

-Q/kpT
k = x(f-f-)e

In (1.1), Q/kBT is the "activation energy" divided by Boltzmann's
constant times temperature, (f-f°) is a frequency factor and «
is the transmission coefficient. Usually, the frequency factor

is calculated by a quantum mechanical argument. The diffusion
model provides a purely classical method of treating the frequency
factor. Hence, we obtain CTST, classical transition state theory.
CTST and TST agree, when the partition functions in TST are

calculated explicitly (8).

(1.1)
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The transmission coefficient is usually treated as an
empirical parameter. TST provides no method of calculating k.
The diffusion model provides a direct way to calculate k. We
will show that TST and CTST arise as special cases, of the
diffusion model (in the equilibrium limit and vanishing viscosity).

Previous work on the calculation of «k was done by
Hirschfelder, Wigner and Hulburt (24) using quantum mechanical
techniques. Here a complementary, stochastic approach is given.

Kramers constructed a stochastic model and used the forward
or Fokker-Planck diffusion equation. He managed to construct
solutions of the Fokker-Planck equation in certain special cases.
The deviation between TST and the diffusion theory was about 10-15
percent for reactions with high energy barriers. The difference
was considerable for lower barriers. We will calculate reaction
rate constants, transmission coefficients and lifetimes of
activated complexes, for all sizes of energy barrier.

In section 2, we introduce the diffusion model. Our analysis
closely follows that in (9). We are led to a system of stochastic
differential equations in the reaction phase space. Under a
second limit, the Einstein-Smoluchowski (ES) approximation, the
structure of the stochastic differential equation is simplified
considerably. We give the forward and backward equations corre-
sponding to both systems of stochastic differential equations.

In section 3, the equations derived in section 2 are non-dimen-

sionalized. A singular perturbation problem arises. In section

3
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4, classical transition state theory is derived. 1In section 5,

we use the ES equations to calculate reaction rates, transmission
coefficients, and lifetimes of the activated complex. In section
6, we show how spectra can be calculated using the diffusion model.
Not all of our results are new; however, we are unifying many

old results and questions with a simple conceptual framework.
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SECTION 2
DIFFUSION MODEL AND EINSTEIN-SMOLUCHOWSKI (ES) APPROXIMATION

In this section, we introduce the diffusion model and derive

the diffusion equations of interest. Our approach follows Il'in

and Khasminski (9). The physical assumptions are clearly delineated

and the introduction of stochastic effects is also obvious. Since
the : is based on dynamics, one could use the projector
operator approach (10). However, when the projection operator is
used, the stochastic assumption is introduced in a hidden fashion,

usually, by assuming that (e.g.,(11))
@areo® B(e)) = (a))BE)

£ € > 1 for some cut off time T o InlZd) Lo is the

- c
Liouville operator, and brackets indicate ensemble averages. For
the very complicated systems of interest here, it is not possible
to use dynamics completely. Namely, it is not yet possible to
derive the stochastic properties from the dynamics alone. Hence,
it is reasonable to introduce the stochastic assumptions at the
beginning. The work of Il'in and Khasminskii (9) is such a model.
Since their paper has gone unnoticed by the physical and chemical
community, we repeat part of their analysis here (equations 2.4 to

2.16) .

(2.1)
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THE DIFFUSION MODEL

Let x denote the generic reaction coordinate of interest
in a molecule of mass m . If no collisions with bath molecules,

of mass U , occur then classical mechanics is obeyed, so that*

X =y (2.2)

mv F(x) = =-W(x) (2.3)
In (2.3), V(x) 1is the potential function. 1In figure 1, we sketch
V(x) for dissociation reactions and for tautomerizations.
Let £(t) be a stochastic process that counts collisions
of the large molecule with the bath molecules and let Fg be

the distribution function of g :

Pr{g(t) < N} = F_(N) (2.4)

Let {Ti} i=1, 2, ... be the jump points of the process E£(t).
We represent the bath molecules by a family of identically distri-
buted random variables {Zk}, k =1, 2, ... with distribution
function

R(y) = Pr{f, <y} (2.5)

*

For the purposes of conceptual simplicity, we will treat x as
a scalar. The results of this paper immediately generalize to
the vector case; by replacing integrals by line integrals.

Si Tl o ,,N‘__,f SR SIS
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Introduce a stochastic process (xu(t), vu(t)), which except at
the points Ty coincides with (2.2, 2.3). We assume that xu(t)
is continuous and vu(t) is continuous at the right at Ty *

with the jump at Ty given by

2u el -

m[zk Vu(’l‘k)] ° (2,6)
Hence, we are assuming elastic collisions. If we consider more
than one space dimension, then (2.6) must be modified by the
introduction of a factor taking into account the spatial distri-

bution of the collisions (4). Define the transition probability

Pu(x, e Xy vl)dxldv1 Pu(x, V-t dxl, dvl)
(2.7)

= Pr{;u(t)((xl,xl + dx,), :ru(t:)e:(vl.vl + dv,) I;u (o) = x, :ru (o) = v}

Now let x(x, v, t), v(x, v, t) be solutions of (2.2, 2.3) with
initial conditions x(o) = x, v(o) = v. Consider a integrable

function £f(x, y) and define
u(x, y, t) - Ex'v(f(xu(t)r vu(t))

= pr{t, > t}Ex’v[f(xu(t),vu(t))lTl > t] (2.8)

t

A dPr{Tl < S}:ZER(z)Ex'v[f(xu,vu)|11=S,Zl=z]




For the special case that £ (t)

is a Poisson process (the case

treated by Il'in and Khasminskii) we obtair

ulx,y,t) = e 2FER(x,v,t),V(x,v,t))

t

“f

0

ae"2%as J[ drR(z) u{x(x,v,S),v(x,v,S) +

In (2.9), a is the parameter of the Poisson process and

v = 2u/(m+u) is the reduced mass. We note that x(x,v,t) and

v(x,v,t) satisfy

F =
yt vyx ﬁyv %
ay dx dv
at at Yx * g Yv

where y =X or y = v. Thus,
differentiable (2.9) becomes:
u Ju Ju

3t = VH+F(X)3_\I-

if f(x,v), F(x) are three times

+ a fu(x,v-l-v(z-y),t)dR(Z); with u(x,y,o0) = f(x,y)

{(2.9)

v(z-v) ,t-8}

(2.10)
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Equation (2.12) was derived by Il'in and Khasminskii. Now
consider the limit a >> 1 (i.e., many collisions per seco.d).

Then we set
n 2
ay = 3 EZ[“Zk] = k.T {2.13)

where n , T have the interpretations of the viscosity of the
medium and the absolute temperature, respectively (where Boltzmann's

constant is kB). We assume that

B.(z) = 0 and 1lim u2f1z|3dR (z) = 0 (2.14)
= U0 Lo

The assumptions in (2.14) are satisfied, for example, by the

Maxwell Boltzmann distribution, for which

2
—— =-uz“/2k_T
Ru(Z) = VF:—H—— e B P (2.15)

I1'in and Khasminskii prove that as p = 0 (2.12) converges to

nTk

2
1 S 2n . Fodn Bdu _n.,du
% Y Takw" mz syl | Vav (2.16)

Equation (2.16) is exact and rigorous (compare with (12)). It

corresponds to a stochastic differential equation

o : ’ or s et . - R R ‘
ot e, e W e i 2,




dX = ¢ dt (2.17)

mdv (F(X) - nV)dt + 2kpTn dw (2.18)

where W(t) is the Wiener process. We call 2.16 - 2.18 the

Ornstein-Uhlenbeck (OU) equations. wWe have obtained them by

introducing two stochastic assumptions: 1) a Poisson process
for the collisions; 2) the Maxwell Boltzmann distribution for
the bath molecules. No other assumptions are needed. . :
We now consider a second limit of (2.16), the Einstein-
Smoluchowski or ES limit. In the limit that m/n+0 (high vis-
cosity) with F/n non-zero, (2,16) becomes an equation for

u(x,t); independent of v: i

ou(x,t) _ B 9 u F(x) du

ot n 2 n 9X iR t33 ;

Equation (2.19) corresponds to the stochastic differential equation

n 2k_T
ax = Fr‘]"’ dat +J ‘f] aw (2.20)

12 =3

For molecules of molecular weight 50, m/n ~ 10 sec (13) and
for polymers m/n ~ 10"13 sec-1 (10). Hence, if the reactions of
12 -1

interest have rates that are much greater than 10~ sec ~, the

10




ES limit will be a good approximation. Physically, this will
often be the case.

Il'in and Khasminskii construct asymptotic solutions of
(2.16) and (2.17) for € = m/n small. Here we shall be interested
in a different type of scaling and will construct different asymp-

totic solutions.

FOKKER-PLANCK AND EXPECTED TIME EQUATIONS

Denote the right hand sides of (2.16, 19) by Lu and

LpgV respectively. These operators have formal adjoints L*

and L*ES' Let p be a function such that

pLu - uL*p = divergence {2.21)
or

PLpcu - uL*ESp = divergence (2.22)

Then p will satisfy, at least weakly, the Fokker-Planck equations:

hk.T
- B ¥ - DX
pt(x.v.t) = -vp, + _mz— Py ‘[({ﬁ m)p] : (2.23)

L*p

in the OU case, and

kT .2
%%(x,t) . . - %; (51512) (2.24)
n 9x n
= L*pgP

In (2.23) a subscript indicates differentiation.

11
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in the ES approximation. Equations (2.23, 24) are the Fokker-
Planck equations and hold if certain boundary conditions are
met (e.g., p -+ 0 as x2 + v2 - o, u-0 as x2 + v2 - ®), No
expansion of the master equation is needed (12,13). Since (2.16,19)
are rigorous, (2.23,24) are also rigorous, provided that the
k boundary conditions are satisfied (14,15,16).
Now considgr the following definitions
Eix,v) = f tu, (x,v,t)dt (2.25)
0
or &
t(x) =ftut(x,t)dt (2.26)
0
Then it is easy to show that
koPn s 27 T T
B 3t vot F(x) = nv) d
~u(x,v,») = + + (———-———*—) e (2.28)
m2 BVQ 9X m oV
or
kT 2 -
-ux,») = B 2%, F(X) 3 (2.29)
i 9X i -
: Equations (2.28,29) were derived by Klein (17) and Weiss (18)
l
E by different means and solved in some particular cases. None
? of the problems solved here were treated by Klein or Weiss (19).
INTERPRETATIONS AND REMARKS
i We have not specified f(x,v) or boundary conditions for
é any of the equations derived in section 2.2. By a judicious
!
&
p

12

e et

e T O PCRP

et BT

e S e




R————

:
!
1
?;

choice of f and boundary conditions, we can solve many problems
by using (2.16-2.25). For example, with reference to figure 1,

u(x,v,t) could be the probability that a particle has X (t) z'g,
conditioned on ;(o) = x, ;(o) = v. Then p(x,v,t) would be the

density for the particle:

p(x,v,t)dxdv = Pr{;(t)e(x,x+dx), ;(t)e(v,v+dv)}

Finally, ¢t(x,v) would be the expected time to reach x(t) 2 x,

conditioned on x(o) = x, v(0o)

v:

A~

x|x (o) = x, v(o) = v}

t(x,v) = E min{t:x(t)

In this case, appropriate boundary conditions are for (2.16):

A
wlx,v,t) = 1, lim u(x,v,t) = 0
X =00
A
u(x,v,0) = 0 unless x = X
for (2.23):
ffp(x,v,t)dxdv =1 limplx,v,t) =0
2 2

X +9 +m=

for (2.28):
- A a‘E
t(x,v) = 0 lim §§(X'V) = O

Hr—-t

Analogous interpretations hold for the ES limit equations, and

will be discussed in later sections.

13
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SECTION 3

NON-DIMENSIONALIZATION - THE SINGULAR PERTURBATION PROBLEM

We will now introduce scaled variables and derive the non-
dimensional versions of the equations in the previous section.
First consider the OU equations (2.16,23,28). Let Q denote an

energy (for example the height of the barrier from Xg to x in

figure 1) and let

e _ Jom S
v o X = > x' t ﬁt
n
/ 2 —
F = .Y_._Q. ! w ::‘/E.lW'
m a?
Then the OU equations become
Kol a2
Ju oF dJu Ju B™ 9°u - gpran
e vl St Ve
kK T 2
[ - SRS o - i e SR | i A
kT 2z, F 9t 9t
ot = al SRy 4 FiC s it < Wiy
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We let ¢ = kBT/Q and drop the primes in (3.2-4). The final

non-dimensional OU equations are

au a u au du _ _du
'a—— = € a—z + Fav + v x VaV (3-5)
v

—82 = €§_2.§ - VQE - 9

ot o 9x = [(F - v)p] (3.6)
O . o€ . 8F 4%

-u(x,v,») = ¢ —p + F—; + vs; - V?V (3.7)
v

Next, consider the ES equations (2.19,24,29). The scalings in

(3.1) lead to

2
u(x,t) A 9 u au
M .. o B iy
ap 4 e 22 - 2 (¥ tx)p) (3.9)
ot 5 ox P 2
X
i ey S (3.10)
u X,OO) i -8-;—2- (X s—x- .

Other choices of scaling are possible.

Equations (3.5-10) are singular perturbation problems. We
assume that

F(x) = -V(x), (3.11)
where V(x) is a non-dimensional potential function. The

physical potential is V(x) * Q .

15
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SECTION 4

CLASSICAL TRANSITION STATE THEORY (CTST)

In this section, we show how TST fits into the above frame-
work. Since our results are derived without recourse to partition
functions, Planck's constant never appears. Hence, we call these
results purely classical transition state theory.

The major assumption is that equilibrium prevails. The

equilibrium solution of (3.6) is
1 v2
pi(x,v) = ¢ exp[-g(—i + V(x))] _ (4.1)

where ¢ 1is chosen so that

/fp(x,v)dxdv = 1 (4.2)

2
Note that H = %— + V(x) 1is the Hamiltonian of the classical

deterministic equations (2.2,3).
Our goal is to calculate the rate at which particles leave the
well around Xq and pass over the barrier at Q, going towards
the right in figure 1. Call this rate j. The reaction rate
constant is then
k = JjK (4.3)
where K is the transmission coefficient, which will be calculated

in later sections.

16
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A
The flux across x is

oo

A
A
J =f vpix,v)dv = ece VI(X)/E (4.4) ]
0 3

To obtain j , we must divide this flux by the number of particles
in the well at xo.No . Since p(x,v) also gives the particle

density, the number No is : :

T2

-=(v7/2 + V(x))
N =f£/ p(x,v)dv = _[fee dxdv (4.5)
° WEfL

WELL

We now replace V(x) by a Taylor expansion
— L %, 2
Vim)' = W )+ 8Y (xo)(x X,) (4.6)

and let the limits in (4.5) tend to > . We obtain

L] b 1 2 ([} - 2
= f f e-E(v /2 i V(XO) i€ %V (xo) (X xo) )
o

N dvdx (4.7)
“Vix_ ) /e “Vix, ) /¢
= \/EHE\/5VK i e & REE e - (4.8)
) o W (x,)

Hence, we aobtain

A 1
\/V"("o) -V(x)/¢€ V(xo)/e ) ]

j=s ——— e e

27 ;
A

In (4.9), we recognize V(x) = V(xo) as the "activation energy"

S W TN

3
4
¥
b
’
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of the reaction.

is:

If we set V(xo)

2m

" (x )

o

A
e-V(x)/e

TR

=

0,

then the reaction rate

(4.10)

It can be verified that the usual TST (8) gives this result, if

the partition functions are evaluated explicitly. Often VV"(xo)/Zn

is identified with the "frequency of vibration" in the well about

X

(o}

18
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SECTION 5

ES EQUATIONS: REACTION RATES, TRANSMISSION COEFFICIENTS,
LIFETIMES OF ACTIVATED COMPLEXES*

In this section, we show how the ES equation (3.8-3.10)
can be used to calculate much of the desired information about

a chemical reaction.

RATE CONSTANT BY MODIFIED XRAMERS METHCD

In this section, we calculate the rate at which particles
pass from the well at X, to the barrier peak Q .  Our method
follows that of Miller (21) and Ludwig(l6); it is more accurate
than Kramers approach. In addition, Kramers derivation is based

on difficult, somewhat obscure physical arguments.

We seek a solution of (3.9) of the form

-2t
pix,t) = Y o (x)e "
n=0
Then each on(x) satisfies
azon 3
-\_0O = g - s=(F(x)o.)
nn axz IxX n

(5.1)

(5.2)

*The results in this section generalize to the multi-dimensional case
immediately if the integrals are replaced by multiple integrals.
This generalization is possible because the ES approximation yields
a gradient deterministic system. Also see (19).




We shall calculate the lowest eigen value, Ao » with boundary

conditions:

£ 9 2
oo(x) = 0 53 (x) = 0

S
o
(o}

The first boundary condition corresponds to absorption of particles

A

at x . The second insures a constant number of particles at

(Kramers assumed this also, in a disguised form.) The rate at

A
which particles reach x from x 1is then

j (x) =fft Py lx,thamdt = A,

if oo(x) is properly normalized (as it must be).

We integrate (5.2) once and use the fact that ox(xo) = 0:
X
o 9
A%!. oo(y)dy - € 3% oo(x) ¥ N0,
o
V(x)/e
Since e is an integrating factor for the right hand side,

(5.5) can be rewritten as:

X S :
V(x)/e |x

ﬂ V(s) /e -
«Ag e J/- o, (y)dyds = o_e %

X o
o o

Now consider the integral I(S) , defined by
S

I(s) = / oo(y)dy

X
o}

20

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)
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In the vicinity of X,r we expand o(y) as

-V(y) /e

2
oo(y) = oo(xo) e [1 + egl(y) +eTgy(y) + ...]

where gk(y) is the kth order correction to the equilibrium

A
distribution. The density in (5.8) does not vanish at x , as
A
’ 5 ¥ ; : 3 i
it must to satisfy o (x) = 0 (it does satisfy z— cb(xo)A— B},
Let 60(y) be a neutralizer: 6 isa ¢ function, 0(x)=0
A
and. @ (yy = L af ¢y is far from X, e.9.,
A
0 1f y=x
B(y) = A
1 if y <€ x =€
A " A
for some n , and is smooth in between x - ¢ and x . Instead
of (5.8), we use
- =V(y)/e
g, (y) = o (x,)e o(y) + O(e)
Then
S
1 = f o, (x )0 (y)e ¥ /Eay + oe)
X
o

If the integral is evaluated by Laplace's method, we obtain

-V(xo)/s 2TE
I(S) ~ o(x,)e % oy t o0(/e).

21

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)




Using the result (5.12) in the integral equation (5.6), we
A
obtain, for x = x

A
X ;
-V(x )/e
_A V(s) /e - TE o =0
E°J£ e ds Go(xo)\/57“7§;T e = oo(xo),
o
A
since co(x) = 0 . Hence,
A N A
2V (x ) Vi(x_)/e i
A = g\/——-—-——o e ° // eV(S)/eds
TE Xq

Using Laplace's method to evaluate the integral in the denominator

yields

PR A A
4 e 2V (Xo) eV(Xo)/ee_v(x)/e\/zlvn (X)|

(o} TE mE

A
A —
I YRR V2

when comparing (5.16) and (4.10), we see that the second "frequency
A

factor" |V"(x)| does not appear in (4.10). Equation (5.16)

is also Kramers result (but derived in a different fashion).

The reaction rate constant is then given by

KA

22

{5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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REACTION RATE CONSTANT BY EXPECTED TIME FORMULATION

In this section, we present an alternative formulation for
the rate constant. It has the advantage that we avcid having to
use the asymptotic analysis which assumed € = kBT/Q is small.
Consequently, the technique of this section works for moderate
or large € (low barriers) as well as small ¢ (high barriers).
Let

A A

Eix) = Elt: X(t) = x ,;(s) <R BT t[§(o) =x,
A

X (t) eventually crosses x}

’

= A
The t(x) 1is the average time that a particle takes to reach x,

starting at x. Then, t(x) will satisfy equation (3.10) with

the left hand side equal to -1:

82

ax

i
@
(ad}

~1 = g + F(x)

NI
)
x

and boundary conditions

A . =
= I Tim- GE
t(x) = 0 Eesader- - i 0

The solution of (5.19) is
A
X S
t(x) = -i—f eV‘S)/Cf e V¥ /Eqyqs
X -10

Following the analysis in section 5.1, we could identify the rate

23

(5.18)

(539

(5.20)

(5.21)




AL s s

at which molecules reach x from xO as

¥ {5.22)
t(x )
where,
A
X S
;:_(xo) = %f eV(S)/ef e-V(y)/edeS (5+23)
X e
To see that (5.22) is equivalent to (5.16), we assume € << 1 and
use Laplace's method twice. We obtain
1 A "' .
i) ~ -E—[\/———T——“E ][ S ]ev(x)/ee—v(xo)/e (5.24)
2 V" (x) | \/2|v (xo)l
so that
% 1 e la=Vix)/fe Vix_ )ie 2 " "
AO = E_(;(? = (= (= o F\/'V (X)]V (Xo) (5.25)

in agreement with (5.16). On the other hand, the result (5.21)
is much more versatile than the eigenfunction calculation.

First, € need not be small, so that (5.21) can be>used to des-
cribe catalysis reactions (an application would be to the system
considered in (6)). Second, we can allow for the experimentally
true fact that when the system is prepared, not all the molecules

are exactly at X, Instead, there is a distribution of molecules,

24
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G(x)dx = Pr{x(o)e(x, x+dx)} (5.26)
Then, instead of 1/E(xo) we should define the rate constant as

T 1/<t(x)>
where

(E(x)) = fE(x)c;(x)dx (5.27)

is the ensemble average of t(x) .

The expected time formalism is much more versatile than
the Kramers-Miller-Ludwig approach. In figures 2 and 3, we
compare the CTST, modified Kramers (eigenvalue) and expected
time formulations for the rate constant. The potential used for

the calculations was

(5.28)

for which Q = = x

As ¢ decreases, the Kramers and expected time formulations
converge, as is expected from the asymptotic analysis. The CTST
provides a reasonable estimate of the rate constant, which is
remarkable in light of the assumptions used to derive CTST.

In figure 3, we compare the threc theoretical forms of the

rate constant with Monte Carlo experiments (500 trials).
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‘THE TRANSMISSION COEFFICIENT

Up to this point, the transmission coefficient « is
unspecified. We now will provide an exact definition of the
transmission coefficient and will show how to calculate it. Let
u(x) be defined as

u(x) = Pr{x(t) crosses x=x, before x=x0];(o)=x]

1

Then u(x) satisfies a stationary version of (3.8):

2
W O Sy du
= € e F(x) N
oX
with boundary conditions
u(xo) = 0 u(xl) = 1

The transmission coefficient 1is defined as

A
K = W)

Namely, ¥ 1is the probability that an activated complex becomes
a product before returning to the reactant state.

The solution of (5.30) is
X

J[ ev(s)/sds
s
uix) = =
2
f oV (s8)/¢€ ds
X

(o}

(5.29)

(5.30)

(5.31)

(5.32)

' (5.33)
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A
The structure of the potential energy surface around x will

completely determine the transmission coefficient. If the potential

A A
is symmetric about x and (V" (x)| is bounded away from zero, then

Laplace's method yields (figure 4a), as expected

Kk ~% + o(e) (5.34)

On the other hand, it is possible that « is close to zero (figure
4b) or much close to 1 (figure 4c), depending upon the shape of

the potential surface (figure 4). However, since detailed know-
ledge of the potential surface around Q is only needed,it should
E be possible to calculate «k for many cases of interest.

The diffusion model thus provides a way to calculate the

transmission coefficient, which was previously (in TST) trecated
as an empirical parameter. In table 1, we compare the theoretical
transmission coefficient with Monte Carlo experiments, for the

potential (5.28).

LIFETIME OF THE ACTIVATED COMPLEX

Many reactions proceed according to a mechanism in which

a true reactant complex is formed, e.qg.,

% ; F 4+ CsH, = C.H.F = C H.F + H {5.38)
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In such a case, the potential energy surface will have a double

minimum structure as shown in figure 5.

A

in the well at x . The lifetime is the time that the complex

remains in the well. We pick two points a,b with
A
b > X, (figure 5). The mean lifetime of the complex will
satisfy
2__ s
= P ot
-1 = ¢ e -2k F(x) 3%
X
Efa)= t(b} = 0
In (5.36), t(x) is the expected time to hit b, given
that X (o) = x.

The solution of (5.36,37) is

t(x) = lu/ﬂ V(S /i/.

V(S)/e

-1
€

,/ eV (8) /e

A definition of the lifetime of the activated complex is then

V(y)/ed as

b
eV(S)/e

The complex is formed




-5
g
B
i

On the other hand, when experiments are performed, activated
complexes are produced according to some distribution H(x).
Thus, a better definition of the lifetime of the activated

complex is

Tac = EH(t(x))
A
X, -
= Ja £ (xydH (x)
X

AN APPLICATION: BIPROTONIC PHOTOTAUTOMERSION

The phenomenon of biprotonic phototautomerism is discussed
in (22). A double potential well is present (figure 6)*,
In this case, x represents the length of the H - N hydrogen
bond (figure 6b) in 7-azaindole or the H - O bond in the formic
acid dimer. The UV and green flouresences in figure 6a
correspond to 7-azaindole.

The well at X5 corresponds to the 7-azaindole dimer, at
X4 to the tautomer. The excitation of the molecule in the ground
state will produce a distribution ¢ (x)dx of molecules in the
first excited state. We assume that when the excited molecule

reaches xo(xl), it flouresces with probability po(pl) or

decays radiationlessly with probability 1 - po(l - pl).

*Another problem involving a double potential well, which can be
treated by these methods is discussed by D. Chandler in J. Chem.
Phys. 68:2959(1978).
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u(x) = pr{molecule reaches x, before x,[starts at x} (5.42)
then u(X) satisfies the backward equation

g + F(x)ux (5.43)

u(xo) = 1 u(Xl) = 0 (5.44)

Assume that the events {reaching xo(xl)} and {flourescing

from xo(xl)} are independent. Also, we assume that all molecules
with x < X (= xl) reach Xo(xl) and flouresce with probability
po(pl).

Let

pou(x)

= 5.45

Then 1I(x) will represent a conditional ratio of UV/green

flourescence intensities. The total flourescence intensity is
X

(o]
A o, J  etoax
J( I(x)d(x)dx + =

Py f ¢ (x)dx
%1

I = (5.46)

X
o

The first term in (5.41) is the contribution to the flourescence
of excited molecules initially in [xo, xlj . The second term is ‘

the contribution from molecules with x > X, or x < Xy o+
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SECTION 6

CALCULATION OF SPECTRA
Very often, we are interested in the shape of the "absorption"
spectrum of a bond, I(w). Let ¢(t) be the correlation function
of X(t):
¢(t) = BEfx(t + 1)x(t)}.
The correlation function and spectrum are related by

I(w) = ./;“i“T ¢ (t)dt

In this section, we show how the spectrum can be approximately
calculated by using the diffusion model. First, consider the
conditional correlation function

¢ 1)z = E{x(t + 1)x(t)[x(t) = x]

If 2(x) is the density for X, then

p(t) = }(¢(T); 2 (x)dx

Consequently, we shall calculate ¢(1)§ . We use equation (3.9)

with initial and boundary conditions

3L
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p(x, 0) = &(x - Xx)
(6.5)
fp(x, Bl w1, o POLEN Oy
X =00
Following Ludwing (16), we seek a solution of (6.5) in the form
plx, &) = e-w(x’t)/€ E Zke:k (6.6)
k=0
with y(x, t) and Zk(x, t) k=0,1, 2, ... to be determined. In
many cases, it is sufficeint to use only the first term, which
will be accurate to order «:
S B W e (6.7)
AT Z is a "normalization" factor. After derivatives are
evaluated and substituted into (3.9), terms are collected according
to powers of € . The leading term is O(Q-w/ﬁ/[) and vanishes if
2
Vg ¥ FX)py + 4, = 0 (6.8)
Ludwig (16) has shown how this equation can be solved by the
method of characteristics. We will not repeat his argument here.
We note that (6.8) corresponds to a "Hamiltonian"
2
H = F(x)p+p (6.9)
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and to "rays" (where p=wx)

d_x. = g—g = - g‘E =
3s F(x) + 2p, 3 = Fx(x)p 3s = il
Along these rays
(54 R
T

The rays cover the phase plane. Hence, by following a sufficient
number of rays from x for a time Tt , it is possible to
construct (see figure 7):

~

pz (x, T)dx = Prix(t)e(x, x + dx)|x(o) = X}

The conditional correlation function is them

¢;(r) = jrpr(x, T)dx

Finally, the correlation function is

p(t) = fl(i)[fxp;((x, T)dx]dSE

and the spectrum is

fe-iw'f fm (i)[fxp; (x, T)dx] dxdrt

i

I(w)
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(6.13)

(6.14)

(6.15)
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APPENDIX A

THE ENERGY METHOD

In this appendix, we briefly describe an alternative
formulation of the problem based on the position-energy phase
space rather than the position-velocity phase space. A special
case of this approach was used by Kramers (1) and Visscher (23).
Our approach follows Stratonovich (24). Consider equations (2.17,

2.18). The total energy of the system is

&)
]

Ao o+ Vi) (A-1)
Hence

dE

Il

mvdv + dex (A=2)

Since F(x) = Wt (A=2) and (2<i7), (2.18) imply that

dx = VE/m(E - v(x)) dt (A=3)
3 4k Tn
dg = Zn\’r—n-(E—V(x)) dt + = (E~V(x)) dw (A-4)

The Fokker-Planck equation corresponding to (A-3, A-4) is

pt(t,x,E) = _ﬁ[J’% (E-v(x))p] - 2n S—%[JE(E-V(X))P]

o 2k _Tn 2
+ —2— Ly [(z-:-v-:x))p]

(A-5)

et s 2 S SRR
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In order to obtain the results in (1) and (23), we assume that the

conditional density p(x|E) is

const \/E - V(%) V(x) < E

p(x|E) =
0 otherwise

Then a simple averaging (as in (23), page 117-119) yields an

equation for the density p(t, E) in E-space only:

; 2k_Tn 2
3 3 Y (B} = B 3 y(E) = i
pt(t, E)l = 2n °F [?TTET p] + = ;Ef [Y'(E) p] (Ar-6)

In equation (A-~6)

TR

Y(E) = Ly = ./ E - V(x) dx

J’“ R(E) J

vE =gz [ ® - veo e a3
R(E)

where R(E) = {x: V(x) < E} . Equation (A-6) is the equation of

diffusion in energy space used in (1) and (23).
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APPENDIX B

MULTIPLE BARRIERS

In the body of the paper, we did not consider the possibility

that more than one energy barrier must be crossed. The results,

however, generalize immediately. For example, we consider the

A
expected time result (5.23), where V(x) now has k maxima xoj
B o e R ) and minima xoj ¢t Y= 1, sss¢ k -« "hen the

asymptotic evaluation of (5.23) is

1 k s s = & V(Q.)/c -V(xo.)/e
BOALE el = X . e e I
] 2N ) 2v" 3
3 [v"( 3 | (xoj)
where Xo T X 5 - The other asymptotic results are also replaced

by expressions involving sums over various contributions.

(B-1)
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Table 1:

CAPTIONS

Typical potentials of interest in this paper: a) a
Lennard~Jones like potential; b) a double~minimum
potential (e.g., hydrogen bonded tautomers).

A comparison of numerical results using CTST, the eigen-
value formulation and the expected time formulation for
the reaction rate constant.

Comparison of CTST, the eigenvalue formulation and
expected time formulations for the reaction rate
constant with Monte Carlo experiments.

Transmission coefficient in the ES formulation. A
steeped barrier, for which x=% + 0(¢); b) a flat
barrier, for which K 1is close to 0; c) an almost
discontinuous barrier, for which «k 1is close to 1.

Potential energy surface for a reaction proceeding by
complex formulation.

Potential energy surface for biprotonic phototautomerism.

A schematic illustration of how the ray method can be
used to numerically construct_correlation functions.
Rays emanate from the point x . The intersection of
the line t = v and the rays determine those points
that can be reached from x in time. The density on
these points is p ;(x, t) and is calculated along
the rays.

A comparison of the theoretical transmission coefficient
with Monte Carlo experiments.
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TABLE 1

A COMPARISON OF THE THEORETICAL TRANSMISSION COEFFICIENT
WITH MONTE CARLO EXPERIMENTS.

Q(in units of kBT)

x k (Theory) K (MC) *

3 1.31 .58 .58

| 13 2.14 .53 <92
23 2.58 ST + 52

*2500 Monte Carlo simulations were performed.
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