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NOTATION

Dimensions*
A Planform aspect ratio = (2b)%/s o
b Half-span of hydrofoil L
c(y) Chord length distribution L
c, Average chord length L
<o Midspan chord length L
CD Total inviscid 1ift-dependent drag
coefficient = D/% pU%s .
CD Unbounded flow induced drag coefficient;
1 corresponds to Dy/% oUZs -
CD Surface induced drag coefficient;
si corresponds to (02+03)/5 pUZS -
CD Surface wave part of wave drag
SW coefficient at large Froude number -
& Total 1ift coefficient = L/% pU’S -
CL Reference 1ift coefficient = 2r_/Uc -
2 oo
C“ Wave drag coefficient,
corresponds to D4/k pUZS -
Cu(d), C"(t) giv?zgizgcand t:agsver;e wave components of .
W'W W(d) W(t)
D Total inviscid 1ift-dependent drag ML/T2
D],(DZ+D3).D4 Components of total 1ift-dependent drag 2
(Wu's designations) ML/T

Half span Froude number = U//gb : =

* L = length, T = time, M = mass

vii




LC

Average chord Froude number = U/»’gca
Depth Froude number = U//gh

Kernel function in integral of ACL
2

Value of FL(u) at u = 0, function of A
only

Acceleration of gravity
Depth of submergence
Wave drag integral

Modulus appearing in complete elliptic
integrals = 1/(1 + >.2)}5

Total 1ift force
Reference 1ift force
Planform area of hydrofoil
Free stream velocity

Coordinate variables (see Fig. 1)

Half-span Froude number squared = U2/gb

Wave drag function; related to CD term

SW

Distribution of circulation strength across

span

Value of r(y) at midspan (y=0); 'strength'

of circulation
Lift correction coefficient ratio =

2
AC, /C
L Lo

viii

Dimensions

ML/ T2
ML/ T2

L/T

Lo/

L/T




Dimensions
ACL Lift correction coefficient =
aL/% oU%s 2
ACL s ACL Froude-independent and dependent terms,
1 2 respectively, of 1ift correction coefficient -
AL Lift correction due to u-component 2
‘ induced velocity ML/T
Ko Free surface wave number = g/U2 L']
A Depth-to-half span ratio = h/b -
9 Biplane factor -
2

¢ Perturbation velocity botentia] L/




ABSTRACT

Hydrofoil drag and 1ift prediction formulas derived by T.Y. Wu
using the 1ifting 1ine approximation are evaluated numerically using a
computer program developed for the purpose. Some results for selected
aspect ratios and foil submergences are displayed in several plots of
general interest and usefulness, for the case of an elliptic planform
hydrofoil supporting an elliptic circulation distribution of fixed
shape, but variable strength.

Some preliminary comparisons between results obtained numerically
and from Wu's asymptotic formulas are discussed. These show that for
certain extreme cases, the wave drag and the Froude-independent part of
the Tift correction are well predicted by asymptotic relations. For
intermediate values of both Froude number and submergence ratio, the
asymptotic relations give poor results for wave drag. At most all
submergences and Froude numbers the existing asymptotic expressions for
the Froude-dependent part of 1ift correction give poor results.

ADMINISTRATIVE INFORMATION
This work was authorized by the Naval Material Command (08T), funded
under the Ships, Subs and Boats Program, Task Area ZF43-421, and
administered by the Ship Performance Department High Performance Vehicies

Program (1507).
INTRODUCTION

Growing interest in very large hydrofoil support systems has
focused attention on a Tow Froude number range of operation (at or near
takeoff speeds) generally regarded previously as being below anything of
practical utility. This has created a renewed interest in the
analytical properties of a hydrofoil moving near the free surface. A

1

*
recent experiment’ specifically intended to produce data for a hydrofoil

operating at low Froude numbers has also pointed out a distinct need for

* A complete list of references is given on page 88
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well-founded analytical predictions of foil-alone performance for use in
direct comparisons with experimental results, for preliminary design
studies, and possibly for refined data analysis of interference effects.

There are available several published 1ifting line theories for

submerged hydrofoils, and though there may be differences as to the form
of the final expressions or in the degree of completeness of the
calculated results, these theories all share common fundamental
assumptions and therefore must ultimately be versions of the same

theory. A recent comprehensive summary of published work on the

linearized theory of hydrofoils has been presented by T. N'Ish'iyama,2

whose own extensive work with the hydrofoil 1ifting line theory appears
prominently in the discussion offered in Reference 2. Unfortunately
there are only 1imited examples of hydrofoil aspect ratios and depths of
submergence carried out in Nishiyama's papers, and his computer programs
are not available. Therefore it was decided to start to build up a
computational capability for predicting hydrofoil performance based on
the 1ifting line theory by T.Y. Wu developed in 1953,3a and published in
1954.3b Hallmarks of this work are the careful formulation and solution

of the problem within the framework of the linearized free surface

potential theory, and the extensive asymptotic analyses that show the
effects of Froude number and sumbergence depth on drag, 1ift, and 1

induced velocities. As far as is known, there has never been a systematic

attempt made to exploit numerically Wu's derived formulas for the
purpose of presenting general information useful for preliminary design
or comparison with experiments. It may be noted that in an independent

effort, J. Breslin and his associates obtained formulas similar to those




of Wu. Also, Brean4 organized what look 1ike part of Wu's asymptotic
results for wave drag into an approximate scheme for estimating
hydrofoil performance at large Froude number. This scheme has been
unverified, however, both as to its accuracy and regions of its
application.

The present work has been directed mainly toward the development of
numerical procedures and a computer program for evaluating Wu's results
for the prediction of hydrofoil total 1lift-dependent-drag and 1ift

correction.

SUMMARY OF RESULTS FROM LIFTING LINE SOLUTION

The complete potential flow solution for a submerged flat hydrofoil
of span 2b, submergence h, zero thickness, and arbitrary planform shape
of aspect ratio A = (Zb)z/s moving with steady velocity U beneath the
free surface of an otherwise undisturbed fluid has been presented by
Hu.3 Formulas have been given for the solution of the perturbation
velocity potential ¢(x, y, z) which satisfies the Laplace equation
throughout the fluid region and the linearized free surface boundary
conditions on the plane z = 0. Details should be sought in the original
reference. Figure 1 shows the geometry and coordinate system for the
hydrofoil 1ifting 1ine problem.

In accordance with the classical 1ifting 1ine approach, the
spanwise-varying bound vortex distribution r(y) has a strength at each

y-value that represents the chordwise-integrated effect of bound

3
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vorticity concentrated at the quarter-chord line---a reasonable
approximation for 'large' aspect ratios. In practice, this means for
aspect ratios larger than about four.

If we suppose that the circulation distribution r(y) is known,
either by specification or as part of the solution, Wu's expressions are
summarized here for the hydrofoil 1ift-dependent drag and total 1ift,
given in terms of r(y) and the induced velocity field at the location of
the lifting line.

GENERAL
Drag Due-to-Lift

The total drag due-to-1ift has been obtained from the expression

0 =0 [ 1) (3] o s

z=-h

0f course the perturbation velocity potential ¢ is itself proportional
to the circulation strength, and has been determined by Wu as the sum of

four parts, with corresponding drag components. Thus

D= D.l + D2 * 03 + D4 (2)




w:\m_ TR

where

o = fof [P+ g]u ©)
o
(Dy*D5) = - %'pj g om [fz(u) + 92(u)] udu (4)
0
/2 2
D4 =7 pxozj e-ZhKosec 0 [fz(xosecze sin 6)
: (5)
+ gz(xosecze sin e)] secse de

with

ﬁﬂ-}]rh)msmdn

9() = 2 [ r(n) sin un dn (6)

Ky = g/U2

Viscous drag 1s not included in this potential flow result. The
functions f(u) and g(n) are the Fourier coefficients of the circulation

distribution.

Total Lift
For the hydrofoil, the x-component of total velocity is modified

from the free stream U by the presence of the free surface, so that

5
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total 1ift is given by

L=op J r(y) [U + [%f} s ] dy (7)
or L=Ll,+al (8)
where @
L. = .ol J r(y) dy (%)
AL = pJ ry) [g—x ¢(o,y.-h)) dy
iR /2
AL =

-%¢>J T Y J [fz(u sin 8) + gz(u sin 9)]
o, o
u o+ ko Sec 8\
il Lo
u + Ko sec 6

with f(u) and g(u) given by Equations (6). It may be noted at this

(10)

stage that in all of Nishiyama's work with the hydrofoil lifting Tine
approach, the 1ift correction term AL has been neglected as being of a
higher order and therefore not properly included in the results of a
linearized theory (see, for example, Reference 2, Equation (195)).
There is certainly no question that the numerical computation of AL is
tedious and time consuming. However, it is not at all obvious that AL
is of negligible size from the integral results in their primitive

state. Rather, it is fair to state that AL is of the same order of

T Y EPTTT

magnitude as the 1ift-dependent drag, and that it is one order smaller

in magnitude than Lo.
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ELLIPTICAL CIRCULATION

Because of the inherent simplifications, it is interesting to
consider in detail the case of specified elliptical circulation

distribution

r(y) = (11)
0 - ly|] > b

This is clearly a meaningful choice because the elliptic distribution is
the correct linearized solution for an elliptic planform wing in an

unbounded stream (no free surface present).

EXAMPLE PLANFORM GEOMETRY

The planform geometry chosen here is an ellipse, simply to remain
consistent with the choice of the elliptical circulation distribution.
As indicated in Figure 2, the elliptic planform, with chord distribution

c(y) = ¢, A=y 10 (12)
may be characterized by:

averaged chord ¢, -'f <, (13)

planform area S= % cob = Zbcll (14)




2
aspect ratio A= {2b)" .8 _2b (15)

S LC Ca

The depth-to-chord ratio and depth-to~half span ratio are, respectively,

b, 2_a =1 (2_0) (16)
o8l 220 h
B ?E;l = () E; (17)

Then drag and 1ift coefficient are formed in the usual way, based on

planform area

D L
Ch = and G * (18)
D yotls L het®s

Physically, the results of the present calculations pertain to a
special situation where both the form and strength of the circulation
distribution are maintained somehow on the specified planform shape;
without regard to the angle of attack and changes in the effective angle
due to vertical induced velocity. It should be emphasized that for a

near-surface hydrofoil of any prescribed geometry, the actual

circulation distribution r(y) will be fixed in neither shape nor in
strength, and in general must be determined as a function of Froude
number and depth of submergence. Numerical calculations of the complete
free surface hydrofoil problem are deferred to a later reporting of

results.
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The present calculations are very useful in showing the detailed
Froude-dependent behavior and exact relative magnitudes of the various
components of both CD/CL2 and ACL/CL2 for the simplified version of the

0

(]
problem.

FROUDE NUMBERS
It is convenient to have several Froude numbers available when
discussing hydrofoil performance. The reference length can be either a

hydrofoil size parameter or the submergence depth.

chord Froude number Fc = U//gca
depth Froude number R u/v/gh = /ca7ﬁ F

5 (19)

half-span Froude number Fy u/v/ab = V27K Fe

8 = U%/gb = F,2

Any one Froude number alone will not suffice to characterize the free
surface flow geometry of a hydrofoil. There must be a nondimensional
speed parameter (Froude number) accompanied by a relative depth of

submergence parameter.

FORMULA SUMMARY
Drag Due-to-Lift

The total inviscid drag due-to-1ift, in coefficient form, is
hereafter written in components that can be identified in terms of CD].




e . f (obtained from Wu's D

D, D3 D4 1°
more suggestive of their physical significance

, and C Dz. etc.), but with a notation

Mue. TS (20)

=C, +(C., + CD ) + CD (Wu's notation)
3

D D, 4

where for the elliptic circulation distribution

cL2
CD = 70 (21)
: jo WA
O
2
€ ma=t( (22)
Dsi A Lo
R T
L0 -2Fh sec @ 21 g
Cw=—“—A— e J] (Esecesm 9)
0 (23)
x S€c 8 4o
sin“e

where J.I is the Bessel function of the first kind, of order one. The

reference 1ift coefficient CL is proportional to the circulation

0
strength Ty
’ 2 To (24)
o 3 24
Ly Ucy

10 i
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can be identified as the Prandtl

The image induced drag factor o

i
'biplane factor' discussed, for example, by von Karmdn and Burgers,5 PP.
217-219, in connection with the combined drag of biplane arrangements.
Hu3 has obtained a compact formula for the biplane factor, expressed

purely as a function of A

o (a) =1 - -f; x A [K(kk) : E(k)‘)] (25)

where A = depth-to-half span ratio = h/b
ky = 171 +2%)*

and K(k) and E(k) are, respectively, the complete elliptic integrals of
the first and second kind.

The term C is the familiar unbounded flow induced drag

D
joo
coefficient for an elliptic planform wing with total 1ift coefficient

€ The negative quantity CD represents part of the surface induced

L
dr:g, independent of Froude nu;;er. We note that C051 depends only on
the depth-to-half span ratio A, as contained in the biplane factor oi(x)
described above. The 'wave drag' coefficient, Cw, is the
Froude-dependent drag contribution, denoted as such to conform with past
notations (e.g. Bres11n4). However, Cu embodies more than the usual
wavemaking drag coefficient that one would obtain, say, for a submerged
non-11fting body. While Cw has the expected zero-value lower limit
(Froude number -+ 0), it approaches a non-zero upper 1imit (as Froude
number + «). This upper limit value combines directly with the C

D
si
term; and in the infinite Froude number 1imit, changes the sign of the

n

T
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resulting surface induced drag contribution. Specifically, the wave
drag coefficient can be written for the large Froude number regime as
_ 201

2
P (26)
W l'O Dsw

where the new term, chw’ is the 'surface wave' part of CN that has a
zero limit as Froude number grows infinitely large. This form is
inappropriate for use at small Froude numbers.

The two 1imiting values with respect to Froude number of the total
drag coefficient due-to-lift are simple modifications to the induced

drag, and involve only the biplane factor

c 2

L
in =<2 (1= oy00)] (lower 1imit)  (27)
Fc-> 0

[l + oi(l)] (upper limit) (28)

Total Lift
The total 1ift coefficient for a hydrofoil having an elliptic
circulation distribution of strength ro is given by




" (30)

aC, = ACL] +ac, (31)

The two parts of the 1ift correction coefficient, ACL, can be written

directly from Wu's™ results as

T T R

J L—————l——%}—ﬂ ¢(k,)dk (32)
0

L /2 3
8cL du I e-2th Zsecze

(33)

where C(k]) is a derived complete elliptic integral that can be written

(see Reference 6, p. 321) in terms of the complete elliptic integrals
K(k]) and E(k1) as follows

C(ky) = ;ft [(Z-klz) K(ky) - ZE(k])}

with
k, = 1/(1 + 22"

13




It is clear that the reference 1ift coefficient CL is the first order

(0
1ift quantity, and that ACL is a second order quantity proportional to

2

Lo

C,” and therefore roughly of the same magnitude as CD.

EXAMPLE NUMERICAL RESULTS

In this section the results of some numerical calculations for
hydrofoil drag and 1ift correction are presented for representative
values of planform aspect ratio, depth of submergence, and a range of
Froude numbers. Table 1 indicates the matrix of cases considered. To
produce these results, numerical evaluations of the integrals appearing
in the wave drag coefficient and 1ift correction coefficient expressions
have been carried out with a digital computer program consisting of
several subroutines guided by a main program entitled SUBMFL. A
complete listing of this computer program is given in Appendix A. No
approximate or asymptotic formulas or series solutions are used; only
numerical quadrature has been employed. However, rather extensive
intermediate and check-out tests of most of Wu's asymptotic results have
been performed in the course of debugging the individual subroutines.

Certain details of the manipulations of integration variables and

general outlines of the numerical integration procedures are covered in

the appendices.
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DRAG DUE-TO-LIFT
Biplane Factor

The magnitude of image induced drag effect (see Equations (27) and
(28)) is contained in the biplane factor ai(A), given by Equation (25).
Owing to the ease of computation of K(k) and E(k), an approximate
formula for o is not needed. Appendix B presents brief remarks on the
calculation of oy and a table of its values. Figure 3 is a plot of ci(x)

covering a practical range of A-values.

Wave Drag
A convenient form for the expression for wave drag coefficient

ratio, starting with Equation (23) is shown in Appendix C to be

-2
Gy e‘Fh
Py e P (35)
CL nF
o Cc

where the wave drag integral is

A I“ exp(-rh‘2 A+a82tl) [1 + A+aplt? ]2
! |

£2

3,%(t)at  (36)

0 +48°t

Numerical results for the wave drag coefficient ratio versus the chord
Froude number FC are plotted in Figure 4 for an aspect ratio A = 4
hydrofoil, with contours of eight depth-to-chord ratios. Some of the
same results are replotted versus depth Froude number Fh in Figure 5 to

show that the peaks in the wave drag ratio CH/CLZ apparently line up at
(]




a Froude number of Fh = 1.4, regardless of the depth of submergence.
From Figure 4, it is seen that in the chord Froude number plot, the
peaks shift to higher Fc-values as the submergence depth increases.
Figure 6 displays wave drag results for aspect ratio A = 6 at four
depth-to-chord ratios.

In all three Figures 4, 5, and 6, the upper limit values of wave

drag ratio (see Equation (26))

CN 20_i
lim — = (37)
F > C A
C Lo

are indicated by horizontal Tines along the right hand borders of the
graphs. Evidently the CH/CLi curves approach the Timiting values more
quickly for the deep submergence cases than for the shallow submergence
cases.

For a constant depth-to-chord ratio h/ca = 1.0, Figure 7 is a graph
of CN/CL: versus Fc for three different aspect ratios A = 4, 6, and lp.
This shows that the wave drag peaks become relatively higher for
hydrofoils with larger aspect ratios. Although at first glance this may
seem contrary to one's intuition, the result is true only for the
wavemaking part of the drag due-to-1ift at a low Froude number, and can
be understood by a separate study of the relative magnitudes of the drag

components associated with the transverse and diverging wave systems.




Transverse and Diverging Wave Contributions

The free surface wave pattern produced by a submerged disturbance
is the superposition of two families of waves, the transverse and
diverging systems. It is interesting to decompose the total wave drag
into corresponding wave system components as was accomplished by Wigley
(see Lunde7) using the thin ship theory for wave resistance for surface
ships, and by Brean4 for hydrofoil wave drag. In the 6-integral
representation of wave drag in Equation (23), the transverse wave system
is the integrated effect of the wave-direction-interval 0 < 6 < 6., and

the diverging wave system comes from 6 < 6 < n/2. The critical angle

c

dividing the two intervals is

o = sin”! (v173)

(o

In the t-integral representation of wave drag, given in Equation (36),

the critical t-value corresponding to ec is Froude dependent

2

t = - sec ecsin O¢

X
c B
Computations of the transverse wave drag contribution Cw(t) and
diverging wave part Cw(d) correspond, then, to the intervals 0 < t < t
and t, <t < =, respectively.
Some example results for the wave drag decomposition are shown in
Figures 8 and 9 for an aspect ratio 4 hydrofoil at submergence
h/ca = 0.25 and 1.0, respectively. For comparison, values of the wave

drag coefficient ratio of a two-dimensional submerged hydrofoﬂ8
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are also plotted versus the chord Froude number in Figures 8 and 9. The
Cw and Cz denote the wave drag and 1ift coefficients per unit span,
respectively. At low Froude numbers, the transverse wave component
Cw(t) dominates the total wave drag, reaches a peak value, then drops
off rapidly as the diverging wave component slowly builds up. In Figure
8, there is a striking correspondence between the two-dimensional wave
drag ratio and the total finite span wave drag ratio, Cw/CLz, at the
chord Froude numbers below Fc = 1.2. There is a great temptation to
suppose that this good correspondence could be used to generate an
approximate prediction method for total hydrofoil 1ift-dependent drag
based on the sum of the two-dimensional hydrofoil wave drag expression
plus terms accounting for induced and biplane induced drag. In fact,
this appears to be just what has been suggested in the well known drag
estimation procedure introduced by Wadlin, Shuford, and McGehee.9
However, the comparison in Figure 9, also for A = 4, but with
h/ca = 1.0, shows that any good correspondence observed earlier is
fortuitous. Significant differences exist, particularly near the peak
of wave drag, or in other words in the low Froude number regime. The
wave drag decomposition curves in Figures 10 and 11, for h/ca = 0.75 and
1.0 respectively, show similar trends in the comparison between the
two-dimensional wave drag ratio and the finite span values of Cw/CLE,

but for aspect ratio A = 6. Apparently the good correspondence noted in
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Figure 8 improves with decreasing A-values. Figure 12 is the wave drag

decomposition for a aspect ratio 10 hydrofoil at submergence h/ca = 1.0.

Total Drag Due-to- Lift

Summary curves of total inviscid drag ratio due-to-1ift (from
Equation (20)) plotted versus chord Froude number are given in Figure 13
for aspect ratio A = 4, and in Figure 14 for aspect ratio A = 6. The
low and high Froude number limits given by Equations (27) and (28) are
indicated by horizontal lines at the left and right borders of the
graphs, respectively.

Figure 15 is a plot of CD/CLz versus Fc, comparing curves for
aspect ratio 4, 6, and 10 hydrofoils at the same submergence h/ca = 1.0.
The horizontal broken 1ines indicate the magnitudes of the unbounded

/CL2 = 1/vA. This figure is also a

D
io "0
representation of the relative magnitudes of the inviscid drag

flow induced drag ratio C

components, for this typical value of hydrofoil submergence. Now it is
seen that the total drag due-to-lift increases for decreasing aspect
ratio hydrofoils, but that the relative contribution of wavemaking drag
increases with increasing ratio cases at low Froude numbers. As we have
seen previously, this is caused by the large transverse wavemaking
contribution that approaches the two-dimensional 1imit as the aspect
ratio increases, but the effect is localized with respect to Froude

number in the speed range Fh < 1.4,

20




TOTAL LIFT

As indicated in Equations (31)-(33), there are two parts to the
1ift correction ratio ACL/CLE‘ The form for the ACL]/CLz term, given in
Equation (32), is directly suitable for numerical evaluvation by
Simpson's Rule.

A convenient form for the second term, AC /CLZ, starting with
o

L
2
Equation (33) is shown in Appendix D to be
aC - MRS
o 3 3 gt (u) du (39)
2 e
cLo AR, ) (1)t
where 3/2
% exp(-zlt]2+u2/4F I){u/ZF % /t 2+u2/4F I
F,(u) =J h i h
2

t
2 1
o B

The kernel function FL(u) resembles the wave resistance integral J, and
has been computed numerically in the same manner. The u-integral in
Equation (39) must be evaluated in terms of its principal value, and
some details of its numerical treatment are outlined in Appendix D.
L /CL2 is

2 "o
very time consuming, much more so than the numerical computation of

either the CN/CLZ or ACL1/CL2 terms.
0 0

Completely numerical evaluation of the double integral for AC

Sample numerical results for the total 1ift correction ratio ACL/CL

versus depth Froude number Fh are plotted in Figure 16 for an aspect

ratio 4 hydrofoil, with contours of depth-to-chord ratio. Similar

2
o
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results for aspect ratio 6 are plotted in Figure 17 versus chord Froude
number Fc‘ At a constant depth-to-chord ratio h/ca = 1.0, Figure 18
shows the variation of ACL/CLi versus Fc for aspect ratios A = 4, 6, and
10. There is a distinctive effect of the free surface that causes a
sharply peaked, positive 1ift correction at depth Froude numbers smaller

than F_ = 1.5 and a broad, persistent, negative 1ift correction at

h
Froude numbers larger than 1.5. The cross-over point appears to occur
at Fh =« 1.5 regardless of depth of submergence or aspect ratio.
Apparently the influence of aspect ratio on the magnitude of ACL/CL: is
relatively slight, but Figure 18 shows that the peak values of lift
correction (both positive and negative) increase somewhat with aspect
ratio. It should be reiterated that this Froude-dependent behavior of
ACL/CL2 has been computed with the assumption of fixed circulation
distribution shape, and that the full Froude-dependent effects on both
the strength and distribution of r(y) have not been taken into account

in these preliminary calculations.

TOTAL LIFT AND DRAG RATIOS
It is interesting to consider the ratio of total Tift CL to the

reference 1ift coefficient C, and how this affects the expected ratio

L
()
of total 1ift-dependent drag to total 1ift squared. If the 1lift

correction ratio is denoted as
+ AC

e e s (41)
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then

C

=148, C (42)
Lo 0

and so

c
D D ]

Ly = 5 (43)

S S (0 + 8¢ CLO)

This shows that the absolute magnitude of the reference 1ift coefficient
9

0
2
will alter both CL/CLo and CD/CL s
If the reference 1ift coefficient is held fixed at CL = 1.0
0

throughout the speed range, then curves of the variation of CL/CL

is important in determining to what extent the free surface effect

versus depth Froude number Fh are shown in Figures 19 and 20, for aspect

ratio A = 4 and 6 respectively, with contours of two different

submergence ratios h/ca = 0.25 and 1.0. Some care must be exercised in
interpreting these CL/CLO curves with respect to determining the
influence of the free surface on the 1ift produced by a submerged
hydrofoil. Because the circulation distribution shape has been assumed
to remain elliptical, the only adjustment accommodated by the present
computations is the circulation strength Ty» OF equivalently, the
reference coefficient cL . It should be noted that CL is not the same

0 0
as the unbounded flow 1ift coefficient denoted as CL by Nishiyama.2

Effectively, the only free surface influence accounted for here in

the calculation of the 1ift correction, ACL. enters through the induced

changes in the x-component of the perturbation velocity multiplied by

> S B SRS A VT A




the circulation distribution and integrated over the span. See Equation
10. This results in the rather modest variations in the ratio CL/CLO
versus Froude number shown in Figures 19 and 20. It is reasonable to
predict that when a full accounting is made for adjustments of botﬁ the
strength and shape of the circulation distribution, the variations will
be different and possibly more extreme. An important improvement
anticipated with complete solution is a detailed description of the
induced changes due to both the horizontal and vertical perturbation
velocities.

Curves of CD/CL2 versus chord Froude number for an aspect ratio 6
hydrofoil at submergence h/ca = 0.25 are plotted in Figure 21 for

several different constant values of C, = 0.25, 0.5, and 1.0. For

L
comparison, the reference total drag ragio, CD/CL:, is included. The
effect of varying the magnitude of CLO is to separate the several
contours of CD/CL:’ and to shift the peaks of the curves to somewhat
higher Froude numbers.

A more realistic display of these results is shown in Figure 22,
where a curve of CD/CL2 versus Fc is plotted for a reference 1ift

coefficient CL that is based on a constant reference foil loading equal

(]

to (L/S), = % » U%C, = 1200 pounds/foot? (57,456 N/n%) on an aspect
(]

ratic 4 hydrofoil having an average chord length of C, = 20 feet (6.1

m), operating at subrergence h/ca = 1.0. In this case the reference CL
)
is speed-dependent

¢, =137 (44)

Lo U
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The curve is terminated for this example at a speed corresponding to

CL = 2.0. In the comparison with the CD/CL2 curve in Figure 22, the
(0 ()
main effect is to shift the peak of CD/CL2 with respect to Froude

number. The changes in magnitude between CD/CL2 and CD/CL2 become
0

rather small for the higher Froude numbers because cL becomes
(]

progressively smaller with speed increasing.

COMPUTATION TIME

The execution time for computation of a single case (given aspect
ratio, submergence, and Froude number) varies widely as a function of
both submergence ratio X and Froude number, with the longest times being
required for shallow submergence and small Froude numbers. Also, the
execution time is dominated by the calculation of the ACL2 term.
Consider a representative case. With x around 0.4 (h/ca ~1.0), chord
Froude number about 0.5, using 100 spaces per loop for the calculation
of JH and for ACL], using 60 spaces per loop for FL and for the
non-singular integrals of ACL , and with 61 spaces per half interval for

the singular part of AC, the total Central Processor (CP) execution

L
2
time is around 55 seconds per case on the DTNSRDC CDC 6400 computer. Of

this, approximately 0.5 to 0.75 seconds of CP time is devoted to each of

the calculations of the wave drag Cw and 1ift correction term AC The

L.
1
remainder, some 52 seconds, must be spent on the 1ift correction term

AC

L2'




COMPARISONS OF ASYMPTOTIC RESULTS

In consideration of how useful asymptotic results can be if they
are accurate enough, some preliminary comparisons are included here
between asymptotic estimates obtained in Reference 3 and the numerically
determined values. This section is not intended as an exhaustive
comparative study, but it does illustrate one important application of
the present results.

It 1s crucial to consider asymptotic results only in the variable
regimes where they are valid. In the case of the near surface
hydrofoil, estimates produced by Nu3 for large Froude number (Fh2 >> 1)
require simultaneously small submergence (A » 0). Similarly, formulas
for small Froude number (th >> 1) must be accompanied by large
submergence (A +» «»). The present numerical tests of Wu's results were

made on the following basis

Large Fh’ small a: th > 1.5,

X e (45)
small F,, large 1: AP LD

x> (46)
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DRAG DUE-TO-LIFT
Large Froude Number, Small Submergence

The asymptotic relation for wave drag at large Froude number
obtained by Wu in Reference 3 (Equation (68)) can be written in

coefficient form as

c 20 3/2

T SR R T OO 3

ke wF 2 (30957 e - 3 (47)
0

- 22 ¢‘+A2 F(~% ,-%; 13 kxz)} + 0(%-1n8.§§u i‘z)]
h

where F is the hypergeometric function, whose expansion for small A was

determined in Reference 3a, Appendix E, p. 70 to be

/i 2 2
F(-%,-g; 1 k)~ %-(z-ln 5_xi£_.) ‘ g_z(% 1 4¢i+x )

™

(48)

(kz +02
x ;:;7) (A%1ma)

with k, =1/(1 + 2%)%,
Now, this result can be used to write an asymptotic formula for the
'surface wave' drag term, CD » introduced in Equation (26). Following

SW
a suggestion and notation similar to that of Brean.4 the Targe Froude

number, small submergence approximation for the surface wave drag is

chw 2 Ty(})
EP Y )
L c
0
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where the wave drag function \(" is purely a function of the
depth-to-half span ratio, and from (47) and (48), is given in its
complete asymptotic form by

3/2
v, (2) - %; [% (1422) E(k,) - g-x- 22 An? { %

(50)
2
4 1+ 3 41 4/1+) A
x(2- A0 31, 4 )(W”]
provided A »> 0.
Bres'Hn4 proposed an abbreviated form of this function
5 3/2
Yw,Bres %F [ %'(]+Az) E(k,) - %’A] (51)

Example comparisons between the asymptotic results for'yw and
numerical values are shown in Figures 23 through 26, for an aspect ratio
6 hydrofoil at depth-to-chord ratios h/ca = 0.25, 0.5, 1.0, and 2.0 with
corresponding depth-to-half span ratios of A = 0.0833, 0.1667, 0.3333,
and 0.6667 respectively. For the smallest submergence of A = 0.08333,
in Figure 23, good correspondence between the asymptotic and numerical
results for (" is observed, but not until the Froude number exceeds
Fh *~ 9 or 10. The difference between the two expressions for 2 in this
case {s negligible.
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For larger and larger values of A, the agreement between asymptotic
and numerical values for the wave drag function Yy becomes poorer. Also
the disparity between the values of W calculated using the complete

asymptotic expression in Equation (50) and Breslin's version in Equation

(51) becomes greater as A increases, although significant differences
occur only for A-values where the asymptotic formula no longer appears

to be valid anyway.

Small Froude Number, Large Submergence
For very small values of depth Froude number, and large submergence
ratio A, the asymptotic relation for wave drag from Reference 3,

(Equation (66)) can be expressed as

¢ iy 1 4 4
W_._e [1+§(1- ) £.%4 ofF )] (52)
EL_Z /o AEAF? 8 sszhz h h
: 0

for th +0, X » o,

Figure 27 is an example comparison between results from the
asymptotic estimate and numerical calculations, for an aspect ratio 4
hydrofoil at submergence h/ca = 3.5, A = 1.75. The curve for the 4
asymptotic result is plotted out to th = 1.5, and the agreement shown |

is excellent.

LIFT

The two parts of the 1ift correction ratio have somewhat different

asymptotic behavior. The termm ACL /CL2 is independent of Froude number,
()

1
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and has approximating formulas that depend only on the relative size of
the depth-to-half span ratio A. The term ACL /CL2 requires careful

2 "o
attention to both Froude number and submergence ratio simultaneously, as

prescribed earlier for wave drag in Equations (45) and (46).

Large Froude Number, Small Submergence

The asymptotic relation for the AC /CL2 term, given in Equation
()

L
1
(78a) of Reference 3, requires small values of submergence ratio, and

can be written

(53)
Aty AiE
L 8 l 2 3,5 +) 4
. 1- 322 - 345 1n )] + o\ %m)
CLZ' A ] X
0
provided A -+ 0. 2
For the ACL /CL term, the asymptotic expression from Equation (80)
2 0
3

of Wu~ can be written as
AC

L
b Ero[ - e ]
T W.E
L0 +2 (54)
2 [1 +/§{.; te't I ;32)]
h
for F,2 > = and A + 0,
where I' = the gamma function (c.f. Reference 10, p. 255)
vy = Euler's constant = 0.5772156649.
Example direct comparison of values for both A CL /CL2 and ACL /€ 2,
j T .0

obtained both numerically and from the asymptotic expressions are

plotted in Figures 28, 29 and 30 for the cases of an aspect ratio 6
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hydrofoil at submergences h/ca = 0.25, 1.0, and 2.0, having
corresponding values of A = 0.08333, 0.333, 0.667 respectively. The

agreement between the two curves for the ACL /CL2 part is excellent,

0
even at the larger values of A. However, the discrepencies between the
asymptotic estimates and the numerical values for ACL /CL2 are

‘ 2 "o

substantial, even at the largest Froude numbers and smallest submergence
ratio. Some preliminary checks on the series solution of the inner

integral outlined by wu3

2 in his Appendix IV(H) have shown some
inconsistencies which may explain the differences.
The present calculations are undoubtedly more accurate, but at the

2
/¢,

expense of time-consuming computations, particularly for the ACL
2 "o

term.

Small Froude Number, Large Submergence

For large submergence ratio A, the approximate expression for the

ACLIICL2 term, given by WuS in his Equation (76), can be expressed as
0
ACL
| S -1 [] + 0.3125 + 0.70703
2 2 2,2
L, 8m/in®a (x5 (117)

(55)

0.0920105 1
+ +0 )]
(1+A2)3 (1+X2)4
provided A » =,
For the AC /CL2 term, the asymptotic relation from Equation (81)

Ly
3 (s
of Wu~ can be written

3]

Wi i
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AC

L
A —. [1+‘F2+o(r4)] (56)
(o]

for th << 1, A + o,

Figure 31 is a comparison plot for both ACL /CL2 and ACL /CL2
1 "o 2 o

versus Froude number for an aspect ratio 4 hydrofoil at submergence
2

ratio A = 1.75. Here again, the approximate formula for ACL1/CL°
appears to be remarkably accurate. The same cannot be said for the
ACLZ/CLi term, where the asymptotic result shows a distinct divergence
from the numerically obtained curve. There is good reason to suspect
the validity of the asymptotic formula, which is the result of nested
asymptotic evaluations of the double integral expression for ACLZ.
Although the example data are not provided here, a substantial number of
numerical checks have been carried out on the inner integral, or the
FL(u) function defined in Equation (40). These showed that the
intermediate asymptotic formula obtained by Hu3a* gives inaccurate

results, except for a limited range of large values for both u/Fh2

EXAMPLE DRAG FORCE ESTIMATES

In order to illustrate the relative importance of the major
components of total drag experienced by large submerged hydrofoils
moving at speeds between takeoff and subcavitating maximum, results of

some simple estimates can be made using the computed predictions

* Asymptotic result for Wu's integral Iz(u); his Equation (IV.34)
in his Appendix IV
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generated in this work. Two groups of comparison examples are included:
(a) constant chord length (same chord Froude number range) and (b)
constant total foil 11ft; both with the same foil loading

L/S = 1200 pounds/foot? = 57,456 N/m
and at submergence h/ca = 1.0.

Consider first a family of three, uncambered, 10 percent thick,

elliptic planform hydrofoils all having the same chord length

c, = 20 feet (6.1 m)
with aspect ratios A = 4, 6, and 10. The total foil-alone drag can be

estimated from

DT i Dvisc i
2
=%pU S(CD + CD) (57)
visc
2
where c a2+ 7} C ¢ K L
Dvisc f b 4
Ca® € b > * ¢ (58)
D Dim Dsi W
Here the total viscous drag contribution is estimated using
Cf = flat plate friction, 1957 ITTC correlation line,
based on wetted surface 3
f = viscous pressure drag factor from Hoerner;10 ;
|
f = 0.206 for 10 percent thick foils
33 5
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Ksep = incremental profile drag factor recommended in
Reference 11, Appendix 8-B; assumed constant here as
= < 108
Ksep 0.005, approximately true for R = 10",
The term C, is the total drag coefficient due-to-1ift, given by

Equations (20)-(23).
The 1ift coefficient in sea water is speed dependent

_ 1206
2

using U in feet/second. With the calculated, Froude-dependent values of

Ac defined by Equation (41), or
b P
¢ pkmey g
Lo

the reference lift coefficient CL can be determined from

(o}
R
L, " T AT - (5

The Froude-dependent C -va]ues together with the drag coefficient
ratios, CD/CL , of Figures 13, 14, and 15 penmit the final estimates of

drag due-to-lift C Again it should be recalled that these 1ifting

D
line predictions apply to the drag induced by an elliptical circulation
distribution of fixed shape, but variable strength.

Figures 32, 33, and 34 are plots of drag force versus velocity for
the speed range 20 to 50 knots, corresponding to aspect ratios A = 4, 6,

and 10 respectively. The total foil 1ift is different for each case,
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having corresponding values of L = 1,920,000 pounds (8.54 x 'IO6 N),
2,880,000 pounds (12.81 x 106 N), and 4,800,000 pounds (21.35 x 106 N).
Physically, it would be necessary to increase the foil angle of attack
with decreasing speed in order to achieve the contours shown in Figures
32-34 and 35; but for the purposes of this comparison, the determination
of the angle of attack schedule is superfluous. In each of these plots,

the lower curve is the viscous drag Dvis and the upper curve is the

c
total drag DT' The dashed curve represents values of

]
(1 + °1) D1°° (60)
'
where Diw is the unbounded flow induced drag determined from the
coefficient

{iudies®
ch.. . e (61)
The biplane factors corresponding to these cases are oy = 0.2322,
0.3409, and 0.4842 respectively. The difference between the DT and
(1 + 01) D;w curves is the surface wave drag contribution, whose value
goes to zero at infinite Froude number. It is clear from these graphs
that for increasingly larger aspect ratios and physically larger
hydrofoils, the surface wave drag becomes a relatively much more
important factor in the speed range shown.

A second comparison is made on the basis of the same total foil

1ift. Figure 35 shows the drag variation with speed for an aspect ratio
10 hydrofoil having the same planform area, S = 1600 foot2(148.6 mz),
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and the same 1ift as the aspect ratio 4 hydrofoil example shown in

Figure 32. Even with the smaller chord and therefore shifted Froude

number range, the relatively greater importance of the surface wave drag

contribution to the total drag is evident from looking at both Figures

32 and 35. It may also be noted that despite the increased surface wave

drag, the total drag of the aspect ratio 10 hydrofoil is lower in this

comparison at h/ca =1.

CONCLUSIONS AND RECOMMENDATIONS

A successful computer program has been developed for the numerical
calculation of the integrals appearing in the prediction formulas
for hydrofoil drag due-to-1ift and total 1ift, for the special case
of foil loading due to an elliptic circulation distribution of
fixed shape on an elliptical planform.

Some results are displayed in a variety of useful graphs for aspect
ratios 4, 6, and 10 at several depths of submergence, and for a
range of Froude numbers 0.2 < F. < 6.0 and F, < 12.0.

Although it was not the direct purpose of this work, some
preliminary comparisons between numerical results and results from
Wu's asymptotic relations have been made. These show mixed
results. Excellent predictions are provided by asymptotic formulas
for: (a) wave drag, CN/CLZ’ at small Froude number and deep

/CLZ. for both
0

submergence, and (b) 1ift correction term, ACL
1

shallow and deep submergence.

36

R e St




A narrow range of good predictions are provided by the
asymptotic relations for wave drag at large Froude number and
shallow submergence.

Rather poor predictions are available from the asymptotic
formulas for the lift correction term ACLZ/cLi in both the large
and small Froude number regimes.

More efficient means should be explored for the evaluation of the

AC, term to avoid performing both integrals by numerical

L
quagrature. With faster computation of this term, it is
recommended to include the ACL correction to the drag and 1ift
results of the linearized theoretical prediction of hydrofoil
performance.

The 1ifting line results of Wu should be further implemented in a
computer program capable of analyzing arbitrary planform shapes
(those within the known limitations of the 1ifting line theory) and
should be made available for evaluation for general hydrofoil
support systems.

Example calculations of hydrofoil drag force illustrate the need to
have accurate predictions of the surface wave drag contributions

present at the low chord Froude numbers characteristic of very

large hydrofoil planforms.
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Figure 1 - Geometry and Coordinate System of Submerged Hydrofoil

2b

c(y)

Figure 2 - Elliptic Planform Shape
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h/ca = 0.25 A =0.125
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e 20
\_~1 —————
0 ! 'l\x " i
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Chord Froude Number, Fc

Figure 8 - Transverse and Diverging Wave Components of Wave Drag for
Aspect Ratio 4 Hydrofoil at h/ca = 0.25
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Chord Froude Number, Fc

Figure 9 - Transverse and Diverging Wave Components of Wave Drag for
Aspect Ratio 4 Hydrofoil at h/ca = 1.0




A=6
h/ca = 0.25 1 = 0.08333
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o
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u(d) g = o R
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0 4’/1 Lo 1 i \1‘\—’ ~4 ~~~~~~
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Chord Froude Number, F

Figure 10 - Transverse and Diverging Wave Components of Wave Drag for
Aspect Ratio 6 Hydrofoil at h/c = 0.25
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Chord Froude Number, Fc

Figure 11 - Transverse and Diverging Wave Components of Wave Drag for
Aspect Ratio 6 Hydrofoil at h/c = 1.0
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h/ca = 1.0 x =0,2

0.1¢
T T T T T
C.08
CH
s o s
o]
0.06 [
-
0.04
6.02 I
0

0 1.0 2.0 3.0 4.0 5.0 6.0

Chord Froude Number, Fc

Figure 12 - Transverse and Diverging Wave Components of Wave Drag for
Aspect Ratio 10 Hydrofoil at h/ca = 1.0
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0.14

h/c:a = 1.0

0.12
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0.04

0.02f /

0 b A A A VP ' A A

0 1.0 2.0 3.0 4.0

Chord Froude Number, Fc

Figure 15 - Total Lift-Dependent Drag Ratio for Aspect
and 10 at Submergence h/ca = 1.0
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Figure 16 - Lift Correction Ratio for Aspect Ratio 4 Hydrofoil;

Contours of Submergence
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0.4 A=6

h/c

0 1.0 2.0 3.0 4.0 5.0 6.0

Chord Froude Number, Fc

Figure 17 - Lift Correction Ratio for Aspect Ratio 6 Hydrofoil;
Contours of Submergence
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Figure 18 - Lift Correction Ratio for Aspect Ratios 4, 6, and 10 at

Submergence h/ca = 1.0
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Figure 19 - Total Lift Ratio for Aspect Ratio 4 at CL = 1.0
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Figure 20 - Total Lift Ratio for Aspect Ratio 6 at CL = 1.0
0
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Figure 22 - Comparison of Total Lift-Dependent Drag Ratios for Aspect
Ratio 4; Constant Reference Foil Loading
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h/ca = 0.25 A = 0.08333
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Figure 23 - Comparison Between Large Fh Asymptotic and Calculated Wave
Drag Function for Aspect Rdtio 6 at Submergence h/ca = 0.25
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Figure 24 - Comparison Between Large Fh Asymptotic and Calculated Wave
Drag Function for Aspect Ratio 6 at Submergence h/ca = 0.5
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Figure 25 - Comparison Between Large Fh Asymptotic and Calculated Wave
Drag Function for Aspect Ratio 6 at Submergence h/ca = 1.0
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Figure 26 - Comparison Between Large Fh Asymptotic and Calculated Wave
Drag Function for Aspect Ratio 6 at Submergence h/ca = 2.0
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Figure 28 - Comparisons Between Large Fh Asymptotic and Calculated Lift
Correction Terms for Aspect Ratio 6 at Submergence h/ca = 0.25
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Figure 29 - Comparisons Between Large Fh Asymptotic and Calculated Lift
Correction Terms for Aspect Ratio 6 at Submergence h/ca = 1.0
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Figure 30 - Comparisons Between Large Fh Asymptotic and Calculated Lift
Correction Terms for Aspect Ratio 6 at Submergence h/ca = 2.0
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Figure 31 - Comparisons Between Small Fh Asymptotic and Calculated Lift
Correction Terms for Aspect Ratio 4 at Submergence A = 1.75
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Figure 32 - Estimated Drag Force Versus Speed for an
Aspect Ratio 4, 20-Foot Chord Hydrofoil
at hlca = ]
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Figure 33 - Estimated Drag Force Versus Speed for an
Aspect Ratio 6, 20-Foot Chord Hydrofoil
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Figure 34 - Estimated Drag Force Versus Speed for an
Aspect Ratio 10, 20 Foot Chord Hydrofoil
at h/ca = ]




oo

b
E

RGNS, At 12

d -
L.HQ,MI‘ '

HYDROFOIL DRAG, POUNDS

" 12.65 ft (3.86 m)
s = 1600 ft° (148.6 m?)

L = 1,920,000 1bs (871 m.tonnes)
400,000 gy . = e x 10°
A=10 1.6
" hlca = ] -P -
300.000 2 =
52
L - &
=
=
200,000 + J X
- 0.8 2
N (=]
100,000 - 0.4
}
0 Ao o s o B 0
0 1.0
2
0

Velocity, knots

Figure 35 - Estimated Drag Force Versus Speed for an

Aspect Ratio 10, 12.65-Foot Chord Hydrofoil

at h/c. =]




APPENDIX A
LISTING OF COMPUTER PROGRAM

4 The computer program used to generate all the numerical data of the
report is listed here for reference. Definitions of the input variables

and the main output quantities are given in Tables 2 and 3.

TABLE 2
COMPUTER PROGRAM INPUT VARIABLES
Computer Notation Symbol and/or Meaning

A A = planform aspect ratio 1
HOCA h/ca = depth-to-chord ratio
TWMAX Maximum ailowable t-value in the Cw-integ-

ration (typically 70 to 100)

E TLMAX Maximum allowable t-value in the integration

of FL(u) (typically 70-100)

EPS Accuracy limit for integration of Cu and
FL(u) (typically 0.000001)

NSPW Number of spaces for numerical integration
of loops in Cy and for aC, (typically 100)
1

NSPL Number of spaces for numerical integration
of non-singular integrals of ACL
(typically 60) 2
NINDEX Counting index for modified Simpsons Rule
for Cauchy singular integral (typically 30)
NDATA Number of input data cases of Froude number
FC Fc = chord Froude number
CLo CL = reference 1ift coefficient
()




AR

TABLE 3
MAIN COMPUTER PROGRAM OUTPUT VARIABLES

Computer Notation Symbol and/or Meaning
2
CDIIR £ 76
Diw Lo
: CDSIR &, N
. si o
] 2
CDSWR Ce /E
L Dsw Lo
CLIR i 95 °
1 o
CL2R aC, c,?
2 @
0 0
CWR ¢, /C, 2
W "L
E 0
7 CHR(T) & 5
L) "o
I CWR(D) R 6 *
' (d) "o
2
DELW A, ~ = AC, /C
_ LC i
t. : DELCL i * ¢ 2, A
i ke s -
_ ? NLOOPS Number of loops of integrand
: g required to reach desired
; accuracy
j SIGMAI o




TABLE 3 (Continued)

End value of t-integration for Cu

L e Auxillary function for wave

drag (see Equation (49))
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55

60

65

70

75

OO000OOOODO

o0ono

a0

c

1001
1002
1000

9000

2000

THTS PAGE TS BEST QUALITY PRACTICABLE-
FBOM COPY FURNISHED 10 DDC o

CENTRAL PROGRAM TU COMPUTE HYDHODYNAMIC CHARACTERISTICS
OF DRAG AND LIFT FOR A SUBMERGED FLAT HYDROFOIL HAVING AN
ELLIPTICAL PLANFORM WITH SPECIFIEP ELLIPTIC CIRCULATION
DISTRIHUTIONJUSING THE 1953 LIFTING LINE RESULTS OF
TeYe WU, COMPLETELY NUMERICAL EVALUATION OF INTEGRALS AT
ARBITRARY DEPTH AND FROUOE NUMBER

PROGRLM SUBMFL (INPUT,0UTPUT s TAPES=INPUT ¢ TAPE6=OUTPUT)
REAL LAMDA W s UNT 2 UNDsJLL s JL29KEsLAMDAZ
COMMON/BLCK1/2J1(100)

COMMON FHoFCoA9HOCAsLAMDAIBETAIEPSsPI oNSPWNSFL

Pl = 3,1415926536

PI2 = PIeP]

PI3 = PI2*P]

RPI = SQRT(PI)

CONV = PI/180.0

DO 22 N=1,100
ZJ1(N) = 0.0

FIRST 20 ZEROS OF BESSEL FUNCTION J1(T) ARE KNOWN,
SEE ABRAMOWITZ AND STZIGUNs PAGE 409

ZJ1(1) = 3.83171
ZJ1(2) = 7,01559
ZJ1(3) = 10.17347
ZJl(4) = 13,.32369
2J1(S) = 16.47063
ZJ1(6) = 19.61986
ZJ1(T) = 22.76008
ZJ1(8) = 25.90367
ZJ119) = 29.04683
ZJ1(10) = 32.18968
ZJ1(11) = 35.33231
ZJ1(12) = 38.47477
ZJ1(13) = 41.61709
ZJ1(14) = 44,75932
ZJ1(15) = 47.90146
ZJ1(16) = 51.04354
ZJ1(17) = 54,18555
ZJ1(18) = 57.32753
ZJ1(19) = 60.46946
ZJ1(20) = 63.61136

READ (5,1001) A,HOCA
READ (5+1001) TWMAX.TLMAX.EPS
READ (5+1002) NSPWsNSPLsNINDEX
FORMAT (AF1S.T)
FORMAT (31i0)
READ (S,1000) NDATA
FORMAT (110)
00 9999 ID=]NDATA
WRITE (6+9000)
FORMAT (1H1)
READ (S,1001) FCyCLO

FC2 = FCeoFC

LAMDA = (2,0/A)*HOCA

LAMDA2 = LAMDA®LAMDA

FH2 = {],0/HOCA)®FC2

FH = SQRT(FH2)

FH3 = FH2*FH

BETA = (2.0/A)*FC2

FS = (1,0/SORT(2,0))®SQRT(BETA)

THETT = 35,26438968
THETTR = THETTeCONY

ST = SIN(THETTR)

SECT = 1,0/COS(THETTR)
SECT2 = SECT®SECT

TT = (1.0/BETA)®SECT2eST
CONST = HOCA/FC2

WRITE (6420000 AsLAMDAJHOCAIBETA¢FCoFHsFS,TT

FORMAT (/1X9BHGEOMETRY/5X¢22HASPECT RATI0, A =FiS.7,
120X 4 THLAMOA =F15,7+/5Xy22HDEPTH=-TO=CHORDy HOCA =F15.7,

215X 12HFR2 = BETA =F15,7+/5X+22HCHORD FROUDE NOey FC =F15,.7s
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e

8s

90

95

105

115

120

125

130

135

140

145

150

155

160

on0n

2001

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED T'0 DDC S

35X+ 22HDEPTH FROUDE NO,s» FH =F15,7s/
45X +22HSPAN FROUDE NO,y FS =F15,7+5X»
S522HCRITICAL T=VALUE, TT =F1S5.7)

ORAG

WRITE (6+2001) NSPW,TWMAXJEPS
FORMAT (//1X+4HDRAG/SX96HNSPW =1109/5Xs THTWMAX =F15,7,/5X+5SHEPS =
1E15.7+¢//8X+25SHINDUCED DRAG COEFF RATIOS+35X»
222HWAVE DRAG COEFF RATIOS)
KE = 0.0
EE = 0.0
EMM] .= LAMDA2/ (1.0 + LAMDA2)
EMM = 1,0 - EMM]
CALL ELLIP(VALKsVALEEMM)
KE = VALK
EE = VALE
ELL = 1.0 +» LAMDAZ2
RELL = SQRT(ELL)
SIGMAI = 1.0 = (4+0/P])®LAMDA®RELL®(KE = EE)

CALL CALJW(JWyJIWT 4 WD s TT o TWMAX s NLOOPS, TE)
C = (1s0/PI)®EXP(~CONST)

WS = C®JW = (2,0°SIGMAI®FC2)/(P]®A)

COIIR = 1.0/(PI®A)
COSIR = ~SIGMAIeCDIIR

CWR = (C/FC2)%uw
CWRT = (C/FC2)ouwT
CWHD = CWR - CWRTY
COSWR = (1.,0/FC2)*wS

COIRUL = (140 ¢ SIGMAI)/Z(PI®A)
COIRLL = (140 = SIGMAT)/Z(PI®A)

COR = COIIR ¢ CDSIR + CwR
WRITE (642002) COIIR.CWRsCUSIRsCWRT4SIGMATCWRDsCOIRLL CDSWR,
1COIRUL +WS+CDR

2002 FORMAT (/10XeTHCDIIR =E15+7932X,

125HWAVE NRAG(TOTAL) , CWR =E15,7+/10X+s THCDOSIR =E1S.Ts/
273X 32HTRANSVERSE WAVE PART, CWRI(T) =E18,T79/710X»
3BHSIGMAT =E15.7+40X,32HDIVERGING WAVE PART, CWR(D) =E15,7,
4//10X+184COI (LUWER LIMIT) =E15,7+21Xs
S30HCDSWR =(CWR = 2*SIGMAI/FI®A) =EL1S.7+/10X»
618HCDI (UPPER LIMIT) =f15.7+21Xs
730HSURFACE WAVE FACTOR, WS =E15.7+//75X,
B83BHCD(TOTAL) /CLO2 =(CDIIR ¢ CDSIR ¢ Cwk)=fF15.,7)
WRITE (642003) NLOOPS,TE

2003 FORMAT (/SXs8HNLOOPS =110+/5SXs4HTE =F15.7)

WRITE (642005)

2005 FORMAT (/5Xe22HASYMPTOTIC RESULTS ===y6XsJHCWRs I TXsSHCDSWR ¢ 15Xy 2HW

170

c

2004
171

1Se11Xs 1 1HWS (BRESLIN) 412Xy 1HF)
IF (LAMDALGE.1+04AND.FH2.LE.1,5) GO O 170
IF (LAMDAWLT4140.ANDsFH2.6T41,5) GO TO 171

GO0 T0 172

FAC]l = SQRT(2.0*PI)

FAC2 = EXP(=2.0/FH2)

FAC3 = LAMDAZ2®A®FH2eFH

FAC4 = 6,0*LAMDA2*FH2*FH2
WR === LAMDA.GE. 1.0y FH2.LE.1,5

CWR = (FAC2/(FACI®FAC3))*(1.0 + 0.375%(1.0 = (1.0/FACH))*FH2)
WRITE (642004) CWR
FURMAT (2BX9E15.7911X93H===916Xy2H==)

60 T0 175

FAK1 = 2,0/P1

FAK2 = ],5/P12

FAK3 = 4,0/(3.0%PI)
ARGL = 4,0°RELL/LAMDA

TLOG = ALOG(ARGL)

F = FAK1®#(2.0 = TLOG) = FAK2®((1,0/3,0) = TLOG)®(LAMDA2/ELL)
WS = FAK3I®(FAK]I®RELL®ELL®EE = (],5°LAMDA) -

1 (LAMDA2®RELL) *F)

COSWK = (1.0/FC2)*wS

CWR = 2,0%SIGMAI/Z(PLeA) « CDSWR

WSBRES = FAK3® ((FAKI®ELL®RELL®EE) = (1.5%_AMDA))

n
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WRITE (6¢2006) CWRsCDSWRyWSIWSHRESF |
2006 FORMAT (2BXsE1Se795XsE1Se793XsEL1Se793X0E15,T93XeEL5.7)
GO0 10 175 ]
172 WRITE (642007
165 2007 FOKRMAT (/2BX+27HNO ASYMPTOTIC RESULTS APPLY)
175 NS = 2eN[NDEXe*]

¢
g LIFT CORRECTION

170 WRITE (642008) NSPLININDEXINS, TLMAX,EPS

; 2008 FURMAT (//1Xo4HLIFT¢/SXo6HNSPL =[104/5X¢BuNINDEX =[104s/5Xs4HNS =11
3 +0v/SXe THTLMAX =F15.74/5XK,9HEPS 2F15,7,

/724X +2RHLIFT COEFF CORREGCTION RATIOS)

175 CALL CALJLL(JLD)
CLIR = =(B8.0/(PI3%LAMDA®AI)®*JL]

E CALL CALJL2(JLZ2sTLMAXyNINDEX)
| CL2R = =(6,0/(PI2%A®FH))eJL2
180 c r
DELW = CLIR ¢ CL2R
CLO2 = CcLO=CLO
DELCL = CLO2®DELW
CLRO = 1,0 « DELCL
185 €
WRITE (642009)CLIRsCL2RyDELW
2009 FORMAT (27TX+s6HCLIR =E15¢797/27X+s6HCL2R =E15,T7¢//27Xs6HDELW =E15,7)
WRITE (6+42010) CLOsDELCLsCLRO
2010 FONMAT (/SXs9HFOR CLO =F1S5¢73/10Xy THOELCL =E15.74/10Xs6HCLRO =E15.
190 +7)
WRITE (642011)
2011 FORMAT (/5X922HASYMPTOTIC KRESULTS ===, 7Xy6HCLIRASs 15Xy 6HCL2RAS)
€

IF (LAMDAL.GE.1.0) GO TO S0
195 GO TO 51
S0 ELL2 = ELL®ELL
FLL3 = ELL2eELL

C
¢ CLIRAS === [LAMDA,GE«1,0
200 Cc
CLIRAS ==(1.0/(8,0°PI®_AMDA®RELL®A))®(1le0 + (0,3125)/7ELL +
1(0.70703) 7ELL2 + (0,0920105) 7ELLI)
G0 T0 60
51 EXL = RELL/LAMDA
205 Al = ALONG(EXL)
= ALOG(2.0)

€
c CLIRAS -== LAMDA,LT.1.0
€

210 CLIRAS = ~(B,0/(3.0°P[3° AMDA®A))®* (1,0 = (3.0"LAMDA2)*(AL2 =~
10.75 + 0,625%ALL))
60 IF (LAMDALGE+140.AND+FH2.LE.1.5) GO TO 70
IF(LAMDALLT.1404ANDFH2:GT,1.5) GO TO 71
60 TO 72
215 70 FACD = (2,0°P1)@SQRT(2,0%P1)

CL2RAS === LAMDA.GE«1.0y FH24LE,145

aoon

CL2RAS = (140/(FACU®LAMDAR®A®FH))® (1,0 * 0.5%FH2)
220 GO TO a0
71 GAM14 = 3,6256099082
GAM34 = ],2254167024
GAM = 0,5772156649

225 c CL2RASs LAMDALLT 1.0y FH2.6T41.5
c

RTWO = SQRT(2.0)
ARG = 2,0/FH2
CL2RAS = ((RTWO®GAM]4)/(PI2®%A))® (1.0 -~ (GAM34®LAMDA)/(RPI®GAM]4*RE
230 ILL))® (1.0 ¢ (RTWO/RPI)®#(1.0/FH)*(GAM « ALNG(ARG)))
GO TO Ho
12 WHITE (642020) CLIRAS
2020 FORMAT(30X4EL1S5.795Xs21HNO RESULTS APPLY HERE)
GO TO 90
235 KO WRITE (642012) CLIRAS,CL2RAS -
2012 FORMAT (30XsE1S.Te5X4ELS.T)
a0 CLRO2 = CLRO®CLRO
CDCL2 = COR/CLRO2
WHITE (642013) CLOeCDCL2
240 2013 FURMAT (//1Xs21HINVISCID ORAG=TO=LIFT,//Sxy9HFOR CLO =F1S.7s

72
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110X41SHCD(TOTAL) /CL2 =E15.7)
9999 CONTINUE
END

1 SUBROUTINE CALJW(JIW s JWT s JWDsTTo TRMAXSNL TF)

CALCULATES THE WAVE RESISTANCE INTEGRAL JW
FOR A SUBMERGED HYDROFOIL

onnn

REAL UWeJNToJWDeJ1»J12+sLLOOP, LAMDA
COMMON/HBLCK1/2U1(100)
COMMON FHsFCesAsHOCA9LAMDASBETASEPSsPI o NSPWyNSPL
DIMENSION PS(100)
10 CONV = PI/180.0
SPACEN = FLOAT (NSPW)
NSP! = NSPW
DO 1 N=1,100
} PSI(N) = 0.0
15 c
FC2 = FCeFC
CONST = HOCA/FC2
BETAZ = BETA®BETA

20 Cc
ITT = 0
Jl = 0.0
N=1
T=0,0
25 J¥W = 0.0
JWT = 0.0
JWD = 0,0
LLOOP = ZJl(1)
DT = LLOOP/SPACEN
30 APS = EXP(=CONST)
SIMl = 7. ¢
SIv2 = 1.0
IF (LLOOP.GE.TT) GO TO 200
50 1
35 100 I

=0
= [l
IF (I.EQ.NSP1) GO TO 150
T = T+DT
IF (T.GT.TWMAX) GO YO 800

12 = Te7

40 FORBT = 4,0%BETA2*T2
ROOT = SQRT( 1,0 ¢ FORBT)

CALL CALJL(VALJL,T)

Jl = vALJL
Jl2 = Jleyl

45 EFACTR = EXP(=CONST®*ROOT)
FACT2 = (1,0 ¢« ROOT)®*(1,0 ¢ ROOT)
DAPS = (EFACTR®J12®FACT2)/(T2*ROOT)

SIM = SIM1 + SIM2

APS = APS ¢ DAPSeSIM

S0 SIM2 = =SIM2
GO T0 100

150 APS = APS®(DT/3,0)
PSI(N) = APS
Jw = Jw ¢ PSIN)

L1} IFLITT.FA.0) GO TO 350
G0 10 351
350 JwT = Uw
151 RATIO = ABS(PSI(N)/JUW)
IF (RAT]OLLEL.EPS) 60 TU TO00
60 151 SiMl = 3.0
SIm2 = 1.0
N = Nej)

IF (N.GT.20) GO TO 500
152 T = Zyl(n=])
65 LLOOP = ZULIN) = T
TUL = (T « LLOOP)
IF (TUL +GE«TT.ANNLITTL.EQ,0) GO TO 200
DT = LLOOP/SPACEN
APS = 0,0
70 1=0

73




THIS PAGE IS BEST QUALITY PRACTICABLE

160 I = Iel FROM COPY FURNISHED TV DDC g
IF (I.EQ.NSP1} GO TO 170
T = TeDT
IF (T.6T.TWMAX) GO TO 800
15 T2 = Ter

FORBT = 4,0%BETA2°T2
ROOT = SQRT(1.0 « FORAT)
CALL CALJL(VALUL,T)
J1 = VALJ]
80 Ji2 = JleJl
EFACTR = EXP(=CONST®ROOT)
FACT2 = (1.0 ¢ ROOT)®(1.0 * ROOT)
DAPS = (EFACTR®J12°FACT2)/(T2#R0OOT)
SIM = SIMl + SIM2
AS APS = APS ¢ DAPSeSIM
SIM2 = =SIM2
GO TO 160
170 APS = APS®#(DT/3,0)
PS(N) = APS
90 JW = JW ¢ PS(N)
IF(ITT.EQ.0) GO TO 3S2
60 TO 353
352 JWT = U
353 RATIO = ABS(PS(N)/Jw)
95 IF (RATIO.LE.EPS) GO TO 700
G0 TO 151
200 IT7 =]
IF (N.EQ.1) GO TO 201
DT = (TT « ZJL(N=1))/SPACEN

100 GO 10 202
201 DT = TT/SPACEN
202 1=0
203 I = [l
T = TeDT
105 IF (T,GT.TwMAX) GO TO 80O
T2 = Ter1

FORBT = 4,0%BETA2°T2
ROOT = SQRT(1.0 + FORBT)
CALL CALJL(VALUL.T)
110 Jl = vaLul
Jl2 = Jleyl
EFACTR = EXP{=CONST®RQOT)
FACT2 = (1.0 ¢« ROOT)® (1.0 ¢ ROOT)
DAPS = (EFACTR®J12%FACT2)/(T2#*R00OT)
115 IF (1,EQ.NSP1) GO TO 204
SIM = SIM]l + SIM2
APS = APS ¢ DAPS®SIM
SIM2 = ~SIM2
GO T0 203
120 204 APS = APS + DAPS
APS = APS®(DT/3,0)
PS(N) = APS
JW = W+ PS(N)
JWT = U
125 RATIO = ABS(PS(N)/JW)
IF (RATIO.LEL.EPS) GO TO 700
APS = DAPS

c
c THIS SETS INITIAL VALUE FOR DOING THE AREA UNDER
130 [ THE REMAINDER OF THE LOOP
c
DY = (ZJ1(N) = TT)/SPACEN
SIMl = 3,0
SIM2 = 1.0
135 GO TO S0

500 WRITE (642003)
2003 FONMAT (/2XyBSHINTEGRATION MUST PROCEED BEYOND N=20 LOOPS, T = 63.
161136 =~= HEREAFTER ESTIMATE ZEROS)
ENT = FLOAT(N)
140 THETL = (2,0%ENT = 1,0)*(P1/2,0)
ALPHAD = 2,35619449
SUM = THFT] + ALPHAO
SUMZ = SUMeSUM
ZJLIN) = (0.5%°SUMI® (1,0 * SQRT(1.0 = (1.49995344)/5UN2))
145 GO TO 152
A00 WRITE (642006) TWMAX
2006 FORMAT (//10Xs33HINTEGRATION TERMINATED AT TwMAX =F1S5,7)
700 JWD = JW-JWT
TE = 7J1(N)
150 ROOTE = SQRT(1.0 + 4,0°BETA2eTE®TE)
ARGE = (1.0/(2.0%BETA®TE))®(=1,0 ¢+ ROOTE)

;
z.
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THETED = THETER/CONYV

NL = N

RETURN

ENUL

SUBROUTINE CALJL1(VJyL1)

CALCULATES THE NESTED INTEGRAL JL1 FOR LIFT
CORRECTION

REAL LAMNDAJKXsKX29KX4oKLAMKE+LAMDA2
COMMON FHoFCoAsHOCA | AMDAIBETALEPSPI NSPwsNSPL
LAMDA? = LAMDA®LAMDA
SPACEN = FLOAT (NSPW)
NSPl = NSPW
KLAM = 1,0/(SURT(1.0 + LAMDA2))
DKX = KLAM/SPACEN
SIvl = 3.0
SIM2 = 1.0
KX = 0,0
vVJLl = P1/16.0

I=0
I=1e1
IF (1.EQ.NSP1) GO TO 200
KX = KX + DKX
KX2 = KX®*KX
KX4 = KX2e®KX2
FMM = XX?2
CALL ELLIP(VALKsVALEEMM)
KE = VALK
EE = VALE
CE = (1.0/KX4)®((2.0 - KX2)®KE = 2.0°EE)
REKL = KX/KLAM
RXKL2 = RKKL*RKKL
FAC = SQRT((140 = RKKL2)/(1.0 = KX2))

DVJL]1 = FAC®CE
SS = SIM1 + SIMR
VJL1 = VJUL1 ¢ DVJL1eSS
SIM2 = -SIM2
GO TO 100
VJL1l = VJL1*(DKX/3.0)
RETURN
END

SUBROUTINE CALJUL2(VJL29+TLMAXsNINDEX)
CALCULATES THE INTEGRAL JL2 FOR LIFT CORRECTION

NSPL = NUMHER OF SPACES FOR ORDINARY
(NONSINGULAR) INTEGRATIUNS
NINDEX = COUNTING INDEX FOR CAUCHy SINGULAR
INTEGRAL TREATED WITH SIMPSONS RULE

H = SPACING FOR SINGULAR PART
= 1,0/(2*NINDEX + 1)

NS = NUMBER OF SPACES ON EACH SIDE OF ZERO
= 28NJNDEX ¢ |

NUMERICAL COMPUTATIONS FOR INTEGRALS T11+INs AND IS
REAL LAMDASISsINsIIL
COMMON/KLCK1/2ZJ1(100)

COMMON FHoFCoAgHOCA3LAMDASBETAZEPS-PI¢NSPwyNSPL
RPI = SQRT(PI)

75
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SPACEN = FLOAT(NSPL)
NSP]1 = NSPL
25 FH2 = FHeFH
NS = 28NINDEX+]
E H = 1,0/FLOAT(NS)
CALL CALFLO(FLOTLMAX)
UARG = 1,0/(2.0%FH2)
30 CALL CALFL(FLoUARGyTLMAX)
FL1 = FL

el

CALL CALFL(FLoUARG,TLMAX)

UARG = 1.0/FH2
35 FLZ = FL

NONSINGULAR INTEGRALS 11 AND 1IN

ono

SIM1 = 3.0
: .0 SIM2 = 1.0
E T = 0.0
DT = 1.0/SPACEN
FALF = EXP(=1.0/FH2)
11 = 2.0%FAEF®(FL1 = FLO)
s IN = RTWOSFL2%FAEF
=0
100 I=Iel
IF (1.EQ.NSP1) GO TO 110
= T=T«0T
50 EFTU = 1.0/ (T®FH2)
IF (EFTU.GT+500.0) GO TO 10
60 TO 11
10 €2 = 0.0
60 TO 12
ss 11 E2 = EXP(=EFTU)
12 Fl = EXP(=T/FH2)
T12 = SQRT(T)
132 = TeT12

60 ROOTT = SQRT((1.0 ¢ T)I/T)
UAKGL = T/(2.00FH2)
CALL CALFL(FLT<UARG1sTLMAX)
UARG2 = 1.0/(T®2,09FH2)
CALL CALFL(FLOTsUARG2y TLMAX)
65 UARG3 = (1.0 ¢ T)/(T82,00FH2)
CALL CALFL(FLPOOTsUARG3 s TLMAX)

DIl = (E1/T12)®(FLT = FLO) ¢ (E2/732)e(FLOT = FLO)
DIN = FLPOOT®ROOTT®(E2/T)
70 C
SIM = SIML « SIM2
I1 = J1 « DIL®SIM
IN = IN « DIN®SIM
SIM2 = =-SIM2
75 GU TO 100
110 DTV3 = DT/3.0
11 = [1*n¥03
IN = IN®NTO3

c
80 C SINGULAR INTEGRAL IS
C
SIvMl = 3.0
SIM2 = 1.0
I = =1.0
8s ™ = 1,0

EHPLUS = EXP(H/FH2)
EHNEG = EXP(=H/FH2)
HARGP = (1.0 * H)/(2,0%FH2)
CALL CALFL(FLHPsHARGP s TLMAX)
90 HAKGN = (140~ H)/(2,08FH2)
CALL CALFL (FLHNsHARGNy TLMAX)
RHP = SQRT (1.0 ¢+ H)
RHN = SQRT(1.0 = W)

c
95 IS = RTWOSFAEF + (4,0/H)®(FLHP®RHP®EHNEG - FLHN®RHN®EHPLUS)
{
> 1=1
) 200 1I=1e1
b T = Ten
) 100 TM = TM = H

i
8
:
g

1F (1.,EQ.NS) GO TO 210
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EIR = EXP(=TM/FH2)
FIL = EXP(=T/FH2)
ROOTR = SART(1,0 ¢ TM)
ROOTL = SQRT(1,0 ¢« T)

HARGR = (1,0 ¢ TM)/(2,0%H2)
HAKGL = (1,0 * T)/(2,00FH2)
CALL CALFL(FLsHARGRs TLMAX)
FLR = FL
CALL CALFL(FLHARGL ¢ TLMAX)
FLL = FL

DISR = (FLR®ROOTR®EIR - FLI®FAEF)/TM
DISL = (FLL®ROOTL®ELIL - FL1®FAEF)/T
SIM = SIM]l « SIM2
IS = IS + (DISL ¢ DISR)*SIM
SIM2 = =SIM2
GU TO 200
210 IS = IS*(H/3.0)
VJL2 = =RPI®FHOFLO - J]1 ¢ FAEF® (IS ¢ IN)
RETURN
END

SUBROUTI'IE CALFL(FLIUARGyTLMAX)

CALCULATES THE FUNCTION FL DEFINED TN KERNEL OF
THE FROUDE-DEPENDENT LIFT CORRECTION INTEGRAL JL2

"OO0N

REAL LAMDASLAMDA2sJ]14J12

DIMENSION PSL(100)

COMMON/HLCK1/ZJ1(100)

COMMON FHyFCosAyHOCA S L AMDASBETAIEPS»PI 4NSPWeNSPL

COnV = P1/180.0
SPACEN = FLOAT(NSPL)
NSP1 = NSPL
XVAR = 2,0°UARG
UARG2 = UARG®UARG
FL = 0.0
Jl = 0.0
IF (XVAR,GT,500.0) GO TO 3000
DO 1 N=1.100

1 PSL(N) = 0.0
LAMDAZ = LAMDA®LAMDA

N=U
100 SIM] = 3.0
SIM2 = 1.0 ]
N=Ne]
IF (N.GT.20) GO TO 500
IF (N.EQ.1) GO TO 101
152 T = LAMDA®ZJL(N-1)
DT = (LAMDA®ZJ1(N) =~ T)/SPACEN
APSL = 0.0
60 TO 102
101 T = 0.0
DT = LAMDA®ZJIL (1) /SPACEN
APSL = (0.5/LAMDA2) % (SQRT (XVAR))® (EXP (=XVAR) )

102 1=0 ;
110 I=l1e1
IF (I.EQ.NSP1) GO TO 170
T = TeDT
IF (T.GT.TLMAX) GO TO 800
T2 = TeT

ROOT = SORT(T2 + UARG2)
TOL = T/LAMDA
CALL CALJL(VALJLl,TOL)
Jl = vALJL
Ji2z = Jleyl
EFACTR = EXP(~2,0*R0OOT)
FACT32 = (UARG ¢ ROGT)*(SURT(UARG+ROOTI}

DAPSL = (EFACTR®*JI2%FACT32)/(T2¢R0OOT)
SIM = SIML + SIM2
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APSL = APSL®(DT7/3.0)
PSL(N) = APSL
FL = FL  PSL(N)
RATIO = ABS(PSL(N)/FL)
IF (RATIO.LE.FPS) GO TO 700
G0 T0 100
ENT = FLOAT(N)
THET]1 = (2.0%ENT = 1.0)*(P1/2.0)
SUM = THET1 * 2,35619449
SUM2 = SUMeSUM
ZJL(N) = (0.5°SUMI® (1,0 ¢ SQRT(1,0 = (1.4995344) /SUM2))
60 TO i52
WRITE (6+2006) TLMAX
FOHRMAT (//10Xs33HINTEGRATION TERMINATED AT TLMAX =F15.7)
TE = LAMDA®ZJ1 (N)
CONTINUE
RETURN
ENO

SUBROUTINE CALFLO(FLO,TLMAR)

CALCULATES THE FUNCTION FLO CONTAINFD IN THE
KERNEL OF THE LIFT CORRECTION INTEGRAL JL2

REAL LAMDA,JlsJ12

DIMENSION PO(100)

COMMON/RLCK1/2J1(100)

COMMON FH.FC.AoNOCAvLAHOAoB!?hoEPSoP!.NSPV.NSPL

CONV = P1/1R0.0

SPACEN = FLOAT(NSPL)
NSP) = NSPL
DO 1 N=1,100
PO(N) = 0,0
FLYU = 0,0
Jl = 0.0
N=0
Sim]l = 3.0
SIM2 = 1.0
N=Ne]
IF (N.GT.20) GO 7O 500
IF (N.EQ.1) GO TO 101
T = LAMDA®ZJl (N=-1)
DT = (LAMDA®ZJL(N) = T)/SPACEN
GO TO 102
T = 0.0
OT = LAMDA®ZJUL(1)/SPACEN
APSO = 0,0
I =0
I=1e1
IF (1.EQ.NSP1) GO TO 170
T=T+DT
IF (T.GT,TLMAX) GO TO 800
T32 = (SQRT(T))eT
TOL = T/LAMDA
CALL CALJ1(VALJL,TOL)
Jl = VALJI
Jiz = Jlsl
EFACTR = EXP(=2,0°T)

DAPSO = (EFACTR®J12) /732
SIM = SIM1 + SIM2

APSQ = APSO ¢ DAPSO®SIM
SIM2 = ~SIM2

GO TO 110

APSO = APSO0®(DT/3.0)

PO(N) = APSO

FLO = FLO + PO(N)
RATIO = ABS(PO(N)/FLO)
IF (RATI0.LE.EPS) GO TO 700

G0 TO 100
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2006 FORMAT (//10X+33HINTEGRATION TERMINATED AT TLMAX =E15.7)

700

SUBROUTINE CALJL (VJ1l,TY)
IF (TJ.GE. 3.0) GO TO 300
XT1l = TJU/3.0
XT2 = XT1exT1
XTée = XT2eXT2
XTe = XT4®XT2
XT8 = XTh®XT2
XT10 = XTH*XT2
XT12 = XV10*XT12
VIl = TUS( 0.5 = 0.562499685%XT2+ 0.21093573*XT4
1-0.03954289%XT6 ¢ 0,00443319°XT8 = 0,0003)1761*XT10
2+40.00001109%XT12)
GO TO 301
300 xTl = 3,0/TJ
XT2 = XT1eXT1
XT3 = XT2%*XT1
XTé = XT3exT1
XTS = XTeexTl
XT6 = XTSexTl
€
THETAL = TJU = 2,35619449 * 0.12499612¢xT]1 + 0.00005650+XT2
1-0.00637879%XT3 ¢ 0,00074348*XT4 ¢+ 0,00079824¢XTS
2-0.00029166%XTs
C
Fl = 0.79788456 + 0.00000156%XT]1 + 0,01650667*XT2
140,00017105%XT3 = 0,00249511%XT4 + 0.00113653*XT5
2-0.00020033%XT6
CS1 = COS(THETAL)
VJl = (F1#CS1)/(SQRT(TU))
301 RETURN
ENL
SUHMROUTINE ELLIP(VK,VEEM)
¢
c COMPUTES COUMPLETE ELLIPTIC INTEGRALS OF THE FIRST AND
g SECOND KIND === K AND E o+ RESPECTIVELY
€ EM = PARAMETER (= K®®2)
c EMl = 1,0 - EM = COMPLEMENTARY PARAMETER
c
c SEE ABRAMOWITZ AND STEGUNy PAGES 590+591+¢592 FOR
C POLYNOMIAL APPROXIMATIONS
C
EM]l = 1,0 - EM
ALN = ALOG(1.0/EM]1)
EM12 = EM1*EM]
EMLI = EM12%EM)
EM14 = EM13%EM)
C
VK = 1,38629436112 + (0.09666344259)*EM] + (0.03590092383) *EM12
1 ¢ (0,03742563713)%EM13 + (0.01451196212)«ENLS
2¢ (0,50 ¢ (0,12498593597)%EM] + (0.06880248576) *EM12 4
3¢ (0.03328355346)%EM1I ¢ (0.00441787012)*FM14)®ALN 3
& 1

ENT = FLOAT(N)

THET] = (2,0%ENT = 1,0)*(P1/2.0)

SUM = THETL ¢ 2,35619449 g
SUM2 = SUM®SUM

ZJL(N) = (0.5°SUM)®(]1,0 ¢ SGRT(1.0 = (1.4995344)/5UM2))

60 TO 152

WRITE (6,2006) TLMAX

TE = LAMDA®ZJ] (N) g
RETURN :
END ¥

VE = 1,0 ¢ (0.44325]141463)%EM] + (0,0626060122) *EM12 :
1+ (0,04757383546)%EM13 + (0,01736506451)*Fula 1
2+ ((0.,2499836831)%EM]1 + (0.,09200180037) *EmM12
3¢ (0.04069697526) ®EM13 * (0.00526449639) *FM14) *ALN
RETURN
ENOD
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APPENDIX B
THE BIPLANE FACTOR

Routine and accurate calculation of the biplane factor oy for
elliptic circulation distribution has been made easy by the existence of
Hu‘s3 formula, quoted in Equation (25), where the complete elliptic

integrals are

/2
K(kk) = J d¢

0 l‘ - kA2 sin2¢

n/2 (B.1)
E(kx) = I - kx sin“¢ d¢

)

and k, = 1/(1 + 12)%.

Polynomial approximations of great accuracy are available in Reference
12 (Chapter 17, pages 591 and 592) for the simple computation of K(k)
and E(k). These are fourth order polynomials in the "complementary

parameter"
.. Raleonagr | (B.2)

where A = depth-to-half span ratio.
A convenient collection of values for o for a wide range of

A-values has been calculated using these formulas and is presented in

Table 4.




TABLE 4
VALUES OF THE BIPLANE FACTOR o5

A a3 (2) A o;(2)
0.0 1.0 0.65 0.17095
0.01 0.9364 0.70 0.1555
0.02 0.8905 0.75 0.1418
0.03 0.8513 0.80 0.1298
0.04 0.8163 0.85 0.1191
0.05 0.7845 0.90 0.1096
0.06 0.7553 0.95 0.1011
0.08 0.7027 1.0 0.09351
0.10 0.6565 1.2 0.06999
0.15 0.5604 1.4 0.05406
0.20 0.4842 1.6 0.04285
0.25 0.4221 1.8 0.03472
0.30 0.3705 2.0 0.02865
0.35 0.3273 2.5 0.01889
0.40 0.2905 3.0 0.01334
0.45 0.2592 3.5 0.009904
0.50 0.2322 4.0 0.007635
0.55 0.2089 4.5 0.006061
0.60 0.1886 o 5.0 0.004927
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APPENDIX C
NUMERICAL EVALUATION OF WAVE DRAG INTEGRAL

For the calculation of the integral in the wave drag formula of
Equation (23), it is convenient to place the integrand in a form where
the zero points of the oscillating factor (in this case the J1-function)
are most easily specified. To accomplish this, the transformation

t= sec2 8 sin @ (c.1)

™ |—

is applied to the integration variable to reduce the argument of the

J]-function to the linear variable t. This leads to the formula

£ 2
c SWky o exp(-Fh'2¢4+4azt2)(l + ¢4+432t2)

_!z . I
2
cLo e 0 t2 A+agt (c.2)

The entire t-integral is the wave drag integral, denoted by J”. The
technique of numerical integration proceeds in a sequence of steps, with
each step being taken over an entire loop, whose value is then added to
the cumulative sum. The current loop sum is then compared to the
cumulative sum and when this ratio is found to be smaller than a
specified accuracy, the approximate integration is complete.

Integration time {is governed by the rate of decay of the integrand,
and 1n general is slowest for shallow submergence (A small) and for

small Froude numbers.
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APPENDIX D
NUMERICAL EVALUATION OF LIFT CORRECTION INTEGRALS

TERM ACL1
The numerical evaluation of the integral for ACL1 given in Equation
(32) involves a straight forward application of Simpsons Rule over the
finite interval (0, kx)' As noted in Equation (34), the C(k]) function
appearing in the integrand is known in terms of the complete elliptic
integrals K(k]) and E(k]) whose values can be computed using the

polynomial approximations given in Reference 12, pages 591 and 592.

TERM ACL
2
For the calculation of the double integral in the ACL term in
2
Equation (33), the e-integral is treated first. The transformation

t] = Ag-secze sin o (D.1)

leads to the final form

ACL "
2
o J (D.2)
c;?' nzAFh L,
y 2
-u/F
where ~d h FL(u)
3 = J (0.3)
2 Ju (u-1)




with 3/2
n exp(-2/t]z+u2/4Fh|)(—!—z + /t]z+u2/4Fhl)
2F
h
0 t.2 o 2e ek "
1 h (D.4)

1

The inner integral function FL(u) is dealt with numerically at any value
u using the same procedure employed for the Jw integral in Appendix C.
The 1ift correction integral JL2 has a Cauchy singular integrand
and must be computed in terms of its principal value. By rewriting the
integrand fraction 1/(u - 1) and by adding and subtracting the function
FL(o) in the numerator, the singular part of JL2 can be separated out,

rewritten as
2 e 2

s = o Rle s ta)
JL;'J il J [L L ]
0

with JL

du

du
F, (0) —=
LA ) a
(D.5)
s -u/Fh2
e FL(u)/U du
g

(u-T)

0
* e

where FL(O) = —-?7?——— dt (0.6)

)
The first term of (D.5) involves a known definite integral

w 2
-u/F
I e N du o fy (0.7)

’ U
The second term of (D.5) is not singular and can be handled easily by
splitting the interval into 0 < u < 1 plus 1 < u < =; and then further
transforming the second part by the substitution uy = 1/u and

integrating on Uy from 1 to O.
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The third term of (D.5) contains the Cauchy singularity which is
further isolated, first by substitution of £ = u - 1, and then splitting
the resulting interval -1 < £ < = into -1 < g <1 plus 1 <& <=,

Ultimately the 1ift correction integral J, can be written

L,
2
-1/F,
% JLZ -/iF(0) -1, +e (Iy + Ig) (D.8)
where 5 -u/th d
R (TR FL (o) i |
0 A
¥ |
o f(3)
b
IN J T dc (D.IO)
0
1
1o = [ &L 4 (D.11)
g
-]
with 2
/T,

: : f(g) = FL(g + 1)/E + 1 e- (D.12)

Numerical evaluation of integrals I] and IN is accomplished by normal

application of Simpsons Rule. The singular part, IS’ can be evaluated
by a modified Simpsons Rule for a Cauchy singularity, which uses

slightly modified Simpsons multipliers with a zero weight value on the
integrand function at the singular point £ = 0.
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