
CO
in
00

o
<

Stanford Artificial Intelligence Laboratory
Memo AIM-ai6

ComputeTTcienoe Depar
Report No/STAN-CS-78-671

AW ̂ 3ii

NATURALLANGUAGtP^OCESSING IN AN
^ AUTOMATIC^PROGRAMMING DOMAIN,

by

/ jö) Jerrold M. Glnsparg

O
C3

Research sponsored by

Advanced Research Projects Agency

i

D D C

>>

x: a
COMPUTER SCIENCE DEPARTMENT I

Stanford University^ Ü

L
L

Thi« document has been approved
for public re! er" r-d sc:Ic; iiS
distribution is unlimited.

Q A O^ 120 L6 u

BEST
AVAILABLE COPY

Stanford Artificial Intelligence Laboratory June 1978
Memo AIM-316

Computer Science Department
Report No. STAN-CS-78-671

NATURAL LANGUAGE PROCESSING IN AN
AUTOMATIC PROGRAMMING DOMAIN

by :^

Jerrold M. Ginsparg
i ;

! ! i

This paper is about communicating with computers In English. In particular, It describes an
interface synem which allows a human user to communicate with an automatic programming
system In an English dialogue.

The Interface consists of two parts. The first Is a parser called Reader. Reader was designed to
facilitate writing English grammars which are nearly deterministic In that they consider a very
small number of parse paths during the processing of a sentence. This efficiency Is primarily
derived '"••om using a single parse structure to represent more than one syntactic interpretation of
the ir.j ?ntence.

The second part of the interface is an an^nterprater which represents Reader's output In a form
that can be used by a computer program without linguistic knowledge. The Interpreter is
repsonsible for asking questions of the user, processing the user's replies, building a
representation of the program the user's replies describe, and supplying the parser with any of
the contextual Inforr '*"" or general knowledge it needs while parsing. »

This thesis was sv'mitted to the Department of Computer Science and the Committee on Graduate
Studies ofStc^jurd University in partial fulfillment of the requirements for the degree of Doctor of
Philosophy.

This research was supported by the Advanced Research Projects Agency of the Department of
Defense under ARPA Order Nc. 2494, Contract MpA90J-76C-02M.'T he views and conclusions
contained in this document are those of the authors and shoäd not be interpreted as necessarily
representing the official policies, either expressed or Implied, of Stanford University, or any agency
of the U.S. Government.

(
- O vi , O V J- tJ

ACKNOWLEDGEMENTS

I would like to thank,

my advisor, Professor Terry vVinograd,

the members of my reading committee: Professor Cordell
Green and Dr. Daniel Bobrow,

the PSI group: Dave Barstow, Richard Gabriel, Elaine Kant,
Juan Ludicw, Brian McCune, Jorge Phillips and Lou Steinberg,

and Martin Brooks.

for their help In the preparation of this thesis.

:

ftiySfir'N (cr_

NTIS i^.ite i-r.tion
PDC Bt.fl Ssction C

RJSTI ICAI'I^N **** f'-TT
...yA,...♦*- LjMU..<

il
ill

USeiKNO PAflE BLAJ«-N0T f IUOD

Tab!« of Content«

Section P«g«

1. Introduction

1.1 Organization

1.2 Capabilities

1.2.1 The parser

1.2.2 The Interpreter

1.3 Three Examples

1.4 PSI

1.6 An Overview

1.6.1 Reader

1.5.2 The Interpreter

1

2

2

2

6

8

15

17

17

20

2. Parsing

2.1 The Basic Algorithm

2.2 Stack structures and collapsing

2.3 Reader's output

2.3.1 Cases

2.3.2 Tonse markers

2.3.3 Noun groups

2.3.4 Choices

2.3.6 Conventions

23

23

26

32

32

37

42

44

46

IV

Table of Contents

Section

3. Grammur- writing

3.1 Some beginning grammars

3.1.1 Grammar.1

3.1.2 Grammar.2

3.1.3 Grammar.3

3.1.4 Grammar.4

3.2 Grammar efficiency

3.2.1 Nouns as modifiers

3.2.2 Relative clauses

J.2.3 Verbs which accept clauses

3.2.4 Conjunctions

3.2.5 Verbs Inflected with ed endings

Page

50

6

52

54

59

62

65

68

70

72

75

4. A closer look

4.1 Measure

4.1.1 The semantic component

4.1.2 The Syntactic Component

4.2 Collapsing

4.3 Formatting

4.3.1 Noun groups

4.3.2 Conjunctions

4.3.3 Filling In extra cases

4.3.4 Chot(.PS

79

79

80

83

86

92

92

93

95

95

Table of Contents

Section

4.4 Parallel processing

4.5 Other parsers

6. The Interpreter

6.1 The results of Interpretation

5.1.1 The program specification

5.1.2 An example and comparison

5.1.3 Meta-comments

5.2 The knowledge base

5.2.1 Concepts

5.2.2 Definitions

5 2,3 Procedural embedding

5.3 The processing cycle

5.4 Matching

5.4.1 Nouns

5.4.2 Pronouns

5.4.3 Matching to Implicitly mentioned compononts

5.4.4 Coercion

5.5 The Reader/Interpreter interface

5.6 Future work

5.6.1 Tense evaluation

5.6.2 More domain and general programming support

5.6.3 Building up more concepts and definitions

age

96

100

106

108

108

112

115

116

117

121

126

129

132

132

136

140

142

143

146

146

147

148

vl

Table of Contents

Section

6. References

Page

149

Appendix

A. Example Dialogues

Page

163

vii

1. introduction

This paper describes a natural language processing system The system Interacts

with a human user, who describes a computer program to It In English. The output of

the system Is a program specification, a formal representation of the computer

program the user has described. The program specification can be used as a data

base for coding the user's program by compute, programs without linguistic abilities.

Understanding program descriptions obtained via dialogues requires capabilities for

handling almost all Issues associated with natural Itmguage processing. Indeed,

[Hobbs 77] mentions that even processing "well written algorithm descriptions"

involves "...some of the hardest problems of linguistic analysis," Since many of the

program descriptions posed by the users of the system can best be characterized

as "no! so well written", the system's natural language abilities must be extensive.

The system is most naturally viewed as two Interrelated programs: a parser and an

interpreter. Reader, the parser, provides the means of storing and utilizing the

information about sentence slructure (called syntax) which is necessary for the

proper Interpretation of the meaning of a sentence. Reader is used to transform

the user* s replies from strings of words Into structures In which the relations

between words are made explicit. The Interpreter uses the structures supplied by

Reader to construct the program specification.

—-■'- -.. .^-~.m».»*^'

Introduction *.

1.1 Organization

The next section discusses the natural language abilities an automatic programming

natural language system ähould have. The following section contains three short

examples which should help to exactly clarify what Is meant by the program

speclficalson, and provide some perspective on the natural language processing

done by the system. The parser/interpreter can be used as part of a more

complete automatic system. Section 1.4 briefly describes this system and the

interpreter' s Interaction with it. Section 1.5 Is a short overview of the operation of

both Reader and the Interpreter.

Chapter 2 is a general discussion of Reader. Chapters 3 and 4 continue that

discussion in much more detail Chapter 5 describes the program specification and

how it is built by the Interpreter Appendix A contains several dialogues run by the

systen .

1.2 Capabilities

1.2.1 The parser

Reader was designed with the following criteria in mind.

The parser should be able to quickly recognize a substantial subset of English. The

parsing should be done quickly, so that the parser can be used in a practical

system. We mention parsiny spead and grammar coverage together, because It is

easy to theoreticaliy achieve one or the other separately. Almost all parsing

Introduction 3

schemes can parse a small set of sentences quickly, but few do as well when

recognizing a large number of sentences while at the same time using 0 vocabulary

which Includes all possible syntactic uses for each word in the v^oabi ary. Reader

achieves speed without sacrificing grammar breadth because its prrslng process

can combine several svntactlc possibilities into a single parse path, thereby

avoiding much of the backtracking or equlvalently, parallel pro :essing, which

characterizes many other parsing schemes.

There should be a well defined interface between the parser and interpreter which

allows tht! parser to interact with the interpreter and ask It to choose from among

competing parse; .which are possible syntactic interpretations of a sentence. This

Is necessary becai'se many sentences have more t? an one syntactic interpretation.

For example, in "...find a relation In the concept marked 'possible.'", the parser

must be able to ask whether the object of "find" is "a relation whose marking Is

'possible' which Is In the concept.", or "a relation which Is In the marked

('possible') concept."

The parser should be able to use the evaluation function nf the Interpreter to

provide parses in which most purely "function" words are eliminated. Consider the

sentence, "Classify the input list on the basis of whether or not It fits the initial

list". The Interpreter should be asked to Judge the modifications among "on the

basis of", "classify" and the clause introduced by "whether". The parser should

then Incorporate the answers Into the parse, resulting in a parse structure much

closer to the meaning of the sentence than a mere syntactic structure:

Introduction

(IMP ICLASSIFY NN
tARGS (LIST THE INPUT))
tPROC IF IT NN

IARGS IT)
tARGS (LIST THE INITIAL))

!)
1

)

The parse can be interpreted as,

Perform a classlf'cation. The argument of the classification
is the input list. The procedure for carrying out the
classification is to test if the input list fits the Initial list.

The parser's efficiency should not depend on using the Interpreter to discontinue a

possible parse of a sentence on semantic grounds. The parser-Interpreter

Interface should only be asked to evaluate parses which are syntactically

equivalent. Two partial parses are syntactically equivalent if both will lead to a

successful parse on the same sentence endings, or If the end of the sentence has

been reached and each Is a succsssful parse. The reason for this decision Is that

in a rich environment we would expect the semantic processing required to

discontinue a parse to be more expensive than the syntactic processing requi'ed to

determine that the parse cannot lead to a syntactic Interpretation. Woods, In

[Woods 73], has experimented along these lines and found that (in his case) "...It

looks as if it takes longer to do the parsing and semantic Interpretation overall If

the Interpretation Is done during the parsing than it does if the parsing is done first

and the interpretation afterwards." Of course, semantic processing will have to be

done to determine which syntactic parse of the sentence Is most meaningful; the

point Is that we wish to avoid any semantic analysis whose effect could be

achieved through syntactic analysis.

^m~—"--f^f

Introduction 6

The assumption about the relative costs of semantics and syntactic processing

cannot be proved. We - in note, however, that even the simplest kinds of semantic

checks can require arbitrary amounts of Inference in a general system. For

example, consider the decision of whether a pair of words ("street lights", for

example) Is a compound noun, or a noun followed by a verb. At first glance, it would

seem that this could be cheaply done by simply checking a marker on the first word

("street"), which Indicates whether It is a suitable subject for the proposed verb

("lights"). However, there are two problems with this approach. One is that simple

markers on words are Inadequate for dealing with the problems of language. Many

words can be modified so that they are acceptable subjects for verbs which are

not ordinarily associated with them, eg., "The glowing radioactive street lights the

way for ...". The process of determining whether a modified noun is a suitable

subject for an arbitrary verb seems beyond simple look-up techniques. The second

problem Is that even If the potential subject Is unmodified, the syntax and meaning

of the remainder of the sentence may constrain the behavior of the ambiguous pair

to be the oppc ,lte of what one might expect. For Instance, "water bolls" would be.

predicted to be a noun-verb pair, yet in "Water boils are dangerous parasites

which can be found In the Great Lakes.", It acts as a compound noun. It should also

be noted that occasionally semantic analysis will be unable to act as a filter. "Set

X" may be either a noun-verb pair or a noun and its appositive. The only way to tell

is to know the syntactic context the words appear In. In "Set X to the empty set.",

"set" acts as a verb; In "Set X is the empty set.", "set" acts a noun.

Introduction 6

1.2.2 The Interpreter

The Interpreter must be able to do the following:

1. Ask questions of tno user. This enables the system to clarify actions it has

teken and promp' the user for information is has omitted.

2. Understand three afferent types of use' statements'

User statements meant as steps in the program. These are translated into

primitives in the program specification language. This Is the basic method for

building the program specification. "Print the greatest number in the list"

must be translated into an "output" primitive with an argument representing

"the greatest number".

User statements directed as meta comments about the dialogue. These are

translated into case frames which express their intent. This allows the user

to control the flow of the dialogue. "Ask me about the structure of the d». "

base first." must be interpreted as a request for a different question, rather

than part of the program being written.

Finsily, some user statements should be understood as general comments

about the program rather than as explicit instructions on coding It. "The

program siores and retrieves data." Is meant as an overall description of a

program, not its first two steps.

3. Identify any objects and actions mentioned by the usf»- with their correct

refeient in the progtam specification. If the user says "Aft« printing It, print the

Introduction 7

list containing it.", the Interpreter must f'nd a referent for "it", determine which

'"ist" is meant, and match "printing It" to the appropriate operation In the program

specification.

4. Use the qu^ilon it has asked to aid in understanding the user's replies. In

processing a description of two data structures, which are referred to as the

"scene" and "concept", "The same as the concept." should be understood to mean

"The scene has the same structure that the the concept has." If the question

asked is "What is the structure of the scene?" However, the system must also be

able to accept more Information (in any order) than Its question has asked for, eg..

What Is the definition of the predicate "Reach"?

A node X is connected to a node Y If there exists a pair In the
graph such that X and Y are in the pair. X can be reached from Y
If X is connected to Y or If X can be reached from a node which is
connected to Y.

6. Learn definitions for any undefined words used by the user. If the system Is to

be robust, it must be able to Infer certain Information about words, rathet than

depend on knowing everything in advance, in the example above, the system

Inferred that "connected" !s a binary predicate on nodes. If It Is necessary to

preprog -m Information of this sort, the system will fall every time an unfamiliar word

Is used, even though the word occurs In a context In which Its meaning Is apparent,

6. Incorporate impllcl* Instructions from the user Into the program specification while

avoiding redundancy if the same instruction is later made explicit. Consider,

1. Print the result of the test, ask the user if this is correct, and
read in the user's response.

versus
2. Print the result of the test and ask the user If this is correct.

—-- ■-"-STO^JBH ^-::- —..

Introduction 8

In both 1, and 2., the next question the system should ask Is "What Is the structure

of the user's response?". In 1., there Is an explicit Input operation mentioned. In

2., the system must Infer the input operation because "ask" Implies both an output

and an input. The system must be able to supply an Input for case 2., but realize

that the user has already mentioned the input for case 1. This Is not as trivial as

Just checking for an input after every output generated from "asks", since If the

user says,

"Output the result of the test and ask the user if this cotrect.
Then read in another test item.",

the system must still ask for the structure of the user* s response.

7. Use a certain amount of programming knowledge to aid In Its construction of the

program specification. Understar.ding many of the user's replies will require

specific bits of programming knowledge. If the system asks, "What Is the exit test

of the loop", and the user replies, "Stop when 'quit' is typed", the Interpreter must

know that this means to test the argument of the (presumably one) Input operation

in the loop to see if it is "quit". If so, the loop should be exited. The same

information tells the Interpreter that the test should be Inserted Into the program

after the input operation.

1.3 Three Examples

This section consists of three brief examples1 Intended to Illustrate the extent of

the processing done by the system.

1 Every example In this paper was produced by the system.

^nfiriaiönürf

Introduction

WHAT IS THE NAME OF THE F-ROGRAM YOU WISH TO WRITE?

Write me a program called 'ntersecllon which reads a set of lists
of numbers and prints thv numbers which are in all cf them.

INTERSECTION
Al ♦■ READO
A4 •• The set of all A2 in all A3 in Al such that:

FORALL(Bl) 1MPL1ES(MEMBER(B1 Al)
MEMBER(AZ Bl))

For all A? 1n A4 do;
PRINT(A2)

Bl 1s a variable bound to A3.

A3 Is the generic element of Al.

Al Is a set whose generic element 1s a list whose generic element
Is a number.

Figure 1.1

An algorithm description and its program spscification

The top section of Figure 1.1 contains a description (In answer to the system's

question) of a proaram which finds the intersection of a set of lists of numbers. The

program rneclfiration for the example Is shown In Figure 1.2 on the following page.

It consists of a series of interconnected nodes which represent the various

components of the program, tach component type Is fully described in Chapter five.

For large programs, the program description is too bulky (and generally unreadable)

to exhibit, so a "pretty printed" version of It will be shown instead. A simple

program Is used to print the specification as an Algol like control structure with data

descriptions In English. The result of printing the specification In Figure 1.2 Is

shown beneath the algorithm description In Figure 1.1.

si^-^^^^i.

Introduction 10

* type PROCEDURE
name *♦-
def ini t ion *

* type SEQUENTIAL
steps *<-»*«-»*

1 t I
type NAME
value INTERSECTION

* type INPUT
args *

_I

i
* type COMPUTE

resul t *•)
assert ions #
on *

♦* tupe SET
t elenient *

* type LIST
etement «

* type NUMBER

* type ENUMERATE
steps #
on *

* type OUTPUT
args *

-»* type SET
element «

♦* type BOUND
boundto *♦-

* type FORALL
predicate *♦
bindings *

U* type NUMBER

* type IMPLIES
antecedent *♦
consequent *

* tui-.a MEMBER
element *—
set *

* tupe MEMBER
element *<—
set #

FIQUTB 1,2

"Write me a program called Intereection which inputs a
set of lists of numbers and prints the numbers which
ars in all of thsm."

'»■^—^^■^-

Introduction 11

The relation between the specification and Its "pretty printing" is apparent. As an

example, consider the printing of the ENUMERATE component. ENUMERATES are the

specification primitive for performing an action (the STEPS slot) on each element of

a set (the ON slot). To "pretty print" an ENUMERATE component, the printing

program merely concatenates,
For all

<^e ELEMENT of <the ON of ENUMERATE»
In

<the ON of ENUMERATE)
do:

<^e STEPS of ENUMERATE)

One of the points this example makes is that the best method for implementing the

user' s program Is not necessarily contained in the program specification. If the

program specification were Implemented straightforwardly, the resulting program

would be grossly Inefficient. The Intersection set would be created by cycling

through every list in the Input set, rather than just the first. The reason, of course,

is that the user has asked the system to write a program which finds a set

satisfying some assertions, but has not given a method for determining the set.

Therefore the system falls back on the method of testing each element in the set to

see If it satisfies the assertions. The Interpreter can accept more process oriented

program descriptions. Figure 1.3 contains a very low level description of an

"Intersection" program.

Introduction 12

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?

InferaBclion

□ESCRIBE INTERSECTION.

It reads a list X.

WHAT IS THE STRUCTURE OF THE GENERIC ELEMENT OF X?

A list of of numbers.

ARE WE FINISHED?

Set First and Output to the head of X. Let Rest equal the tail of X.
If First is empty, print Output and return. If Rest is smpty, set
First equal to the tail of First, set Rest to the tail of X, and go
back to the first conditional. If the first element in First is not in
the head of Rest then remove it from Output, set First to its tail,
set Pest to the tail of X and go to the conditional. Othsrwiss, set
Rest to the tail of Rest and return to the conditional.

INTERSECTION
X * REAOO
FIRST v HEA[i(X)
OUTPUT - HEAO(X)
REST <- TAIL(X)

Labell: If E0ÜAL(FIRST PHI)
Then PRINT(OUTPUT)

RETURNO
If EOUAL(REST PHI)

Then FIRST * TAIL(FIRST)
REST .- TA!L(X)
G010 Labell

If NOT(MEMBER(HEA[l(FIRST
HEAO(REST))

Then OUTPUT >- REMOVE(HEA0(FIRST) OUTPUT)
FIRST - TAIL(FIRST)
REST »• TAIL(X)
GOTO Labell

else REST * TAIL(REST)
GOTO Labell

REST is a Hsl whose generic element Is a list whose generic element
is a number.

OUTPUT is a list whose generic element Is a number.

FIRST 1s a list whose generic element 1$ a number.

X Is a list whose generic element 1s a list whose generic e'ement Is
a number.

Figure 1.3

A low level description of Intersection

I

Introduction 13

As a prelude to chapter five, note that even though this dialogue (unlike most the

system handles) translates fairly directly Into primitives In the program

specification, there are still several natural language problems embedded In It.

Different ways of specifying the same action:

Set X equal to Y. Go back to X.
Set X to Y. Go to X.
Let X equal Y. Return to X.

Reference problems;

...Its tail.

...remove it from Output.

...go to the first tonditionai.

...the conditional.

...the first element in First.

Language conventions:

Otherwise, set...

The Interpreter can handle more "structured" low level descriptions. Figure 1.4

contains an example.

Introduction 14

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?

Intersection

UESCRIBE INTERSECTION.

It reads a list X. X is a list of lists of numbsrs. Lat First equal
tha head of X and Output equal First. While Firet is not empty, set
Rest to the tail of X. Then wNIa Rest is not empty, if the head of
First is not a member of the head of Rest, remove it from Output and
sat Real to empty. Otherwise set Rest to the tail of Rest.

OOES THE SECONO LOOP BELONG IN THE TOP LEVEL OF INTERSECTION OR IN
THE TOP LEVEL OF THE FIRST LOOP?

In the loop.

ARE WE FINISHEO?

After the second loop, set First to the tail of First.

ARE WE FINISHEO?

Print Output after the first loop.

INTERSECTION
X f READO
FIRST .- HEAD(X)
OUTPUT - FIRST
While NOT(EQUAL(FIRST PHI)) do:

REST <■ TAIL(X)
While N0T(EQUAL(REST PHI)) do:

If NOT(MEMBER(HEAD(FIRST)
HEA0(R£ST)))

Then OUTPUT «■ REMOVE(HEAD(FIRST) OUTPUT)
REST * PHI

else REST - TAIL(REST)
FIRST ► TAIL(FIRST)

PRINT(OUTPUT)

REST 1s a list whose generic element is a list whose generic element
Is a number.

OUTPUT 1s a list whose generic element Is a number.

FIRST Is a Hst whose generic element Is a number.

X 1s a list whose generic element Is a list whose generic element Is
a number.

Figure 1.4

A more structured Intersection program

Introduction 15

In general, the program descriptions the Interpreter is asked to handle will be a

cross between high level descriptions like the first dialogue and low level

descriptions like the second two. The dialogues in Appendix A provide further

examples of this.

In the dialogue from Figure 1.4, the interpreter had to ask the user whether the

second loop was embedded in the first. More programming knowledge would have

supplied the answer for the Interpreter,2 It should have been obvious that the

description of the first loop was incomplete, since the exit test checked the value

of variable whose value remained unchanged in the loop. Such knowledge is beyond

the scope of the present parser/interpreter project. Instead, It is made available

to the Interpreter via the PSI system [Green 76].

1.4 PSi

The parser/Interpreter has been designed to run as a part of the PSI automatic

program synthesis system. The PSI system, which is being written as a group

project at the Stanford University Artificial Intelligence Laboratory, consists of a

number of different modules, one of which Is the parser/Interpreter system.

Together, the parser/interpreter and the other PSI modules form a complete

automatic programming system.

The most obvious addition supplied by the PSI system is the coding and efficiency

module which Is intended to produce optimized LISP or SAIL code from the program

2 As we have mentioned, the Interpreter has some programming knowledge; for
Instance, It knows enough to know It doesn' t know where the loop goes.

Introduction 16

specification. Thus the user is encouraged to use a very high level description for

his program since the specification specifies the performance of the desired

program, but not its implementation. [Barstow 77] and [Kant 77]

The remaining modules In PSi help support the the dialogues run by the

parser/interpreter. The parser/interpreter can run independently of then,, but its

performance is weak (or nonexistent) in the areas these modules were designed

for. The other PSI Modules are:

An English generator being developed by Richard Gabriel. The generator

should not be confused with the English data description printer used in

pretty printing the program specification. The data description printer uses a

"fill in the blanks" paradigm (X Is a Y with Z w'iose Q etc.), which is adequate

for Its purposes. The completed PS! generation system will include d program

explanation module which will displace the data description printer.

A programming knowledge module. This module Is responsible for checking

the consistency of the program specification, suppling questions to be asked

in case of inconsistencies, and answering questions whose answers can be

derived from Information about programming. [McCune 77]

A domain knowledge module which is being written by Jorge Phillips. This

module is analogous to the programming knowledge module except that it has

Information about the specii'ic type of program written, as opposed to

programming In general. It might know, for instance, that in a text editing

domain, when the user says "exit the file", he means "write all the changes

made onto the disk and then exit the file,"

»^.■.^^»iiiÄäÜHiää TU ■ T-
J
-'^ -■■-'- mmäm

Introduction 11

A tracos end examples module which enables the user to describe his

program In terms of examples and traces as well as English. [Phillips 78]

A dialogue moderator which coordinates the various PSI modules, chooses

which question to ask the user next, and processes the user's comments

about the dialogue supplied to It by the parser/interpreter. [Steinberg 78]

1,6 An Overview

1.6.1 Reader

Reader can be briefly described as a left to right parser that uses a combination of

top-down and bottom-up strategies. The method used at any point In a parse is

determined by the grammar writer. The grammar consists of a set of Lisp programs

which manipulate the data structures and data structure building primitives supplied

by the parser.

Reader is able to efficiently recognize a large subset of English because It seldom

needs to maintain more than one possible parse of a sentence. It should be

stressed, however, that Reader Is not completely deterministic3. Complete

determinism does not seem possible when dealing with a large grammar and

vocabulary in which most words can fulfill more than one syntactic role.

The characteristics which allow Reader to parse nearly determlnistically are listed

3 Almost all the nondeterminism arises from words which belong to more than one
word class; eg.. If a word can act as either a verb or a noun. Reader must try both
possibilities separately.

introduction 18

below. In Section 3.?., these characteristics are divided into essentially three

different categorios.

1. A sentence constituent Is only built when the parser knows that there
Is at least one other constituent that has already been built that can
accept the first as r modifier.

2. A constituent is attached (ie,, proposed as a modifier) to another
constituent only when the attachment is forced by the syntax of the
sentence. A simple example of "delayed attachment" occurs In the
sentence, "The program called Intersecticn...". The constituent "called
Intersection" Is not attached to 'the program" until the words following
"Intersection" require that the attachment be made.

3. Because of 2., when a constituent s attached to another, the parser
generally knows the reason for the attachment, and can use that reason
to guide It In making the attachment. For Instance, In "The program
called Intersection was written by George.", "was" forces "called
Intersection" to be attached to "The program". The reason for the
attachment Is to allow "fhe program" to be Ine subject of "was", so It Is
clear that "called Intersention" is to be attached as a relative clause
modifying "program", since if it were attached as the main verb, there
would be no place to put "was". In "The program called Intersection and
returned.", when "and returned" is read, the parser knows that the
clause "called Intersection" must be an active construction (as opposed
to the passive construction which leads to the relative clause
interpretation) so that It can be attached to "The program" as the
predicate of the sentence.

4. The parser uses one syntactic structure to represent more than one
possibility. In "The program callea Intersection ...", the structure "callsd
Intersection" simultaneously represents the predicate of the sentence
and a relative clause. Which interpretation to use Is determined after
more of the sentence had been read.

5. The parser provides for local ambiguity in the parse structure that It
returns. For Instance, "I know that ice is dangerous" could mean either
"/ know ice is dangerous." or "/ know that that (particular) ice Is
dangerous.". The parser finds both Interpretations following a single
parse path, and continues following a single path after the ambiguity has
been reached by preparing an output structure In which the subject of
"Is" Is a choice between "that Ice" and "ice".

As we have Indicated, occasionally Reader must pursue more than one parse path at

a time. To avoid analyzing the same sentence constituent each time It Is

Introduction 19

encountered on a different parse path, Header uses a variation of the well-formed

substring table idea (section 4.4). This enables a constituent which has been

analyzed to be effectively shared by each parse path that can use It.

The parser-interpreter interface is only called to rale structures which are about to

be attached to other structures. Structures are attached to other structures only

when the syntax of the sentence forces the attachment These two facts Imply

that the parser-interpretei interface will only be asked to evaluate those parses

which are syntactically equivalent''. For a simple example of this, consider "The

number In the list the program printed was ..." "Was" forces the "The number", "In

the list", and "the program printed" to be attached to one anotner for the purpose

of allowing "The number" to be the subject of "was". The parser-interpreter

interface must choose from between structures which represent the meanings "77>e

number which was printed and In the list." and "The number which wes In the

printed list." Since each structure plays the same syntactic role, namely that of a

noun group, any sequence of words following "was" will lead to a parse for either

both or neither of the two interpretations.

Reader's interface with its Interpreter is a program called Format which rates each

syntactic structure built by Reader before It is attached to another. The criteria

measurea by the Interface are;

1. Does the verb of the structure (if there is one) have enough of Its
cases filled in to properly specify the action It represents? For
example, the verb "put" requires a case which specifies where the
object c! "put" was put.

2. How appropriate are the noun groups in the structure? For Instance,
the noun group "water boils" would be judged inappropriate.

4 Two parses are syntactically equivalent if and only if the end of the sentence
has been reached and both are successful parses, or If both will lead to a
successful parse on the same sentence endings.

introduction 20

3. How aorroprlate are the contents of the cases of the structure's
verb. For instance, "street" Is an Inappropriate subject for "light".

The results of the rating are used to pick the most meaningful structure from among

oqulvalent syntactic possibilities. Structures which evaluate poorly can still be

included in the parse of the sentence, as long as there are no other parses which

contain structures with be^er evaluations. The parse of "Water bolls are very

small." contains the "Inappropriate" noun group "water boils", since there Is no

syntactic Interpretation of the sentence which does not use "water bolls" as a noun

group.

1.6.2 The Interpreter

This section briefly touches on reference nnd concept matching, two of the

subjects mentioned In section 1.2.2, as an introduction to the methods used by the

Interpreter. They have been singled out because they are the basis of all higher

level Inferences performed by the Interpreter. Chapter 6 covers much more In

greater detail.

The interpreter's primary means of understanding user statements is via a set of

case frames and concepts. The case frames map English verbs and their modifiers

Into the concepts, which can then be incorporated hto the program specification,

r^ a simplified example, consider the concept of an Input operation, denoted

#INPUr. For now, we will assume that #INPUT takes has descriptors. Its arguments

(ARGS), Its Hacc In the program specification (STEPOF), and the Input device

(DEVICw.

■-■■■■:-^-

Introduction 21

«INPUT
DESCRIPTORS: ARGS (isattOATA)

STEPOf (isa «ALG)
DEVICE (isa «DEVICE)

2«TYPE
CASES: SUBJECT -♦ DEVICE

OBJ ■♦ ARGS
ISA «INPUT
DEFINITION-OF TYPE

Figure 1.5

A concept and a definition which can be mapped to it.

Figure 1.5 shows the concept and a definition of "type" which can be mapped to It.

The definition says that If we have an instance of the verb "type", and its cases

(as determined by the parser) can be mapped successfully (le., the contents of the

cases satisfy the criteria In the descriptors of the #INPUT), then we can view the

verb and Its cases as an instance of the #INPUT concept and take the appropriate

action. Concepts can represent more than a singi'- primitive in the program

specification language. For instance, "request" in "I'll request a story by giving a

key word." maps into an INTERCHANGE concept which Involves an INPUT and

OUTPUT operation with a calculation of what should be output In between.

Noun and pronoun reference is facilitated by the context supplied by the selection

criteria of the descriptors of a concept. In,

"It reads in a trial-Item, matches the Input to the Internal concept
model, und prints the result of the match."

a referent must be found for the noun "input". There are two possibilities: the

INPUT created by the "read", and the trial-Item which Is the argument of the "lead".

Since "match" Is mapped to a concept (#PREDICATE) which 'equlres that Its ARGS

descriptor be a #DATA (rather than an »ALGORITHM like the "read") the ambiguity is

resolved.

Introduction P.2

When the choice among possible referents cannot be decided on the basis of the

very general type checking outlined above, more sltuational checks are needed.

Consider,

"It reads a list of numbers and a list of strings. If X Is in the list
then..."

There are two referents for "the list"; the number list and the string list. Since

they both satisfy thr selectional criteria5 for the second argument of the #MEMBER

"is In" maps Into, something more context dependent is needed. Each concept hps

a second layer of selectional requirements which are called when simple type

checking falls to narrow down the field of choices sufficiently. For #MEMBER, the

check succeeds If the first argument has the same type, or is referred to In the

same way, as the generic element of the second argument. So in the example, If X

were a string, "the list" would be matched to the string list, and If X were a number,

"the list" would be matched to the number list.

In the event of a referent which remains ambiguous after ail tests have been

applied, the time honored method of falling back on the most recently mentioned

possibility Is used. Hopefully, the speaker has felt free to use a pronoun In an

ambiguous situation because the referent he had In mind was the most recently

mentioned possibility.

They are both sets.

23

2. Parsing

Naairal language processing begins with parsing. Determining the meaning of a

sentence requires knowing the main verb of ihe sentence and how the rest of the

words In the sentence relate to it. In this system, for example, the mapping of the

sentence "Print the list." into a structure which is an OUTPUT operation whose

argument Is the referent of list Is dependant on knowing that »he main verb of the

sentence is "print", the syntactic object of "print" Is "the list", and the sentence Is

an imperative.

2.1 The Basic Algorithm

A parser allows one to store and utilize the Information about sentence structure

needed to interpret sentences properly. The information that is stored Is referred

to as the grammar, while the methods for applying the grammar to a particular

sentence are usuaily thought of as the parser. Reader Is organized somewhat

differently from most parsers1 In that Reader Is not syntax directed. Writing a

grammar for Reader consists of specifying the processes which build the structure

of an input sentence. Thus the grammar writer specifies how the grammar Is

actually applied to a sentence, as well as the grammar Itself. Reader's function Is

to provide the data structures the grammar Is Intended to use, the control structure

which activates the grarmar, and programs for manipulating the data structures.

The two basic data structures that Reader supplies are the modifier list and the

The parsers of Wlnograd and Riesbeck are also exceptions. See section 4.6.

Parsing 24

stack. The modifier list Is a list that the grammar writer can use to store words

whose use has not yet been determined. The stack Is used to store the structure

built up while the parse Is In progress. The next section describes the stack In

detail. A stack, a modifier list, c message about what has just happened to the top

of the stack, and a message concerning the entire stack constitute a partial parse.

The top of the stack message Is usually a Lisp atom, eg., message = NOUN, VERB, or

CONJUNCTION means that a noun, verb or conjunction has just been added to the

top structure In the stack. The stack message Is a list of features that the stack

has. Each feature Is represented by an atom. Example features are "the stack

contains a verb structure with a verb that can accept a clause as one of its cases"

and "the stack represents a sentence which is an interrogative".

The parse is performed by adding each word In the input (going from left to right) to

the partial parse formed by the addition of the previous words in the sentence. The

first word in the sentence Is applied to "the initial partial parse", which consists of

the "initial steck" (a stack containing a single structure which will eventually hold

the main verb of the Input sentence), and an empty modifier list. The "top of the

stack message" for the initial stack is BEGIN, and the message concerning the

entire initial stack Is NIL, meaning that the stack has not acquired any features yet.

The process of adding words to the partial parse is controlled by the grammar. The

grammar consists of a set of programs, one for each syntactic word class2, which

contain the rules and conditions whic<i specify when and how to add a particular

word class to a partial parse in a given configuration. In general, there may be more

2 the word classes the parser uses are VERB, PREPOSITION, NOUN, MODIFIER,
ARTICLE, CONJUNCTION, and PUNCTUATION.

Parsing 26

than om way a word class can be added to a partial parse. It Is also true that

many words belong to more than one word class. For Instance, the word "like" can

be a noun ("His likes are different than mine."), a verb ("She likos him."), a

preposition ("a man like him."), a conjunction ("He plays like Jack used to."), or a

modifier ("men of like temperament."). These two facts (a word may be added to a

partial parse In more than one way, and a word may belong to more than one word

class) Imply that the parser should be able to handle more than one partial parse of

the Input at a time. However, it should be kept in mind that one way to achieve an

efficient parsing process Is to write a grammar which minimizes the number of

possible parses the parser has to follow at once, while at the same time writing a

set of rules which adequately express English syntax. Section 3.2 shows some of

the methods used by Reader's grammar to avoid a multiplicity of partial parses.

The partial parses are placed on a list called the "partial par^e list". The parser' s

control structure Is as follows:

1. sentence >- the list of words comprising the input sentence.

2 partial-parse-list •- a list of the initial partial parse.

3. WHILE sentence DO

4. Apply the next word in sentence to each partial parse in
partial-parse-llst, using the program associated with each
word class the word belongs to.

6. Reset sentence by removing the first word In It.

6. Reset partial-parse-list to a list of the partial parses formed
In step 4.

7. Output partlal-parse-llst.

Step 6. does not imply that the grammar programs cannot look ahead In tha Input

Parsing 26

sentence and use more than one word at a time. If a grammar program continues a

partial parse P by applying the first n (n > 1) words In sentence to It, a message Is

left which prevents the next n - 1 words from bstng applied to P. This presentation

of the control structure Is accurate with the exception that stens 6. and 7. are a

bit more complex than they have been mada to appear. They will be explained In

more detail In later sections.

The control structure Indicates that the parallel processing Is invisible to the

giammar writer. This means that in writing the grammar programs, the grammar

writer need only concern himself with one stack and one modifier list, since each

grammar program is called on each partial parse In partlal-parse-llst In turn.

2.2 Stack structures and collapsing

The stack Is the major data structure that Reader uses. Its function is to store the

structures built up during the parse until it is decided how the structures should be

attached to one another. This treatment allows for easy handling of a certain type

of ambiguity that arises frequently in English utterances.

Consider the sentence, "I had another look at it". It can mean either "/ asked

someone else to look at it" or "/ took one more look at It". The ambiguity arises from

the different uses of "had", "look" and "another" In each interpretation.

The sentence "John spoke to the man with Bill" is ambiguous in a different way. It

might mean "John and Bill spoke to the man." or "John spoke to the man who was

with Bill." In this sentence the ambiguity derives from the fact that "with Bill" can

Parsing 27

be used to specify either who acted with John, or who was near the man. In each

meaning, tne words of the sentence have been used in the same fashion.

Ambiguities of this sort, one constituent of an utterance being a possible modifier

for more than one word In the utterance, have been referred to as "permanent

predictable ambiguities" In [Sager 73].

The stack allows Reader to handle ambiguities of the second kind by allowing for

the structuring of most of the constituents of the sentence before It Is decided

which words they will modify. The elements of the stack are called stack

structures. Two different types of stack structures are employed by Reader:

preposition structures and verb structures. The sentence "John lost the toy he

bought In the woods on Sunday." would be parsed into the following stack:

4.[on Sunday]
3. [in the woods]
2.[he bought]
1. [John lost the toy]

1. and 2. would be represented by verb structures and 3. and 4. by preposition

structures. Verb and preposition structures can be filled In as follows:

Verb structures Preposition structures

noun3 noun
noun2 prep
nounl adverbs
verb-group measure
adverbs message
cases
function
measure
message

The noun slots are filled by noun groups. A noun group consists of a list
of the head noun followed by its modifiers. A verb may have one, two or
three of its noun slots filled. A preposition may have Its noun slot filled
or not.

i

The verb-group slot Is filled by a list of verbs. Each verb consists of a
root and an ending.

Parsing 28

The adverbs slot Is filled by a list of modifiers of the verb group or
preposition.

The cases slot Is filled by the cases the verb has that are introduced
by prepositions and conjunctions.

The function slot contains the function of the verb structure. MAIN Is
used to indicate that a verb structure holds the main verb of an
utterance, RC Indicates a verb structure Is being used as a relative
clause, etc.

The prep slot holds the preposition of a preposition structure.

The message slot contains information relevant to the stack structure.
Its contents are controlled by the grammar. We will see examples of Its
uses when we discuss the grammar.

The measure slot contains the parser's rating of each structure. The
rating is used to help the parser choose among competing parses. It will
be defined in section 4.1.

Throughout this paper, 3'ack structures will be printed as a collection of slot-value

pairs. Empty slots will not be printed. Under this scheme, the stack for the

sentence above would be printed as

PREP: ON
4. NOUN: SUNDAY

PREP: IN
3. NOUN: (WOODS THE)

VERB: ((BUY ED))
NOUN1: HE

2. FUNCTION: RC

VERB: ((LOSE ED))
NOUN1: JOHN
NOUN2: (TOY THE)

1. FUNCTION: MAIN

"John lost the toy he bought In the woods on Sunday,"

Parsing 2Q

The stack could be Interpreted In several different ways:

a. John lost a toy. He bought It In the woods. He bought It on Sunday.
b. John lost a toy. He bought It In the woods. He lost It on Sunday.
c. John lost a toy. The toy was lost on Sunday. It was lost In the woods.

John bought the toy.
etc.

The process of determining which of the interpretations was actually Intended by

the speaker Is referred to as collapsing the stack, since finding the correct

interpretation of the stack consists of red^-.ng the stack to one stack structure. If

we accept meaning c. as the proper interpretation of the above sentence, then the

single stack structure that represents that meaning of the stack is

VERB: ((LOSE ED))
NOUN1: (TOY THE {BUY PN [SUB HE]))
NOÜN2: JOHN
CASES: ((WHERE (IN (WOODS THE)) (WHEN (ON SUNDAY)))
FUNCTION: MAIN

where "he bought" specifies which toy, "on Sunday" specifies when the toy was

lost, and "In the woods" specifies where the toy was lost.

The parser must consult with Its deductive system3 during a Collapse of the stack.

The reason that the third meaning seems to be right is that one is unlikely tc buy a

toy in the woods, since there usually aren't any stores located in the woods. The

parser also needs to know that Sunday Is a possible date rather than a location for

the woods. There is, however, some syntactic knowledge embedded In the stack.

The parser never considers.

3
The deductive system for the Reader/Interpreter system Is the Interpreter. In

discussing the parser in general, we will use "Its ded ctUe system" to mean the
program which calls the parser and Is able to reason about the subject domain of
the sentences being parsed.

Parsing 30

d. A toy was lost In the woods by John. John had bought the toy.
The toy was bought on Sunday.

as a possible meaning for the sentence since d. requires that stack structure 4.

modifies 2,, while 3. modifies 1. English syntax does not allow such crossovers, so

the parser never has to consider d. as a possible meaning.

The communication channel between the parser and the Interpreter Is a function

named Format. Format is called to evaluate a structure just before It Is attached to

another structure during a Collapse.'' The algorithm used by Collapse ensures that

once a structure has been attached to another, it cannot be modified (le., have

another structure attached to it). Formatting serves the dual purpose of preparing

a structure for output, and providing the deductive system with an opportunity to

rate the likelihood that the speaker Intended the words In the structure to be

grouped with each other. The rating of a formatted structure Is merged with the

contents of the measure slot of the structure it is being attached to. Thus the

measure slot of a structure contains the ratings of all the structures that have

been attached to that structure. The measure of a structure is discussed In

section 4.1.

Collapse chooses which one of the possible stack structures the stack could be

collapsed to by picking the structure with the best measure. If there Is more than

one partial parse active at the end of the sentence, Reader returns the one(s)

whose collapsed stacks have the best measure. The format of a preposition

structure Is Its measure and a list of the preposition, adverbs and noun; the format

of a verb structure Is Its measure and a list of the rout of the main verb, the tense

" Format Is also called evaluate the final structure obtained from the parsing
process.

Parsing
31

of the verb group, the verb's adverbs, and the verb's cases. Measure Is only used

to select from among syntactically equivalent parses, so If the only reading a

sentence admits results In a bad measure, a parse will be found anyway.

When the stack for "John lost the toy he bought In the woods on Sunday " Is

collapsed, the measure of any resulting structure which includes structure 3. (In the

woods) attached to structure 2, (he bought), will be worse than those that don't,

since the measure of structure 2. modified by structure 3. will be "unacceptable"

(see section 4.1) since the parser's deductive system would "know" that "the

woods" does not satisfy the requirements that "buy" has for places where one can

buy things. Section Ö.5 explains how this "know" Is Implemented In the

Reader/Interpreter system.

We can now mention the complication referred to in step 7. of the control structure

presented in section 2.2. Step 7. was originally "Output the list of partial parsed".

What really happens is that Reader collapses the stacks associated with each

partial parse, each structure resulting from the collapse Is formatted, and then

Reader then outputs a list of the formatted structure(s) with the best measure.

There are two points about the stack which should be emphasized:

1. There are only two reasons for collapsing the stack: erther the end of
the sentence has been reached, !n which case the stack is collapsed
down to one structure, or the application of a word in the sentence to a
partial parse results in that word being added to a stack structure which
Is not at the top of the stack. In the latter case, the stack Is collapsed
down to the structure that is receiving the word.

2. Any two structures resulting from the collapse of a stack are
syntactically equivalent. This means that either both or neither will
result In a parse ot the sentence, so we are Justified In using semantics
to discard all but one of the structures resulting from a collapse, since
syntactic Information will not enable us to choose between them.

Parsing 32

2.3 Reader's output

2.3.1 Cases

Given a sentence S, Reader's output consists of the main verb of S, together with

Its cases. If S Is the simple sentence, "Bill hits John", then Reader's output would

be the parse below.*

(HIT NN
[SUB BILL]
[OBJ JOHN]

>

The open bracket, "{", signals the beginning of a presentation of a verb and Its

cases. NN is a tense marker whose meaning will bo explained below. The SUB case

(cases are Introduced by square brackets, "[') of "hit" Is "Bill" and the OBJ case Is

"John".

We are using "case" In a different sense than most of the current literature does.

In the literature, "case" is usually used to refer to "deep case", a concept

popularized by Fillmore in [Fillmore 68]. A good definition of "deep case" can be

found In [Bruce 75]; "The deep cases are binary relations which specify an event

regardless of the surface realization of that description as a sentence or noun

phrase". To see exactly what this means, we will consider a number of sentences

Involving the verb (event) "hit". For this example, we will suppose that "hit" has

three deep cases: the entity that Is receiving the effect of the hit (OBJECT), the

thing the object Is being hit wit (INSTRUMENT), and the entity that Is instigating

the hitting (AGENT), Then In

1. BUI was hit by the hammer.
2. John hit Bill with the hammer.
3. Bill was hit with the hammer by John.

Parsing 33

4. The hammer hit Bill.
6. John hit Bill.

"Bill" is the OBJECT In all five sentences, "hammer" is the INSTRUMENT In the first

four sentences, and "John" is the AGENT in sentences 2.,3. and 5. Consider the

knowledge needed to choose the cases of a "hit", in sentence 6., the AGENT Is

distinguished from the OBJECT by their relative positions about the verb. The

surface structure of the sentence, then. Is one source of information in determining

a verb' s cases. It is obviously not the only source. Sentence 4. has the same

surface structure as sentence 5., yet the noun preceding the verb is considered

the INSTRUMENT, ratt jr than the AGENT. Furthermore, If wn **y,

"George went berserk. He bettered John Into unconsciousness,
picked him up, and hurled him at Bill. John hit Bill.",

then John is the INSTRUMENT of "hit" in the last sentence. Therefore, determining

cases requires the surface structure of the sentence as well as Informttlon about

the objects the sentence refers to, and the context the sentence was uttered In,

Reader produces a set of cases which are derived from the surface structure of

the sentence. A deductive system can then use Reader's cases in combination

with the information t has about the concepts mentioned In the sentence to derive

Its own cases.

The three prinary cases used by Reader are SUB, OBJ and IOB (indirec'c object). In

a passiv.« sentence, one in which the verb group Is a verb phrj.se whose last two

verbs are the verb "to be" and the main verb Inflected with an "ed" or "en" ending,

the OB., precedes the verb and and the SUB is introduced by "by". If the sentence

Is rot passive, the OBJ follows Immediately after the verb and the SUB precedes

the verb. The IOB Is e noun that can modify a verb, without needing a preposition to

Introduce It, only In the presence of both the SUB and OBJ.

Parsing 34

"John" is the 103 in "Bill gives John the book." since we can not say "John gives

Bill." to mean that "Bill received something from John.", but can say "Bill gives the

book." to indicate that "A book was given to someone by Bill. Similarly, John Is the

I0B In " pr ?s the cat John" since we can't say "Bill names John." to mean that

"Bill has glvfir name JOHN to something.", but can say "Bill names the cat." to

indicate that Bill given some name to the crt. Another way to look at this Is that

(without resorting to prepositional you cannot say (using the verb "give") who you

are giving something to without mentioning what y^u are giving, and similarly you

can't mention what you are laming something without mentioning the thing being

named. The reversal in the normal order of I0B and OBJ that /trbs luce "name"

exhibit is cc isidered a syntactic property of the verb. Unless a verb Is tagged with

this property, Reader assumes that it takes Its OBJ and I0B in the normal order.

With the exception of "by" and "to". Reader does not try to assign meaningful case

names to nouns Introduced by prepositions, since the meaning of the modification

between a verb and a prepositional phrase depends on both the verb and the

object of the preposition. The deductive system Is expected to supply a case

name whou It judges the appropriateness of the modification.

in passive sentences, "by" frequently introduces the SUB. When Reader parses

such a sentence it returns the object of "by" as the SUB of the vrb if the

deductive „yst'iti agrees that the object could serve as the SUB. Given the

sentence "Bill was shot by Jack", Reader would ask the deductive system whether

Jack could shoot Bill. If the answer were "yes", Jack would appear as the SUB

case of "shoot". Change the sentence to "Bill was shot by the door" and the

deductive system would answer "No, doors cannot shoot", enabling Reader to use

"by the door" to specify the location of the snooting.

.- •■ ■

Parsing
35

"To" Is treated similarly to "by" by Reader in that Reader assumes that "to" always

It -winces an IOB If the syntax of the sentence permits this. Therefore,

"Bill gives John the book" and "Bill gives the book to John" parse to

{GIVE NN
[SU? BILL]
[IOB JOHN]
[OBJ (BOOK THE)]

I

{GIVE NN
[SUB BILL]
[OBJ (BOOK THE)]
[IOB JOHN]

)

respectively.

The parses for the five exemple sentences are:

Bill was hit by the hammer.

{HIT PN
[OBJ BILL]
[SUB (HAMMER THE)]

)

John hit Bill with the hammer.

{HIT PN
[SUB JOHN]
[OBJ BILL]
[PREP (WITH (HAMMER THE))]

>

Biil was hit with the hammer by John.

{HIT PN
[OBJ BILL]
[SUB JOHN]
[PREP (WITH (HAMMER THE))]

>

The hammer hit Biil.

{HIT PN
[SUB (HAMMER THE)]
[OBJ BILL]

)

John hit Bill.

{HIT PN
[SUB JOHN]
[OBJ BILL]

>

Parsing 36

We can see that SUB corresponds to either AGENT or INSTRUMENT, and that OBJ

corresponds to OBJECT in the case system we had made up for "hit".

To translate Reader's cases into the "hit" case system one would only have to

decide which SUBs were INSTRUMENTS and which were AGENTs, equate OBJECT

with OBJ, be aware that "with" can introduce the INSTRUMENT, and be able to

distinguish when "with" refers to an instrument and when it doesn't. A non-trivial

task, since we could say

"He hit John with Bill" (accomplice)
"He hit John with vim and vigor" (method)
"He hit John with malice" (emotion)

Section 5.2 explains how Reader's cases are mapped Into the Interpreter's case

system.

Reader actually uses more cases than than the primary ones mentioned above. But

the other cases are essentially ad-hoc ones that Reader uses to store modifiers of

the verb. Any preposition or conjunction (not top-level) defines Its own case. As

an example, consider "John pushed Janet into the closet because he thought Bill

would see her.", which is parsed to:

{PUSH PN
[SUB JOHN]
[OBJ JANET]
[PREP (INTO (CLOSET THE))]
[BECAUSE {THINK PN

[SUB HE]
[WHAT {SEE (NN WOULD)

[SUB BILL]
[OBJ HER]

}]
>]

>

John and Janet are the SUB and OBJ of push. "Into the closet" Is a preposition case

Parsing 37

of "push'1, filling In where the OPJ was pushed to. The conjunction "because" fills In

the presumed reason the event took place, and Is considered a case of the verb. It

contains the verb clause whose main verb Is "think". "He" Is the SUB of "think".

"What the SUB Is thinking" Is stored In the WHAT case of "think" The contents of

the WHAT case Is the verb clause whose main verb Is "see".

2,3.2 Tense markers

Many verb clauses contain verb groups rather than just single verbs A verb group

can be composed of adverbs, modals and other verbs. The Information contalr .id In

a verb group that a deductiva system needs is a list of adverbs and modals, the

root if the main verb, and the tenso of the verb group. Reader saves the modals

and adverbs and returns them in appropriate slots In the parse structure. The root

of the main verb of the sentence is similarly returned. This means that Reader must

supply the tense of the verb as a separate piece of information. Reader uses six

basic tense symbols. These are shown in Figure 2.1, together with an example of

the verb group each represents.

Parsing 3t

VERB GROUP TENSE

I walk NN The present tense of the verb without any
auxl 1lary verbs.

I walked PN The past tense of the verb without any
auxiliary verbs.

I will walk FN The auxiliary "will" followed by the
unlnflected main verb.

I have walked NP The present tense of the auxiliary verb "hav°"
followed by the main verb in past tense.

I had walked PP The past tense of the auxiliary verb
followed by the mam verb in past tense.

I will have walked fP The auxiliary "will", followed by the auxiliary
"have" followed by the main verb m past tense.

Figure 2.1

Verb lenses

The tense markers are motivated by an analysis found in [Bruce 75]. Simplified, It

says that a tense consists of a set of binary relations on a set of reference points.

For Instance, the tense of "had walked" consists of the relations on the three

reference points: "the time of the speech" (SI), the "time of the subject" (S2),

and the "time of the action" (Sa). S2 is in the Past of SI, and S3 is in the Past of

S2, so the tense of the verb group Is Past-Past or PP. Similarly, the tense of "have

walked" Is Now-Past, or NP, since the "time of the subject" is the same (Now) as

the "time of the speech" and the "time of the action" Is in the Past of the "time of

the subject". To see how this works, consider the sentences:

1. George, the club president, has walked through these halls. (NP)

2. George, the club president, walked through these halls. (PN)

. ars'ng 39

In 1., the "tlrrte of the action" Is in the past of the "time of the subject" so that we

may not assume that George was president when he walked In these halls, but we

do know that he Is president now, since the time of the subject and speech are the

same. In 2., the time of the action and subject are the same, so we know that

George was president when he walked through these halls, but Is not necessarily

president now.

We get six more tense symbols by considering verb groups whose main verb ends In

"ing". These tenses are represented by appending a "C" (continuing aspect) to

the tenses aoove:

VERB GROUP TENSE i

I am walking NNC

1 was walking PNC

1 will be walking FNC |

I have been walking NPC 1

1 had been walking PPC

1 will have been walk Ing FPC

FigufB 2.2

Tenses for verbs with a continuing aspect

When a verb Is used as an infinitive, eg., "to hit" In "Bill wants to hit John", the

tonse marker returned is "INF". When a verb appears with an "Ing" ending »»nd no

auxiliary verbs, as In "The man sitting on the chair...", the tense marker returned Is

"CC" (an arbitrary symbol). In terms of tense markers, passive constructions are

Indistinguishable (the order of the cases determines whether a construction Is

passive or not) from regular constructions, so the tense of "is walked" Is equivalent

Parsing 40

to the tense of "walks", namely NN. Verb groups consisting of the auxiliary verb

"do" and an uninflected main verb (eg., "He did go...") are given the tense of the

auxiliary "do".

We have left out tenses which require the verb "to go" as an auxiliary verb. The

reason is that verb groups using "go" as an auxiliary are ambiguous. A verb group

like "I am going to walk..." might mean either "in the future some time, I will walk." or

"/ am actually going to some place (the beach, for zxample) In order to walk".

Rather tnan try to resolve this anblguity, Reader treats the infinitive as a case of

the verb "go" and expects the deductive system to be aware of the possible

ambiguity and to have enough information to resolve it. Therefore "I am going to

walk" Is parsed as

{60 NNC
[SUB 1]
[INF {WALK INF

[SUB Imatch lo_SUB]
)]

)

The infinitive clause "to walk" Is treated as a case of the verb "go" (INF). The

system reading the parse must be aware that it can be interpreted as though the

main verb were the verb of the INF case ("walk"), with a tense derived from the

verb group "am going to walk". The SUB of "walk" is a dummy noun that should be

matched to the SUB of "go" (I). The ambiguous situation is easy to recognise. It

occurs whenever the main verb of clause is "go", and the clause has two cases,

SUB and INF.

Some temporal information Is contained In the cases of the verb rather than the

tense. "I went yesterday" parses to

Parsing 41

{GO PN
[SUB I]
[WHEN YESTERDAY]

>

so that the exact time In the past that the action occured In Is specified by the

WHEN case.

The verb "have" often occurs !n verb groups as a modal. "I have to go away"

essentially means "I must go away". When "have" is used as a modal, it Is

unambiguous. Therefore, when "..have to verb..." occurs as a verb group. Reader

returns verb as the main verb, assigns it the tense of the verb "have", and places

the marker "HAVE-TO" in its adverb slot. "I will have to leave" parses to:

{LEAVE PS (HAVE-TO)
[SUB I]

I

This does not mean thai every time the phrase "have to verb" appears in a

sentence that "have to" will be treated as a modal. The noun phrase "The book I

have to give1' would be parsed into a three structure stack:

VERB: ((GIVE))
3. FUNCTION: INF

VERB: ((HAVE))
NOUNl: I

2. FUNCTION: RC

NOUNl: (BOOK THE)
1, FUNCTION: MAIN

The stack can be interpreted in two different ways; "The book I must give." (3.

attached to 2 attached to 1), or "The book I have In my possession which I will

give.", (3. and 2. attached to 1. independently). Only the first Interpretation treats

"have to" as a modal.

Parsing 42

The tense contains all the Information in the sentence, yet leaves the decision of

what to do with it for the system using the parser. For example, if the tense of a

statement is NN the system can infer that a narrative is taking place, that the

action described in the statement is habitual, etc.

2.3.3 Noun groups

Reader uses a different representation for noun groups than most parsers. To

Reader, a noun group Is a list whose first element is the head noun of the group, and

whose remaining elements are the modifiers of the head noun. The difference In

representation iies In the fact that Reader does not structure the modifiers that

preceded the noun in the original sentence.

Therefore, "The messy groen garbage crn cover" is parsed as

[NOUN (COVLR THE MESSY GREEN GARBAGE CAN)]

since Reader does not try to determine whether this means either

1. the cover of a can used for messy green garbage.
2 the messy cover or a can used for green garbage.
3. the messy green cover of a can used for garbage.
4. the messy ccver of a green can used for garbage.
5. the cover of a messy green can used for garbage.
6. the cover of a messy can used for green garbage.

Instead, It allows the deductive system to structure the noun group wh^n the stack

entry containing the noun group is Formatted (section 4.3). This Is necessary to

avoid needless ambiguity. The sentence "A man people can trust Is usually

dangerous" can be parsed (correctly) as;

Parsing *3

{BE NN (USUALLY)
[SUB (MAN A {TRUST (NN CAN)

[SUB PEOPLE]
>)]

[DES DANGEROUS]
)

But unless the parser can discover from the system that there is unlikeiy to be "a

man people can trust" (trust modified by can, people, man and the) it will also find

{BE NN (USUALLY)
[SUB (TRUST A KAN PEOPLE CAN)]
[DES DANGEROUS]

}

since "man", "can", and "people" are nouns, and therefore potential modifiers of

"trust". The modifiers that followed the noun in the original sentence are structured

by Reader, with help from the deductive system. This is necessary since Reader

must know whether a sentence constituent coming after the noun modifies it, the

verb the noun modifies, or some other constituent in the sentence. "The relation In

the concept that Is marked 'possible'." Is parsed as:

[NOUN (RELATION THE (IN (CONCEPT THE))
(MARK PN

[OBJ THAT]
[I0B "POSSIBLE"]

))]

In a context where the deductive system was able to determine that relations had

markings and concepts did not, and as:

[NOUN (RELATION THE (IN CONCEPT THE (MARK PN
[OBJ THAT]
[I0B "POSSIBLE"]

)))]

in a context where the deductive system thought that concepts were more likely to

have markings than relations. The "closer" modification is also the preferred one In

the absence of any information about whether concepts or relations have markings.

Parsing 44

The point here is that each modifier (at top levei in the noun group Hat) coming after

the noun 5 modifies the noun independently.

Reader's technique of not structuring noun groups as they are encountered allows

it to parse more efficiently than a parser that gets Involved in the structure of noun

groups Immediately. Suppose we are given a sentence beginning with "The messy

green garbage can cover...". A parser that started out by trying to parse for B

structured noun grouc would Immediately get bogged down trying to determine which

of the six or more poüsiblüties the phrase represented. It would have to call In the

deductive system, which would then start looking for instances of green garbage,

messy cans, etc. By delaying the structuring until later. Reader can provide the

deductive system with more Information (information Including the main verb of the

clause. Its cases and the case of the unknown noun group) to guide itj search In

determining the structure of the noun group. And, if the entire sentence happened

to be "The messy green garbage can cover the earth.", no time will ever be wasted

structuring the noun group.

2 3.4 Choices

Occasionally, a sentence contains an ambiguous constituent whose ambiguity can

be restricted to a small segment of the parse structure. When this happens.

Reader returns one parse structure, and offers a choice between the ambiguous

constituents. This leads to a more efficient parse, and enables the system reading

the parse to compare the different meanings of the sentence easily, since the

choice clearly shows where the parses differ. Here are two examples of this idea:

5 The non pretty-printed version of the parser output contains a marker between
the modifiers which come before and after the noun.

Parsing 45

"I knew that Ice was slippery." could mean either "I knew that that Ice was

slippery" or "I knew Ice was slippery". If the deductive system Is unable to

determine which noun group it prefers at the time it is asked to structure the noun

group, Reader would return the following parse, offering a choice for the SUB of

"be".

(KNOW PN
[SUB I]
[WHAT {BE PN

[SUB («CHOICE ICE
(ICE THAT)

)]
[DES SLIPPERY]

>]
}

"The man hitting Janet angered Bill" could mean either "The man who was hitting

Janet angered Bill" or "The man's hitting of Janet angered Bill". Reader represents

this as follows:

{ANGER PN
[SUB («CHOICE {HIT CC

[SUB (MAN THE)]
[OBJ JANET]

)
(MAN THE (HIT CC

[SUB liiialch_lo head_noun]
[OBJ JANET]"

))
)]

[OBJ BILL]
>

The first choice Is the action "hit". The second choice Is "man" modified by "the"

ami a verb clause with a dummy SUB (!match_to_head_noun) that should be matched

to the noun It Is modifying ("man"), in general, a choice can be offered as the

contents of any case.

Another method Reader uses for representing ambiguous sentences Is prefixing .he

Parsing 46

name of a case with an asterisk. This means that the case can modify either the

verb or the noun in the case directiy above it. "Jonn hits the salesman with the

hammer" is parsed to

{HIT NN
[SUB JOHN]
[OBJ (SALESMAN THE)]
[»PREP (WITH (HAMMER THE))]

>

The astorlsk preceding the case name "PREP" indicates that the PREP case could

be a case of "hit" or that it could modify the salesman, The first Interpretation Is

"The salesman was hit by John with the hammer" and the second Is "The salesman

with the hammer was hit by John". Reader uses the asterisk notation when running

without a deductive system, or when running with a deductive system that cannot

decide which Interpretation Is more likely at the time Reader asks. The parse would

have been

(HIT NN
[SUB JOHN]
[OBJ (SALESMAN THE (WITH (HAW1ER THE',)]

)

if the system was able to determine the salesman had the hammer when given the

choice by Reader.

2.3.5 Conventions

Header employs several notational conventions.

Whenever a conjunction contains an implied SUB, as In "The program reads the data

and prints the answer" the Implicit SUB is represented by the symbol

"!match_to_conjunct_SUB". eg.,

Parsing
47

tCONJ AND

{READ NN
[SUB (PROGRAM THE)]
[OBJ (DATA THE)!

>

(PRINT NN
[SUB Imaith to ronjuncl SUB]
[OBJ (ANSWER THE)]

>
]

!m8tch„to_conJunct_SUB has the same referent as "the program".

When a noun is modified by a relative clause, the case the noun occupies in the

relative clause Is held by the symbol lmatch_to_head_noun. For example,

"The man captured by the police."

[NOUN (MAN THE (CAPTURE PN
[OBJ Imalch to head noun]
[SUB (POLICE THE)] "

>)]

"The msn the police captured."

[NOUN (MAN THE (CAPTURE PN
[SUB (POLICE THE)]
[OBJ Imatch to head noun]

>)]

!inatch._to_head_noun has the same referent as "the man", the noun the verb clause

is modifying.

Imatch to_heai| noun Is also used (n sentences which contain dangling prepositions.

"The man I came with" parses to;

[NOUN (MAN THE (COME PN
[SUB I]
[PREP (WITH Imatch to head noun)]

»]

lmatch_to_head_noun has the same referent as the noun ("the man") modified by

the clause which contains the dangling preposition.

Parsing 48

When t conjunction contains an implied object, Reader uses the symbol

lmatch_to_conJunct_OBJ6 to mark the second oorurrence. "He breeds and raises

rabbits" parses to:

[CONJ AND

{BRFEDS NN
[SUB HE]
[OBJ (RABBIT !PL)]

]

{RAISES NN
[SUB lmatch_lo_conjuncl_SIJB]
[OBJ lmalch_lo_conjunct_OBJ]

)

In conjunctions in which the verb is omitted, Reader simply repeats7 the verb. "He

gave John a pencil and Jan'-t a pen" parses to:

[CONJ AND

{GIVE PN
[SUB HE]
[I0B JOHN]
[OBJ (PENCIL A)]

)
(GIVE PN

[SUB 'match lo_conjunct_SUB]
[IOB JANET]"
[OBJ (PEN A)]

)
]

Suffixes are removed by the parser. If a word is a plural, the symbol IPL appears in

Its modifier list. "The answers" parses to:

[NOUN (ANSWER THE IPL)]

If a word can be either singular or plural, and agreement constraii s .. to be one or

!match_to_conjunct_PREP is used when the OBJ refers to the object of a
rreposltion in the higher conjurjt.

' Nouns are represented by symbols (rather than bei x apeated) so that the
interpreter will not have to find the referent of the same noun twice.

Parsing 49

the other, It Is noted by Inserting IPL or ISING Into the modifier list. "The fish is

dangerc JS." and "The fish are dangerous" parse to:

{BE NN (BE NN
[SUB (FISH THE ISING] [SUB (FISH THE IPL]
[OES DANGEROUS] [DES DANGEROUS]

) >

In "The fish can be dangerous", The SUB case Is [SUB (FISH THE)] since there Is

no agreement Information.

60

3. Grammar writing

This chapter explains how to write grammars In the formalism we have been

discussing. The actual grammar is written In Lisp, and consists of a set of programs,

one for each word class, which explain when and how a word may be added to a

partial parse. The grammar also uses several utility programs and predicates.

An example of a utility program is ADD-NOUN. It takes two arguments, a noun group

(ng) and a stack structure (s), and returns the stack structure with the noun group

added to It. For example. If

ng = (MAN THE) and s Is VERB: ((SAVE ED))
N0UN1: (BOY THE)
FUNCTION: MAIN

then (ADD-NOUN ng s) is VERB: ((SAVE ED))
N0UN1:(BOY THE)
N0UN2: (MAN THE)
FUNCTION: MAIN

An example of a predicate is CAN-ACCEPT-A-NOUN. It takes one argument, which Is

a structure, and returns T if the structure can accept a noun, and NIL otherwise. A

structure can accept a noun if it is either

1. a preposition structure without a noun.

2. a verb structure without a noun

3. a verb structure with a verb and one noun whose verb Is transitive.
If the verb group is passive, the main verb must take a beneficiary or
Indirect object.

4. d verb structure with two nouns and a main verb that takes a
beneficiary or indirect object. The verb group must not be passive.

3. and 4. mi'^t also satisfy the condition that the verb has not received any cases

Grammar writing 51

since it was added to the structure1 On the surface, It would seem that this

definition would rule out slightly peculiar constructions like "That he likes", (Instead

of "He likes that") since a verbless verb structure with one noun cannot accept

another noun. However, such constructions are handled as relative clauses.

Reader has other predicates which test for legal verb groups, whether a structure

has a noun which can be modified by another structure, whether the verb group of a

structure Is passive or active, etc. When, in describing the actions of the parser,

we say that a structure satisfies some condition, we mean that the proper

predicate has been applied to that structure and that the test has succeeded.

Reader also has two programs, SHIFT and SEARCH, which are useful for manipulating

the stack. SEARCH Is used to swarch the stack for structures with a certain

property. The information gained from a search is usually used to determine

whether a particular structure should be pushed on to the stack. For instance, It

would be pointless to push a relative clause structure (section 3.1.31 onto the

stack if there were no stiuctures in the stack that contained a noun which could be

modified by a relative clause. SHIFT, described more fully in section 3.1.2, is used

to facilitate the addition of words to structures other than the one at the top of the

stack. Basically, SHIFT searches the stack for a given structure, collapses the

stack down to that structure, and then applies the input word to the resulting stack.

SHIFT Is important because most actions that can be applied to the top of stack,

such as adding In a noun or verb, can also be applied to structures lower down In

the stack. Similarly, SEARCH is important because pushing a structure onto the

stack usually depends on the existence of a structure with a given property,

regardless of its position in the stack.

Eg., ''Ha spent in the store the money." is incorrect.

Grammar writing 62

3.1 Some beginning grammars

A series of grammars is described, each one more complicated than the previous

one. An example sentence Is parsed for each grammar defined. The first two

examples, Grammar.1 and Grammar.2, will step through the sentence in detail,

examining how each successive word is applied to the partial parses formed by the

application of the previous words in the sentence. The remainder of the examples

will cover only the methods used to apply words that were not handled by the

previously defined grammars.

Section 3.2 shows some more efficient methods for parsing the subset of English

handled by the example grammars.

The variables used In the examples are:

stack The stack.
word The current input word
root The root of word.
ending The endinc of word.
ml The unassk ned modifier list.
msg The messa i :oncerning the top of the stack.
stack-msg The messa^ , concerning the entire stack.

3.1.1 Grammar.1

The first grammar handles sentences of the form "noun verb noun noun" or "noun

verb noun". All that is needed is a NOUN program and a VERB program.

The NOUN program;
The NOUN program forms the noun group consisting of the modifiers on the
modifier list and the noun. Then, If the top structure In the stack can accept
a noun (eg., satisfies the predicate CAN-ACCEPT-A-NOUN, defined at the
beglnlng of the chapter), a partial parse Is created with:

msg = NOUN, indicating that the last addition to the stack was a noun.
ml = NIL, the modifier list is empty.
steck-msg = stack'msg, the addition of a noun doesn't change stack-msg.

Grammar writing 53

stack = (REPLACE-TOP-STACK (ADD-NOUN (MAKE-NOUN-GROUP word ml)
(TOP-STACK stack))

stack)

where MAKE-NOUN-GROUP Is a predicate which returns the noun group formed
by Its arguments (or NIL If one cannot be formed), end TOP-STACK and
REPLACE-TOP-STACK are utility programs. TOP-STACK returns the top
structure of the stack that Is Its argument. REPLACE-TOP-STACK returns the
stack which Is Its second argument with the top structure replaced by Its first
argument.

The VERB program:
The VERB program examines the stack. If the top structure In the stack Is a
verb structure with one noun and no verb, It creates a partial parse by adding
the verb to the top structure in the stack.

Here is how this grammar parses the sentence "John drinks water."

Reader starts out with the initial parti«! parse.

msq = BEGIN, ml = NIL

FUNCTION: MAIN

"John" is input, it belongs to only one word class (NOUN), and therefore has only

one program associated with it (NOUN). The partial parse produced by applying the

NOUN program Is:

msg = NOUN, ml . NIL

N0UN1: JOHN
FUNCTION: MAIN

"drinks" is the next word. It can be used as either a noun or verb. The top stack

structure cannot accept a noun so the application of the noun program does not

result In a continuation of the parse. The verb program Is then applied to the parse

which causes the following partial parse to be set up:

msg = VERB, ml « NIL

VERB: ((DRINK . S))
N0UN1. JOHN
FUNCTION: MAIN

Grammar writing 64

"Water" can also be used as a noun or verb. The verb program falls though, since

the top structure already has a verb. The NOUN program s scceeds In continuing the

parse by adding the noun "water" to the top structure In the stack, producing,

msg « NOUN, ml = NIL

VERB: ((DRINK . S))
N0UN1; JOHN
N0UN2: WATER
FUNCTION: MAIN

The input sentence Is exhausted so Reader collapses the stack, (trivial since there

is only one structure In it), and formats the resulting structure. This yields

{DRI^K NN
[SUB JOHN]
[OBJ WATER]

)

as the parse.

3.1.2 Grammar.2

In order to parse more Interesting sentences, it Is necessary to expand the

grammar. The next grammar includes prepositions, articles and modifiers.

The MODIFIER program simply adds word to ml.

The ARTICLE program adds word (which is an article) to ml if ml Is NIL or
consists of words (almost, all, etc.) which can appear before an article.

The PREPOSITION program chocks to see whether the preposition can be
modified by the modifiers on ml. If so, the partial parse is continued by
pushing a preposition structure with word as the preposition onto the
stack.

As the grammar grows, the grammar programs has to be prepared to handle stacks

containing more than one structure. In general, there will be two parts to every

grammar program: a set of actions associated with just the top of the stack and a

Grammar writing 66

set of actions that should be applied to every structure In the stack that satisfies

certain conditions. For example, in parsing "He gave the man In the store the book."

a noun (the book) must be added to a structure (He gave the man) which Is not at

the top of the stack. Adding words to structures below the top of the stack Is

facilitated by the program SHIFT.

(SHIFT stack program args purpose number predicate! predicate?)

The Idea behind SHIFT Is to find a structuie(s) In the stack which satisfies a given

predicate. (CAN-ACCEPT-A-NOUN. for example, would be used to search down the

stack for a structure to add a noun to), then collapse the stack down to that

structure, and then apply a program to the collapsed stack. SHIFT enables the

grammar writer to specify the purpose of the collapse, whic.i is valuable in guiding

the way the collapse is carried out. For instance, if SHIFT is collapsing the stack of

the sentence "He gave the man in the store ...", for the purpose of finding a

structure which ein accept a noun. It knows not to try to attach "in the store" to

"gave", since that would prevent "gave" from accepting another noun.

SHIFT works as follows; It searches down stack looking for a structure S that

satisfies predicate!, stack is then divided Into two segments, S1 starting from the

top of stack and going down to S, and S2 consisting of the structures not In SI. 51

Is then collapsed Into a single structure SS. If SS satisfies predicate?, then

program is applied tc (STACK-PUSH SS SI) with arguments equal to args. number

controls how many times the sequence is performed. If number Is an Integer n,

SHIFT tries to find the first n structures that satisfy predicate!. number - T means

that shift finds all the stack structures satisfying predicate!. purpose Is an atom

(eg., NOUN means the collapse is looking for a structure which can accept a noun)

which controls how structures can be attached to one another.

Grammar writing 66

Grammar? Involves adding a SHIFT to both the NOUN and VERB programs. The SHIFT

in noun searches for all structures In the stack which can accept a noun, and then

adds the word to that structure. The SHIFT in verb looks down the stack for the

topmost verb structure In the stack which can accept a verb.

Grammar.2 can handle sentences like "The woman from the city bank gave the man

In the store the news". The parse starts out with the Initial parse. After "The" Is

input, there Is one partial parse.

msg • BEGIN, ml • (THE)

FUNCTION: MAIN

"woman" is read. MAKE-NOUN-GROUP forms the noun group, (WOMAN THE).

msq = NOUN, ml = NIL

N0UN1: (WOMAN THE)
FUNCTION; MAIN

"from" is read. The preposition program causes a preposition structure to be

pushed on the stack.

msg = PREP, ml = NIL

PREP: FROM

N0UN1: (WOMAN THE)
FUNCTION: MAIN

"the" Is read and placed on the modifier list, "city" is read. All nouns are treated

as both NOUNs and MODIFIERS, so there are now two partial parses;

1. msg « NOUN, ml = NIL 2. msg . PREP, ml = (CITY THE)

PREP: FROM PREP: FROM
NOUN (CITY THE)
 N0UN1: (WOMAN THE)

N0UN1: (WOMAN THE) FUNCTION: MAIN
FUNCTION: MAIN

Grammar writing 67

"bank" Is read. When "bank" Is applied as a verb, partial parse 2 can not be

continued since "bank" (as a verb) does not accept the modifiers, (CITY THE), on

the modifier list. Partial parse 1 cannot be continued using "bank" as a verb since

after SHIFT finds a structure that can accept a verb, the verb "bank" fails to agree

with the noun group (WOMAN THE). The agreement Is tested using a predicate

which takes a verb structure as input, and returns NIL If the structure does not

exhibit agreement, and the structure modified by any Information supplied by

agreement (eg., "Ho saw" agrees only when "saw" is viewed as the past tense of

"see", as opposed to the present tense of "saw".) when the structure does agree.

Reader then applies "bank" to both partial parses as a noun. Partial parse 1 does

not contain a structure that can accept a noun, so no partial parses can be

continued from it. When "bank" is applied to the partial parse 2., it accepts the

modifiers on the modifier list and is added to the top preposition structure,

producing

msq • NOUN, ml •- NIL

PREP: FROM
NOUN (BANK THE CITY)

N0UN1 (WOMAN THE)
FUNCTION: MAIN

"gave" is read. The SHIFT program searches down the stack looking for the first

structure that can accept a verb. It collapses the stack down to that structure and

adds In the verb, which produces,

msg = VERB, ML » NIL

VERB: ((GIVE ED))
N0UN1: (WOMAN THE (FROM (BANK THE CITY)))
FUNCTION: MAIN

"the" and "man" are read in and handled by the MODIFIER and NOUN programs,

"man" Is applied as both a noun and a modifier so two partial parses result:

Grammar writing 68

1. msg > NOUN. ML « NIL 2. MSG = NOUN. ML ■= (MAN THE)

VERB: ((GIVE ED)) VERB: ((GIVE Ed))
NOUN1: (WOMAN THE (FROM (BANK THE CITY))) NOUN1: (WOMAN THE (FROM (BANK THE CITY)))
NOUN2: (MAN THE) FUNCTION: MAIN
FUNCTION: MAIN - - -

"In" Is read. The preposition program causes a preposition structure to be pushed

on the stack of partial parse 1. Nothing Is done with partial parse 2. since the

preposition does not accept the modifiers, (MAN THE), on the modifier list.

msq = PREP. ML = NIL

PREP: IN

VERB: ((GIVE ED))
N0UN1: (WOMAN THE (FROM (BANK THE CITY)))
N0UN2: (MAN THE)
FUNCTION: MAIN

"the" and "store" are read. As before, two parses are created when "store" is

read in. One In which the noun group "the store" becomes the noun of the

preposition structure on the top of the stack, and another in which "store" is

treated as a modifier. When "store" is tried as a verb It fails since It cannot

accept "the" as a modifier, "the" is read in. In the former partial parse. It is simply

added to the modifier list, in the latter, it cannot be added to the modifier list,

since the modifier list contains a word (store) which cannot occur before an article.

msg ■ NOUN. ML « (THE)

PREP: IN
NOUN: (STORE THE)

VERB: ((GIVE EO))
N0UN1- (WOMAN THE (FROM (BANK THE CITY)))
N0UN2: (MAN THE)
FUNCTION: MAIN

"news" is read. When it is applied as a noun, SHIFT searches for a structure on the

stack that can accept a noun, collapses the stack to that structure, and then adds

Grammar writing 59

In the noun group (NEWS THE). When "news" is tried as a modifier it is simply

added to the modifier list.

1. msg = NOUN, ml ■ NIL 2. msq • NOUN, ml • (NEWS THE)

VERB: ((GIVE ED)) PREP: IN
N0UN1
N0UN2
N0UN3

(WOMAN THE (FROM (6ANK THE CITY))) NOUN: (STORE THE)
(MAN THE (IN (STORE THE)))
(NEWS THE) VERB: ((GIVE EO)]

FUNCTION: MAIN N0UN1: (WOMAN THE (FROM (BANK THE CITY)))
- - - NOUN2: (MAN THE)

FUNCTION: MAIN

There are no more input words. Partial pa;se 2 Is discarded since Its modifier list Is

not empty. The stack from partial parse 1. Is collapsed, (once again, this Is trivial

since there Is only one structure in the stack.) and the resulting structure Is

formatted and returned as the parse of the sentence.

{GIVE PN
[SUB (WOMAN THE (FROM (BANK THE CITY)))]
[I0B (MAN THE (IN (STORE THE)))]
[OBJ (NtWS THE)]

>

3.1,3 Grammar.3

Grammar.3 expands Grammar.2 by the Inclusion of verb groups and relative clauses.

To parse relative clauses, a test is added tc NOUN that checks to see if there is a

structure in the stack which has a noun that can be modified, using the predicate

CAN-NOUN-BE-MODIFIED. If the test succeeds, NOUN pushes a verb structure with

function equal RC on the stack and adds the noun group to it. This addition enables

the grammar to parse "The mirror on the wall he broke". The parse proceedes

exactly as the previous ones until "he" Is reached. The partial parse2 when "he" Is

2 There are actually two partial parses. The second uses "wall" as a modifier and
Is discontinued since MAKE-NOUN-GROUP falls to make a noun group from "he" and
(WALL THE).

- "■-fiinfT-"^"^

Grammar writing 60

read is

msq s NOUN, ml « NIL

PREP: ON
NOUN: (WALL THE)

N0UN1: (MIRROR THE)
FUNCTION: MAIN

CAN-NOUN-BE-MCDIFIED succeeds on the preposition structure on the top of the

stack. Therefore a parse is created with a verb structure pushed on to the

previous stack. Only one parse results from applying NOUN to the parse since when

SHIFT Is called, it cannot find a stiucture that can accept a noun.

-rsq ■ NOUN, ml * NIL

N0UN1: K
FUNCTIOC RC

PREP: ON
NOUN: (WALL THE)

NOUNi: (MIRROR THE)
FUNCTION: MAIN

"broke" Is read. SHIFT is called to find a verb structure with an open verb slot. It

finds the top structure in the stack, and creates a parse with the verb added in.

msq = NOUN, ml = NIL

VERB: ((BREAK EO))
NOUNI: HE
FUNCTION: RC

PREP: ON
NOUN: (WALL THE)

NOUNI: (MIRROR THE)
FUNCTION: MAIN

The sentence is ovpr, and the parse is concluded by the collapse of the stack. The

deductive system must decide which of "the wall" or "the mirror" was broken. If

we assume that "the mirror" was broken, the collapse of the stack would be,

/
wssm

Grammar writing 61

N0UN1: (MIRROR THE (ON (WALL THE)) (BREAK PN (SLB HE)
(OBJ Imatch to head_noun)))

FUNCTION; MAIN

The format of such a structure Is simply the noun. Reader returns

[NOUN (MIRROR THE (ON (WALL THE))
{BREAK PN

[SUB HE]
[OBJ !iMlch_lo head noun]

>)] - - -

as the parse. "Mirror" Is the OBJ of the verb "break". Notice that the noun CAN-

NOUN-BE-MODIFIED succeeded on was not the noun that was modified by the

relative clause.

Parsing verb groups requires the addition of a test to VERB which tests that msg

equals VERB, if the test succeeds, meaning that the last thing done to the stack

was the addition of a verb, VERB tries tc form a verb group with word and the verbs

already in the top structure in the stack. If a legal verb group can be formed, (this

Is checked by the same predicate which tenses the verbs in a structure) the parse

is continued by adding the verb into the verb group slot of the top structure In the

stack. As an example, consider "He was given the prize". When "given" Is read,

there Is one partial parse:

msg = VERB, ml = NIL

VERB; ((BE ED))
N0UN1: HE
FUNCTION MAIN

The msg is VERB and "was given" is a legal verb group so the parse Is continued as:

msg = verb, ml = NIL

VERB; ((GIVE EN))(BE EO))
N0UN1; HE
FUNCTION; MAIN

"The" and "prize" are read In. The stack is collapsed and formatted. The result is

i
-^TTBffanra

Grammar writing 62

{GIVE PN
[10B HE]
[OBJ (PRIZE THE)]

}

3.1.4 Grammar.4

Grammar.4 extends Grammar.3 In two ways.

The first addition is a test for time and place referents that will be placed in the

NOUN program. This will enable the grammar to handle sentences like "I saw the

man .t «ntown.", "Yesterday John was in town." etc.

NOUN is augmented with a test which checks w' *her the noun-group can be used

as a time or place (this Is considered a syntactic property of the head noun of the

group). If so, a preposition structure Is created with preposition equal »TIME or

*PLACE. The preposition structure Is pushed onto the stack and a new partial parse

created.

The second addition allows the parser to parse sentences with verbs that accept

other verbs as case fillers. An example of a verb with this property is "see". In "I

saw John leave town", the clause "John leave town", is a case of "saw". A test if

added to VERB which checks whether the main veru of a structure can accept a

clause. If so, an empty verb structure with function equal WHAT is pushed onto the

stack and a new partial parse created.

Grammar.4 handles sentences like "Yesterday the man knew John had returned."

"Yesterday" causes the formation of two partial parses, one in which It Is treated

Grammar writing 63

as a time referent, and one in which it is used as the first noun of the MAIN

structure.

1. msg = NOUN, ml = NIL

N0UN1: YESTERDAY
FUNCTION: MAIN

2. msg > NOUN, ML = NIL

PREP: »TIME
NOUN: YESTERDAY

FUNCTION. MAIN

When "nan" is input, it cannot be added to partial par^e 1, since there is no

structure In the stack that can accept a noun, "man" can be added to partial parse

2, by collapsing the stack down to the MAIN structure and adding "man" to the MAIN

structure. This results in

msg = NOUN, ml = NIL

N0UN1: (MA* THE)
CASES: ((WHEN YESTERDAY))
FUNCTION: HAIN

as the COLLAPSE routine km ws tliat preposition structures whose preposition is

*TIME fill the WHEN case of the verbs they modify.

"Know" can accept a clause, so the application of "know" to the partial parse

above results In two different partial pa is;

1. msg = VERB, ml = NIL 2. msg = NIL, ML = NIL

FUNCTION: WHAT VERB: ((KNOW ED))
N0UN1: (MAN THE)
CASES: ((WHEN YESTERDAY))
FUNCTION. MAIN

VERB: ((KNOW ED))
N0UN1: (MAN THE)
CASES: ((WHEN YESTERDAY))
FUNCTION: MAIN

"John" is added to both partial parses:

^MSk

Grammar writing Q4

1. msg = NOUN, ml = N:L 2. msq = NOUN, ML = NIL

 N0UN1: JOHN
VERB: ({KNOW ED)) FUNCTION: WHAT
NOUN1: (MAN THE)
NOUN2; JOHN VERB: ((KNOW ED))
CASES: ((WHEN YESTERDAY)) NOUN1: (MAN THE)
FUNCTION: MAIN CASES: ((WHEN YESTERDAY))
 FUNCTION: MAIN

"had" is applied to each partial parse as verb. Partial parse 2 is continued by

adding "had" to the top structure of the stack. Partial parse 1 cannot be

continued.

The addition of "returned" to the stack produced by the application of "had"

produces,

msg = VERB. ML s NIL

VERB: ((RETURN E0)(HAS ED))
N0UN1: JACK
FUNCTION: WHAT

VERB: ((KNOW ED))
N0UN1; (MAN THE)
CASES: ((WHEN YESTERDAY))
FUNCTION: MAIN

The input sentence is exhausted. The stack is collapsed and the resulting

structure formatted.

{KNOW PN
[WHEN YESTERDAY]
[SUB (MAN THE)]
[WHAT (RETURN PP

[SUB JACK]
>]

)

_.J

Grammar writing 66

3.2 Grammar efficiency

The primary objective in writing an efficient grammar is keeping the number of

partial parses low. This Is accomplished by minimizing the number of ways a word

can be successfully applied to a partial parse. There are basically three different

ways of handling this within the Reader formalism.

R1. The use of the stack to avoid attaching sentence constituents to
each other until more information is learned about the nature of the
attachment.

R2. The use of one stack structure to represent more than one syntactic
possibility.

R3. The use of bottom-up and top-down parsing techniques together.

The simplest example of the first technique Is the handling of sentence

constituents which can modify many different structures in the sentence (eg.,

prepositional phrases, relative clauses, etc.). Such constituents are placed on the

stack, thereby avoiding the necessity of a different parse path for each sentence

structure that can accept them as a modifier. Woods, in [Woods 73], mentions a

similar feature, called "selective modifier placement". However, It seems limited to

the simple application mentioned above. More powerful uses of the stack are

obtained in conjunction with R2.

R2 makes use of the fact that in many cases, two or more syntactic possibilities

can be combined in a single parse structure. For example, consider a sentence

beginning "The boy that..." Obviously, "that" is part of a relative clause which will

modify "boy". But It is not clear whether "that" Is either

1, the subject of the relative clause ("The boy that likes Ice cream...")

2. a modifier of the subject of the relative clause ("The boy that girl
likes...")

Grammar writing 66

3. a function word ("The boy that the girl likes...").

A single stack entry which covers all these possibilities Is

S = N0UN1: THAT
FUNCTION: RC

If a verb Is applied to the stack containing S before a noun is applied, S will lead to

a successful parse. Now suppose a noun is applied before a verb. If a noun group

can be made from "that", the modifiers on the modifier list, and the noun being

added, then the sentence involves usage 2, and "that" is replaced by the noun

group3. If a noun group cannot be constructed using "that", but can be made using

just the modifier list and the noun, then "that" is replaced by the noun group (usage

3).

R2 can be used with R1 in a slightly different way. Consider the two sentences:

1. "He saw the man running out the door."
2. "He saw the man running out the door drop the bag."

In sentence 1., "running out the door" is most likely interpreted as "whai he saw

the man doing". In sentence 2., "running out the door" is a relative clause which

modifies "man". One structure.

S » VERB ((RUN 1NG))
FUNCTION: PARTICIPLE

can represent both Interpretations. It is decided which Interpretation to use

depending on the conditions under which the stack Is collapsed. The relative clause

3 If a noun group could also be made without using "that", a message Is left which
indicates to Format that a choice beL.een "that noun-group" and noun-group
should be offered.

Grammar writing 87

interpretation Is used if the stack is being collapsed to add a verb, and the "see"

case filler Interpretation is used otherwise. A more detailed example can be found

In section 3.2,5.

Section 3.2.3 provides an example of R3. The following two sections contain

examples of R2.

3.2.1 Nouns as modifiers

Virtually all English nouns can also be used as modifiers. In "The baseball bat Is

used to hit the baseball", the first occurrence of "baseball" Is used as a modifier,

while the second is used as a noun. The grammars in section 3.1.1 coped with this

by applying each noun to every possible partial parse as both a noun and a modiflsr.

The example sentence would have two partial parses after "baseball" was read.

1. msq = NOUN, ml = NIL 2. msg « BEGIN, ml = (BASEBALL THE)

N0UN1. (BASEBALL THE)
FUNCTION; MAIN

FUNCTION: MAIN

It is true that one of the two parses will always be killed rather quickly, but It would

be better to avoid the overhead involved in carrying extra partial parses. As a noun

cannot modify a verb, there is no advantage to be gained from putting one on the

modifier list. When a noun acts as a modifier, it modifies one of the nouns that come

directly after It In the sentence. The second parse can be eliminated by adding a

test to the NOUN program that checks for:

1. msg s NOUN (meaning the last thing done to the stack was
the addition of a noun group to the top structure)

2. the noun group consisting of word and the words In the
last noun group added to the top structure in the stack Is a
legal noun group.

■

■

Grammar writing 68

If the test succeeds, the last noun group added to the top structure in the stack is

replaced by the noun group consisting of word with the words in the replaced noun

group as Its modifiers. Under this scheme, there would be only one partial parse for

a sentence beginning "The baseball..." (parse 1, shown above). If the next word In

the sentence were "bat", its application to parse 1 would result In

msg « NOUN, ml -- NIL

N0UN1: (BA THE BASEBALL)
FUNCTION: MAIN

since parse 1 meets the requirement of msg = NOUN and "the baseball bat" is a

legal'' noun group.

3.2.2 Relative clauses

Grammar.3 (section 3.1.3) parses relative clauses in essentially a top down fashion.

When a noun Is read, and the stack contains a structure with a noun which could be

\
modified by a relative clause, a verb structure with function equal RC is created,

the noun is added to it, and the resulting structure Is pushed onto the stack to

await the verb of the relative clause, if a sentence began "The city people..."

after "peopin" was read there would be two partial parses;

1. msg = NOUN, ml » NIL 2. msg = NOUN, ml = NIL

N0UN1; (PEOPLE THE CITY) N0UN1; PEOPLE
FUNCTION: MAIN FUNCTION: RC

N0UN1: (CITY THE)
FUNCTION: MAIN

If the complete sentence were "The city people hate Is Tokyo." the second partial

4 The test would fail If the sentence were "The baseballs bat ..." since "the
baseballs bat" is not a legal noun group".

Grammar writing 69

parse would leod to a parse, "hate" would be the verb of the "RC" verb structure

and "Is" would be the verb of the "MAIN" structure. Parse 1 wou J use "ha.e" as

the verb of the "MAIN" structure and the parse would be discontinued after "Is" Is

road, since the stack would not contain a verb structure which could accept "is". If

the complete sentence was "The city people favor bonds.", partial parse 1 would

lead to a parse. Parse 2 would be discontinued when the end of the sentence Is

reached and the parser realizes that it cannot attach "people favor bonds" to "the

city". If the main verb of a sentence which begins with a such a compound noun

takes an Indirect object, then the sentence is syntactically ambiguous, (eg., "The

city people gave the bonds") The parser must not refuse to add "bonds" to "people

favor" (which would kill the parse earlier) since the sentence might have been "The

city people favor bonds for Is Tokyo."

This splitting can be avoided by making changes in the NOUN and VERB program. In

the previous section, a test was added to NOUN which determined when It was

possible to replace the last noun group added to a structure with the noun group

consisting of word and the words in the old noun group. If that test succeeds, and

word is a legal noun group by itself, then Instead of parsing for a possible relative

clause In a new partial parse (by pushing a verb structure whoso function is RC

onto the stack), a message is inserted in the message slot of the top structure

explaining that it is possible to form a relative clause with the head noun of the last

noun group in the structure, in VERB, the method used to fino an empty vero slot Is

modified so that if no structure can be found with an empty verb slot, VERB tries to

find a structure whose message is "Possible RC".

These changes allow "The city people hate Is Tokyo." to be parsed using only one

parse path. After "hate" Is read, there Is one partial parse:

Grammar writing 70

msg = VERB, ml = NIL

VERB: ((HATE))
N0UN1: (PEOPLE THE CITY)
MESSAGE: POSSIBLE-RC
FUNCTION: MAIN

VERB tries to find an open verb slot to put "is" In. It can't find one, but it is able to

find a stack structure whose message Is POSSIBLE-RC. It removes the message,

verb and head noun from the structure, forms a new verb structure, and places It In

the stack just above the old one. This forms a new stack,

VERB: ((HATE))
N0UN1: PEOPLE
FUNCTION: RC

N0UN1: (CITY THE)
FUNCTION: MAIN

which Is has a place for the verb "is".

3.2.3 Verbs which accept clauses

Grammar.4 (section 3.1.4) showed one way of handling verbs which can accept

clauses as case fillers. Like the first relative clause mechanism. It was essentially

top down. When a verb that was able to accept a clause was added to a structure,

a second partial parse was created with an empty verb structure whose function

was WHAT pushed onto the stack. A better method is to wait for the verb of the

clause to arrive before sprouting another partial parse. "I saw the man In the store

steal the book." would then have one partial parse at the time "steal" was read;

Grammar writing 71

mg = NOUN, ml = NIL

PREP: IN
2. NOUN: (STORE THE)

VERB: ((SEE-SAW))
N0UN1: 1
N0UN2: (MAN THE)

1. FUNCTION: MAIN

"See-saw" is the verb used by Reader to represent either the past tense of "see"

or the present tense of "saw". It has all the syntactic properties of both. If

something In the parse resolves which verb is intended, Reader makes the change.

When "steal" is read, VERB looks down the stack for a structure that can accept a

verb. It finds structure 1., which has a verb, "see-saw", that can accept a clause.

The stack Is collapsed down to structure 1., yielding

VERB ((SEE-SAW))
N0UN1: I
N0UN2' (MAN THE (IN (STORE THE)))

1. FUNCTION: MAIN

A verb structure with function equal WHAT is created to hold "steal". NOUN2 Is

removed from structure 1., and placed in the new structure, which is pushed onto

the top of the stack. The verb "see-saw" has been changed to "see" by the

program which pushed the WHAT structure onto the stack, since "saw" cannot

accept a clause. The result Is:

VERB ((STEAL))
N0UN1: (MAN THE (IN (STORE THE)))

Z. FUNCTION: WHAT

VERB: ((SEE EO))
N0UN1: I

1. FUNCTION: MAIN

Grammar writing 72

3.2.4 Conjunctions

Conjunctions are similar to other sentence constituents In that, syntactically, they

usually can be attached to more than one sentence constituent. For example,

"The man In the suit and tie." (suit and tie form the conjunction.)

"The man !n the suit and John." (man and John form the conjunction.)

"Bill bought the turntable John was selling because he needed the money."
("because he needed the money" specifies why "John was selling",)

"Bill bought the turntable John was selling because he liked the way it sounded."
("because he liked the way it sounded" specifies why "Bill bought".)

Ambiguities arising from which constituent the conjunction should be attached to are

handled by the stack and COLLAPSE. "The man In the suit and John" would be

parsed Into the stack,

PREPOSITION: AND
3. NOUN: JOHN

PREPOSITION: IN
2. NOUN: (SUIT THE)

N0UN1: (MAN THE)
1. FUNCTION: MAIN

"And" (when acting as a conjunction between nouns) Is treated as a preposition

syntactically. When the stack is collapsed, it Is determined whether 3. should be

attached to 1. or 2.

Conjunctions between verbs are handled by pushing a verb structure whose

function Is the conjunction onto the stack. "Bill bought the turntable John was

selling because he needed the money." would be parsed Into:

Grammar writing 73

VERB: ((NEED EO))
N0UN1: HE
NOUN2: (MONEY THE)

3, FUNCTION: BECAUSE

VERB: ((SELL ING)(BE ED))
NOUN1: JOHN

2. FUNCTION: RC

VERB: ((BUY EO))
NOUN1: BILL
NOUN?: (TURNTABLE THE)

1. FUNCTION: MAIN

When the stack is Collapsed, it is determined (by the interpreter, acting through

Format) whether 3. modifies 2. or 1.

At first glance. It would appear that the application of a conjunction that can conjoin

nouns and verbs (or a conjunction that Is also a preposition, eg,, before like) to a

pt.se will result In two partial parses; one In which a verb clause is expected (a

verb structure Is pushed on the stack), and one in which Just a noun Is anticipated

(a preposition structure Is pushed on the stack). However, both expectations can

be handled by pushing on a verb structure5 whose message Is POSSIBLE-PREP and

modifying Format so that it formats a verb structure whose message is POSSIBLE-

PREP and whose verb slot Is empty as If it were a preposition structure whose

preposition is function and whose noun slot is the value of the nounl slot of the

verb structure. Also, VERB has to be modified to search for empty verb structures

down the stack past those verb structures whose message Is POSSIBLE-PREP.

Using this method, the stack for "John likes Janet and Bill ..." would be

5 Assuming the stack can accept a verb conjunction. The stack for the sentence
beginning "John and ..." can only accept "and" as a neun conjunction. The general
condition is that a stack cannot accept a verb conjunction If the top most verb
structure whose message Is not POSSIBLE-PREP does not contain a verb. If the
stack cannot accept a verb conjunction then the parse Is continued by pushing a
preposition structure on the stack.

Grammar writing 74

N0UN1: BILL
MESSAGE: POSSIBLE-PREP

2. FUNCTION: AND

VERB: ((LIKE SM
NOUN1: JOHN
NOUN2: JANET

1. FUNCTION: MAIN

If the sentence continued "John likes Janet and Bill hates Jill", "hates" would be

placed in the verb slot of structure 2. If the sentence was simply "John likes Janet

and Bill", the stack would be collapsed and the format of structure 2. would be

(AND BILL)

the same as the format of the preposition structure,

PREPOSITION: AND
NOUN: BILL

Finally, If the sentence were 'John likes Janet and Bill and George hate Jtll.", "hate"

would be applied to the following stack:

N0UN1: GEORGE
MESSAGE: POSSIBLE-PREP

3. FUNCnON; AND

N0UN1: BILL
MESSAGE: POSSIBLE-PREP

2. FUNCTION: AND

VERB ((LIKE S))
NO'JNl: JOHN
NOUN2: JANET

1. FUNCTION: MAIN

VERB would first try to add 'hate" to structure 3. This would fail since "hate" and

"George" do not agree. It would then try to add "hate" to structure 2., after having

attached 3. This would succeed since "hate" and (BILL (AND GEORGE)) do agree.

Note that if "hate" could have been added to structure 3. (if the sentence were

"John likes Janet and Bill and the children hate Jill.", for Instance) then VERB would

Grammar writing 75

still have tried to attach "hate" to a structure lower down in the stack so that til

the possible meanings of the sentence could be uncovered. "John likes Janet and

Bill and the childran hate Jill." could mean either

tCONJ AND [CONJ AND
or

{LIKE NN {LIKE NN
[SUB JOHN] [SUB JOHN]
[OBJ JANET] [OBJ (AND JANET

) BILL
)]

{HATE NN }
[SUB (AND BILL

(CHILD !PL) {HATE NN
)] [SUB (CHILD !PL)]

[OBJ JILL] [OBJ JILL]
) >

]]

In producing the two parses above, Reader did not have to split Into two parses

until the word "hate" was encountered.

3.2.5 Verbs Inflected with ed endings

Verbs inflected with an "ed" ending which are not preceded by auxiliary verbs can

usually be applied to n parse (as verbs) in two different ways; as the main verb of

a clause, "The police captured the robber.", or as a modifier following a noun. "The

robber captured by the police was convicted". The grammar Reader uses combines

the two possibilities Into one.

When an "ed" verb Is encountered, any combination of

1. There Is a verb structure in the stack that has an empty
verb slot.

2. There Is a structure in the stack that has a noun which
could be modified by a relative clause.

can be true. Suppose an "ed" verb is encountered.

Grammar writing 76

If thn last operation on the stack was the addition of a verb (msg =
VERB), and the "ed" verb forms a legal verb group with the verb just
added, it is added into the top structure In the stack as part of the verb
group. VERB exits.

If 1, and 2. are true, then verb structure is pushed on to the stack
with FUNCTION equal REL fl-MAIN VERB equal the "ed" verb, and
NOUN1 equal !match_to_head_mun. If the verb clause Is used as the
predicate of the sentence, then !match_to_head_noun will be replaced
by the NOUN1 of the structure it Is added to.

If just 2. is true, then a verb structure is pushed on the stack with
FUNCTION equal REL.

If just 1. is true, i'.e r.(3ck is collapsed down to the st"icture with the
empty verb slot, and the verb is added.

If neither 1. or 2. is true, then VERB simply exits. The parse will be
continued by using the "ed" verb as a modifier.

Th'-se methods parse "The man in the pho'. graph framed for he police was his

father", as follows. The stack, before "framed" is read and after "police" Is read,

is shown below:

PR[P- IN
c- NOUN: (PHOTOGRAPH THE)

N0UN1: (MAN THE)
1. FUNCTION: MAIN

rhe man in the photograph..

PREP: FOR
4. NOUN (POLICE THE)

VERB: ((FRAME ED))
N0UN1; Imalch-lo-head-nour

3. FUNCTION: REL-OR-MAIK

PREP: IN
2. NOUN: (PHOTOGRAPH THE)

N0UN1: (MAN THE)
1. FUNCTION: MAIN

framed for the pol Ice..."

A verb structure with FUNCTION ?qual REL-OF, MAIN has been pushed on, since the

stack contains h.Dth a structure with an empty verb slot (1) and one (both 1. and 2.)

with a noun which could be modified by a relative clause. If the sentence ended

Grammar writing 77

with "police", the stack would be collapsed, and the deductive system would be

asked to choose from among the three possible parses the stack could be collapsed

to;

"The man 1n the photograph which was framed for the police."

(NOUN (HAN THE (IN (PHOfOGRAPH THE {fRAME PN
[OBJ !match_to head_noun]
[FOR (FOR (POLICE THE))]

>))))

"The man In the photograph who was framed for the Kolice."

(NOUN (MAN THE (IN (PHOTOGRAPH THE)) (FRAME PN
[OBJ !match_lo head_noun]
[FOR (POLICE THE)]

>))

"The man In the photograph did frame (photos or people) for the police."

(FRAME PN
[SUB (THE MAN (IN (PHOTOGRAPH THE)))]
[FOR (FOR (POLICE THE))]

)

The sentence continues with "was", however, the VERB program applies "was" to

the stack by searching down the stack for a structure with an empty verb slot. It

finds 1., and collapses the stack with the purpose of Inserting a verb. This means

that 3. cannot be attached to 1. as the main verb of the sentence, since that slot

Is now "-eserved for "was1. The deductive system decides whether the man or

photograph was frameo (we will assume "the man"), and "was" is Inserted in the

resulting structure. This yields

VERB: ((BE ED))
N0UN1: (MAN THE (IN (PHOTOGRAPH THE))

(V FRAME PN (OBJ !match_to_head_noun)
(FOR (FOR (POLICE THE)))))

FUNCTION: MAIN

and the parse Is continued. In the rse of the complete sentence, the companion

Grammar writing 78

system never had to consider a meaning which used "the man" as the SUB of

"frame".

"r—-i -ir—m

79

4. A closer look

This chapter explains some of the algorithms mentioned earlier In greater detail.

4.1 Measure

Each stack structure has a slot set aside for its measure, which is used by Reader

to help It choose among competlna partial parses. The measure of a structure rates

both the syntax and semantics of the structure. The deductive system (via Format)

Is responsible for determining the semantic component of a structure' s measure.

Section 5.5 explains how semantic measure is calculated In the Reader-Interpreter

system.

Two measures are compared by first comparing the two semantic components. If

one measure has a better semantic rating (section 4.1.1) than the other, it Is

preferred. If the semantic components are equal, the measure with the best syntax

rating (section 4.1.2) Is preferred. If both components are equal, the measures are

equal. This comparison system prefers a very unusual (but legal) syntactic

structure to a more common syntactic structure If the former Is Judged to be even

slightly better semanticaliy.

A structure Is measured when It Is Formatted. Format reti rns the format of the

structure as well as its measure, which is then merged1 with the contents of the

measure slot of the structure receiving the formatted structure. The measure of a

1 The merge of two measures. Ml and M2, is the measure whose semantic and
syntactic components are the union of the semantic ano syntactic components of
Ml and M2.

A closer look 80

structure, therefore, c ntains the measure of all the struct jres that have been

attached to It.

4.1.1 The semantic component

The semantic component consists of three features. The interpreter is responsible

for rating each feature. A rating can have one of 3 values:

perfect: The interpreter is perfectly satisfied with this feature.

acceptable: The interpreter would prefer something else but the
feature Is acceptable.

unacceptable: The feature is unacceptable.

A semantic component 4 is better than a semantic component S if

1. A has fewer unecceptable features than ß.
or

2. A and ß have the same number of unacceptable features, and A
has fewer features which are merely acceptable.

This algorithm would prefer a semantic component with only acceptable features to

a component with one unacceptable feature and a large number of perfect features.

An alternative method is to allow some number of perfect features to cancel the

effects of an unacceptable feature.

The following features contribute to the semantic component.

Verb Cases

Is the verb well modified? The ratings are:

perfect: The verb has all the cases it needs to be well defined.

acceptable: The verb Is missing some cases which are usually found
wich it.

i

A closer look 81

unacceptable: The verb Is m'sslng some cases which are necessary.

"Put" Is an example of a verb requiring a case; namely a where-put case. One

almost never says "John put the ball". Therefore a verb structure whose main verb

was "put" that did not have a where-put case would be rated unacceptable. This

does not prohibit the parser from parsing a sentence like "John put the ball". If

that were the sentence the parser was given, then the best structure the parser

would be able to find would be one whose measure contained a semantic component

with at least one unacceptable rating.

An acceptable, but not perfect, case of verb modification can occur with verbs like

■go". "Go" prefen a case explaining where the SUB has gone. However it Is fairly

common to omit that case if It Is Implicit from some other Information.

Noun Modifications

This is an evaluation of the appropriateness of each noun group in the structure.

The ratings assigned are,

perfect: The noun group is perfect. The deductive system can find an
object in its representation of what has been said which the noun group
refers to.

acceptable: A referent cannot be found, but al! the modifications in the
noun group are meaningful to the deductive system, eg.. The deductive
system will know how to interpret the noun group.

unacceptable; The deductive system cannot understand the proposed
modifications.

Sometimes the rating given a noun group will depend on the context the sentence

containing the noun group occurs In. Consider the noun group "The student

George". If there were two George's and one of them was known to be a student,

a- r ; — ■

A closer look 82

one might want to disambiguate which George was being referred to by using the

phrase, "the student George"; as in "The student George is always busy".

However we would not want the parser to consider the phrase "the student George

saw" as having a meaning other than "the student that George saw", except in

such a context.

This feature is also responsible for measuring the fit of the modifiers coming after

the noun. "The ball in the box" would be rated perfect if the interpreter could find

a ball in the box, acceptable if not. "The store he kissed" would be rated perfect if

the Interpreter could locate a store that was kissed, unacceptable If not.

Appropriateness of Verb Cases

Most verbs prefer certain types to fill their cases. The Interpreter should have a

verb frame for each verb [Reader can operate without this frame; it just means that

one more level of discrimination is lost, which might result in Reader finding more

interpretations of a sentence than a person would] which it uses to evaluate how

well the verb' s cases fit it. The values are,

perfect: The verb and case satisfy the interpreter's expectations.

acceptable: The verb doss not usually contain the case, but the
interpreter is aware of idioms that would cause the verb to receive it.

unacceptable: The interpreter is unable to find any role for the case to
play in the verb' s definition.

The verb "give" prefers a human as its SUB, a non-human as Its OBJ and a human as

its IOB (recipient). Using these expectations enables a person to find only one

meaning for "He gave the ball Bill gave the salesman", namely

i

A closer look 83

{GIVE PN
[SUB HE]
[OBJ (BALL THE {GIVE PN

[SUB BILL]
[106 (SALESMAN THE)]

>)]
>

and not consider,

{GIVE PN
[SUB HE]
[IOB (BALL THE (GIVE PN

[SUB BILL]
>)J

[OBJ (SALESMAN THE)]
I

since the second Interpretation assigns "give" a non-human fo. Its IOB case and a

human for Its OBJ.

A parser cannot afford to reject possible parses that contain verbs that don't

accept theli' cases since one frequently uses verbs In ways v/hlch violate their

case preferences, as In "He gave the bride »way", "The noise gives him a

headache" or "He gave the wall a kick".

^.1.2 The Syntactic Component

Reader tries to filter out some of the partial parses that are valid syntactically,

semantlcally meaningful, and yet would not be selected by a person. If a structure

has this property. It Is marked In the syntactic component of Its measure. The

syntactic component with the fewest such markings Is the best. A structure

inherits the measure of any structure that is attached to It, so It Is possible for the

syntactic component of the measure of a structure to have more than one syntactic

nark against It. Here Is an example of this Idea:

A closer look 84

"The salesman crushed by the elevator was hurt" Is understood by realizing that

the verb phrase, "the salesman crushed by the elevator" Is the subject of was.

Using the same methods Reader finds two meanings to "I saw the salesman

crushed".

The only meaning most people would consider is, Ml: "/ saw the act of salesman

being crushed",

{SEE PN
[SUB I]
[WHAT (CRUSH PN

[OBJ (SALESMAN THE)]
)]

}

Reader finds another interpretation, which is M2: "/ saw the salesman who was

crushed"

{SEE PN
[SUB I]
[OBJ (SALESMAN THE (CRUSH PN

[ObJ !malch_to_head_noun]
>)]

>

People who want to convey the second meaning say the sentence differently, so

we do not want the parser to return with two parses for "I saw the salesman

crushed" since people do not find it ambiguous. The second meaning has to be

considered, since the parser may be given "I saw the salesman crushed by the

elevator walk away unhurt". Rafldisr marVs the syntactic component of any verb

structure whose verb can accept a clause and whose GBJ Is a noun modified by a

verb clause with !match_to_he'jd.'ioun for a dummy OBJ. Thus, if Reader were

given the example sentence "I saw the salesman crushed", Ml would have a better

measure than M2, so Reader would return only one parse for the sentence.

A closer look 86

It should be noted that the rules used in determining the measure of a structure are

distinct from the rules used in the grammar. The rule used In the above example

("...mark any verb structure whose verb can accept a clause, and whose OBJ is a

noun modified by a verb clause with !match_to_head_noun for an OBJ") may seem

somewhat ad-hoc. But this rule in no way effects the structuring of an Input

sentence. It Is merely used to filter structures that the parser finds. Without this

rule, the system working with the parse' would have to decide for Itself whether "I

saw the salesman crushed" meant Ml or M2.

Other parsers have used variants of a "measure" concept. Robinson, [Robinson

75], uses the term factor score to refer to how well various syntactic features "fit"

together. In theory, this seems quite similar to the syntactic component Just

defined. In practice, it is used quite differently, since the motivation for factor

scores lies in the ambiguous inputs a speech parser must deal with. Reader uses

the measure of a structure to help it choose from among completed parse

structures, or from among structures resulting from the collapse of a stack segment.

Measure is never used to determine how a word should be applied to a parse, or

whether or not to continue a parse. In contrast, factor scores are primarily used to

determine the priority of active parse paths. The factor score of "out" eliminates a

parse path. An example of an "out" factor score is the combination of "foot" and

"s". Presumably, the speaker Intended the "s" as the first letter of the word

following "foot", rather than the last letter of the incorrect plural "foots" This level

of detail is unnecessary In a parser intended for written Input.

In many cases, the syntactic measure can be done away with In favor of more

efficient parsing methods. In the example above, syntactic measure is needed

A cioser look SO

whenever the grammar "splits" on a vero- Inflected with "ed" by creating a parse In

which the "ed" verb Is the main verb of a clcuse, and one in which the "ed" verb Is

part of an embedded clause modifying a noun. In a grammar which did not split (see

section 3.2,5), "I saw the salesman crushed by the elevator" would be divided Into:

PREP: BY
3. NOUN: (ELEVATOR THE)

VERB: ((CRUSH ED))
N0UN1: !malch_to_head_noun

2 FUNCTION: REL

VERB: ((SEE ED))
N0UN1: I
N0UN2: (MAN THE)

1. FUNCTION: MAIN

When the stack Is collapsed, 2. would be attached to 1. as the WHAT case of

"see", and !match_to_head_noun would be replaced by "the man". If the sentence

were "I saw the man crushed by tne elevator walk away.", then when walk was

"read", the only place to put it would be the verb slot of the WHAT case of "see".

Therefore the stack would be collapsed with the purpose "VERB", meaning "Don't

fill up any verb slots," This would cause 2. to be attached to 1. as a mc'.fier of

"man", rather than as the WHAT case of "see".

4,2 Collapsing

Collapsing a stack (or stack segment) consists of converting It into a single stack

structure by attaching all the structures In the stack to each other until there is

only one left that has not been attached to any other. The methods used to build

the rtack ensure that structures will only modify structures beneath them !n the

A closer look 87

stack. There Is one "syntactic" constraint the collapse must satisfy. Given a stack

[Sn, Sn-1 S2, SI], if SA is attached to Sj, then for all /, k > i > j. Si cannot be

attached to Sm, y > m. This constraint, which may be viewed as nesting condition,

reflects the syntax of English. As an illustration, the stack [D C B A] could be

collapsed in five different ways:

(A B C D) A modified independently by B, C and D.
(A B (C D)) A modified independently by B, and C modified by D.
(A (B C D)) A modified by B modified independently by C and D.
(A (B (C D))) A modified by B modified by C modified by D.
(A (B C) D) A modified by independently by B modified by C, and D.

It can't be collapsed so that D modifies B, which then modifies A, and C modifies A

since this would violate the nesting condition.

Depending on the stack, each one of the above structures could be the meaning

intended In the sentence, so the Collapse algorithm must be able to consider each

possible collapse and return the one(s) with the best measure.

The following sentence illustrates the fact that any one of the five structures could

be the preferred Interpretation of a four structure stack. "He puts the block In the

box In the carton on the table." would be divided Into

D. on the table
C. in the carton
B. In the box
A. He puts the block

Depending on the circumstances the sentence occured in, it cculd mean either:

(A (B (C D))) -- The box is in the carton, the carton Is on the table, and the block Is
put In the box. [When B modifies A, it can modify either the location of the block, or
where t'.e block was put. If only B modifies f directly, then It must specify where
the block was put. If there Is another modifier that could specify where the block
was put, then B specifies the location of the block.]

(A (B C) D) -- The block Is In the box, the box In the carton, and the block Is put on
the table.

i

A closer took 88

(A B (C D)) -- The block Is In the box, the carton is on the table, and the block Is
put In the carton.

Changing D to "on Thursday" yields

(A B C D) -- The block Is In the box. It Is put in the carton. The action Is done on
Thursday.

Changing C to "with the cover" yields

(A (B C D)) -- The box has a cover. The box Is on the table. The block is put In the
box.

The simplest algorithm for collapsing the stack would be to generate all legal

collapses and then choose one with the best measure. This method is not used

because the number of structures a stack can be collapsed to grows exponentially

with the length of the stack. In fact, the sequence followed Is the Catalan2

sequence, which is (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796...). .he

closed form for the Nth term of th^ sequence is

(2(N-1))I
 - T(ie number of ways a stack o\ length N can be collapsed.
(N-l)INI

So It is obvious that we will want to use a more intelligent method for collapsing.

The set of structures a stack S may be reduced to is called the collapse set We

wish to generate the members of the c-i'/apse set In an order that gives us (he best

chance of finding the preferred structure id the se» before generating the entire

set.

In English usage, sentence constituents have a tendency to modify the constituents

that are closest to them in the sentence, in a stack, this translates as "a stack

3 Which, among other things, counts the number of ways a convex polygon of N
sides can be triangulated [Gardner 76].

'mmm

A closer look gg

structure Is most likely to modify the one directly beneath It In the stack." Our

heuristic Is to generate the members of collapse set that have the "closest

modifications" first3, and stop as soon as we generate a structure with perfect

measure.

We define a metric to measure how well a member of the collapse set tits the "close

modificatlop" criteria. The metric counts the number of structures in the stack that

modify structures n structures beneath them. S(N1,N2 NM Is the subset of

collapse set whose members contains N1 structures that Jump over one structure to

find the structure they modify, N2 structures that jump over 2 structures to find the

structure they modify, etc. The members of S(N i,N2,...NA) are more closely modified

than the members of S(M1,M2...,MA) if and only if the sum of the N; (/ = 1,A) is less

then the sum of .he M/ (/=1,A), or the sums are equal and there exists / (1 < / < k)

such thot Ny > My and HI = Mi for all / less than k. eg., For a stack of five

structures, the structure with the closest motiiflcatlons Is £(0,0,0) the structures

that are in S(1,0,0) are the next most likely intet^retatirn of the stack, and .he

structures in S(2,0,0,) are prefßrred over those in S(1,1,0). Tne Collapse routir

generates the stiuctures with the closest modifications first, with one Important

exception. Suppose the modification of structure N by structure M leads to a bad

measure. Then every final structure in which M modifies some other structure with

a better measure than it does N is generated before those containing N modified by

M, even though the latter may be more closely modified.

Here Is how this works on the sentence.

3 There are certain exceptions: for example, if a verb structure in the stack has a
passive verb group, and there is a preposition structure whose preposition is "by"
above it, then the collapse routine tries to attach the "by" preposition structure to
the verb structure first.

A closer look 90

"Write me a program called Intersection which prints a set of lists
of numbers and outputs the numbers which are in all of them."

The stack to be collapsed Is,

9.
PREP: OF
NOUN: THEM

PREP:IN
8. NOUN: ALL

VERB: ((BE))
N0UN1: (WHICH IPL)

7. FUNCTION: WHICH

VERB: ((PRINT S))
N0UN1: !match_to_conjunct_sub
N0UN2: (NUMBER !PL THE)

6. FUNCTION: AND

PREP; OF
5. NOUN: (NUMBER !PL)

PREP: OF
4. NOUN: (LIST !PL)

VERB: ((READ . S))
N0UN2:(SET A)
N0UN1: (WHICH ISING)

3. rUNCTION; WHICH

VERB: ((CALL . ED))
N0UN2: 11NTERSECTION
N0UN1; !match_to_head_noun

2. FUNCTION: PASS

VERB: ((WRITE))
NOUNS:(PROGRAM A)
N0UN2: ME
N0UN1;YOU»
MSG: (IMP)

1. FUNCTION: MAIN

or more simply,

A closer iuox 91

9. of them
8. in all
7. which are
6. and prints the numbers
5, of numbers
4. of lists
3. which reads a set
2. called Intersection
1, write me a program

Collapse begins by trying to generate (1 (2 (3 (4 (5 (6 (7 (8 9)))))))), the only

member of 5(0,0,0,0,0,0,0). It successfully forms (6 (7 (8 9))) and tries to attach

It to 5. It cannot since 6. must be attached to verb struct—e. An illegal

attachment and an attachment with bad measure are handled similarly4. Collapse

now looks down the stack for the closest structure wnich will accept 6. with a

perfect measure. It finds 3. which means it now has to collapse the stack segment

from 5. to 3. It calls Itself recursively on the stack consisting of 5.,4. and 3. which

results in the structure (3 (4 5)). The structure (6 (7 (8 9))) Is attached to it, and

Collapse goes back to work on the stack consisting of 1., 2. and (3 (4 6) (6 (7 (8

£?)))). The result Is,

eg.. If the attachment were legal but had a bad measure. Collapse would
Immediately start looking for a better place to put it. If none were found, it would

settle for the bad measure.

A closer look 92

(IMP {ZWWRITE NN
[ARG1 YOU*]
[AR63 ME]
[ARG2 (PROGRAM A {1«CALL PN

[AR61 !match_lo head noun]
[ARG2 l«INTERS£CTION]

>
[CONJ AND

(1#READ NN
[STEPOF !match_to_head noun]
[ARGS (SET A (OF (LIST IPL (OF (NUMBER IPL)))))]

>

(1«OUTPUT NN
[STEPOF !malch_lo conjunct_5ub]
[ARGS (NUMBER THE !PL {2#BE NN

[AR61 (lmatch_to_head_noun)]
[ARGZ (ALL (OF THEM))]

»)]
)

])]

4.3 Formatting

Format Is the algorithm which prepares a structure for output. It is responsible for

calling the deductive system to measure the structure.

4.3.1 Noun groups

The noun group of an unformatted structure is a list of the head noun and Its

modifiers. This list is handed to the deductive system which structures it and

returns a measure of the appropriateness of the noun group. The representation

used for the noun group's structure is dependent on the needs of the deductive

system. Suppose Format were given a structure containing the noun group,

NOUN: (PROGRAM THEORY FORMATION THE)

A closer look 93

The deductive system would be asked to structure It, The structure returned by

the Interpreter (chapter 5) would be:

NOUN: PROGRAM
program-type: THEORY-FORMATION
definite: T

MEASURE: PERFECT

where "THEORY-FORMATION" Is an atom denoting a certain kind of program.

The noun group representation used by the the deductive system does not matter

to Reader, since once a structure is formatted, the parser no longer accesses It.

The important piece of information, as far as Reader Is concerned. Is the measure of

the noun group. It Is not unreasonable to expect the deductive syrtem to be

capable of supplying such a measure. A system's ability to represent a noun group

in a useful fashion implies that it has a measure on how well the noun group fits the

representation.

The structured noun group is returned in the propsr slot of Format's output. The

measure of the loun group is added into the structure's measure, which will be

returned along with the formatted structure.

4.3.2 Conjunctions

Format Is responsible for bringing conjunctions up to their proper level In the

sentence. "He reads books and writes poetry and music" would be parsed Into

A closer look 94

NOUN: MUSIC
3. FUNCTION: AND

VERB: ((WRITE S))
NOUril: Inatch to conjuncl_SUB
N0UN2: POETRY"

2. FUNCTION AND

VERB: ((READ S))
NOUN1- HE
NOUN2: (BOOK !PL)

1. FUNCTION: MAIN

When the stack I;; collapsed, 3. would be attached to 2., yielding

VERB: ((WRITE S))
N0UN1: lmat.ch_lo_conjunct._SUB
N0UN2: (POETRY (AND MUSIC))

2. FUNCTION AND

When 2. Is formatted, the conjunction (which until now has been treated just like a

preposition) in N0UN2 is broughi up to toplevel, producing (AND POETRY MUSIC).

When the format of 2. is attached to 1., It Is placed In the cases slol;

VERB: ((READ S))
N0UN1: HE
N0UN2: (BOOK PL!)
CASES: ((AND (WRITE NN ((SUB lmalch_lo_conjunct_SUB)

(OBJ (AND POETRY MUSIC))))))
1. FUNCTION: MAIN

Format brings it up to top level so that the result of the parse Is easily seen to bo a

conjunction:

[CONJ AND

(READ NN
[SUB HE]
[OBJ (BOOK IM.)]

}
(WRITE NN

[SUB lmatch_to_conjunct SUB]
[OBJ (AND POETRY

MUSIC)]
)

]

A closer look OS

The symbol "imatch_to_conjunct_SUB" (section 2.4.6) refers to the SUB of the first

conjunct ("he')-

4.3.3 Filling In extra cases

Format provides a channel for the deductive system to determine if there are any

missing cases in the verb that can be filled in from the rest of the sentence.

Consider the sentence "John drove through and destroyed the plate glass window.",

taken from [Woods 73]. Syntactlcaliy, it is possible for the object of the

preposition "through" to be "the plate glass window," Reader asks the deductive

system if this would make sense. If the answer is affirmative, Format would return

[CONJ AND
{DRIVE PN

[SUB JOHN]
[WHERE (THROUGH (WINDOW THE PLATE GLASS))]

>

{DESTROY PN
[SUB lmatch_lo_conjunct_SUB]
[OBJ ImatctTtiTconjunct^PREP]

)
]

where "match_to_conJunct_PREP" Is to be matched to "the plate glass window".

Notice that Reader cannot add cases to a verb without consulting the deductive

system. In the sentence "John drove through and destroyed her confidence In

him.", the object of "through" Is not "her confidence In him".

4.3.4 Choices

Any choices in the parse structure (section 2.3.4) are generated In Format.

Consider the choice offered for the SUB of "be" In

A closer look 96

{KNOW PN "I know that ice is slippery."
isuB.n
[WHAT IBE PN

[SUB («CHOICE ICE
(ICE THAT)

)1
(DES SLIPPERY]

1]

Just before Format asks the deductive system to structure a noun it examines It to

see If a choice can be made from it. In this case, the test Xhtt succeeds is that

the noun is modified by "that" and is the SUB of a verb which belongs to a structure

whose function is WHAT. The consequence of the test is that a choice of noun

groups should he offered, one with "that" as a 'noclificr, and one without "thaf" If

the origint-l sentence had been "I know that tnat ice is slipperv", the sscond "that"

would not have been added to the Modifier List. Instead, a message would have

been left In the message slot of the verb structure which would have signalled

Format not to test for this particular choice being present.

4.4 Parallel processing

Reader Is designed to follow partial parses in parallel, if this were implemented

straightforwardly, it would lead to an unfortunate amount of duplicated effort.

Consider the parsing of the sentence "He had anotner look at the man in the trench

coat who had been following him for the last hour," When "at" is read there are two

partial parses:

A closer look 97

1. msq « NOUN, ml • NIL

VERB: ((HAVE EO))
NOUN1; HE
NOUN2; (LOOK ANOTHER)
FUNCTION: MAIN

2. msq = VERB, ml ■ NIL

VERB: (aOOK))
NOUNI: /»NOTHER
FUNCTIC;:: WHAT

VERB: ((HAVE EO))
NOUNI; HE
FUNCTION: MAIN

If reader used simple parallel processing, "at" would be added to both partial

par.f.RS, producing

1. msq • PREP, ml = NIL

PREP: AT

VERB: ((HAVE ED))
NOUNI; HE
NOUN2; (LOOK ANOTHER)
FUNCTION: MAIN

2. msq • Pl^EP, ml • NIL

f'REP: AT

VERB ((LOOK))
NOUKl: ANOTHER
FUNCTION: WHAT

VERB; ((HAVE ED))
NOUNI; HE
FUNCTION: MAIN

At this point, both stacks have the same top structure. The rest of the sentence,

consisting of the noun group "the man in the trench coat who had been following him

for the last hour" Is going to be persed twice, once for each partial parse. The

different partial parses arose because words were applied to a single partial parse

In different ways. This necessitated two different parses, because each could

accept words differently. Parse 2. was able to accept "look" as a verb and parse

1. was able to accept it as a noun. But now that the stacks of each partial parse

hove the same top structure, most words will be added to the stacks in the same

fashion. We can take advantage of this fact to avoid parsing the object of "at"

twice.

In general, whenever two (or more) partial parses have Identical top structures,

A closer look
98

they are merged Into one partial parse with a branching stack. The two partial

parses above would be merged to:

msg = PREP, ml = NIL

PREP: AT

-:T"

VERB ((HAVE ED))
N0UN1: HE
N0UN2: (LOOK ANOTHER)
FUNCTION; MAIN

VERB: ((LOOK))
NOUNl: ANOTHER
FUNCTION: UHAT

VERB: ((HAVE ED))
NOUNl: HE
FUNCTION: MAIN

The stack branching Is Invisible tc the grammar programs. When a SHIFT is called on

e branched stack, It automatically follows down all the branches and separates the

branched stack as required. In this case, the merge of the two partial parses cuts

the parsing time for the rest of the sentence in half. The succeeding words In the

aenten;e are applied to one partial parse, instead of two. Since none of the words

in the remainder of the sf ntence are attached to structures below the current top

of the stack, the two partial parses remain merged until the end of the sentence.

After the last word In the sentence has been read, the stack looks like:

A cioser look 99

msg = NOUN, ml «NIL

PREPi FOR
NOUNs (HOUR LAST THE)

VERB:"((FOLLOU 1NG)(BEEN)(HAVE ED))
NOUNl: WHO
NOÜN2: HIM
FUNCTION: WHO

PREP: IN
NOUN: (COAT TRENCH THE)

PREP: AT
NOUN: (HAN THE)

VERB ((HAVE ED))
NOUNl; HE
NOUN?: (LOOK ANOTHER)
FUNCIION: MAIN

VERB: ((LOOK))
NOUNl: ANOTHER
FUNCTION: UHAT

VERB: ((HAVE ED))
NOUNl: HE
FUNCTION: MAIN

Collapsing this stack produces two different parses'

(HAVE PN
[SUB HE]
[OBJ (LOOK ANOTHER (AT (MAN THE (IN (COAT THE TRENCH))

{FOLLOW PPC
[SU6 lmalcH_to head noun]
[OBJ H1M1
[FOR (FOR (HOUR THE LAST))]

))))]
>

and

(HAVE PN
[SUB HE]
[WHAT {LOOK NN

[SUB A1MOTHF.R]
[AT (AT (MAN THE (IN (COAT THE TRENCH))

(FOLLOW PPC
[SUB Imatch lo head noun]
[OBJ HIM]
[FOR (FOR (HOUR THE LAST))]

>))]

.■-^.-^-^■■.^-^ -c^j.:.-..^,...:

A closer look 100

Merging partial parses Is the other complication mentioned in the general control

structure presented In section 2.2. Step 6 was "Reset part I ah parse-11st to a list of

the partial parses formed In step 4." What actually occurs, Is that Reader

examines the list of oartial parses formed in step 4. and modifies it by merging any

partial parses whose stacks have the same top structure, partial-parse-1 ist Is then

reset to the modified list.

The merging of partial parses is similar (in effect) to the use of a well-formed

substring table (WFST) by parsers which use backup to achieve non-determinism

rather than parallel processing. A weii-formed substring table, [Kuno 63], is a

collection of parsed sentence constituents. When a parser using a WKST backs up,

it avoids reparsing sentences constituents by picking constituents it has already

parsed out of the WfSl. Similarly, in a parallel processing environment, the merging

of partial parses avoids the reparsing of constituents by allowing each parsed

constituent to be shared by every active partial parse which can use 't.

4.5 Other parsers

A considerable amount of the work has been done In the field of natural language

porsing. Much of this work has concentrated on syntdx based parsers. These have

evolved from simple systems implementing context free grammars, to rather

complex systems motivated by transformational grammar considerations. Such

parsers have grammars which consist of a context free grammar, along with a set of

rules for modifying the parse tree built by the context free component. The parse

tree may be modified while It Is being censtructed [Woods 73], or after it has been

:., ..

A closer look 101

completed [Sager 73]. This section examines the differences between some of

these systems and Reader.

Reader's organization Is similar to these systems In that we can view Format as the

transformational component, anti the grammar programs as the context free

component. The differences In the systems He primarily in the "context free"

component. The first difference Is tnat the grammar programs are more powerful

than a context free grammar. Consider the sentence "Only one man was found who

could speak English." In this sentence, "who could speak English" modifies "man".

Reader parses the sentence by dividing it into a stack of two structures. When the

stack is Collapsed, the top structure Is ettached to the bottom structure, which

results in the proper modification. This modification cannot be expressed In a

strictly context free grammar.

A more impottant difference lies in the way the "context free" component operates.

The grammars for most syntax based parsers consist of a description of legal

sentence structures. The grammar's application to a sentence results in a series

of choices about which kind of constituent should be built at a particular point in the

parse. Each system makes some effort to diminish the number of unsuccessful

guesses. For example. Woods allows the grammar writer to "recommend" what

guess to make at any point In the parse. Winograd's grammar5attempts to use the

information gained from a failed guess at a decision point to allow it to choose

Intelligently from the remaining choices at the decision point.

5 The grammar in Winograd's parser also consists of a set of programs. However
p

the programs deal solely with the construction of a parse tree, and are not orient ad
towards building structures that can represent liore than one parse tree at a tlrre.

i
.

A closer look 102

Reader's grammar consists of a set of programs which determine the different

ways a word may be added to a parse in a given configuration. The two methods

are similar in that the o'^sses the older parsers make correspond to the guesses

Reader must meke In deciding which way add a word to a partial parse. The

difference In the methods Is that Reade; provides a framework (the stack) and a

means (the grammar programs) for writing jrammars tha* diminish the number of

ways a word can be applied to a partial parse while still maintaining a substantial

grammar. In most caseJ the grammar programs will apply a word class to a parse In

only one way. However, a word which belongs to more than c^e word class will

generally6 be applied to a parse once for each word class it belongs to.

It can be argued th^t since all the more recent systems have the power of Turing

machines, they can perform any algorithm, including those thav Reader carries out.

A simple answer to this Is "Ah, but they don't". The reason they don't 's that in

many o' the systems the "full power of a Turing machine" 1ö used only to moo, as

opposed to help build, the parse trees generated by the context free component.

In other wordb, the Turing machine comes in after all the guessing has been done.

The metliods used by Reaüer to avoid nondeterminism include a mechanism used in

the ATN parser described in [Woods 1970], vVood's parser Is partially based on a

finite state mcchine, and the method referred to involved the technique of making

an arbitrary nondeterministic finite state machine determirrstic by introducing

several new states. Some of Reader's stategles can be viewed in this light, but

most cannot, since they are involved with eliminating nondetei mism from situations

which involve pushdown operations in the ATN formalism.

6 Exceptions are single applications for words which are both conjunctions and
prepositions, and words which are both nouns and modifiers.

A closer look 103

Here Is a concrete example. Section 3.2.2 explains how Header parses simple

relative clauses determlnlstically, using the example sentence "The city people

hate Is ToLyo". A nondeterministlc ATN would begin parsing the sentence by

attempting to find a noun phrase. It would have to guess whether to find "the city

people" er "the city people hate". The guess consists of deciding when to "pop"

up from the "push" of finding a noun phrase; exactly the kind of guess that a finite

state machine transformation cannot help.

Another advantage listed for ATNs is the use of registers to make "...tentative

decisions about the sentence structure and then change one's mind later In the

sentence without backtracking." This is obviously a good feature fnr a par ?r ti

have, and seems equivalent to Reader's method of representing both sides of a

decision while reserving the ric,'it to chose one or the other (without backtracking)

later in the sentence. In Reader, this allows one to parse relative clauses and

conjunctions determinlsticaiiy, delay attaching various parse structures until more

information Is gathered about the reason for the attachment (thereby reducing the

combinatorics of the attachment), combine different word class usages of a single

word into one parse, etc, in contrast, [Woods 1970] contains two examples of the

ten a five decision method at work, which occur in the parsing of the sentence

"John was believed to have been shot." The first decision Is that was Is the main

verb of the sentence, which is later revised to believe is the main verb and was is

an auxiliary verb. The second is th3 decision that John is the subject of was,

revised later to John Is the object of believe, and revised still later to John is the

object of shot. In Reader's formalism, ail these "decisions" are made and revised

trivially. The final stack to collapse is;

A closer look 104

VERB: ((SHOOT ED)(BEEN)(HAVE))
N0UN1; Imatch to sub

2. FUNCTION: INF

VERB: ((BELIEVE EO)(BE BE3SP))
N0UN1: JOHN

1. FUNCTION: MAIN

The decision to make was * helping verb is accomplished by simply adding believed

to structure 1. There is no need to assume what case John fillF until the structure

it is ' Is Formatted. Attaching an INF structure whose VERB is passive to a

structure with a passive verb which accepts a clause entails removing the first

noun In the latter structure, installing it as the first noun of the INF structure, and

then attaching the INF structure as the clause case. When the INF structure Is

Formatted, "Joi.n" is made the object of "shot". The perse is,

(BELIEVE PN
[WHAT (SHOOT NP

[OBJ JOHN]
>]

)

There Is at least one other parser under development that also tries to avoid

needless guessing. It is being written by Marcus [Marcus 75] and is based In the

belief that "...the structure of natural language provides enough and the right

information to determine exactly what to do next at each point of the parse." The

claim is that the parser will be able to avoid guessing what to do at a decision point

because there is really only one acceptable rhnice. The system Is still being

written, so it is too early to comment on it. However, It seems that this approach

will encounter problems when working with a sufficiently large grammar and words

that can assume more than one syntactic category.

A closer look 105

Some more recent parsing systems have been developed which deemphasize the

role that syntax plays in the parsing process. Naturally, such parsers do not

produce a "classical" parse tree, but instead produce a structure which is said to

represent the "meaning" of the sentence being parsed. Examples of this type of

work may be found in [Riesbeck 74] and [Wilks 73]. As this work has come after

the more synta:; oriented parsers discussed above, we should explain why we have

rejected this approach.

The main reason is our belief that most semantic processing will be more expenslv«

than syntactic processing in a rich environment. Therefore, it is desirable to use

syntax to minimize the number ot semantic Interactions that need be considered.

This contrasts with (for example) Riesbeck's work, in which he says "the functions

of the analyzer to be descibed here ask questions about the relationship of words

and concepts." Here, the process has been reversed; semantics and deduction are

used to determine which words interact, and syntax is used only later, If at all, to

ensure that a proposed modificatiori between words Is permitted. If one limits

oneself to simple sentences, the added expense of using semantics instead of

syntax to decide whether two words interact will not be overwhelming, since the

possible Interactions in a simple sentence will be few in number However, the

number of possible Interactions to be examined semantlcally grows exponentla'ly

with the complexity of the sentence, so it seems that these methods will not be

practical In a rich environment (In which there are many possible relationships

between almost all words and concepts) which has to deal with complicated

sentences.

106

6. The Interpreter

A brief overview of the Interpreter is given in sections 1.2.2 and 1.5.2. Essentially,

it is a computer program which attempts to understand natural language. There are

many other computer systems which would make the same claim. The points of

Interest In all programs of this type are;

1. The representation used for the information contained in the natural
language. For the Interpreter, this is the program specification.

2. The representation(s) used for the knowledge base needed to
understand the natural language.

3. The methods used for activating parts of the knowledge base to bear
on a particular task.

The tirst point is covered in Section 6.1. Examples of different types of program

specification types are given, along with an example which illustrates how several

components fit together to describe a computer program. The section also

discusses the representation of user' s replies which are not Incorporated into tne

program specification.

Section 5.2 introduces "concepts" and "definitions", the two representation units In

the Interpreter's knowledge base. The simplest type of concepts are those which

aie abstractions of components in the specification. An example of such a concept

is #ADD, which refers to the concept of adding up several numbers. Information

included in the #ADD concept is,

#ADD can be Instantiated as a step In the program soecification.

#ADD takes two or more arguments.

The arguments should be numbers. But an exception occurs when
there is one argument which is a set of numbers. In that case,
the numbers in the set should be considered the arguments of the
#ADD.

The Interpreter 107

Definitions provide Instructions for mapping English word strings Into concepts. The

deiinltion of "sum" contains information which allows the Interpreter to map "The

progräm sums up the last three numbers." Into an #ADD which Is a step of "the

program" and whose arguments are "the last three numbers".

The task of relating a phrase like "the last three numbers" to a specific component

(or components) in the program specification is referred to as matching. Section

5.4 covers the matching process, explaining how the information contained in

concepts and definitions is used during matching.

The primary goals of the processing performed by the Interpreter are conceptually

very simple, and sections 5.2, 5.4 and 5.3 (which explains the Interpreter's

processing cycle to provide background for section 5.4) should be read with them In

mind. The goals, upon receiving a parse structure, are:

1. Determine which definitions can be applied to the parse
structure, and therefore which concepts the parse structure Is
invoking.

2. Find or create referents in the program specification for the
descriptor slots of the concepts the parse has been reduced to.

3. Incorporate the appropriate concepts Into the program
specification.

Section 5.6 explains how definitions and concepts are used to provide the measure

Information necessary for the interface between Reader and the Interpreter. The

final section mentions some work remaining to be done.

The Interpreter 108

5.1 The results of interpretation

5.1.1 The program specification

The program specification contains a record of everything the user has said (and

the interpreter has inferred) which is relevant to the description of the program

being written. The parser/interpreter uses It as a data base for matching, the

parser/Interpreter Interface etc. This section describes the format of the

specification. Later sections will show how It is utilized by the parser/interpreter.

The principal result of the Interpreter is the program specification The program

specification1 represents a computer program, and can be viewed as a high level

programmeng program language. It consists of a connected set of components.

Such a data structure has been labeled a "entity-wttribute-value data structure" In

[Heidorn 74], and a "set of conceptual entities vith associated descriptions" In

[Bobrow 76].

The description of a component is a collection of descriptor/value pairs which

specify the actions and structure of the component. For example, a component may

have as Its description,

A0358
class: ALG
type; OUTPUT
args:"Ready"
step-of.- A0367

which means that It is an Algorithm component that should be mapped into an

"output" operfltion In the target language (eg., WRITE In Fortran, PRINT in Lisp, etc.).

1 The program specification semantics were developed with Jorge Phillips.

The Interpreter 109

The argument of the output is the string "Ready". The step-of descriptor Indicates

the position of the component in the specification; It is one of the steps of an

ALGorithm component denoted by A0367.

Each descriptor has an inverse associated with It. For example, if a component X Is

in the steps descriptor of a component Y, this fact can be derived by examining

either X or Y.

A component belongs to one of two classes: ALGorithm or DATA. Each class is

subdivided Into several types. Figure 5.1 shows some control structure ALGORITHM

types.

The Interpreter 110

PROCEDURE
ARGS: a list of DATA components whose type is BOUND.
DEFINITION: An ALG component.

SEO
STEPS: a list of ALGs to be executed in sequential order.

CASE
CONDITION:

an ALG with a RESULT slot, or a DATA which is the RESULT
of an ALG.

STEPS: a list of ALGS to be executed if the CONDITION is TRUE.

COND
CASES:

is TRUE is executed, the rest are ignored.
a list of ALGS whose type is CASE. The first CASE whose condition

Th

ENUMERATE
ON; a DATA whose type is SET.
STEPS:

a list of ALGS to be executed sequentially for each element in
the ON set. The iteration element is represented by the generic
element of the ON set.

LOOP
EXITS: a list of ALGS whose type is CASE.
COUNTER:

a DATA of type INTEGER whose value is the number of times
the LOOP has been executed.

STEPS:
a list of ALGs which Includes every CASE in EXITS. The ALGs in
STEPS are repeatedly executed until the condition of a CASE in
EXITS is satisfied.

CALL
PROCEDURE: an ALG of type PROCEDURE.
ARGS: a list of DATAs which are bound to the args of PROCEDURE.

Figure 5.1

Control structure ALGorithm types

The remaining ALGorithm types can be divided into predicates and primitive

^m MMHi

The Interpreter 111

operations. The number of these is essentially unlimited, since anything the PSI

coding module can code can without instructions from the user can be considered

primitive. Figure 62 provides some samples of ' e primitive operations and

predicates used by the current system.

MAP
ARG1; s DATA componentB whose type is MAPPING.
ARG3: a DATA component
ARG2: a DATA component

MAP is the program soecification primitive for associating one DATA component
(ARGS) with another (ARG3) via the mapping ARG1. It is a generalization of
the Lisp PUTPROP command. IMAP corresponds to GETPRDP.

IMAP
ARG1: a DATA components whose type is MAPPING.
ARGS; a DATA component
RESULT: the DATA component that ARG1 maps ARGS to.

COMPUTE
ON: a DATA component wNch is a set.
RESULT: a ilATA component which is a set.
QUANTIFY; eilhi-r ALL, SOME or DATA component which is an integer.
ASSERTIONS:

a list of ALGs which are assertions involving the generic
element of the RESULT set.

The RESULT set is a subset of the ON set which consists of all, some or any
n (depending on the value of Ol'ANTIFY: ALL, SOME or a number n) of the
of the elements in the ON set which satisfy the ASSERTION list.

INPUT
ARGS: a list of the DATAs being read in.
PROMPT: a DATA of type STRING which is output to herald the INPUT.

MEMBER
ARG1: a DATA component,
ARG2: a DATA component which is a SET.
RESULT: a DATA of type BOOLEAN which reflects whether ARG1 is in ARG2.

FORALL
BINDINGS: a list of OATAs whose type is BOUND.
PREDICATE: an ALG with a RESULT.
RESULT: a BOOLEAN which is the truth value of universal quantification.

Figure 5.2

Primitive operations and predicates

Data structures, like primitive operations, come in any form that the coder Is able to

handle. Figure 5.3 shows some DATA types and example DATAs.

The Interpreter 112

SET
ELEMENT: a DATA which is the generic Blemenl of the sat.

RECORD
FIELDS: a list of DATA components whose type is FIELD.

FIELD
DATA: a DATA component which the contt.its of NAME filed of a REDORD.
NAME: the name of the FIELD.
QUANTIFY: either ALL, SOME or DATA component which is an integer.

class DATA
type SET
value' PHI

class DATA
type BOOLEAN
value TRUE

[the empty set]

[the boolean value TRUE]

class DATA
type RECORD
rep GRAPH
instanceof AD001
assertions (A00D2 A0003)

The DATA above illustrates the three descriptors any DATA may ha-'S,
The REP descriptor indicnlea that the program designer is referring
to this comoonent by the word "grapn", ALG components may also have
REP descriptors. The INSTANCEOF descriptor indicates that the
structure of this component is the same as the etructure of the
component which ADOOI points to. The ASSERTIONS descriptor contains
a list of assertions about the component.

Figure 5.3

Data structure typee and examples

5.1.2 An example and ccmparison

This section illustrates how these pieces are combined In a program description.

Figure 5.4 contains a short dialogue, the program specification the Interpreter has

built from It, and the pretty printed version of the specification.

The Interpreter 113

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?

Lessall.

DESCRIBE LESSALL.

Lessall takes a number and a list of numbers as arguments. It returns True if
the number is less then every number in the list. Othsrwise it returns False.

* type PROCEDURE
name *♦-
rie f I n i t i on *«-
args * *

 I h r
* type BOUND * type BOUND

* type CONO
cases ««-♦*

* type NAME
value LESSALL

J boundto * J
« type NUMBER

bound to *

I I
* type LIST

element *

I]
* type NUMBER

L_

« type CASE « type CASE
condition » condition TRUE
steps « t steps *

T t

I '
J

« type RETURN
argl TRUE

* typa BOUND
bound to ««- I

» type RETURN
argl FALSE

type MEMBER I f"
element *<—' # t

« type FORALL
predicate *«-♦* type IMPLIES
bindings * antecedent *«-i

t consequent *

 I
eieme
set *

ype LESS
argl #<—
arg2 **-i

LESSALL (Bl B?)
If F0RALL(B3) 1MPLIES(MEMBER(B3 62)

LESS(B1 B3))
Then RETURN(TRUE)
else RETURN(FALSE)

B3 1s a variable bound to Al, B2 1s a variable bound to A2.

Bl is a variable bound to A3. A3 Is a number. Al is the generic element of A2.

A2 Is a list whose generic element 1$ a number.

Figure 5.4

Lesoall and its program specification

The Interpreter 114

The top node In the program specidcatlc.i Is always a PROCEDURE component. In

this case, It has two arguments, which are bound to a number and list of numbers

respectively. This structure information Is required by the coder, as it enables It

choose Its algorithm based on the dr-ta structures the algorithm Is meant to

manipulate. The body of the procedure is a COND with two cases. If the condition

("VX X c B2 -> Bl < X", where B1 is the number and B2 the number list) Is True,

then True2 Is returned. If not, the STEPS slot is ignored and the second CASE Is

tried. The condition of the second case is Tue, so anytime the first condition does

not obtain. False will be returned. The control structure and data descriptions

beneath the specification diagram ore the d'Stiilatlon (as obtained by the

specification pretty printer) of the program description Information contained In the

diagram.

The LESSALL program was taken from a paper on the Dedalus system, [MANNA 77],

Dedalus Is an automatic program synthesis which uses a formal specification

language as its input, rather than English. Since the Interpreter's output

corresponds to the Input of such a system, a comparison between the two Is a

useful measure of the effectiveness of the Interpreter. In this case, the two are

virtually Identical: the Dedalus input for LESSALL Is

LESSALL(X L) < = = compute X < a//(L)
where X is a number and L is a list of numbers.

The expression X < a//(L) means that "...X Is less than every member of the list L."

2 To save space, TRUE and FALSE have been used to represent the BOOLEAN
components whose values are TRUE and FALSE.

The Interpreter 116

5.1.3 Meta-comments

Some of the program designer's Instructions to the system do not describe the

program, but Insteed are intendod towards directing the course of the dialogue.

Comments Hke,
I don" t understand.
What we were talking about?
What did you mean by "the predicate fits"?
Forget about prompts.

do not fit into the program specification, but are meaningful nonetheless. Such

statements are sent to the dialogue expert as a filled In case frame. The case

frame Is actually a concept (next section) and it is filled in In exactly the same way

that concepts are Instantiated. The only difference is that Instead of being added

to the program specification, the Instantiated concept Is sent to the PSI dialogue

module for processing.

As an example, we will examine the concept of #USER-QUESTION-REQUEST.

Statements like,

Ask about the scene before the concept.
Let's talk about the scene.
Ask me about prompts before asking me about the scene.
Ask me about the structure of the scene first.,

which are addressed to when and which questions should be asked are mapped to

#USER-QUESTION-REQUESTs. A #USER-QUESTION-REQUEST is specified by three

descriptors:

QUESTION: either a question type (eg., STRUCTURE), a question (eg.,
(STRUCTURE A0012)) or a component (eg., A0012).

TIME: either BEFORE, AFTER (In which case REFERENT must be present)
or LATER or NOW.

REFERENT: takes the same values as question.

The Interpreter 116

The interpretatici of a #USER-QUESTION-REQUEST Is ask
{one of}

all qu< ■"' ns of type QUESTION
this part, ular QUESTION
any questions about the component which is QUESTION

either NOW or I ATER, or
BEFORE or AFTER asking

(one of}
all questions of type rlEFERENT
this particular question which is REFERENT
any questions about the component which is REFERENT

Then if AOOOI points to the scene, and A0002 to the concept, we have,

Ask about the scene before the concept.
[#USER-QUESTION-REQUEST Question: A0001 Time: BEFORE Referent: A00Ö2]

Let's talk about the scene.
[#USER-QUESTION-REQUEST Question: A0001 Time: NOW]

Ask me about ptompts before asking mo about the scene.
[#USER-QUESTION-REQUEST Question: PROMPT Time: BEFORE Referent: AOOOI]

Ask me about the structure of the scene first.
[#USER-QUESTION-REQUEST Question: (STRUCTURE AOOOI) Time: NOW]

5.2 The knowledge base

The knowledqe base used by the Interpreter consists of two declarative blocks of

knowledge, and a set of programs .vhich make use of the information In them. The

programs pre used to construct the specification, using the descriptions contained

in Concepts and Definitions, the two declarative blocks. There is no formal

definition of what constitutes a concept; a concept Is anything which the

Interpreter can reason about. Hence there is a concept behind every ALGorithm

and DATA type In the specification, as well as several higher order concepts. A

definition Is a means of mapping a sequence of English words Into a concept.

The Interpreter 117

5.2.1 Concepts

Concepts express many thinys, but are oriented towards supplying the Information

needed to Instantiate and reason about components. Instantiation refers to the

process of creating a component and filling in its descriptors with other components

in the specification, so that it too becomes part of the specification.

The Information contained in a concept is

Descriptors. What descriptors the concept can take, the type
checKing constraints the descriptors must obey, questions to ask
if the concept Is presented without a necessary descriptor, and
default descriptor values.

Postconditions; what is true after the concept has been
executed

Side effects: what changes to make to the program specification
when the concept has been recognized

For an example, consider the concept #MAP. #MAP represents the primitive

operation in the specification which allows the user to associate one data with

another. Figure 5.5 contains the #MAP concept.

The Interpreter 118

#nAP

DESCRIPTORS:
STEPOF

CHECK1:
QUESTIONS:

ARG1
CHECK!:

ARG2
CHECKl:
CHECK2:
QUESTIONS:

ARG3
CHECKlI
CHEHK?:
QUESTIONS:

POST-CONJITIONS:

SIDE-EFFECTS:

ISA #ALG
Uhere does the /STIAP belong?

ISA //MAPPING

ISA //DATA
W1AP-CHECK2(ARG1 ARG2 ARG3)
Uhat is being //IIAPped?

ISA //DATA
//riAP-CHECK2(ARGl ARG2 ARG3)
Uhat is ARG2 being //nAPped to?

(//EQUAL (//IMAP ARG1 ARG2) ARG3)

ilAPPING-UPDATEIARGl ARG2 ARG3)

Figure 5.5

The «MAP concept

Ficiure 5.5 shows that a #MAP is specified by foi't descriptors. Each descriptor has

information associated with it which assists the Interpreter in filling in the

descriptor slot. For instance, ARG2 must be a DATA component (#DATA refers to the

concept of a DATA component). The second check provides a more contextual type

checking which is used during matching and the parser/interpreter interface. Since

the check is more complicated than a simple type check (eg., ISA #DATA;, a program

(MAP-CHECK2) Is called which returns True or False, depending on whether ARG1 is

a MAPPING which maps components of type ARG2 into ARG3. II a #MAP is to be

instantiated and ARG2 is not present, then the question "Whai is the second

argument of the map?", represented by (ARG2 A0001) where A0001 points to the

The Interpreter 119

instantiated MAP, Is asked. SIDE-EFFECTS consists of things which should be done

whenever a component Is instantiated. In the case of #MAP) SIDE-EFFECTS

consists of a program (MAPPING-UPDATE) which updates the range and domain of

AP31 If necessary. The POST-CONDITIONS are what is true after the concept has

been executed. Section 6.3 on matching e..plaliis how the POST-CONDITIONS and

CHECKS are used.

Figure 5.6 shows the Interpreter's concept of #DATA and #SET.

«DATA
DESCRIPTORS:

INITIAL-VALUE
CHECKl; ISA «DATA
QUESTIONS: What is the initial value of the DATA?

VALUE
CHECK1: ISA «DATA

PREPOSITIONS:
WITH

CHECK1; ISA «DATA
nEANING: («ASSOCIATE data object) |

IN
1 CHECK1: ISA «SET 5

MEANING: («MEMBER data object) i

»SET
DESCRIPTORS:

ELEMENT
CHECIG: ISA «DATA i
DEFAULT: instantiation of a DATA whose REP is ELEMENT. |

SIZE
CHECK1: ISA «INTEGER

CLASSIFIERS: ELEMENT
1 PREPOSITIONS:

OF
CHECK1: GENERIC-ELEMENTO |i
MEANING: ELEMENT

FiQure 5.B

Th« i «DATA and «SET concepts

The concepts In Figure 6.6 both have information about prepositional modifiers.

Such Information Is usually associated with Individual word definitions, but when the

The Interpreter 120

modification is standard for the concept, regardless of how it is expressed in

English, the Information Is tied to the concept itself. The "in" modification for #DATA

means that every time a word which maps to a #DATA is modified by a prepositional

phrase whose preposition Is "in" and whose object is a #SET, the meaning of the

modification Is that the component the word matches to Is a member (represented

by the Interpreter concept #MEMBER) of the component the preposition object

matches to. The "of" modification for #SET Is slightly different In that the meaning

of the modification Is a descriptor of #SET rather than a concept. This means that

the object of the preposition fills that slot In the #SET description. The check for

"of" Is a program which makes sure that the preposition object Is a plural noun

which Is a #DATA.

The CLASSIFIERS slot is similar to PREPOSITIONS in that it appears in definitons,

rather than concepts, except in cases in which the meaning of the classifier is the

same for all nouns mapping to the concept. For #SE7, the CLASSIFIERS slot says

that if a noun modifies a noun mapping to set, and the noun satisfies the checks for

ELEMENT, then It fills the ELEMENT descriptor of the #SET. eg.. In "the integer list",

"Integer" Is a classifier of "list" which maps to #SET. Since "Integer" Is a #DATA, It

is assumed to be the generic element of the list.

To avoid needless duplication of Information, the concepts are arranged In a

refinement tree in which every concept shares all the Information associated with

its parent in the tree. #SET Is a refinement of #DATA. Thus when checking #SET

for Information, all the Information connected to #DATA applies, eg., If A0424 has

just been Instantiated as a set, the question "What is the Initial value of A0424?"

will be pending. Of course, if the system can answer the question (perhaps A0424

Is the argument of an INPUT), It will never be asked of the program designer.

The Interpreter 121

Concepts are also used to capture regularities in language. English provides many

different ways tc express the same thought. For example, X Is a function of Y can

be stated as,

X depends on Y.
X is calculated from Y.
X is determined from Y.
X is calculated on the basis of Y.
X cen be found from Y.
X Is based on Y.
X is obt-T.ed from Y.
X is related to Y.
X is found by examining Y.

As an aid in writing definitions, it Is useful to have all these phrases map Into a

single manipulable entity, namely th«; concept of »CALCULATION. »CALCULATION has

two descriptors, ARG1, which Is a »DATA, and ARG2 which is »PREDICATE. Methods

for using concepts like »CALCULATION are explained in the following section on

definitions.

6.2.2 Definitions

Definitions are used to map from English words to concepts. At the same time, they

provide the parser with measure Information It needs.

The information contained in a definition Is,

Concept: What concopt the definition maps to.

Word: what word the definition is a definition of.

Case-Descriptor relationships: Which verb cases can be used to
fill the descriptor slots of the concept. Which cases must be, or
are preferred to be, present for the definition to succeed.

Prepositions: Which descriptors prepositions can fill.

Conjunctions: Which descriptors conjunctions can fill.

The Interpreter 122

Defaults: Default values for some descriptor slots.

Clauses; Which descriptors can be filled by clauses not
Introduced by conjunctions.

Figure 6.7 contains an example.

DmARK
DEFINITION-OF: MARK
ISA: «MAP
CASES: (SUB STEPOF)(OBJ ARG2 Must)(10B ARG3 Preferred)
PREPOSITIONS:

AS
CHECKl: ISA #0ATA
MEANING: ARG3

DEFAULTS:
ARG1: GET-MAPPING(MARIO

1 COLLECT I ON
DEFINITION-OF COLLECTION
ISA »SET

Figure 5.7

A definilions of mark and collection

Suppose that the interpreter receives the sentence "Mark the scene

'necessary'". The parse Is

(MARK NN
[SUB YOU*]
[OBJ (SCENE THE)]
[10B "necessary"]

)

The definition will successfully map the sentence into the concept If all the

requlrjments for the concept descriptors are met. Following the CASEs slot, YOU* Is

matched to an ALGorithm component as the STEPOF descriptor, and "the scene" and

"necessary" are matched to #DATAs as the ARG2 and ARG3 of the #MAP to be

instantiated. The "Must" in the OBJ mapping indicates that the OBJ case must be

The Interpreter 123

present for the definition to succeed. Similarly, the "Preferred" In the IOB case

means that IOB case Is strongly preferred to be present, but not necessary. This

means that using the verb "mark", something can be marked without specifying

what the marking is, but a marking cannot be specified without mentioning what Is

being marked. ARG1 of the #MAP comes from the default slot of the definition; the

value of a program (GET-MAPPING) which finds the MAPPING component be used for

"mark", or creates one If this Is the first Instance of "mark" in the program

specification.

Nouns are defined similarly to verbs, with the exception that the case Information is

missing (It Is usually replaced by classifier information). Figure 6.7 contains the

Interpreter's definition of "collection".

Figure 5.8 contains two deflnitons which utilize the #CALCULATION concept.

ItfCLASSIFY
DEFIN1TI0N-0F: CLASSIFY
ISA: «CALL
CASES: (SUB STEPOF)(OBJ ARGS)
CLAUSES:

CHECKli ISA ((/CALCULATION
MEANING: PROCEDURE [extract ARG2]

DEFAULTS:
RESULT: instantiation of a DATA whose REP is CLASSIFICATION.

1#BASE
DEFINI7I0N-0F: BASE
ISA: «CALCULATION
CASES: (OBJ ARG1)
PREPOSITIONS:

ON
CHECK1: ISA «PREDICATE
MEANING: ARG2

Figure S.B

Definitions for "classify" end "base"

Consider the processing of the sentence "It classifies the scene based on whether

The Interpreter 124

it fits the concept." "based on whether It fits the concept" is mapped to a

«CALCULATION whose ARG2 is the predicate "it fits the concept", it is also a

clause which modifies "classify" (anticipating section 5.5 on the parser/interpreter

Interface, we note that the reason the parser knows "based" modifies "classify"

rather than "scene" Is precisely because one modification Is meaningful (all the

words -> definitions -> concepts maps succeed) and the other Is not). According to

the definition, a clause can modify "classify1 If it Is a «CALCULATION. If It Is, the

modification instructions are to fill the PROCEDURE slot of the "classify" #CALL with

ARG2 of the «CALCULATION. This work la done during Formatting, so the parse for

the sentence Is,

(IMP {CLASS'FY NN
[STEPOF YOU*]
[ARGS (SCENE THE)]
[PROC (FIT NN

[ARGS IT]
[ARGS (CONCEPT THE)]

)]
>

)

Had the sentence been,

Classify the scene on the basis of whether it fits the concept.
Classify the scene as a function of whether It fits the concept.
Classify the scene depending on if it fits the concept,
etc.

the result would have been the same.

Many times, unknown words are used to refer to undefined predicates or supparts

of the program being described. Since It would be unreasonable to expect all words

to bv included in the system, and often, the definitons of such words are Inferable

from context, the Interpreter uses a "template" definition to try to create a

definition for any unknown words which are used In the dialogue.

The Interpreter

Here Is an example:

The program reads a graph and a node. A graph Is a set of pairs.
Each pair consists of two nodes, which are primitive. The program
prints a list of all the nodes which can be reached from the input
node.

125

When the Interpreter encounters the last sentence, It has no Information about

"reach" other than that it is a verb. Because It is being used as the main verb of a

clause which modifies a noun, the Interpreter assumes that It represents a

predicate which the program designer has yet to define. The "templatp" predicate

definition and its instantiation for "reach" Is shown In Figure 5.9.

PREDICATE-TEMPLATE
DEFINITION-OP: —
ISA: «PROCEDURE
CASES: (SUB ARGS)(OBJ ARGS)
PREPOSITIONS:

match
CHECK1: ISA «DATA
MEANING; ARGS

1«REACH
DEFINlTION-OFi REACH
ISA: «PROCEDURE
CASES: (SUB ARGS* (OBJ ARGS)
PREPOSITIONS:

FROM
CHECKl: ISA «DATA
MEANING: ARGS

Figure 5.9

A template definition and its Instantiation

The template definition maps to a ^PROCEDURE. The "match" In Its PREPOSITIONS

slot matches to any preposition that the Interpreter cannot attach to anything else.

The resulting definition of "reach" asserts that "reach" Is a PROCEDURE, and that

the preposition "from" can be used to introduce one of Its arguments.

The Interpreter 126

5.2.3 Procedural embedding

Most of the Interpreter's knowledge about programming Is represented by

procedures. This Information Is necessary in order to incorporate what the program

designer has said in the program specification without asking questions which the

designer would feel his statements have implicitly addressed, it is not Intended to

help the Interpreter from a problem solving (eg., writing efficient algorithms from

Inefficient descriptions) standpoint. The information was modelled procedurally

since this seemed to be provide the easiest way to encode and apply It. The

disadvantages of the procedural approach (primarily opacity) do not apply, as the

information encoded in the procedures is not needed elsewhere In the system.

The information Is organized into several modules which are expert in building

various constructions in the program specification. There are modules which build

CONDs from a series of CASES, construct COMPUTES, note scoping ambiguities, build

quantified expressions from phrases like "all relations In the concept not In the

scene...", etc. As an example, we will consider the EXIT-TEST module.

The EXIT-TEST module is responsible for setting up the exit conditions of loops. Its

arguments are the loop and the phrase which indicates the exit condition. The

method for building a loop from each of the phrases it knows about Is simply

programmed out. Here is an example.

Figure 5.10 contains a fragment of a program specification.

The Interpreter 127

« type LOOP
steps *♦—>*«

L i

I type INPUT
args *

* type CALL
procedure **
args * *

-Mi tijpe SET
element *♦-

Figure S.'.O

The proyrom specification before procesBing the sentrtnco,
^'Stop when the user types 'Quit'."

The Interpreter Is about to process the response the sentence "Stop v* hen the user

types 'Quit'." which was In response to the question "Should there be an exit test

for the loop?"

EXIT-TEST receives [#INPLIT (ARGS "Quit")] and the LOOP as Its Input. When the

phrase Is an #INPUT concept, EXIT-TEST finds an INPUT in the loop and places a

test for the ARGS of the #INPUT concept after It. The result Is shown In Figure

5.11.

The Interpreter 128

* type LOOP
exi ts *«n
steps *«

* type INPUT
args *

♦#<—►*<—►#

1 u
-»« type CASE

condi t i on *

I I
* type EQUAL

args * *

 _J
U« type ALTERNATIVE

Alternatives * *

U« type STRING
value "Qui t"

* type CALL
procedure #«
args * *

-»* type SET
element «< ►

Figure 5.11

The progrom specification after processing the sentence,
Stop when the ussr typ sa 'Quit'.'

The exit test building program has added four new components; the CASE

component which 13 the exit test, an EQUAL component which Is the condition of the

exit test, and a STRING and ALTERNATIVE component. The ALTERNATIVE component,

which replaced the SET as the argument to the INPUT, reflects the fact the

arguments to the INPUT may now be either the SET or a STRING whose value is

"Quit". The ALTERNATIVE has been installed as one of the arguments of the exit

test, while the SET remains as one of the arguments to the CALL following the test.

The Interpreter 129

6.3 The processing cycle

The processing cycle refers to the sequence of actions taken by the Interpreter

during the processing of a user reply. The cycle begins with the receipt of a

question and user reply from the PSI dialogue module. The reply may be a phrase or

any number of sentences. The question typically consists of a descriptor slot and a

component (the question object) which Is missing Information for the slot, (eg.,

(ARGS X) means "What are the arguments for X".

The first action taken by the interpreter is to update the Focus to the object of the

question. Section 5.4 explains the use of the focus and its companion, the Da'a

focus.

Then each sentence in the reply is parsed and the result Is analyzed. The analysis

consists of determining which concepts the sentence invokes, finding (or creating)

components to fill in the descriptor slots of these concepts, and instantiating the

concepts found into components In the program specification. Analysis has several

side effects besides the building of the specification.

Throughout analysis, the Focus and Data Focus are constantly updated to reflect

the components the program designer is talking about.

Another important side effect is the questions are posed by the instantiation of

incomplete concepts. For instance, the reply,

"It reads a scene, tests whether it fits the concept, verifies the
result of this test with the user, and updates the concept. Then
it repeats the process."

causes the questions.

What is the structure of the scene?

The Interpreter 13Q

What is the structure of the concept?
What Is the Initihl value of the concept?
Describe verifying the test result.
Describe updating the concept.
Describe the test of whelher the scene fits the concept?
What is the exit test of the loop?

to be placed 'he question queue.

The Instantiation u. nn incomplete concept may also lead to a job being put on the

background Job queue. The bac:< ground job queue consists of questions which the

Interpreter cannot answer immediately, but expect to be able to answer after

more Information has come n. If the information never arrives, the Interpreter

assumes that the program designer was leaving the implementation to the PSI

coding modi. .'j. These questions are placed on the background job queue (rather

than the question queue) queue to ensure that they will never be asked of the

user. The background job queue is Implemented as a list of procedures and their

frguments, which are run at the end of every processing cycle. Those that

succeed In answering theii questions are removed from the cycle. An example of a

background Is the one associated with the #ASSOCiATE concept. #ASSOCIATE Is

used by the Interpreter as an intermediate representation of the fact that two

• i'TAs are somehow being associated. For instance. In

"Cookbook reads a recipe list, and then repeatedly reads a name
and prints the recipe with that name"

'v ,'th that n-Mn?" maps into an #ASSOCIATE whose args are "the recipe" and "the

na.ie". At this point, there is no way to tell how the program designer experts

"names" and "recipes" to be associated, so a background job is set up. A

background job Is used rather than a question since If an answer is never found,

The Interpreter 131

the P5I coder will be able to choose an efficient Implementation, and in fact, the

user may be too unsophisticated to answer such a question. The background job

remains active until the program designer says,

"A recipe has a name, an '-gredient-llst, and directions."

This defines "recipe" as record structure vith three fields, one of which is a name.

One of the situations the #ASSOCIATE background job knows how to resolve Is the

case where one of the associated DATAs Is a field of the other. It changes THE

«ASSOCIATE assertion from

[ASSOCIATE arg1;A1 arg2: A2]
to

[EQUAL args: ([FETCH arg1;A1 label: NAME] A2)]

where A1 and A2 point to the recipe and name, and FETCH is the Interpreter

primitive which gets the DATA of the label FIELD of its ARG1.

When each sentence in the program designer's reply has beer analyzed, the

background Jobs are run and the question list Is examined to see if any of the

questions have been answered by subsequent analysis. The revised question list Is

sent to the PSI dialogue module, which selects a question, gets a reply from the

program designer, and gives the question chosen and the designer's response to

the Interpreter to start another cycle.

The interpreter 132

5.4 Matching

This section Is concerned with the identification of English noun phrases, which

occurs during the filling in of a concept' s descriptor slots, and consists of finding

the component, or creating the component if none exists, which is the contents of

the descriptor slot being filled, based on the English presentation of the component

(eg., the noun phrase).

The system's handling of pronouns and nouns Is virtually the same. The only

difference lies in the possible match set. A pronoun may match any component in

the specification which has been mentioned and meets the syntactic requirements

(eg., plural, animate etc.) of the pronoun. A noun may match any component In the

specification which has been referred to in the same (or a synonymoud) way. The

key to the matching process is the context supplied by the concept whose slot is

being filled.

5,4.1 Nouns

The first time a noun is usod, the system creates a component which is indexed

under the noun's definition. Thus, "It reads in a scene." would cause the

component:
A1
class DATA
rep 1#SCENE

to be created, where 1#SCENE is a definition the Interpreter creates for "scene".

1#SCENE is assumed to be a #DA1A so that it satisfies the type constraints of the

ARGS of an #INPUT, Associated with 1#SCENE is the fact that Al is an

instantiation of "scene". The situation we have outlined leads to the simplest kind

The Interpreter 133

of matching. If the user says, "Print the scene.", "the scene" is matched to Al

because the "the" Implies that the referent should be found in the specification, Al

Is the only Instantiation of "scene" in the specification, and It satisfies the type

constraints of the ARGS of #OUTPUT.

Now consider a slightly more complicated situation. Suppose we have scenes and

concepts, each of which are sets of relations. Further, the relations In the concept

are marked either "possible" or "necessary". Figure 5.12 shows how this would be

represented in the program specification.

* Al
class DATA
type SET
rip CONCEPT
element *

J

« A3
class DATA
type SET
rep SCENE
element *

I
-»* A2

class DATA
rep RELATION
assertions *

I
* class ALG

type EQUAL
arqs * *♦-
 I

i
* class ALG

type I MAP
argl *♦ ►* AS
arg2 *

 I
class DATA
type MAPPING
name MARK

* A4
class DATA
rep RELATION

-♦* class DATA
type ALTERNATIVE
alternat ives * *

 I'
* class DATA « class DATA

type STRING type STRING
value "possible" value "neceseary"

Figure 5.12

Scenes, concepts and relations

The user says, "Print the relations in the concept which are marked 'possible*".,

which Is parsed to,

The Interpreter 134

{1«PRINT NN
[STEPOF YOU»]
[AKGS (RELATION IPL THE (IN (CONCEPT THE))

{1#MARK PN
[ARG2 !malch_lo_head_noun]
[ARG3 "possiDle"]

))]
>

The Interpreter must find (or create) a component which can he used as the ARGS

of the #OUTPUT 1#PRINT maps to. If the noun group were simply "the relations",

the Interpreter would match it to Al or A3, whichever was mentioned last. But in

this case, there are modifiers which will presumably narrow down the choice.

The first modifier Is the prepositional phrase "in the concept". The #DATA concept

(Figure 6.6) is used to determine the meaning of the modification. It is (#MEMBER

A6 Al) where "the concept' has been matched to Al and A6 is being used to

represent the DATA which will be the final answer to the match. ^MEMBER is

treated as a special case In the matching process. The first ^MEMBER in the

modifier list which Is not negated3, and whose ARG1 Is the noun in question, Is

transformed to the descriptor-slot/value pair of (ELEMENTOF X) where X is the

ARG2 of the #MEMBER. Go in this case, the #MEMBER Is resolved to (ELEMENTOF

A1). Following the ELEMENT slot of A1 leads to A2 which becomes the only match

possibility. If there were no more modifiers, the match process would return A2 as

the "relations in the concept".

The next modifier is a #MAP. The post condition of #MAP (Figure 6.5) Is filled In

with the #MAP descriptors, yielding, (#EQUAL (#IMAP A5 A6) "possible"). If this did

not contradict the assertion list of A2, then A2 would be returned as «he meaning of

3 In "The relations which are not in the concept", the meaning of the prepositional
modification Is (#NOT (#MEMBER A6 Al)), which is inserted in the assertions list.

The Interpreter 136

the noun phrase. It does, though, since the the assertion list of A2 asserts that a

relation In the concept may be marked either "possible" or "necessary". Therefore

a new component must be created, one which is the generic element of a subset of

A1 which consists of all relations marked "possible". This Is accomplished via the

SUBSET module, which Is another example of a small bit of knowledge being bound

up In a procedure. The SUBSET module takets a set and an assertion list and

creates a COMPUTE component which builds the subset. The COMPUTE created is

shown in Figure 5.12

class ALG
type CPnPUTE
quant i fy ALL
on Al
resuM *« ♦* A7
assertions * class DATA

tupe SET
element *—

-»* class ALG
type EQUAL
args * **

-»* AG
class DATA
rep RELATION
asser t i ons *

-»« class ALG
type I MAP
argl AS
arg2 *<

* class DATA
type STRING
value "possible"

Figure 5.12

The COMPUTE for "The reiationB in the concept marked 'possible'."

A6 is the result of the matching process. The COMPUTE is inserted Into the program

specification when the "print" OUTPUT component is.

The Interpreter 136

5.4.2 Pronouns

As we have Indicated, the difference between pronoun reference and noun

reference is in the possible match set. The Interpreter keeps track of two special

compo lents, the focus and Data Focus, which are used to help reduce the number

of pronoun match possibilities.

When the program designer begins his reply, the Focus refers to the object of the

question. During the processing of the program designer's reply, the Focus

changes, so that It always points to the last component modified by the interpreter.

We are making a distinction between "modifying" and "creating" a component. For

example, the phrase, "It tests the concept", will cause a CALL component to be

created with ARGS "concept"; we do not consider the CALL component to have

been modified until some of its olher descriptors (eg., PROCEDURE) have been filled.

The Data Focus is the last DATA component which has been modified, described as a

part of another DATA, or used as the ARGS or ARG1 of an ALGorlthm component. The

rules for the FOCUS and the Dcrta focus have been selected so that they are the

most likely referents for any pronouns used by the program designer. Of course,

they still must satisfy the requirements of the descriptor they are being proposed

for. If they don't, the Interpreter falls back on searching for a referent from the

pronoun reference list, which is a list of each component that has been mentioned

by the program designer.

We can see how this works on the following question/reply pair:

PSI; Describe the program.

USER; It reads a scene, tests whether It fits the concept,
verifies the result of this test with the user, and
updates the concept. Then It repeats the process.

The Interpreter 137

The question sets the Focus to "program". The first "it" is matched to the Focus

since "input" requires that it's SUB be an ALGorithm. The Data Focus is set to the

"scene" because "seer1;" is the ARGS of the most recently created ALGorithm

component (the INPUT). The second "it" Is matched to the Data Focus, since the

Focus is not a DATA (as is required by the ARGS of "fit"). The third "it" is matched

to the Focus, since the STEPOF of "repeat" must be an ALGorithm. Note that none

of "test", "verify", or "update" were proposed as referents for the third "it", even

though they are all ALGorithm components, if there is no reason not to use the

Focus or Data Focus as the referent, no other possibilities are checked.

When the Data Focus and the Focus both refer to DATAs, the preference checks

given In the concepts are used to choose from between the two. Consider the

dialogue fragment below

The two major data structures in the program are the
concept and the scene. The concept is a set, which is read
at the start of the program. The scene has two parts. The
first part is a name. The second part Is a list.

1. It should be read in after the concept.
2. It consists of three elements.

Either sentence 1. or 2. can logically lollow the preceding paragraph, yet the "it" In

1. refers to the "scene", which is the Focus, and the "It" in 2, refers to the "list",

which is the Data Focus, in 1., the choice between the two is resolved by the

CHECK2 of #INPUT. The check prefers that the ARGS of #INPUT should not be parts

of other components, or ARGS of an already Instantiated #INPUT. Since the "list" Is

part of the scene, the "scene" is preferred as the referent. A similar process is

used to find "list" as the proper match In 2. The definition of "consists" that

succeeds is one that assigns the structure of the OBJ to the SUB. Naturally, It

The Interpreter 138

prefers ihat its SUB have either no structure, or a structure which does not conflict

with the OBJ. Since "scene" is known to be a RECORD with two fields, "list" Is

preferred for the match.

The methods we use for resolving reference amount to a heuristic filterinc) of

possible referents (the Focus and Data Focus) followed by lype checking on the

surviving candidates. It works because the objects in our domain are easily

classifiable, as are the effects (represented by which slots the objects have filled)

of various actions upon them. Furthermore, the fact the we are talking about

programming severely limits the different number of contexts things can be said in,

which means that the preference checks associated with each component are likely

to be consistently correct. Also, a conscientious program designer will probably find

himself not using pronouns when he is intentionally violating these preferences. For

instance, if one really wanted to write a program in which the "it" in 1. referred to

the "name", he would find himself saying, "The name should be Input after the

concept".

For difficult reference problems, the Interpreter relies on the power of the

situational checks associated with each concept's descriptors. Section 1.6.2

provided an example of their use in noun reference. In some respects, the

situational checks are equivalent to methods proposed in other systems. [Hobbs

7 7] presents a system in which some pronoun reference Is achieved by "detecting

intersentence relations". One such relation is,

A sentence asserts a change, and the following sentence
presupposes the final state of that change.

When there Is a reference problem, it is resolved in a way which realizes an

The Interpreter 139

Intersentence relation. The relation abov» helps match the "it" In 1., 2. and 3.

below,

1. Decrease N by 1. If it is 0, reset It to MAX.
2. Decrease N by J. If it is 0, reset it to MAX.
3. Subtract J from N. If It has thereby gone down to 0, reset It to MAX.,

since N was changed in the first sentence and the second sentence has assumed

(via the "if") the final state of "it". If "it" is matched to "N", the pattern holds, If It

is matched to either "1" or "J", it does not.

The Interpreter achieves the same effect by associating a sltuational check with

the ARGS of #EQUAL which prefers that one of the ARGS be a variable whose value

has been changed. Advocating such rules lays one open to charges of "ad

hockery", but the situational checks are used for both noun and pronoun reference,

as well as the parser/interpreter interface. When an individual check seems

obscure, it Is only because it reflects something which people rarely think

consciously about. It is true, of course, that the situational checks currently

associated with each concept are not now complete enough to handle all the

reference problems one might encounter. However, the system's heuristics enable

it to cope nicely with reference problems it must handle without complete

information. For instance, even though the three sentences from [Hobbs 77] were

chosen to break the usual pronoun heuristics (the first introduces the problem, the

second refutes the "0 shouldn't equal 1" method, and the third disproves the

"positional" hypothesis), the Interpreter would have found the correct referent in

each case with the #EQUAL situational check omitted. The Data focus in all three

sentences Is "N", since it is the ARG1 of the most recently created component (the

The Interpreter 140

SUBTRACT), and In the absence of any other Information, It would be chosen as the

referent of "It".

5.4.3 Matching to implicitly mentioned components

Often, the Interpreter will have to match to a component which has been implicitly

mentioned by the user. A simple example of this can be seen In the phrase,

"...classify t' -5 >"f>r!e and print the result."

"Result" refers to the result of the classification. The methods described above

would simply look for a component indexed by result, and not finding one, would

create a new component «s the result of the match. The solution is to do a little

preprocessing before the matching process begins. Whenever a component Is

created which has a result, (in the example sentence, the CALL component created

by "classify") a DATA component is instantiated, and then Indexed through "result"

and its synonyms, as well as any default Indexing set up by the verb's definition

(eg., "classification'1 for "classify", as shown in figure 5.8)

A more subtle example occurs during proposed interchanges between the desired

program and its user. Consider what might follow tlvj sentence,

"I'll request a story by typing a key word".

The program designer might say nothing, in which case the system should ask how

the request should be answered. Or, the user might follow immediately with a

description of how the request should be handled. And finally, the user might just

say what the "reply" should be. In that case. It Is up to the system to realize that

"reply" refers to the answering process, and that the "reply" should be printed out.

The Interpreter 141

Verbs which imply an interchange of data between the program (eg., ask, request,

answer, etc.) are mapped into INTERCHANGE concept?. INTERCHANGE concepts

are represented in the specification by a SEQ with the appropriate steps. The SEQ

is set up by a procedure associated with ^INTERCHANGE, When the program is

asking something of the user, the procedure's execution results in a SEQ whose

first step is an OUTPUT component. A data is created which is indexed to "reply"

(and "reply" synonyms) and a background job is set up to complete the SEQ if tho

user says nothing further. Completing the SEQ consists of setting up an INPUT

component whose ARGS is the "reply" data set up by the INTERCHANGE procedure.

If the program is responding to a user query, the INTERCHANGE procedure sets up

a SEQ whose first step is an INPUT along with a ".eply" DATA. A slightly different

background program is used, however, which sets up a SEQ which takes care of the

processing required to answer the user's query, The ^INTERCHANGE background

job does nothing if the "reply" data has been used as the ARGS of a last INPUT or

OUTPUT of the ^INTERCHANGE SEQ. This machirery allows the Interpreter to handle

the following examples:

"Output the result of the test, ask th«! user if this is correct, and
read in the user's response."

In this example, the designer has followed the INTERCHANGE ("ask") with a

description of the remainder of the INTERCHANGE. "Response" matches to the

"reply" DATA set up by the INTERCHANGE procedure and the dialogue continues.

The #INTERCHANGE background does nothing s nee the "reply" data is in the ARGS

of an INPUT (the "read"). If the user had said only, "...and ask the user If this

correct.", the background job would have been called to create an INPUT with the

"reply" DATA as ARGS.

The Interpreter 142

An example of a user initiated #INTERCHANGE is,

PSI: Describe the program.

USER; It has a data base of news stories. Each story has a set
of key words associated with it. I'll request a story by giving a
key word. The response should be ell the stories with that key
word.

"Request" sets up an INTERCHANGE. "Response" is matched to the "reply" DATA

and the background program sets up an OUTPUT to print the "response" (as defined

by the program designer) to the user.

5,4.4 Coercion

The type restrictions implemented In the definitions and concepts are too strict to

account for casual language usage. People often refer to an object by one of its

parts, to a part of an object by the entire object, to an attribute of an object by

the object, etc. The Interpreter must be able to "coerce" the component the user

has specified Into the one he really meant, eg., the one which satisfies the type

constraints of the descriptor slot being tiled.

For Instance, suppose the user defines a graph as "a set of nodes and a mapping

which maps a pair of nodes into an edge." The Interpreter assumes that a graph Is

a record with two fields, a set and a mapping. Then if the user mentions "the nodes

in the graph", the Interprete-, if using a strict interpretation of type restrictions, will

fall to understand, since the meaning of "In" leading to ^MEMBER requires that Its

object be a #SET. This is just a specific case of the more general "If X is a record

and fails to satisfy a type check, the speaker may have Intended one of the fields

of X"

The Interpreter 143

The Interpreter's type checking Is Implemented through the function ISA and the

more complex secondary checks. ISA returns False If Its object fails to satisfy the

check, and a component if the object satisfies the check. The component may be

the original object, or, If the object fails to satisfy the type but can be coerced Into

It, the component resulting from the coercion. Thus if (ISA X #SET) is evaluated and

X Is record structure with a field whose DATA is the set Y, then the result of the

evaluation will be Y and Y will be used to fill the descriptor slot.

This type of matching allows the Interpreter's matching rules to be written with a

great deal of flexibility. In section 1.5.2, we used,

"It reads In a trial-Item, matches the input to the Internal concept
model, and prints the result of »he match."

to Illustrate how Input Is matched to "trial-Item" rather than "the read "Input"

operation" because of the requirement that the ARGS of "match" be a #DATA. It Is

actually Implemented through the coercion feature. In tho absence of a component

being explicitly referred to as an "input", the matching process looks for an #INPUT

operation. When an INPUT is found, and is required to be a #DATA, ISA returns the

ARGS of the INPUT.

5.5 The Reader/Interpreter interface

The Reader function format Is the interface between Reader and the literpreter.

Section 4.1 listed the criteria used by Format to supply each parse structure with a

measure. Reader uses the measures to choose from among competing parse

structures. The information required for measuring is,

1. Does the verb have all its required rases?
2. Are the case contents of the verb understandable?

The Interpreter 144

3. Do Ihe case ccntents satisfy the case requirements?

The Interpreter supplies tno measure inform?.üon through Its concepts and

definitions. Whether a verb has all its cases can be r td directly from the

definition. If it Is missing rnses the def'nitlon has marked "Must", the rating is

unacceptable. If it has all the Must cases, but is missing cases marked "Prefered",

the rav.tig is acceptable. Otherwise it is perfect.

Determining whether ne case contents are understandable consist of checking

tha *he meaning of all modifications in the case contents are covered by definitons.

If they are not all covered the rating is unacceptable. If they are covered, but not

all contextual checks in the relevant definitons are satisfied, the rating is

acceptable. Otherwise it is portect.

Check.,ig that the case contents of a verb satisfy the verb's case requirements

makes use of the descriptor checks in the concept the verb is being mapped to. If

the case satisfies the first check It is acceptable. If it satisfies the the second

check, then it Is perfect. Otherwise, the case is unacceptable.

The remainder of this section consists of three examples illustrating how the three

different measure parts are used to affect the parsing process.

In the sentence "The program stores and retrieves data.", "data" r ',ould be viewed

as the object of "stor"" as well as "retrieves". As we noted In 4.3.3, ,is depends

on the meanings of "store" and "data", and is not true for all sentences with this

sy..tax. The parser decides whether to use "data" as the OBJ of "store"

depending on which is better, the measure of "The program stores", or the measure

The Interpreter 145

of "The program stores data," The measure of the latter is better since the

definition of "store" states that the OBJ case is preferred, and "data" does not

violate the case preferences of "store".

For an example of the case preferences at work, consider the sentence, "If the

scene fit and the user said the guess was 'correct, then every....". The clause

introduced by "If" has two syntactic readings, namely

[IF (CONJ AND or [IF {SAY PN
[SUB AND (FIT THE SCENE)

{FIT PN (USER THE)]
[SUB (SCENE THE)] [WHAT (BE PN

} [SUB (GUESS THE)]
[OBJ "Correct"]]

{SAY PN >]
[SUB (USER THE)]
[WHAT {BE PN

[SUB (GUESS THE)]
[OBJ "Corrtct")]]

>
)]

the definition of "say" which maps to #INPUT requires that the SUÜ case satisfies

the check (ISA #IO-DEVICE). This gives the first parse a better measure than the

second, since the SUB of the second includes "fit" as part of its compound SUB, and

"fit" cannot be viewed as #IO-DEVICE.

The noungroup "each relation in the concept which Is in the scene." provides an

example of the "understandability" criteria. There Is no a priori reason for it to

mean

[NOUN (RELATION EACH (IN (CONCEPT THE))
{I*BE NN

[AR61 !malch_lo_head_noun]
[ARG2 (SCENE THE)]

>)]

rather than

[NOUN (RELATION EACH (IN (CONCEPT THE (ÜBE NN
[ARG1 Imalch to head noun]
[ARG2 (SCENE'THE)]

))))]

The Interpreter 146

But if scenes, concepts and relations had been defined as shown In Figure 5.12, the

first parse would obviously be correct. The first modification In each is perfect.

The reason Is that "relation" Is a #DATA (Figure 5.6), hence there Is a meaning for it

to be modified by a prepositional phrase whose preposition is "In". The moaning of

the modification is #MEMBER, and "concept" satisfies both #MEMBER checks; it Is a

set, and Its generic element Is a "relation". The second modification In the first

parse is also perfect. 1#BE maps to #MEMBER, and "scene" satisfies both checks.

The second modification of the second parse is only acceptable, however, since it

fails the second #MEMBER check since "concepts" cannot be viewed as the

generic element of the scene.

5.6 Future work

5,6.1 Tense evaluation

The Interpreter makes elmost no use of the tense information returned by the

parser. This does not affect Its performance greatly, as the dialogues It has

handled have all been straightforward (with no skipping about Into the future or

past) linear algorithm descriptions.

But It is easy to see how the proper interpretation of tense information is necessary

fr; understanding even the types of dialogues we have been considering.

In "Set X to the tail of X. If the head of X is/was 5, then ..." the use of "is" or

"was" determines whether the program designer means the first or second element

of the original X.

The Interpreter 147

Similarly, In

"Test If the scene fit the concept and print "fits" If It does. Then
modify the concept. If the scene fits/fit the concept..."

the use of "fit" or "fits" determines whether the "fit" predicate should be

recalculated for the new modified concept, or whether the old value should be

accessed.

5.6.2 More domain and general programming support

Programming and domain knowledge is necessary for several reasons. A system

well versed In programming and domain knowledge will ask fewer unnecessary

questions of of the user, thereby making for a more practical system. A well

informed system will also be able to follow the program designer that much more

easily.

For instance, If the designer says,

"Write me a program which sorts a list of words. The comparison
function should be alphabetical order.",

understanding the second sentence requires knowing something about sorting

programs. Information like this will be forthcoming from the two PSI modules

concerned with domain and general programing support. The modules and the

Interface between them and the Interpreter are being developed.

The Interpreter 148

5.6.3 Building up more concepts and definitions

Expanding the Interpreter's collection of concepts and definitons Is the most

obvious improvement that can be made to the system. It Is impossible for the

Interpreter to understand a primitive Idea unless It has a concept to represent that

thought. Thus a simple sentence like "Print the greatest number in the list" cannot

be understood unless the system has the concepts #GREAT and SUPERLATIVE.

And if it can understand that sentence, the Interpreter still won't be able to

understand, "Print the number in the list which is larger than any other number in the

list" unless it has definitons which map "larger" into #GREAT and "any other

numbar" Into a ^SUPERLATIVE.

However, with the proper concepts and definitions, which are easy to write, the

Interpreter can understand these sentences and many more. By having people

exercise the system, and then teaching the system any unknown concepts and

definitions which have been used, we hope to build up a collection of concepts and

definitions which will be comprehensive 'ough lo support mos'. reasonable

dialogues. Appendix A contains dialogues illustrative of the system's current

capabilities.

149

6. References

[Balzer 75]
Balzer, R., Imprecise Program Specification, Technical Report RR-75-36,
USC/Information Scipnce Institute, Marina Del Rey, Callforla, 1975.

[Barstow 77]
Barstow, D., A Knowledge-based System (or Automatic Program Construction,
Proceedings of the Fifth International Joint Conference on Artificial
Intelligence, 1977.

[Bobrow 76]
Bobrow, D. and Winograd, T., An Overview of KRL, a Knowledge Representation
Language, Memo 293, Stanford A. I. Project, Stanford University, 1976.

[Brooks 74]
Brooks, M., Another Approach to English, Work'ng Paper 73, MIT Artificial
Intelligence tabratory, 1974.

[Bruce 7?]
Bruce, B., A Model for Temporal References and Its Application in a Question
Answering Program, Artificial Intelligence, Volume 3; Number 1, 1972.

[Bruce 75]
Bruce, B., Case Systems for Natural Language, Artificial Intelligence, Volume 6:
Number 4, 1976.

[Fillmore 6b]
Fillmore, C, The Case for Case, In Universals in Linguistic Theory, Eds. .Bach, E.
and Harms, R., Holt, Rineheart and Winston, New York, 1966.

[Gardner 76]
Gardner, M., Scientific American, June 1976, pages 120-125.

[Green 76]
Green, C, The Design of the PSI Program Synthesis System, In Second
International Conference on Software Engineering, San Francisco, CA.,
October, 1976.

[Green 77]
Green, C, The Design of the PSI Program Synthesis System, Proceedings of the
Fifth Internationa! Joint Conference on Artificial Intelligence, 1977.

[Grlshman 76]
Grlshman, R., A Survey of Syntactic Analysis Procedures, American Journal of
Linguistics, Microfiche 47, 1976.

References 150

[Heidorn 74]
Heiclorn, G., English as a Very High Level Language for Simulation Programming,
Proceedings of a Symposium on Very High Level Languages, Sigplan Notices,
Vol. 9, No. 4. 1974.

[Heidorn 76]
Heidorn, G., Automatic Programming Through Natural Language: A Survey, IBM
Journal of Research and Development, Vol. 20, No. 4, 1976.

[Hobbs 7 7]
Hobbs, J., Prom "Well-written" Algorithm Descriptions Into Code, Research
Report #77-1, Department of Computer Sciences, City University of New York,
July, 1977.

[Kant 77]
Kant, E., The Selection of Efficient Implementations for a High Level Language,
Proceedings of Symposium on Artificial Intelligence and Programming
Languages, SIGPLAN Notices, Volume 12, Number 8, SIGARI Newsletter, Number
64, August 197 7.

[Kuno 63]
Kuno, S., and Gettinger, A., Multiple Path Syntactic Analyzer, in Information
Processing, North-Holland Publishing Co., Amsterdam, 1963.

[McCune 77]
McCune, B., The PSI Program Model Builder: Synthesis of Very High-level
Programs, Proceedings of Symposium on Artificial Intelligence and
Programming Languages, SIGPLAN Notices, Volume 12, Number 8, SIGART
Newsletter, Number 64, August 1977.

[McCune 78]
McCune, B., Building Program Models Incrementally from Informal Descriptions,
Ph.D. thesis, Al Memo, CS Report, Artificial Intelligence Laboratory, Computer
Science Department, Stanford University, Stanford, California, to appear.

[Malhotra 75]
Malhotra, A., Design Criteria for a Knowledge-Based English Language System
for Managemeni: An Experimental Analysis, Technical Report TR-146, Project
MAC, MIT, Cambridge Massachusetts, 1975.

[Manna 77]
Manna, Z, and Walclinger, R., Synthesis: Dreams => Programs Memo 302,
Stanford A. I, Project, Stanford University, 1977.

[Marcus 75]
Marcus, M,, Diagnosis as a Notion of Grammar, in Proceedings of a Workshop
on Theoretical Issues in Natural Language Processing, Eds. Schänk, R. and
Nash-Weber, B., Cambridge, Mass., June, 1975.

References 151

[Phillips 78]
Phillips, J., The use of inference In automatic programming systems, Al Memo, CS
Report, Artificial Intelligence Laboratory, Computer Science Dnpartment, Stanford
University, Stanford, California, to appear.

[Riesbeck 74]
Riesbeck, C, Computer Analysis of Natural Language In Context, Memo 238,
Stanford A. I. Project, Stanford University, 1974.

[Rieger 74]
Rieger, C, Conceptual Understanding: A Theory and Computer Program for
Processing the Meaning Content of Natural Language Utterances, Memo 233,
Stanford A. I. Project, Stanford University, 1974.

[Robinson 75]
Robinson, J., A Tuneable Performance Grammar, SRI Artificial Intelligence Center
Technical Note 112. 1975.

[Sager 73]
Sager, N., The String Parser for Scientific Literature, In Rustin, R., Ed., Natural
Language Processing, Algorithmics Press, 1973.

[Steinberg 78]
Steinberg L., A Dialogue Moderator for Program Specification Dialogues in the
PSI System, Ph.D. thesis, Al Memo, CS Report, Artificial Intelligence Laboratory,
Computer Science Department, Stanford University, Stanford, California, to
appear.

[Stockwell 73]
Stockwell, R., Schachter, P. and Partee, B., The Major Syntactic Structures of
English, Holt, Rinehart and Winston, INC., 1973.

[Wilks 73]
Wilks, Y., Preference Semantics, Memo 206, Stanford A. I. Project, Stanford
University, 1973.

[Winograd 72]
Winograd, T., Understanding Natural Language, Academic Press, 1972.

[Winston 75]
Winston, P., Learning Structural Descriptions from Examples, in Winston, P., Ed.
The Psychology of Computer Vision, McGraw-Hill Book Company, Inc., 1975.

[Woods 70]
Woods, W., Network Grammars for Language Analysis, Communications of the
ACM, Voulume 13, Number 10, October 1970.

[Woods 72]
Woods, W., Kaplan R. and Nash-Weber B., The Lunar Sciences Natural Language
Information System, BBN Report No. 2378, 1972.

■"—:-»'-'-"-'--~:

1S2 References

[Woods 73]
Woods, W, An Experimental Parsing System for Transition Network Grammars, in
Rustln, R., Ed. Natural Language Processing, Algorlthmics Press, 1973.

163

Appendix A. Example Dialogues

Here we present a number of dialogues handled by the system. Some are target

dialogues for PSI system and others were written to illustrate a point In natural

language processing. Each dialogue Is followed by the program specification the

Interpreter produced from It.

The first dialogue Is one of the original PSI target dialogues. In It, the user wishes

to write a program similar to one described in [Winston 75]. The program, known as

a concept formation program, is "...a type of simple learning program that takes as

input several objects that are instances of some cjncept and also several objects

that are not instances of the concept. As output, it produces an abstracted

description of the concept so that given a new instance, it can classify that

instance as representing the concept or not" [GREEN 76]. The second dialogue Is

another version of the same program. The next three dialogues are PSI target

dialogues which are simpler versions (from a coding standpoint) of concept

formation programs.

Dialogues six and seven are two different ways of specifying a graph traversal

algorithm. The first is a description of what the algorithm Is to accomplish. The

second describes how the algorithm should be implemented.

The last four dialogues are all variants of Information retrieval programs.

Appendix A Example Dialogues 164

-DIALOGUE 1-

WHAT 15 TMr NAME Of THE PROGRAM YOU WISH TO WRITER TF

DOES TF HAVE A SPECIAL PROGRAM TYPE' Theory tomiatlon

DESCRIBE TF.
It Inputs a scene, tests whether It fits the concept, verifies the result of this test
with the user, and updates the concept. Then It repeals the prccess.

WHAT IS THE STRUCTURE OF THE SCENE7

An Input scene will Just be a collection of relations, each of which Is a property name
followed by the names of the objects over which the properly holds.

WHAT IS THE STRUCTURE OF THE CONCEPT'
It should be a set of relations, each marked either "possible" or "necessary".

WHAT IS THE INITIAL VALUE OF THE CONCEPT'
Initially the concept has no descriptions at all.

PLEASE DEHNE WHAT IT MEANS FOR A SCENE TO FIT A CONCEPT.
The scene fits the concept If all of the relations In the concept
that are marked "necessary" are par! of the scene.

DESCRIBE VERIFYING THE CONCEPT,
Output the result of the test, ask the usei If this Is correct, and Input the user's response.

WHAT IS THE ARGS OF THE ASk'
"correct or wrong1"

WHAT IS THE STRUCTURE OF THE RESPONSE'
The response should be "correct" or "wrong".

DESCRIBE UPDATING THE CONCEPT.
There are four cases. If the scene fll and the user said the guess was correct, then
every relation that Is part of the scene but not part of the concept should be added to
the concept and marked "possible".

DESCRIBE THE NEXT CASE.
The next case Is If the scene fit and the user said "wrong": then find a relation In the
concept which Is marked "possible" and which Is not In the scene. Change Its marking to "necessary",

DESCRIBE THE NEXT CASE.
If tne scene did not fll, and the user said "correct", then do nothing.

DESCRIBE THE NEXT CASE.
II the ^cene did not fit, and the user said "wrong", then lor each relation In the concept
marked "necessarv" that Is not In the scene, re-mark It "possible",

WHAT IS THE FORMAT OF THE OUTP'JT'
Output "fit" If the scene fit, "didn't fll" If It didn't.

WHAT IS THE EXIT TEST OF THE LOOP'
Stop when Ihe user types "quit" Instead of an Input scene.

ARE WE FINISHED' yes

Appendix A Example Dialogues 155

TF
PI •■ PHI
LOOPl:

PR!NT<"R»äH^ for tht SCENE")
R? . RERDd"
If EQURLW "quit")

Th»n GO EXIT1
B4 ► FIT(R2 Rl)

CM*tl H R4
Then PRINT ('■) 11")

tlsa If NOTffl«)
Th»n PRINT("didnM fit")

PRINTC'correcl or Mronq'")
RS » REROO
Can») If flN0(B4 EQUAL (H5 "corr«ct"))

Thtn fill ► The s«l of all RIB in «2 such lh*t:
NOTffiErBERfflie RID

For «II RIB in fill do:
Rl - INSERTIRIB Rl)
MRPfflS RIB "possible")

■Is« If RND(fl4 EQURLIRS "wronq"))
Then R7 ► The set of any 1 fl6 in Rl »uch that!

RNOfNOTinEHPERfflB R2))
EQUAL (IHRP'03 fi6) "possibl»"))

For alI R6 In fl7 do;
linP(R3 fl6 "necessary")

else If flND(NOT(fl«)
EQUAL(R5 "correct"))

Then NIL
tlsa If RN0(N0T(R«)

EQUAL IAS "Hronq"))
Than A9 » The set of all AS in Al such that!

AND(EQUAL(IHRP(Al A8) "nacessary")
N0'<HEHBER(A8 A2)))

For «I I Ag in R9 do:
tlflPlfla RS "possible")

Goto LOOPl
EXITl:

FITtPI BD
F0RRLL(B3) inPLlES(AN0(EQURL(|nRP(A3 BJ) "necessary")

nEHBER(B3 B2))
f1EHBER(R3 BD)

AS is either a string whose value Is "wrong" or a string whose value it "correct"

A4 is either TRUE or FALSE. Bl It a variable bound to A2.

A3 it a napping Iron the tlenentt of Al to tithar a tiring whose v«lu«
it ''necessary" or a string whose value it "possible".

B3 is a variable bound to A12. BJ is a variable bound to Al.

ft2 is either a set whose generic olenent it a record whose fialdt «re
PROPERTY: a primitive name and NAME-SET: a set whose generic alencnl It
a primitive name or a string whose value it "quit".

Al is a set whose generic element Is a record whose fieldt «ra PROPERTYi
a primitive name and NAME-SET: a tet whose generic element It «
primitive name with assertions:

EQUAL(IMAP(A3 R12) A13)

A13 Is either a string whose value Is "necessary* or a string whose
value is "possibls"

012 It the generic element of Rl.

Appendix A Example Dialooues 156

-ÜIALOQUE 2-

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE'
Atch

DOES ARCH HAVE A SPECIAL PROGRAM TYPE'
Theory fomatlon.

DESCRIBE ARCH.
The program Is a loop. On fach Herailor, It reads In a
trial-Item, matches the input to the Internal concept model, »nd
prints the result of the match The user must then mtomi the
program whether or not the gues^ Is correct, and the pfogram
modifies Its model ot the concept accordingly.

WHA. IS THE STRUCTURE OF THE TRIAL-ITEM'
A trial-item Is a set ot relations.

WHAT IS THE STRUCTURE OF THE MODEL?
The model is a f.et of relations, each marked 'necessary" or
"possible".

WHAT IS THE STRUCTURE OF TH? RESPONSE''
"correct" or "wrong".

WHAT IS THE STRUCTURE OF T 'E RELATIONS IN THE TRIAL-ITEM"
a lelalloo Is a property name and a list ot atoms.

WHAT IS THE INITIAL VALUE OF THE MODEL'
Nil.

PLEASE DEFINE WHAT IT MEANS FOR A SCENE TO MATCH A CONCEPT.
A trial-item matches the model II all the re.atlons In the model
■hat are marked "necessary" are elements of the trial-Item.

WHAT IS THE FORMAT OF THE PRINT'
Type "the trial-Item mitches" It the trial-Item matched and
"the trial-Item does not match" If It didn't.

DESCRIBE MODIFYING THE MODEL
If the trial-item matched and the user said the guess was correct,
then every relation In the trial-Item which is not In the model
snould be put in tr,^ model and marked "possible". If the
trial-Item matched and the user said "wrong" , then change the
marking of a relation marked "possible" which Is In the model and
not in the trla'-ltem to "necessary". If the trial-Item didn't
match, and the user said "correct" , then do nothing. If the
Srlai-ltem did not match, and the user said "wrong" , then re-mark
each relation In the model marked "necessary" that is not in the

trial-Item "possible".

WHAT IS THE EXIT TEST OF THE LOOP'
stop when the user 'ypes "quit" Instead of a trial-Item.

ARE WE FINISHED' yes.

-

Appendix A Example Dialogues 167

RRCH
ni » PHI
LOOPl:

PRINTC'Rtaiiy »or Ih« TRIflL-ITEH")
nz ► RESOO'
It EQURKR? "quil")

Then GO EXIT!
f\i » MRTCHIfi? fll)
Casts: H m

Th»n PRINT("th» lri«l-lt«l» IMlch««")
•Is« II N0T(R4)

Thtn PRINTC'lh« Irltl-ilM dots not Mtch")
RB i. RERDO
C«s»si II RNDtfl« EQURl. (fl5 "eorrset"))

Thtn Rll » The set ol «H R18 In R2 such that;
NOT(nErtBER(Rie RD)

For «II nie In All do:
Rl <■ INSERTtflie Rll
nRPtR3 R18 "possible")

else II RND(R4 EOURL(RS "uronq"))
Then R7 t. The set ol sng 1 fl6 In Rl such thtli

flN0INCT(nEnBCR(fl6 fl2))
EQURL(innP(R3 fl6) "possible"))

For «II RE in R7 do:
nnp(fl3 RB "necessery")

else If RND(N0T(R4)
EQUAL(RB "correct"))

Then NIL
else II RNDINOTIRA)

EQURLIRB "wrong"))
Then fl9 >■ The sei ol «II fl8 in Rl such th«tl

RNDtEQDRL(inflP(R3 R8> "necess«ry")
N0T(nEf1BER(R8 fl2)))

For «I I R6 in R9 do:
nRP(R3 R8 "possible")

Goto L00P1
EXIT1:

fIRTCMIBl B2)
F0RRLL(B3) inPLIES(RND(EQURL(lf1flP(fl3 B3) "necessary")

nEMBER<B3 B2))
nE«BER(B3 BD)

RB Is either « string uhose v«1ue is "wrong" or « string whose value Ic "correct".

fl4 is either TRUE or FALSE. B3 is « v«ri«ble bound to fll2.

R3 is ■ Clipping Iron the elements ol Rl to either a string whose value
it "possible" or a string whose value It "necessary".

b2 Is • variable bound to At. Bl It a variablt bound to R2.

A2 is tlthor a stt whose generic element is a record whose lieldt art
PROPERTY: a primitive name «nd ATOfl-LIST; a list whose generic element
Is a primitive or a strmq whose value Is "quit".

Rl Is a set whose generic element Is a record whose fields ere PROPERTY:
a primitive n«me and ATOII-LIST: « list whost gtntrlc element It a
primitive with assertions:

EXISTS(B4) EQUAL(inRP(R3 B4) H13)

R13 is either a string whose value Is "possible" or a string whose value It "necessary"

B4 It a .arlablt bound to R12. R12 It Iht generic element ol Rl.

4
I

Appendix A Example Uialoguts 158

-DIALOGUE 3-

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE' CLASS

DOES CLASS HAVE A SPECIAL PROGRAM TYPE' Nc

DESCRIBE CLASS.
CLASS first Inputs a concept. Then It repeatedly accepts in Input scene from s user, classifies
It based on whether or not It fits the concept, and outputs this classlflcj, ion tc the user.

WHAT IS THE STRUCTURE OF THE CONCEPT'
The concept will just be a collection of relations, each of which Is a propeliy name
followed by the names of the objects over which the properly holds.

WHAT IS THE STRUCTURE OF THE SCENE'
The scrn» has the same structure as the concept.

PLEASE DESCRIBE WHAT IT MEANS FOR A SCENE TO FIT A CONCEPT.
The scene fits the concept If all of the relations In the concept are part o! the scene.

WHAT I" THE FORMAT OF THE OUTPUT'
Output :ii" If the sce-v< fit, "Didn't fit" If It didn't.

WHAT IS THE EXIT TEST OF THE LOOP'
Slop when the user types "Quit" Instead of an Itput scene.

ARE WE FINISHED' yes

CLBSS
PRlNTC'P^ady for th« CUNCEPT"!
Rl - RERDO"
L00P1:

PRINT("Ready (or th« SCENE")
«2 - REBOO"
It EQUAL(«2 "Quit")
Then CO EXIT1

R3 ► FIT(R2 fll)
CaE«'; '(P

Then PRINT("Fit")
else If N0T(R3)

Then PRINT("Didn'I fit")
Goto L00P1

EXIT1;

FITtBl B2)
F0RPLL(B3) inPI 'ES((1EnßER(B3 82)

nEriBERIB3 Bl')

03 is either TRUE or FRLSE. Pi Is a variable bound to (12.

B3 is a variable bound to fl4. B2 .s a variable bound to Rl.

R2 is either a set uhose generic element Is a record whose fields are
PROPERTY: a primitive name and NRflE-SET; a set uhose generic «lament is
a primitive name or a string uhose value Is "Quit".

HI is a set uhose generic element Is a record whose fields are PRDPERTYi
a primitive name and NRflE-SE': a set uhose generic «iemenl It a primitive name.

R4 Is th« generic element of Rl

Appendix A Example Dialogues

-DIALOüUE 4-

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?

Classl

DOES CLASS 1 HAVE A SPECIAL PROGRAM TYPE'

no

DESCRIBE CLASSI.

It reads a concept. Then It repeatedly reads a string and tests If It
Is In the concept. If It Is, It types "Its In!". Otherwise, II types
"no In". The concept Is a collection of strings.

WHAT IS THE EXIT TEST OF THE LOOP'

Stop when the user types "quit"

ARE WE FINISHED'

Yes.

CLBSSl
PRINTC'Ready (or Ih. CONCEPT")
fii ► RERDO
L00P1:

PR!NT("Ready lor Ih« STRING")
fi2 * REBOO
H EQUAL(fl? "quit")

Then CO EXIT1
fi3 ► nEnBER(B2 Rl)
If m

Then PRINT("lU •«!")
•It« PRIN1l"not in")

Goto L00P1
EXITIt

fi3 Is either TRUE or FALSE.

R2 is either • dring or a itrlnij whose value It "quit"

Ri it a ttt whose generic eleAcnt It • itrlng.

169

Appendix A Example Dialogues 160

-DIALOGUE 5-

WHAT 13 THE NAME OF THE PROGRAM YOU WISH TO WRITE'

ClassO.
DOES CLASSO HAVE A SPECIAL PROGRAM TYPE?

no.

DESCRIBE CLASSO.

It r»ads a concept,

WHAT IS THE STRUCTURE OF THE CONCEPT?

a collection of strings.

ARE WE FINISHED'

Then It repeatedly reads a set ol strings and prints "Its a s'ibset" If all the
elements In the set are In the concept. Otherwise II prints "not a subset".

WHAT IS THE EXIT TEST OF THE LOOP'

Stop when the user types "quit".

ARE WE FIN HEO'

Yes.

CLflSSB
PRINTC'Rsady lor th« CONCEPT")
Rl - RERDO
L0PP1:

PRINT("Re,»dy (or the ELErOT-SET")
R2 * RERDO
H EQURLtfl? "quit")

Then CO EXITl
If FORRLLtBU IflPLIESmEtlBERIBl fl2)

nEflBERIS' RD)
Then PRINTt"it» a subset")
else PRINT("not a subset")

Goto L00P1
EXITl:

Bl is a variable bound to R3.

fl2 is either a set Hhose generic element is a string or a string Mhose
value is "quit".

Rl is a set whose generic element Is a string,

fl3 It the generic element of R2.

Appendix A Example Dialogues 161

-DIALOGUE 6-

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE? Flndnode»

DOES FINDNODES HAVE A SPECIAL PROGRAM TYPE? no

DESCRIBE FINDNODES.

The program should Input a graph and a node. A graph Is a set ol' pairs.
Each pair consists ot two nodes, which are primitives. The program
outputs a list ot all the nodes which can be reached from the Input node.

PLEASE DESCRIBE WHAT IT MEANS FOR A NODE TO BE REACHED FROM ANOTHER

A node X Is connected to a node Y If there exists a pair In the graph
such that X and Y are In the pair. X can be reached from Y If X Is
connected to Y or If X can be reached from a node which It connected to Y.

ARE WE FINISHED' Yes.

NODE.

FINDNODES
PRINTC'Readg tor tht GRBPH and Iht NODE')
HI » REflDO
Rr » KEflDO
RS ► The set o(all 03 In all fi* In 31 such that;

RERCHtflS R2)
PRINT(R5)

RERCHtBl B2)
0R(C0NNECT(B1 B2)

EXISTS(B6) RN0(C0NNECT(BB B2)
RERCHCBl 66)))

CONNECT(B3 B«)

EXISTS(B5) RNDtnEhBERtBS RD
f1EnBER(B3 B5)
ftEhBERCB« BS))

B6 I* • variable bound to R6. BS It a varlabl« bound to fl7.

B4 is a variable bound to Y. 63 it a variabla bound to X .

B2 is a variablt bound to Y. Bl it a variable bound to X

R4 It the generic tlement of Rl. R2 It a prlnitivt.

Rl Is a set uhosa generic •Itfflant Is a tet ol tlze 2 Hhott generic
a lenient it a prlml t Ivc.

X it « primitive. Y It « prlMltlvt.

R7 It a tet of tlze 2 uhotc generic element It a primitive.

R6 It • pr im111ve.

Appendix A Example Dialogues 162

■DIALOGUE 7-

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE' Reach.

DOES REACH HAVE A SPECIAL PROGRAM TYPE' No.

DESCRIBE REACH.

It reids a graph and a node. The graph Is a set p< nodes and a mapping which maps a pair of

nodes Into an erig«. Nodes and edges are prln stives. The program puts the Input node Into

a set Nodes. Then It f-peatedly llnds a nvde In Nodes which Is not marked "done" , marks It

"dono" , and places all th« graph nodes connected to It which are not In Nodss Into Nodes.

WHAT IS THE INITIAL VALUE OF NODES' Nil,

PLEASE DEFINE WHAT IT MEANS FOR A NODL TO BE CONNECTED TO ANOTHER NODE.

Two nodes are connected If they are mapped Into an edge.

WHAT IS THE EXIT TEST OF THE LOOP'

Stop when there are no nodes In Nocss which are not marked "done".

ARE WE FINISHED' Output Nodes

WHICH ONE OF EITHER REACH OR THE LOOP DOES THE OUTPUT BELONG IN' Reach.

REACH
NODES - PHI
PR IN[("Ready for Iht GRAPH and the NODE")
m » REPDO
fi2 ^ REftOO
NODES - INSERTtn: NODES)
L0OP1:

R* ► The SRI of any 1 R3 in NODES such that:
NOT(tQUnL(inRP(PS fl3) "done"))

If EQUAL (R4 PHD
Then GO EXITl

For »I I R1 in fl4 do;
tinPfBS fi3 "done")

RS ► The set of all PB in R7 such thai:
RNDIFORRLLfBD IflPL IE5 (hf hBER (Bl R4)

CONNECTtflG BD)
N0T(t1EhBER(RG NODES!))

For all P6 in R8 do:
NODES - INSERT(RB NODES)

Goto L00P1
EXITli
PRINT(NODES)

CDNNECT(B2 B3) EXISTS(B4) EQUPL (IhflP (fl9 IB2 B3I) B«)

PS is the DRTR of the hRPPING field of Rl. 6« It a variable bound to (US. K is a prlnitiv«.

B2 is a variable bound to R12. Bl is a var^ble bound to fi3. B3 Is a variable bound to Rll.

R? is the DRTR of the NODE-SET field of Rl. NUDES Is a set uhose generic element is a prlnitiv«,

RS is a mapping from the elements of R4 to a string whose value Is "done"

Rl is a record uhose fields are NODE-SET: a set uhose generic element Is a primitive and
ttRPPING: a mapping from a set of sue 2 whose generic element Is a primitive to a primitive.

ni2 is a primitive. Rll is a primitive. R16 Is a primitive.

Appendix A Example Dialogues 163

-DIALOGUE 8-

WHAT IS THE NAME OF THE PROGRAM VOU WISH TO WRITE?

COOKBOOK

DOES COOKBOOK HAVE A SPECIAL PROGRAM TYPE'

no.

DESCRIBE COOKBOOK.

Cookbook Inputs a recipe list, and then repeatedly Inputs * name and
prints the recipe with that name.

WHAT IS THE STRUCTURE OF THE RECIPES IN THE LIST?

A recipe has a name, an ln]redlent-llsl, and directions. The name and the directions are
strings of characters. An Ingredlenl-llsl Is a list whose elements have an Ingredient and an amount.

WHAT IS THE STRUCTURE OF THE INGREDIENT'

An Ingredient and an amount are both strings ot characters.

WHAT IS THE EXIT TEST OF THE LOOP'

Stop when the user types "gult" as a recipe name,

ARE WE FINISHED' Yes.

(COOKBOOK NIL
PRINTC'Ready (or the RECIPE-LIST")
Bl ► REROO
LOOPli

PRINTC'Ready (or the NfiflE")
fi2 <• RERDO
II E0UPL(B2 "quit")

Then CO EXIT1
R4 » The set o(all 03 in Rl such that:

EQUAL(fl? FETCH(fl3 NSdE))
For all fl3 In A4 do:

PRINT(R3)
Colo L00P1

EXITli
)

R2 Is either a primitive name or a string uhose value It "quit"

Al is a list whose generic element Is a record whose lleldt art NAftEi a
string , INGREDIENT-l IST: a list whost generic element it a record whose
(lelds arc INGREDIENT: a tiring and RhOUNTi a tiring , and
DIRECTION-SET: a Ml whote generic element It a tiring.

-n—"^"a

Appendix A Example Dialogues 164

-DIALOGUE 9-

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?

Recipe.

DO^S RECIPE HAVE A SPECIAL PROGRAM TYPE'

no.

DESCRIBE RECIPE.

II reads In a leclpe list. A recipe consists o(a name and a siring.
Then It enters a loop which reads a recipe name and prints the recipe
with that name. If there ' -«o recipe with that name, print 'no such recipe"

WHAT IS THE EXIT TEST Of THE LOOP'

Stop when the user types "quit"

ARE WE FINISHED'

Yes.

RECIPE
PRINTC'Raady (or th« RECIPE-LIST")
Rl ► REOOO
L00P1:

PRINTC'Ready lor th« NRIIE")
B2 ► REflOO'
H EQUfiL(P2 "quit")

Thsn CO EXITJ
fl4 >■ The sal o(all fl3 in Rl such thati

EaURL(rETCH(R3 NflflE) R2)
If EQUAL(R4 PHI)

Th«n PRINTC'no such rscips")
•Is« For all R3 in R4 do;

PRINT(R3)
Goto L00P1

EXIT1;

R2 is oither a primitiv« nan« or a string uhos« value is "quit".

Rl is a list uhos« q«n«ric element Is a rscord uhos« liatds »re NflftEi •
primitiv« name and SIRING: a string.

Appendix A Example Dialogues 165

-DIALOGUE 10-

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE' News.

DOES NEWS HAVE A SPECIAL PROGRAM TYPE' News retrieval.

DESCRIBE NEWS.
It answers questions about a data bas*.

WHAT IS THE STRUCTURE OF THE GENERIC ELEMENTOF THE DATA-BASE'
The data base Is a list o) descriptors, each of which describes one newspaper story.

WHAT IS THE STRUCTURE OF THE DESCRIPTOR'
A descriptor consists of a set of feature«.

WHAT IS THE STRUCTURE OF THE QUESTION'
A feature and a flari.

WHAT IS THE STRUCTURE OF THE FEATURES IN THE DESCRIPTOR'
Each feature consists of a property and a value. A property Is a name which
Is a character string. A value Is either a number or a string of characters.

WHAT IS THE STRUCTURE OF THE FLAG'
The flag will be either "descriptors" or "number".

WHAT IS THE INITIAL VALUE OF THE DATA-BASE' Unnecessary.

DESCRIBE THE ANSWER.
If the flag Is "descriptors" , then the piogram should print each
descriptor that contains the feature.

ARE WE FINISHED'
It the flag Is "number" , then It should Just print the total
number of such descriptors.

ARE WE FINISHED' Yes.

NEUS
PRINTrResdy for the QUESTION")
fll .- REflDO
R4 ► The sei ol all R2 in (13 such that:

htflBERIRS fi?)
If EQUPL(R6 "descriptors")
Then For all R? In R4 do;

PR|NT(R2)
M EQUAL(R6 "number")

Then PRINT(B7)

RS is the DRTR of the FLRC field ol Rl. AS Is the DRTR of the FEATURE field of Rl.

R7 is a number which is th« size ol R4.

R3 Is a list whose generic element Is a set whose generic element Is a record
uhose fields are PROPERTY: a string and VRLUEi either a string or t number.

fi) Is a record whose fields are FERTURE: a record whose fields are PROPERTYt
a string and VRLUEi either a string or a number and FLRCi either a tiring
whose value is "number" or a string whose value It "descriptors".

Appendix A Example Dialogues 166

-DIALOGUE 11-

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?

Write me a news retrieval program

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE' New»

DESCRIBE N?WS.

It ha» a data base o(news stories. Each story has a set of key words associated with It. I'll
request a story .y giving a key word. The response should be all the stories with that key word.
If the command Is "number" followed by a key word, then the number of stories having that
k<y word should be printed.

WHAT IS THE STRUCTURE OF THE STORYS IN THE DATA-BASE'

they are strings.

WHAT IS THE STRUCTURE OF THE KEY-WORDS IN THE SET?

primitive.

WHAT IS THE INITIAL VALUE OF THE DATA-BASE'

unnecessary.

WHAT IS THE INITIAL VALUE OF THE KEY WORD SET'

unnecessary.

I
ARE WE FINISHED' yes

NFUS
PRINTC'Ready tor |h« t-EY-UORO")
(11 . REROir
Casss! It EOURLtRl RID

Then fll8 ► The set ol all R9 In R3 such that:
nEhBERIflll If1flP(R6 R9))

PRINT (RIB)
• Is« II EQUAL (fll AS)

Then fl4 » The set of all H2 in fl3 such thati
nFf1BER(fl5 IflflPtflB H2))

PRINT(fl7)

Rl1 is a pr imi t i ve.

fl6 is a record whose fields are STRING! a string whose value It "number"
and ►EY-UORO: a primitive.

H7 is a number which Is the size ol RA.

R6 is a mapping from the elements ol H3 to a set whose generic element Is a primitive,
\

HS Is the DRTR of the KEY-UORD field of R8.
i

R3 is a set whose generic element Is a string. Rl it either Rll or B8.

'

. , . , .

