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1. introduction 

This paper describes a natural language processing system The system Interacts 

with a human user, who describes a computer program to It In English. The output of 

the system Is a program specification, a formal representation of the computer 

program the user has described. The program specification can be used as a data 

base for coding the user's program by compute, programs without linguistic abilities. 

Understanding program descriptions obtained via dialogues requires capabilities for 

handling almost all Issues associated with natural Itmguage processing. Indeed, 

[Hobbs 77] mentions that even processing "well written algorithm descriptions" 

involves "...some of the hardest problems of linguistic analysis," Since many of the 

program descriptions posed by the users of the system can best be characterized 

as "no! so well written", the system's natural language abilities must be extensive. 

The system is most naturally viewed as two Interrelated programs: a parser and an 

interpreter. Reader, the parser, provides the means of storing and utilizing the 

information about sentence slructure (called syntax) which is necessary for the 

proper Interpretation of the meaning of a sentence. Reader is used to transform 

the user* s replies from strings of words Into structures In which the relations 

between words are made explicit. The Interpreter uses the structures supplied by 

Reader to construct the program specification. 

—-■'- -.. .^-~.m».»*^' 



Introduction *. 

1.1 Organization 

The next section discusses the natural language abilities an automatic programming 

natural language system ähould have. The following section contains three short 

examples which should help to exactly clarify what Is meant by the program 

speclficalson, and provide some perspective on the natural language processing 

done by the system. The parser/interpreter can be used as part of a more 

complete automatic system. Section 1.4 briefly describes this system and the 

interpreter' s Interaction with it. Section 1.5 Is a short overview of the operation of 

both Reader and the Interpreter. 

Chapter 2 is a general discussion of Reader. Chapters 3 and 4 continue that 

discussion in much more detail Chapter 5 describes the program specification and 

how it is built by the Interpreter Appendix A contains several dialogues run by the 

systen . 

1.2 Capabilities 

1.2.1   The parser 

Reader was designed with the following criteria in mind. 

The parser should be able to quickly recognize a substantial subset of English. The 

parsing should be done quickly, so that the parser can be used in a practical 

system. We mention parsiny spead and grammar coverage together, because It is 

easy  to theoreticaliy achieve one or the other separately.     Almost  all parsing 
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schemes can parse a small set of sentences quickly, but few do as well when 

recognizing a large number of sentences while at the same time using 0 vocabulary 

which Includes all possible syntactic uses for each word in the v^oabi ary. Reader 

achieves speed without sacrificing grammar breadth because its prrslng process 

can combine several svntactlc possibilities into a single parse path, thereby 

avoiding much of the backtracking or equlvalently, parallel pro :essing, which 

characterizes many other parsing schemes. 

There should be a well defined interface between the parser and interpreter which 

allows tht! parser to interact with the interpreter and ask It to choose from among 

competing parse; .which are possible syntactic interpretations of a sentence. This 

Is necessary becai'se many sentences have more t? an one syntactic interpretation. 

For example, in "...find a relation In the concept marked 'possible.'", the parser 

must be able to ask whether the object of "find" is "a relation whose marking Is 

'possible' which Is In the concept.", or "a relation which Is In the marked 

('possible') concept." 

The parser should be able to use the evaluation function nf the Interpreter to 

provide parses in which most purely "function" words are eliminated. Consider the 

sentence, "Classify the input list on the basis of whether or not It fits the initial 

list". The Interpreter should be asked to Judge the modifications among "on the 

basis of", "classify" and the clause introduced by "whether". The parser should 

then Incorporate the answers Into the parse, resulting in a parse structure much 

closer to the meaning of the sentence than a mere syntactic structure: 
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(IMP     ICLASSIFY NN 
tARGS   (LIST THE  INPUT)) 
tPROC   IF IT NN 

IARGS IT) 
tARGS  (LIST THE  INITIAL)) 

!) 
1 

) 

The parse can be interpreted as, 

Perform a classlf'cation. The argument of the classification 
is the input list. The procedure for carrying out the 
classification is to test if the input list fits the Initial list. 

The parser's efficiency should not depend on using the Interpreter to discontinue a 

possible parse of a sentence on semantic grounds. The parser-Interpreter 

Interface should only be asked to evaluate parses which are syntactically 

equivalent. Two partial parses are syntactically equivalent if both will lead to a 

successful parse on the same sentence endings, or If the end of the sentence has 

been reached and each Is a succsssful parse. The reason for this decision Is that 

in a rich environment we would expect the semantic processing required to 

discontinue a parse to be more expensive than the syntactic processing requi'ed to 

determine that the parse cannot lead to a syntactic Interpretation. Woods, In 

[Woods 73], has experimented along these lines and found that (in his case) "...It 

looks as if it takes longer to do the parsing and semantic Interpretation overall If 

the Interpretation Is done during the parsing than it does if the parsing is done first 

and the interpretation afterwards." Of course, semantic processing will have to be 

done to determine which syntactic parse of the sentence Is most meaningful; the 

point Is that we wish to avoid any semantic analysis whose effect could be 

achieved through syntactic analysis. 

^m~—"--f^f 



Introduction 6 

The assumption about the relative costs of semantics and syntactic processing 

cannot be proved. We - in note, however, that even the simplest kinds of semantic 

checks can require arbitrary amounts of Inference in a general system. For 

example, consider the decision of whether a pair of words ("street lights", for 

example) Is a compound noun, or a noun followed by a verb. At first glance, it would 

seem that this could be cheaply done by simply checking a marker on the first word 

("street"), which Indicates whether It is a suitable subject for the proposed verb 

("lights"). However, there are two problems with this approach. One is that simple 

markers on words are Inadequate for dealing with the problems of language. Many 

words can be modified so that they are acceptable subjects for verbs which are 

not ordinarily associated with them, eg., "The glowing radioactive street lights the 

way for ...". The process of determining whether a modified noun is a suitable 

subject for an arbitrary verb seems beyond simple look-up techniques. The second 

problem Is that even If the potential subject Is unmodified, the syntax and meaning 

of the remainder of the sentence may constrain the behavior of the ambiguous pair 

to be the oppc ,lte of what one might expect. For Instance, "water bolls" would be. 

predicted to be a noun-verb pair, yet in "Water boils are dangerous parasites 

which can be found In the Great Lakes.", It acts as a compound noun. It should also 

be noted that occasionally semantic analysis will be unable to act as a filter. "Set 

X" may be either a noun-verb pair or a noun and its appositive. The only way to tell 

is to know the syntactic context the words appear In. In "Set X to the empty set.", 

"set" acts as a verb; In "Set X is the empty set.", "set" acts a noun. 
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1.2.2 The Interpreter 

The Interpreter must be able to do the following: 

1. Ask questions of tno user.   This enables the system to clarify actions it has 

teken and promp' the user for information is has omitted. 

2. Understand three afferent types of use' statements' 

User statements meant as steps in the program. These are translated into 

primitives in the program specification language. This Is the basic method for 

building the program specification. "Print the greatest number in the list" 

must be translated into an "output" primitive with an argument representing 

"the greatest number". 

User statements directed as meta comments about the dialogue. These are 

translated into case frames which express their intent. This allows the user 

to control the flow of the dialogue. "Ask me about the structure of the d». " 

base first." must be interpreted as a request for a different question, rather 

than part of the program being written. 

Finsily, some user statements should be understood as general comments 

about the program rather than as explicit instructions on coding It. "The 

program siores and retrieves data." Is meant as an overall description of a 

program, not its first two steps. 

3. Identify  any objects  and  actions mentioned  by  the  usf»- with  their correct 

refeient in the progtam specification.   If the user says "Aft«    printing It, print the 



Introduction 7 

list containing it.", the Interpreter must f'nd a referent for "it", determine which 

'"ist" is meant, and match "printing It" to the appropriate operation In the program 

specification. 

4. Use the qu^ilon it has asked to aid in understanding the user's replies.   In 

processing a  description of two data structures, which are referred  to as  the 

"scene" and "concept", "The same as the concept." should be understood to mean 

"The scene has the same structure that the the concept has." If the question 

asked is "What is the structure of the scene?"  However, the system must also be 

able to accept more Information (in any order) than Its question has asked for, eg.. 

What Is the definition of the predicate "Reach"? 

A node X is connected to a node Y If there exists a pair In the 
graph such that X and Y are in the pair. X can be reached from Y 
If X is connected to Y or If X can be reached from a node which is 
connected to Y. 

6. Learn definitions for any undefined words used by the user. If the system Is to 

be robust, it must be able to Infer certain Information about words, rathet than 

depend on knowing everything in advance, in the example above, the system 

Inferred that "connected" !s a binary predicate on nodes. If It Is necessary to 

preprog -m Information of this sort, the system will fall every time an unfamiliar word 

Is used, even though the word occurs In a context In which Its meaning Is apparent, 

6. Incorporate impllcl* Instructions from the user Into the program specification while 

avoiding redundancy if the same instruction is later made explicit.  Consider, 

1. Print the result of the test, ask the user if this is correct, and 
read in the user's response. 

versus 
2. Print the result of the test and ask the user If this is correct. 

—--      ■-"-STO^JBH  ^-::- —.. 
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In both 1, and 2., the next question the system should ask Is "What Is the structure 

of the user's response?".  In 1., there Is an explicit Input operation mentioned.   In 

2., the system must Infer the input operation because "ask" Implies both an output 

and an input.   The system must be able to supply an Input for case 2., but realize 

that the user has already mentioned the input for case 1.   This Is not as trivial as 

Just checking for an input after every output generated from "asks", since If the 

user says, 

"Output the result of the test and ask the user if this cotrect. 
Then read in another test item.", 

the system must still ask for the structure of the user* s response. 

7. Use a certain amount of programming knowledge to aid In Its construction of the 

program specification. Understar.ding many of the user's replies will require 

specific bits of programming knowledge. If the system asks, "What Is the exit test 

of the loop", and the user replies, "Stop when 'quit' is typed", the Interpreter must 

know that this means to test the argument of the (presumably one) Input operation 

in the loop to see if it is "quit". If so, the loop should be exited. The same 

information tells the Interpreter that the test should be Inserted Into the program 

after the input operation. 

1.3  Three Examples 

This section consists of three brief examples1 Intended to Illustrate the extent of 

the processing done by the system. 

1   Every example In this paper was produced by the system. 

^nfiriaiönürf 
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WHAT IS THE NAME OF THE F-ROGRAM YOU WISH TO WRITE? 

Write me a program called 'ntersecllon which reads a set of lists 
of numbers and prints thv numbers which are in all cf them. 

INTERSECTION 
Al ♦■ READO 
A4 •• The set of all A2  in all A3 in Al such that: 

FORALL(Bl)   1MPL1ES(MEMBER(B1 Al) 
MEMBER(AZ Bl)) 

For all A?  1n A4 do; 
PRINT(A2) 

Bl 1s a variable bound to A3. 

A3 Is the generic element of Al. 

Al Is a set whose generic element 1s a  list whose generic element 
Is a number. 

Figure 1.1 

An algorithm description and its program spscification 

The top section of Figure 1.1 contains a description (In answer to the system's 

question) of a proaram which finds the intersection of a set of lists of numbers. The 

program rneclfiration for the example Is shown In Figure 1.2 on the following page. 

It consists of a series of interconnected nodes which represent the various 

components of the program, tach component type Is fully described in Chapter five. 

For large programs, the program description is too bulky (and generally unreadable) 

to exhibit, so a "pretty printed" version of It will be shown instead. A simple 

program Is used to print the specification as an Algol like control structure with data 

descriptions In English. The result of printing the specification In Figure 1.2 Is 

shown beneath the algorithm description In Figure 1.1. 

si^-^^^^i. 
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* type PROCEDURE 
name *♦- 
def ini t ion * 

* type SEQUENTIAL 
steps *<-»*«-»* 

1 t I 
type NAME 
value INTERSECTION 

* type INPUT 
args * 

_I 

i 
* type COMPUTE 

resul t *•)  
assert ions # 
on * 

♦* tupe SET 
t elenient * 

* type LIST 
etement « 

* type NUMBER 

* type ENUMERATE 
steps # 
on * 

* type OUTPUT 
args * 

-»* type SET 
element « 

♦* type BOUND 
boundto *♦- 

* type FORALL 
predicate *♦ 
bindings * 

U* type NUMBER 

* type IMPLIES 
antecedent *♦ 
consequent * 

* tui-.a MEMBER 
element *— 
set * 

* tupe MEMBER 
element *<— 
set # 

FIQUTB 1,2 

"Write me a program called Intereection which inputs a 
set of lists of numbers and prints the numbers which 
ars in all of thsm." 

'»■^—^^■^- 
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The relation between the specification and Its "pretty printing" is apparent.   As an 

example, consider the printing of the ENUMERATE component.   ENUMERATES are the 

specification primitive for performing an action (the STEPS slot) on each element of 

a  set  (the ON  slot).   To "pretty print"   an ENUMERATE component,  the  printing 

program merely concatenates, 
For all 

<^e ELEMENT of <the ON of ENUMERATE» 
In 

<the ON of ENUMERATE) 
do: 

<^e STEPS of ENUMERATE) 

One of the points this example makes is that the best method for implementing the 

user' s program Is not necessarily contained in the program specification. If the 

program specification were Implemented straightforwardly, the resulting program 

would be grossly Inefficient. The Intersection set would be created by cycling 

through every list in the Input set, rather than just the first. The reason, of course, 

is that the user has asked the system to write a program which finds a set 

satisfying some assertions, but has not given a method for determining the set. 

Therefore the system falls back on the method of testing each element in the set to 

see If it satisfies the assertions. The Interpreter can accept more process oriented 

program descriptions. Figure 1.3 contains a very low level description of an 

"Intersection" program. 



Introduction 12 

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE? 

InferaBclion 

□ESCRIBE INTERSECTION. 

It reads a list X. 

WHAT IS THE STRUCTURE OF THE GENERIC ELEMENT OF X? 

A list of of numbers. 

ARE WE FINISHED? 

Set First and Output to the head of X. Let Rest equal the tail of X. 
If First is empty, print Output and return. If Rest is smpty, set 
First equal to the tail of First, set Rest to the tail of X, and go 
back to the first conditional. If the first element in First is not in 
the head of Rest then remove it from Output, set First to its tail, 
set Pest to the tail of X and go to the conditional. Othsrwiss, set 
Rest to the tail of Rest and return to the conditional. 

INTERSECTION 
X *  REAOO 
FIRST v HEA[i(X) 
OUTPUT - HEAO(X) 
REST <-  TAIL(X) 

Labell:   If E0ÜAL(FIRST PHI) 
Then PRINT(OUTPUT) 

RETURNO 
If EOUAL(REST PHI) 

Then FIRST *  TAIL(FIRST) 
REST .-  TA!L(X) 
G010 Labell 

If NOT(MEMBER(HEA[l(FIRST 
HEAO(REST)  ) 

Then OUTPUT >- REMOVE(HEA0(FIRST) OUTPUT) 
FIRST -  TAIL(FIRST) 
REST »• TAIL(X) 
GOTO Labell 

else REST * TAIL(REST) 
GOTO Labell 

REST is a Hsl whose generic element Is a list whose generic element 
is a number. 

OUTPUT  is a  list whose generic element Is a number. 

FIRST  1s a  list whose generic element  1$ a number. 

X Is a list whose generic element 1s a list whose generic e'ement  Is 
a number. 

Figure 1.3 

A low level description of Intersection 

I 
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As a prelude to chapter five, note that even though this dialogue (unlike most the 

system   handles)   translates   fairly   directly   Into   primitives   In    the    program 

specification, there are still several natural language problems embedded In It. 

Different ways of specifying the same action: 

Set X equal to Y.    Go back to X. 
Set X to Y. Go to X. 
Let X equal Y. Return to X. 

Reference problems; 

...Its tail. 

...remove it from Output. 

...go to the first tonditionai. 

...the conditional. 

...the first element in First. 

Language conventions: 

Otherwise, set... 

The  Interpreter can handle more "structured" low level descriptions.   Figure  1.4 

contains an example. 
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WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE? 

Intersection 

UESCRIBE INTERSECTION. 

It reads a list X. X is a list of lists of numbsrs. Lat First equal 
tha head of X and Output equal First. While Firet is not empty, set 
Rest to the tail of X. Then wNIa Rest is not empty, if the head of 
First is not a member of the head of Rest, remove it from Output and 
sat Real to empty. Otherwise set Rest to the tail of Rest. 

OOES THE SECONO LOOP BELONG IN THE TOP LEVEL OF INTERSECTION OR IN 
THE TOP LEVEL OF THE FIRST LOOP? 

In the loop. 

ARE WE FINISHEO? 

After the second loop, set First to the tail of First. 

ARE WE FINISHEO? 

Print Output after the first loop. 

INTERSECTION 
X f READO 
FIRST .- HEAD(X) 
OUTPUT - FIRST 
While NOT(EQUAL(FIRST PHI)) do: 

REST <■ TAIL(X) 
While N0T(EQUAL(REST PHI)) do: 

If NOT(MEMBER(HEAD(FIRST) 
HEA0(R£ST))) 

Then OUTPUT «■ REMOVE(HEAD(FIRST) OUTPUT) 
REST * PHI 

else REST - TAIL(REST) 
FIRST ►  TAIL(FIRST) 

PRINT(OUTPUT) 

REST 1s a list whose generic element is a list whose generic element 
Is a number. 

OUTPUT  1s a  list whose generic element  Is a number. 

FIRST Is a Hst whose generic element Is a number. 

X 1s a  list whose generic element Is a list whose generic element  Is 
a number. 

Figure 1.4 

A more structured Intersection program 
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In general, the program descriptions the Interpreter is asked to handle will be a 

cross between high level descriptions like the first dialogue and low level 

descriptions like the second two. The dialogues in Appendix A provide further 

examples of this. 

In the dialogue from Figure 1.4, the interpreter had to ask the user whether the 

second loop was embedded in the first. More programming knowledge would have 

supplied the answer for the Interpreter,2 It should have been obvious that the 

description of the first loop was incomplete, since the exit test checked the value 

of variable whose value remained unchanged in the loop. Such knowledge is beyond 

the scope of the present parser/interpreter project. Instead, It is made available 

to the Interpreter via the PSI system [Green 76]. 

1.4  PSi 

The parser/Interpreter has been designed to run as a part of the PSI automatic 

program synthesis system. The PSI system, which is being written as a group 

project at the Stanford University Artificial Intelligence Laboratory, consists of a 

number of different modules, one of which Is the parser/Interpreter system. 

Together, the parser/interpreter and the other PSI modules form a complete 

automatic programming system. 

The most obvious addition supplied by the PSI system is the coding and efficiency 

module which Is intended to produce optimized LISP or SAIL code from the program 

2   As we have mentioned, the Interpreter has some programming knowledge; for 
Instance, It knows enough to know It doesn' t know where the loop goes. 
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specification. Thus the user is encouraged to use a very high level description for 

his program since the specification specifies the performance of the desired 

program, but not its implementation. [Barstow 77] and [Kant 77] 

The remaining modules In PSi help support the the dialogues run by the 

parser/interpreter. The parser/interpreter can run independently of then,, but its 

performance is weak (or nonexistent) in the areas these modules were designed 

for.   The other PSI Modules are: 

An English generator being developed by Richard Gabriel. The generator 

should not be confused with the English data description printer used in 

pretty printing the program specification. The data description printer uses a 

"fill in the blanks" paradigm (X Is a Y with Z w'iose Q etc.), which is adequate 

for Its purposes. The completed PS! generation system will include d program 

explanation module which will displace the data description printer. 

A programming knowledge module. This module Is responsible for checking 

the consistency of the program specification, suppling questions to be asked 

in case of inconsistencies, and answering questions whose answers can be 

derived from Information about programming.  [McCune 77] 

A domain knowledge module which is being written by Jorge Phillips. This 

module is analogous to the programming knowledge module except that it has 

Information about the specii'ic type of program written, as opposed to 

programming In general. It might know, for instance, that in a text editing 

domain, when the user says "exit the file", he means "write all the changes 

made onto the disk and then exit the file," 

»^.■.^^»iiiÄäÜHiää TU ■ T-
J
-'^  -■■-'- mmäm 
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A tracos end examples module which enables the user to describe his 

program In terms of examples and traces as well as English.  [Phillips 78] 

A dialogue moderator which coordinates the various PSI modules, chooses 

which question to ask the user next, and processes the user's comments 

about the dialogue supplied to It by the parser/interpreter.  [Steinberg 78] 

1,6  An Overview 

1.6.1   Reader 

Reader can be briefly described as a left to right parser that uses a combination of 

top-down and bottom-up strategies. The method used at any point In a parse is 

determined by the grammar writer. The grammar consists of a set of Lisp programs 

which manipulate the data structures and data structure building primitives supplied 

by the parser. 

Reader is able to efficiently recognize a large subset of English because It seldom 

needs to maintain more than one possible parse of a sentence. It should be 

stressed, however, that Reader Is not completely deterministic3. Complete 

determinism does not seem possible when dealing with a large grammar and 

vocabulary in which most words can fulfill more than one syntactic role. 

The characteristics which allow Reader to parse nearly determlnistically are listed 

3 Almost all the nondeterminism arises from words which belong to more than one 
word class; eg.. If a word can act as either a verb or a noun. Reader must try both 
possibilities separately. 
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below.    In  Section 3.?.,  these characteristics are divided into essentially  three 

different categorios. 

1. A sentence constituent Is only built when the parser knows that there 
Is at least one other constituent that has already been built that can 
accept the first as r modifier. 

2. A constituent is attached (ie,, proposed as a modifier) to another 
constituent only when the attachment is forced by the syntax of the 
sentence. A simple example of "delayed attachment" occurs In the 
sentence, "The program called Intersecticn...". The constituent "called 
Intersection" Is not attached to 'the program" until the words following 
"Intersection" require that the attachment be made. 

3. Because of 2., when a constituent s attached to another, the parser 
generally knows the reason for the attachment, and can use that reason 
to guide It In making the attachment. For Instance, In "The program 
called Intersection was written by George.", "was" forces "called 
Intersection" to be attached to "The program". The reason for the 
attachment Is to allow "fhe program" to be Ine subject of "was", so It Is 
clear that "called Intersention" is to be attached as a relative clause 
modifying "program", since if it were attached as the main verb, there 
would be no place to put "was". In "The program called Intersection and 
returned.", when "and returned" is read, the parser knows that the 
clause "called Intersection" must be an active construction (as opposed 
to the passive construction which leads to the relative clause 
interpretation) so that It can be attached to "The program" as the 
predicate of the sentence. 

4. The parser uses one syntactic structure to represent more than one 
possibility. In "The program callea Intersection ...", the structure "callsd 
Intersection" simultaneously represents the predicate of the sentence 
and a relative clause. Which interpretation to use Is determined after 
more of the sentence had been read. 

5. The parser provides for local ambiguity in the parse structure that It 
returns. For Instance, "I know that ice is dangerous" could mean either 
"/ know ice is dangerous." or "/ know that that (particular) ice Is 
dangerous.". The parser finds both Interpretations following a single 
parse path, and continues following a single path after the ambiguity has 
been reached by preparing an output structure In which the subject of 
"Is" Is a choice between "that Ice" and "ice". 

As we have Indicated, occasionally Reader must pursue more than one parse path at 

a   time.    To  avoid   analyzing   the  same  sentence   constituent   each   time   It   Is 
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encountered on a different parse path, Header uses a variation of the well-formed 

substring table idea (section 4.4). This enables a constituent which has been 

analyzed to be effectively shared by each parse path that can use It. 

The parser-interpreter interface is only called to rale structures which are about to 

be attached to other structures. Structures are attached to other structures only 

when the syntax of the sentence forces the attachment These two facts Imply 

that the parser-interpretei interface will only be asked to evaluate those parses 

which are syntactically equivalent''. For a simple example of this, consider "The 

number In the list the program printed was ..." "Was" forces the "The number", "In 

the list", and "the program printed" to be attached to one anotner for the purpose 

of allowing "The number" to be the subject of "was". The parser-interpreter 

interface must choose from between structures which represent the meanings "77>e 

number which was printed and In the list." and "The number which wes In the 

printed list." Since each structure plays the same syntactic role, namely that of a 

noun group, any sequence of words following "was" will lead to a parse for either 

both or neither of the two interpretations. 

Reader's interface with its Interpreter is a program called Format which rates each 

syntactic structure built by Reader before It is attached to another. The criteria 

measurea by the Interface are; 

1. Does the verb of the structure (if there is one) have enough of Its 
cases filled in to properly specify the action It represents? For 
example, the verb "put" requires a case which specifies where the 
object c! "put" was put. 

2. How appropriate are the noun groups in the structure? For Instance, 
the noun group "water boils" would be judged inappropriate. 

4 Two parses are syntactically equivalent if and only if the end of the sentence 
has been reached and both are successful parses, or If both will lead to a 
successful parse on the same sentence endings. 
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3.   How aorroprlate are the contents of the cases of the structure's 
verb.  For instance, "street" Is an Inappropriate subject for "light". 

The results of the rating are used to pick the most meaningful structure from among 

oqulvalent syntactic possibilities. Structures which evaluate poorly can still be 

included in the parse of the sentence, as long as there are no other parses which 

contain structures with be^er evaluations. The parse of "Water bolls are very 

small." contains the "Inappropriate" noun group "water boils", since there Is no 

syntactic Interpretation of the sentence which does not use "water bolls" as a noun 

group. 

1.6.2 The Interpreter 

This section briefly touches on reference nnd concept matching, two of the 

subjects mentioned In section 1.2.2, as an introduction to the methods used by the 

Interpreter. They have been singled out because they are the basis of all higher 

level Inferences performed by the Interpreter. Chapter 6 covers much more In 

greater detail. 

The interpreter's primary means of understanding user statements is via a set of 

case frames and concepts. The case frames map English verbs and their modifiers 

Into the concepts, which can then be incorporated hto the program specification, 

r^ a simplified example, consider the concept of an Input operation, denoted 

#INPUr. For now, we will assume that #INPUT takes has descriptors. Its arguments 

(ARGS), Its Hacc In the program specification (STEPOF), and the Input device 

(DEVICw. 

■-■■■■:-^- 
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«INPUT 
DESCRIPTORS: ARGS      (isattOATA) 

STEPOf (isa «ALG) 
DEVICE (isa «DEVICE) 

2«TYPE 
CASES: SUBJECT -♦ DEVICE 

OBJ ■♦ ARGS 
ISA «INPUT 
DEFINITION-OF TYPE 

Figure 1.5 

A concept and a definition which can be mapped to it. 

Figure 1.5 shows the concept and a definition of "type" which can be mapped to It. 

The definition says that If we have an instance of the verb "type", and its cases 

(as determined by the parser) can be mapped successfully (le., the contents of the 

cases satisfy the criteria In the descriptors of the #INPUT), then we can view the 

verb and Its cases as an instance of the #INPUT concept and take the appropriate 

action. Concepts can represent more than a singi'- primitive in the program 

specification language. For instance, "request" in "I'll request a story by giving a 

key word." maps into an INTERCHANGE concept which Involves an INPUT and 

OUTPUT operation with a calculation of what should be output In between. 

Noun and pronoun reference is facilitated by the context supplied by the selection 

criteria of the descriptors of a concept.  In, 

"It reads in a trial-Item, matches the Input to the Internal concept 
model, und prints the result of the match." 

a referent must be found for the noun "input". There are two possibilities: the 

INPUT created by the "read", and the trial-Item which Is the argument of the "lead". 

Since "match" Is mapped to a concept (#PREDICATE) which 'equlres that Its ARGS 

descriptor be a #DATA (rather than an »ALGORITHM like the "read") the ambiguity is 

resolved. 
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When the choice among possible referents cannot be decided on the basis of the 

very general type checking outlined above, more sltuational checks are needed. 

Consider, 

"It reads a list of numbers and a list of strings.   If X Is in the list 
then..." 

There are two referents for "the list"; the number list and the string list. Since 

they both satisfy thr selectional criteria5 for the second argument of the #MEMBER 

"is In" maps Into, something more context dependent is needed. Each concept hps 

a second layer of selectional requirements which are called when simple type 

checking falls to narrow down the field of choices sufficiently. For #MEMBER, the 

check succeeds If the first argument has the same type, or is referred to In the 

same way, as the generic element of the second argument. So in the example, If X 

were a string, "the list" would be matched to the string list, and If X were a number, 

"the list" would be matched to the number list. 

In the event of a referent which remains ambiguous after ail tests have been 

applied, the time honored method of falling back on the most recently mentioned 

possibility Is used. Hopefully, the speaker has felt free to use a pronoun In an 

ambiguous situation because the referent he had In mind was the most recently 

mentioned possibility. 

They are both sets. 
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2.  Parsing 

Naairal language processing begins with parsing. Determining the meaning of a 

sentence requires knowing the main verb of ihe sentence and how the rest of the 

words In the sentence relate to it. In this system, for example, the mapping of the 

sentence "Print the list." into a structure which is an OUTPUT operation whose 

argument Is the referent of list Is dependant on knowing that »he main verb of the 

sentence is "print", the syntactic object of "print" Is "the list", and the sentence Is 

an imperative. 

2.1   The Basic Algorithm 

A parser allows one to store and utilize the Information about sentence structure 

needed to interpret sentences properly. The information that is stored Is referred 

to as the grammar, while the methods for applying the grammar to a particular 

sentence are usuaily thought of as the parser. Reader Is organized somewhat 

differently from most parsers1 In that Reader Is not syntax directed. Writing a 

grammar for Reader consists of specifying the processes which build the structure 

of an input sentence. Thus the grammar writer specifies how the grammar Is 

actually applied to a sentence, as well as the grammar Itself. Reader's function Is 

to provide the data structures the grammar Is Intended to use, the control structure 

which activates the grarmar, and programs for manipulating the data structures. 

The two basic data structures that Reader supplies are the modifier list and the 

The parsers of Wlnograd and  Riesbeck are also exceptions.  See section 4.6. 
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stack. The modifier list Is a list that the grammar writer can use to store words 

whose use has not yet been determined. The stack Is used to store the structure 

built up while the parse Is In progress. The next section describes the stack In 

detail. A stack, a modifier list, c message about what has just happened to the top 

of the stack, and a message concerning the entire stack constitute a partial parse. 

The top of the stack message Is usually a Lisp atom, eg., message = NOUN, VERB, or 

CONJUNCTION means that a noun, verb or conjunction has just been added to the 

top structure In the stack. The stack message Is a list of features that the stack 

has. Each feature Is represented by an atom. Example features are "the stack 

contains a verb structure with a verb that can accept a clause as one of its cases" 

and   "the stack represents a sentence which is an interrogative". 

The parse is performed by adding each word In the input (going from left to right) to 

the partial parse formed by the addition of the previous words in the sentence. The 

first word in the sentence Is applied to "the initial partial parse", which consists of 

the "initial steck" (a stack containing a single structure which will eventually hold 

the main verb of the Input sentence), and an empty modifier list. The "top of the 

stack message" for the initial stack is BEGIN, and the message concerning the 

entire initial stack Is NIL, meaning that the stack has not acquired any features yet. 

The process of adding words to the partial parse is controlled by the grammar. The 

grammar consists of a set of programs, one for each syntactic word class2, which 

contain the rules and conditions whic<i specify when and how to add a particular 

word class to a partial parse in a given configuration.  In general, there may be more 

2   the word classes the   parser uses are VERB, PREPOSITION, NOUN, MODIFIER, 
ARTICLE, CONJUNCTION, and PUNCTUATION. 
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than om way a word class can be added to a partial parse. It Is also true that 

many words belong to more than one word class. For Instance, the word "like" can 

be a noun ("His likes are different than mine."), a verb ("She likos him."), a 

preposition ("a man like him."), a conjunction ("He plays like Jack used to."), or a 

modifier ("men of like temperament."). These two facts (a word may be added to a 

partial parse In more than one way, and a word may belong to more than one word 

class) Imply that the parser should be able to handle more than one partial parse of 

the Input at a time. However, it should be kept in mind that one way to achieve an 

efficient parsing process Is to write a grammar which minimizes the number of 

possible parses the parser has to follow at once, while at the same time writing a 

set of rules which adequately express English syntax. Section 3.2 shows some of 

the methods used by Reader's grammar to avoid a multiplicity of partial parses. 

The partial parses are placed on a list called the "partial par^e list". The parser' s 

control structure Is as follows: 

1. sentence >- the list of words comprising the input sentence. 

2  partial-parse-list •-  a list of the initial partial parse. 

3. WHILE sentence DO 

4. Apply the next word in sentence to each partial parse in 
partial-parse-llst, using the program associated with each 
word class the word belongs to. 

6. Reset sentence by removing the first word In It. 

6. Reset partial-parse-list to a list of the partial parses formed 
In step 4. 

7. Output partlal-parse-llst. 

Step 6. does not imply that the grammar programs cannot look ahead In tha Input 
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sentence and use more than one word at a time. If a grammar program continues a 

partial parse P by applying the first n (n > 1) words In sentence to It, a message Is 

left which prevents the next n - 1 words from bstng applied to P. This presentation 

of the control structure Is accurate with the exception that stens 6. and 7. are a 

bit more complex than they have been mada to appear. They will be explained In 

more detail In later sections. 

The control structure Indicates that the parallel processing Is invisible to the 

giammar writer. This means that in writing the grammar programs, the grammar 

writer need only concern himself with one stack and one modifier list, since each 

grammar program is called on each partial parse In partlal-parse-llst In turn. 

2.2  Stack structures and collapsing 

The stack Is the major data structure that Reader uses. Its function is to store the 

structures built up during the parse until it is decided how the structures should be 

attached to one another. This treatment allows for easy handling of a certain type 

of ambiguity that arises frequently in English utterances. 

Consider the sentence, "I had another look at it". It can mean either "/ asked 

someone else to look at it" or "/ took one more look at It". The ambiguity arises from 

the different uses of "had", "look" and "another" In each interpretation. 

The sentence "John spoke to the man with Bill" is ambiguous in a different way. It 

might mean "John and Bill spoke to the man." or "John spoke to the man who was 

with Bill." In this sentence the ambiguity derives from the fact that "with Bill" can 
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be used to specify either who acted with John, or who was near the man. In each 

meaning, tne words of the sentence have been used in the same fashion. 

Ambiguities of this sort, one constituent of an utterance being a possible modifier 

for more than one word In the utterance, have been referred to as "permanent 

predictable ambiguities" In [Sager 73]. 

The stack allows Reader to handle ambiguities of the second kind by allowing for 

the structuring of most of the constituents of the sentence before It Is decided 

which   words   they  will  modify.    The   elements  of   the  stack   are   called   stack 

structures.   Two different types of stack  structures  are  employed  by  Reader: 

preposition structures and verb structures.   The sentence "John lost the toy he 

bought In the woods on Sunday." would be parsed into the following stack: 

4.[on Sunday] 
3. [in the woods] 
2.[he bought] 
1. [John lost the toy] 

1. and 2. would be represented by verb structures and 3. and 4. by preposition 

structures.  Verb and preposition structures can be filled In as follows: 

Verb structures Preposition structures 

noun3 noun 
noun2 prep 
nounl adverbs 
verb-group measure 
adverbs message 
cases 
function 
measure 
message 

The noun slots are filled by noun groups. A noun group consists of a list 
of the head noun followed by its modifiers. A verb may have one, two or 
three of its noun slots filled. A preposition may have Its noun slot filled 
or not. 

i 

The verb-group slot Is filled by a list of verbs. Each verb consists of a 
root and an ending. 
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The adverbs slot Is filled by a list of modifiers of the verb group or 
preposition. 

The cases slot Is filled by the cases the verb has that are introduced 
by prepositions and conjunctions. 

The function slot contains the function of the verb structure. MAIN Is 
used to indicate that a verb structure holds the main verb of an 
utterance, RC Indicates a verb structure Is being used as a relative 
clause, etc. 

The prep slot holds the preposition of a preposition structure. 

The message slot contains information relevant to the stack structure. 
Its contents are controlled by the grammar. We will see examples of Its 
uses when we discuss the grammar. 

The measure slot contains the parser's rating of each structure. The 
rating is used to help the parser choose among competing parses. It will 
be defined in section 4.1. 

Throughout this paper, 3'ack structures will be printed as a collection of slot-value 

pairs. Empty slots will not be printed. Under this scheme, the stack for the 

sentence above would be printed as 

PREP:   ON 
4.   NOUN:   SUNDAY 

PREP:   IN 
3.   NOUN:   (WOODS THE) 

VERB:   ((BUY ED)) 
NOUN1:   HE 

2.   FUNCTION:   RC 

VERB:   ((LOSE ED)) 
NOUN1:   JOHN 
NOUN2:   (TOY THE) 

1.   FUNCTION:   MAIN 

"John lost the toy he bought In the woods on Sunday," 
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The stack could be Interpreted In several different ways: 

a. John lost a toy.  He bought It In the woods. He bought It on Sunday. 
b. John lost a toy. He bought It In the woods. He lost It on Sunday. 
c. John lost a toy.  The toy was lost on Sunday.   It was lost In the woods. 

John bought the toy. 
etc. 

The process of determining which of the interpretations was actually Intended by 

the speaker Is referred to as collapsing the stack, since finding the correct 

interpretation of the stack consists of red^-.ng the stack to one stack structure. If 

we accept meaning c. as the proper interpretation of the above sentence, then the 

single stack structure that represents that meaning of the stack is 

VERB: ((LOSE ED)) 
NOUN1: (TOY THE {BUY PN [SUB HE] )) 
NOÜN2:    JOHN 
CASES:   ((WHERE (IN (WOODS THE)) (WHEN (ON SUNDAY))) 
FUNCTION:   MAIN 

where "he bought" specifies which toy, "on Sunday" specifies when the toy was 

lost, and "In the woods" specifies where the toy was lost. 

The parser must consult with Its deductive system3 during a Collapse of the stack. 

The reason that the third meaning seems to be right is that one is unlikely tc buy a 

toy in the woods, since there usually aren't any stores located in the woods. The 

parser also needs to know that Sunday Is a possible date rather than a location for 

the woods. There is, however, some syntactic knowledge embedded In the stack. 

The parser never considers. 

3 
The deductive system for the Reader/Interpreter system Is the Interpreter. In 

discussing the parser in general, we will use "Its ded ctUe system" to mean the 
program which calls the parser and Is able to reason about the subject domain of 
the sentences being parsed. 
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d. A toy was lost In the woods by John.  John had bought the toy. 
The toy was bought on Sunday. 

as a possible meaning for the sentence since d. requires that stack structure 4. 

modifies 2,, while 3. modifies 1.  English syntax does not allow such crossovers, so 

the parser never has to consider d. as a possible meaning. 

The communication channel between the parser and the Interpreter Is a function 

named Format. Format is called to evaluate a structure just before It Is attached to 

another structure during a Collapse.'' The algorithm used by Collapse ensures that 

once a structure has been attached to another, it cannot be modified (le., have 

another structure attached to it). Formatting serves the dual purpose of preparing 

a structure for output, and providing the deductive system with an opportunity to 

rate the likelihood that the speaker Intended the words In the structure to be 

grouped with each other. The rating of a formatted structure Is merged with the 

contents of the measure slot of the structure it is being attached to. Thus the 

measure slot of a structure contains the ratings of all the structures that have 

been attached to that structure. The measure of a structure is discussed In 

section 4.1. 

Collapse chooses which one of the possible stack structures the stack could be 

collapsed to by picking the structure with the best measure. If there Is more than 

one partial parse active at the end of the sentence, Reader returns the one(s) 

whose collapsed stacks have the best measure. The format of a preposition 

structure Is Its measure and a list of the preposition, adverbs and noun; the format 

of a verb structure Is Its measure and a list of the rout of the main verb, the tense 

"   Format Is also called evaluate the final structure obtained from the parsing 
process. 
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of the verb group, the verb's adverbs, and the verb's cases. Measure Is only used 

to select from among syntactically equivalent parses, so If the only reading a 

sentence admits results In a bad measure, a parse will be found anyway. 

When the stack for "John lost the toy he bought In the woods on Sunday " Is 

collapsed, the measure of any resulting structure which includes structure 3. (In the 

woods) attached to structure 2, (he bought), will be worse than those that don't, 

since the measure of structure 2. modified by structure 3. will be "unacceptable" 

(see section 4.1) since the parser's deductive system would "know" that "the 

woods" does not satisfy the requirements that "buy" has for places where one can 

buy things. Section Ö.5 explains how this "know" Is Implemented In the 

Reader/Interpreter system. 

We can now mention the complication referred to in step 7. of the control structure 

presented in section 2.2. Step 7. was originally "Output the list of partial parsed". 

What really happens is that Reader collapses the stacks associated with each 

partial parse, each structure resulting from the collapse Is formatted, and then 

Reader then outputs a list of the formatted structure(s) with the best measure. 

There are two points about the stack which should be emphasized: 

1. There are only two reasons for collapsing the stack: erther the end of 
the sentence has been reached, !n which case the stack is collapsed 
down to one structure, or the application of a word in the sentence to a 
partial parse results in that word being added to a stack structure which 
Is not at the top of the stack. In the latter case, the stack Is collapsed 
down to the structure that is receiving the word. 

2. Any two structures resulting from the collapse of a stack are 
syntactically equivalent. This means that either both or neither will 
result In a parse ot the sentence, so we are Justified In using semantics 
to discard all but one of the structures resulting from a collapse, since 
syntactic Information will not enable us to choose between them. 



Parsing 32 

2.3   Reader's output 

2.3.1   Cases 

Given a sentence S, Reader's output consists of the main verb of S, together with 

Its cases. If S Is the simple sentence, "Bill hits John", then Reader's output would 

be the parse below.* 

(HIT NN 
[SUB BILL] 
[OBJ JOHN] 

> 

The open bracket, "{", signals the beginning of a presentation of a verb and Its 

cases. NN is a tense marker whose meaning will bo explained below. The SUB case 

(cases are Introduced by square brackets, "[') of "hit" Is "Bill" and the OBJ case Is 

"John". 

We are using "case" In a different sense than most of the current literature does. 

In the literature, "case" is usually used to refer to "deep case", a concept 

popularized by Fillmore in [Fillmore 68]. A good definition of "deep case" can be 

found In [Bruce 75]; "The deep cases are binary relations which specify an event 

regardless of the surface realization of that description as a sentence or noun 

phrase". To see exactly what this means, we will consider a number of sentences 

Involving the verb (event) "hit". For this example, we will suppose that "hit" has 

three deep cases: the entity that Is receiving the effect of the hit (OBJECT), the 

thing the object Is being hit wit (INSTRUMENT), and the entity that Is instigating 

the hitting (AGENT),  Then In 

1. BUI was hit by the hammer. 
2. John hit Bill with the hammer. 
3. Bill was hit with the hammer by John. 
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4. The hammer hit Bill. 
6. John hit Bill. 

"Bill" is the OBJECT In all five sentences, "hammer" is the INSTRUMENT In the first 

four sentences, and "John" is the AGENT in sentences 2.,3. and 5.   Consider the 

knowledge needed to choose the cases of a "hit",   in sentence 6., the AGENT Is 

distinguished  from  the OBJECT by their relative  positions about  the  verb.    The 

surface structure of the sentence, then. Is one source of information in determining 

a verb' s cases.   It is obviously not the only source.   Sentence 4. has the same 

surface structure as sentence 5., yet the noun preceding the verb is considered 

the INSTRUMENT, ratt jr than the AGENT.   Furthermore, If wn **y, 

"George  went   berserk.    He  bettered John  Into unconsciousness, 
picked him up, and hurled him at Bill.  John hit Bill.", 

then John is the INSTRUMENT of "hit" in the last sentence.   Therefore, determining 

cases requires the surface structure of the sentence as well as Informttlon about 

the objects the sentence refers to, and the context the sentence was uttered In, 

Reader produces a set of cases which are derived from the surface structure of 

the sentence.   A deductive system can then use Reader's cases in combination 

with the information t has about the concepts mentioned In the sentence to derive 

Its own cases. 

The three prinary cases used by Reader are SUB, OBJ and IOB (indirec'c object). In 

a passiv.« sentence, one in which the verb group Is a verb phrj.se whose last two 

verbs are the verb "to be" and the main verb Inflected with an "ed" or "en" ending, 

the OB., precedes the verb and and the SUB is introduced by "by". If the sentence 

Is rot passive, the OBJ follows Immediately after the verb and the SUB precedes 

the verb. The IOB Is e noun that can modify a verb, without needing a preposition to 

Introduce It, only In the presence of both the SUB and OBJ. 
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"John" is the 103 in "Bill gives John the book." since we can not say "John gives 

Bill." to mean that "Bill received something from John.", but can say "Bill gives the 

book." to indicate that "A book was given to someone by Bill. Similarly, John Is the 

I0B In " pr ?s the cat John" since we can't say "Bill names John." to mean that 

"Bill has glvfir name JOHN to something.", but can say "Bill names the cat." to 

indicate that Bill given some name to the crt. Another way to look at this Is that 

(without resorting to prepositional you cannot say (using the verb "give") who you 

are giving something to without mentioning what y^u are giving, and similarly you 

can't mention what you are laming something without mentioning the thing being 

named. The reversal in the normal order of I0B and OBJ that /trbs luce "name" 

exhibit is cc isidered a syntactic property of the verb. Unless a verb Is tagged with 

this property, Reader assumes that it takes Its OBJ and I0B in the normal order. 

With the exception of "by" and "to". Reader does not try to assign meaningful case 

names to nouns Introduced by prepositions, since the meaning of the modification 

between a verb and a prepositional phrase depends on both the verb and the 

object of the preposition. The deductive system Is expected to supply a case 

name whou It judges the appropriateness of the modification. 

in passive sentences, "by" frequently introduces the SUB. When Reader parses 

such a sentence it returns the object of "by" as the SUB of the vrb if the 

deductive „yst'iti agrees that the object could serve as the SUB. Given the 

sentence "Bill was shot by Jack", Reader would ask the deductive system whether 

Jack could shoot Bill. If the answer were "yes", Jack would appear as the SUB 

case of "shoot". Change the sentence to "Bill was shot by the door" and the 

deductive system would answer "No, doors cannot shoot", enabling Reader to use 

"by the door" to specify the location of the snooting. 

.-   •■ ■ 
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"To" Is treated similarly to "by" by Reader in that Reader assumes that "to" always 

It    -winces an IOB If the syntax of the sentence permits this.  Therefore, 

"Bill gives John the book" and "Bill gives the book to John" parse to 

{GIVE NN 
[SU? BILL] 
[IOB JOHN] 
[OBJ (BOOK THE)] 

I 

{GIVE NN 
[SUB BILL] 
[OBJ (BOOK THE)] 
[IOB JOHN] 

) 

respectively. 

The parses for the five exemple sentences are: 

Bill was hit by the hammer. 

{HIT PN 
[OBJ BILL] 
[SUB  (HAMMER THE)] 

) 

John hit Bill with the hammer. 

{HIT PN 
[SUB JOHN] 
[OBJ BILL] 
[PREP (WITH (HAMMER THE))] 

> 

Biil was hit with the hammer by John. 

{HIT PN 
[OBJ BILL] 
[SUB JOHN] 
[PREP (WITH (HAMMER THE))] 

> 

The hammer hit Biil. 

{HIT PN 
[SUB (HAMMER THE)] 
[OBJ BILL] 

) 

John hit Bill. 

{HIT PN 
[SUB JOHN] 
[OBJ BILL] 

> 
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We can see that SUB corresponds to either AGENT or INSTRUMENT, and that OBJ 

corresponds to OBJECT in the case system we had made up for "hit". 

To translate Reader's cases into the "hit" case system one would only have to 

decide which SUBs were  INSTRUMENTS and which were AGENTs, equate OBJECT 

with OBJ, be aware that "with" can introduce the INSTRUMENT, and be able to 

distinguish when "with" refers to an instrument and when it doesn't.   A non-trivial 

task, since we could say 

"He hit John with Bill" (accomplice) 
"He hit John with vim and vigor" (method) 
"He hit John with malice" (emotion) 

Section 5.2 explains how Reader's cases are mapped Into the Interpreter's case 

system. 

Reader actually uses more cases than than the primary ones mentioned above.   But 

the other cases are essentially ad-hoc ones that Reader uses to store modifiers of 

the verb.   Any preposition or conjunction (not top-level) defines Its own case.   As 

an example, consider "John pushed Janet into the closet because he thought Bill 

would see her.", which is parsed to: 

{PUSH PN 
[SUB JOHN] 
[OBJ JANET] 
[PREP (INTO (CLOSET THE))] 
[BECAUSE {THINK PN 

[SUB HE] 
[WHAT {SEE  (NN WOULD) 

[SUB BILL] 
[OBJ HER] 

}] 
>] 

> 

John and Janet are the SUB and OBJ of push.   "Into the closet" Is a preposition case 
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of "push'1, filling In where the OPJ was pushed to. The conjunction "because" fills In 

the presumed reason the event took place, and Is considered a case of the verb. It 

contains the verb clause whose main verb Is "think". "He" Is the SUB of "think". 

"What the SUB Is thinking" Is stored In the WHAT case of "think" The contents of 

the WHAT case Is the verb clause whose main verb Is "see". 

2,3.2  Tense markers 

Many verb clauses contain verb groups rather than just single verbs A verb group 

can be composed of adverbs, modals and other verbs. The Information contalr .id In 

a verb group that a deductiva system needs is a list of adverbs and modals, the 

root if the main verb, and the tenso of the verb group. Reader saves the modals 

and adverbs and returns them in appropriate slots In the parse structure. The root 

of the main verb of the sentence is similarly returned. This means that Reader must 

supply the tense of the verb as a separate piece of information. Reader uses six 

basic tense symbols. These are shown in Figure 2.1, together with an example of 

the verb group each represents. 
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VERB GROUP TENSE 

I walk NN The present tense of the verb without any 
auxl 1lary verbs. 

I walked PN The past tense of the verb without any 
auxiliary verbs. 

I will walk FN The auxiliary "will" followed by the 
unlnflected main verb. 

I have walked NP The present tense of the auxiliary verb "hav°" 
followed by the main verb in past tense. 

I had walked PP The past tense of the auxiliary verb 
followed by the mam verb in past tense. 

I will have walked fP The auxiliary "will", followed by the auxiliary 
"have" followed by the main verb m past tense. 

Figure 2.1 

Verb lenses 

The tense markers are motivated by an analysis found in [Bruce 75]. Simplified, It 

says that a tense consists of a set of binary relations on a set of reference points. 

For Instance, the tense of "had walked" consists of the relations on the three 

reference points: "the time of the speech" (SI), the "time of the subject" (S2), 

and the "time of the action" (Sa). S2 is in the Past of SI, and S3 is in the Past of 

S2, so the tense of the verb group Is Past-Past or PP. Similarly, the tense of "have 

walked" Is Now-Past, or NP, since the "time of the subject" is the same (Now) as 

the "time of the speech" and the "time of the action" Is in the Past of the "time of 

the subject".   To see how this works, consider the sentences: 

1.  George, the club president, has walked through these halls. (NP) 

2.   George, the club president, walked through these halls. (PN) 
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In 1., the "tlrrte of the action" Is in the past of the "time of the subject" so that we 

may not assume that George was president when he walked In these halls, but we 

do know that he Is president now, since the time of the subject and speech are the 

same. In 2., the time of the action and subject are the same, so we know that 

George was president when he walked through these halls, but Is not necessarily 

president now. 

We get six more tense symbols by considering verb groups whose main verb ends In 

"ing". These tenses are represented by appending a "C" (continuing aspect) to 

the tenses aoove: 

VERB GROUP TENSE                           i 

I am walking NNC 

1 was walking PNC 

1 will be walking FNC                            | 

I have been walking NPC                            1 

1 had been walking PPC 

1 will have been walk Ing FPC 

FigufB 2.2 

Tenses for verbs with a continuing aspect 

When a verb Is used as an infinitive, eg., "to hit" In "Bill wants to hit John", the 

tonse marker returned is "INF". When a verb appears with an "Ing" ending »»nd no 

auxiliary verbs, as In "The man sitting on the chair...", the tense marker returned Is 

"CC" (an arbitrary symbol). In terms of tense markers, passive constructions are 

Indistinguishable (the order of the cases determines whether a construction Is 

passive or not) from regular constructions, so the tense of "is walked" Is equivalent 
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to the tense of "walks", namely NN. Verb groups consisting of the auxiliary verb 

"do" and an uninflected main verb (eg., "He did go...") are given the tense of the 

auxiliary "do". 

We have left out tenses which require the verb "to go" as an auxiliary verb.   The 

reason is that verb groups using "go" as an auxiliary are ambiguous.   A verb group 

like "I am going to walk..." might mean either "in the future some time, I will walk." or 

"/ am actually going to some place (the beach, for zxample) In order to walk". 

Rather tnan try to resolve this anblguity, Reader treats the infinitive as a case of 

the verb  "go"  and expects the   deductive system to be  aware of  the  possible 

ambiguity and to have enough information to resolve it.   Therefore "I am going to 

walk" Is parsed as 

{60 NNC 
[SUB   1] 
[INF   {WALK   INF 

[SUB  Imatch lo_SUB] 
)] 

) 

The infinitive clause "to walk" Is treated as a case of the verb "go" (INF). The 

system reading the parse must be aware that it can be interpreted as though the 

main verb were the verb of the INF case ("walk"), with a tense derived from the 

verb group "am going to walk". The SUB of "walk" is a dummy noun that should be 

matched to the SUB of "go" (I). The ambiguous situation is easy to recognise. It 

occurs whenever the main verb of clause is "go", and the clause has two cases, 

SUB and INF. 

Some temporal information Is contained In the cases of the verb rather than the 

tense.   "I went yesterday" parses to 
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{GO PN 
[SUB I] 
[WHEN YESTERDAY] 

> 

so that the exact time In the past that the action occured In Is specified by the 

WHEN case. 

The verb "have" often occurs !n verb groups as a modal.   "I have to go away" 

essentially  means  "I  must go away".   When  "have"  is  used  as  a  modal,  it  Is 

unambiguous.   Therefore, when "..have to verb..." occurs as a verb group. Reader 

returns verb as the main verb, assigns it the tense of the verb "have", and places 

the marker "HAVE-TO" in its adverb slot.  "I will have to leave" parses to: 

{LEAVE PS (HAVE-TO) 
[SUB I] 

I 

This does not mean thai every time the phrase "have to verb" appears in a 

sentence that "have to" will be treated as a modal. The noun phrase "The book I 

have to give1' would be parsed into a three structure stack: 

VERB: ((GIVE)) 
3.  FUNCTION: INF 

VERB: ((HAVE)) 
NOUNl: I 

2. FUNCTION: RC 

NOUNl: (BOOK THE) 
1,  FUNCTION: MAIN 

The stack can be interpreted in two different ways; "The book I must give." (3. 

attached to 2 attached to 1), or "The book I have In my possession which I will 

give.", (3. and 2. attached to 1. independently). Only the first Interpretation treats 

"have to" as a modal. 
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The tense contains all the Information in the sentence, yet leaves the decision of 

what to do with it for the system using the parser. For example, if the tense of a 

statement is NN the system can infer that a narrative is taking place, that the 

action described in the statement is habitual, etc. 

2.3.3   Noun groups 

Reader uses a different representation for noun groups than most parsers. To 

Reader, a noun group Is a list whose first element is the head noun of the group, and 

whose remaining elements are the modifiers of the head noun. The difference In 

representation iies In the fact that Reader does not structure the modifiers that 

preceded the noun in the original sentence. 

Therefore, "The messy groen garbage crn cover" is parsed as 

[NOUN (COVLR THE MESSY GREEN GARBAGE CAN)] 

since Reader does not try to determine whether this means either 

1. the cover of a can used for messy green garbage. 
2  the messy cover or a can used for green garbage. 
3. the messy green cover of a can used for garbage. 
4. the messy ccver of a green can used for garbage. 
5. the cover of a messy green can used for garbage. 
6. the cover of a messy can used for green garbage. 

Instead, It allows the deductive system to structure the noun group wh^n the stack 

entry containing the noun group is Formatted (section 4.3). This Is necessary to 

avoid needless ambiguity. The sentence "A man people can trust Is usually 

dangerous" can be parsed (correctly) as; 
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{BE NN (USUALLY) 
[SUB (MAN A {TRUST (NN CAN) 

[SUB PEOPLE] 
>)] 

[DES DANGEROUS] 
) 

But unless the parser can discover from the system that there is unlikeiy to be "a 

man people can trust" (trust modified by can, people, man and the) it will also find 

{BE NN (USUALLY) 
[SUB (TRUST A KAN PEOPLE CAN)] 
[DES DANGEROUS] 

} 

since "man", "can", and "people" are nouns, and therefore potential modifiers of 

"trust".   The modifiers that followed the noun in the original sentence are structured 

by Reader, with help from the deductive system.   This is necessary since Reader 

must know whether a sentence constituent coming after the noun modifies it, the 

verb the noun modifies, or some other constituent in the sentence.   "The relation In 

the concept that Is marked 'possible'." Is parsed as: 

[NOUN (RELATION THE (IN (CONCEPT THE)) 
(MARK PN 

[OBJ THAT] 
[I0B "POSSIBLE"] 

))] 

In a context where the deductive system was able to determine that relations had 

markings and concepts did not, and as: 

[NOUN (RELATION THE (IN CONCEPT THE (MARK PN 
[OBJ THAT] 
[I0B "POSSIBLE"] 

)))] 

in a context where the deductive system thought that concepts were more likely to 

have markings than relations. The "closer" modification is also the preferred one In 

the absence of any information about whether concepts or relations have markings. 
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The point here is that each modifier (at top levei in the noun group Hat) coming after 

the noun 5 modifies the noun independently. 

Reader's technique of not structuring noun groups as they are encountered allows 

it to parse more efficiently than a parser that gets Involved in the structure of noun 

groups Immediately. Suppose we are given a sentence beginning with "The messy 

green garbage can cover...". A parser that started out by trying to parse for B 

structured noun grouc would Immediately get bogged down trying to determine which 

of the six or more poüsiblüties the phrase represented. It would have to call In the 

deductive system, which would then start looking for instances of green garbage, 

messy cans, etc. By delaying the structuring until later. Reader can provide the 

deductive system with more Information (information Including the main verb of the 

clause. Its cases and the case of the unknown noun group) to guide itj search In 

determining the structure of the noun group. And, if the entire sentence happened 

to be "The messy green garbage can cover the earth.", no time will ever be wasted 

structuring the noun group. 

2 3.4   Choices 

Occasionally, a sentence contains an ambiguous constituent whose ambiguity can 

be restricted to a small segment of the parse structure. When this happens. 

Reader returns one parse structure, and offers a choice between the ambiguous 

constituents. This leads to a more efficient parse, and enables the system reading 

the parse to compare the different meanings of the sentence easily, since the 

choice clearly shows where the parses differ.  Here are two examples of this idea: 

5   The non pretty-printed version of the parser output contains a marker between 
the modifiers which come before and after the noun. 
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"I  knew that Ice  was slippery."  could mean either  "I  knew that  that  Ice  was 

slippery"  or  "I  knew Ice was slippery".   If the deductive  system  Is  unable to 

determine which noun group it prefers at the time it is asked to structure the noun 

group, Reader would return the following parse, offering a choice for the SUB of 

"be". 

(KNOW PN 
[SUB I] 
[WHAT {BE PN 

[SUB («CHOICE ICE 
(ICE THAT) 

)] 
[DES SLIPPERY] 

>] 
} 

"The man hitting Janet angered Bill" could mean either "The man who was hitting 

Janet angered Bill" or "The man's hitting of Janet angered Bill".  Reader represents 

this as follows: 

{ANGER PN 
[SUB («CHOICE {HIT CC 

[SUB (MAN THE)] 
[OBJ JANET] 

) 
(MAN THE (HIT CC 

[SUB  liiialch_lo head_noun] 
[OBJ JANET]" 

)) 
)] 

[OBJ BILL] 
> 

The first choice Is the action "hit". The second choice Is "man" modified by "the" 

ami a verb clause with a dummy SUB (!match_to_head_noun) that should be matched 

to the noun It Is modifying ("man"), in general, a choice can be offered as the 

contents of any case. 

Another method Reader uses for representing ambiguous sentences Is prefixing .he 
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name of a case with an asterisk. This means that the case can modify either the 

verb or the noun in the case directiy above it. "Jonn hits the salesman with the 

hammer" is parsed to 

{HIT NN 
[SUB JOHN] 
[OBJ (SALESMAN THE)] 
[»PREP (WITH (HAMMER THE))] 

> 

The astorlsk preceding the case name "PREP" indicates that the PREP case could 

be a case of "hit" or that it could modify the salesman, The first Interpretation Is 

"The salesman was hit by John with the hammer" and the second Is "The salesman 

with the hammer was hit by John". Reader uses the asterisk notation when running 

without a deductive system, or when running with a deductive system that cannot 

decide which Interpretation Is more likely at the time Reader asks. The parse would 

have been 

(HIT  NN 
[SUB JOHN] 
[OBJ (SALESMAN THE  (WITH (HAW1ER THE',)] 

) 

if the system was able to determine the salesman had the hammer when given the 

choice by Reader. 

2.3.5   Conventions 

Header employs several notational conventions. 

Whenever a conjunction contains an implied SUB, as In "The program reads the data 

and prints the answer" the Implicit SUB is represented by the symbol 

"!match_to_conjunct_SUB".   eg., 
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tCONJ AND 

{READ NN 
[SUB (PROGRAM THE)] 
[OBJ (DATA THE)! 

> 

(PRINT NN 
[SUB  Imaith to ronjuncl SUB] 
[OBJ (ANSWER THE)] 

> 
] 

!m8tch„to_conJunct_SUB has the same referent as "the program". 

When a noun is modified by a relative clause, the case the noun occupies in the 

relative clause Is held by the symbol lmatch_to_head_noun. For example, 

"The man captured by the police." 

[NOUN (MAN THE  (CAPTURE PN 
[OBJ Imalch to head noun] 
[SUB (POLICE THE)] " 

>)] 

"The msn the police captured." 

[NOUN (MAN THE  (CAPTURE PN 
[SUB (POLICE THE)] 
[OBJ Imatch to head noun] 

>)] 

!inatch._to_head_noun has the same referent as "the man", the noun the verb clause 

is modifying. 

Imatch to_heai| noun Is also used (n sentences which contain dangling prepositions. 

"The man I came with" parses to; 

[NOUN (MAN THE (COME PN 
[SUB I] 
[PREP (WITH Imatch to head noun)] 

»] 

lmatch_to_head_noun has the same referent as the noun ("the man") modified by 

the clause which contains the dangling preposition. 
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When t conjunction contains an implied object, Reader uses the symbol 

lmatch_to_conJunct_OBJ6 to mark the second oorurrence. "He breeds and raises 

rabbits" parses to: 

[CONJ AND 

{BRFEDS NN 
[SUB HE] 
[OBJ (RABBIT  !PL)] 

] 

{RAISES NN 
[SUB  lmatch_lo_conjuncl_SIJB] 
[OBJ  lmalch_lo_conjunct_OBJ] 

) 

In conjunctions in which the verb is omitted, Reader simply repeats7 the verb.   "He 

gave John a pencil and Jan'-t a pen" parses to: 

[CONJ AND 

{GIVE PN 
[SUB HE] 
[I0B JOHN] 
[OBJ (PENCIL A)] 

) 
(GIVE PN 

[SUB  'match lo_conjunct_SUB] 
[IOB JANET]" 
[OBJ (PEN A)] 

) 
] 

Suffixes are removed by the parser.   If a word is a plural, the symbol IPL appears in 

Its modifier list.   "The answers" parses to: 

[NOUN (ANSWER THE   IPL)] 

If a word can be either singular or plural, and agreement constraii s .. to be one or 

!match_to_conjunct_PREP  is  used when  the  OBJ  refers  to  the  object  of   a 
rreposltion in the higher conjurjt. 

'    Nouns are represented by symbols (rather than bei x    apeated) so that the 
interpreter will not have to find the referent of the same noun twice. 
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the other, It Is noted by Inserting IPL or ISING Into the modifier list.   "The fish is 

dangerc JS." and "The fish are dangerous" parse to: 

{BE NN (BE NN 
[SUB (FISH THE  ISING] [SUB (FISH THE   IPL] 
[OES DANGEROUS] [DES DANGEROUS] 

) > 

In "The fish can be dangerous", The SUB case Is [SUB (FISH THE)]  since there Is 

no agreement Information. 
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3.  Grammar writing 

This chapter explains how to write grammars In the formalism we have been 

discussing. The actual grammar is written In Lisp, and consists of a set of programs, 

one for each word class, which explain when and how a word may be added to a 

partial parse.   The grammar also uses several utility programs and predicates. 

An example of a utility program is ADD-NOUN.   It takes two arguments, a noun group 

(ng) and a stack structure (s), and returns the stack structure with the noun group 

added to It.  For example. If 

ng = (MAN THE) and s Is   VERB: ((SAVE ED)) 
N0UN1: (BOY THE) 
FUNCTION: MAIN 

then (ADD-NOUN ng s) is  VERB: ((SAVE ED)) 
N0UN1:(BOY THE) 
N0UN2: (MAN THE) 
FUNCTION: MAIN 

An example of a predicate is CAN-ACCEPT-A-NOUN. It takes one argument, which Is 

a structure, and returns T if the structure can accept a noun, and NIL otherwise. A 

structure can accept a noun if it is either 

1. a preposition structure without a noun. 

2. a verb structure without a noun 

3. a verb structure with a verb and one noun whose verb Is transitive. 
If the verb group is passive, the main verb must take a beneficiary or 
Indirect object. 

4. d verb structure with two nouns and a main verb that takes a 
beneficiary or indirect object.  The verb group must not be passive. 

3. and 4. mi'^t also satisfy the condition that the verb has not received any cases 
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since it was added to the structure1 On the surface, It would seem that this 

definition would rule out slightly peculiar constructions like "That he likes", (Instead 

of "He likes that") since a verbless verb structure with one noun cannot accept 

another noun.  However, such constructions are handled as relative clauses. 

Reader has other predicates which test for legal verb groups, whether a structure 

has a noun which can be modified by another structure, whether the verb group of a 

structure Is passive or active, etc. When, in describing the actions of the parser, 

we say that a structure satisfies some condition, we mean that the proper 

predicate has been applied to that structure and that the test has succeeded. 

Reader also has two programs, SHIFT and SEARCH, which are useful for manipulating 

the stack. SEARCH Is used to swarch the stack for structures with a certain 

property. The information gained from a search is usually used to determine 

whether a particular structure should be pushed on to the stack. For instance, It 

would be pointless to push a relative clause structure (section 3.1.31 onto the 

stack if there were no stiuctures in the stack that contained a noun which could be 

modified by a relative clause. SHIFT, described more fully in section 3.1.2, is used 

to facilitate the addition of words to structures other than the one at the top of the 

stack. Basically, SHIFT searches the stack for a given structure, collapses the 

stack down to that structure, and then applies the input word to the resulting stack. 

SHIFT Is important because most actions that can be applied to the top of stack, 

such as adding In a noun or verb, can also be applied to structures lower down In 

the stack. Similarly, SEARCH is important because pushing a structure onto the 

stack usually depends on the existence of a structure with a given property, 

regardless of its position in the stack. 

Eg., ''Ha spent in the store the money." is incorrect. 
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3.1   Some beginning grammars 

A series of grammars is described, each one more complicated than the previous 

one. An example sentence Is parsed for each grammar defined. The first two 

examples, Grammar.1 and Grammar.2, will step through the sentence in detail, 

examining how each successive word is applied to the partial parses formed by the 

application of the previous words in the sentence. The remainder of the examples 

will cover only the methods used to apply words that were not handled by the 

previously defined grammars. 

Section 3.2 shows some more efficient methods for parsing the subset of English 

handled by the example grammars. 

The variables used In the examples are: 

stack The stack. 
word The current input word 
root The root of word. 
ending The endinc of word. 
ml The unassk ned modifier list. 
msg The messa  i   :oncerning the top of the stack. 
stack-msg    The messa^ , concerning the entire stack. 

3.1.1   Grammar.1 

The first grammar handles sentences of the form "noun verb noun noun" or "noun 

verb noun".   All that is needed is a NOUN program and a VERB program. 

The NOUN program; 
The NOUN program forms the noun group consisting of the modifiers on the 
modifier list and the noun. Then, If the top structure In the stack can accept 
a noun (eg., satisfies the predicate CAN-ACCEPT-A-NOUN, defined at the 
beglnlng of the chapter), a partial parse Is created with: 

msg = NOUN, indicating that the last addition to the stack was a noun. 
ml =  NIL,  the modifier list is empty. 
steck-msg = stack'msg, the addition of a noun doesn't change stack-msg. 
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stack =    (REPLACE-TOP-STACK (ADD-NOUN (MAKE-NOUN-GROUP word ml) 
(TOP-STACK stack)) 

stack) 

where MAKE-NOUN-GROUP Is a predicate which returns the noun group formed 
by Its arguments (or NIL If one cannot be formed), end TOP-STACK and 
REPLACE-TOP-STACK are utility programs. TOP-STACK returns the top 
structure of the stack that Is Its argument. REPLACE-TOP-STACK returns the 
stack which Is Its second argument with the top structure replaced by Its first 
argument. 

The VERB program: 
The VERB program examines the stack. If the top structure In the stack Is a 
verb structure with one noun and no verb, It creates a partial parse by adding 
the verb to the top structure in the stack. 

Here is how this grammar parses the sentence "John drinks water." 

Reader starts out with the initial parti«! parse. 

msq  =  BEGIN,  ml  = NIL 

FUNCTION:  MAIN 

"John" is input, it belongs to only one word class (NOUN), and therefore has only 

one program associated with it (NOUN). The partial parse produced by applying the 

NOUN program Is: 

msg  = NOUN,  ml  .  NIL 

N0UN1: JOHN 
FUNCTION: MAIN 

"drinks" is the next word. It can be used as either a noun or verb. The top stack 

structure cannot accept a noun so the application of the noun program does not 

result In a continuation of the parse. The verb program Is then applied to the parse 

which causes the following partial parse to be set up: 

msg = VERB, ml  « NIL 

VERB: ((DRINK . S)) 
N0UN1. JOHN 
FUNCTION: MAIN 
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"Water" can also be used as a noun or verb. The verb program falls though, since 

the top structure already has a verb. The NOUN program s scceeds In continuing the 

parse by adding the noun "water" to the top structure In the stack, producing, 

msg  « NOUN,  ml  = NIL 

VERB:  ((DRINK  .  S)) 
N0UN1;   JOHN 
N0UN2:   WATER 
FUNCTION:   MAIN 

The input sentence Is exhausted so Reader collapses the stack, (trivial since there 

is only one structure In it), and formats the resulting structure.  This yields 

{DRI^K NN 
[SUB JOHN] 
[OBJ WATER] 

) 

as the parse. 

3.1.2  Grammar.2 

In  order  to parse  more  Interesting  sentences,  it  Is  necessary  to  expand  the 

grammar.   The next grammar includes prepositions, articles and modifiers. 

The MODIFIER program simply adds word to ml. 

The ARTICLE program adds word (which is an article) to ml if ml Is NIL or 
consists of words (almost, all, etc.) which can appear before an article. 

The PREPOSITION program chocks to see whether the preposition can be 
modified by the modifiers on ml. If so, the partial parse is continued by 
pushing a preposition structure with word as the preposition onto the 
stack. 

As the grammar grows, the grammar programs has to be prepared to handle stacks 

containing more than one structure. In general, there will be two parts to every 

grammar program:   a set of actions associated with just the top of the stack and a 
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set of actions that should be applied to every structure In the stack that satisfies 

certain conditions. For example, in parsing "He gave the man In the store the book." 

a noun (the book) must be added to a structure (He gave the man) which Is not at 

the top of the stack. Adding words to structures below the top of the stack Is 

facilitated by the program SHIFT. 

(SHIFT stack program args purpose number predicate! predicate?) 

The Idea behind SHIFT Is to find a structuie(s) In the stack which satisfies a given 

predicate. (CAN-ACCEPT-A-NOUN. for example, would be used to search down the 

stack for a structure to add a noun to), then collapse the stack down to that 

structure, and then apply a program to the collapsed stack. SHIFT enables the 

grammar writer to specify the purpose of the collapse, whic.i is valuable in guiding 

the way the collapse is carried out. For instance, if SHIFT is collapsing the stack of 

the sentence "He gave the man in the store ...", for the purpose of finding a 

structure which ein accept a noun. It knows not to try to attach "in the store" to 

"gave", since that would prevent "gave" from accepting another noun. 

SHIFT works as follows; It searches down stack looking for a structure S that 

satisfies predicate!, stack is then divided Into two segments, S1 starting from the 

top of stack and going down to S, and S2 consisting of the structures not In SI. 51 

Is then collapsed Into a single structure SS. If SS satisfies predicate?, then 

program is applied tc (STACK-PUSH SS SI) with arguments equal to args. number 

controls how many times the sequence is performed. If number Is an Integer n, 

SHIFT tries to find the first n structures that satisfy predicate!. number - T means 

that shift finds all the stack structures satisfying predicate!. purpose Is an atom 

(eg., NOUN means the collapse is looking for a structure which can accept a noun) 

which controls how structures can be attached to one another. 
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Grammar? Involves adding a SHIFT to both the NOUN and VERB programs. The SHIFT 

in noun searches for all structures In the stack which can accept a noun, and then 

adds the word to that structure. The SHIFT in verb looks down the stack for the 

topmost verb structure In the stack which can accept a verb. 

Grammar.2 can handle sentences like "The woman from the city bank gave the man 

In the store the news". The parse starts out with the Initial parse. After "The" Is 

input, there Is one partial parse. 

msg  • BEGIN,  ml   • (THE) 

FUNCTION: MAIN 

"woman" is read.  MAKE-NOUN-GROUP forms the noun group, (WOMAN THE). 

msq  =  NOUN,  ml   = NIL 

N0UN1: (WOMAN THE) 
FUNCTION; MAIN 

"from"  is  read.    The  preposition program  causes  a  preposition structure  to  be 

pushed on the stack. 

msg = PREP, ml  = NIL 

PREP:  FROM 

N0UN1:   (WOMAN THE) 
FUNCTION:   MAIN 

"the" Is read and placed on the modifier list,   "city" is read.   All nouns are treated 

as both NOUNs and MODIFIERS, so there are now two partial parses; 

1.  msg « NOUN, ml  = NIL 2. msg . PREP, ml  = (CITY THE) 

PREP:  FROM PREP:  FROM 
NOUN (CITY THE)   
  N0UN1:   (WOMAN THE) 

N0UN1:   (WOMAN THE) FUNCTION:  MAIN 
FUNCTION:  MAIN 
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"bank" Is read. When "bank" Is applied as a verb, partial parse 2 can not be 

continued since "bank" (as a verb) does not accept the modifiers, (CITY THE), on 

the modifier list. Partial parse 1 cannot be continued using "bank" as a verb since 

after SHIFT finds a structure that can accept a verb, the verb "bank" fails to agree 

with the noun group (WOMAN THE). The agreement Is tested using a predicate 

which takes a verb structure as input, and returns NIL If the structure does not 

exhibit agreement, and the structure modified by any Information supplied by 

agreement (eg., "Ho saw" agrees only when "saw" is viewed as the past tense of 

"see", as opposed to the present tense of "saw".) when the structure does agree. 

Reader then applies "bank" to both partial parses as a noun. Partial parse 1 does 

not contain a structure that can accept a noun, so no partial parses can be 

continued from it. When "bank" is applied to the partial parse 2., it accepts the 

modifiers on the modifier list and is added to the top preposition structure, 

producing 

msq • NOUN,  ml   •- NIL 

PREP:   FROM 
NOUN (BANK THE CITY) 

N0UN1    (WOMAN THE) 
FUNCTION:  MAIN 

"gave" is read. The SHIFT program searches down the stack looking for the first 

structure that can accept a verb. It collapses the stack down to that structure and 

adds In the verb, which produces, 

msg = VERB,  ML  » NIL 

VERB:   ((GIVE ED)) 
N0UN1:   (WOMAN THE (FROM (BANK THE CITY))) 
FUNCTION: MAIN 

"the" and "man" are read in and handled by the MODIFIER and NOUN programs, 

"man" Is applied as both a noun and a modifier so two partial parses result: 
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1.  msg > NOUN.  ML « NIL 2.  MSG = NOUN. ML  ■= (MAN THE) 

VERB:   ((GIVE ED)) VERB:  ((GIVE Ed)) 
NOUN1:   (WOMAN THE (FROM (BANK THE CITY)))    NOUN1:   (WOMAN THE (FROM (BANK THE CITY))) 
NOUN2:   (MAN THE) FUNCTION:  MAIN 
FUNCTION:   MAIN -  - - 

"In" Is read.   The preposition program causes a preposition structure to be pushed 

on the stack of partial parse 1.   Nothing Is done with partial parse 2. since the 

preposition does not accept the modifiers, (MAN THE), on the modifier list. 

msq = PREP. ML = NIL 

PREP: IN 

VERB: ((GIVE ED)) 
N0UN1: (WOMAN THE (FROM (BANK THE CITY))) 
N0UN2: (MAN THE) 
FUNCTION:  MAIN 

"the" and "store" are read. As before, two parses are created when "store" is 

read in. One In which the noun group "the store" becomes the noun of the 

preposition structure on the top of the stack, and another in which "store" is 

treated as a modifier. When "store" is tried as a verb It fails since It cannot 

accept "the" as a modifier, "the" is read in. In the former partial parse. It is simply 

added to the modifier list, in the latter, it cannot be added to the modifier list, 

since the modifier list contains a word (store) which cannot occur before an article. 

msg ■ NOUN. ML  « (THE) 

PREP:   IN 
NOUN:  (STORE THE) 

VERB:   ((GIVE  EO)) 
N0UN1-   (WOMAN THE (FROM (BANK THE CITY))) 
N0UN2:   (MAN THE) 
FUNCTION:   MAIN 

"news" is read. When it is applied as a noun, SHIFT searches for a structure on the 

stack that can accept a noun, collapses the stack to that structure, and then adds 
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In the noun group (NEWS THE).   When "news" is tried as a modifier it is simply 

added to the modifier list. 

1.  msg  = NOUN,  ml   ■ NIL 2.  msq • NOUN,  ml   •  (NEWS THE) 

VERB:   ((GIVE  ED)) PREP:   IN 
N0UN1 
N0UN2 
N0UN3 

(WOMAN THE (FROM (6ANK THE CITY)))    NOUN:  (STORE  THE) 
(MAN THE (IN (STORE THE)))   
(NEWS THE) VERB:   ((GIVE EO)] 

FUNCTION:  MAIN N0UN1:   (WOMAN THE (FROM (BANK THE CITY))) 
-  -  - NOUN2:   (MAN THE) 

FUNCTION:  MAIN 

There are no more input words. Partial pa;se 2 Is discarded since Its modifier list Is 

not empty. The stack from partial parse 1. Is collapsed, (once again, this Is trivial 

since there Is only one structure in the stack.) and the resulting structure Is 

formatted and returned as the parse of the sentence. 

{GIVE PN 
[SUB (WOMAN THE (FROM (BANK THE CITY)))] 
[I0B (MAN THE (IN (STORE THE)))] 
[OBJ (NtWS THE)] 

> 

3.1,3   Grammar.3 

Grammar.3 expands Grammar.2 by the Inclusion of verb groups and relative clauses. 

To parse relative clauses, a test is added tc NOUN that checks to see if there is a 

structure in the stack which has a noun that can be modified, using the predicate 

CAN-NOUN-BE-MODIFIED. If the test succeeds, NOUN pushes a verb structure with 

function equal RC on the stack and adds the noun group to it. This addition enables 

the grammar to parse "The mirror on the wall he broke". The parse proceedes 

exactly as the previous ones until "he" Is reached.  The partial parse2 when "he" Is 

2 There are actually two partial parses. The second uses "wall" as a modifier and 
Is discontinued since MAKE-NOUN-GROUP falls to make a noun group from "he" and 
(WALL THE). 

- "■-fiinfT-"^"^ 
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read is 

msq s NOUN, ml « NIL 

PREP: ON 
NOUN: (WALL THE) 

N0UN1: (MIRROR THE) 
FUNCTION: MAIN 

CAN-NOUN-BE-MCDIFIED succeeds on the preposition structure on the top of the 

stack. Therefore a parse is created with a verb structure pushed on to the 

previous stack. Only one parse results from applying NOUN to the parse since when 

SHIFT Is called, it cannot find a stiucture that can accept a noun. 

-rsq  ■    NOUN,  ml   *  NIL 

N0UN1:   K 
FUNCTIOC   RC 

PREP:   ON 
NOUN:   (WALL THE) 

NOUNi:   (MIRROR THE) 
FUNCTION:   MAIN 

"broke" Is read. SHIFT is called to find a verb structure with an open verb slot. It 

finds the top structure in the stack, and creates a parse with the verb added in. 

msq  =    NOUN,  ml   =  NIL 

VERB: ((BREAK EO)) 
NOUNI: HE 
FUNCTION: RC 

PREP: ON 
NOUN: (WALL THE) 

NOUNI: (MIRROR THE) 
FUNCTION: MAIN 

The sentence is ovpr, and the parse is concluded by the collapse of the stack. The 

deductive system must decide which of "the wall" or "the mirror" was broken. If 

we assume that "the mirror" was broken, the collapse of the stack would be, 

/ 
wssm 



Grammar writing 61 

N0UN1:  (MIRROR THE (ON (WALL THE))  (BREAK PN (SLB HE) 
(OBJ Imatch to head_noun))) 

FUNCTION; MAIN 

The format of such a structure Is simply the noun.  Reader returns 

[NOUN (MIRROR THE (ON (WALL THE)) 
{BREAK PN 

[SUB HE] 
[OBJ !iMlch_lo head noun] 

>)] -   -       - 

as the parse. "Mirror" Is the OBJ of the verb "break". Notice that the noun CAN- 

NOUN-BE-MODIFIED succeeded on was not the noun that was modified by the 

relative clause. 

Parsing verb groups requires the addition of a test to VERB which tests that msg 

equals VERB, if the test succeeds, meaning that the last thing done to the stack 

was the addition of a verb, VERB tries tc form a verb group with word and the verbs 

already in the top structure in the stack. If a legal verb group can be formed, (this 

Is checked by the same predicate which tenses the verbs in a structure) the parse 

is continued by adding the verb into the verb group slot of the top structure In the 

stack. As an example, consider "He was given the prize". When "given" Is read, 

there Is one partial parse: 

msg = VERB, ml = NIL 

VERB; ((BE ED)) 
N0UN1: HE 
FUNCTION  MAIN 

The msg is VERB and "was given" is a legal verb group so the parse Is continued as: 

msg = verb,  ml  = NIL 

VERB;  ((GIVE EN))(BE EO)) 
N0UN1;  HE 
FUNCTION;  MAIN 

"The" and "prize" are read In.  The stack is collapsed and formatted.  The result is 

i 
-^TTBffanra 
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{GIVE PN 
[10B HE] 
[OBJ (PRIZE THE)] 

} 

3.1.4  Grammar.4 

Grammar.4 extends Grammar.3 In two ways. 

The first addition is a test for time and place referents that will be placed in the 

NOUN program. This will enable the grammar to handle sentences like "I saw the 

man  .t «ntown.", "Yesterday John was in town." etc. 

NOUN is augmented with a test which checks w' *her the noun-group can be used 

as a time or place (this Is considered a syntactic property of the head noun of the 

group). If so, a preposition structure Is created with preposition equal »TIME or 

*PLACE. The preposition structure Is pushed onto the stack and a new partial parse 

created. 

The second addition allows the parser to parse sentences with verbs that accept 

other verbs as case fillers. An example of a verb with this property is "see". In "I 

saw John leave town", the clause "John leave town", is a case of "saw". A test if 

added to VERB which checks whether the main veru of a structure can accept a 

clause. If so, an empty verb structure with function equal WHAT is pushed onto the 

stack and a new partial parse created. 

Grammar.4 handles sentences like "Yesterday the man knew John had returned." 

"Yesterday" causes the formation of two partial parses, one in which It Is treated 
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as  a time referent, and one in which it is used as the first noun of the MAIN 

structure. 

1.  msg =    NOUN, ml  = NIL 

N0UN1:  YESTERDAY 
FUNCTION:  MAIN 

2. msg > NOUN, ML = NIL 

PREP: »TIME 
NOUN: YESTERDAY 

FUNCTION. MAIN 

When "nan" is input, it cannot be added to partial par^e 1, since there is no 

structure In the stack that can accept a noun, "man" can be added to partial parse 

2, by collapsing the stack down to the MAIN structure and adding "man" to the MAIN 

structure.  This results in 

msg =    NOUN, ml  = NIL 

N0UN1:  (MA* THE) 
CASES:   ((WHEN YESTERDAY)) 
FUNCTION: HAIN 

as the COLLAPSE routine km ws tliat preposition structures whose preposition is 

*TIME fill the WHEN case of the verbs they modify. 

"Know"  can accept a clause, so the application of "know" to the partial parse 

above results In two different partial pa    is; 

1.  msg =    VERB,  ml  = NIL 2.    msg = NIL, ML  = NIL 

FUNCTION:  WHAT VERB:   ((KNOW ED)) 
N0UN1:   (MAN THE) 
CASES:   ((WHEN YESTERDAY)) 
FUNCTION.  MAIN 

VERB:  ((KNOW ED)) 
N0UN1:  (MAN THE) 
CASES:  ((WHEN YESTERDAY)) 
FUNCTION:  MAIN 

"John" is added to both partial parses: 

^MSk 
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1.  msg =    NOUN, ml  = N:L 2. msq = NOUN, ML  = NIL 

  N0UN1: JOHN 
VERB: ({KNOW ED)) FUNCTION: WHAT 
NOUN1: (MAN THE)   
NOUN2; JOHN VERB: ((KNOW ED)) 
CASES: ((WHEN YESTERDAY)) NOUN1: (MAN THE) 
FUNCTION: MAIN CASES: ((WHEN YESTERDAY)) 
  FUNCTION: MAIN 

"had" is applied to each partial parse as verb. Partial parse 2 is continued by 

adding "had" to the top structure of the stack. Partial parse 1 cannot be 

continued. 

The addition of "returned" to the stack produced by the application of "had" 

produces, 

msg = VERB.  ML  s  NIL 

VERB:   ((RETURN E0)(HAS ED)) 
N0UN1:   JACK 
FUNCTION:   WHAT 

VERB:   ((KNOW ED)) 
N0UN1;   (MAN THE) 
CASES:   ((WHEN YESTERDAY)) 
FUNCTION:   MAIN 

The   input   sentence   is   exhausted.    The   stack   is   collapsed   and   the   resulting 

structure formatted. 

{KNOW PN 
[WHEN YESTERDAY] 
[SUB (MAN THE)] 
[WHAT (RETURN PP 

[SUB JACK] 
>] 

) 

_.J 
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3.2  Grammar efficiency 

The  primary objective in writing an efficient grammar is keeping  the  number of 

partial parses low.   This Is accomplished by minimizing the number of ways a word 

can be successfully applied to a partial parse.   There are basically three different 

ways of handling this within the Reader formalism. 

R1. The use of the stack to avoid attaching sentence constituents to 
each other until more information is learned about the nature of the 
attachment. 

R2. The use of one stack structure to represent more than one syntactic 
possibility. 

R3. The use of bottom-up and top-down parsing techniques together. 

The simplest example of the first technique Is the handling of sentence 

constituents which can modify many different structures in the sentence (eg., 

prepositional phrases, relative clauses, etc.). Such constituents are placed on the 

stack, thereby avoiding the necessity of a different parse path for each sentence 

structure that can accept them as a modifier. Woods, in [Woods 73], mentions a 

similar feature, called "selective modifier placement". However, It seems limited to 

the simple application mentioned above. More powerful uses of the stack are 

obtained in conjunction with R2. 

R2 makes use of the fact that in many cases, two or more syntactic possibilities 

can be combined in a single parse structure. For example, consider a sentence 

beginning "The boy that..." Obviously, "that" is part of a relative clause which will 

modify "boy".   But It is not clear whether "that" Is either 

1, the subject of the relative clause ("The boy that likes Ice cream...") 

2. a modifier of the subject of the relative clause ("The boy that girl 
likes...") 
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3. a function word ("The boy that the girl likes..."). 

A single stack entry which covers all these possibilities Is 

S   =    N0UN1:   THAT 
FUNCTION:   RC 

If a verb Is applied to the stack containing S before a noun is applied, S will lead to 

a successful parse. Now suppose a noun is applied before a verb. If a noun group 

can be made from "that", the modifiers on the modifier list, and the noun being 

added, then the sentence involves usage 2, and "that" is replaced by the noun 

group3. If a noun group cannot be constructed using "that", but can be made using 

just the modifier list and the noun, then "that" is replaced by the noun group (usage 

3). 

R2 can be used with R1 in a slightly different way.   Consider the two sentences: 

1. "He saw the man running out the door." 
2. "He saw the man running out the door drop the bag." 

In sentence 1., "running out the door" is most likely interpreted as "whai he saw 

the man doing". In sentence 2., "running out the door" is a relative clause which 

modifies "man".  One structure. 

S  » VERB ((RUN  1NG)) 
FUNCTION:  PARTICIPLE 

can  represent  both  Interpretations.    It  is  decided  which  Interpretation   to  use 

depending on the conditions under which the stack Is collapsed.  The relative clause 

3 If a noun group could also be made without using "that", a message Is left which 
indicates to Format that a choice beL.een "that noun-group" and noun-group 
should be offered. 
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interpretation Is used if the stack is being collapsed to add a verb, and the "see" 

case filler Interpretation is used otherwise. A more detailed example can be found 

In section 3.2,5. 

Section 3.2.3 provides an example of R3. The following two sections contain 

examples of R2. 

3.2.1   Nouns as modifiers 

Virtually all English nouns can also be used as modifiers. In "The baseball bat Is 

used to hit the baseball", the first occurrence of "baseball" Is used as a modifier, 

while the second is used as a noun. The grammars in section 3.1.1 coped with this 

by applying each noun to every possible partial parse as both a noun and a modiflsr. 

The example sentence would have two partial parses after "baseball" was read. 

1.  msq  =  NOUN,  ml   = NIL 2. msg « BEGIN, ml  = (BASEBALL THE) 

N0UN1.   (BASEBALL THE) 
FUNCTION;   MAIN 

FUNCTION:  MAIN 

It is true that one of the two parses will always be killed rather quickly, but It would 

be better to avoid the overhead involved in carrying extra partial parses. As a noun 

cannot modify a verb, there is no advantage to be gained from putting one on the 

modifier list. When a noun acts as a modifier, it modifies one of the nouns that come 

directly after It In the sentence. The second parse can be eliminated by adding a 

test to the NOUN program that checks for: 

1. msg s NOUN (meaning the last thing done to the stack was 
the addition of a noun group to the top structure) 

2. the noun group consisting of word and the words In the 
last noun group added to the top structure in the stack Is a 
legal noun group. 

■ 

■ 
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If the test succeeds, the last noun group added to the top structure in the stack is 

replaced by the noun group consisting of word with the words in the replaced noun 

group as Its modifiers. Under this scheme, there would be only one partial parse for 

a sentence beginning "The baseball..." (parse 1, shown above). If the next word In 

the sentence were "bat", its application to parse 1 would result In 

msg «  NOUN,  ml   --  NIL 

N0UN1:   (BA     THE  BASEBALL) 
FUNCTION:   MAIN 

since parse 1 meets the requirement of msg = NOUN and "the baseball bat" is a 

legal'' noun group. 

3.2.2  Relative clauses 

Grammar.3 (section 3.1.3) parses relative clauses in essentially a top down fashion. 

When a noun Is read, and the stack contains a structure with a noun which could be 

\ 
modified by a relative clause, a verb structure with function equal RC is created, 

the noun is added to it, and the resulting structure Is pushed onto the stack to 

await the verb of the relative clause,   if a sentence began "The city people..." 

after "peopin" was read there would be two partial parses; 

1.  msg  = NOUN,  ml   » NIL 2.  msg = NOUN,  ml   = NIL 

N0UN1;   (PEOPLE  THE CITY) N0UN1;   PEOPLE 
FUNCTION:   MAIN FUNCTION:   RC 

N0UN1:   (CITY THE) 
FUNCTION:  MAIN 

If the complete sentence were "The city people hate Is Tokyo." the second partial 

4    The test would fail If the sentence were "The baseballs bat ..."  since  "the 
baseballs bat" is not a legal noun group". 
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parse would leod to a parse, "hate" would be the verb of the "RC" verb structure 

and "Is" would be the verb of the "MAIN" structure. Parse 1 wou J use "ha.e" as 

the verb of the "MAIN" structure and the parse would be discontinued after "Is" Is 

road, since the stack would not contain a verb structure which could accept "is". If 

the complete sentence was "The city people favor bonds.", partial parse 1 would 

lead to a parse. Parse 2 would be discontinued when the end of the sentence Is 

reached and the parser realizes that it cannot attach "people favor bonds" to "the 

city". If the main verb of a sentence which begins with a such a compound noun 

takes an Indirect object, then the sentence is syntactically ambiguous, (eg., "The 

city people gave the bonds") The parser must not refuse to add "bonds" to "people 

favor" (which would kill the parse earlier) since the sentence might have been "The 

city people favor bonds for Is Tokyo." 

This splitting can be avoided by making changes in the NOUN and VERB program. In 

the previous section, a test was added to NOUN which determined when It was 

possible to replace the last noun group added to a structure with the noun group 

consisting of word and the words in the old noun group. If that test succeeds, and 

word is a legal noun group by itself, then Instead of parsing for a possible relative 

clause In a new partial parse (by pushing a verb structure whoso function is RC 

onto the stack), a message is inserted in the message slot of the top structure 

explaining that it is possible to form a relative clause with the head noun of the last 

noun group in the structure, in VERB, the method used to fino an empty vero slot Is 

modified so that if no structure can be found with an empty verb slot, VERB tries to 

find a structure whose message is "Possible RC". 

These changes allow "The city people hate Is Tokyo." to be parsed using only one 

parse path.  After "hate" Is read, there Is one partial parse: 
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msg = VERB, ml  = NIL 

VERB:   ((HATE)) 
N0UN1:   (PEOPLE THE CITY) 
MESSAGE:   POSSIBLE-RC 
FUNCTION:  MAIN 

VERB tries to find an open verb slot to put "is" In. It can't find one, but it is able to 

find a stack structure whose message Is POSSIBLE-RC. It removes the message, 

verb and head noun from the structure, forms a new verb structure, and places It In 

the stack just above the old one.  This forms a new stack, 

VERB:   ((HATE)) 
N0UN1:   PEOPLE 
FUNCTION:   RC 

N0UN1:   (CITY THE) 
FUNCTION:   MAIN 

which Is has a place for the verb "is". 

3.2.3  Verbs which accept clauses 

Grammar.4 (section 3.1.4) showed one way of handling verbs which can accept 

clauses as case fillers. Like the first relative clause mechanism. It was essentially 

top down. When a verb that was able to accept a clause was added to a structure, 

a second partial parse was created with an empty verb structure whose function 

was WHAT pushed onto the stack. A better method is to wait for the verb of the 

clause to arrive before sprouting another partial parse. "I saw the man In the store 

steal the book." would then have one partial parse at the time "steal" was read; 
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mg = NOUN, ml  = NIL 

PREP:   IN 
2.  NOUN:  (STORE THE) 

VERB:   ((SEE-SAW)) 
N0UN1:   1 
N0UN2:   (MAN THE) 

1.   FUNCTION:  MAIN 

"See-saw" is the verb used by Reader to represent either the past tense of "see" 

or the present tense of "saw". It has all the syntactic properties of both. If 

something In the parse resolves which verb is intended, Reader makes the change. 

When "steal" is read, VERB looks down the stack for a structure that can accept a 

verb. It finds structure 1., which has a verb, "see-saw", that can accept a clause. 

The stack Is collapsed down to structure 1., yielding 

VERB    ((SEE-SAW)) 
N0UN1:   I 
N0UN2'   (MAN THE (IN (STORE THE))) 

1.   FUNCTION:  MAIN 

A verb structure with function equal WHAT is created to hold "steal". NOUN2 Is 

removed from structure 1., and placed in the new structure, which is pushed onto 

the top of the stack. The verb "see-saw" has been changed to "see" by the 

program which pushed the WHAT structure onto the stack, since "saw" cannot 

accept a clause.  The result Is: 

VERB ((STEAL)) 
N0UN1: (MAN THE (IN (STORE THE))) 

Z.  FUNCTION: WHAT 

VERB: ((SEE EO)) 
N0UN1: I 

1. FUNCTION: MAIN 



Grammar writing 72 

3.2.4  Conjunctions 

Conjunctions are similar to other sentence constituents In that, syntactically, they 

usually can be attached to more than one sentence constituent.  For example, 

"The man In the suit and tie." (suit and tie form the conjunction.) 

"The man !n the suit and John."        (man and John form the conjunction.) 

"Bill bought the turntable John was selling because he needed the money." 
("because he needed the money" specifies why "John was selling",) 

"Bill bought the turntable John was selling because he liked the way it sounded." 
("because he liked the way it sounded" specifies why "Bill bought".) 

Ambiguities arising from which constituent the conjunction should be attached to are 

handled by the stack and COLLAPSE. "The man In the suit and John" would be 

parsed Into the stack, 

PREPOSITION: AND 
3. NOUN: JOHN 

PREPOSITION: IN 
2.   NOUN: (SUIT THE) 

N0UN1: (MAN THE) 
1. FUNCTION: MAIN 

"And" (when acting as a conjunction between nouns) Is treated as a preposition 

syntactically. When the stack is collapsed, it Is determined whether 3. should be 

attached to 1. or 2. 

Conjunctions between verbs are handled by pushing a verb structure whose 

function Is the conjunction onto the stack. "Bill bought the turntable John was 

selling because he needed the money." would be parsed Into: 
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VERB:   ((NEED EO)) 
N0UN1:  HE 
NOUN2:   (MONEY THE) 

3,  FUNCTION:  BECAUSE 

VERB:   ((SELL  ING)(BE ED)) 
NOUN1:   JOHN 

2.   FUNCTION:  RC 

VERB:   ((BUY EO)) 
NOUN1:   BILL 
NOUN?:   (TURNTABLE THE) 

1.   FUNCTION:  MAIN 

When the stack is Collapsed, it is determined (by the interpreter, acting through 

Format) whether 3. modifies 2. or 1. 

At first glance. It would appear that the application of a conjunction that can conjoin 

nouns and verbs (or a conjunction that Is also a preposition, eg,, before like) to a 

pt.se will result In two partial parses; one In which a verb clause is expected (a 

verb structure Is pushed on the stack), and one in which Just a noun Is anticipated 

(a preposition structure Is pushed on the stack). However, both expectations can 

be handled by pushing on a verb structure5 whose message Is POSSIBLE-PREP and 

modifying Format so that it formats a verb structure whose message is POSSIBLE- 

PREP and whose verb slot Is empty as If it were a preposition structure whose 

preposition is function and whose noun slot is the value of the nounl slot of the 

verb structure. Also, VERB has to be modified to search for empty verb structures 

down the stack past those verb structures whose message Is POSSIBLE-PREP. 

Using this method, the stack for "John likes Janet and Bill ..." would be 

5 Assuming the stack can accept a verb conjunction. The stack for the sentence 
beginning "John and ..." can only accept "and" as a neun conjunction. The general 
condition is that a stack cannot accept a verb conjunction If the top most verb 
structure whose message Is not POSSIBLE-PREP does not contain a verb. If the 
stack cannot accept a verb conjunction then the parse Is continued by pushing a 
preposition structure on the stack. 
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N0UN1:  BILL 
MESSAGE:  POSSIBLE-PREP 

2.   FUNCTION:  AND 

VERB:  ((LIKE SM 
NOUN1:  JOHN 
NOUN2:   JANET 

1.   FUNCTION:  MAIN 

If the sentence continued "John likes Janet and Bill hates Jill", "hates" would be 

placed in the verb slot of structure 2.   If the sentence was simply "John likes Janet 

and Bill", the stack would be collapsed and the format of structure 2. would be 

(AND BILL) 

the same as the format of the preposition structure, 

PREPOSITION: AND 
NOUN: BILL 

Finally, If the sentence were 'John likes Janet and Bill and George hate Jtll.", "hate" 

would be applied to the following stack: 

N0UN1:   GEORGE 
MESSAGE:  POSSIBLE-PREP 

3.   FUNCnON;  AND 

N0UN1: BILL 
MESSAGE: POSSIBLE-PREP 

2. FUNCTION: AND 

VERB ((LIKE S)) 
NO'JNl: JOHN 
NOUN2: JANET 

1. FUNCTION: MAIN 

VERB would first try to add 'hate" to structure 3. This would fail since "hate" and 

"George" do not agree. It would then try to add "hate" to structure 2., after having 

attached 3. This would succeed since "hate" and (BILL (AND GEORGE)) do agree. 

Note that if "hate" could have been added to structure 3. (if the sentence were 

"John likes Janet and Bill and the children hate Jill.", for Instance) then VERB would 
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still have tried to attach "hate" to a structure lower down in the stack so that til 

the possible meanings of the sentence could be uncovered.   "John likes Janet and 

Bill and the childran hate Jill." could mean either 

tCONJ AND [CONJ AND 
or 

{LIKE NN {LIKE NN 
[SUB JOHN] [SUB JOHN] 
[OBJ JANET] [OBJ (AND JANET 

) BILL 
)] 

{HATE NN } 
[SUB (AND BILL 

(CHILD  !PL) {HATE NN 
)] [SUB (CHILD   !PL)] 

[OBJ JILL] [OBJ JILL] 
) > 

] ] 

In producing the two parses above, Reader did not have to split Into two parses 

until the word "hate" was encountered. 

3.2.5  Verbs Inflected with ed endings 

Verbs inflected with an "ed" ending which are not preceded by auxiliary verbs can 

usually be applied to n parse (as verbs) in two different ways; as the main verb of 

a clause, "The police captured the robber.", or as a modifier following a noun. "The 

robber captured by the police was convicted". The grammar Reader uses combines 

the two possibilities Into one. 

When an "ed" verb Is encountered, any combination of 

1. There Is a verb structure in the stack that has an empty 
verb slot. 

2. There Is a structure in the stack that has a noun which 
could be modified by a relative clause. 

can be true.  Suppose an "ed" verb is encountered. 
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If thn last operation on the stack was the addition of a verb (msg = 
VERB), and the "ed" verb forms a legal verb group with the verb just 
added, it is added into the top structure In the stack as part of the verb 
group.   VERB exits. 

If 1, and 2. are true, then verb structure is pushed on to the stack 
with FUNCTION equal REL fl-MAIN VERB equal the "ed" verb, and 
NOUN1 equal !match_to_head_mun. If the verb clause Is used as the 
predicate of the sentence, then !match_to_head_noun will be replaced 
by the NOUN1 of the structure it Is added to. 

If just 2. is true, then a verb structure is pushed on the stack with 
FUNCTION equal REL. 

If just 1. is true, i'.e r.(3ck is collapsed down to the st"icture with the 
empty verb slot, and the verb is added. 

If neither 1. or 2. is true, then VERB simply exits. The parse will be 
continued by using the "ed" verb as a modifier. 

Th'-se methods parse "The man in the pho'. graph framed for he police was his 

father", as follows. The stack, before "framed" is read and after "police" Is read, 

is shown below: 

PR[P-   IN 
c-   NOUN:   (PHOTOGRAPH THE) 

N0UN1:   (MAN THE) 
1.   FUNCTION:   MAIN 

rhe man  in the photograph.. 

PREP:   FOR 
4.  NOUN (POLICE THE) 

VERB:   ((FRAME  ED)) 
N0UN1;   Imalch-lo-head-nour 

3.   FUNCTION:   REL-OR-MAIK 

PREP:   IN 
2.   NOUN:   (PHOTOGRAPH THE) 

N0UN1:   (MAN  THE) 
1.   FUNCTION:   MAIN 

framed for the pol Ice..." 

A verb structure with FUNCTION ?qual REL-OF, MAIN has been pushed on, since the 

stack contains h.Dth a structure with an empty verb slot (1) and one (both 1. and 2.) 

with a noun which could be modified by a relative clause.   If the sentence ended 
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with "police", the stack would be collapsed, and the deductive system would be 

asked to choose from among the three possible parses the stack could be collapsed 

to; 

"The man 1n the photograph which was framed for the police." 

(NOUN (HAN THE (IN (PHOfOGRAPH THE {fRAME PN 
[OBJ !match_to head_noun] 
[FOR (FOR (POLICE THE))] 

>)))) 

"The man In the photograph who was framed for the Kolice." 

(NOUN (MAN THE (IN (PHOTOGRAPH THE))  (FRAME PN 
[OBJ !match_lo head_noun] 
[FOR (POLICE THE)] 

>)) 

"The man In the photograph did frame (photos or people) for the police." 

(FRAME PN 
[SUB  (THE MAN (IN (PHOTOGRAPH THE)))] 
[FOR (FOR (POLICE THE))] 

) 

The sentence continues with "was", however, the VERB program applies "was" to 

the stack by searching down the stack for a structure with an empty verb slot. It 

finds 1., and collapses the stack with the purpose of Inserting a verb. This means 

that 3. cannot be attached to 1. as the main verb of the sentence, since that slot 

Is now "-eserved for "was1. The deductive system decides whether the man or 

photograph was frameo (we will assume "the man"), and "was" is Inserted in the 

resulting structure.   This yields 

VERB:     ((BE ED)) 
N0UN1:   (MAN THE (IN (PHOTOGRAPH THE)) 

(V FRAME PN (OBJ  !match_to_head_noun) 
(FOR (FOR (POLICE THE))))) 

FUNCTION:  MAIN 

and the parse Is continued.   In the     rse of the complete sentence, the companion 
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system never had to consider a meaning which used "the man" as the  SUB of 

"frame". 

"r—-i -ir—m  
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4.  A closer look 

This chapter explains some of the algorithms mentioned earlier In greater detail. 

4.1   Measure 

Each stack structure has a slot set aside for its measure, which is used by Reader 

to help It choose among competlna partial parses. The measure of a structure rates 

both the syntax and semantics of the structure. The deductive system (via Format) 

Is responsible for determining the semantic component of a structure' s measure. 

Section 5.5 explains how semantic measure is calculated In the Reader-Interpreter 

system. 

Two measures are compared by first comparing the two semantic components. If 

one measure has a better semantic rating (section 4.1.1) than the other, it Is 

preferred. If the semantic components are equal, the measure with the best syntax 

rating (section 4.1.2) Is preferred. If both components are equal, the measures are 

equal. This comparison system prefers a very unusual (but legal) syntactic 

structure to a more common syntactic structure If the former Is Judged to be even 

slightly better semanticaliy. 

A structure Is measured when It Is Formatted.   Format reti rns the format of the 

structure as well as its measure, which is then merged1 with the contents of the 

measure slot of the structure receiving the formatted structure.  The measure of a 

1 The merge of two measures. Ml and M2, is the measure whose semantic and 
syntactic components are the union of the semantic ano syntactic components of 
Ml and M2. 
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structure, therefore, c ntains the measure of all the struct jres that have been 

attached to It. 

4.1.1   The semantic component 

The semantic component consists of three features.  The interpreter is responsible 

for rating each feature.  A rating can have one of 3 values: 

perfect:   The interpreter is perfectly satisfied with this feature. 

acceptable:    The   interpreter   would   prefer   something   else   but   the 
feature Is acceptable. 

unacceptable:  The feature is unacceptable. 

A semantic component 4 is better than a semantic component S if 

1. A has fewer unecceptable features than ß. 
or 

2. A and ß have the same number of unacceptable features, and A 
has fewer features which are merely acceptable. 

This algorithm would prefer a semantic component with only acceptable features to 

a component with one unacceptable feature and a large number of perfect features. 

An alternative method is to allow some number of perfect features to cancel the 

effects of an unacceptable feature. 

The following features contribute to the semantic component. 

Verb Cases 

Is the verb well modified?  The ratings are: 

perfect:  The verb has all the cases it needs to be well defined. 

acceptable:   The verb Is missing some cases which are usually found 
wich it. 

i 
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unacceptable:   The verb Is m'sslng some cases which are necessary. 

"Put" Is an example of a verb requiring a case; namely a where-put case. One 

almost never says "John put the ball". Therefore a verb structure whose main verb 

was "put" that did not have a where-put case would be rated unacceptable. This 

does not prohibit the parser from parsing a sentence like "John put the ball". If 

that were the sentence the parser was given, then the best structure the parser 

would be able to find would be one whose measure contained a semantic component 

with at least one unacceptable rating. 

An acceptable, but not perfect, case of verb modification can occur with verbs like 

■go". "Go" prefen a case explaining where the SUB has gone. However it Is fairly 

common to omit that case if It Is Implicit from some other Information. 

Noun Modifications 

This is an evaluation of the appropriateness of each noun group in the structure. 

The ratings assigned are, 

perfect: The noun group is perfect. The deductive system can find an 
object in its representation of what has been said which the noun group 
refers to. 

acceptable: A referent cannot be found, but al! the modifications in the 
noun group are meaningful to the deductive system, eg.. The deductive 
system will know how to interpret the noun group. 

unacceptable; The deductive system cannot understand the proposed 
modifications. 

Sometimes the rating given a noun group will depend on the context the sentence 

containing the noun group occurs In. Consider the noun group "The student 

George".   If there were two George's and one of them was known to be a student, 

a- r    ; —  ■ 
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one might want to disambiguate which George was being referred to by using the 

phrase, "the student George"; as in "The student George is always busy". 

However we would not want the parser to consider the phrase "the student George 

saw" as having a meaning other than "the student that George saw", except in 

such a context. 

This feature is also responsible for measuring the fit of the modifiers coming after 

the noun. "The ball in the box" would be rated perfect if the interpreter could find 

a ball in the box, acceptable if not. "The store he kissed" would be rated perfect if 

the Interpreter could locate a store that was kissed, unacceptable If not. 

Appropriateness of Verb Cases 

Most verbs prefer certain types to fill their cases.   The Interpreter should have a 

verb frame for each verb [Reader can operate without this frame; it just means that 

one more level of discrimination is lost, which might result in Reader finding more 

interpretations of a sentence than a person would] which it uses to evaluate how 

well the verb' s cases fit it. The values are, 

perfect:   The verb and case satisfy the interpreter's expectations. 

acceptable:    The   verb   doss   not  usually  contain  the   case,   but   the 
interpreter is aware of idioms that would cause the verb to receive it. 

unacceptable:   The interpreter is unable to find any role for the case to 
play in the verb' s definition. 

The verb "give" prefers a human as its SUB, a non-human as Its OBJ and a human as 

its IOB (recipient). Using these expectations enables a person to find only one 

meaning for "He gave the ball Bill gave the salesman", namely 

i 
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{GIVE PN 
[SUB HE] 
[OBJ (BALL THE  {GIVE PN 

[SUB BILL] 
[106 (SALESMAN THE)] 

>)] 
> 

and not consider, 

{GIVE PN 
[SUB HE] 
[IOB (BALL THE  (GIVE PN 

[SUB BILL] 
>)J 

[OBJ (SALESMAN THE)] 
I 

since the second Interpretation assigns "give" a non-human fo. Its IOB case and a 

human for Its OBJ. 

A parser cannot afford to reject possible parses that contain verbs that don't 

accept theli' cases since one frequently uses verbs In ways v/hlch violate their 

case preferences, as In "He gave the bride »way", "The noise gives him a 

headache" or "He gave the wall a kick". 

^.1.2  The Syntactic Component 

Reader tries to filter out some of the partial parses that are valid syntactically, 

semantlcally meaningful, and yet would not be selected by a person. If a structure 

has this property. It Is marked In the syntactic component of Its measure. The 

syntactic component with the fewest such markings Is the best. A structure 

inherits the measure of any structure that is attached to It, so It Is possible for the 

syntactic component of the measure of a structure to have more than one syntactic 

nark against It.  Here Is an example of this Idea: 
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"The salesman crushed by the elevator was hurt" Is understood by realizing that 

the verb phrase, "the salesman crushed by the elevator" Is the subject of was. 

Using the same methods Reader finds two meanings to "I saw the salesman 

crushed". 

The only meaning most people would consider is, Ml: "/ saw the act of salesman 

being crushed", 

{SEE  PN 
[SUB  I] 
[WHAT  (CRUSH PN 

[OBJ (SALESMAN THE)] 
)] 

} 

Reader finds  another interpretation, which is M2:  "/ saw the salesman who was 

crushed" 

{SEE PN 
[SUB  I] 
[OBJ (SALESMAN THE (CRUSH PN 

[ObJ  !malch_to_head_noun] 
>)] 

> 

People who want to convey the second meaning say the sentence differently, so 

we do not want the parser to return with two parses for "I saw the salesman 

crushed" since people do not find it ambiguous. The second meaning has to be 

considered, since the parser may be given "I saw the salesman crushed by the 

elevator walk away unhurt". Rafldisr marVs the syntactic component of any verb 

structure whose verb can accept a clause and whose GBJ Is a noun modified by a 

verb clause with !match_to_he'jd.'ioun for a dummy OBJ. Thus, if Reader were 

given the example sentence "I saw the salesman crushed", Ml would have a better 

measure than M2, so Reader would return only one parse for the sentence. 
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It should be noted that the rules used in determining the measure of a structure are 

distinct from the rules used in the grammar. The rule used In the above example 

("...mark any verb structure whose verb can accept a clause, and whose OBJ is a 

noun modified by a verb clause with !match_to_head_noun for an OBJ") may seem 

somewhat ad-hoc. But this rule in no way effects the structuring of an Input 

sentence. It Is merely used to filter structures that the parser finds. Without this 

rule, the system working with the parse' would have to decide for Itself whether "I 

saw the salesman crushed" meant Ml or M2. 

Other parsers have used variants of a "measure" concept. Robinson, [Robinson 

75], uses the term factor score to refer to how well various syntactic features "fit" 

together. In theory, this seems quite similar to the syntactic component Just 

defined. In practice, it is used quite differently, since the motivation for factor 

scores lies in the ambiguous inputs a speech parser must deal with. Reader uses 

the measure of a structure to help it choose from among completed parse 

structures, or from among structures resulting from the collapse of a stack segment. 

Measure is never used to determine how a word should be applied to a parse, or 

whether or not to continue a parse. In contrast, factor scores are primarily used to 

determine the priority of active parse paths. The factor score of "out" eliminates a 

parse path. An example of an "out" factor score is the combination of "foot" and 

"s". Presumably, the speaker Intended the "s" as the first letter of the word 

following "foot", rather than the last letter of the incorrect plural "foots" This level 

of detail is unnecessary In a parser intended for written Input. 

In many cases, the syntactic measure can be done away with In favor of more 

efficient parsing methods.   In the example above, syntactic measure is needed 
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whenever the grammar "splits" on a vero- Inflected with "ed" by creating a parse In 

which the "ed" verb Is the main verb of a clcuse, and one in which the "ed" verb Is 

part of an embedded clause modifying a noun. In a grammar which did not split (see 

section 3.2,5), "I saw the salesman crushed by the elevator" would be divided Into: 

PREP:  BY 
3.     NOUN:   (ELEVATOR THE) 

VERB:   ((CRUSH ED)) 
N0UN1:   !malch_to_head_noun 

2      FUNCTION:   REL 

VERB:   ((SEE  ED)) 
N0UN1:     I 
N0UN2:     (MAN THE) 

1.     FUNCTION:   MAIN 

When the stack Is collapsed, 2. would be attached to 1. as the WHAT case of 

"see", and !match_to_head_noun would be replaced by "the man". If the sentence 

were "I saw the man crushed by tne elevator walk away.", then when walk was 

"read", the only place to put it would be the verb slot of the WHAT case of "see". 

Therefore the stack would be collapsed with the purpose "VERB", meaning "Don't 

fill up any verb slots," This would cause 2. to be attached to 1. as a mc'.fier of 

"man", rather than as the WHAT case of "see". 

4,2   Collapsing 

Collapsing a stack (or stack segment) consists of converting It into a single stack 

structure by attaching all the structures In the stack to each other until there is 

only one left that has not been attached to any other. The methods used to build 

the rtack ensure that structures will only modify structures beneath them !n the 



A closer look 87 

stack.   There Is one "syntactic" constraint the collapse must satisfy.   Given a stack 

[Sn, Sn-1 S2, SI], if SA is attached to Sj, then for all /,   k > i > j. Si cannot be 

attached to Sm, y > m.   This constraint, which may be viewed as nesting condition, 

reflects the syntax of English.   As an illustration, the stack [D C B A] could be 

collapsed in five different ways: 

(A B C D) A modified independently by B, C and D. 
(A B (C D)) A modified independently by B, and C modified by D. 
(A (B C D)) A modified by B modified independently by C and D. 
(A (B (C D))) A modified by B modified by C modified by D. 
(A (B C) D) A modified by independently by B modified by C, and D. 

It can't be collapsed so that D modifies B, which then modifies A, and C modifies A 

since this would violate the nesting condition. 

Depending on the stack, each one of the above structures could be the meaning 

intended In the sentence, so the Collapse algorithm must be able to consider each 

possible collapse and return the one(s) with the best measure. 

The following sentence illustrates the fact that any one of the five structures could 

be the preferred Interpretation of a four structure stack.  "He puts the block In the 

box In the carton on the table." would be divided Into 

D. on the table 
C. in the carton 
B. In the box 
A. He puts the block 

Depending on the circumstances the sentence occured in, it cculd mean either: 

(A (B (C D))) -- The box is in the carton, the carton Is on the table, and the block Is 
put In the box. [When B modifies A, it can modify either the location of the block, or 
where t'.e block was put. If only B modifies f directly, then It must specify where 
the block was put. If there Is another modifier that could specify where the block 
was put, then B specifies the location of the block.] 

(A (B C) D) -- The block Is In the box, the box In the carton, and the block Is put on 
the table. 

i 



A closer took 88 

(A B (C D)) -- The block Is In the box, the carton is on the table, and the block Is 
put In the carton. 

Changing D to "on Thursday" yields 

(A B C D) -- The block Is In the box.   It Is put in the carton.   The action Is done on 
Thursday. 

Changing C to "with the cover" yields 

(A (B C D)) -- The box has a cover. The box Is on the table.  The block is put In the 
box. 

The simplest algorithm for collapsing the stack would be to generate all legal 

collapses and then choose one with the best measure. This method is not used 

because the number of structures a stack can be collapsed to grows exponentially 

with the length of the stack. In fact, the sequence followed Is the Catalan2 

sequence, which is (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796...). .he 

closed form for the Nth term of th^ sequence is 

(2(N-1))I 
     - T(ie number of ways a stack o\ length N can be collapsed. 
(N-l)INI 

So It is obvious that we will want to use a more intelligent method for collapsing. 

The set of structures a stack S may be reduced to is called the collapse set We 

wish to generate the members of the c-i'/apse set In an order that gives us (he best 

chance of finding the preferred structure id the se» before generating the entire 

set. 

In English usage, sentence constituents have a tendency to modify the constituents 

that are closest to them in the sentence,   in a stack, this translates as "a stack 

3   Which, among other things, counts the number of ways a convex polygon of N 
sides can be triangulated [Gardner 76]. 

'mmm 
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structure Is most likely to modify the one directly beneath It In the stack."   Our 

heuristic  Is  to generate  the  members of collapse set that  have  the  "closest 

modifications" first3, and stop as soon as we generate a structure with perfect 

measure. 

We define a metric to measure how well a member of the collapse set tits the "close 

modificatlop" criteria.  The metric counts the number of structures in the stack that 

modify  structures  n structures  beneath  them.    S(N1,N2 NM  Is  the  subset  of 

collapse set whose members contains N1 structures that Jump over one structure to 

find the structure they modify, N2 structures that jump over 2 structures to find the 

structure they modify, etc. The members of S(N i,N2,...NA) are more closely modified 

than the members of S(M1,M2...,MA) if and only if the sum of the N; (/ = 1,A) is less 

then the sum of .he M/ (/=1,A), or the sums are equal and there exists / (1 < / < k) 

such thot Ny > My and HI = Mi for all / less than k. eg., For a stack of five 

structures, the structure with the closest motiiflcatlons Is £(0,0,0) the structures 

that are in S( 1,0,0) are the next most likely intet^retatirn of the stack, and .he 

structures in S(2,0,0,) are prefßrred over those in S(1,1,0). Tne Collapse routir 

generates the stiuctures with the closest modifications first, with one Important 

exception. Suppose the modification of structure N by structure M leads to a bad 

measure. Then every final structure in which M modifies some other structure with 

a better measure than it does N is generated before those containing N modified by 

M, even though the latter may be more closely modified. 

Here Is how this works on the sentence. 

3 There are certain exceptions: for example, if a verb structure in the stack has a 
passive verb group, and there is a preposition structure whose preposition is "by" 
above it, then the collapse routine tries to attach the "by" preposition structure to 
the verb structure first. 
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"Write me a program called Intersection which prints a set of lists 
of numbers and outputs the numbers which are in all of them." 

The stack to be collapsed Is, 

9. 
PREP: OF 
NOUN: THEM 

PREP:IN 
8.   NOUN: ALL 

VERB: ((BE)) 
N0UN1: (WHICH IPL) 

7.   FUNCTION: WHICH 

VERB: ((PRINT S)) 
N0UN1: !match_to_conjunct_sub 
N0UN2: (NUMBER !PL THE) 

6.   FUNCTION: AND 

PREP; OF 
5.   NOUN: (NUMBER !PL) 

PREP: OF 
4.   NOUN: (LIST !PL) 

VERB: ((READ . S)) 
N0UN2:(SET A) 
N0UN1: (WHICH ISING) 

3.   rUNCTION; WHICH 

VERB: ((CALL . ED)) 
N0UN2: 11NTERSECTION 
N0UN1; !match_to_head_noun 

2.   FUNCTION: PASS 

VERB: ((WRITE)) 
NOUNS:(PROGRAM A) 
N0UN2: ME 
N0UN1;YOU» 
MSG: (IMP) 

1.   FUNCTION: MAIN 

or more simply, 
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9. of them 
8. in all 
7. which are 
6. and prints the numbers 
5, of numbers 
4. of lists 
3. which reads a set 
2. called Intersection 
1, write me a program 

Collapse begins by trying to generate (1 (2 (3 (4 (5 (6 (7 (8 9)))))))), the only 

member of 5(0,0,0,0,0,0,0). It successfully forms (6 (7 (8 9))) and tries to attach 

It to 5. It cannot since 6. must be attached to verb struct—e. An illegal 

attachment and an attachment with bad measure are handled similarly4. Collapse 

now looks down the stack for the closest structure wnich will accept 6. with a 

perfect measure. It finds 3. which means it now has to collapse the stack segment 

from 5. to 3. It calls Itself recursively on the stack consisting of 5.,4. and 3. which 

results in the structure (3 (4 5)). The structure (6 (7 (8 9))) Is attached to it, and 

Collapse goes back to work on the stack consisting of 1., 2. and (3 (4 6) (6 (7 (8 

£?)))).  The result Is, 

eg.. If the attachment were legal but had a bad measure. Collapse would 
Immediately start looking for a better place to put it. If none were found, it would 

settle for the bad measure. 
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(IMP  {ZWWRITE NN 
[ARG1  YOU*] 
[AR63 ME] 
[ARG2 (PROGRAM A {1«CALL PN 

[AR61  !match_lo head noun] 
[ARG2 l«INTERS£CTION] 

> 
[CONJ AND 

(1#READ NN 
[STEPOF !match_to_head noun] 
[ARGS (SET A (OF (LIST IPL (OF (NUMBER IPL)))))] 

> 

(1«OUTPUT NN 
[STEPOF !malch_lo conjunct_5ub] 
[ARGS (NUMBER THE !PL {2#BE NN 

[AR61 (lmatch_to_head_noun)] 
[ARGZ (ALL (OF THEM))] 

»)] 
) 

])] 

4.3   Formatting 

Format Is the algorithm which prepares a structure for output.   It is responsible for 

calling the deductive system to measure the structure. 

4.3.1   Noun groups 

The noun group of an unformatted structure is a list of the head noun and Its 

modifiers. This list is handed to the deductive system which structures it and 

returns a measure of the appropriateness of the noun group. The representation 

used for the noun group's structure is dependent on the needs of the deductive 

system. Suppose Format were given a structure containing the noun group, 

NOUN:   (PROGRAM THEORY FORMATION THE) 
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The deductive system would be asked to structure It,   The structure returned by 

the Interpreter (chapter 5) would be: 

NOUN:  PROGRAM 
program-type:    THEORY-FORMATION 
definite: T 

MEASURE:  PERFECT 

where "THEORY-FORMATION" Is an atom denoting a certain kind of program. 

The noun group representation used by the the deductive system does not matter 

to Reader, since once a structure is formatted, the parser no longer accesses It. 

The important piece of information, as far as Reader Is concerned. Is the measure of 

the noun group. It Is not unreasonable to expect the deductive syrtem to be 

capable of supplying such a measure. A system's ability to represent a noun group 

in a useful fashion implies that it has a measure on how well the noun group fits the 

representation. 

The structured noun group is returned in the propsr slot of Format's output. The 

measure of the loun group is added into the structure's measure, which will be 

returned along with the formatted structure. 

4.3.2  Conjunctions 

Format Is responsible for bringing conjunctions up to their proper level In the 

sentence.  "He reads books and writes poetry and music" would be parsed Into 
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NOUN: MUSIC 
3. FUNCTION: AND 

VERB: ((WRITE S)) 
NOUril: Inatch to conjuncl_SUB 
N0UN2: POETRY" 

2. FUNCTION AND 

VERB: ((READ S)) 
NOUN1- HE 
NOUN2: (BOOK !PL) 

1. FUNCTION:   MAIN 

When the stack I;; collapsed, 3. would be attached to 2., yielding 

VERB: ((WRITE S)) 
N0UN1: lmat.ch_lo_conjunct._SUB 
N0UN2: (POETRY (AND MUSIC)) 

2. FUNCTION AND 

When 2. Is formatted, the conjunction (which until now has been treated just like a 

preposition) in N0UN2 is broughi up to toplevel, producing (AND POETRY MUSIC). 

When the format of 2. is attached to 1., It Is placed In the cases slol; 

VERB:     ((READ S)) 
N0UN1:     HE 
N0UN2:   (BOOK PL!) 
CASES:   ((AND (WRITE NN ((SUB  lmalch_lo_conjunct_SUB) 

(OBJ (AND POETRY MUSIC)))))) 
1.   FUNCTION:   MAIN 

Format brings it up to top level so that the result of the parse Is easily seen to bo a 

conjunction: 

[CONJ AND 

(READ NN 
[SUB HE] 
[OBJ (BOOK  IM.)] 

} 
(WRITE NN 

[SUB  lmatch_to_conjunct SUB] 
[OBJ (AND POETRY 

MUSIC)] 
) 

] 
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The symbol "imatch_to_conjunct_SUB" (section 2.4.6) refers to the SUB of the first 

conjunct ("he')- 

4.3.3  Filling In extra cases 

Format provides a channel for the deductive system to determine if there are any 

missing cases in the verb that can be filled in from the rest of the sentence. 

Consider the sentence "John drove through and destroyed the plate glass window.", 

taken from [Woods 73]. Syntactlcaliy, it is possible for the object of the 

preposition "through" to be "the plate glass window," Reader asks the deductive 

system if this would make sense.  If the answer is affirmative, Format would return 

[CONJ AND 
{DRIVE PN 

[SUB JOHN] 
[WHERE  (THROUGH (WINDOW THE PLATE GLASS))] 

> 

{DESTROY PN 
[SUB  lmatch_lo_conjunct_SUB] 
[OBJ  ImatctTtiTconjunct^PREP] 

) 
] 

where "match_to_conJunct_PREP" Is to be matched to "the plate glass window". 

Notice that Reader cannot add cases to a verb without consulting the deductive 

system. In the sentence "John drove through and destroyed her confidence In 

him.", the object of "through" Is not "her confidence In him". 

4.3.4  Choices 

Any choices in the parse structure (section 2.3.4) are generated In Format. 

Consider the choice offered for the SUB of "be" In 
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{KNOW PN "I know that ice is slippery." 
isuB.n 
[WHAT   IBE PN 

[SUB   («CHOICE  ICE 
(ICE THAT) 

)1 
(DES SLIPPERY] 

1] 

Just before Format asks the deductive system to structure a noun it examines It to 

see If a choice can be made from it. In this case, the test Xhtt succeeds is that 

the noun is modified by "that" and is the SUB of a verb which belongs to a structure 

whose function is WHAT. The consequence of the test is that a choice of noun 

groups should he offered, one with "that" as a 'noclificr, and one without "thaf" If 

the origint-l sentence had been "I know that tnat ice is slipperv", the sscond "that" 

would not have been added to the Modifier List. Instead, a message would have 

been left In the message slot of the verb structure which would have signalled 

Format not to test for this particular choice being present. 

4.4  Parallel processing 

Reader Is designed to follow partial parses in parallel, if this were implemented 

straightforwardly, it would lead to an unfortunate amount of duplicated effort. 

Consider the parsing of the sentence "He had anotner look at the man in the trench 

coat who had been following him for the last hour," When "at" is read there are two 

partial parses: 
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1. msq « NOUN, ml • NIL 

VERB: ((HAVE EO)) 
NOUN1; HE 
NOUN2; (LOOK ANOTHER) 
FUNCTION: MAIN 

2. msq = VERB,  ml  ■ NIL 

VERB: (aOOK)) 
NOUNI: /»NOTHER 
FUNCTIC;::   WHAT 

VERB:  ((HAVE EO)) 
NOUNI;  HE 
FUNCTION:  MAIN 

If  reader used simple parallel processing, "at" would  be added to  both  partial 

par.f.RS, producing 

1.  msq  • PREP,  ml   = NIL 

PREP:  AT 

VERB:   ((HAVE ED)) 
NOUNI;  HE 
NOUN2;   (LOOK ANOTHER) 
FUNCTION:   MAIN 

2.  msq • Pl^EP,   ml  • NIL 

f'REP:  AT 

VERB ((LOOK)) 
NOUKl: ANOTHER 
FUNCTION:   WHAT 

VERB;  ((HAVE ED)) 
NOUNI;  HE 
FUNCTION:   MAIN 

At this point, both stacks have the same top structure. The rest of the sentence, 

consisting of the noun group "the man in the trench coat who had been following him 

for the last hour" Is going to be persed twice, once for each partial parse. The 

different partial parses arose because words were applied to a single partial parse 

In different ways. This necessitated two different parses, because each could 

accept words differently. Parse 2. was able to accept "look" as a verb and parse 

1. was able to accept it as a noun. But now that the stacks of each partial parse 

hove the same top structure, most words will be added to the stacks in the same 

fashion. We can take advantage of this fact to avoid parsing the object of "at" 

twice. 

In general, whenever two (or more) partial parses have Identical top structures, 
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they are merged Into one partial parse with a branching stack.   The two partial 

parses above would be merged to: 

msg = PREP,  ml  = NIL 

PREP:  AT 

-:T" 

VERB   ((HAVE  ED)) 
N0UN1:   HE 
N0UN2:    (LOOK  ANOTHER) 
FUNCTION;   MAIN 

VERB: ((LOOK)) 
NOUNl: ANOTHER 
FUNCTION:   UHAT 

VERB:   ((HAVE ED)) 
NOUNl:   HE 
FUNCTION:  MAIN 

The stack branching Is Invisible tc the grammar programs. When a SHIFT is called on 

e branched stack, It automatically follows down all the branches and separates the 

branched stack as required. In this case, the merge of the two partial parses cuts 

the parsing time for the rest of the sentence in half. The succeeding words In the 

aenten;e are applied to one partial parse, instead of two. Since none of the words 

in the remainder of the sf ntence are attached to structures below the current top 

of the stack, the two partial parses remain merged until the end of the sentence. 

After the last word In the sentence has been read, the stack looks like: 
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msg = NOUN, ml «NIL 

PREPi FOR 
NOUNs (HOUR LAST THE) 

VERB:"((FOLLOU 1NG)(BEEN)(HAVE ED)) 
NOUNl: WHO 
NOÜN2: HIM 
FUNCTION: WHO 

PREP: IN 
NOUN: (COAT TRENCH THE) 

PREP: AT 
NOUN: (HAN THE) 

VERB ((HAVE ED)) 
NOUNl; HE 
NOUN?: (LOOK ANOTHER) 
FUNCIION: MAIN 

VERB: ((LOOK)) 
NOUNl: ANOTHER 
FUNCTION: UHAT 

VERB: ((HAVE ED)) 
NOUNl: HE 
FUNCTION: MAIN 

Collapsing this stack produces two different parses' 

(HAVE PN 
[SUB HE] 
[OBJ (LOOK ANOTHER (AT (MAN THE (IN (COAT THE TRENCH)) 

{FOLLOW PPC 
[SU6 lmalcH_to head noun] 
[OBJ H1M1 
[FOR (FOR (HOUR THE LAST))] 

))))] 
> 

and 

(HAVE PN 
[SUB HE] 
[WHAT {LOOK NN 

[SUB A1MOTHF.R] 
[AT (AT (MAN THE (IN (COAT THE TRENCH)) 

(FOLLOW PPC 
[SUB Imatch lo head noun] 
[OBJ HIM] 
[FOR (FOR (HOUR THE LAST))] 

>))] 

.■-^.-^-^■■.^-^ -c^j.:.-..^,...: 
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Merging partial parses Is the other complication mentioned in the general control 

structure presented In section 2.2. Step 6 was "Reset part I ah parse-11st to a list of 

the partial parses formed In step 4." What actually occurs, Is that Reader 

examines the list of oartial parses formed in step 4. and modifies it by merging any 

partial parses whose stacks have the same top structure, partial-parse-1 ist Is then 

reset to the modified list. 

The merging of partial parses is similar (in effect) to the use of a well-formed 

substring table (WFST) by parsers which use backup to achieve non-determinism 

rather than parallel processing. A weii-formed substring table, [Kuno 63], is a 

collection of parsed sentence constituents. When a parser using a WKST backs up, 

it avoids reparsing sentences constituents by picking constituents it has already 

parsed out of the WfSl. Similarly, in a parallel processing environment, the merging 

of partial parses avoids the reparsing of constituents by allowing each parsed 

constituent to be shared by every active partial parse which can use 't. 

4.5  Other parsers 

A considerable amount of the work has been done In the field of natural language 

porsing. Much of this work has concentrated on syntdx based parsers. These have 

evolved from simple systems implementing context free grammars, to rather 

complex systems motivated by transformational grammar considerations. Such 

parsers have grammars which consist of a context free grammar, along with a set of 

rules for modifying the parse tree built by the context free component. The parse 

tree may be modified while It Is being censtructed [Woods 73], or after it has been 

:.,     .. 
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completed [Sager 73]. This section examines the differences between some of 

these systems and Reader. 

Reader's organization Is similar to these systems In that we can view Format as the 

transformational component, anti the grammar programs as the context free 

component. The differences In the systems He primarily in the "context free" 

component. The first difference Is tnat the grammar programs are more powerful 

than a context free grammar. Consider the sentence "Only one man was found who 

could speak English." In this sentence, "who could speak English" modifies "man". 

Reader parses the sentence by dividing it into a stack of two structures. When the 

stack is Collapsed, the top structure Is ettached to the bottom structure, which 

results in the proper modification. This modification cannot be expressed In a 

strictly context free grammar. 

A more impottant difference lies in the way the "context free" component operates. 

The grammars for most syntax based parsers consist of a description of legal 

sentence structures. The grammar's application to a sentence results in a series 

of choices about which kind of constituent should be built at a particular point in the 

parse. Each system makes some effort to diminish the number of unsuccessful 

guesses. For example. Woods allows the grammar writer to "recommend" what 

guess to make at any point In the parse. Winograd's grammar5attempts to use the 

information gained from a failed guess at a decision point to allow it to choose 

Intelligently from the remaining choices at the decision point. 

5 The grammar in Winograd's parser also consists of a set of programs. However
p 

the programs deal solely with the construction of a parse tree, and are not orient ad 
towards building structures that can represent liore than one parse tree at a tlrre. 

i 
. 
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Reader's grammar consists of a set of programs which determine the different 

ways a word may be added to a parse in a given configuration. The two methods 

are similar in that the o'^sses the older parsers make correspond to the guesses 

Reader must meke In deciding which way add a word to a partial parse. The 

difference In the methods Is that Reade; provides a framework (the stack) and a 

means (the grammar programs) for writing jrammars tha* diminish the number of 

ways a word can be applied to a partial parse while still maintaining a substantial 

grammar. In most caseJ the grammar programs will apply a word class to a parse In 

only one way. However, a word which belongs to more than c^e word class will 

generally6 be applied to a parse once for each word class it belongs to. 

It can be argued th^t since all the more recent systems have the power of Turing 

machines, they can perform any algorithm, including those thav Reader carries out. 

A simple answer to this Is "Ah, but they don't". The reason they don't 's that in 

many o' the systems the "full power of a Turing machine" 1ö used only to moo, as 

opposed to help build, the parse trees generated by the context free component. 

In other wordb, the Turing machine comes in after all the guessing has been done. 

The metliods used by Reaüer to avoid nondeterminism include a mechanism used in 

the ATN parser described in [Woods 1970], vVood's parser Is partially based on a 

finite state mcchine, and the method referred to involved the technique of making 

an arbitrary nondeterministic finite state machine determirrstic by introducing 

several new states. Some of Reader's stategles can be viewed in this light, but 

most cannot, since they are involved with eliminating nondetei mism from situations 

which involve pushdown operations in the ATN formalism. 

6   Exceptions are single applications for words which are both conjunctions and 
prepositions, and words which are both nouns and modifiers. 
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Here Is a concrete example. Section 3.2.2 explains how Header parses simple 

relative clauses determlnlstically, using the example sentence "The city people 

hate Is ToLyo". A nondeterministlc ATN would begin parsing the sentence by 

attempting to find a noun phrase. It would have to guess whether to find "the city 

people" er "the city people hate". The guess consists of deciding when to "pop" 

up from the "push" of finding a noun phrase; exactly the kind of guess that a finite 

state machine transformation cannot help. 

Another advantage listed for ATNs is the use of registers to make "...tentative 

decisions about the sentence structure and then change one's mind later In the 

sentence without backtracking." This is obviously a good feature fnr a par ?r ti 

have, and seems equivalent to Reader's method of representing both sides of a 

decision while reserving the ric,'it to chose one or the other (without backtracking) 

later in the sentence. In Reader, this allows one to parse relative clauses and 

conjunctions determinlsticaiiy, delay attaching various parse structures until more 

information Is gathered about the reason for the attachment (thereby reducing the 

combinatorics of the attachment), combine different word class usages of a single 

word into one parse, etc, in contrast, [Woods 1970] contains two examples of the 

ten a five decision method at work, which occur in the parsing of the sentence 

"John was believed to have been shot." The first decision Is that was Is the main 

verb of the sentence, which is later revised to believe is the main verb and was is 

an auxiliary verb. The second is th3 decision that John is the subject of was, 

revised later to John Is the object of believe, and revised still later to John is the 

object of shot. In Reader's formalism, ail these "decisions" are made and revised 

trivially.  The final stack to collapse is; 
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VERB: ((SHOOT ED)(BEEN)(HAVE)) 
N0UN1; Imatch to sub 

2. FUNCTION: INF 

VERB: ((BELIEVE EO)(BE BE3SP)) 
N0UN1: JOHN 

1. FUNCTION: MAIN 

The decision to make was * helping verb is accomplished by simply adding believed 

to structure 1.  There is no need to assume what case John fillF until the structure 

it  is  '    Is  Formatted.   Attaching  an  INF structure whose VERB is  passive  to  a 

structure with a passive verb which accepts a clause entails removing the first 

noun In the latter structure, installing it as the first noun of the INF structure, and 

then attaching the INF structure as the clause case.   When the INF structure Is 

Formatted, "Joi.n" is made the object of "shot".  The perse is, 

(BELIEVE PN 
[WHAT (SHOOT NP 

[OBJ JOHN] 
>] 

) 

There Is at least one other parser under development that also tries to avoid 

needless guessing. It is being written by Marcus [Marcus 75] and is based In the 

belief that "...the structure of natural language provides enough and the right 

information to determine exactly what to do next at each point of the parse." The 

claim is that the parser will be able to avoid guessing what to do at a decision point 

because there is really only one acceptable rhnice. The system Is still being 

written, so it is too early to comment on it. However, It seems that this approach 

will encounter problems when working with a sufficiently large grammar and words 

that can assume more than one syntactic category. 
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Some more recent parsing systems have been developed which deemphasize the 

role that syntax plays in the parsing process. Naturally, such parsers do not 

produce a "classical" parse tree, but instead produce a structure which is said to 

represent the "meaning" of the sentence being parsed. Examples of this type of 

work may be found in [Riesbeck 74] and [Wilks 73]. As this work has come after 

the more synta:; oriented parsers discussed above, we should explain why we have 

rejected this approach. 

The main reason is our belief that most semantic processing will be more expenslv« 

than syntactic processing in a rich environment. Therefore, it is desirable to use 

syntax to minimize the number ot semantic Interactions that need be considered. 

This contrasts with (for example) Riesbeck's work, in which he says "the functions 

of the analyzer to be descibed here ask questions about the relationship of words 

and concepts." Here, the process has been reversed; semantics and deduction are 

used to determine which words interact, and syntax is used only later, If at all, to 

ensure that a proposed modificatiori between words Is permitted. If one limits 

oneself to simple sentences, the added expense of using semantics instead of 

syntax to decide whether two words interact will not be overwhelming, since the 

possible Interactions in a simple sentence will be few in number However, the 

number of possible Interactions to be examined semantlcally grows exponentla'ly 

with the complexity of the sentence, so it seems that these methods will not be 

practical In a rich environment (In which there are many possible relationships 

between almost all words and concepts) which has to deal with complicated 

sentences. 
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6.  The Interpreter 

A brief overview of the Interpreter is given in sections 1.2.2 and 1.5.2. Essentially, 

it is a computer program which attempts to understand natural language. There are 

many other computer systems which would make the same claim. The points of 

Interest In all programs of this type are; 

1. The representation used for the information contained in the natural 
language.  For the Interpreter, this is the program specification. 

2. The   representation(s)  used   for  the  knowledge  base   needed   to 
understand the natural language. 

3. The methods used for activating parts of the knowledge base to bear 
on a particular task. 

The tirst point is covered in Section 6.1. Examples of different types of program 

specification types are given, along with an example which illustrates how several 

components fit together to describe a computer program. The section also 

discusses the representation of user' s replies which are not Incorporated into tne 

program specification. 

Section 5.2 introduces "concepts" and "definitions", the two representation units In 

the Interpreter's knowledge base. The simplest type of concepts are those which 

aie abstractions of components in the specification. An example of such a concept 

is #ADD, which refers to the concept of adding up several numbers. Information 

included in the #ADD concept is, 

#ADD can be Instantiated as a step In the program soecification. 

#ADD takes two or more arguments. 

The arguments should be numbers. But an exception occurs when 
there is one argument which is a set of numbers. In that case, 
the numbers in the set should be considered the arguments of the 
#ADD. 
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Definitions provide Instructions for mapping English word strings Into concepts. The 

deiinltion of "sum" contains information which allows the Interpreter to map "The 

progräm sums up the last three numbers." Into an #ADD which Is a step of "the 

program" and whose arguments are "the last three numbers". 

The task of relating a phrase like "the last three numbers" to a specific component 

(or components) in the program specification is referred to as matching. Section 

5.4 covers the matching process, explaining how the information contained in 

concepts and definitions is used during matching. 

The primary goals of the processing performed by the Interpreter are conceptually 

very simple, and sections 5.2, 5.4 and 5.3 (which explains the Interpreter's 

processing cycle to provide background for section 5.4) should be read with them In 

mind.   The goals, upon receiving a parse structure, are: 

1. Determine which definitions can be applied to the parse 
structure, and therefore which concepts the parse structure Is 
invoking. 

2. Find or create referents in the program specification for the 
descriptor slots of the concepts the parse has been reduced to. 

3. Incorporate the appropriate concepts Into the program 
specification. 

Section 5.6 explains how definitions and concepts are used to provide the measure 

Information necessary for the interface between Reader and the Interpreter. The 

final section mentions some work remaining to be done. 
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5.1   The results of interpretation 

5.1.1   The program specification 

The program specification contains a record of everything the user has said (and 

the interpreter has inferred) which is relevant to the description of the program 

being written. The parser/interpreter uses It as a data base for matching, the 

parser/Interpreter Interface etc. This section describes the format of the 

specification.  Later sections will show how It is utilized by the parser/interpreter. 

The principal result of the Interpreter is the program specification The program 

specification1 represents a computer program, and can be viewed as a high level 

programmeng program language. It consists of a connected set of components. 

Such a data structure has been labeled a "entity-wttribute-value data structure" In 

[Heidorn 74], and a "set of conceptual entities vith associated descriptions" In 

[Bobrow 76]. 

The  description of  a  component is  a  collection of descriptor/value  pairs which 

specify the actions and structure of the component.  For example, a component may 

have as Its description, 

A0358 
class: ALG 
type; OUTPUT 
args:"Ready" 
step-of.- A0367 

which means that It is an Algorithm component that should be mapped into an 

"output" operfltion In the target language (eg., WRITE In Fortran, PRINT in Lisp, etc.). 

1   The program specification semantics were developed with Jorge Phillips. 
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The argument of the output is the string "Ready". The step-of descriptor Indicates 

the position of the component in the specification; It is one of the steps of an 

ALGorithm component denoted by A0367. 

Each descriptor has an inverse associated with It. For example, if a component X Is 

in the steps descriptor of a component Y, this fact can be derived by examining 

either X or Y. 

A component belongs to one of two classes: ALGorithm or DATA. Each class is 

subdivided Into several types. Figure 5.1 shows some control structure ALGORITHM 

types. 
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PROCEDURE 
ARGS:  a list of DATA components whose type is BOUND. 
DEFINITION: An ALG component. 

SEO 
STEPS: a list of ALGs to be executed in sequential order. 

CASE 
CONDITION: 

an ALG with a RESULT slot, or a DATA which is the RESULT 
of an ALG. 

STEPS: a list of ALGS to be executed if the CONDITION is TRUE. 

COND 
CASES: 

is TRUE is executed,  the rest are ignored. 
a list of ALGS whose type is CASE.  The first CASE whose condition 

Th 

ENUMERATE 
ON; a DATA whose type is SET. 
STEPS: 

a list of ALGS to be executed sequentially for each element in 
the ON set.  The iteration element is represented by the generic 
element of the ON set. 

LOOP 
EXITS: a list of ALGS whose type is CASE. 
COUNTER: 

a DATA of type INTEGER whose value is the number of times 
the LOOP has been executed. 

STEPS: 
a list of ALGs which Includes every CASE in EXITS.  The ALGs in 
STEPS are repeatedly executed until the condition of a CASE in 
EXITS is satisfied. 

CALL 
PROCEDURE:  an ALG of type PROCEDURE. 
ARGS:  a list of DATAs which are bound to the args of PROCEDURE. 

Figure 5.1 

Control structure ALGorithm types 

The   remaining   ALGorithm   types   can   be   divided   into   predicates   and   primitive 

^m MMHi 
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operations. The number of these is essentially unlimited, since anything the PSI 

coding module can code can without instructions from the user can be considered 

primitive. Figure 62 provides some samples of ' e primitive operations and 

predicates used by the current system. 

MAP 
ARG1; s DATA componentB whose type is MAPPING. 
ARG3:  a DATA component 
ARG2:  a DATA component 

MAP is the program soecification primitive for associating one DATA component 
(ARGS) with another (ARG3) via the mapping ARG1.  It is a generalization of 
the Lisp PUTPROP command.  IMAP corresponds to GETPRDP. 

IMAP 
ARG1:  a DATA components whose type is MAPPING. 
ARGS;  a DATA component 
RESULT: the DATA component that ARG1 maps ARGS to. 

COMPUTE 
ON: a DATA component wNch is a set. 
RESULT: a ilATA component which is a set. 
QUANTIFY; eilhi-r ALL, SOME or DATA component which is an integer. 
ASSERTIONS: 

a list of ALGs which are assertions involving the generic 
element of the RESULT set. 

The RESULT set is a subset of the ON set which consists of all, some or any 
n (depending on the value of Ol'ANTIFY: ALL, SOME or a number n) of the 
of the elements in the ON set which satisfy the ASSERTION list. 

INPUT 
ARGS: a list of the DATAs being read in. 
PROMPT:  a DATA of type STRING which is output to herald the INPUT. 

MEMBER 
ARG1: a DATA component, 
ARG2: a DATA component which is a SET. 
RESULT: a DATA of type BOOLEAN which reflects whether ARG1 is in ARG2. 

FORALL 
BINDINGS: a list of OATAs whose type is BOUND. 
PREDICATE: an ALG with a RESULT. 
RESULT: a BOOLEAN which is the truth value of universal quantification. 

Figure 5.2 

Primitive operations and predicates 

Data structures, like primitive operations, come in any form that the coder Is able to 

handle.  Figure 5.3 shows some DATA types and example DATAs. 
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SET 
ELEMENT: a DATA which is the generic Blemenl of the sat. 

RECORD 
FIELDS:  a list of DATA components whose type is FIELD. 

FIELD 
DATA:  a DATA component which the contt.its of NAME filed of a REDORD. 
NAME: the name of the FIELD. 
QUANTIFY: either ALL, SOME or DATA component which is an integer. 

class   DATA 
type    SET 
value' PHI 

class DATA 
type  BOOLEAN 
value TRUE 

[the empty set] 

[the boolean value TRUE] 

class DATA 
type  RECORD 
rep GRAPH 
instanceof AD001 
assertions (A00D2 A0003) 

The DATA above illustrates the three descriptors any DATA may ha-'S, 
The REP descriptor indicnlea that the program designer is referring 
to this comoonent by the word "grapn",  ALG components may also have 
REP descriptors.  The INSTANCEOF descriptor indicates that the 
structure of this component is the same as the etructure of the 
component which ADOOI points to.  The ASSERTIONS descriptor contains 
a list of assertions about the component. 

Figure 5.3 

Data structure typee and examples 

5.1.2  An example and ccmparison 

This section illustrates how these pieces are combined In a program description. 

Figure 5.4 contains a short dialogue, the program specification the Interpreter has 

built from It, and the pretty printed version of the specification. 



The Interpreter 113 

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE? 

Lessall. 

DESCRIBE LESSALL. 

Lessall takes a number and a list of numbers as arguments.  It returns True if 
the number is less then every number in the list. Othsrwise it returns False. 

* type PROCEDURE 
name *♦-  
rie f I n i t i on *«- 
args * * 

 I h r 
* type BOUND * type BOUND 

* type CONO 
cases ««-♦* 

* type NAME 
value LESSALL 

J boundto * J 
« type NUMBER 

bound to * 

I       I 
* type LIST 

element * 

I ] 
* type NUMBER 

L_ 

« type CASE « type CASE 
condition »     condition TRUE 
steps «  t     steps * 

T t 

I ' 
J 

« type RETURN 
argl TRUE 

* typa BOUND 
bound to ««- I 

» type RETURN 
argl FALSE 

type MEMBER I    f" 
element *<—'    # t 

« type FORALL 
predicate *«-♦* type IMPLIES 
bindings *    antecedent *«-i 

t    consequent * 

 I 
eieme 
set * 

ype LESS 
argl #<— 
arg2 **-i 

LESSALL  (Bl B?) 
If F0RALL(B3)  1MPLIES(MEMBER(B3 62) 

LESS(B1 B3)) 
Then RETURN(TRUE) 
else RETURN(FALSE) 

B3  1s a variable bound to Al,    B2 1s a variable bound to A2. 

Bl  is a variable bound to A3.    A3 Is a number.    Al is the generic element of A2. 

A2 Is a list whose generic element 1$ a number. 

Figure 5.4 

Lesoall and its program specification 
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The top node In the program specidcatlc.i Is always a PROCEDURE component. In 

this case, It has two arguments, which are bound to a number and list of numbers 

respectively. This structure information Is required by the coder, as it enables It 

choose Its algorithm based on the dr-ta structures the algorithm Is meant to 

manipulate. The body of the procedure is a COND with two cases. If the condition 

("VX X c B2 -> Bl < X", where B1 is the number and B2 the number list) Is True, 

then True2 Is returned. If not, the STEPS slot is ignored and the second CASE Is 

tried. The condition of the second case is Tue, so anytime the first condition does 

not obtain. False will be returned. The control structure and data descriptions 

beneath the specification diagram ore the d'Stiilatlon (as obtained by the 

specification pretty printer) of the program description Information contained In the 

diagram. 

The LESSALL program was taken from a paper on the Dedalus system, [MANNA 77], 

Dedalus  Is   an  automatic  program  synthesis  which  uses  a   formal  specification 

language   as   its   input,   rather   than   English.     Since   the   Interpreter's   output 

corresponds to the Input of such a system, a comparison between the two Is a 

useful measure of the effectiveness of the Interpreter.    In this case, the two are 

virtually Identical:   the Dedalus input for LESSALL Is 

LESSALL(X L) < = = compute X < a//(L) 
where X is a number and L is a list of numbers. 

The expression X < a//(L) means that "...X Is less than every member of the list L." 

2   To save space, TRUE  and FALSE  have been used to represent the BOOLEAN 
components whose values are TRUE and FALSE. 
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5.1.3  Meta-comments 

Some of the program designer's Instructions to the system do not describe the 

program, but Insteed are intendod towards directing the course of the dialogue. 

Comments Hke, 
I don" t understand. 
What we were talking about? 
What did you mean by "the predicate fits"? 
Forget about prompts. 

do not fit into the program specification, but are meaningful nonetheless. Such 

statements are sent to the dialogue expert as a filled In case frame. The case 

frame Is actually a concept (next section) and it is filled in In exactly the same way 

that concepts are Instantiated. The only difference is that Instead of being added 

to the program specification, the Instantiated concept Is sent to the PSI dialogue 

module for processing. 

As   an   example,   we   will   examine   the   concept   of   #USER-QUESTION-REQUEST. 

Statements like, 

Ask about the scene before the concept. 
Let's talk about the scene. 
Ask me about prompts before asking me about the scene. 
Ask me about the structure of the scene first., 

which are addressed to when and which questions should be asked are mapped to 

#USER-QUESTION-REQUESTs.    A #USER-QUESTION-REQUEST is  specified  by  three 

descriptors: 

QUESTION:   either a question type (eg., STRUCTURE), a question (eg., 
(STRUCTURE A0012)) or a component (eg., A0012). 

TIME:   either BEFORE, AFTER (In which case REFERENT must be present) 
or LATER or NOW. 

REFERENT:  takes the same values as question. 
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The interpretatici of a #USER-QUESTION-REQUEST Is ask 
{one of} 

all qu< ■"' ns of type QUESTION 
this part,  ular QUESTION 
any questions about the component which is QUESTION 

either NOW or I ATER, or 
BEFORE or AFTER asking 

(one of} 
all questions of type rlEFERENT 
this particular question which is REFERENT 
any questions about the component which is REFERENT 

Then if AOOOI points to the scene, and A0002 to the concept, we have, 

Ask about the scene before the concept. 
[#USER-QUESTION-REQUEST Question: A0001 Time: BEFORE Referent: A00Ö2] 

Let's talk about the scene. 
[#USER-QUESTION-REQUEST Question: A0001 Time: NOW] 

Ask me about ptompts before asking mo about the scene. 
[#USER-QUESTION-REQUEST Question: PROMPT Time: BEFORE   Referent: AOOOI] 

Ask me about the structure of the scene first. 
[#USER-QUESTION-REQUEST Question: (STRUCTURE AOOOI) Time: NOW] 

5.2  The knowledge base 

The knowledqe base used by the Interpreter consists of two declarative blocks of 

knowledge, and a set of programs .vhich make use of the information In them. The 

programs pre used to construct the specification, using the descriptions contained 

in Concepts and Definitions, the two declarative blocks. There is no formal 

definition of what constitutes a concept; a concept Is anything which the 

Interpreter can reason about. Hence there is a concept behind every ALGorithm 

and DATA type In the specification, as well as several higher order concepts. A 

definition Is a means of mapping a sequence of English words Into a concept. 
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5.2.1   Concepts 

Concepts express many thinys, but are oriented towards supplying the Information 

needed to Instantiate and reason about components. Instantiation refers to the 

process of creating a component and filling in its descriptors with other components 

in the specification, so that it too becomes part of the specification. 

The Information contained in a concept is 

Descriptors. What descriptors the concept can take, the type 
checKing constraints the descriptors must obey, questions to ask 
if the concept Is presented without a necessary descriptor, and 
default descriptor values. 

Postconditions; what is true after the concept has been 
executed 

Side effects: what changes to make to the program specification 
when the concept has been recognized 

For an example, consider the concept #MAP. #MAP represents the primitive 

operation in the specification which allows the user to associate one data with 

another.  Figure 5.5 contains the #MAP concept. 
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#nAP 

DESCRIPTORS: 
STEPOF 

CHECK1: 
QUESTIONS: 

ARG1 
CHECK!: 

ARG2 
CHECKl: 
CHECK2: 
QUESTIONS: 

ARG3 
CHECKlI 
CHEHK?: 
QUESTIONS: 

POST-CONJITIONS: 

SIDE-EFFECTS: 

ISA #ALG 
Uhere does  the /STIAP belong? 

ISA //MAPPING 

ISA //DATA 
W1AP-CHECK2(ARG1  ARG2 ARG3) 
Uhat   is being //IIAPped? 

ISA //DATA 
//riAP-CHECK2(ARGl  ARG2 ARG3) 
Uhat   is ARG2 being //nAPped  to? 

(//EQUAL   (//IMAP ARG1 ARG2)  ARG3) 

ilAPPING-UPDATEIARGl  ARG2 ARG3) 

Figure 5.5 

The «MAP concept 

Ficiure 5.5 shows that a #MAP is specified by foi't descriptors. Each descriptor has 

information associated with it which assists the Interpreter in filling in the 

descriptor slot. For instance, ARG2 must be a DATA component (#DATA refers to the 

concept of a DATA component). The second check provides a more contextual type 

checking which is used during matching and the parser/interpreter interface. Since 

the check is more complicated than a simple type check (eg., ISA #DATA;, a program 

(MAP-CHECK2) Is called which returns True or False, depending on whether ARG1 is 

a MAPPING which maps components of type ARG2 into ARG3. II a #MAP is to be 

instantiated and ARG2 is not present, then the question "Whai is the second 

argument of the map?", represented by (ARG2 A0001) where A0001  points to the 
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instantiated MAP, Is asked. SIDE-EFFECTS consists of things which should be done 

whenever a component Is instantiated. In the case of #MAP) SIDE-EFFECTS 

consists of a program (MAPPING-UPDATE) which updates the range and domain of 

AP31 If necessary. The POST-CONDITIONS are what is true after the concept has 

been executed. Section 6.3 on matching e..plaliis how the POST-CONDITIONS and 

CHECKS are used. 

Figure 5.6 shows the Interpreter's concept of #DATA and #SET. 

«DATA 
DESCRIPTORS: 

INITIAL-VALUE 
CHECKl; ISA «DATA 
QUESTIONS: What is the initial value of the DATA? 

VALUE 
CHECK1: ISA «DATA 

PREPOSITIONS: 
WITH 

CHECK1; ISA «DATA 
nEANING: («ASSOCIATE data object)                 | 

IN 
1             CHECK1: ISA «SET                               5 

MEANING: («MEMBER data object)                   i 

»SET 
DESCRIPTORS: 

ELEMENT 
CHECIG: ISA «DATA                            i 
DEFAULT: instantiation of a DATA whose REP is ELEMENT. | 

SIZE 
CHECK1: ISA «INTEGER 

CLASSIFIERS: ELEMENT 
1       PREPOSITIONS: 

OF 
CHECK1: GENERIC-ELEMENTO                     |i 
MEANING: ELEMENT 

FiQure 5.B 

Th« i «DATA and «SET concepts 

The concepts In Figure 6.6 both have information about prepositional modifiers. 

Such Information Is usually associated with Individual word definitions, but when the 
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modification is standard for the concept, regardless of how it is expressed in 

English, the Information Is tied to the concept itself. The "in" modification for #DATA 

means that every time a word which maps to a #DATA is modified by a prepositional 

phrase whose preposition Is "in" and whose object is a #SET, the meaning of the 

modification Is that the component the word matches to Is a member (represented 

by the Interpreter concept #MEMBER) of the component the preposition object 

matches to. The "of" modification for #SET Is slightly different In that the meaning 

of the modification Is a descriptor of #SET rather than a concept. This means that 

the object of the preposition fills that slot In the #SET description. The check for 

"of" Is a program which makes sure that the preposition object Is a plural noun 

which Is a #DATA. 

The CLASSIFIERS slot is similar to PREPOSITIONS in that it appears in definitons, 

rather than concepts, except in cases in which the meaning of the classifier is the 

same for all nouns mapping to the concept. For #SE7, the CLASSIFIERS slot says 

that if a noun modifies a noun mapping to set, and the noun satisfies the checks for 

ELEMENT, then It fills the ELEMENT descriptor of the #SET. eg.. In "the integer list", 

"Integer" Is a classifier of "list" which maps to #SET. Since "Integer" Is a #DATA, It 

is assumed to be the generic element of the list. 

To avoid needless duplication of Information, the concepts are arranged In a 

refinement tree in which every concept shares all the Information associated with 

its parent in the tree. #SET Is a refinement of #DATA. Thus when checking #SET 

for Information, all the Information connected to #DATA applies, eg., If A0424 has 

just been Instantiated as a set, the question "What is the Initial value of A0424?" 

will be pending. Of course, if the system can answer the question (perhaps A0424 

Is the argument of an INPUT), It will never be asked of the program designer. 
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Concepts are also used to capture regularities in language. English provides many 

different ways tc express the same thought. For example, X Is a function of Y can 

be stated as, 

X depends on Y. 
X is calculated from Y. 
X is determined from Y. 
X is calculated on the basis of Y. 
X cen be found from Y. 
X Is based on Y. 
X is obt-T.ed from Y. 
X is related to Y. 
X is found by examining Y. 

As an aid in writing definitions, it Is useful to have all these phrases map Into a 

single manipulable entity, namely th«; concept of »CALCULATION. »CALCULATION has 

two descriptors, ARG1, which Is a »DATA, and ARG2 which is »PREDICATE. Methods 

for using concepts like »CALCULATION are explained in the following section on 

definitions. 

6.2.2  Definitions 

Definitions are used to map from English words to concepts.  At the same time, they 

provide the parser with measure Information It needs. 

The information contained in a definition Is, 

Concept:  What concopt the definition maps to. 

Word:  what word the definition is a definition of. 

Case-Descriptor relationships: Which verb cases can be used to 
fill the descriptor slots of the concept. Which cases must be, or 
are preferred to be, present for the definition to succeed. 

Prepositions: Which descriptors prepositions can fill. 

Conjunctions: Which descriptors conjunctions can fill. 
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Defaults: Default values for some descriptor slots. 

Clauses;   Which   descriptors   can   be   filled   by   clauses   not 
Introduced by conjunctions. 

Figure 6.7 contains an example. 

DmARK 
DEFINITION-OF:    MARK 
ISA:     «MAP 
CASES:   (SUB STEPOF)(OBJ ARG2 Must)(10B ARG3 Preferred) 
PREPOSITIONS: 

AS 
CHECKl:       ISA #0ATA 
MEANING:     ARG3 

DEFAULTS: 
ARG1:  GET-MAPPING(MARIO 

1 COLLECT I ON 
DEFINITION-OF COLLECTION 
ISA »SET 

Figure 5.7 

A definilions of mark and collection 

Suppose    that    the    interpreter    receives    the    sentence    "Mark    the    scene 

'necessary'".   The parse Is 

(MARK NN 
[SUB YOU*] 
[OBJ (SCENE THE)] 
[10B "necessary"] 

) 

The definition will successfully map the sentence into the concept If all the 

requlrjments for the concept descriptors are met. Following the CASEs slot, YOU* Is 

matched to an ALGorithm component as the STEPOF descriptor, and "the scene" and 

"necessary" are matched to #DATAs as the ARG2 and ARG3 of the #MAP to be 

instantiated.   The "Must" in the OBJ mapping indicates that the OBJ case must be 
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present for the definition to succeed. Similarly, the "Preferred" In the IOB case 

means that IOB case Is strongly preferred to be present, but not necessary. This 

means that using the verb "mark", something can be marked without specifying 

what the marking is, but a marking cannot be specified without mentioning what Is 

being marked. ARG1 of the #MAP comes from the default slot of the definition; the 

value of a program (GET-MAPPING) which finds the MAPPING component be used for 

"mark", or creates one If this Is the first Instance of "mark" in the program 

specification. 

Nouns are defined similarly to verbs, with the exception that the case Information is 

missing (It Is usually replaced by classifier information). Figure 6.7 contains the 

Interpreter's definition of "collection". 

Figure 5.8 contains two deflnitons which utilize the #CALCULATION concept. 

ItfCLASSIFY 
DEFIN1TI0N-0F:    CLASSIFY 
ISA:     «CALL 
CASES: (SUB STEPOF)(OBJ ARGS) 
CLAUSES: 

CHECKli ISA ((/CALCULATION 
MEANING:      PROCEDURE   [extract ARG2] 

DEFAULTS: 
RESULT:   instantiation of a DATA whose REP   is CLASSIFICATION. 

1#BASE 
DEFINI7I0N-0F:     BASE 
ISA:     «CALCULATION 
CASES:   (OBJ ARG1) 
PREPOSITIONS: 

ON 
CHECK1: ISA «PREDICATE 
MEANING:       ARG2 

Figure S.B 

Definitions for "classify" end "base" 

Consider the processing of the sentence "It classifies the scene based on whether 
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it  fits  the  concept."    "based on whether It fits the concept"  is  mapped  to a 

«CALCULATION whose ARG2 is  the predicate "it fits the concept",    it is  also a 

clause which modifies "classify" (anticipating section 5.5 on the parser/interpreter 

Interface, we note that the reason the parser knows "based" modifies "classify" 

rather than "scene" Is precisely because one modification Is meaningful (all the 

words -> definitions -> concepts maps succeed) and the other Is not).   According to 

the definition, a clause can modify "classify1  If it Is a «CALCULATION.   If It Is, the 

modification instructions are to fill the PROCEDURE slot of the "classify" #CALL with 

ARG2 of the «CALCULATION.   This work la done during Formatting, so the parse for 

the sentence Is, 

(IMP    {CLASS'FY NN 
[STEPOF  YOU*] 
[ARGS (SCENE THE)] 
[PROC (FIT NN 

[ARGS  IT] 
[ARGS (CONCEPT THE)] 

)] 
> 

) 

Had the sentence been, 

Classify the scene on the basis of whether it fits the concept. 
Classify the scene as a function of whether It fits the concept. 
Classify the scene depending on if it fits the concept, 
etc. 

the result would have been the same. 

Many times, unknown words are used to refer to undefined predicates or supparts 

of the program being described. Since It would be unreasonable to expect all words 

to bv included in the system, and often, the definitons of such words are Inferable 

from context, the Interpreter uses a "template" definition to try to create a 

definition for any unknown words which are used In the dialogue. 
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Here Is an example: 

The program reads a graph and a node. A graph Is a set of pairs. 
Each pair consists of two nodes, which are primitive. The program 
prints a list of all the nodes which can be reached from the input 
node. 

125 

When the Interpreter encounters the last sentence, It has no Information about 

"reach" other than that it is a verb. Because It is being used as the main verb of a 

clause which modifies a noun, the Interpreter assumes that It represents a 

predicate which the program designer has yet to define. The "templatp" predicate 

definition and its instantiation for "reach" Is shown In Figure 5.9. 

PREDICATE-TEMPLATE 
DEFINITION-OP:     — 
ISA:     «PROCEDURE 
CASES:   (SUB ARGS)(OBJ ARGS) 
PREPOSITIONS: 

match 
CHECK1: ISA «DATA 
MEANING;       ARGS 

1«REACH 
DEFINlTION-OFi     REACH 
ISA:     «PROCEDURE 
CASES:   (SUB ARGS* (OBJ ARGS) 
PREPOSITIONS: 

FROM 
CHECKl: ISA «DATA 
MEANING:       ARGS 

Figure 5.9 

A template definition and its Instantiation 

The template definition maps to a ^PROCEDURE. The "match" In Its PREPOSITIONS 

slot matches to any preposition that the Interpreter cannot attach to anything else. 

The resulting definition of "reach" asserts that "reach" Is a PROCEDURE, and that 

the preposition "from" can be used to introduce one of Its arguments. 
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5.2.3  Procedural embedding 

Most of the Interpreter's knowledge about programming Is represented by 

procedures. This Information Is necessary in order to incorporate what the program 

designer has said in the program specification without asking questions which the 

designer would feel his statements have implicitly addressed, it is not Intended to 

help the Interpreter from a problem solving (eg., writing efficient algorithms from 

Inefficient descriptions) standpoint. The information was modelled procedurally 

since this seemed to be provide the easiest way to encode and apply It. The 

disadvantages of the procedural approach (primarily opacity) do not apply, as the 

information encoded in the procedures is not needed elsewhere In the system. 

The information Is organized into several modules which are expert in building 

various constructions in the program specification. There are modules which build 

CONDs from a series of CASES, construct COMPUTES, note scoping ambiguities, build 

quantified expressions from phrases like "all relations In the concept not In the 

scene...", etc.  As an example, we will consider the EXIT-TEST module. 

The EXIT-TEST module is responsible for setting up the exit conditions of loops. Its 

arguments are the loop and the phrase which indicates the exit condition. The 

method for building a loop from each of the phrases it knows about Is simply 

programmed out.  Here is an example. 

Figure 5.10 contains a fragment of a program specification. 
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«  type LOOP 
steps    *♦—>*« 

L   i 

I  type INPUT 
args * 

* type CALL 
procedure ** 
args * * 

-Mi  tijpe SET 
element    *♦- 

Figure S.'.O 

The proyrom specification before procesBing the sentrtnco, 
^'Stop when the user types 'Quit'." 

The Interpreter Is about to process the response the sentence "Stop v* hen the user 

types 'Quit'." which was In response to the question "Should there be an exit test 

for the loop?" 

EXIT-TEST receives [#INPLIT (ARGS "Quit")] and the LOOP as Its Input. When the 

phrase Is an #INPUT concept, EXIT-TEST finds an INPUT in the loop and places a 

test for the ARGS of the #INPUT concept after It. The result Is shown In Figure 

5.11. 
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* type LOOP 
exi ts *«n 
steps *« 

* type INPUT 
args * 

♦#<—►*<—►# 

1 u 
-»« type CASE 

condi t i on * 

I I 
* type EQUAL 

args * * 

 _J 
U«  type ALTERNATIVE 

Alternatives    *    * 

U«  type STRING 
value  "Qui t" 

*  type CALL 
procedure    #« 
args    *    * 

-»*  type SET 
element    «< ► 

Figure 5.11 

The progrom specification after processing the sentence, 
Stop when the ussr typ sa 'Quit'.' 

The exit test building program has added four new components; the CASE 

component which 13 the exit test, an EQUAL component which Is the condition of the 

exit test, and a STRING and ALTERNATIVE component. The ALTERNATIVE component, 

which replaced the SET as the argument to the INPUT, reflects the fact the 

arguments to the INPUT may now be either the SET or a STRING whose value is 

"Quit". The ALTERNATIVE has been installed as one of the arguments of the exit 

test, while the SET remains as one of the arguments to the CALL following the test. 
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6.3  The processing cycle 

The processing cycle refers to the sequence of actions taken by the Interpreter 

during the processing of a user reply. The cycle begins with the receipt of a 

question and user reply from the PSI dialogue module. The reply may be a phrase or 

any number of sentences. The question typically consists of a descriptor slot and a 

component (the question object) which Is missing Information for the slot, (eg., 

(ARGS X) means "What are the arguments for X". 

The first action taken by the interpreter is to update the Focus to the object of the 

question. Section 5.4 explains the use of the focus and its companion, the Da'a 

focus. 

Then each sentence in the reply is parsed and the result Is analyzed. The analysis 

consists of determining which concepts the sentence invokes, finding (or creating) 

components to fill in the descriptor slots of these concepts, and instantiating the 

concepts found into components In the program specification. Analysis has several 

side effects besides the building of the specification. 

Throughout analysis, the Focus and Data Focus are constantly updated to reflect 

the components the program designer is talking about. 

Another important side effect is the questions are posed by the instantiation of 

incomplete concepts.  For instance, the reply, 

"It reads a scene, tests whether it fits the concept, verifies the 
result of this test with the user, and updates the concept. Then 
it repeats the process." 

causes the questions. 

What is the structure of the scene? 
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What is the structure of the concept? 
What Is the Initihl value of the concept? 
Describe verifying the test result. 
Describe updating the concept. 
Describe the test of whelher the scene fits the concept? 
What is the exit test of the loop? 

to be placed       'he question queue. 

The Instantiation u. nn incomplete concept may also lead to a job being put on the 

background Job queue.  The bac:< ground job queue consists of questions which the 

Interpreter cannot answer immediately, but expect to be able to answer after 

more Information has come   n.   If the information never arrives, the  Interpreter 

assumes that the program designer was leaving the implementation  to the PSI 

coding modi. .'j.   These questions are placed on the background job queue (rather 

than the question queue) queue to ensure that they will never be asked of the 

user.   The background job queue is Implemented as a list of procedures and their 

frguments, which  are  run at  the  end  of  every processing  cycle.    Those  that 

succeed In answering theii questions are removed from the cycle.  An example of a 

background Is the one associated with the #ASSOCiATE concept.   #ASSOCIATE Is 

used by the Interpreter as an intermediate representation of the fact that two 

• i'TAs are somehow being associated.  For instance. In 

"Cookbook reads a recipe list, and then repeatedly reads a name 
and prints the recipe with that name" 

'v ,'th that n-Mn?" maps into an #ASSOCIATE whose args are "the recipe" and "the 

na.ie". At this point, there is no way to tell how the program designer experts 

"names" and "recipes" to be associated, so a background job is set up. A 

background job Is used rather than a question since If an answer is never found, 
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the P5I coder will be able to choose an efficient Implementation, and in fact, the 

user may be too unsophisticated to answer such a question. The background job 

remains active until the program designer says, 

"A recipe has a name, an '-gredient-llst, and directions." 

This defines "recipe" as record structure vith three fields, one of which is a name. 

One of the situations the #ASSOCIATE background job knows how to resolve Is the 

case where one of the associated DATAs Is a field of the other.   It changes THE 

«ASSOCIATE assertion from 

[ASSOCIATE   arg1;A1    arg2: A2] 
to 

[EQUAL  args: ([FETCH  arg1;A1   label: NAME] A2)] 

where A1 and A2 point to the recipe and name, and FETCH is the Interpreter 

primitive which gets the DATA of the label FIELD of its ARG1. 

When each sentence in the program designer's reply has beer analyzed, the 

background Jobs are run and the question list Is examined to see if any of the 

questions have been answered by subsequent analysis. The revised question list Is 

sent to the PSI dialogue module, which selects a question, gets a reply from the 

program designer, and gives the question chosen and the designer's response to 

the Interpreter to start another cycle. 
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5.4   Matching 

This section Is concerned with the identification of English noun phrases, which 

occurs during the filling in of a concept' s descriptor slots, and consists of finding 

the component, or creating the component if none exists, which is the contents of 

the descriptor slot being filled, based on the English presentation of the component 

(eg., the noun phrase). 

The system's handling of pronouns and nouns Is virtually the same. The only 

difference lies in the possible match set. A pronoun may match any component in 

the specification which has been mentioned and meets the syntactic requirements 

(eg., plural, animate etc.) of the pronoun. A noun may match any component In the 

specification which has been referred to in the same (or a synonymoud) way. The 

key to the matching process is the context supplied by the concept whose slot is 

being filled. 

5,4.1   Nouns 

The first time a noun is usod, the system creates a component which is indexed 

under   the   noun's   definition.    Thus,   "It  reads   in  a   scene."   would   cause   the 

component: 
A1 
class DATA 
rep 1#SCENE 

to be created, where 1#SCENE is a definition the Interpreter creates for "scene". 

1#SCENE is assumed to be a #DA1A so that it satisfies the type constraints of the 

ARGS   of   an   #INPUT,     Associated   with   1#SCENE   is   the   fact   that   Al    is   an 

instantiation of "scene".   The situation we have outlined leads to the simplest kind 
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of matching. If the user says, "Print the scene.", "the scene" is matched to Al 

because the "the" Implies that the referent should be found in the specification, Al 

Is the only Instantiation of "scene" in the specification, and It satisfies the type 

constraints of the ARGS of #OUTPUT. 

Now consider a slightly more complicated situation. Suppose we have scenes and 

concepts, each of which are sets of relations. Further, the relations In the concept 

are marked either "possible" or "necessary". Figure 5.12 shows how this would be 

represented in the program specification. 

* Al 
class DATA 
type SET 
rip CONCEPT 
element * 

J 

« A3 
class DATA 
type SET 
rep SCENE 
element * 

I 
-»* A2 

class DATA 
rep RELATION 
assertions * 

I 
* class ALG 

type EQUAL 
arqs * *♦- 
 I 

i 
*  class ALG 

type I MAP 
argl *♦ ►* AS 
arg2 * 

 I 
class DATA 
type MAPPING 
name MARK 

* A4 
class DATA 
rep RELATION 

-♦* class DATA 
type ALTERNATIVE 
alternat ives * * 

 I' 
* class DATA « class DATA 

type STRING type STRING 
value  "possible"       value  "neceseary" 

Figure 5.12 

Scenes, concepts and relations 

The user says, "Print the relations in the concept which are marked 'possible*"., 

which Is parsed to, 
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{1«PRINT NN 
[STEPOF YOU»] 
[AKGS (RELATION  IPL THE  (IN (CONCEPT THE)) 

{1#MARK PN 
[ARG2  !malch_lo_head_noun] 
[ARG3 "possiDle"] 

))] 
> 

The Interpreter must find (or create) a component which can he used as the ARGS 

of the #OUTPUT 1#PRINT maps to. If the noun group were simply "the relations", 

the Interpreter would match it to Al or A3, whichever was mentioned last. But in 

this case, there are modifiers which will presumably narrow down the choice. 

The first modifier Is the prepositional phrase "in the concept". The #DATA concept 

(Figure 6.6) is used to determine the meaning of the modification. It is (#MEMBER 

A6 Al) where "the concept' has been matched to Al and A6 is being used to 

represent the DATA which will be the final answer to the match. ^MEMBER is 

treated as a special case In the matching process. The first ^MEMBER in the 

modifier list which Is not negated3, and whose ARG1 Is the noun in question, Is 

transformed to the descriptor-slot/value pair of (ELEMENTOF X) where X is the 

ARG2 of the #MEMBER. Go in this case, the #MEMBER Is resolved to (ELEMENTOF 

A1). Following the ELEMENT slot of A1 leads to A2 which becomes the only match 

possibility. If there were no more modifiers, the match process would return A2 as 

the "relations in the concept". 

The next modifier is a #MAP. The post condition of #MAP (Figure 6.5) Is filled In 

with the #MAP descriptors, yielding, (#EQUAL (#IMAP A5 A6) "possible"). If this did 

not contradict the assertion list of A2, then A2 would be returned as «he meaning of 

3   In "The relations which are not in the concept", the meaning of the prepositional 
modification Is (#NOT (#MEMBER A6 Al)), which is inserted in the assertions list. 
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the noun phrase. It does, though, since the the assertion list of A2 asserts that a 

relation In the concept may be marked either "possible" or "necessary". Therefore 

a new component must be created, one which is the generic element of a subset of 

A1 which consists of all relations marked "possible". This Is accomplished via the 

SUBSET module, which Is another example of a small bit of knowledge being bound 

up In a procedure. The SUBSET module takets a set and an assertion list and 

creates a COMPUTE component which builds the subset. The COMPUTE created is 

shown in Figure 5.12 

class ALG 
type CPnPUTE 
quant i fy ALL 
on Al 
resuM *« ♦* A7 
assertions *   class DATA 

tupe SET 
element *— 

-»* class ALG 
type EQUAL 
args * ** 

-»* AG 
class DATA 
rep RELATION 
asser t i ons * 

-»« class ALG 
type I MAP 
argl AS 
arg2 *<  

* class DATA 
type STRING 
value "possible" 

Figure 5.12 

The COMPUTE for "The reiationB in the concept marked 'possible'." 

A6 is the result of the matching process.  The COMPUTE is inserted Into the program 

specification when the "print" OUTPUT component is. 
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5.4.2  Pronouns 

As we have Indicated, the difference between pronoun reference and noun 

reference is in the possible match set. The Interpreter keeps track of two special 

compo lents, the focus and Data Focus, which are used to help reduce the number 

of pronoun match possibilities. 

When the program designer begins his reply, the Focus refers to the object of the 

question.    During   the   processing   of   the   program   designer's   reply,   the   Focus 

changes, so that It always points to the last component modified by the interpreter. 

We are making a distinction between "modifying" and "creating" a component.   For 

example, the phrase, "It tests the concept", will cause a CALL component to be 

created with ARGS  "concept"; we do not consider the CALL component to have 

been modified until some of its olher descriptors (eg., PROCEDURE) have been filled. 

The Data Focus is the last DATA component which has been modified, described as a 

part of another DATA, or used as the ARGS or ARG1 of an ALGorlthm component.   The 

rules for the FOCUS and the Dcrta focus have been selected so that they are the 

most likely referents for any pronouns used by the program designer.   Of course, 

they still must satisfy the requirements of the descriptor they are being proposed 

for.   If they don't, the Interpreter falls back on searching for a referent from the 

pronoun reference list, which is a list of each component that has been mentioned 

by the program designer. 

We can see how this works on the following question/reply pair: 

PSI; Describe the program. 

USER; It reads a scene, tests whether It fits the concept, 
verifies the result of this test with the user, and 
updates the concept.   Then It repeats the process. 
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The question sets the Focus to "program". The first "it" is matched to the Focus 

since "input" requires that it's SUB be an ALGorithm. The Data Focus is set to the 

"scene" because "seer1;" is the ARGS of the most recently created ALGorithm 

component (the INPUT). The second "it" Is matched to the Data Focus, since the 

Focus is not a DATA (as is required by the ARGS of "fit"). The third "it" is matched 

to the Focus, since the STEPOF of "repeat" must be an ALGorithm. Note that none 

of "test", "verify", or "update" were proposed as referents for the third "it", even 

though they are all ALGorithm components, if there is no reason not to use the 

Focus or Data Focus as the referent, no other possibilities are checked. 

When the Data Focus and the Focus both refer to DATAs, the preference checks 

given In the concepts are used to choose from between the two.   Consider the 

dialogue fragment below 

The two major data structures in the program are the 
concept and the scene. The concept is a set, which is read 
at the start of the program. The scene has two parts. The 
first part is a name.  The second part Is a list. 

1. It should be read in after the concept. 
2. It consists of three elements. 

Either sentence 1. or 2. can logically lollow the preceding paragraph, yet the "it" In 

1. refers to the "scene", which is the Focus, and the "It" in 2, refers to the "list", 

which is the Data Focus, in 1., the choice between the two is resolved by the 

CHECK2 of #INPUT. The check prefers that the ARGS of #INPUT should not be parts 

of other components, or ARGS of an already Instantiated #INPUT. Since the "list" Is 

part of the scene, the "scene" is preferred as the referent. A similar process is 

used to find "list" as the proper match In 2. The definition of "consists" that 

succeeds is one that assigns the structure of the OBJ to the SUB.   Naturally, It 
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prefers ihat its SUB have either no structure, or a structure which does not conflict 

with the OBJ. Since "scene" is known to be a RECORD with two fields, "list" Is 

preferred for the match. 

The methods we use for resolving reference amount to a heuristic filterinc) of 

possible referents (the Focus and Data Focus) followed by lype checking on the 

surviving candidates. It works because the objects in our domain are easily 

classifiable, as are the effects (represented by which slots the objects have filled) 

of various actions upon them. Furthermore, the fact the we are talking about 

programming severely limits the different number of contexts things can be said in, 

which means that the preference checks associated with each component are likely 

to be consistently correct. Also, a conscientious program designer will probably find 

himself not using pronouns when he is intentionally violating these preferences. For 

instance, if one really wanted to write a program in which the "it" in 1. referred to 

the "name", he would find himself saying, "The name should be Input after the 

concept". 

For   difficult   reference   problems,   the   Interpreter   relies   on   the   power   of   the 

situational  checks  associated with  each  concept's  descriptors.    Section   1.6.2 

provided   an   example  of  their  use  in  noun  reference.    In  some   respects,   the 

situational checks are equivalent to methods proposed in other systems.   [Hobbs 

7 7] presents a system in which some pronoun reference Is achieved by "detecting 

intersentence relations". One such relation is, 

A   sentence   asserts   a   change,   and   the   following   sentence 
presupposes the final state of that change. 

When there Is a reference problem, it is resolved in a way which realizes  an 
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Intersentence relation.   The relation abov» helps match the "it" In  1., 2. and 3. 

below, 

1. Decrease N by 1.   If it is 0, reset It to MAX. 
2. Decrease N by J.  If it is 0, reset it to MAX. 
3. Subtract J from N.  If It has thereby gone down to 0, reset It to MAX., 

since N was changed in the first sentence and the second sentence has assumed 

(via the "if") the final state of "it". If "it" is matched to "N", the pattern holds, If It 

is matched to either "1" or "J", it does not. 

The Interpreter achieves the same effect by associating a sltuational check with 

the ARGS of #EQUAL which prefers that one of the ARGS be a variable whose value 

has been changed. Advocating such rules lays one open to charges of "ad 

hockery", but the situational checks are used for both noun and pronoun reference, 

as well as the parser/interpreter interface. When an individual check seems 

obscure, it Is only because it reflects something which people rarely think 

consciously about. It is true, of course, that the situational checks currently 

associated with each concept are not now complete enough to handle all the 

reference problems one might encounter. However, the system's heuristics enable 

it to cope nicely with reference problems it must handle without complete 

information. For instance, even though the three sentences from [Hobbs 77] were 

chosen to break the usual pronoun heuristics (the first introduces the problem, the 

second refutes the "0 shouldn't equal 1" method, and the third disproves the 

"positional" hypothesis), the Interpreter would have found the correct referent in 

each case with the #EQUAL situational check omitted. The Data focus in all three 

sentences Is "N", since it is the ARG1 of the most recently created component (the 
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SUBTRACT), and In the absence of any other Information, It would be chosen as the 

referent of "It". 

5.4.3  Matching to implicitly mentioned components 

Often, the Interpreter will have to match to a component which has been implicitly 

mentioned by the user.  A simple example of this can be seen In the phrase, 

"...classify t' -5 >"f>r!e and print the result." 

"Result" refers to the result of the classification. The methods described above 

would simply look for a component indexed by result, and not finding one, would 

create a new component «s the result of the match. The solution is to do a little 

preprocessing before the matching process begins. Whenever a component Is 

created which has a result, (in the example sentence, the CALL component created 

by "classify") a DATA component is instantiated, and then Indexed through "result" 

and its synonyms, as well as any default Indexing set up by the verb's definition 

(eg., "classification'1 for "classify", as shown in figure 5.8) 

A more subtle example occurs during proposed interchanges between the desired 

program and its user.  Consider what might follow tlvj sentence, 

"I'll request a story by typing a key word". 

The program designer might say nothing, in which case the system should ask how 

the request should be answered. Or, the user might follow immediately with a 

description of how the request should be handled. And finally, the user might just 

say what the "reply" should be. In that case. It Is up to the system to realize that 

"reply" refers to the answering process, and that the "reply" should be printed out. 
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Verbs which imply an interchange of data between the program (eg., ask, request, 

answer, etc.) are mapped into INTERCHANGE concept?.   INTERCHANGE concepts 

are represented in the specification by a SEQ with the appropriate steps.   The SEQ 

is set up by a procedure associated with ^INTERCHANGE,   When the  program is 

asking something of the user, the procedure's execution results in a SEQ whose 

first step is an OUTPUT component.   A data is created which is indexed to "reply" 

(and "reply" synonyms) and a background job is set up to complete the SEQ if tho 

user says nothing further.   Completing the SEQ consists of setting up an INPUT 

component whose ARGS is the "reply" data set up by the INTERCHANGE procedure. 

If the program is responding to a user query, the INTERCHANGE procedure sets up 

a SEQ whose first step is an INPUT along with a ".eply" DATA.   A slightly different 

background program is used, however, which sets up a SEQ which takes care of the 

processing required to answer the user's query,   The ^INTERCHANGE background 

job does nothing if the "reply" data has been used as the ARGS of a last INPUT or 

OUTPUT of the ^INTERCHANGE SEQ.  This machirery allows the Interpreter to handle 

the following examples: 

"Output the result of the test, ask th«! user if this is correct, and 
read in the user's response." 

In this example, the designer has followed the INTERCHANGE ("ask") with a 

description of the remainder of the INTERCHANGE. "Response" matches to the 

"reply" DATA set up by the INTERCHANGE procedure and the dialogue continues. 

The #INTERCHANGE background does nothing s nee the "reply" data is in the ARGS 

of an INPUT (the "read"). If the user had said only, "...and ask the user If this 

correct.", the background job would have been called to create an INPUT with the 

"reply" DATA as ARGS. 
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An example of a user initiated #INTERCHANGE is, 

PSI: Describe the program. 

USER; It has a data base of news stories. Each story has a set 
of key words associated with it. I'll request a story by giving a 
key word. The response should be ell the stories with that key 
word. 

"Request" sets up an INTERCHANGE. "Response" is matched to the "reply" DATA 

and the background program sets up an OUTPUT to print the "response" (as defined 

by the program designer) to the user. 

5,4.4  Coercion 

The type restrictions implemented In the definitions and concepts are too strict to 

account for casual language usage. People often refer to an object by one of its 

parts, to a part of an object by the entire object, to an attribute of an object by 

the object, etc. The Interpreter must be able to "coerce" the component the user 

has specified Into the one he really meant, eg., the one which satisfies the type 

constraints of the descriptor slot being tiled. 

For Instance, suppose the user defines a graph as "a set of nodes and a mapping 

which maps a pair of nodes into an edge." The Interpreter assumes that a graph Is 

a record with two fields, a set and a mapping. Then if the user mentions "the nodes 

in the graph", the Interprete-, if using a strict interpretation of type restrictions, will 

fall to understand, since the meaning of "In" leading to ^MEMBER requires that Its 

object be a #SET. This is just a specific case of the more general "If X is a record 

and fails to satisfy a type check, the speaker may have Intended one of the fields 

of X" 
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The Interpreter's type checking Is Implemented through the function ISA and the 

more complex secondary checks. ISA returns False If Its object fails to satisfy the 

check, and a component if the object satisfies the check. The component may be 

the original object, or, If the object fails to satisfy the type but can be coerced Into 

It, the component resulting from the coercion. Thus if (ISA X #SET) is evaluated and 

X Is record structure with a field whose DATA is the set Y, then the result of the 

evaluation will be Y and Y will be used to fill the descriptor slot. 

This type of matching allows the Interpreter's matching rules to be written with a 

great deal of flexibility.  In section 1.5.2, we used, 

"It reads In a trial-Item, matches the input to the Internal concept 
model, and prints the result of »he match." 

to Illustrate how Input Is matched to "trial-Item" rather than "the read "Input" 

operation" because of the requirement that the ARGS of "match" be a #DATA. It Is 

actually Implemented through the coercion feature. In tho absence of a component 

being explicitly referred to as an "input", the matching process looks for an #INPUT 

operation. When an INPUT is found, and is required to be a #DATA, ISA returns the 

ARGS of the INPUT. 

5.5  The Reader/Interpreter interface 

The Reader function format Is the interface between Reader and the literpreter. 

Section 4.1 listed the criteria used by Format to supply each parse structure with a 

measure. Reader uses the measures to choose from among competing parse 

structures. The information required for measuring is, 

1. Does the verb have all its required rases? 
2. Are the case contents of the verb understandable? 
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3. Do Ihe case ccntents satisfy the case requirements? 

The Interpreter supplies tno measure inform?.üon through Its concepts and 

definitions. Whether a verb has all its cases can be r td directly from the 

definition. If it Is missing rnses the def'nitlon has marked "Must", the rating is 

unacceptable. If it has all the Must cases, but is missing cases marked "Prefered", 

the rav.tig is acceptable.  Otherwise it is perfect. 

Determining whether ne case contents are understandable consist of checking 

tha *he meaning of all modifications in the case contents are covered by definitons. 

If they are not all covered the rating is unacceptable. If they are covered, but not 

all contextual checks in the relevant definitons are satisfied, the rating is 

acceptable.  Otherwise it is portect. 

Check.,ig that the case contents of a verb satisfy the verb's case requirements 

makes use of the descriptor checks in the concept the verb is being mapped to. If 

the case satisfies the first check It is acceptable. If it satisfies the the second 

check, then it Is perfect. Otherwise, the case is unacceptable. 

The remainder of this section consists of three examples illustrating how the three 

different measure parts are used to affect the parsing process. 

In the sentence "The program stores and retrieves data.", "data" r ',ould be viewed 

as the object of "stor"" as well as "retrieves". As we noted In 4.3.3, ,is depends 

on the meanings of "store" and "data", and is not true for all sentences with this 

sy..tax. The parser decides whether to use "data" as the OBJ of "store" 

depending on which is better, the measure of "The program stores", or the measure 
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of "The program stores data," The measure of the latter is better since the 

definition of "store" states that the OBJ case is preferred, and "data" does not 

violate the case preferences of "store". 

For an example of the case preferences at work, consider the sentence, "If the 

scene fit and the user said the guess was  'correct, then every....".   The clause 

introduced by "If" has two syntactic readings, namely 

[IF  (CONJ AND or [IF  {SAY PN 
[SUB AND (FIT THE SCENE) 

{FIT PN (USER THE)] 
[SUB (SCENE THE)] [WHAT (BE PN 

} [SUB (GUESS THE)] 
[OBJ "Correct"]] 

{SAY PN >] 
[SUB (USER THE)] 
[WHAT  {BE PN 

[SUB  (GUESS THE)] 
[OBJ  "Corrtct")]] 

> 
)] 

the definition of "say" which maps to #INPUT requires that the SUÜ case satisfies 

the check (ISA #IO-DEVICE). This gives the first parse a better measure than the 

second, since the SUB of the second includes "fit" as part of its compound SUB, and 

"fit" cannot be viewed as #IO-DEVICE. 

The noungroup "each relation in the concept which Is in the scene." provides an 

example of the "understandability" criteria.   There Is no a priori reason for it to 

mean 

[NOUN (RELATION EACH (IN (CONCEPT THE)) 
{I*BE NN 

[AR61  !malch_lo_head_noun] 
[ARG2 (SCENE THE)] 

>)] 

rather than 

[NOUN (RELATION EACH (IN (CONCEPT THE (ÜBE NN 
[ARG1 Imalch to head noun] 
[ARG2 (SCENE'THE)] 

))))] 
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But if scenes, concepts and relations had been defined as shown In Figure 5.12, the 

first parse would obviously be correct. The first modification In each is perfect. 

The reason Is that "relation" Is a #DATA (Figure 5.6), hence there Is a meaning for it 

to be modified by a prepositional phrase whose preposition is "In". The moaning of 

the modification is #MEMBER, and "concept" satisfies both #MEMBER checks; it Is a 

set, and Its generic element Is a "relation". The second modification In the first 

parse is also perfect. 1#BE maps to #MEMBER, and "scene" satisfies both checks. 

The second modification of the second parse is only acceptable, however, since it 

fails the second #MEMBER check since "concepts" cannot be viewed as the 

generic element of the scene. 

5.6   Future work 

5,6.1   Tense evaluation 

The Interpreter makes elmost no use of the tense information returned by the 

parser. This does not affect Its performance greatly, as the dialogues It has 

handled have all been straightforward (with no skipping about Into the future or 

past) linear algorithm descriptions. 

But It is easy to see how the proper interpretation of tense information is necessary 

fr; understanding even the types of dialogues we have been considering. 

In "Set X to the tail of X. If the head of X is/was 5, then ..." the use of "is" or 

"was" determines whether the program designer means the first or second element 

of the original X. 
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Similarly, In 

"Test If the scene fit the concept and print "fits" If It does.  Then 
modify the concept.  If the scene fits/fit the concept..." 

the use of "fit" or "fits" determines whether the "fit" predicate should be 

recalculated for the new modified concept, or whether the old value should be 

accessed. 

5.6.2  More domain and general programming support 

Programming and domain knowledge is necessary for several reasons. A system 

well versed In programming and domain knowledge will ask fewer unnecessary 

questions of of the user, thereby making for a more practical system. A well 

informed system will also be able to follow the program designer that much more 

easily. 

For instance, If the designer says, 

"Write me a program which sorts a list of words.   The comparison 
function should  be alphabetical order.", 

understanding the second sentence requires knowing something about sorting 

programs. Information like this will be forthcoming from the two PSI modules 

concerned with domain and general programing support. The modules and the 

Interface between them and the Interpreter are being developed. 
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5.6.3  Building up more concepts and definitions 

Expanding the Interpreter's collection of concepts and definitons Is the most 

obvious improvement that can be made to the system. It Is impossible for the 

Interpreter to understand a primitive Idea unless It has a concept to represent that 

thought. Thus a simple sentence like "Print the greatest number in the list" cannot 

be understood unless the system has the concepts #GREAT and SUPERLATIVE. 

And if it can understand that sentence, the Interpreter still won't be able to 

understand, "Print the number in the list which is larger than any other number in the 

list" unless it has definitons which map "larger" into #GREAT and "any other 

numbar" Into a ^SUPERLATIVE. 

However, with the proper concepts and definitions, which are easy to write, the 

Interpreter can understand these sentences and many more. By having people 

exercise the system, and then teaching the system any unknown concepts and 

definitions which have been used, we hope to build up a collection of concepts and 

definitions which will be comprehensive 'ough lo support mos'. reasonable 

dialogues. Appendix A contains dialogues illustrative of the system's current 

capabilities. 
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Appendix A.   Example Dialogues 

Here we present a number of dialogues handled by the system. Some are target 

dialogues for PSI system and others were written to illustrate a point In natural 

language processing. Each dialogue Is followed by the program specification the 

Interpreter produced from It. 

The first dialogue Is one of the original PSI target dialogues. In It, the user wishes 

to write a program similar to one described in [Winston 75]. The program, known as 

a concept formation program, is "...a type of simple learning program that takes as 

input several objects that are instances of some cjncept and also several objects 

that are not instances of the concept. As output, it produces an abstracted 

description of the concept so that given a new instance, it can classify that 

instance as representing the concept or not" [GREEN 76]. The second dialogue Is 

another version of the same program. The next three dialogues are PSI target 

dialogues which are simpler versions (from a coding standpoint) of concept 

formation programs. 

Dialogues six and seven are two different ways of specifying a graph traversal 

algorithm. The first is a description of what the algorithm Is to accomplish. The 

second describes how the algorithm should be implemented. 

The last four dialogues are all variants of Information retrieval programs. 
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-DIALOGUE 1- 

WHAT 15 TMr NAME Of THE PROGRAM YOU WISH TO WRITER TF 

DOES TF HAVE A SPECIAL PROGRAM TYPE' Theory tomiatlon 

DESCRIBE TF. 
It Inputs a scene, tests whether It fits the concept, verifies the result of this test 
with the user, and updates the concept. Then It repeals the prccess. 

WHAT IS THE STRUCTURE OF THE SCENE7 

An Input scene will Just be a collection of relations, each of which Is a property name 
followed by the names of the objects over which the properly holds. 

WHAT IS THE STRUCTURE OF THE CONCEPT' 
It should be a set of relations, each marked either "possible" or "necessary". 

WHAT IS THE INITIAL VALUE OF THE CONCEPT' 
Initially the concept has no descriptions at all. 

PLEASE DEHNE WHAT IT MEANS FOR A SCENE TO FIT A CONCEPT. 
The scene fits the concept If all of the relations In the concept 
that are marked "necessary" are par! of the scene. 

DESCRIBE VERIFYING THE CONCEPT, 
Output the result of the test, ask the usei If this Is correct, and Input the user's response. 

WHAT IS THE ARGS OF THE ASk' 
"correct or wrong1" 

WHAT IS THE STRUCTURE OF THE RESPONSE' 
The response should be "correct" or "wrong". 

DESCRIBE UPDATING THE CONCEPT. 
There are four cases. If the scene fll and the user said the guess was correct, then 
every relation that Is part of the scene but not part of the concept should be added to 
the concept and marked "possible". 

DESCRIBE THE NEXT CASE. 
The next case Is If the scene fit and the user said "wrong": then find a relation In the 
concept which Is marked "possible" and which Is not In the scene.  Change Its marking to "necessary", 

DESCRIBE THE NEXT CASE. 
If tne scene did not fll, and the user said "correct", then do nothing. 

DESCRIBE THE NEXT CASE. 
II the ^cene did not fit, and the user said "wrong", then lor each relation In the concept 
marked "necessarv" that Is not In the scene, re-mark It "possible", 

WHAT IS THE FORMAT OF THE OUTP'JT' 
Output "fit" If the scene fit, "didn't fll" If It didn't. 

WHAT IS THE EXIT TEST OF THE LOOP' 
Stop when Ihe user types "quit" Instead of an Input scene. 

ARE WE FINISHED'    yes 



Appendix A Example Dialogues 155 

TF 
PI   •■  PHI 
LOOPl: 

PR!NT<"R»äH^  for   tht SCENE") 
R? . RERDd" 
If  EQURLW  "quit") 

Th»n GO EXIT1 
B4 ► FIT(R2 Rl) 

CM*tl     H  R4 
Then PRINT ('■) 11") 

tlsa   If  NOTffl«) 
Th»n PRINT("didnM   fit") 

PRINTC'correcl  or  Mronq'") 
RS  » REROO 
Can»)     If  flN0(B4  EQUAL (H5  "corr«ct")) 

Thtn fill  ►  The s«l of  all  RIB   in «2 such  lh*t: 
NOTffiErBERfflie RID 

For  «II   RIB   in fill  do: 
Rl  -  INSERTIRIB Rl) 
MRPfflS RIB "possible") 

■Is«   If  RND(fl4  EQURLIRS  "wronq")) 
Then R7  ►  The  set  of  any  1  fl6   in Rl  »uch  that! 

RNOfNOTinEHPERfflB R2)) 
EQUAL (IHRP'03 fi6)   "possibl»")) 

For alI  R6  In fl7 do; 
linP(R3 fl6  "necessary") 

else  If flND(NOT(fl«) 
EQUAL(R5   "correct")) 

Then NIL 
tlsa  If  RN0(N0T(R«) 

EQUAL IAS  "Hronq")) 
Than A9 »  The set  of all  AS   in Al such  that! 

AND(EQUAL(IHRP(Al A8)   "nacessary") 
N0'<HEHBER(A8 A2))) 

For  «I I  Ag  in R9 do: 
tlflPlfla RS "possible") 

Goto LOOPl 
EXITl: 

FITtPI BD 
F0RRLL(B3) inPLlES(AN0(EQURL(|nRP(A3 BJ) "necessary") 

nEHBER(B3 B2)) 
f1EHBER(R3 BD) 

AS is either a string whose value Is "wrong" or a string whose value it "correct" 

A4 is either TRUE or FALSE.  Bl It a variable bound to A2. 

A3 it a napping Iron the tlenentt of Al to tithar a tiring whose v«lu« 
it ''necessary" or a string whose value it "possible". 

B3 is a variable bound to A12.  BJ is a variable bound to Al. 

ft2 is either a set whose generic olenent it a record whose fialdt «re 
PROPERTY: a primitive name and NAME-SET: a set whose generic alencnl It 
a primitive name or a string whose value it "quit". 

Al is a set whose generic element Is a record whose fieldt «ra PROPERTYi 
a primitive name and NAME-SET: a tet whose generic element It « 
primitive name with assertions: 

EQUAL(IMAP(A3 R12) A13) 

A13 Is either a string whose value Is "necessary* or a string whose 
value is "possibls" 

012 It the generic element of Rl. 
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-ÜIALOQUE 2- 

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE' 
Atch 

DOES ARCH HAVE A SPECIAL PROGRAM TYPE' 
Theory fomatlon. 

DESCRIBE ARCH. 
The program Is a loop. On fach Herailor, It reads In a 
trial-Item, matches the input to the Internal concept model, »nd 
prints the result of the match  The user must then mtomi the 
program whether or not the gues^ Is correct, and the pfogram 
modifies Its model ot the concept accordingly. 

WHA. IS THE STRUCTURE OF THE TRIAL-ITEM' 
A trial-item Is a set ot relations. 

WHAT IS THE STRUCTURE OF THE MODEL? 
The model is a f.et of relations, each marked 'necessary" or 
"possible". 

WHAT IS THE STRUCTURE OF TH? RESPONSE'' 
"correct" or "wrong". 

WHAT IS THE STRUCTURE OF T 'E RELATIONS IN THE TRIAL-ITEM" 
a lelalloo Is a property name and a list ot atoms. 

WHAT IS THE INITIAL VALUE OF THE MODEL' 
Nil. 

PLEASE DEFINE WHAT IT MEANS FOR A SCENE TO MATCH A CONCEPT. 
A trial-item matches the model II all the re.atlons In the model 
■hat are marked "necessary" are elements of the trial-Item. 

WHAT IS THE FORMAT OF THE PRINT' 
Type "the trial-Item mitches" It the trial-Item matched and 
"the trial-Item does not match" If It didn't. 

DESCRIBE MODIFYING THE MODEL 
If the trial-item matched and the user said the guess was correct, 
then every relation In the trial-Item which is not In the model 
snould be put in tr,^ model and marked "possible". If the 
trial-Item matched and the user said "wrong" , then change the 
marking of a relation marked "possible" which Is In the model and 
not in the trla'-ltem to "necessary". If the trial-Item didn't 
match, and the user said "correct" , then do nothing. If the 
Srlai-ltem did not match, and the user said "wrong" , then re-mark 
each relation In the model marked "necessary" that is not in the 

trial-Item "possible". 

WHAT IS THE EXIT TEST OF THE LOOP' 
stop when the user 'ypes "quit" Instead of a trial-Item. 

ARE WE FINISHED'       yes. 

- 
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RRCH 
ni » PHI 
LOOPl: 

PRINTC'Rtaiiy   »or   Ih«  TRIflL-ITEH") 
nz ► RESOO' 
It  EQURKR? "quil") 

Then GO EXIT! 
f\i   »  MRTCHIfi?  fll) 
Casts:     H m 

Th»n PRINT("th»  lri«l-lt«l» IMlch««") 
•Is«   II  N0T(R4) 

Thtn PRINTC'lh«  Irltl-ilM dots not Mtch") 
RB i. RERDO 
C«s»si     II RNDtfl« EQURl. (fl5  "eorrset")) 

Thtn Rll  » The set  ol «H  R18  In R2 such that; 
NOT(nErtBER(Rie RD) 

For  «II   nie   In All  do: 
Rl  <■   INSERTtflie Rll 
nRPtR3 R18 "possible") 

else   II  RND(R4  EOURL(RS  "uronq")) 
Then R7  t.  The  set  ol  sng  1  fl6   In Rl  such  thtli 

flN0INCT(nEnBCR(fl6 fl2)) 
EQURL(innP(R3 fl6)   "possible")) 

For  «II   RE   in R7 do: 
nnp(fl3 RB  "necessery") 

else  If RND(N0T(R4) 
EQUAL(RB   "correct")) 

Then NIL 
else   II RNDINOTIRA) 

EQURLIRB   "wrong")) 
Then fl9  >■   The  sei  ol  «II  fl8   in Rl  such  th«tl 

RNDtEQDRL(inflP(R3 R8>   "necess«ry") 
N0T(nEf1BER(R8 fl2))) 

For  «I I   R6   in R9 do: 
nRP(R3 R8  "possible") 

Goto L00P1 
EXIT1: 

fIRTCMIBl B2) 
F0RRLL(B3) inPLIES(RND(EQURL(lf1flP(fl3 B3) "necessary") 

nEMBER<B3 B2)) 
nE«BER(B3 BD) 

RB Is either « string uhose v«1ue is "wrong" or « string whose value Ic "correct". 

fl4 is either TRUE or FALSE.  B3 is « v«ri«ble bound to fll2. 

R3 is ■ Clipping Iron the elements ol Rl to either a string whose value 
it "possible" or a string whose value It "necessary". 

b2 Is • variable bound to At.  Bl It a variablt bound to R2. 

A2 is tlthor a stt whose generic element is a record whose lieldt art 
PROPERTY: a primitive name «nd ATOfl-LIST; a list whose generic element 
Is a primitive or a strmq whose value Is "quit". 

Rl Is a set whose generic element Is a record whose fields ere PROPERTY: 
a primitive n«me and ATOII-LIST: « list whost gtntrlc element It a 
primitive with assertions: 

EXISTS(B4) EQUAL(inRP(R3 B4) H13) 

R13 is either a string whose value Is "possible" or a string whose value It "necessary" 

B4 It a .arlablt bound to R12. R12 It Iht generic element ol Rl. 

4 
I 
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-DIALOGUE 3- 

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE' CLASS 

DOES CLASS HAVE A SPECIAL PROGRAM TYPE' Nc 

DESCRIBE CLASS. 
CLASS first Inputs a concept. Then It repeatedly accepts in Input scene from s user, classifies 
It based on whether or not It fits the concept, and outputs this classlflcj, ion tc the user. 

WHAT IS THE STRUCTURE OF THE CONCEPT' 
The concept will just be a collection of relations, each of which Is a propeliy name 
followed by the names of the objects over which the properly holds. 

WHAT IS THE STRUCTURE OF THE SCENE' 
The scrn» has the same structure as the concept. 

PLEASE DESCRIBE WHAT IT MEANS FOR A SCENE TO FIT A CONCEPT. 
The scene fits the concept If all of the relations In the concept are part o! the scene. 

WHAT I" THE FORMAT OF THE OUTPUT' 
Output    :ii" If the sce-v< fit, "Didn't fit" If It didn't. 

WHAT IS THE EXIT TEST OF THE LOOP' 
Slop when the user types "Quit" Instead of an Itput scene. 

ARE WE FINISHED' yes 

CLBSS 
PRlNTC'P^ady for th« CUNCEPT"! 
Rl -  RERDO" 
L00P1: 

PRINT("Ready (or th« SCENE") 
«2 -  REBOO" 
It EQUAL(«2 "Quit") 
Then CO EXIT1 

R3 ► FIT(R2 fll) 
CaE«';  '( P 

Then PRINT("Fit") 
else If N0T(R3) 

Then PRINT("Didn'I fit") 
Goto L00P1 

EXIT1; 

FITtBl B2) 
F0RPLL(B3) inPI 'ES((1EnßER(B3 82) 

nEriBERIB3 Bl') 

03 is either TRUE or FRLSE.  Pi Is a variable bound to (12. 

B3 is a variable bound to fl4. B2 .s a variable bound to Rl. 

R2 is either a set uhose generic element Is a record whose fields are 
PROPERTY: a primitive name and NRflE-SET; a set uhose generic «lament is 
a primitive name or a string uhose value Is "Quit". 

HI is a set uhose generic element Is a record whose fields are PRDPERTYi 
a primitive name and NRflE-SE': a set uhose generic «iemenl It a primitive name. 

R4 Is th« generic element of Rl 
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-DIALOüUE 4- 

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE? 

Classl 

DOES CLASS 1 HAVE A SPECIAL PROGRAM TYPE' 

no 

DESCRIBE CLASSI. 

It reads a concept. Then It repeatedly reads a string and tests If It 
Is In the concept. If It Is, It types "Its In!". Otherwise, II types 
"no   In". The concept Is a collection of strings. 

WHAT IS THE EXIT TEST OF THE LOOP' 

Stop when the user types "quit" 

ARE WE FINISHED' 

Yes. 

CLBSSl 
PRINTC'Ready   (or   Ih.  CONCEPT") 
fii  ► RERDO 
L00P1: 

PR!NT("Ready   lor   Ih«  STRING") 
fi2 * REBOO 
H  EQUAL(fl?  "quit") 

Then CO EXIT1 
fi3  ►  nEnBER(B2 Rl) 
If  m 

Then PRINT("lU   •«!") 
•It«  PRIN1l"not   in") 

Goto L00P1 
EXITIt 

fi3   Is either  TRUE  or FALSE. 

R2   is  either  •  dring or a  itrlnij whose  value   It  "quit" 

Ri   it a ttt  whose generic eleAcnt   It • itrlng. 

169 



Appendix A Example Dialogues 160 

-DIALOGUE 5- 

WHAT 13 THE NAME OF THE PROGRAM YOU WISH TO WRITE' 

ClassO. 
DOES CLASSO HAVE A SPECIAL PROGRAM TYPE? 

no. 

DESCRIBE CLASSO. 

It r»ads a concept, 

WHAT IS THE STRUCTURE OF THE CONCEPT? 

a collection of strings. 

ARE WE FINISHED' 

Then It repeatedly reads a set ol strings and prints "Its a s'ibset" If all the 
elements In the set are In the concept. Otherwise II prints "not a subset". 

WHAT IS THE EXIT TEST OF THE LOOP' 

Stop when the user types "quit". 

ARE WE FIN    HEO' 

Yes. 

CLflSSB 
PRINTC'Rsady   lor   th«  CONCEPT") 
Rl   -  RERDO 
L0PP1: 

PRINT("Re,»dy   (or   the  ELErOT-SET") 
R2  *  RERDO 
H  EQURLtfl?   "quit") 

Then CO EXITl 
If FORRLLtBU   IflPLIESmEtlBERIBl fl2) 

nEflBERIS' RD) 
Then PRINTt"it» a subset") 
else PRINT("not  a subset") 

Goto L00P1 
EXITl: 

Bl   is a variable bound  to R3. 

fl2   is either  a  set  Hhose generic  element   is a  string or  a string Mhose 
value is  "quit". 

Rl   is a set  whose generic element   Is a string, 

fl3   It the generic  element  of  R2. 
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-DIALOGUE 6- 

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?      Flndnode» 

DOES FINDNODES HAVE A SPECIAL PROGRAM TYPE? no 

DESCRIBE FINDNODES. 

The program should Input a graph and a node. A graph Is a set ol' pairs. 
Each pair consists ot two nodes, which are primitives. The program 
outputs a list ot all the nodes which can be reached from the Input node. 

PLEASE DESCRIBE WHAT IT MEANS FOR A NODE TO BE REACHED FROM ANOTHER 

A node X Is connected to a node Y If there exists a pair In the graph 
such that X and Y are In the pair. X can be reached from Y If X Is 
connected to Y or If X can be reached from a node which It connected to Y. 

ARE WE FINISHED'       Yes. 

NODE. 

FINDNODES 
PRINTC'Readg  tor   tht GRBPH and  Iht NODE') 
HI  » REflDO 
Rr » KEflDO 
RS  ►  The set  o(  all  03   In all fi*   In 31 such  that; 

RERCHtflS R2) 
PRINT(R5) 

RERCHtBl B2) 
0R(C0NNECT(B1 B2) 

EXISTS(B6)  RN0(C0NNECT(BB B2) 
RERCHCBl 66))) 

CONNECT(B3 B«) 

EXISTS(B5) RNDtnEhBERtBS RD 
f1EnBER(B3 B5) 
ftEhBERCB« BS)) 

B6 I* • variable bound to R6.  BS It a varlabl« bound to fl7. 

B4 is a variable bound to Y.  63 it a variabla bound to X . 

B2 is a variablt bound to Y. Bl it a variable bound to X 

R4 It the generic tlement of Rl.  R2 It a prlnitivt. 

Rl Is a set uhosa generic •Itfflant Is a tet ol tlze 2 Hhott generic 
a lenient it a prlml t Ivc. 

X it « primitive.  Y It « prlMltlvt. 

R7 It a tet of tlze 2 uhotc generic element It a primitive. 

R6 It • pr im111ve. 
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■DIALOGUE 7- 

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE'    Reach. 

DOES REACH HAVE A SPECIAL PROGRAM TYPE'    No. 

DESCRIBE REACH. 

It reids a graph and a node. The graph Is a set p< nodes and a mapping which maps a pair of 

nodes Into an erig«. Nodes and edges are prln stives. The program puts the Input node Into 

a set Nodes. Then It f-peatedly llnds a nvde In Nodes which Is not marked "done" , marks It 

"dono" , and places all th« graph nodes connected to It which are not In Nodss Into Nodes. 

WHAT IS THE INITIAL VALUE OF NODES'    Nil, 

PLEASE DEFINE WHAT IT MEANS FOR A NODL TO BE CONNECTED TO ANOTHER NODE. 

Two nodes are connected If they are mapped Into an edge. 

WHAT IS THE EXIT TEST OF THE LOOP' 

Stop when there are no nodes In Nocss which are not marked "done". 

ARE WE FINISHED'    Output Nodes 

WHICH ONE OF EITHER REACH OR THE LOOP DOES THE OUTPUT BELONG IN'    Reach. 

REACH 
NODES - PHI 
PR IN[("Ready   for   Iht GRAPH and  the NODE") 
m   » REPDO 
fi2 ^ REftOO 
NODES -   INSERTtn: NODES) 
L0OP1: 

R*   ►   The  SRI  of   any   1  R3   in NODES  such   that: 
NOT(tQUnL(inRP(PS fl3)   "done")) 

If  EQUAL (R4  PHD 
Then GO EXITl 

For  »I I   R1   in fl4  do; 
tinPfBS fi3  "done") 

RS  ►  The  set  of   all  PB   in  R7  such  thai: 
RNDIFORRLLfBD   IflPL IE5 (hf hBER (Bl  R4) 

CONNECTtflG BD) 
N0T(t1EhBER(RG NODES!)) 

For  all   P6   in R8 do: 
NODES  -   INSERT(RB NODES) 

Goto  L00P1 
EXITli 
PRINT(NODES) 

CDNNECT(B2 B3)   EXISTS(B4)   EQUPL (IhflP (fl9   IB2 B3I   )  B«) 

PS   is  the DRTR of   the hRPPING field of Rl.    6«   It a variable bound to (US.     K   is a prlnitiv«. 

B2   is  a variable bound  to R12.     Bl   is a var^ble bound  to fi3.    B3   Is a variable bound  to Rll. 

R?   is   the DRTR of   the NODE-SET  field of Rl.    NUDES   Is a set uhose generic element   is a prlnitiv«, 

RS   is  a  mapping   from  the elements  of  R4   to a  string whose  value   Is   "done" 

Rl   is a record uhose   fields are NODE-SET:   a set  uhose generic element   Is a primitive and 
ttRPPING:   a mapping  from a set  of sue 2 whose generic element   Is a primitive  to a primitive. 

ni2   is a primitive.     Rll   is a primitive.    R16   Is a primitive. 
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-DIALOGUE 8- 

WHAT IS THE NAME OF THE PROGRAM VOU WISH TO WRITE? 

COOKBOOK 

DOES COOKBOOK HAVE A SPECIAL PROGRAM TYPE' 

no. 

DESCRIBE COOKBOOK. 

Cookbook Inputs a recipe list, and then repeatedly Inputs * name and 
prints the recipe with that name. 

WHAT IS THE STRUCTURE OF THE RECIPES IN THE LIST? 

A recipe has a name, an ln]redlent-llsl, and directions. The name and the directions are 
strings of characters. An Ingredlenl-llsl Is a list whose elements have an Ingredient and an amount. 

WHAT IS THE STRUCTURE OF THE INGREDIENT' 

An Ingredient and an amount are both strings ot characters. 

WHAT IS THE EXIT TEST OF THE LOOP' 

Stop when the user types "gult" as a recipe name, 

ARE WE FINISHED' Yes. 

(COOKBOOK    NIL 
PRINTC'Ready  (or   the RECIPE-LIST") 
Bl  ► REROO 
LOOPli 

PRINTC'Ready  (or   the NfiflE") 
fi2 <• RERDO 
II  E0UPL(B2   "quit") 

Then CO EXIT1 
R4 »  The set  o( all  03   in Rl  such  that: 

EQUAL(fl? FETCH(fl3 NSdE)) 
For all  fl3   In A4 do: 

PRINT(R3) 
Colo L00P1 

EXITli 
) 

R2   Is either a primitive name or a string uhose value  It "quit" 

Al   is a   list  whose generic element   Is a record whose  lleldt art NAftEi   a 
string  ,   INGREDIENT-l IST:  a   list whost generic element   it a record whose 
(lelds arc  INGREDIENT:  a tiring and RhOUNTi  a tiring , and 
DIRECTION-SET:   a Ml whote generic element   It a tiring. 

-n—"^"a 
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-DIALOGUE 9- 

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE? 

Recipe. 

DO^S RECIPE HAVE A SPECIAL PROGRAM TYPE' 

no. 

DESCRIBE RECIPE. 

II reads In a leclpe list. A recipe consists o( a name and a siring. 
Then It enters a loop which reads a recipe name and prints the recipe 
with that name. If there '   -«o recipe with that name, print 'no such recipe" 

WHAT IS THE EXIT TEST Of THE LOOP' 

Stop when the user types "quit" 

ARE WE FINISHED' 

Yes. 

RECIPE 
PRINTC'Raady  (or   th« RECIPE-LIST") 
Rl  ► REOOO 
L00P1: 

PRINTC'Ready  lor  th« NRIIE") 
B2 ►  REflOO' 
H  EQUfiL(P2   "quit") 

Thsn  CO EXITJ 
fl4  >■  The sal  o( all  fl3   in Rl such  thati 

EaURL(rETCH(R3 NflflE)  R2) 
If  EQUAL(R4 PHI) 

Th«n PRINTC'no such  rscips") 
•Is«  For  all  R3   in R4  do; 

PRINT(R3) 
Goto L00P1 

EXIT1; 

R2   is oither a primitiv« nan« or a string uhos« value   is "quit". 

Rl   is  a   list  uhos«  q«n«ric  element   Is a rscord uhos«   liatds  »re NflftEi   • 
primitiv«  name  and  SIRING:   a string. 
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-DIALOGUE 10- 

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE'     News. 

DOES NEWS HAVE A SPECIAL PROGRAM TYPE'    News retrieval. 

DESCRIBE NEWS. 
It answers questions about a data bas*. 

WHAT IS THE STRUCTURE OF THE GENERIC ELEMENTOF THE DATA-BASE' 
The data base Is a list o) descriptors, each of which describes one newspaper story. 

WHAT IS THE STRUCTURE OF THE DESCRIPTOR' 
A descriptor consists of a set of feature«. 

WHAT IS THE STRUCTURE OF THE QUESTION' 
A feature and a flari. 

WHAT IS THE STRUCTURE OF THE FEATURES IN THE DESCRIPTOR' 
Each feature consists of a property and a value.  A property Is a name which 
Is a character string. A value Is either a number or a string of characters. 

WHAT IS THE STRUCTURE OF THE FLAG' 
The flag will be either "descriptors" or "number". 

WHAT IS THE INITIAL VALUE OF THE DATA-BASE'    Unnecessary. 

DESCRIBE THE ANSWER. 
If the flag Is "descriptors" , then the piogram should print each 
descriptor that contains the feature. 

ARE WE FINISHED' 
It the flag Is "number" , then It should Just print the total 
number of such descriptors. 

ARE WE FINISHED'   Yes. 

NEUS 
PRINTrResdy   for   the  QUESTION") 
fll  .-  REflDO 
R4 ► The sei ol all R2 in (13 such that: 

htflBERIRS fi?) 
If EQUPL(R6 "descriptors") 
Then For all R? In R4 do; 

PR|NT(R2) 
M EQUAL(R6 "number") 

Then PRINT(B7) 

RS is the DRTR of the FLRC field ol Rl. AS Is the DRTR of the FEATURE field of Rl. 

R7 is a number which is th« size ol R4. 

R3 Is a list whose generic element Is a set whose generic element Is a record 
uhose fields are PROPERTY: a string and VRLUEi either a string or t  number. 

fi) Is a record whose fields are FERTURE: a record whose fields are PROPERTYt 
a string and VRLUEi either a string or a number and FLRCi either a tiring 
whose value is "number" or a string whose value It "descriptors". 
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-DIALOGUE 11- 

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE? 

Write me a news retrieval program 

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE'    New» 

DESCRIBE N?WS. 

It ha» a data base o( news stories. Each story has a set of key words associated with It.   I'll 
request a story .y giving a key word. The response should be all the stories with that key word. 
If the command Is "number" followed by a key word, then the number of stories having that 
k<y word should be printed. 

WHAT IS THE STRUCTURE OF THE STORYS IN THE DATA-BASE' 

they are strings. 

WHAT IS THE STRUCTURE OF THE KEY-WORDS IN THE SET? 

primitive. 

WHAT IS THE INITIAL VALUE OF THE DATA-BASE' 

unnecessary. 

WHAT IS THE INITIAL VALUE OF THE KEY WORD SET' 

unnecessary. 

I 
ARE WE FINISHED'    yes 

NFUS 
PRINTC'Ready   tor   |h«  t-EY-UORO") 
(11   .   REROir 
Casss!     It  EOURLtRl RID 

Then fll8 ►  The set  ol  all  R9   In R3 such that: 
nEhBERIflll   If1flP(R6 R9)) 

PRINT (RIB) 
• Is«   II  EQUAL (fll AS) 

Then fl4 »  The set of  all  H2   in fl3 such  thati 
nFf1BER(fl5  IflflPtflB H2)) 

PRINT(fl7) 

Rl1   is a pr imi t i ve. 

fl6   is  a  record  whose   fields  are STRING!   a  string whose  value   It  "number" 
and  ►EY-UORO:   a  primitive. 

H7   is  a number which   Is   the size ol  RA. 

R6   is a mapping  from  the elements ol  H3  to a set  whose generic element   Is a primitive, 
\ 

HS Is the DRTR of the KEY-UORD field of R8. 
i 

R3 is a set whose generic element Is a string. Rl it either Rll or B8. 

' 

.    , . , . 


