ADAQ 58531

/) June 1078

! ;;A//, 7

Stanford Artificial Intelligence Laboratory
Memo Al 16 ra

Report No STAN-CS-78- -671,
AIM- S’Jé

;—-"“"’—/

YN L
@ NATURALJ.ANGUAGE,PROCESSING IN AN (

e AUTOMATIC PROGRAMMING DOMAIN,

]

——— by

,/) Jerrold M. Ginsparg

-?-:0
o
- a.
QO
[
t Ll Research sponsored by
s =
[== BT .:_\ ~. Advanced Research ?rojrectjA,gency
= ey -
= v ALY
=T = / Doc Toval The-1=5
S COMPUTER SCIENCE DEPARTMENT J
(o Stanford University)
T MUA NS =76 -~ BAYE,

/J/ ARPA Ord: v MY

This document has been approved
for public rc! ¢z~ ond szle; i
distribution is unlimited.

BEST
AVAILABLE COPY

i

E
E
:

s e i AT

(il

il

i

Stanford Artificial Intelligence Laboratory June 1978
Memo AIM-316

Computer Science Department
Report No. STAN-CS-78-671

NATURAL LANGUAGE PROCESSING IN AN

AUTOMAT\C PROGRAMMING DOMAIN - <

by ot i

Jerrold M. Ginsparg . 11

This paper is about communicating with computers in English. In particular, It describes an
interface system which allows a human user to communicate with an automatic programming

system in an English dialogue.

The interface consists of two parts. The first is a parser called Reader. Reader was designed to
facilitate writing English grammars which are nearly deterministic in that they consider a very
small number of parse paths during the processing of a sentence. This efficiency is primarily
derived from using a single parse structure to represent more than one syntactic interpretation !

the inj ntence.

The second part of the interface is an-aniinterprater which represents Reader's output in a form
that can be used by a computer program without linguistic knowledge. The Interpreter is
repsonsible for asking questions of the user, processing the user's replies, building a
representation of the program the user's replies describe, and supplying the parser with any of
the contextual inforr -*i~n or general knowledge it needs while parsing. x.

\

)
T his thesis was su' mitted to the Department of Computer Science and the Committee on Graduate
Studies of Ster,urd University in partial fulfillment of the requirements for the degree of Doctor of
Philosophy. ———
’_’__‘_,.—-’*

T his research was supported by the Advanced Research Projfects Ag7cy of the Department of

Defense under ARPA Order Ne. 2494, Contract MDA903-76.C.0206./T he views and conclusions -

contained in this document are those of the authors and should mof be interpreted as necessarily
representing the official policies, either expressed or implied, of Stanford Unlversity, or any agency
of the U. S. Government.

J

#

i
|
il
!
{
B
|
|
N
;

A 1 1A e 1O 1O 0 e O R

LA

§
1
|
§

T

o

T

ACKNOWLEDGEMENTS

| would like to thank,
my advisor, Professor Terry winograd,

the memvers of my reading committee: Professor Cordeil
Green and Dr. Daniel Bobrow,

the PSI group: Dave Barstow, Richard Gabriei, Elalne Kant,
Juan Ludiow, Brlan McCune, Jorge Phllllps and Lou Steinberg,

and Martin Brooks.

for thelr help in the preparation of this thes:s.

L A1 A0S0 R i i s LR R

AGCTSSIN for :
NTIS \ihite Santion =
nos Bult Saction 2
INANNHOUHCTD G
s eANI Par Foeer
:" 5o e~)
; Y .
DR TRAVAILARMTY 10 :
E . St AL
v l i
i

) mn_nmo PAGE BLANK-NOT FILMED

%
|
|

T

Table of Contents

Section

1. Introduction

1.1 Organization

1.2 Capabiliities
1.2.1 The parser
1.2.2 The Interpreter

1.3 Three Examples

1.4 PSI

1.6 An Overview
1.6.1 Reader

1.6.2 The interpretet

2. Parsing
2.1 The Basic Algorithm
2.2 Stack structures and collapsing
2.3 Reader's output
2.3.1 Cases
2.3.2 Tense markers
2.3.3 Noun groups
2.3.4 Cholces

2.3.6 Conventions

v

20

23
23
26
32
32
37
42
44

46

i

Table of Contents
Section Page
3. Grammur writing 60
3.1 Some beginning grammars E

3.1.1 Grammar.1 62

3.1.2 Grammar.2 54

3.1.3 Grammar.3 69

- 3.1.4 Grammar.4 62

3.2 Grammar efficiency 656

% 3.2.1 Nouns as modifiers 67

: 3.2.2 Reiative ciauses 68

- £.2.3 Verbs which accept ciauses 70

: 3.2.4 Conjunctions T2

3.2.6 Verbs Inflected with ed endings 76

4. A closer look 79

4.1 Measure 79

4.1.1 The semantic component 80

- 4.1.2 The Syntactic Component 83

7 4.2 Coliapsing 86

o 4.3 Formatting 82

% 4.3.1 Noun groups 82

% 4.3.2 Conjunctions 93

% 4.3.3 Fiiiing in extra cases 956

% 4.3.4 Choit.es 956
;
1
%j:

[el LR

it bl

Bl

LAt o e L

e e e T A TTATEET) T TV}

T N

it

il

iRl

Tabie of Contents

Section
4.4 Parallel processing

4.5 Other parsers

6. The interpreter

6.1 The resuits of interpretation
6.1.1 The program specification
6.1.2 An exampie and comparison
5.1.3 Meta-comments
5.2 The knowiedge base
5.2.1 Concepts
6.2.2 Definitions
6 2.3 Procedural embedding
5.3 The processing cycie
5.4 Matching
65.4,1 Nouns
5.4.2 Pronouns
5.4.3 Matching to implicitiy mentioned componants
6.4.4 Coercion
5.5 The Reader/interpreter interface
6.6 Future work
65.6.1 Tense evaiuation
65.6.2 More domain and generai programming support

5.8.3 Buiiding up more concepts and definitions

vi

.

Page
te];]

100

106
108

108

132
136
140
142
143
146
146

147

148

o i L e e

T R

Table of Contents

Section Page

=
.

6. References 149

Appendix Page

A. Exampie Diaiogues 163

L

vii

m

m

T

F

i

MM -

e 0t e

WMWH e
i

1. Introduction

This paper describes a natural language processing system. The system Interacts
with & human user, who describes a computer pro:ram to it in English. The output of
the system Is a program specification, a fornal representation of the computer
program the user has described. The program specification can be used as a data

base for coding the user’s program by compute: programs without linguistic abliities.

Understanding program descriptions obtalned via dlalogues requires capabliities for
handiing almost all issues associated with natural lenguage processing. Indeed,
[Hobbs 77] mentions that even processing "well written algorithm descriptions"
involves "...some of the hardest problems of linguistic analysis." Since many of the
program descr!ptlon§ posed by the users of the system can best be characterized

as "nol so well written”, the system's natural language abliities must be extensive.

The system Is most naturally viewed as two Interreiated programs: a parser and an
interpreter. Reader, the parser, provides the means of storing and utliizing the
information about sentence structure (calied syntax) which Is necessary for the
proper Interpretation of the meaning of a sentence. Readet Is used to transform
the user's replles from strings of words Into structures In which the relations
between words are made explicit. The Interpreter uses the structures supplied by

Reader to construct the program specification.

sl

Sl sl

e e T

(i

=

i

WWWWMWWMMWWWMWWWWW TR

introduction 2

1.1 Organization

The next sectlon discusses the natural language abiilties an automatic programming
natural language system should have. The following section contains three short
examples which should help to exactly clarlfy what is meant by the program
specification, and provide some perspective on the naturai language processing
done by the system. The parser/Interpreter can be used as part of a more
compiete automatic system. Sectlon 1.4 briefly describes this system and the
interpreter's interaction with it. Section 1.5 is a short overview of the operation of

both Reader and the interpreter.

Chapter 2 Is a general discussion of Reader. Chapters 3 and 4 continue that
discusslon in much more detall Chapter 6 describes the program specification and

how It Is buiit by the Interpreter. Appendix A contalns several diaiogues run by the

systen.

1.2 Capabliities

1.2.1 The parser

Reader was designed with the foliowing criteria in mind.

The parsecr should be able to quickly recognize a substantlal subset of Engilsh. The
parsing should be done quickiy, so that the parser can be used in a practical
system. We mention parsing spead and grammar coverage together, because it is

easy to theoreticaliy achieve one or the other separately. Almost sli parsing

|

il

(L e

T TR

Introduction 3

schemes can parse a small set of sentences quickly, but few do as we'l when
recognizing a targe number of sentences while at the same time using & vocabuiary
which includes all possible syntactic uses for each word in the vocabt .ary. Reader
achleves speed without sacrificing grammar breadth because its prising process
can combine several s.ntactic possibliities Into a single parse path, thereby
avolding much of the backtracking or equivalently, parallel prc:essing, which

characterizes many other parsing schemes.

There should be a weli defined Interface between the parser and Interpreter which
allows the parser to interact with the interpreter and ask It to choose from among
competing parse: which are possibie syntactic Interpretations of a sentence. This
is necessary becai'se many sentences have more than one syntactic interpretation.
For example, in "..find a relation in the concept marked ‘possible.’", the parser
must be abie to ask whether the object of "find" is “a re/ation whose marking Is
‘possible’ which Is in the concept.”, or "a relation which Is In the marked

(‘possitle’) concept.”

The parser should be able to use the evaluation function nf the Interpreter to
provide parses in which most purely "function" words are eiiminated. Conslder the
sentence, "Classify the Input list on the basis of whether or not it fits the Initial
list". The hterpreter shouid be asked to judge the modificatlons among "on the
basis of", "classlfy" and the clause introduced by "whether". The parser should
then incorporate the answers into the parse, resuiting in a parse structure much

closer to the meaning of the sentence than a mere syntactic structure:

f
gl

il

il

%
L
E

introduction 4

(IMP ICLASSIFY NN .
[ARGS (LIST THE INPUT)]
(PROC IFIT NN
{ARGS 1T]
{ARGS (LIST THE INiTIAL))

The parse can be interpreted as,

Perform a classification. The argument of the classificatlon

is the input iist. The procedure for carrying out the

ciasslfication Is to test If the Input list fits the Inltial list.
The parser’s efficiency shouid not depend on using the Interpreter to discontinue a
possible parse of a sentence on semantlc grounds. The parser-interpreter
Interface should only be asked to evaluate parses which are syntactically
equivaient. Two partiai parses are syntactically equlvaient if both wlll lead to a
successful parse on the same sentence endings, or if the end of the sentence has
been reached and each Is a succzssful parse. The reason for this decislon Is that
In a rich environment we wouid expect the semantlc processing required to
discontinue a parse to be more expensive than the syntactic processing requlred to
determine that the parse cannot iead to a syntactic Interpretation. Woods, In
{Woods 73], has experimented along these lines and found that (in his case) "...it
looks as If It takes longer to do the parsing and semantic Interpretation overall If
the Interpretation Is done during the pursing than It does If the parsing Is done flrst
and the Interpretation afterwards." Of course, semantic processing wlll have to be
done to determine which syntactic parse of the sentence Is most meaningful; the
point Is that we wish to avold any semantic analysis whose effect couid be

achleved through syntactic analysis.

0

[

e

e e

Introduction 5

The assumption about the relative costs of semantics and syntactic processing
cannot be proved. We ~an note, however, that even the simpiest kinds of semantic
checks can require arbitrary amounts of inference in a generai system. For
exampie, consider the decision of whether a pair of words ("street iights", for
example) is a compound noun, or a noun foliowud by a verb. At first glance, it would
seem that this could be cheaply done by simply checking a marker on the first word
("street"), which indicates whether it i a suitable subject for the proposed verb
("iights"). However, there are two probiems with this approach. One is that simpie
markers on words are inadequate for deaiing with the probiems of ianguage. Many
words can be modified so that they are acceptabie subjects for verbs which are
not ordinarily associated witih them, eg., "The giowing radioactive street iights the
way for ..". The process of determining whether a modified noun is a suitable
subject for an arbitrary verb seems beyond simpie iook-up techniques. The second
probiem is that even if the potentiai subject is unmodified, the syntax and meaning
of the remainder of the sentence may constrain the behavior of the ambiguous pair
to be the oppc .ite of what one might expect. For instance, "water boiis" waquid be,
predicted to be a noun-verb pair, yet in "Water bolls are dangerous parasites
which can be found in the Great Lakes.", it acts as a compound noun. it shouid also
be noted that occasionaliy semantic anaiysis wiil be unable to act as a fiiter. "Set
X" may be either a noun-verb pair or a noun and its appositive. The oniy way'to tell
is to know the syntactic context the words appear in. in "Set X to the empty set.",

“set" acts as a verb; in "Set X is the empty set.", "set" acts a noun.

Introduction 6

1.2.2 The interpreter

The interpreter must be abie to do the foiiowing:

1. Ask questions of the user. This enakbies the system to clarify actions it has

teken and promp’ the user for informaticn .+& has omitted.

2. Understand three different types of user statements:

User statements meant as steps in the program. These are transiated into
primitives in the program specificativn ianguage. This is the basic method for
buiiding the program specification. "Print the greatest number in the list"
must be translated into an "output" primitive with an argument representing

"the greatest number".

User statements directed as meta comments about the dialogue. These are
transiated into case frames which express their intent. This ailiows the user
to controi the fiow of the diaiogue. "Ask me about the structure of the de
base first." must be interpreted as a request for a different question, rather

than part of the progra:n being written.

Finsily, some user statements should be understood as generai comments

about the program rather than as expliicit instructions on coding it. "The
program s.ores and retrieves data." is meant as an overaii description of a

] program, not its first two steps.

i 3. ldentify any objects and actions mentioned by the usrr with their correct

referent in the progiam specification. if the user says "Afts ' printing it, print the

il

Sl e

Introduction 7

list contalning it.", the Interpreter must find a referent for "it", determine which
"ist" is meant, and match "printing it" to the appropriate operation in the program

specification.

4. Use the qu..don it has asked to aid in understanding the user's replies. in
processing a description of two data structures, which are referred to as the
"scene" and "concept", "The same as the concept." should be understood to mean
"The scene has the same structure that the the concept has." If the question
asked is "What is the structure of the scene?" However, the system must aiso be
abie to accept more information (in any order) than its question has asked for, eq.,

What is the definition of the predicate "Reach"?

A node X is connected to a node Y if there exists a palr in the

graph such that X and Y are in the pair. X can be reached from Y

if X Is connected to Y or if X can be reached from a node which Is

connected to Y.
6. Learn definitions for any undefined words used by the user. if the system Is to
be robust, it must be able to infer certain Information about words, rathet than
depend on knowing everything in advance. in the example above, the system
inferred that "connected” is a binary predicate on nodes. if it is necessary to

preprog: #m information of this sort, the system wiil fail every time an unfamiliar word

is used, even though the word occurs In a context in which its meaning Is apparent.

6. Incorporate Implicl* Instructions from the user into the program specification while
avolding redundancy If the same instruction Is iater made explicit. Consider,

1. Print the result of the test, ask the user if this is correct, and
read in the user’s response.
versus

2. Print the resuit of the test and ask the user If this Is correct.

1

Introduction 8

In both 1. and 2., the next question the system should ask is "What Is the structure

of the user’'s response?”. In 1., there is an explicit input operation mentioned. In

2., the system must infer the Input operation because "ask" impiles both an output
and an input. The system must be able to supply an input for case 2., but realize
that the user has already mentloned the Input for case 1. This Is not as trivial as
just checking for an input after every output generated from "asks", since If the
user says,

"Output the result of the test and ask the user if this coirect.
Then read in another test Item.",

the system must still ask for the structure of the user’s response.

7. Use a certaln amount of programming knowledge to ald in its construction of the
program specificatlon. Understarding many of the user's repiles wlil require
F speclfic bits of programming knowledge. If the system asks, "What is the exit test

of the loop", and the user replles, "Stop when ‘quit’ Is typed", the Interpreter must

know that this means to test the argumert of the (presumably one) input operation
In the loop to see If It Is "quit". If so, the loop should be exited. The same
Information tells the Interpreter that the test should be Inserted Into the program

after the input operation.

1.3 Three Examples

This section consists of three brief exe\mplesl Intended to illustrate the extent of

the processing done by the system.

Every exampie In this paper was produced by the system.

Introduction 9

WHAT IS THE NAME OF THE FROGRAM YOU WISH TO WRITE?

Write me a program caiied 'ntersection which reads a set of lists
of numbere and prints th, numbere which are in all £f them.

INTERSECTION
Al « READ()
A4 « The set of all A2 in all A3 1n Al such that:
FORALL(B1) IMPLIES(MEMBERSBI Al;
MEMBER(AZ B1))
For all A2 in A4 do:
PRINT{A2)

Bl 1s a variable bound to A3.

A3 1s the generic element of Al.

Al 1s a set whose generic element is a list whose generic element
is a number.

Figurs 1.1

An slgorithm description and its program specification

The top section of Figure 1.1 contains a description {in answer to the system’s
question) of a program which finds the Intersection of a set of lists of numbers. The
program soecification for the example Is shown in Figure 1.2 on the foliowing page.
it consists of a series of Interconnected nodes which represent the various
components of the program. Each component type is fully described In Chapter flve.
For large programs, the program description 1s too bulky (and generally unreadabie)
to exhibit, so a "pretty printed" version of it will be shown instead. A simpie
program Is used to print the specification as an Algol like control structure with data
descriptions in English. The resuit of printing the speclfication in Figure 1.2 is

shown beneath the aigorithm description in Figure 1.1,

Introduction

x type PROCEDURE

10

name ke
definltion %

K =P =k

* tgpe SEGUENTIAL
8

eps

* type NAME
value INTERSECTION

* type INPUT

args % resul t

on x

¥ type COMPUTE

assertions x

* t%pe ENUMERATE
steps x
on x

K Aty

i tupe SET
I e?ement x
!

* t?pe LIST
element »

* type NUMBER

% type OQUTPUT
args x

—% type SET
element x

$ * type NUMBER
* type FORALL 1

predicate ke
bindings *

—k type BOUND
boundto %~

% type IMPLIES
antecedent Xe—
consequent x

£t¥hc MEMBER
element x——-ol

set %

* type MEMBER
eiement Xe———————

set x

Figure 1.2

"Writs me a program called intereection which inputs a
set of liete of numbere and prints the numbers which
are in all of them."

Introduction 11

The reiatlon between the speclification and its "pretty printing" 15 apparent. As an
example, conslder the printing of the ENUMERATE component. ENUMERATEs are the
specification prlmltl\}e for performing an action (the STEPS slot) on each element of
a set (the OW slot). To "pretty print" an ENUMERATE component, the printing
program merely concatenates,
For aii
{the ELEMENT of <the ON of ENUMERATE>>
{the ON of IEnNUMERATE)
{the STEPS c(:IO:ENUMERATE)

One of the points thls exampie makes is that the best method for Implementing the
user's program is not necessarlly contained In the program specification. if the
program specification were implemented straightforwardly, the resulting program
would be grossly inefficient. The intersectlon set would be created by cycling
through every list in the Input set, rather than just the first. The reason, of course,
Is that the user has asked the system to write a program which finds a set
satisfying some assertions, but has not given a method for determining the set.
Therefore the system falis back on the method of testing each element in the set to
see if it satisfies the assertions. The Interpreter can accept more process orlented

program descriptions. Figure 1.3 contains a very low level description of an

“intersection" program.

Introductlon

12

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?
Intersection

DESCRIBE INTERSECTION,
It reads a list X.

WHAT IS THE STRUCTURE OF THE GENERIC ELEMENT OF X?
A lisi of of numberae.
ARE WE FINISHED?

Set First and Output to the head of X. Let Rest equal the tail of X.

If First is empty, print Output and return. If Rest is empty, set

First equal to the tail of First, set Rest to the tail of X, snd go
back to the first conditional. If tha firet element in First is not in

l the head of Rest then remove it from Output, set First to its tail,

F set Rest to the tail of X and go to the conditional. Otherwise, aat

Rest to the tail of Resat and return to the conditional.

INTERSECTION

X « READ()
E FIRST « HEAD(X)
OUTPUT « HEAD(X)
REST « TAIL(X)

I Labell: If EQUAL(FIRST PHI)
Then PRINT(OUTPUT)
RETURN()
E 1f EQUAL(REST PHI)

Then FIRST « TAIL(FIRST)
REST « TAIL(X)
GOTO Labdell
If NOT(HEMBER(HEAUSFIRST
HEAD(REST)))
% Then OUTPUT « REMOVE(HEAD(FIRST) OUTPUT)

FIRST « TAIL(FIRST)
REST « TAIL(X)
GOTO Labell

else REST « TAIL(REST)

F GOTO Labell

il

REST is a list whose generic element 1s a 1ist whose generic element
is a number.

OUTPUT is a list whose generic element is a number.
FIRST is a list whose generic element is a nunber.

X is a list vhose generic elemenl is a 1ist whose generic e'‘ement is
a number.

Figure 1.3

A low level description of Intereection

ki et P S

il kb

0t Rt M . A AL

R

byl

A

}
|

Introduction

As a prelude to chapter five, note that even though this dlalogue (unlike most the
system handles) translates fairly direcily into primitives In the program

speclfication, there are still several natural language problems embedded In it.

Different ways of speclfylng the same actlon:

Set X equal to Y. Go back to X.
SetXtoY. Go to X.
Let X equal Y. Return to X.

Reference problems:
.WJIts tall.
...remove it from Output.
...go to the flrst conditional.
...the conditional.
...the first element in First.

Language conventions:

Otherwise, set...

The Intarpreter can handle more "structured” low level descriptions.

contains an exampie.

= W) A LT

13

Figure 1.4

introduction 14

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?
Intereection
DESCRIBE INTERSECTION.

it reede e list X. X ie a liet of lists of numbars, Lat Firat squel

the heed of X and Qutput equal Firet., Whils First ia not smpty, sst
Rest to the teil of X. Then while Rest is not empty, if the head of
Firet is not @ member of the head of Reet, remavs it from Dutput and
eet Rest to empty. Otherwiee eet Rest to the tail of Raeat,

E 00ES THE SECONO LOOP BELONG IN THE TOP LEVEL OF INTERSECTION OR IN
THE TOP LEVEL OF THE FIRST LOOP?

In the loop.
ARE WE FINISHEQ?

After the escond loop, eet Firet to the teil of First.
ARE WE FINISHEQ?

Print Qutput efter the fii et loop.

T T T

INTERSECTION
X « READ()
g FIRST « HEAD(X)
= OUTPUT « FIRST
While NOT(EQUAL(FIRST PHI)}) do:
REST « TAIL(X)
While NOT(EQUAL(REST PHI)) do:
: If NOT(MEMBER(HEAD(FIRST
é HEAD(REST)))
Then OUTPUT « REMOVE(HEAD(FIRST) OUTPUT)
REST « PHI
else REST « TAIL(REST)
FIRST « TAIL(FIRST)
PRINT(OUTPUT)

REST is a list whose generic element is a 1ist whose generic element
is a number.

OUTPUT is a list whose generic element is a number.
FIRST is a 1ist whose generic element is a number.

X is a list whose generic element is & 1ist whose generic element is
a number,

Figure 1.4

A more etructured (nteraection program

é
é
|

i
|

E*
p&

EiE s e e e i e

i s
ki

i

i

TR T

Introduction 16

in general, the program descriptions the Interpreter is asked to handie wili be a
cross betwezn high level descriptions llke the first dialogue and low ievel
descriptions llke the second two. The dlalogues in Appendix A provide further

examples of thls.

in the dlalogue from Figure 1.4, the interpreter had to ask the user whether the

second loop was embedded in the first. More programming knowledge would have

supplled the answer for the Interpreter.?

it should have been obvious that the
description of the first loop was Incomplete, since the exit test checked the value
of variable whose value remained unchanged In the ioop. Such knowledge is beyond

the scope of the present parser/Interpreter project. instead, It is made avaliab'e

to the interpreter via the PSi system [Green 76].

1.4 PSi

The parser/interpreter has been designed to run as a part of the PSi automatic
program synthes:s system. The PS| system, which is belng written as a group
project at the Stanford University Artificlai intelligence Laboratory, consists of a
number of different modules, one of which Is the parser/interpreter system.
Together, the parser/interpreter and the other PSi modules form a compiete

automatic programming system.

The most obvlous additlon supplied by the PSi system Is the coding and efficlency

module which is litended to produce optimized LISP or SAIL code from the program

Z As we have mentloned, the Interpreter has some programming knowiedge; for
instance, it knows enough to know It doesn’ t know where the ioop goes.

g i S e e i e T N R sogusd e ST

e

L

Introduction 16

specification. Thus the user is encouraged to use a very high levei description for
his program since the specification specifies the performance of the desired

program, but not its impiementation. [Barstow 77] and [Kant 77]

The remalning moduies in PS! heip support the the diaiogues run by the
parser/interpreter. The parser/interpreter can run independently of then., but its
performance Is weak (or nonexistent) in the areas these moduies were designed

for. The other PSi Moduies are:

An Engiish generator being deveioped by Richard Gabriei. The generator
should not be confused with ihe Engiisih data description printer used in
pretty printing the program specification. The data description printer uses a
"fill in the blanks" paradigm (X is a Y with Z whose Q etc.), wiich is adequate
for its purposes. The compieted PS! generation system wiii inciude o program

e xplanation moduie which wili dispiace the data description printer.

A programming knowledge moduie. This moduie is responsibie for checking
the consistency of the program specification, suppling questions to be asked
in case of inconsistencies, and answering questions whose answers can be

derived from information about programming. [McCune 77]

A domain knowiedge moduie which is being written by Jorge Phiiiips. This
moduie is analogous to the programming knowiedge moduie except that it has
information about the speciiic type of program written, as opposed to
programming in generai. it might know, for instance, that in a text editing
domain, when the user says "exit the fiie", he means "write aii the changes

made onto the disk and then exit the fiie."

MR

il

iR M A i

i G T AT

e)

TR

E

Introduction 17

A tracas and axamplies module which enables the user to describe his

program in terms of examples and traces as well as Engilsh. [Phillips 78]

A dialogue moderater which coordinates the various PSi modules, chooses
which guestion to ask the user next, and processes the user's comments

about the dialogue supplied to it by the parser/interpreter. [Steinberg 78]

1.6 An Overview;

1.6.1 Reader

Reader can be briefly described as a leit to right parser that uses a combination of
top-down and bottom-up strategies. The method used at any point in a parse is
determined by the grammar writer. The grammar consists of a set of Lisp programs
which manipulate the data structures and data structure buiiding primitives supplied

by the parser.

Reader Is abie to efficlently recognize a large subset of English because it seidom

needs to maintain more than one possible parse of a sentence. It should be

stressed, however, that Reader is not compietely deterministic®. Complete
determinism does not seem possible when dealing with a large grammar and

vocabulary in which most words can fulfili more than one syntactic roie.

The characteristics which allow Reader to parse nearly deterministically are listed

3 Aimost all the nondeterminism arises from words which belong to more than one

word class; eg., If a word can act as either a verb or a noun, Reader must try both
possibliities separately.

introduction 18

below. In Section 3.2, tivese characteristics are divided into essentlaily three
4 different categories.
1. A senterce constituent Is only built when the parser knows that there

Is at least one other constitueit that has alieady been bulit that can
accept the first as ¢ modifier.

2. A constlituent is attached (ie., proposed as a modifier) to another
constituent only when the attachment is forced by the syntax of the
sentence. A simpie exampie of "delayed attachment" occurs in the
sentence, "The program called Intersectien...". The constituent "called
intersection” is not attached to "the program" until the words foliowing
"Intersection" require that the attaciiment be made.

3. Because of 2., when a constituent s attached to another, the parser
generally knows the reason for the attachment, and can use that reason
to quide it in making the attachment. For instance, in "The progrem
calied Intersection was written by George.", "was" forces 'calied
Intersection" to be attached to "The program". The reason for the
attachment Is to allow "The program" to be ine subject of "was”, so It is
clear that "calied Intersection" Is to be attached as a reiative clause
modifying "program", since if it were attached as the main verb, there
wotld be no place to put "was". In "The program called Intersection and
returned.”, when "and returncd" Is read, the parser knows that the
clause "called Intersection" must be an active construction (as opposed
3 to the passive construction which leads to the relatlve clause
Interpretation) so that it can be attached to "The program" as the
[‘ predicate of the sentence.

it o i1

4. The parser uses one syntactic structure to represent more than one
possibllity. in "The program called Intersection ...", the structure "called
Intersection" simultaneousiy represents the predicate of the senterce
and a relatlve ciause. Which interpretation to use is determined after
more of the sentence had been read.

5. The parser provides for local ambiguity In the parse structure that it
returns. For instance, "I know that ice is darngerous" could mean either
"/ know ice is dangerous." or "l know that that (particular) ice Is
dangerous.". The parser finds both interpretations foliowlng a single
parse path, and continues foilowing a single path after the ambiguity has
been reached by preparing an output structure in which the subject of
"is" Is a choice between “that ice" and "ice".

As we have Indicated, occasionally Reader must pursue more than one parse path at

a time. To avold anaiyzing the same sentence constituent each time It Is

L H U L

AL

T

T P T AT ATRere

T

T TR wibdill

LR il

kil ikttt R

ke T

(LGl

kil

Introduction 19

encountered on a different parse path, Reader uses a varlation of the well-formed
substring table Idea (sectlon 4.4). This enables a constituent which has been

analyzed to be effectivc!v shared by each parse path that can use It.

The parser-Interpreter Interface Is only called to rate structures which are about to
be attached to other structures. Structures are attached to other structures only
when the syntax of the sentence forces the attachmeni. These two facts Imply

that the parser-interpreter Interface wlll only be asked to evaluate those parses

which are syntactically equivalent“. For a simple example of this, conslder "The
number In the list the program printed was ..." "Was" forces the "The number", "In
the list", and "the program printed" to be attached to one anotner for the purpose
of allowing "The number" to be the subject cf "was". The parser-Interpreter
Interface must choose from between structures which represent the meanings "The
number which was printed and in the list." and "The number which was in the
printec {ist." Since each structure plays the same syntactic role, namely that of a
noun group, any sequence of words following "was" wlll lead to a parse for elther

both or nelther of the two Interpretations.

Reader's Interface with Its Interpreter Is a program called Format which rates each
syntactic structure built by Reader before It Is attached to another. The criterla
measurea by the Interface are:
1. Does the verb of the structure (If there Is one) have enough of Its
cases fllind In to properly speclfy tha actlon It represents? For
example, the verb "put" requires a case which specifles where the

object ¢! "put” was put.

2. How appropilate are the noun groups In the structure? For Instance,
the noun group "water bollis" would be judged Inappropriate.

4 Two parses are syntactically equlvalent If and only If the end of tie sentence
has been reached and both are successful parses, or If both wlll lead to a
successful parse on the same sentence endings.

e

=

it Y

s R e

)

m

(Rl s

E
]
3
g
E
E
:
.
3
[
3

‘ntroduction 20

3. How anrroprlate are the contents of the cases of the structure’s

verb. For Instance, "street" Is an inappropriate subject for "light".
The results of the rating are used to pick the most meaningiui structure from among
aquivalent syntactic possibliities. Structures which evaluate poorly can still be
Included In the parse of the sentence, as long as there are no other parses which
contain structures with be*ier evaluations. The parse of "Watear bolls are very
small." contalns the “Inappropriate" noun group "water bolls", since there is no

syntactic Interpretation of the sentence which does not use "water bolls" as a noun

.

group.

1.5.2 The interpreter

This sectlon brlefly touches on reference and concept matching, two of the
subjects mentloned In section 1.2.2, as an Introduction to the methods used by the
Interpreter. They have been singled out because they are the basis of all higher
level Inferences performed by the Interpreter. Chapter 6 covers much more In

greater detail.

The Interpreter’s primary means of understanding user statements Is via a set of
case frames and concepts. The case frames map English verbs and thelr modiflers
Into the concepts, which can then be Incorporated Into the program specification.
ror a simplifled example, consider the concept of an Input operation, denoted
#INPUT. For now, we willl assume that #INPUT takes has descriptors, Its arguments
(ARGS), Its ptace In the program specification (STEPOF), and the Input device

(DEVIC.,.

e s e

T

Introduction 21

#INPUT 2¥TYPE
DESCRIPTORS: ARGS isa HDATA) CASES: SUBJECT » DEVICE
STEPOF (1sa #ALG) 0BJ =+ ARGS
DEVICE (isa #DEVICE) 1SA #INPUT

DEFINITION-OF TYPE

Figure 1.5

A concept and a definition which can be mapped to it.

Figure 1.5 shows the concept and a definition of "type" which can be mapped to it.
The definition says that if we have an instance of the verb "type", and its cases
(as determined by the parser) can be mapped successfully (le., the contents of the
cases satisfy the criteria in the descriptors of the #INPUT), then we can view the
verb and its cases as an instance of the #INPUT concept and take the appropriate
action. Concepts can represent more than a singi: primitive in the program
specification ianguage. For instance, "request" in "I’il request a story by giving a
key word." maps into an #INTERCHANGE concept which invoives an INPUT and

OUTPUT operation with a caicuiation of what shouid be output in between.

Noun and pronoun referenca is faciiitated by the context suppiied by the seiection
criteria of the descriptors of a concept. in,

"it reads in a triai-item, matches the /input to the internai concept

model, and prints the resuit of the match."
a referent must be found for the noun "input". There are two possibiiities: the
INPUT created by the "read", and the triai-item which is the argument of the ", ead".
Since "match" is mapped to a concept (#PREDICATE) which requires that its ARGS
descriptor be a #DATA (rather than an #ALGORITHM iike the "read") the ambigulty Is

resoived.

il

Introduction 22

When the cholce among possibie referents cannot be decided on the basis of the
very general type checking outliined above, more situational checks are needed.
Consider,

"it reads a list of numbers and a ilst of strings. If X Is in the iist

then..."

There are two referents for "the list"; the number iist and the string iist. Since

they both satisfy the selectional criteria® for the second argument of the #MEMBER
"is in" maps Into, something more context dependent Is needed. Each concept has
a second layer of seiectional requirements which are calied when simpie type
checking faiis to narrow down the fieid of cholces sufficlentiy. For #MEMBER, the
check succeeds if the first argument has the same type, or is refeired to In the
same way, as the generic element of the second argument. So In the example, if X
were a string, "the iist" wouid be matched to the string list, and if X were a number,

“the list" wouid be matched to the number iist.

in the event of a referent which remains ambiguous after ali tests have been
appiied, the time honored method of failing back on the most recently mentioned
possibility is used. Hopefuily, the speaker has feit free to use a pronoun In an
ambiguous situation because the referent he had In mind was the most recently

mentioned possibiiity,

5 They are both sets.

i

Il
I
|
|
i
I
I
i
i
b
f
1
a
|

A

L

m

L

23

2. Parsing

Na:ural language processing begins with parsing. Determining the meaning of a
sentance requires knowing the main verb of :he sentence and how the rest of the
words In the sentence relate to it. In this system, for example, the mapping of the
sentence "Print the list." Into a structure which is an OUTPUT operation whose
argument Is the referent of list Is dependant on knowling that the maln verb of the

sentence Is "print", the syntactic object of "print" Is “the list", and the sentence Is

an linperative.

2.1 The Baslc Algorithm

A parser allows one to store and utilize the information about sentence structure
needed to interpret sentences properly. The Information that s stored Is referred
to as the grammar, while the methods for applying the grammar to a particular
sentence are usuaily thought of as the parser. Recader Is; organized somewhat
differentiy from most parsers' in that Reader Is not syntax directed. Writing a
grammar for Reader’ consists of specifying the processes which build the structure
of an input sentence. Thus the grammar writer speclties how the grammar s
actually appiled to a sentence, as well as the grammar Itself. Reader’s functlon Is
to provide the data structures the grammar Is Intended to use, the control structure

which activates the grar-nar, and programs for manlpulating the data structures.

The two baslc data structures that Reader supplles are the modifier list and the

! The parsers of Winograd and Rlesbeck are also exceptlons. See sectlon 4.5.

|

T

L LAR e e el R

LR sl

L L L

it e G

(Ll

T

Parsing 24

stack. The modifier list |s a list that the grammar writer can use to store words
whose use has not yet been determined. The stack is used to store the structure
built up while the parse Is In progress. The next sectlon describes the stack In
detail. A stack, a modifier list, c message about what has just happened to the top
of the stack, and a message concerning the entire stack constitute a partlal parse.
The top of the stack message is usuaily a Lisp atom, eg., message = NOUN, VERB, or
CONJUNCTION means that a noun, verb or conjunction has just been added to the
top structure In the stack. The stack message is a list of features that the stack
has. Each feature is represented by an atom. Example features are "the stack
contains a verb structure with a verb that can accept a clause as one of Its cases"

and "the stack represents a sentence which Is an interrogative".

The parse is performed by adding each word in the Input (going from left to right) to
the partial parse formed by the addition of the previous words in the sentence. The
first word in the sentence is applied to "the initiai partial parse", which consists of
the "initial steck" (a stack containing a singie structure which wili eventually hold
the main verb of the input sentence), and an empty modifier list. The "top of the
stack message" for the initial stack is BEGIN, and the message concerning the

entlre Initial stack Is NilL, meaning that the stack has not acquired any features yet.

The process of adding words to the partial parse is controlled by the grammar. The
grammar consists of a set of programs, one for each syntactic word classz. which
contain the ruies and conditions whici specify when and how to add a particular

word class to a partial parse in a glven configuration. In general, there may be more

2 the word classes the parser uses are VERB, PREPOSITION, NOUN, MODIFIER,
ARTICLE, CONJUNCTION, and PUNCTUATION.

R

it

E
=

N e ko i oot

i
E
P
%
E
£
:
£
E
:
5
§
E';
%
E

Parsing 256

than one: way a word class can be added to a partiai parse. It Is aiso true that
many words belong to more than one word class. For Instance, the word "like" can
be a noun ("His likes are different than mine."), a verb ("She likes him."), a
preposition ("a man like him."), a conjunction ("He plays like Jack used to."), or a
modifier ("men of llke temperament."). These two facts (a word may be added to a
partial parse In more than one way, and a word may belong to more than one word
ciass) impiy that the parser should be abie to handie more than one partial parse of
the Input at a time. However, it should be kept In mind that one way to achleve an
efficlent parsing process Is to write a grammar which minimizes the number of
possible parses the parser has to follow at once, while at the same time writing a
set of ruies which adequateiy express English syntax. Section 3.2 shows some of

the methods used by Reader's grammar to avold a muitiplicity of partial parses.

The partial parses are placed on a list caiied the "partial parse list". The parser’s
control structure is as foilows:
1. sentence « the list of words comprising the Input sentence.
2 partial-parse-list - a list of the initial partial parse.
3. WHILE sentence DO
4. Apply the next word in sentence to each partial parse In
partial-parse-ilst, using the program assoclated with each
word class the word belongs to.

6. Reset sentence by removing the first word in it,

6. Reset partial-parse-ilst to a list of the partial parses formed
in step 4.
7. Output partial-parse-list.

Step 6. does not Imply that the grammar programs cannot look ahead Iin the Input

L e Sl i

UL o il (R el Lttt L k!

btttk

i i

il

m

T

T

Parsing 26

sentence and use more than one word at a time. if a grammar program continues a
partial parse P by applying the first n (n > 1) words in sentence to it, a message |s
left which prevents the next n - 1 words from being applied to P. This presentation
of the control structure is accurate with the exception that stens 6. and 7. are a
bit more complex than they have been mad=2 to appear. They wiii be expiained in

more detaii in later sections.

The control structure indicates that the paraiieli processing is Invisible to the
giammar writer. This means that in writing the grammar programs, the grammar
writer need only concern himseif with one stack and one modifier iist, since each

grammar program is calied on each partial parse in part/al-parse-I/st in turn.

2.2 Stack structures and coliapsing

The stack is the major data structure that Reader uses. its function is to store the
structures buiit up during the parse untii it is decided how the structures shouid be
attached to one another. This treatment allows for easy handiing of a certain type

of ambiguity that arises frequentiy in Engiish utterances.

Consider the sentence, "I had another iook at it". it can mean either "/ asked
someone else to look at it" or "/ took one more look at it". The ambiguity arises from

the different uses of "had", "iook" and "another" in each interpretation.

The sentence "John spoke to the man with BIii" is ambiguous in a different way. It
might mean “John and B!!l spoke to the man." or “John spoke to the mdan who was

with Bill." in this sentence the ambiguity derives from the fact that "with Biii" can

TR

Mkl

L

UL

E

e g

Parsing 27

be used to specify either who acted with John, or who was near the man. In each
meaning, tne words of the sentence have been used In the same fashion.
Amblguities of this sort, one constituent of an utterance being a possible modifier
for more than one word in the utterance, have been referred to as "permanent

predictable ambiguities" In [Sager 73].

The stack aliows Reader to handle ambiguities of the second kind by allowing for
the structuring of most of the constituents of the sentence before it Is decided
which words they wlii modify. The elements of the stack are calied stack
structures. Two different types of stack structures are empioyed by Reader:
preposition structures and verb structures. The sentence "John lost the toy he
bought in the woods on Sunday." wouid be parsed into the foliowing stack:

4. [on Sunday]

3. [in the woods]

2. [he bought]

1. [John lost the toy]

1. and 2. would be represented by verb structures and 3. and 4. by preposition

structures. Verb and preposition structures can be filied In as foliows:

Verb structures Preposition structuras
nound noun
noun2 prep
noun1t adverbs
verb-group measure
adverbs message
cases
function
measure
message

The noun siots are fliled by noun grours. A noun group consists of a list
of the head noun followed by Its modifiers. A verb may have one, two or

three of Its noun siots filled. A preposition may have its noun siot filled
or not.

The verb-group slot Is fililed by a list of verbs. Each verb consists of a
root and an ending.

Parsing 28

Uk

The adverbs siot is filied by a list of modifiers of the verb grotp or
preposition.

The cases siot Is filied by the cases the verb has that are Introduced
by prepositions and conjunctions.

The function siot contains the function of the verb structure. MAIN is
used to indicate that a verb structure holds the maln verb of an

utterance, RC indicates a verb structure Is belng used as a reiative
ciause, etc.

The prep siot hoids the preposition of a preposition structure.

The message siot contains information relevant to the stack structure.
Its contents are controlled by the grammar. We wiii see exampies of its
uses when we discuss the grammar,

The measure siot contains the parser's rating of each structure. The

rating is used to help the parser choose among competing parses. It wiil
be defined In section 4.1.

g Throughout this paper, s‘ack structures wiil be printed as a coliection of siot-vaiue
pairs. Empty slots will not be printed. Under this scheme, the stack for the
sentence above wouid be printed as

PREP: ON
4. NOUN: SUNDAY

2 PREP: IN

F 3. NOUN: (WOODS THE)

] -

VERB: (iBUY ED))
NOUN1: HE

2. FUNCTION: RC
VERB: ((LOSE ED))
NOUN1: JOHN

E NOUN2: (TOY THE)

: 1. FUNCTION: MAIN

e

"John iost the toy he bought in the woods on Sunday."

A

LA

T TR,

=
3

e

Parsing 29

The stack couid be interpreted in severa; different ways:
a. John lost a toy. He bought It in the woods. He bought it on Sunday.

b. John lost a toy. He bought It In the woods. He lost it on Sunday.

c. John lost a toy. The toy was fost on Sunday. It was lost In the woods.
John bought the toy.
elc.

The process of determining which of the Interpretations was actually intended by
the speaker Is referred to as collapsing the stack, since finding the co‘rrect
interpretation of the stack consists of rec.._.ng the stack to one stack structure. |If
we accept meening c. as the proper interpretation of the above sentence, then the

singie stack structure that represents that meaning of the stack Is

- - -

VERB: ((LOSE ED))
NOUN1: (TOY THE {BUY PN [SUB HE] })
NOUN2: JOHN

CASES: ((WHERE (IN (WOODS THE)) (WHEN (ON SUNDAY)))
FUNCTION: MAIN

where "he bought" speclfies which toy, "on Sunday" speclfles when the toy was

iost, and "in the woods" specifles where the toy was lost.

The parser must consuit with Its deductive system3 during a Coiiapse of the stack.
The reason that the third meaning seems to be right Is that one Is unlikely te buy a
toy In the woods, since there usuaily aren’t any stores located In the woods. The
parser also needs to know that Sunday is a possible date rather than a iocation for

the woods. There Is, however, some syntactic knowledge embedded In the stack.

The parser never considers,

3 The deductive system for the Reader/interpreter system is the Interpreter. In
discussing the parser in generai, we wilii use "its ded :ctive system" to mean the

program which calis the parser and Is abie to reason about the subject domain of
the sentences being parsed.

kel TR

R ARtk s

T

E
E
E
E

Parsing 30
d. A toy was lost /In the woods by John. John had bought the toy.

The toy was bought on Sunday.
as a possibie meaning for the sentence since d. requires that stack structure 4.
modifies 2., while 3. modifies 1. Engiish syntax does not aliow such crossovers, so

the parser never has to consider d. as a posslbie meaning.

The communication channel between the parser and the interpreter is a function

named Format. Format is called to evaiuate a structure just before it is attached to

another structure during a Coilapse.? The algorithm used by Collapse ensures that
once a structure has been attached to another, it cannot be modifled (ie., have
another structure attached to It). Formatting serves the dual purpose of preparing
a structure for output, and providing the deductive system with an opportunity to
rate the iikellhood that the speaker intended the words in the structure to be
grouped with each other. The rating of a formatted structure is merged with the
contents of the measure siot of the structure it is being attached to. Thus the
measure siot of a |structure contains the ratings of aii the structures that have
been attached to that structure. The measure of a structure is discussed in

section 4.1,

Coiiapse chooses which one of the possibie stack structures the stack couid be
coiiapsed to by picking the structure with the best measure. if there is more than
one partlal parse active at the end of the sentence, Reader returns the one(s)
whose coliapsed stacks have the best measure. The format of a preposition
structure is its measure and a iist of the preposition, adverbs and noun; the format

of a verb structure is its measure and a iist of the rout of the main verb, the tense

4 Format Is also cailed evaiuate the fina! structure obtained from the parsing

process.

Ul

v

ey

P

WWHWWWWWWW

Parsing 31

of the verb group, the verb's adverbs, and the verb's cases. Measure is oniy used

to seiect from among syntactically equivaient parses, so if the only reading a

sentence admlits results in a bad measure, a parse wili be found anyway.

When the stack for "John iost the toy he bought in the woods on Sunday " is

coliapsed, the measure of any resulting structure which inciudes structure 3. (in the

wocds) attached to structure 2. (ha bought), wlil be worse than those that don’t,

since the measure of structure 2. modified by structure 3. wiil be "unacceptabie"

(see sectlon 4,1) since the parser’s deductive system would "know" that "the

woods" does not satisfy the requirements that "buy" has for places where one can

buy things. Section 5.5 explains how this "know" is Implemented In the

Reader/Interpreter system.

We can now menticn the complication referred to In step 7. of the control structure
presented in section 2.2. Step 7. was originaily "Output the ilst of partlai parses",

What really happens Is that Reader coilapses the stacks assoclated with each

partlal parse, each structure resuiting from the collapse Is formatted, and then

Reader then cutputs a ilst of the formatted structure(s) with the best measure.

There are two points about the stack which should be emphasized:

1. There are only two reasons for collapsing the stack: either the end of
the sentence has been reached, in which case the stack is collapsed
down to one structure, or the application of a word in the sentence to a
partiai parse results in that word being added to a stack structure which

Is not at the top of the stack. In the latter case, the stack Is coilapsed
down to the structure that is recelving the word.

2. Any two structures resulting from the coliapse of a stack are
syntacticaliy equivaient. This means that either both or nelther wiii
result in a parse of the sentence, so we are justified In using semantics
to discard ali but one of the structures resuiting from a coilapse,

since
syntactic Information will not enabie us to choose between them,

fit'

Parsing 32

2.3 Reader's output

2.3.1 Cases

Glven a sentence S, Reader's output conslsts of the maln verb of S, together with
Its cases. If Sls the simple sentence, "Bill hits John", then Reader's output would
be the parse beiow:

{HIT NN
(SuB BILL)
[0BJ JOKN]

The open bracket, "{", signals the beginning of a presentation of a verb and Its
cases. NN is a tense marker whose meaning wili be: explalined below. The SUB case
(cases are Introduced by square brackets, "[') of "hIt" Is "BI" and the OBJ case is

"Johin".

We are using "case" In a different sense than most of the current literature does.
In the Mlterature, "case" Is usually used to refer to "deep case", a concept
popularized by Fillmore In [Fillmore 68). A good definition of "deep case" can be
found In [Bruce 75): "The deep cases are binary relatlons which specify an event
regardless of the surface realization of that description as a sentence or noun
phrase". To see exactly what this means, we will consider a number of sentences
Involving the verb (event) "hit". For this example, we wlll suppose that "hH" has
three deep cases: the entity that Is receiving the effect of the hit (OBJECT), the
thing the object Is being hit wit: (INSTRUMENT), and the entity that is Instigating
the hitting (AGENT). Then In
1. Bill was hit by the hammer.

2. John hit Bl with the hammer.
3. Bill was hit with the hammer by John.

T T T YT TPV YT YT Yoo

T TN vt

ki

W

T AT

i o At i

A ettt 0

(U cHU

1R 0 e b AR

Parsing 33

4. The hammer hit Biil.

5. John hit Bili.
"Biii" is the OBJECT in all five sentences, "hammer" is the INSTRUMENT in the first
four sentences, and "John" is the AGENT in sentences 2.,3. and 6. Consider the
knowledge needed to choose the cases of a "hit". in sentence 5., the AGENT is
distinguished from the OBJECT by their relative positions about the verb. The
surface structure of the sentence, then, is one source of information in determining
a verb's cases. it Is obviousiy not the only source. Sentence 4. has the same
surface structure as sentence 5., yet the noun preceding the verb is considered
the INSTRUMENT, rat!: :r than the AGENT. Furthermore, if wa say,

"George went berserk. He battered John Into unconsclousness,
plcked him up, and turied him at Blll. John hit Biii.",

then John is the INSTRUMENT of "hit" in the last sentence. Therefore, determining
cases requires the surface structure of the sentence as weii as information about
the objects the sentence refers to, and the context the sentence was uttered in.
Reader produces a set of cases which are derived from the surface structure of
the sentence. A deductive system can then use Reader’'s cases In combination
wlitih the information :t has about the concepts mentioned in the sentence to derive

its own cases.

The three prinary cases used by Reader are SUB, OBJ and 10B (indirect object). In
a passlve sentence, one in which the verb group is a verb phrase whose last two
varbs are the verb "to be" and the main verb inflected with an "ed" or "en" ending,
the OB.; precedes the verb and and the SUB is introduced by "by". if the sentence
is rot passive, the 0BJ foliows immediately after the verb and the SUB precedes
the verb., The i0B is & noun that can modify a verb, without needing a preposition to

introduce it, only in the presence of both the SUB and OBJ.

AL AL e

ibitlinnatbibleg b

T e

it el i

Parsing 34

"John" is the i03 in "BIll glves John the book." since we can not say "John gives
Bll." to mean that "Biil recelved something from John.", but can say "Blil glves the
book." to Indicate that "A book was glven to someone by Bih. Simllarly, John Is the
IOBIn " ° pe 2s the cat John" since we can't say "BlIl names John." to mean that
"Blil has glver name JOHN to something.", but can say "Biii names the cat." to
Indlcate that Biii given some name to the cet. Another way to iook at this Is that
(without resorting to prepositions) you cannot say (using the verb "give") who you
are giving something to without mentluning what yuu are glving, and similarly you
can't mention what you are naming something without mentioning the thing belng
named. The reversai in the normal orcéer of IOB and OBJ that ‘serbs lilze "name"
exhlblt is cu.isidered a syntactic property of the verb. Unless a verb Is tagged with

this property, Reader assumes that it takes Its OBJ and 0B in the normat order.

With the exceptlon of "by" and "to", Reader does not try to assign meaningful case
names to nouns introduced by prepusitions, since the meaning of the modification
between a verb and a prepositional pkrase depends on both the verb and the
object of the preposition. The deductive system Is expected to supply a case

name whan It judges the appropriateness of the modiflcation.

in passlve sentences, "by" frequently Introduces the SUB. When Reader parses
such a sentence it returns the object of "by" as the SUB of the verb If the
deductive _ysi~m ;:grees that the object could serve as the SUB. Glven the
sentence "Bill was shot by Jack", Reader wouid ask the deductive system wheher
Jack couid shoot Biil. If the answer were "yes", Jack wouid appear as the SUB
case of "shoot". Change the sentence to "Bill was shot by the door" and the
deductive system would answer "No, doors cannot shoot", enabling Reader to use

"by the door" to speclfy the locatinn of the snonting.

B L A

Parsing 35

"To" Is treated similarly to "by" by Reader in that Reader assumes that "to"

always

It .. sauces an I0B If the syntax of the sentence permits this. Therefore,

"Bllt gives John the book" and "BIl gives the book to John" parse to

{GIVE NN {GIVE NN
[SUR BILL] [sus BILL]
: [10B JOHN] [08J (BOOK THE)]
= [0BJ (BOOK THE)] (108 JOHN)

} }

respectively.

The parses for the five exemple sentences are:

Bill was hit by the hammer.

{HIT PN

[08J BILL]
3 ‘ [SUB (HAMMER THE)]
. }

John hit Bill with the hammer.

{HIT PN
[SUB JOHN]
(0BJ BILL]
[PREP (WITH (HAMMER THE)))
}

Bill was hit with the hammer by John.

{HIT PN
[0BJ BILL]
(SuB JOHN]
[PREP (WITH (HAMMER THE))]

The hammer hit Bill.

{HIT PN
[SUB (HAMMER THE)]
{08J BILL]

}

John hit Bill.

{HIT PN
[SUB JOMN]
[C8J BILL]

™,

Rl

gl U RN L el

T e TR

T T T R

i

(it

bl

Parsing 36

We can see that SUB corresponds to either AGENT or INSTRUMENT, and that OBJ

corresponds to OBJECT In the case system we had made up for "hit",

To translate Reader's cases Into the "hit" case system one would only have to
declde which SUBs were INSTRUMENTs and which were AGENTs, equate OBJECT
with OBJ, be aware that "with" can Introduce the INSTRUMENT, and be able to
distinguish when "with" refers to an Instrument and when It doesn’'t. A non-trivial

task, slnce we could say

"He hit John with Biii" (accomplice)
“"He hit John with vim and vigor" {method)
"He hit John with malice" (emotion)

Sectlon 5.2 explalns how Reader's cases are mapped Into the Interpreter's case

system,

Reader actualiy uses more cases than than the primary ones mentloned above. But
the other cases are essentially ad-hoc ones that Reader uses to store modiflers of
the verb. Any preposltion or conjunction (not top-levei) detines Its own case. As
an example, conslder "John pushed Janet Into the closet because he thought BIll
would see her.", which is parsed to:

{PUSH PN
[SuB JOHN]
[0BJ JANET)
[PREP (INTO (CLOSET THE))])
[BECAUSE {THINK PN
[SUB HE]
[WHAT {SEE (NN WOULD)
[sus BILL]
[0BJ HER]
1]
1]
)

John and Janet are the SUB and OBJ of push. "Into the closet" is a preposition case

T,

it

4

=
E
3
-
=
=
3
3
=
3
5
3
%
E%
-

Parsing 37

of "push”, tiiling in where the ORJ was pushed to. The conjunction "because" fills in
the presumed reason the event took place, and Is considered a case of the verb. It
contains the verb clause whose main verb Is "think", "He" is the SUB of "think".
"What the SUB is thirking" is stored in the WHAT case of "think" The contents of

the WHAT case Is the verb clause whose main verb Is "see".

2,3.2 Tense markers

Many verb clauses contain verb groups rather than Just single verbs. A verb group
can be composed of adverbs, modals and other verbs. The information contalr..d in
a verb group that a deductiva system needs is a list of adverbs and modals, the
rcol of the maln verb, and the tense of the verb group. Reader saves the modals
and adverbs and returns them in appropriate siots in the parse structure. The root
of the main verb of the sentence Is similarly returned. This means that éeader must
supply the tense of the verb as a separate plece of Information, Reader uses slix
basic tense symbois. These are showti In Figure 2.1, together with an exampie of

the verb group each represents.

TR

TR

il

|
E
|
E

T oY

Parsing 3b

VERB GROUP TENSE

1 walk NN The present tense of the verb without any

auxiliary verbs.

I walked PN The past tense of the verb without any
auxiliary verbs.

I will walk FN The auxiliary "will" followed by the
uninflected main verb.

| have walked NP The present tense of the auxiliary verb "have"
followed by the matin verb in past tense.
1 had walked PP The past tense of the auxiliary verb

followed by the main verb in past tense.

I will have walked FP The auxilrary "will1", followed by the auxiliary

"have" followed by the main verb in past tense.

Figure 2.1

Verb tenses

The tense markers are motivated by an analysis found in [Bruce 75]. Simplified, it
says that a tense consists of a set of binary relations on a set of reference points.
For Instance, the tense of "had walked" consists of the relations on the three
reference polnts: "the time of the speech" (S1), the "time of the subject" (S2),
and the "time of the action" (§3). S2 is in the Past of §1, and S3 is in the Past of
S2, so the tense of the verb group Is Past-Past or PP. Similarly, the tense of "have
walked" I1s Now-Past, or NP, since the "time of the subject” is the same (Now) as
the "time of the speech" and the "time of the action" is In the Past of the "time of

the subject". To see how this works, consider the sentences:
1. George, the club president, has walked through these halls. (NP)

2. George, the club president, walked through these halls. (PN)

:
E

BuLU A U 0 i i R R

‘A

R Lkt M LD i i

il

gkl it i

TR

Lt W

(1Tt

.-ars'ng 39

in 1., the "time of the action” is in the past of the "time of the subject" so that we
may not assume that George was president when he walked in these haiis, but we
do know that he is president now, since the time of the subject and speech are the
same. In 2., the time of the action and subject are the same, so we know that
George was president when he waiked through these halis, but is not necessarily

president now.

We get six more tense symbois Ly considering verb groups whose main verb ends in
"ing". These tenses are represented by appending a "C" (continuing aspect) to

the tenses aoove:

VERB GROUP TENSE
1 am walking NKNC
1 was walking PNC
I will be walking FNC
1 have been walking NPC
i bad been walking PPC

—

will have been walking FPC

Figure 2.2

Tenses for verbs with a continuing sspect

When a verb is used as an infinitive, eg., "to hit" in "Biii wants to hit John", the
tense marker returned is "INF". When a verb appears with an "ing" ending and no
auxiilary verbs, as in "The man sitting on the chair...”, the tense marker returned is
'CC" (an arbitrary symbol). in terms of tense markers, passive constructions are
indistinguishabie (the order of the cases determines whether a construction s

passive or not) from reguiar constructions, so the tense of "is waiked" is equivalent

i

i Ll il

THSPHYITTTTR

T N T T TR e

T T AT E AT

WWW" L L
il

Parsing 40

to the tense of "waiks", namely NN. Verb yroups conslisting of the auxliiary verb

"do" and an uninfiected main verb (eg., "He did go...") are given the tense of the

auxliiary "do".

We have ieft out tenses which require the verb "to go" as an auxiiiary verb. The
reason Is that verb groups using "go" as an auxiilary are ambiguous. A verb group
ike "I am going to waik..." might mean either "/n the future some time, | willl walk" or
"l am actually golng to some plare (the beach, for cxample) In order to walk".
Rather than try to resolve this anbigulty, Reader treats the Infinitive as a case of
the verb "go" and expects the deductive system to be aware of the possible
ambiguity and to have enough information to resolve It. Therefore "I am going to
waik" is parsed as

{GO NNC
[suB 1)
CINF (WALK INF
[SUB !match_to_SuB)
3]

The infinitive ciause "to walk" is treated as a case of the verb "go" (iNF). The
system reading the parse must be aware that it can be interpreted as though the
main verb were the verb of the INF case ("walk"), with a tense derived from the
verb group "am going to walk". The SUB of "walk" is a dummy noun that shouid be
matched to the SUB of "go" (I). The ambiguous situation is easy to recognize. It
occurs whenever the main verb of ciause is "go", and the clause has two cases,

SuB and iNF.

Some temporal information is contaired In the cases of the verb rather than the

tense. "I went yesterday" parses to

it iy

Lyt el

M T TR

=
E

T

W\‘r"WW“"“WWWWW i

Parsing 41

{GO PN

{sus 1]

[WHEN YESTERDAY]
}

so that the exact time In the past that the action occured In Is speclified by the

WHEN case.

The verb "have" often occurs !n verb groups as a modal. "! have to go away"
assentlally means "I must go away". When "have" Is used as a modal, It is
unamblguous. Therefore, when "..have to verb.." occurs as a verb group, Reader
returns verb as the main verb, assigns It the tense of the verb "have", and places
the marker "HAVE-TO" in Its adverb slot. "l wlll have to ieave" parses to:

{LEAVE FN (HAVE-TO)
[sus 1]
}

This does not mean that every time the phrase "have to verd" appears In a
sentence that "have to" wlll be treated as a modal. The noun phrase "The book |

have to give® would be parsed Into a three structure stack:

VERB: ((GIVE))
3. FUNCTION: INF

VERB: ((HAVE))
NOUNI: 1
2. FUNCTION: RC

NOUN1: (BOOK THE)
1. FUNCTION: MAIN

The stack can be interpreted in two different ways: “The book ! must give.” (3.
attached to 2 attached to 1), or "The book | have In my possession which | will
glve.”, (3. and 2. attached to 1. independently). Only the first interpretation treats

"have to" as a modal.

TR

T A T T T T

WV’“MWHVWWWMWWWW L
il

Parsing 42

The tense contains all the Information in ihe sentence, yet ieaves the decision of
what to do with It for the system using the parser. For example, If the tense of a
statement is NN the system can infer that a narrative is taking place, that the

action described in the statement is hubltual, etc.

2.3.3 Nouh groups

Reader uses a different representation for noun groups than most parsers. To
Reader, a noun group Is a ilst whose first element is the head noun of the group, and
whose remalning elements are the modifiers of the head noun. The difference in
representation lies in the fact that Reader does not structure the modifiers that

preceded the nour in tive originai sentence.

Therefore, "The messy green garbage cen cover" is parsed as

INOUN (COVER TilE MESSY GREEN GARBAGE CAN)]
since Reader does not try to determine whether this means either

. the cover of a can used for messy green garbage.

tive messy cover ot a can used for green garbage.
. the messy green cover of a can used for garbage.
. the messy ccver of a green can used for garbage.
. the cover of a messy green can used for garbage.
. the cover of a messy can used for green garbage.

OB ON =

instead, it allows the deductive system to structure the noun group whnn the stack
entry contalning the noun group is Formatted (section 4.3). This Is necessary to
avoid neediess ambiguity. The sentence "A man people can trust Is usually

dangerous" can be parsed (correctly) as:

)

i

T AT

m

T T e e e T e e

T

Lt e el

Parsing 43

{BE NN (USUALLY)
(SUB (MAN A {TRUST (NN CAN)
(suB PEOPLE]

)
[DES DANGEROUS]
}

But uniess the parser can discover from the system that there is uniikeiy to be "a
man people can trust" (trust modified by can, peopie, man and the) it wili aiso find

{BE NN (USUALLY)
[SUB (TRUST A MAN PEOPLE CAN))
(DES DANGEROUS]

)

since "man", "can", and "peopie" are nouns, and therefore potentiai modifiers of
"trust". The modifiers that foilowed the noun in the original sentence are structured
by Reader, with help from the deductive system. This is necessary since Reader
must know whether a sentence constituent coming after the noun modifies it, the
verb the noun modifies, or some other constituent in the sentence. "The reiation In
the concept that is marked ‘possible’.” is parsed as:

[NOUN (RELATION THE (IN (CONCEPT THE))
{MARK PN
[0BJ THAT]
(10B "POSSIBLE"]
NJ

in a context where the deductive system was able to determine that reiations had
markings and concepts did not, and as:

[NOUN {RELATION THE (IN CONCEPT THE {MARK PN
{08J THAT]
(108 "POSSIBLE"]
N

in a context where the deductive system thought that concepts were more likely to
have markings than relations. The "closer" modification is aiso the preferred one In

the absence of any information about whether concepts or reiations have markings.

| }WHWHMW‘“‘“’“‘WM"‘”’“”“‘““‘“"H‘WW" »»wwn&umw»ﬂuw

L o 1

iR

Parsing 44

The point here is that each modifier (at top ievel in the noun group list) coming after

the noun ° modifies the noun indeperdentiy.

Reader’s technique of not structuring noun groups as they are encountered aliows
it to parse more efficiently than a parser that gets invoived in the structure of noun
groups Immedlately.. Suppose we are given a sentence beginning with "The messy
green garbage can cover..". A parser that started out by trying to parse for a
structured noun groun wcuiv immediately get bogged down trying to determine which
of the six or more possibilities the phrase represented. it wouid have to caii in the
deductive system, which would then start iooking for instances of green garbage,
messy cans, etc. By delaying the structuring until iater, Reader can provide the
deductive system with more information (information inciuding the main verb of the
clause, its cases and the case of the unknown noun group) to guide its search in
determining the structure of the noun group. And, if the entire sentence happened
to be "The messy green garbage can cover the earth.", no time wiil ever be wasted

structuring the noun group.

2.3.4 Cholces

Occasionaily, a sentence contains an ambiguous constituent whose ambiguity can
be restricted to a small segment of the parse structure. When this happens,
Reader returns one parse structure, and offers a choice between the ambiguous
constituents. This leads to a more efficient parse, and enabies the system reading
the parse to compare the diffcrent meanings of the sentence easily, since the

choice clearly shows where the parses difter. Here are two exampies of this idea:

5 The non pretty-printed version of the parser output contains a marker between
the modifiers which come before and after the noun.

Ty

TH

L

Parsing a5

"| knew that Ice was slippery." could mean either "! knew that that ice was
slippery” or "i knew Ice was slippery". if the deductive system Is unable to
determine which noun group It prefers at the time It Is asked to structure the noun
group, Reader wouid return the following parse, offering a choice for the SUB of
"be".

{KNOW PN
[sus 1]
[WHAT {BE PN
[sus (xCHOICE ICE
(1CE THAT)

)]
: [DES SLIPPERY]
)

"The man hitting Janet angered BIlI" could mean elther "The man who was hitting
Janet angered BIII" or "The man's hitting of Janet angered Blli". Reader represents

this as follows:

{ANGER PN
[SUB (»CHOICE (HIT CC
[SuB (MAN THE)]
[0OBJ JANET]
)
(MAN THE (HIT CC
{SuB imatch_to_head_noun]
{0BJ JANET]
H

)]
[0BJ BILL]

The first cholce Is the action "hit". The second choice Is "man" modifled by "the"
an:i a verb clause with a dummy SUB (!match_to_head_noun) that should be matched
to the noun It Is modifylng ("man"). In general, a cholce can be offered as the

contents of any case.

Another methcd Reader uses for represer.ting amblguous sentences Is prefixing the

MR T

b AR et e M R RO

L e AT At 00 0 0)

kil

Ll

08 0 e i o

10 kil i ol

il

e e

ik

e

Parsing 46

name of a case with an asterisk. This means that the case can modify either the
verb or the noun in the case directly above it. "Jonn hits the salesman with the
hammer" is parsed to

(HIT NN
[SUB JOHN)
[0BJ (SALESMAN THE))
[*PREP (WITH (HAMMER THE)))
}

The asterisk preceding the case name "PREP" indicates that the PREP case couid
be a case of "hit" or that it couid modify the saiesman. The first interpretation is
"The salesman was hit by John with the hammer" and the second is "The sailesman
withh the hammer was hit by John". Reader uses the asterisk notation when running
without a deductive system, or when running with a deductive system that cannot
decide which interpretation is more likely at the time Reader asks. The parse wauld
have been

{HIT NN

{SUB JCHN)

[0BJ (SALESMAN THE (WITH (HAMMER THE)]
}

if the system was abie to determine the saiesman had the hammer when given the

choice by Reader.

2.3.6 Conventions

Reader empioys severai notationai conventions.

Whenever a conjunction contains an impiled SUB, as in "The program reads the data
and prints the answer" the impiicit SUB Is represented by the symbol

"Imatch_to_conjunct_SUB". eg.,

(L0 L

Parsing 47

[CONJ AND

{READ NN
[SUB (PROGRAM THE)]

(08 (DATA THE)]
}

{PRINT NN
[sus Imatch_to_conjunct_SUBJ

[08J (ANSWER THE)]
. }
]

!match_,to_conjunct_SUB has the same referent as "the program”.

When a noun Is modified by a relative clause, the case the noun occuples In the

relative clause Is held by the symbol 'match_to_head_noun. For example,

"The man captured by the police."

[NOUN (MAN THE {CAPTURE PN
[08J Imatch_to_head_noun]

[Sus (POLICE THE)]

Ul sl

Nl

“The msn the police captured.”

[NOUN (MAN THE {CAPTURE PN
[SUB (POLICE THE)]

(08J Imatch_to_head_noun]

I

N)

tmatch_to_head_noun has the same referent as "the man", the noun the verb clause

is modifying.

WL i

imatch_to_head_noun s also used 'n sentences which contain dangling prepositions.

"The man | came with" parses to:

[NOUN {MAN THE {COME PN
(sus 1]
[PREP (WITH Imatch_to_head_noun)]

Nl

imatch_to_head_noun has the same referent as the noun ("the man") modified by

:
=
|
§

the clause which contalins the dangling preposition.

Parsing 48

When ¢ conjunction conteins an impiied object, Reader uses the symbol

!ma\tch_to_conjunct_OBJ6 to mark the second ocaurrence. "He breeds ard raises
rabbits" parses to:

[CONJ AND

{BREEDS NN

[sue HE]

[0BJ (RABBIT !PL)]
}

{RAISES NN

(SUB imatch_to_conjunct_SUB)
[0BJ imatch_to_conjunct_0BJ)

in conjunctions in which the verb is omitted, Reader simply repeats’ the verb. "He
gave Jchn a pencii and Jan~.t a pen" parses to:

[CONJ AND

{GIVE PN
[3U8 HE]
(108 JOHN]
[0BJ (PENCIL A)]

¥
{GIVE PN
(SUB !match_to_conjunct_SUB]

(108 JANET]
[0BJ (PEN A)]

Siffixes are removed by the parser. if a word is a piurai, the symboi !PL appears in
its modifier iist. "The answers" parses to:

[NOUN (ANSWER THE IPL)]

If @ word can be either singuiar or piural, and agreement constraits .. to be one or

g !match_to_cbnj—unct_PREP is 1nsed when the OBJ refers to the object of a

rreposition in the higher conjur :t.
’ Nouns are represented by symbols (rather than bei:, =2peated) so that the
interpreter wiii not have to find the referent of the same noun twice.

AP

A A e e

Parsing 49

the other, it is noted by inserting !PL or !SING into the modifier list. "The fish is

dangercus.” and "The fish are dangerous" parse to:

{BE NN {BE NN
{suB (FISH THE ISING] {suB (FISH THE IPL]
[DES DANGEROUS) [DES DANGEROUS)

} }

in "The tish can be dangerous”, The SUB case is {SUB (FISH THE}] since there is

no agreement Information.

Tp——

e i

i

T

-

T

e |

TR e

50

3. Grammar writing

This chapter explains how to write grammars In the formallsm we have been
discussing. The actual grammar Is written In Lisp, and conslists of a set of programs,
one for each word class, which explaln when and how a word may be added to a

partlal parse. The grammar also uses several utility programs and predicates.

An example of a utllity program is ADD-NOUN. It takes two arguments, a noun group
(ng) and a stack structure (=), and returns the stack structure with the noun group
added to It. For example, If
ng = (MAN THE) and s Is VERB: ((SAVE ED))
NOUN1: (BOY THE)
FUNCTION: MAIN
then (ADD-NOUN ng s) is VERB: ((SAVE ED))
NOUN1: (BOY THE)

NOUN2: (MAN THE)
FUNCTION: MAIN

An exampie of a predicate is CAN-ACCEPT-A-NOUN. it takes 6ne argument, which is
a structure, and returns T if the structure can accept a noun, and NIL otherwise. A
structure can accept a noun if It is either

1. a preposltion structure without a noun.

2. a verb structure wititout a noun

3. a verb structure with a verb and one noun whose verb is transitive.

If the verb group Is passive, the main verb must take a beneficlary or

Indirect object.

4. a verb structure with two nouns and a main verb that takes a

benetficiary or Indirect object. The verb group must not be passive.

3. and 4. must also satisty the condition that the verb has not recelved any cases

Ll il

i kit Gttt R R

kit

ljial

Grammar writing 51

since it was added to the structure'

On the surface, It would seem that this
definition would ruie out silghtly pecuiiar constructions ilke "That he ilkes"”, (Instead
of "He llkes that"} since a verbiess verb structure with one noun cannot accept

another noun. '{fowever, such constructions are handled as relatlve clauses.

Reader has other predicates which test for legal verb groups, whether a structure
has a noun which can be modifled by another structure, whether the verb group of a
structure Is passive or actlve, atc. When, in describing the actlons of the parser,
we say that a structure satisfles some condition, we mean that the proper

predicate has been applled to that structure and that the test has succeeded.

Reader also has two programs, SHIFT and SEARCH, which are useful for manlpulating
the stack. SEARCH Is used to search the stack for structures with a certaln
property. The Information galned from a search Is usually used to determlne
wiliether a particular structure should be pushed on to the stack. For instance, It
would be polntless to push a relative clause structure (section 3.1.3) onto the
stack If there were no stiuctures In the stack that contalned a noun which couid be
modlifled by a relntive clause. SHIFT, described more fully In section 3.1.2, Is used
to facllitate the addltion of words to structures other than the one at the top of the
stack. Baslcally, SHIFT searches the stack for a glven structure, collapses the
stack down to that structure, and then applies the Input word to the resulting stack.
SHIFT Is Important because most actions that can be applled to the top of stack,
such as adding In a noun or verb, can also be applled to structures iower down in
the stack. Similarly, SEARCH is Important because pushing a structure onto the
stack usually depends on the existence of a structure with a given property,

regardiess of its poslitior in the stack.

Eg., "ria spent in the store the money." is Incorrect.

L i A

il

il

(gl

TR T

]

T

T

it i

Grammar writing 62

3.1 Some beginning grammars

A serles of grammars is described, each one more complicated than the previous
one. An exampie sentence Is parsed for each grammar defined. The first two
examples, Grammar.1 and Grammar.2, wlll step through the sentence in detail,
examlining how each successive word Is applied to the partial parses formed by the
appiication of the previous words in the sentence. The remainder of the examples

will cover only the methods used to apply words that were not handled by the

previously defined grammars.

Sectlon 3.2 shows some more efficient methods for parsing the subset of English

handled by the example grammars.

The variables used In the examples are:

stack The stack.

word The current input word

root The root of word.

ending The endin¢ of word.

ml: The unassir ned modifier list.

msg The messa « soncerning the top of the stack.

stack-msg The messay . concerning the entire stack.

3.1.1 Grammar.1

The first grammar handles sentences of the form "noun verb noun noun" or "noun
verlk: noun”. All that Is needed Is a NOUN program and a VERB program.

The NOUN program:
The NOUN program forms the noun group consisting of the modifiers on the

modifier list and the noun. Then, If the top structure In the stack can accept
a noun (eg., satisfies the predicate CAN-ACCEPT-A-NOUN, defined at the
begining of the chapter), a partlal parse Is created with:

msg = NOUN, Indicating that the last addition to the stack was a noun.

m! = NIL, the modifier ilst Is empty.
stack-msg = stack-msg, the addition of a noun doesn’t change stack-msg.

it i

T R T T PRI PR FIOR

TR

o

Grammar writing 63

stack = (REPLACE-TOP-STACK (ADD-NOUN (MAKE-NOUN-GROUP word ml)
(TOP-STACK stack))
stack)

where MAKE-NOUN-GROUP is a predicate which returns the noun group formed
by Its arguments (or NIL if one cannot be formed), end TOP-STACK and
REPLACE-TOP-STACK are utility programs. TOP-STACK returns the top
structure of the stack that is its argument. REPLACE-TOP-STACK returns the
stack which Is Its second argument with the top structure replaced by its first
argument.

The VERB program: o
The VERB program examines the stack. If the top structure in the stack Is a
verb structure with ore noun and no verb, It creates a partiai parse by adding
the verb to the top structure In the stack.

Here Is how this grammar parses the sentence "John drinks water."

Reader starts out with the Initlal paitiat parse.

msg = BEGIN, ml = NiL

FUNCTION: MAIN

"John" is Input. it belongs to only one word class (NOUN), and therefore has oniy
one program associated with it (NOUN). The partiai parse produced by appiying the
NOUN program Is:

msg = NOUN, ml = NIL

NOUN1: JOHN
FUNCTION: MAIN

"drinks" Is the next word. it can be used as elther a noun or verb. The top stack
structure cannot accept a noun so the application of the noun program does not
rasult in a continuation of the parse. The verb program is then applied to the parse
which causes the foilowing partiai parse to be set up:

msg = VERB, m] = NIL
VERB: ((DRINK . §))
NOUNI. JOKN
FUNCTION: MAIN

Ll

il

i

ity)

TR AT bkt il d s

i

i

T

Grammar wrlting 64

"Water" can also be tised &s a noun or verb. The verb program falls though, since
the top structure already has a verb. The NOUN program s'icceeds In continuing the
parse by adding the noun "water" to the top structure In the stack, producing,

msg = NOUN, ml = NIL

VERB: ((DRINK . S))
NCUNL: JOHN

NOUNZ: WATER
FUNCTION: MAIN

The Input sentence Is exhausted so Reader collapses the stack, (trlvial since there
Is only one structure in It), and formats the resulting structure, This ylelds

{DRIMX NN
[SUB JOHN)
[0BJ WATER]

as the parse.

3.1.2 Grammar.2

In order to parse more Interesting sentences, It Is necessary to expand the
grammar. The next grammar Includes preposlitions, articles and moditlers.
The MODIFIER procram simply adds word to m/.

The ARTICLE program adds word (which Is an article) to m! If m/ Is NIL or
consists of words (almost, all, etc.) which can appear before an article.

The PREPOSITION program checks to see whether the preposition can be

modifled by the modifiers on ml. If so, the partlal parse Is continued by
pushing a preposltion structure with word as the preposltion onto the

stack.
As the grammar grows, the grammar programs has to be prepared to handle stacks
contalning more than one structure. In general, there wlll be two parts to every

grammar program: a set of actlons assoclated with Just the top of the stack and a

L Rl e A

i

lj

T

Tl

G

Grammar writing 66

set of actlons that should be applled to every structure In the stack that satisfles
certaln conditions. For example, In parsing "He gave the man In the store the book."
a noun (the book) must be added to a structure (He gave the man) which Is not at
the top of the stack. Adding words to structures below the top of the stack Is
facllitated by the program SHIFT.
(SHIFT stack program args purpose number predicate? predicate?)

The Idea behind SHIFT Is to find a structure(s) In the stack which satisfies a glven
predicate, (CAN-ACCEPT-A-NOUN, for example, would be used to search down the
stack for a structure to add a noun to), then coliapse the stack down to that
structure, and then apply a program to the collapsed stack. SHIFT enables the
grammar writer to specify the purpose of the collapse, whica Is valuable in gulding
the way the collapse is carried out. For instance, If SHIFT Is coliapsing the stack of
the sentence "He gave the man In the store ..", for the purpose of finding a
structure which cu.n accept a noun, it knows not to try to attach "In the store" to

"gave", since that would prevent "gave" from accepting another noun.

SHIFT works as followa: It searches down stack looking for a structure S that
satlsfies predicatel. stack is then divided into two segments, S1 starting from the
top of stack and going down to §, and S2 consisting of the structiires not In S1. S1
is then collapsed Into a single structure SS. If SS satlisfles predicate2, then
program s applied tc (STACK-PUSH SS S1) with arguments equal to args. number
controls how many times the sequence is performed. |f number Is an Integer n,
SHIFT trles to find the first n structures that satisfy predicate?. number = T means
that shift finds all the stack structures satisfying predicate?. purpose is an atom
(eg., NOUN means the coilapse Is looking for a structure which can accept a noun)

whlich controls how structures can be attached to one another,

rm

A A ALt AL

UL L

Grammar writing 56

Grammar.2 involves adding a SHIFT to both the NOUN and VERB programs. The SHIFT
In ncun searches for ali structures In the stack which can accept a noun, and then
adds the word to that structure. The SHIFT In verb looks down the stack for the

topmost verb structure in the stack which can accept a verb.

Grammar.2 can handie sentences like "The woman from the city bank gave the man

In the store the news". The parse starts out with the Initial parse. After "The" is

Input, there Is one partial parse.

msg = BEGIN, ml = (THE)

FUNCTION: MAIN

"woman" Is read. MAKE-NOUN-GROUP forms the noun group, (WOMAN THE).

msg = NOUN, mi = NIL

NOUN1: (WOMAN THE)
FUNCTION; MAIN

"from" Is read. The preposition program causes a preposition structure to be

pushed on the stack.

msg = PREP, m)l = NiL

PREP: FROM
NOUNL: (WOMAN THE)
FUNCTION: MAIN

"the" Is read and placed on the modifier list, "clty" Is read. All nouns are treated

as both NOUNs and MODIFIERs, so there are now two partial parses:

1. msg = NOUN, ml = NIL 2. msg = PREP, m! = (CITY THE)

PREP: FROM PREP: FROM

NOUN (CITY THE) - - -

- - - NOUNI: (WOMAN THE)
NOUNI1: (WOMAN THE) FUNCTION: MAIN
FUNCTION: MAIN .- -

||

Grammar writing 87

"bank" is read. When "bank" is appiied as a verb, partiali parse 2 can not be

continued since "bank" (as a verb) does not accept the modifiers, (CiTY THE), on
: the modifier iist. Partiai parse 1 cannot be continued using "bank" as a verb since
, after SHIFT finds a structure that can accept a verb, the verb "bank" falls to agree
with the noun group (WOMAN THE). The agreement is tested using a predicate
which takes a verb structure as input, and returns NIL If the structure does not
exhibit agreement, and the structure modified by any information supplied by
agreement (eg., "He saw" agrees only when "saw" Is viewed as the past tense of
"see", as opposed to the present tense of "saw".) when the structure does agree.

Reader then applies "bank" to both partial parses as a noun. Partial parse 1 does

T

not contain a structure that can accept a noun, so no partiai parses can be

continued from it. When "bank" is applied to the partial parse 2., it accepts the

modifiers on the modifier list and is added to the top preposition structure,

E producing

B msg = NOUN, m! = NIL

PREP: FROM
NOUN (BANK THE CITY)

NOUN1: (WOMAN THE)
FUNCTION: MAIN

"gave" Is read. The SHIFT program searches down the stack looking for the first

structure that can accept a verb. it coilapses the stack down to that structure and

adds in the verb, which produces,

il

msg = VERB, ML = NIL

VERB: ({GIVE ED))

NOUN1: (WOMAN THE (FROM (BANK THE CITY)))
FUNCTION: MAIN

"the" and "man" are read in and handied by the MODIFIER and NOUN programs.

"man" is applied as both a noun and a modifier so two partiai parses result:

=
=
%

L

TP

0l

LN

e

Grammar writing 68
1. msg = NOUN, ML = NIL 2. MSG = NOUN, ML = (MAN THE)

VERB: ((GIVE ED)) VERB: ((GIVE ED))

NOUN1: (WOMAN THE (FROM (BANK THE CITY))) NOUN]: (MOMAN THE (FROM (BANK THE CITY)))
NOUN2: (MAN THE) FUNCTION: MAIN

FUNCTION: MAIN S © o

"in" is read. The preposition program causes & preposition structure to be pushed
on the stack of partiai parse 1. Nothing is done with partial parse 2. since the
preposition does not accept the modifiers, (MAN THE), on the modifier list.

msg = PREP, ML = NIL

PREP: IN

VERB: ((GIVE ED))

NOUNI: (NOMAN THE (FROM (BANK THE CITY)))
NOUNZ: (MAN THE)

FUNCTION: MAIN

"the" and "store" are read. As before, two parses are created when "store" is
read in. One in which the noun group "the store" becomes the noun of the
prepositlion structure on the top of the stack, and another in which "store" is
treated as a modifier. When "store" is tried as a verb it falis since It cannot
accept "the" as a modifier. "the" is read in. in the former partiai parse, it Is simply
added to the modifter iist. in the latter, it cannot be added to the modifier list,
since the modifier list contains a word (store) which cannot occur before an article.

msg = NOUN, ML = (THE)
PREP: IN
NOUN: (STORE THE)
VERB: ((GIVE ED))
NOUNI - (WOMAN THE (FROM (BANK THE CITY)))
NOUN2: (MAN THE)
FUNCTION: MAIN

"news" Is read. When it Is applied as a noun, SHiFT searches for a structure on the

stack that can accept a noun, collapses the stack to that structure, and then adds

LU

i

Grammar writing 59

in the noun group {NEWS THE). When "news" is tried as a modifier It is simpiy
added to the modifier ilst.

1. msg = NOUN, m] = NIL 2. msg = NOUN, m) = (NENS THE)

VERB: ((GIVE ED)) PREP: IN
NOUNI: (WOMAN THE (FROM (BANK THE CITY))) NOUN: (STORE THE)
NOUN2: (MAN THE (IN (STORE THE))) = e o
NOUN3: (NEWS THE) VERB: ({GIVE ED))
FUNCTION: MAIN NOUNL: (WOMAN THE (FROM (BANK THE CITY)))
- - NOUNZ: (MAN THE)
FUNCTION: MAIN

There are no more input words. Partial parse 2 Is discarded since its modifier iist is
not empty. The stack from partlai parse 1. is coilapsed, (once agaln, this is triviai
since there Is only one structure in the stack.) and the resuiting structure is
formatted and returned as the parse of the sentence.

{GIVE PN
[SUB (WOMAN THE (FROM (BANK THE CITY))))
[10B (MAN THE (IN (STORE THE))))
-[0BJ (NEWS THE))

3.1,3 Grammar.,3
Grammar.3 expands Grammar.2 by the inclusion of verb groups and relative ciauses.

To parse relative clauses, a test Is added tc NOUN that checks to see If there is a
structure in the stack which has a noun that can be modifled, using the predicate
CAN-NOUN-BE-MODIFIED. if the test succeeds, NOUN pushes a verb structure with
function equai RC on the stack and adds the noun group to it. This addition enables

the grammar to parse "The mirror on the wall he broke". The parse proceedes

exactly as the previous ones untli "he" is reached. The partiai parse® when "he" is

2 There are actually two partial parses. The second uses "wali" as a modifier and
is discontinued since MAKE-NOUN-GROUP fails to make a noun group from "he" and
(WALL THE).

Grammar writing

read Is

msg = NOUN, ml = NMIL
PREP: ON
NOUN: (WALL THE)
NOUN1: (MIRROR THE)
FUNCTION: MAIN

60

CAN-NOUN-BE-MCDIFIED succeeds on the preposition structure on the top of the

stack. Therefore a parse Is created with a verb structure pushed on to the

previous stack. Only one parse results from applying NOUN to the parse since when

SHIFT Is called, It cannot find a sttucture tinat can accept a noun.

msg = NOUN, ml = NIL
NOUNL: tE
FUNCTIOt: RC
PREP: ON
NOUN: (WALL THE)
NOUNL: (MIRROR THE)
FUNCTION: MAIN

"oroke" Is read. SHIFT Is called to find a verb structure with an open verb slot.

finds the top structure In the stack, and creates a parse with the verb added In.

msg = NOUN, ml = NIL
VERB: ((BREAK ED))
NOUNI : HC
FUNCTION: RC
PREP: ON
NOUN: (WALL THE)
NOUN1: (MIRROR THE}
FUMCTION: MAIN

1t

The sentence Is over, and the parse Is concluded by the collapse of the stack. The

deductive system must declde which of "the wall* or "the mirror" was broken.

we assume that "the mirror" was broken, the collapse of the stack would be,

If

bR UL

Grammar writing 61

e

NOUN]1: (MIRROR THE (ON (WALL THE)) (BREAK PN (Sid HE)
{OBJ Imatch_to_head_noun)))

Gl AR

FUNCTION: MAIN

The format of such a structure is simpiy the noun. Readler returns

3 [NOUN (MIRROR THE (ON (WALL THE))
3 (BREAK PN
{sUB HE)
1 [0BJ imatch_to_head_noun)
}

as the parse. "Mirror" Is the OBJ of the verb "break". Notice that the noun CAN-

NOUN-BE-MODIFIED succeeded on was not the noun that was modified by the

relative clause.

R i

Parsing verb groups requires the addition of a test to VERB which tests that msg

equals VERB. if the test succeeds, meaning that the iast thing done to the stack

was the addition of a verb, VERB tries tc form a verb group with word and the verbs
4 aiready in the top structure In the stack. if a legal verb group can be formed, (this
3 is checked by the same predicate which tenses the verbs in a structure) the parse
g Is continued by adding the verb into the verb group slot of the top structure in the
stack. As an exampie, consider "He was glven the prize". When "given" Is read,
there is one partial parse:

msg = VERB, mi = NiL
VERB: ((BE ED))
NOUNI : HE
FUNCTION: MAIN

WN\W’“‘WM?'WW”‘“WWMWMWW“WmmmmwwmmmmmmnmwwmﬂWWWnmmwmmwmmmmwwm Ol A

The msg Is VERB and "was given" Is a legal verb group so the parse is continued as:

msg = verb, m} = Nil
VERB: ((GIVE EN))(BE ED))
NOiIN]: HE
FUNCTION: MAIN

=
E
2
=

"The" and "prize" are read in. The stack is collapsed and forinatted. The resuit is

3
<
S

;

TR

Lt i

L G

Grammar writing 82

{GIVE PN
(108 HE]
[0BJ (PRIZE THE)]

3.1.4 Grammar.4

Grammar.d extends Grammar.3 In two ways.

The first addition Is a test for time and place referents that will be placed In the
NOUN program. This will enable the grammar to handle sentences llkke "I saw the

man .. wntown.", "Yesterduy John was I town." etc.

NOUN Is augmented with a test which checks w' ‘her the noun-group can be used
as a time or place (this Is considerad a syntactic property of the head noun of the
group). If so, a preposition structure is created with preposition equal xTIME or
*PLACE. The prepositlon structure Is pushed onto the stack and a new partial parse

created.

The second addition allows the parser to parse sentences with verbs that accept
other verbs as case fillers. An example of a verb with this property Is "see". In "|
saw John leave town", the ciause "John leave town", Is a case of "saw". A test is
udded to VERB which checks whether the main veruv of a structure can accept a
ciause. if so, an empty verb struclure with function equal WHAT is pushed onto the

stack and a new partlai parse created.

Grammar.4 handles sentences like "Yesterday the man knew John had returned."

"Yesterday" causes the formation of two partlal parses, one In which i Is treated

ummmmm‘\"

£
%
E
|

Grammar writing 63

as a time referant, and one in which It Is used as the first noun of the MAIN

structure.
1. msg = NOUN, m! = NIL 2. msg = NOUN, ML = NIL
NOUN1: YESTERDAY PREP: aTIME
FUNCTION: MAIN NOUN: YESTERDAY

FUNCTION: MAIN

When "man" is Input, It cannot be added to partial parse 1, since there is no
structure In the stack that can accept a noun. "man" can be added to partlal parse
2, by collapsing the stack down to the MAIN structure and adding "man" to the MAIN
structure. This results in

msg = NOUN, mi = NIL

NOUNL: (MAN 1hE)
CASES: ((WHEN YESTERDAY))
FUNCTION: MAIN

as the COLLAPSE routine knr.ws that preposition structures whose preposition Is

*TIME flll the WHEN case of the verbs they modity.

"Know" can accept a clause, so the application of "knew" to the partlal parse

above rasults in two differenrt partial pa 2s:

1. msg = VERB, ml = NIL 2. msg = NIL, ML = NIL
VERB: ((KNOW ED)) FUNCTION: WHAT
NOUN1: (MAN THE) ° a
CASES: ((WHEN YESTERDAY)) VERB: ((KNOW ED))
FUNCTION. MAIN NOUN1: (MAN THE)

> oo CASES: ((WHEN YESTERDAY))
FUNCTION: MAIN

"John" Is added to both partlal parses:

L il

Grammar writing 64

1. msg = NOUN, m] = NiL 2. msg = NOUN, ML = NIL

- - - NOUN1: JOHN
VERB: ((KNOW ED)) FUNCTION: WHAT
NOUNL: (MAN THE) > o o
NOUN2: JOHN VERB: ((KNOW ED))
CASES: ((WHEN YESTERDAY)) NOUN1: (MAN THE)
FUNCTION: MAIN CASES: ((WHEN YESTERDAY))

> o o FUNCTION: MAIN

"had" is applied to each partiai parse as verb. Partial parse 2 is continued by
adding "had" to the top structure of the stack. Partiali parse 1 cannot be

continued.

The addition of “"returned" to the stack produced by the appiication of "had"

produces,

msg = VERB, ML = NIL
VERB: ((RETURN ED)(HAS ED))
NOUNL: JACK
FUNCTION: WHAT
VERB: ((KNOW ED))
NOUNL1: (MAN THE)
CASES: ((WHEN YESTERDAY))
FUNCTION: MAIN

The input sentence is exhausted. The stack is coliapsed and the resuiting
structure formatted.

{KNOW PN
[WHEN YESTERDAY)
[SUB (MAN THE)]
[WHAT (RETURN PP
[SUB JACK)
1)

e

Grammar writing 66

3.2 Grammar efficiency

The primary objective In writing an efflcient grammar is keeping the number of
partiai parses low. This Is accomplished by minimizing the number of ways a word
can be successfuily applied to a partiai parse. There are basically three different
ways of handling this within the Reader formaiism.
R1. The use of the stack to avoid attaching sentence constituents to
each other until more Information Is learned about the nature of the

attachment.

R2. The use of one stack structure to represent more than one syntactic
possibliity.

R3. The use of bottom-up and top-down parsing technlques together.

The simplest example of the first technique is the handiing of sentence
constituents which can modify many different structures in the sentence (eg.,
prepositional phrases, relative clauses, etc.). Such constituents are placed on the
stack, thereby avoiding the necessity of & different parse path for each sentence
structure that can accept them as a modifier. Woods, in [Woods 73], mentions a
similar feature, calied "selective modifier placement". However, it seems limlted to
the simple appiication mentioned above. More powerful uses of the stack are

obtained in conjunction with R2.

R2 makes use of the fact that in many cases, two or more syntactic possibilities
can be combined In a singie parse structure. For example, conslder a sentence
beginning "The boy that..." Obviously, "that" Is part of a relatlve clause which will

modify "boy". But it Is not ciear whether "that" is either

1. the subject of the relative clause ("The boy that likes ice cream...")

2. a modlfier of the subject of the relative ciause ("The boy that girl
likes...")

W

e

i

AR i

T YT

baliiil

THAATTT

I

Grammar writing 66
3. a function word ("The boy that the girl likes...").

A single stack entry which covers all these possibillties Is

S = NOUN1: THAT
FUNCTION: RC

If a verb Is applied to the stack contalning S before a noun Is applied, S will lead to
a successful parse. Now suppose a noun is applied before a verb. If a noun group
can be made from "that", the modifiers on the modifier list, and the noun belng

added, then the sentence Involves usage 2, and "that" Is replaced by the noun

groupa. If a noun group cannot be constructed using "that", but can be made using
just the modifler list and the noun, then "that" Is replaced by the noun group (usage

3.).

R2 can be used with R1 in a slightly different way. Consider the two sentences:

1. "He saw the man running out the door."
2. "He saw the man running out the door drop the hag."

In sentence 1., "running out the door" is most likely interpreted as "whai he saw
the man dolng”. In sentence 2., "running out the door" Is a relatlve clause which

modlfles "man". One structure,

S = VERB ((RUN ING))
FUNCTION: PARTICIPLE

can represent both Interpretations. It Is declded which Interpretation to use

depending on the condlitions under which the stack Is collapsed. The relative clause

3 1f a noun group could also be made without using "that", a message Is left which

Indicates to Format that a cholce bei..een "that noun-group" and noun-group
should be offered.

Grammar writing 67

Interpretation Is used If the stack Is belng collapsed to add a verb, and the "see"

case filler Interpretation is used otherwise. A morn detalled example can be found

in section 3.2.5.

Gl

Sectlon 3.2.3 provides an example of R3. The following two sections contaln

examples of R2.

3.2.1 Nouns as modifiers

Virtually all English nouns can also be used as modiflers. In "The baseball bat Is
used to hit the baseball", the first occurrence of "baseball" Is used as a modifler,
whlle the second Is used as a noun. The grammars In section 3.1.1 coped with this

by applylng each noun to every possible partial parse as both a noun and a modifier.

The example sentence would have two partial parses after "baseball" was read.

E
E

1. msg = NOUN, ml = NIL 2. msg = BEGIN, ml = (BASEBALL THE)

NOUNL: {BASEBALL THE) FUNCTION: MAIN
FUNCTION: MAIN o o o

iyttt af

It Is true that one of the two parses will always be kliled rather quickly, but it wouid
be better to avold the overhead invoived In carrylng extra partial parses. As a noun
cannot modify a verb, there is no advantage to be galned from putting one on the
modifier llst. When a noun acts as a modifier, It modifies one of the nouns that come
directly after It In the sentence. The second parse can be eliminated by adding a
test to the NOUN program that checks for:

1. msg = NOUN (meaning the last thing done to the stack was
the addition of a noun group to the top structure)

2. the noun group conslsting of word and the words in the
last noun group added to the top s*ructure in the stack Is a
legal noun group.

T T e e e e

|
|
|

=

UM I L G Ll b

il

il

P RITTITATIAY

TR

U

Grammar writing 68

It the test succeeds, the last noun group added to the top structure In the stack is
replaced by the noun group conslsting of word with the words in the repiaced noun
group as Its modiflers. Under thls scheme, there would be only one partlal parse for
a sentence beginning "The baseball..." (parse 1, shown above). if the next word iIn
the sentence were "bat", Its application to parse 1 would result in

msg = NOUN, m) = NIL

NOUNI: (BA THE BAStBALL)
FUNCTION: MAIN

since parse 1 meets the requirement of msg = NOUN and "the basebali bat" Is a

le gal“ noun group.

3.2.2 Relative ciauses

Grammar.3 (section 3.1.3) parses relative clauses in essentlally a top down fashlon.
When a noun is read, and the stack contains a structure with a noun which could be
modifled by a relatlve clause, a ver:) structure with function equal RC Is created,
the noun Is added to it, and the resulting structure Is pushed onto the stack to

awalt the verb of the relative clause. if a sentence began "The city people..."

after "peopl2" was read there would be two partial parses:

I. msg = NOUN, ml = NIL 2. msg = NOUN, m} = NIL
NOUNL: (PEOPLE THE CITY) NOUNI: PEOPLE
FUNCTION: MAIN FUNCTION: RC

NOUN1: (CITY THE)
FUNCTION: MAIN

If the complete sentence were "The clty people hate is Tokyo." the second partlai

4 The test would fail if the sentence were "The basebails bat ..." since "the

baseballs bat" Is not a legal noun group".

TR

T

Grammar writing 69

parse would lead to a parse. "hate" would be the verb of the "RC" verb structure
and "Is" would be the verb of the "MAIN" structure. Parse 1 wou J use "ha.e" as
the verb of the "MAIN" structure and the parse would be discontinued after "is" is
read, since the stack would not contaln a verb structure which couid accept "Is". if
the compiete sentence was "The clty peopie favor bonds.", partiai parse 1 wouid
iead to a parse. Parse 2 wouid be discontinued when the end of the sentence is
reached and the parser realizes that It cannot attach "people favor bonds" to “the
clty". if the maln verb of a sentence which begins with a such a compound noun
takes an indirect object, then the sentence is syntactically amblguous. (eg., "The
clty people gave the bonds") The parser must not refuse to add "bonds" to "people
tavor" (which would klll the parse earller) since th.e sentence might have been "The

¢lty people favor bonds for Is Tokyo."

This splitting can be avoided by making changes in the NOUN and VERB program. In
the previous sectlon, a test was added to NOUN which determined when it was
posAsibIe to replace the last noun group added to a structure with the noun group
consisting of word and the words In the old noun group. If that test succeeds, and
word |s a iegal noun group by Itself, then instead of parsing for a possible reiative
clause In a new partial parse (by pushing a verb structure whose function is RC
onto the stack), a message Is inserted In the message slot of the top structure
explalning that It Is possible to form a relative clause with the head noun of the iast
noun group In the structure. In VERB, the method used to find an empty verb siot Is
modifled so that If no structure can be found with an empty verb siot, VERB tries to

find a structure whose message is "Posslble RC".

These changes allow "The city people hate Is Tokyo." to be parsed using only one

parse path. After "hate" Is read, there Is one partlal parse:

o

T

sl

T

m

il R T

TR, R

m

il

G L

L

Grammar writing 70

msg = VERB, ml = NIL

VERB: ((HATE))

NOUNL: (PEOPLE THE CITY)
MESSAGE : POSSIBLE-RC
FUNCTION: MAIN

VERB tries ‘o find an open verb slot to put "Is" In. it can't find one, but It is able to
find a stack structure whose message Is POSSIBLE-RC. It removes the message,
verb and head noun from the structure, forms a new v<rb structure, and places it in

the stack just above the old one. This forms a new stack,

VERB: ((HATE))
NOUNL: PEOPLE
FUNCTION: RC

NOUNI: (CITY THE)
FUNCTION: MAIN

which Is has a place for the verb "Is".

3.2.3 Verbs which accept clauses

Grammar.4 (section’ 3.1.4) showed one way of- handling verbs which can accept
~lauses as case fillers. Like the first relative clause mechanism, It was essentlally
top down. When a verb that was able to accept a clause was added to a structure,
a second partlal parse was created with an empty verb structure whose function
was WHAT pus..ed onto the stack. A better method Is to wait for the verb of the
clause to arrive before sprouting another partlal parse. "l saw the man In the store

steal the book." would then have one partial parse at the time "steal" was read:

T T T RS

Grammar writing 71

msg = NOUN, ml = NIL

PREP: IN
2. NOUN: (STORE THE)

VERB: ((SEE-5AW))

NOUN1:]

NOUN2: (MAN THE)}
1. FUNCTION: MAIN

"See-saw" Is the verb used by Reader to represent either the past tense of "see"
or the present tense of "saw". it has ail the syntactic properties of both. If

something In the parse resolves which verb is Intended, Reader makes the change.

E When "steai" is read, VERB iooks down the stack for a structure that can accept a
verb. it finds structure 1., which has a verb, "see-saw", that can accept a ciause.

] The stack Is collapscd down to structure 1., yieiding

4 VERB: ((SEE-SAW))

NOUNL: |
NOUN2: (MAN THE (IN (STORE THE)))
I. FUNCTION: MAIN

A verb structure with function equai WHAT is created to hold "steai". NOUNZ2 is

[

E removed from structure 1., and placed in the new structure, which is pushed onto
the top of the stack. The verb "see-saw" has been changed to "see" by the
program which pushed the WHAT structure onto the stack, since "saw" cannot
accept a clause. The result is:

E VERB: ((STEAL))

NOUN1: (MAN THE (IN (STORE THE}})
2. FUNCTION: WHAT
= VERB: ((SEE ED))
: NOUN1: 1
1. FUNCTION: MAIN

e F e e = e -

iR

i T

"

Wi

Grammar writing 72

3.2.4 Conjunctlons

Conjunctlons are similar to other sentence constituents In that, syntactically, they
usually can be attached to more than one sentence constituent. For example,

"The man In the sult and tle." (suit and tie form the conjunction.)

"The man n the sult and John." (man and John form the conjunction.)

"Bl bought the turntable John was selling because he needed the money."
("because he needed the money" specifies why "John was selling".)

"Blll bought the turntable John was selling because he llked the way It sounded."
("because he llked the way it sounded" specifies why "Blll bought".)

Amblguities arising from which constituent the conjunction should be attached to are
handled by the stack and COLLAPSE. "The man In the sult and John" would be

parsed Into the stack,

PREPOSITION: AND
3. NOUN: JOHN

PREPOSITION: IN
2. NOUN: (SUIT THE)

NOUNI: (MAN THE)
1. FUNCTION: MAIN

"And" (when acting as a conjunction between nouns) Is treated as a preposlition
syntactically. When the stack is collapsed, It Is determined whether 3. should be

attached to 1. or 2.

Conjunctions between verbs are handled by pushing a verb structure whose
function Is the conjunction onto the stack. "BIll bought the turntable John was

selling tecause he needed the money." would be parsed Into:

SO o LA SR

Mmmmmwuw e [

;
;

UL)l

T A Rt b TR

(ki

il

T

|| YT

T

T

THf

e TR

Grammar wrlting 73

VERB: ((NEED ED))
NOUN]: HE
NOUN2: (MONEY THE)

3. FUNCTION: BECAUSE
VERB: ({SELL ING)(BE ED))
NOUN1: JOHN

. FUNCTION: RC
VERB: ((BUY ED))
NOUN]: BILL
NOUNZ: (TURNTABLE THE)

1. FUNCTION: MAIN

r

When the stack is Coiiapsed, It is determined (by the Interpreter, acting through

Format) whether 3. modifies 2. or 1.

At first giance, it wouid appear that the application of a conjunction that can conjoin
nouns and verbs (or a conjunction that is aiso a preposition, eq., before. like) to a
pa se wili resuit In two partiai parses: one in which a verb ciause is expected (a
verb structure Is pushed on the stack), and one In which just a noun Is anticipated

(a preposition structure is pushed on the stack). However, both expectations can

be handled by pushing on a verb structure® whose message |s POSSIBLE-PREP and
modifying Format so that it formats a verb structure whose message Is POSSIBLE-
PREP and whose verb siot Is empty as if it were a preposition structure whose
preposition is function and whose noun slot is tha value of the nount slot of the
verb structure. Aiso, VERB has to be modified to search for empty verb structures

down the stack past those verb structures whose message Is POSSIBLE-PREP.

Using this method, the stack for "John iikes Janet and Biii ..." would be

5 Assuming the stack can accept a verb conjunction. The stack for the sentence
beginning "John and .." can oniy accept "and" as a ncun conjunction. The general
condition is that a stack cannot accept a verb conjunction if the top most verb
structure whose message is not POSSIBLE-PREP does not contain a verb. If the
stack cannot accept a verb conjunction then the parse is continued by pushing a
preposition structure on the stack.

Grammar writing 74

NOUN1: BILL
MESSAGE: POSSIBLE-PREP
2. FUNCT]ON: AND
VERB: ((LIKE SY)
NOUNI: JOHN
NOUNZ: JANET
1. FUNCTION: MAIN

If the sentence continued "John llkes Janet and Blll hates Jill', "hates" would be

placed In the verb slot of structure 2. If the sentence was simply "Joha likes Janet
and BII", the stack would be collapsed and the format of structure 2. would be

(AND BILL)

- the same as the format of the preposition structure,

: PREPOSITION: AND
3 NOUN: BILL

Finally, If the sentence were "John likes Janet and BIll and George hate Jill.®, "hate"

would be applied to the following stack: '

NOUNL: GEORGE
MESSAGE: POSSIBLE-PREP
3. FUNCF!ON: AND

T AT

NOUN]: BILL
MESSAGE: POSSIBLE-PREP
2. FUNCTION: AND

VERB: ((LIKE S))

E NOUNL: JOHN

= NOUN2: JANET

1. FUNCTION: MAIN

% VERB wiould flrst try to add 'hate" to structure 3. This would fall since "hate" and

"George" do not agree. It would then try to add "hate" to structure 2., after having

attached 3. This would succeed since "hate" and (BILL (AND GEORGE)) do agree.

Note that If "hate" could have been added to structure 3. (If the sentence were

v Jjohn (lkes Janet and Bill and the chlldren hate JlIl."%, for Instance) then VERB would

|
|
|
|
I
i
t

Grammar writing 76

stlll have trled to attach "hate" to a structure lower down In the stack so that &ll
the possible meanings of the sentence could be uncovered. "John likes Janet and

Bill and the chlldren hate Jlil." could mean either

[CONJ AND [CONJ AND
or
{LIKE NN {LIKE NN
[SUB JOHN] [SuB JOHN]
[0BJ JANET) [0BJ (AND JANET
} BILL
)]
{HATE NN }
{suB (AND BILL
(CHILD IPL) {HATE NN
)] [SUB (CHILD !PL)]
[08J JILL) fogJ JitL]
} }
]]

in producing the two parses above, Reader did not have to split Into two parses

untll the word "hate" was encountered.

3.2.6 Verbs Inflected with ed endings

Verbs Inflected with an "ed" ending which are not preceded by auxillary verbs can
usually be applied to a parse (as verbs) In two different ways: as the maln verb of
a clause, "The police captured the robber.", or as a modifier following a noun, "The
robber captured by the police was convicted". The grammar Reader uses comblnes

the two possibliities Into one.

When an "ed" verb Is encountered, any combination of

1. There Is a verb structure In the stack that has an empty
verb siot.

2. There Is a structure in the stack that has a noun which
could be modified by a relatlve clause.

can be true. Suppose an "ed" verb Is encuuntered.

A, A i

i

e

%
|
i
1
§
i
|
;
%
|

Grammar writing 76

If th~ last operatlon on the stack was the addition of a verb (msg =
VERB), and the "ed" verb forms a legal verb grcup with the verb just
added, it Is added Into the top structure In the stack as part of the verb
group. VERB exits,

If 1. and 2. are true, then verb structure Is pushad on to the stack
with FUNCTION equal REL :R-MAIN VERB equal the "ed" verb, and
NOUN1 equal 'match_to_head_noun. If the verb clause Is used as the
predicate of the sentence, then !match_to_head_noun will be repla-~ed
by the NOUN1 of the structure It Is added to.

If just 2. is true, then a verb structure Is pushed on the stack with
FUNCTION equal REL.

If just 1. Is true, iY@ ~c2ck is collapsed down to the st-ucture with the
empty verb slot, anid the verb Is added.

If neither 1. or 2. Is true, then VERB simply exits. The parse will be
continued by using the "ed" verb as a modifier.

Thrse methods parse "The man in the phol:graph framed tor ‘he police was his
father". as foilows. The stack, before "framed" Is read and after "police" Is read,

Is shown below:

PREP: FOR
4. NOUN (POLICE THE)

VERB: ((FRAME ED))

NOUN]1: !match-to-head-noun
3. FUNCTION: REL-OR-MAIN

PRLCP: IN PREP: IN
c. NOUN: (PHOTOGRAFH THE) 2. NOUN: (PHOTOGRAPH THE}
NOUNI: (MAN THE) NOUNI: (MAN THE)
1. FUNCTION: MAIN I. FUNCTION: MAIN
"The man in the photograph.. ..framed for the police...”

A verb structure with FUNCTION ~qual REL-OF MAIN nhas been pushed on, since the
stack contains %oth a structure with an empty verb slot (1) and one (both 1. and 2.)

with a noun which could be modified by a relative clause. If the sentence ended

Grammar writing 77

with "police", the stack wouid be coiiapsed, and the deductive system wouid be
asked to choose from among the three possibie parses the stack couid be coliapsed
to:
"The man in the photograph which was framed for the potice."
(NOUN (MAN THE (IN (PHOTOGRAPH THE {FRAME PN

(0BJ imatch_to_head_noun)

{FOR (FOR (POLICE THE)))

M

"The man in the photograph who was framed for the ,olice."
(NOUN (MAN THE (IN (PHOTOGRAPH THE)) {FRAME PN
[08J !match_to_head_noun]
[FOR (POLICE THE))
M)

“The man in the photograph did frame (photos or peopte) for the police."”

{FRAME PN
[SUB (THE MAN (IN (PHOTOGRAPH THE)))]
[FOR (FOR (POLICE THE))]

The sentence continues with "was", however. The VERB program applies "was" to
the stack by searching down the stack for a structure with an empty verb siot. it
finds 1., and culiapses the stack with the purpose of inserting a verb. This means
that 3. cannot be attached to 1. as the main verb of the sentence, since that siot
is now reserved for "was". The deductive system decides whether the man or
photograph was framea (we wiil assume "the man"), and "was" is inserted in the

resuiting structure. This yields

VERB: ((BE ED))
NOUN1: (MAN THE (IN (PHOTOGRAPH THE),

(V FRAME PN (OBJ !match_to_head_noun)
. (FOR (FOR (POLICE THE)))))
FUNCTION: MAIN

and the parse is continued. in the - :rse of the compiete sentence, the companion

S e = e 2 s 2 i et ad L oEs e

é

Grammar writing 78

system never had to consider a meaning which used "the man" as the SUB of

"frame".

E
E

79

4. A closer look

This chapter explains some of the algorithms mentioned earlier in greeter detalil.

4.1 Measure

Each stack structure has a siot set aside for its measure, which is used by Reader
to help It choose among competing partial parses. The measure of a structure rates
both the syntax and semantics of the structure. The deductive system (via Format)
Is responsible tor determining the semantic component of a structure's measure.
Sectlon 5.5 explains how semantic measure Is caiculated in the Reader-interpreter

system.

Two measures are compared by first comparing the two semantic componunts. |If
one measure has a better semantic rating (section 4.1.1) than the other, It is
preferred. If the semantic zomponents are equal, the measure with the best syntax
rating (section 4.1.2) is preferred. If both components are equai, the measures are
squal. This comparison system prefers a very unusual (but iegal) syntactic
structure to a more common syntactic structure if the former is judged to be even

slightiy betier semantically.

A structure is measured when It is Formatted. Format retirns the format of the

structure as well as its measure, which is then mergedI with the contents of the

measure slot of the structure receiving the formatted structure. The measure of a

' The merge of two measures, M1 and M2, Is the measure whose semantic and

syntactic components are the union of the semantic anc syntactlc componeats of
M1 and M2.

E
I
|

P

ki

i

¥

E

!

-

il g el

T

i

A closer look 80

structure, therefore, ¢ “ntains the measure of all the structires that have been

attached to It.

4.1.1 The semantic componhent

The semantic component consists of three features. The Interpreter Is responsible
for rating each feature. Arating can have one of 3 values:
perfect: The Interpreter is perfectly satisfied with this feature.

acceptable: The interpreter would prefer something else but the
feature Is acceptable.

unacceptable: The feature Is unacceptable.

A semantic component A is better than a semantic component 8 If
1. A has fewer unacceptable features than 8.
or
2. A and B have the same number of unacceptable features, and A
has fewer features which are merely acceptable.
This algorithm would prefer a semantic component with only acceptable features to
a component with one unacceptatle feature and & large number of perfect features.

An alternative method Is to allow some number of perfect features to cancel the

effects of an unacceptable feature.
The following features contribute to the semantic component.
Verb Cases

Is the verb well modified? The ratings are:
perfect: The verb has all the cases it needs to be well defined.

acceptable: The verb Is missing some cases which are usually found
wich It.

T

T

A closer look 81
unacceptable: The verb is missing some cases which are necessary.

"Put" Is an example of a verb requiring a case; namely a where-put case. One
almost never says "John put the ball". Therefore a verb structure whose main verb
was "put" that did not have a where-put case would be rated unacceptable. This
does not prohibit the parser from parsing a sentence like "John put the ball”. If
that were the sentence the parser was given, then the best structure the parser
would be able to find would be one whose measure contained a semantic component

with at least one unacceptable rating.

An acceptable, but not perfect, case of verb modification can occur with verbs like
“go". "Go" prefers a case explaining where the SUB has gone. However it Is fairly

common to omit that case if it Is implicit from some other information.
Noun Modificatlons

This is an evaluation of the appropriateness of each noun group In the structure,

The ratings assigned are,

perfect: The noun grcup is perfect. The deductive system can find an

object in Its representation of what has been sald which the noun group
refers to.

acceptable: A referent cannot be found, but al'! the modifications in the
noun group are meaningful to the deductive system. eg., The deductive
system wili know how to interpre! the noun group.
unacceptable: The deductive system cannot understand the proposed
modifications.

Sometimes the rating given a noun group will depend on the context the sentence

contalning the noun group occurs In. Conslder the noun group "The student

George". if there were two George's and one of them was known to be a student,

ol

TR T

Mo s

oo

A AT

Y

T

b e

o i

Ll

A closer look 82

one might want to disamblguate which George was belng referred to by using the
phrase, "the student George"; as In "The student George |Is always busy".
However we would not want the parser to conslider the phrase "the student George

saw" as having a meaning other than "the student that George saw", except in

such a context.

This feature is also responsible for measuring the fit of the modifiers coming after
the noun. “The ball In the box" would be rated perfect If the Interpreter could find
a ball In the box, acceptable if not. "The store he kissed" would be rated perfect f

the Interpreter could locate a store that was kissed, unacceptable If not.
Appropriateness of Verb Cases

Most verbs prefer certain types to fill their cases. The Interpreter should have a
verb frame for each verb [Reader can operate without this frame; it just means that
one more level of discrimination is lost, which might result In Reader finding more
interpretations of a sentence than a person would]} which It uses to evgluate how
well the verb’s cases fit It. The values are,

perfect: The verb and case satisfy the interpreter's expectations.

acceptable: The verb do=s not usually contain the case, but the
Interpreter Is aware of ldioms that would cause the verb to receive It.

unacceptable: The interpreter is unable to find any role for the case to

play In the verb’s definition.
The verb "give" prefers a human as its SUB, a non-human as Its OBJ and a human as
its 10B (reciplent). Using these expectations enables a person to find only one

meaning for "He gave the ball Bill gave the salesman", namely

=

A Ll L L

i L L Gt

i

T e

B R

A closer look 83

{GIVE PN
[(suB HE)
[OBJ (BALL THE {GIVE PN
[SuB BilLL]
[10B (SALESMAN THE)]
13}
}
and not consider,
{GIVE PN
[SUB HE]
[10B {BALL THE {GIVE PN

i) (suB BiLL]
}
[0BJ (SALESMAN THE)]

since the second Interpretation assigns "give" a non-human fo: its IOB case and a

human for its OBJ.

A parser cannot afford to reject possible parses that contain verbs that don't
accept thair cases since one frequently uses verbs in ways which vioiate their
case preferences, as in "He gave the bride =way", "The nolse gives him a

headache" or "He gave the walil a kick".

8,1,2 The Syntactic Component

Reader tries to fiiter out some of the partiai parses that are valid syntacticaliy,
semantically meaningtui, and yet wouid not be seiected by a person. if a structure
has tiis property. it is marked in the syntactic component of its measure. The
syntactic component with the fewest such markings is the best. A structure
inherits the measure of any structure that is attached to it, so it Is possibie for the
syntactic component of the measure of a structure to have more than one syntactic

mark against it. Here Is an exampie of this idea:

mmn--mT

e

il

Rl

A closer look 84

"The salesman crushed by the elevator was hurt" is understood by realizing that
the verb phrase, "the salesman crushed by the eievator" is the subject of was.
Using the same methods Reader finds two meanings to "i saw the saiesman

crushed".

The oniy meaning most peopie wouid consider is, M1: "/ saw the act of salesman
being crushed",

{SEE PN
(suB 1]
[WHAT {(CRUSH PN
[OFJ {SALESMAN THE)]
i3

}
Reader finds another interpretation, which is M2: "1 saw the salesman who was

crushed"

{SEE PN
[sus 1}
[0BJ (SALESMAN THE (CRUSH PN
[0bJ !match_to_head_noun]
NI

}

Peouple who want to convey the second meaning say the sentence differently, so
we do not want the parser to return with two parses for "i saw the saiesman
crushed" since peopie do not find it ambiguous. The second meaning has to be
consldered, since the parser may be given "l saw the salesman crushed by the
elevator waik away unhurt". Rzader marks the syntactic component of any verb
structure whose verb can accept a clause and whose GitJ ix a noun modified by a
verb clause with !'match_tz_head _noun for a dummy OBJ. Thus, if Reader were
glven the exampie sentence "i saw the saiesman crushed", M1 would have a better

measure than M2, so Reader would returr: cniy one parse for the sentence.

f
|
3
i
E
|
4
il

2

PR T

A closer look 85

LRl

it should be noted that the rules used in determining the measure of a structure are

distinct from the rules used In the grammar. The rule used In the above example

2

("...mark any verb structure whose verb can accept a clause, and whose OBJ is a

noun modifled by a verb clause with !match_to_head_noun for an OBJ") may seem

somewhat ad-hoc. But this rule In no way effects the structuring of an Input
sentence. It Is merely used to fliter structures that the parser finds. Without this
rule, the system working with the parset would have to declde for itseif whether "t

saw the salesman crushed" meant M1 or M2,

Other parsers have used variants of a "measure" concept. Robinson, [Roblnson

T

756], uses the term factor score to refer to how well various syntactic features "fit"
!E together. In theory, this seems quite similar to the syntactic component just
L defined. In practice, it is used quite differently, since the motivation for factor
Z scores lies In the amblguous inputs a speech parser must deal with. Reader uses

the measure of a structure to help It choose from among completed parse

structures, or from among structures resulting from the collapse of a stack segment,

iy

iMeasure Is never used to determine how a word shkould be applied to a parse, or
whether or not to contlnue a parse. In contrast, factor scores are primarily used to
determine the priority of actlve parse paths. The factor score of "out" elliminates a
parse path. An example of an "out" factor score is the comblnation of "foot" and

"s". Presumably, the speaker Intenued the "s" as the first letter of the word

following "foot", rather than the last letter of the Incorrect plural "foots" This level

of detail Is unr.ecessary In a parser intended for written Input.

In many cases, the syntactic measure can be done away with In favor of more

efficlent parsing methods. In the example above, syntactic measure Is needed

bl A i

i bk

%

i i

(AR T

T

i

A cioser look 86

whenever the grammar "splits" on a verc Inflected with "ed" by creating a parse In
which the "ed" verb Is the maln verb of a clause, and one in which the "ed" verb is
part of an embedded clause mod!fylng a noun. In a grammar which did not spilt (see

section 3.2.5), "| saw the salesman crushed by the elevator" would be divided Into:

PREP: BY
3. NOUN: (ELEVATOR THE)

VERB: ((CRUSH ED))
NOUNI: !match_to_head_noun
2. FUNCTION: REL

VERB: ((SEE tD))

NOUNL: |

NOUN2: (MAN THE)
I. FUNCTION: MAIN

When the stack Is collapsed, 2. would be attached to 1. as the WHAT case of
"see", and !'match_to_head_noun would be replaced by "the man". |f the sentence
were "l saw the man crushed by the elevator walk away.", then when walk was
"read", the only place to put It would be the verb slot of the WHAT case of "see".
Therefore the stack would be collapsed with the purpose "VERS", meaning. "Don’t
fll up any verb slots." This would cause 2. to be attached to 1. es a mo-.fler of

"man", rather than as the WHAT case of "see".

4.2 Collapsing

Collapsing a stack (or stack segment) consists of converting it into a single stack
structure by attaching all the structures In the stack to each other untli there is
only one left that has not been attached to any other. The methods used to buiid

the rtack ensure that structures wlill only modify structures beneath them in the

i

i g

T T

A closer look 87

stack. There Is one "syntactic" constraint the collapse must satisfy. Glven a stack
[Sn, Sn-1,....82, S1], If Sk Is attached to S/, then for all i/, k> i > j, Si cannot be
attached to Sm, j > m. This constraint, which may be viewed as nesting condition,
reflects the syntax of Engiish. As an lilustration, the stack [D C B A] couid be

collapsed In flve different ways:

(ABCD) A modified Independently by B, C and D.

(AB(C D)) A modifled independently by B, and C modifled by D.
(A(BCD)) A modifled by B modlified Independently by C and D.

(A (B (C D)) A modified by B modified by C modifled by D.
(A(BC)D) A modified by independently by B modifled by C, and D.

It can't be collapsed so that D modifies B, which then modlfies A, and C modifles A

since this would violate the nesting conditlion.

Depending on the stack, each one of the above structures could be the meaning
intended In the sentence, so the Collapse algorithm must be able to conslder each

possible collapse and return the one(s) with the best measure.

The followlng sentence illustrates the fact that any one of the flve structures could
be the preferred Interpretation of a four structure stack. "He puts the block in the
box In the carton on the table." would be dlvided Into

D. on the table

C. In the carton

B. In the box

A. He puts the block

Depending on the circumstances the sentence occured in, It cculd mean either:

(A (B (C D))) -- The box Is In the carton, the carton Is on the table, and the block Is
put In the box. [Wher B modifles A, It can modify elther the locatlon of the block, or
where t'.e block was put. If only B modlfies # directly, then It must speclfy where
the block was put. If there Is another modifier that could speclfy where the block
was put, then B speclfies the location of the block.]

(A (B C) D) -- The block Is In the box, the box In the carton, and the block Is put on
the table.

|

oz

™ T

Rl

LA

A closer look 88
(A B (C D)) -- The biock Is In the box, the carton is on tive tabie, and the biock is
put in the carton.

Changing D to "on Thursday" yieids

(A B C D) -- The biock is in the box. it is put in the carton. The action Is done on
Thursday.

Changing C tc "with the cover" yieids

(A (B C D)) -- The box has a cover. The box is on the tabie. The biock Is put in the
box.

The simpiest aigorithm for coiiapsing the stack wouid be to generate ail legal
coiiapses and then choose one with the best measure. This method Is not used
because the number of structures a stack can be coliapsed to grows exponentiaily
with tihe iength of the stack. in fact, the sequence foilowed is the Catalan?
sequence, which is (1, 1, 2, §, 14, 42, 132, 429, 1430, 4862, 16796...). he
ciosed form for the Nth term of tii» sequence is

(2(N-1))!
--------- = The number of ways a stack oy iength N can be coiiapsed.

(N-1)IN!

So it is obvious that we wiii want to use a more inteiligent method for coiiapsing.

The set of structures a stack S may be reduced to is cailed the collapse set We
wish to generate the members of the c-//apse set in an order that gives us the best
chance of finding the preferred structure in the se* before generating the entire

set.

In English usage, sentence constituents have a tendency to modify the constituents

that are ciosest to them in the sentence. in a stack, this transiates as "a stack

2 Which, among other things, counts the number of ways a convex poiygon of N
sides can be trianguiated [Gardner 76].

:
S
=
=
=

L il

A closer look 89

structure is most iikely to modify the one directly beneath it in the stack." Our

heuristic is to generate the members of collapse set that have the "ciosest

modifications" tirst®, and stop as soon as we generate a structure with perfect

measure.

We define a metric to measure how welli a member of the collapse set fYits the "ciose
modification" criteria. The metric counts the number of structures in the stack that
modify structures n structures beneath them. S(N1,N2,...Nk) is the subset of
collapse set whose members contains N1 siructures that jump over one structure to
find the structure they modify, N2 structures that jump over 2 structures to find the
structure they modify, etc. The members of S(N1,N2,...Nk) are more ciosely modified
than the members of S{M1,M2...,Mk) if and oniy if the sum of the N/ (/=1,k) is less
then the sum of .he M/ (/=1,k), or the sums are #quai and there exists / (1 < j < k)
such that Nj > Mj and N/ = M/ for ail / iess than k. eg., For a stack of five
structures, the structure with the ciosest modifications is £(0,0,0) the structures
that are in S(1,0,0) are the next most likeiy inteipretaticn of the stack, and _he
structures in §(2,0,0,) are preferred over those in S(1,1,0). Tne Coiiapse routir
generates the stiuctures with the closest modificatinns first, with one important
exception. Suppose the modification of structure N by structura M ieads to a bad
measure. Then every finai structure in which M modifies some other structure with
a better measure than it does N is generated before those containing N moditied by

M, even though the iatter may be more ciosely modified.

Here is how this works on the sentence,

3 There are certain exceptions: for exampie, if a verb structure in the stack has a
passive verb group, and there is a preposition structure whose preposition is hy"
above it, then the coilapse routine tries to attuch the "by" preposition structure to
the verb structure first,

R L S e s e e e T e et i g ki S A T e

o

A

LA

it

A closer look

"Write me a program called Intersection which prints a set of lists
of numbers and outputs the numbers which are in all of them."

The stack tc be collapsed Is,
PREP: OF
9. NOUN: THEM
PREP: IN
8. NOUN: ALL
VERB: ({BE))
NOUN1: (WHICH PL)
7. FUNCTION: WHICH
VERB: ((PRINT S)}
NOUN1: 'match_to_conjunct_sub
NOUN2: (NUMBER !PL THE)
6. FUNCTION: AND
PREP: OF
5. NOUN: (NUMBER 'PL)
PREP: OF
4. NOUN: (LIST !PL)
VERB: ((READ . S))
NOUN2: (SET A)
NOUN1: (WHICH ISING)
3. VFUNCTION: WHICH
VERB: ({CALL . ED))
NOUN2: 1 #INTERSECTION
NOUN1: 'match_to_head_noun
2. FUNCTION: PASS
VERB: ((WRITE))
NOUN3: (PRCGRAM A)
NOUN2: ME
NOUN1: YOU*
MSG: (IMP)
1. FUNCTION: MAIN

or more simply,

20

A closer ook 91

. of them

.In ali

. which are

. and prints the numbers
. of numbers

. of lists

. which reads & set

. called Intersection

. write me a program

“NOBOO~N®O

Collapse begins by trying to generate (1 (2 (3 (4 (5 (6 (7 (8 9)))))))), the oniy
member of §(0,0,0,0,0,0,0). it successfuily forms (6 (7 (8 9))) and trles to attach

it to 6. It cannot since 6. must be attached to verb struct-e. An iiiegai

attachment and an attachment with bad measure are handied slmliarly“. Coiiapse

now looks down the stack for the closest structure which wiil accept 6. with a
perfect measure. It finds 3. which means it now has to collapse the stack segment

from 6. to 3. it cails itself recursively on the stack consisting of 6.,4. and 3. which

040l ittt | sl

results in the structure (3 (4 56)). The structure (6 (7 (8 9))) Is attached to it, and

Ll

Coilapse goes back to work on the stack consisting of 1., 2. and (3 (4 6) (6 (7 (8

©)))). The result is,

el by gt et

TP ST ST, TR

q

eg., if the attachment were iegal but had a bad measure, Collapse would
Immedlately start ionking for a better piace to put It. If none were found, It would

settle for the bad measure.

T

A closer look 92

(IMP {24WRITE NN
(ARG] YOUx]
[ARG3 ME]
[ARGZ (PROGRAM A {1#CALL PN
[ARG] !match_to_head_noun]
(ARG2 I#INTERSECTION)
)
[CONJ AND
{ 1#READ NN
[STEPOF Imatch_to_head_noun]
(ARGS (SET A (OF (LIST IPL (OF (NUMBER IPLYIIN)]
}
{ 1#OUTPUT NN

[STEPOF Imatch_to_conjunct_sub]
[ARGS (NUMBER THE [PL {2H#BE NN

[ARG] (imatch_to_head_noun))
)EARGZ (ALL (OF THEM))]
}

N

4.3 Formatting

Format is the aigorithm which prepares a structure for output. it is responsibie for

cailing the deductive system to measure the stiucture.

4.2.1 Noun groups

The noun group of an unformatted structure is a list of the head noun and its
modifiers. This list is handed to the deductive system which structures it and
returns a measure of the appropriateness of the noun group. The representation
used for the noun group's structure Is dependent on the needs of the deductive
system. Suppose Format were given a structure containing the noun group,

NOUN: (PROGRAM THEORY FORMATION THE)

|
|
91\
MU\ U

It
fi

Wil

T TIETITHR,
i

%:
E

I

A closer look 23

The deductive system wouid Le asked to structure It. The structure returned by

the interpreter (chapter 5) would be:

NOUN: PROGRAM
program-type: THEORY-FORMATION
definite: T

MEASURE : PERFECT

where "THEORY-FORMATION" is an atom denoting a certain kind of program.

The noun gioup representation used by the the deductive cystem does not matter
to Reader, since once a structure Is formatted, the parser no longer accesses it.
The Important plece of Information, as tar as Reader is concerned, Is the measure of
the noun group. it Is not unreasonabie to expect the deductive system to be
capable of supplying such a measure. A system’s abllity to represent a noun group

In a useful fashion impiles that it has a measure on how weli the noun group fits the

representation.

The structured noun group is returned in the propar siot of Format’s output. The

measure of the »joun group is added into the structure's measure, which wiil be

returned along with the formatted structure.

4.3.2 Conjunctions

Format Is responsible for bringing conjunctions up to their proper ieve! in the

sentence. "He reads books and writes poetry and music" would be parsed into

A closer look g4

NOUN: MUSIC
3. FUNCTICN: AND
VERB: ((WRITE S))
NOUN1: !match_to_conjunct_SUB
NCUN2: POETRY
2. FUNCTION AND

VERB: ((READ S))

NOUNI1: HE

NOUN2: (BOOK ¢PL)
1. FUNCTION: MAIN

When the stack I collapsed, 3. would be attached to 2., ylelding

VERB: ((WRITE S))

= NOUN1: !match_to_conjunct_SUB
A NOUN2: (POETRY (AND MUSIC})
2. FUNCTION AND

When 2. Is formatted, the conjunction (which untll now has been treated Just llke a

preposition) In NOUN2 Is broughi up tn toplevel, producing (AND POETRY MUSIC).

When the format of 2. Is attached to 1., It Is placed In the cases slot:

VERB: ((READ S))
NOUN1: HE
NOUN2: (BOOK PL1)
CASES: ((AND (WRITE NN ((SUB Imatch_to_conjunct_SUB)
(0BJ (AND POETRY MUSIC))))))
1. FUNCTION: MAIN

Format brings It up to top level so that the result of the parse Is easlly seen to be a
conjunctlon:

[CONJ AND

{READ NN
7SuB He)
[oBJ (BOOK IPL)]
)
{WR1TE NN
[SuB !match_to_conjunct_SUB]
[(0BJ (AND POETRY
MUSIC)]

|
%
|
1
|
|
|

S e e EE

Ty

A

L AL

T

e

A closer look 96

The symhol "imatch_to_conjunct_SUB" (section 2.4.6) refers to the SUB of the first

conjunct ("he™).

4.3.3 Fiiling in extra cases

Format provides a channel for the deductive system to determine if there are any
missing cases in the verb that can be filled In from the rest of the sentence.
Consider the sentence "John drove through and destroyed the piate giass wlqdow.".
taken from [Woods 73] Syntacticaily, It Is possibie for the object of the
preposition "through" to be "the piate glass window." Reader asks the deductive

system If this would make scnse. If the answer is affirmative, Format would return

{CONJ AND
{DRIVE PN
{58 JOHN]
[WHERE (THPOUGH (WINDOW THE PLATE GLASS))]
)
{DESTROY PN
[SUB Imatch_to_conjunct_SUBJ
(0BJ Imatch_to_conjunct_PREF]
}
]

where "match_to_conjunct_PREP" is to be matched to "the plate glass window",
Notice that Reader cannot add cases to a verb without consuiting the deductive
system. In the sentence "John drove through and destroyed her confidence In

him.", the object of "through" is not "her confidence in him".

4.3.4 Choices

Any choices in the parse structure (secticn 2.3.4) are generated in Format,

Consider the choice offered for the SUB of "be" in

il

A

i K A

i LR HHATLR iR

(il T

TR AT

il

AT

A closer look 86
{KNOW PN "I know that Ice Is siippery.”
{SuB .11
{WHAT IBE PN
{SUB (xCHOICE ICE
{ICE THAT)

)]
. (DES SLIPPERY)

Just before Format asks the deductive system to structure a noun it examines it to
see if a choice can be made from It. in this case, the test that succeeds i1s that
the noun is modified by "that" and is the SUB of a verb which belongs to a structure
whose functlon is WHAT, The consequence of the test is that a choice of noun
groups should be offered, one with “that" as a modfier, and one without “that". If
the originsl sentence had baen "I know that that ice is slipperv", the sacond "that"
wotld nct have been added to the Modifier List. Instead, a message wouid have
been ieft in the message siot of the verb structure which wouid have signaiied

Format not to test for this particular choice being present.

4.4 Parailel processing

Reader is designed to follow partiai parses in paraliel. if this were implemented
strailghtforwardiy, it wouid iead to an unfortunate amount of dupiicated effort.
Conslder the parsing of the sentence "He had anotiher iook at the man in the trench
coat who had been foilowing him for the iast hour.” When "at" Is read there are two

partiai parses:

A closer look 97

1. msg = NOUN, ml « NIL 2. msg = VERB, m) = NIL
VERB: ((HAVE ED)) VERB: (/LOOK))
] NOUNI: HE NOUN1: ANOTHER
NOUN2: (LOOK ANOTHER) FUNCTIC!: WHAT

FUNCTION: MAIN © o <

oL VERB: ({HAVE £D))
NOUN1: HE
FUNCTION: MAIN

If reader used simple parallel processing, "at" would be added to both partlal

parses, producing

1. msg = PREF, ml = Nil 2. msg = PFEP, m) = NIL
PREP: AT PREP: AT
VERB: ((HAVE ED)) VERB ({LOOK))
z NOUNI: HE NOUN1: ANOTHLIR
: NOUN2: (LOOK ANOTHER) FUNCTION: WHAT
E FUNCTION: MAIN - - -
i ... VERB: ((HAVE £D))
E NOUN]: HE
FUNCTION: MAIN
A1 this point, both stacks have the same top ztructure. The rest of the sentence,
i conslsting of the noun group "the man In the trench coat whohad been following him
for the last hour" Is golng to be persed twice, once for each partlal parse. The
g different partial parses arcse because words were applled to a single partial parse
.

In different ways. This nccessltated two dliferent parses, because each could

accept words differently. Parse 2. was able to accept "look" as a verb and parse
1. was able to accept It as a noun. But now that the stacks of each partlal parse
have the same top structure, most words will be added to the stacks In the same
fashlon. We can take advantage of this fact to avold parsing the object of "at"

twice.

In general, whenever two (or more) partlal parses have Identical top structures,

Rt

=

= e e e = —— B el S —= - PR P 5= = e .

{ou il

Ul

A closer look

28

they are merged Into one partiai parse with a branching stack. The two partial

parses above would be merged to:

msg = PREP, ml = NIL

VERB ((HAVE EDI)
NOUN]: HE

NOUNZ2: (LOOK ANDTHERI
FUNCTION: MAIN

VERB: ((LOOK))
NOUNL: ANOTHER
FUNCTION: WHAT

VERB: ((HAVE ED))
NOUNI: HE
FUNCTION: MAIN

The stack branching Is Invisible tc the grammar programs. When a SHIFT Is called on

& branched stack, it automatically foliows down all the branches and separates the

branched stack as required. in this case, the merge of the two partial parses cuts

the parsing time for the rest of the sentenze in half. The succeeding words In the

senten:e are applled to one partial parse, instead of two. Since none of the words

in the remainder of the sentence are attached to structures beiow the current top

of the stack, the two partial parses remaln merged until the end of the sentence.

After the iast word in the sentence has been read, the stack looks like:

A S TR i

(1 A i

T

VT T TR e

AL

0 i A R il

L

TS e

A cioser look

msg = NOUN, m) = NIL

PREP: FOH
NOUN: (HDUR LAST THE)

VERB: ((FgLLON ING) (BEEN) (HAVE ED))

NOUNi: W
NOUNZ: HIH
FUNCTION: WHO
PREP: IN
NOUN: (COAT TRENCH THE)
PREP: AT
NOON: (MAN THE)
VERB {(HAVE €0)) VERB: ((LOCK))
NOUN1: HE NDUN] : ANOTHER

NOUNZ: (LODK

FUNCIION: MAIN

ANOTHER) FUNCTION: WHAT
VERB ((HAVE ED))
NOUN1: HE

FUNCTION: MAIN

- - em

Collapsing this stac!. ;. roduces two different parses:

{HAVE PN
{sus HE]

{OBJ (LOOK ANOTHER (AT (MAN THE (IN (COAT THE TRENCH))

}

and

{HAVE PN
(SUB HE]
(WHAT (LOOK NN
(SUB ANOTHER]

(FOLLOW PPC
(suB fmatch_to_head_noun)
(0BJ HIM]
- (¥OR (FOR (HOUR THE LAST)))
h

[AT (AY (MAN THE (IN (COAT THE TRENCH))

{FOLLOW PPC
(SUB Imatch_to_head_noun}
(0BJ HIM)
{FOR (FOR (HOUR THE LAST))]

M)

e]

E

il

o il

T

) LA

T

T

A closer look 100

Merging partlal parses Is the other complication mentloned In the general control
structure presented In section 2.2. Step 6 was "Reset partial-parse-iist to a ilst of
the partlai parses formed In step 4." What actuelly occurs, Is that Reader
examines the ilst of nartial parses formed In step 4. and modifles it by merging any
partlai parses whose stacks have the same top structure. partiai-parse-iist is then

reset to the modifled list.

The merging of partlal parses Is similar (in effect) to the use of a well-formed
substring table (WFST) by parsers which use backup to achleve non-determinism
rather than paraiiel processing. A weii-formed substring table, [Kuno 63], Is a
coliection of parsed sentence constituents. When a parser using a WFST backs up,
It avolds reparsing sentences constituents by picking constituents it has already
parsed out of the WFST. Similarly, in a paraiiel processing environment, the merging
of partlal parses avolds the reparsing of constituents by allowing each parsed

constituent to be shared by every active partiai parse which can use It.

4.5 Other parsers

A considerable amount of the work has been done In the field of natural language
parsing. Much of this work has concentrated on syntux based parsers. These have
evoived from simple systems Implementing context free grammars, to rather
complex systems motivated by transformational grammar conslderations. Such
parsers have grammars which consist of a context free grammar, along with a set of
rules for moditylng the parse trae bullt by the context free component. The parse

tree may be modifled whlle it Is being ccnstructed [Woods 73], or after It has been

E‘.L

U

=

T

i |

T

U

im

|
|
|
fF

"

A closer look 101

completed [Sager 73]. This section examines the differences between some of

these systems and Reader.

Reader's organization is simliar to these systems in that we can view Format as the
transformational component, ani the grammar orograms as the context free
component. The differences in the systems lie primarily in the "context free"
component. The first diiference Is tnat the grammar programs are more powerful
than a context free grammar. Considor the sentence "Oniy one man was found who
could speak Engiish." in this sentence. "who couid speak English" modifies "man".
Reader parses the sentence by dividing it into & stack of two structures. When the
stack Is Collapsed, the top structure is attached to tha bottom structure, which
restits in the proper modification. This modification cannot be expressed in &

strictly context free grammar.

A more important difference lies in the way the "context free" component operates.
The grammars for most syntax based parsers consist of a description of iegal
sentence structures. The grammar's application to a sentence resuits in a series
of cholces about which kind of constituent shouid be buiit at a particuiar point in the
parse. Each system makes some effort to diminish the number of unsuccessfui

guesses. For exampie, Woods ailows the grammar writer to "recommend" what
guess to make at any point in the parse. Winograd's grammarsattempts to use the
information gained from a failed guess at a decision point to ailow it to choose

inteliigently from the remaining choices at the decision point.

5 The grammar in Winograd's parcer aiso consists of a set of programs. However,
the programs deal soiely with the construction of a parse tree, and are not orient ad
towards huilding structures that can represent -iore than one parse tree at a tire.

S

s

ki

i

A closer look 102

Reader’'s grammar consists of a set of programs which determine the different
ways a word may be added to a parse in a given configuration. The two methods
are simliar in that the gn~sses the older parsers make correspond to the guesses
Reader rust make !n deciding which way add a word to a partial parse. The
difference In the methods is that Reade: provides a framework (the stack) and a
means (the grammar p-ograms) for writing jrammars tha* diminisk the number of
ways a word can be applied to a partiai parse while stilii maintaining a substantial
grammar. ir most cases the grammar programs will apply a word class to a parse in

only one way. However, a word which belongs to more than cne word cliass will

generally6 be applied to a parse once for each word class it beiongs to.

it can be argued tiut since ali the more recent systems have the power of Turing
machines, they can perform any aigorithm, inciuding those thai. Reader carries out.
A simpie answer to this iz "Ahk, but they don’t". The reason they don't is that in
many o7 the systems the "fuii power of a Turing machine" is used oniy to mod. as
opposed to help bulid, the parse trees generated by the context free component.

in other words, the Turlng machine comes in after ali the guessing has been done.

The methods used by Reader to avoid nondeterminism include a mechanism used in
the ATN parser described in [Woods 1970]. Wood's parser Is partiaily based on a
finite state mcchine, and the method referred to invoived the technique of making
an arbitrary nondeterministic finite state machine deterministic by introducing
severai new states. Some of Reader's stategies can bel viewed in this light, but
most cannot, since they are Involved with eiiminating nondetei inism from situations

which invoive pushdown operations in the ATN formalism.

g Exceptions are single applications for words which are both conjunctions and
prepacsitions, and words which are both nouns and modifiers.

=
3

Wl

¥ PRI,

i

A closer look 103

Here Is a concrete example. Section 3.2.2 expialns how Reader parses simpile
reiative clauses deterministicaliy, using the exampie sentence "The city peopie
hate is Toliyo". A nondeterministic ATN would begin parsing the sentence by
attempting to find a noun phrasa. It would have to guess whether to find "the city
peopie" or "the clty people hate". The guess consists of declding when to "pop"
up from the "push" of findlig a noun phrase; exactly the kind of guess that a firite

state machine transformation cannot help.

Another advantage listed for ATNs Is the use of reglsters to make "..tentatlve
decisions about the sentence structure and then change one's mind later in the
sentence without backtracking." This is obviousiy a good feature fnr a par:2r t
have, and seems equlvalent to Reader's method of representing both sides of a
decision while reserving the rigit to chose one or the other (without backtracking)
later in the sentence. In Reader, this aliows one to parse relative clauses and
conjunctions deterministicaily, deiay attaching varlous parse structures until more
information is gatbered about the reason for the attachment (thereby reducing the
combinatorics of the attachment), combine different word class usages of a single
word Into one parse, etc. In contrast, [Woods 1970] contalns two examples of the
ten-ative declsion method at work, vwhich occur in the patsing of the sentence
"John was belleved to tiave been shot." The first decislon Is that was is the main
verb of the sentence, which Is later revised to belleve Is the main verb and was is
an auxlliary verb. The second is th2 decislon that John is the subject of was,
revised later to John is the object of belleve, and revised stiil iater to John Is the
object of shol. In Reader's formalism, ali these "decisions" are made and revised

triviaily. The vinal stack to coliapse is:

L Al

=
=
=
|

T,

A closer look 104

VERB: ((SHOOT ED){BEEN)(HAVE))
NOUNL: Imatch_to_sub
2. FUNCTION: INF

VERB: ((BELIEVE ED)(BE BE3SP))
NOUN1: JOHN
1. FUNCTION: MAIN

The decision to make was a heiping verb is accompiished by simply adding believed
to structure 1. There Is no need to assume what case John filis until the structure
it is " iIs Formatted. Attaching an INF structure whose VERB is passive to a
structure with a passive verb which accepts a ciause entaiis removing the first
noun In the iatter structure, instailing it as the first noun of the INF structure, and
then attaching the INF structure as the ciause case. When the iNF structure is
Formatted, "Joi.n" is made the object of "shot". The perse is,

{(BELIEVE PN
[WHAT {SHOOT NP
[(oBJ JOHN)
)]

There Is at least one other parsar under deveiopment that also tries to avoid
needless guessing. it iz being written by Marcus [Marcus 75]) and is based in the
belief that "..the structure of naturai ianguage provides enough and the right
information to determine exactly what to do next at each point of the parse." The
claim is that the parser wili be abie to avoid guessing what to do at a decision point
because there is realiy oniy one acceptabie cholce. The syvstem is stiil being
written, so it is too early to comment on it. However, it seems that this approach
wiil encounter probiems when working with a sufficlently iarge grammar and words

that can assume more than one syntactic category.

T

A closer look 106

Some more recent parsing systems have been developed which deemphasize the
role that syntax plays in the parsing process. Naturaily, such parsers do not
produce a "classical" parse tree, but instead produce a structure which is said to
represent the "meaning" of the sentence being parsed. Exampies of this type of
work may be found in [Riesbeck. 74] and [Wikks 73). As this work has come after
the more synta:: orlented parsers discussed above, we should explain why we have

rejected this approach.

The main reason Is our beilef that most semantic processing will be more expensive
than syntactic processing in a rich environment, Therefore, It Is desirable to use
s'yntex to minimize the number ot semantic Interactions that need be considered.
This contrasts with (for exampie) Riesbeck's work, in which he says "the functions
of the analyzer to be described here ask questions about the relationship of words
and concepts." Here, the process has been reversed; semantics and deduction are
used to determine which words interact, and syntax Is used only later, if at all, to
ensure that a proposed modificatiorn between words is permitted. If one limits
oneself to simple sentences, the added expense of using semantics Instead of
syntax to declde whether two words Interact wili not be overwhelming, since the
possible Interactions In a simple sentence wlil be few In humber. However, the
number of possible Interactions to be examined semantically grows exponentia'‘ly
with the compiexity of the sentence, so It seems that these methods will not be
practical in a rich environment {in which there are many possible relationships
between aimost all words and concepts) which has to deal with complicated

sentences.

106

6. The interpreter

A brief overview of the interpreter is given in sections 1.2.2 and 1.6.2. Essentialiy,
it is a computer program which attempts to understand natural language. There are
many other computer systems which wouid make the same claim. The points of
interest in all programs of this type are:

1. The representation used for the information contained In the natural
language. For the interpreter, this is the program specification.

2. The representation(s) used for the knowledge base needed to
understand the natural ilanguage.

3. The methods used for activating parts of the knowiedge base to bear

on a particular task.
The tirst point is covered in Section 6.1, Examples of different types of program
specification types are given, along with an exampie which illustrates how severai
components fit together to describe a computer program. The section aiso
discusses the representation of user's repiies which are not Incorporated into tne

program specification.

Section 6.2 introduces "concepts" and "“definitions", the two representation units in
the interpreter’s knowledge base. The simpiest type of concepts are those which
ate abstractions of components in the specification. An exampie of such a concept
Is #ADD, which refers to the concept of adding up several numbers. information
inciuded in the #ADD concept is,

#ADD can be instantiated as a step in the program specification.

#ADD takes two or more arguments.

The arguments shouid be numbers. But an exception occurs when

there Is one argument which Is & set of numbers, In that case,

the numbers in the set shouid be considered the arguments of the
#ADD.,

The Interpreter 107

Deflinitlons provide Instructlons for mapping English word strings into concepts. The
definition of "sum" contains Information which allows the Interpreter to map "The
program sums up the last three numbers." into an #ADD which is a step of "the

program" and whose arguments are "the last three numbers".

The task of relating a phrase like "the last three numbers" to a specific component
(or components) In the program specification Is referred to as matching. Section
6.4 covers the matching process, explaining how tha Information contained In

concepts and definitions is used during matching.

The primary goals of the processing performed by the interpreter are conceptuaily
very simple, and sections 6.2, 54 and 6.3 (which explalns the interpreter’'s
processing cycle to provide background for sectlon 5.4) shouid be read with them in
mind. The goals, upon receiving a parse structure, are:
1. Determine which definitions can be appiled to tie parse
structure, and therefore which concepts the parse structure Is

Invoking.

2. FiInd or create referents In the program specification for the
descriptor slots of the concepts the parse has been reduced to.

3. Incorhorate the appropriate concepts Into the program
speclficatlon.
Section 5.5 explalns how definitions and concepts are used to provide the measure
informatlon necessary for the interface between Reader and the Interpreter. The

final section mentlons some work remaining to be done.

|| ik 1t L

S i L L0 e A 1 i

Lidimaiiiuiiiiides

il

L U i L

it e Gl

il

AR

i

The Interpreter 108

5.1 The results of interpretation

5.1.1 The program specification

The program specification contains a record of everything the user has said (and
the Interpreter has Inferred) which is relevant to the description ot the program
being written. The parser/interpreter uses it as a data base for matching, the
parser/interpreter interface etc. This section describes the format of the

specification. Later sections wili show how it is utiiized by the parser/interpreter,

The principal result of the interpreter is the program specification The program

speciflcation' represents a computer program, snd can be viewed as a high ievei
programming program language. It consists of a connected sct of components.
Such a data structure has been iabeled a "entity-attribute-vaiue data structure" in
[Heidorn 74], and a "set of conceptual entities with associated descriptions” in

{Bobrow 76].

The description of a component is a collection of descriptor/vaiue pairs which
specify the actions and structure of the component. For example, a component may
have as its description,
A0358

class: ALG

type: OUTPUT

args: "Ready"

step-of: AO367

which means that It Is an Aigorithm component that shouid be mapped into an

"output" operation in the target language (eg., WRITE in Fortran, PRINT in Lisp, etc.).

' The program specification semantics were deveioped with Jorge Phiiiips.

3 The Interpreter 109

The argument of the output Is the string "Ready". The step-of descriptor indicates
the position of the component in the specification; it is one of the steps of an

ALGorithm compcnent denoted by AQ367.

e

Each descriptor has an inverse assoclated with it. For example, If a component X is
in the steps descriptor of a component Y, this fact can be derived by examining

either Xor Y.

L

A component belongs to one of two classes: ALGorithm or DATA. Each class Is
subdivided into severa! types. Figure 5.1 shows some control structure ALGORITHM

types.

Lt e A R

WMMMWWWWWWWH [t
\
H
i
il
i
1
i
|
I
l
I

i
i
it
!
|

T e

ully

il

il

The interpreter

110

PROCEDURE
ARGS: a list of DATA componente whoee type is BOUND.
OEFIN!'TION: An ALG component.

EQ
STEPS: a list of ALGe to be executed in eequential order.

CASE
CONDITION:
an ALG with a RESULT elot, or a OATA which ie the RESULT

of an ALG.
STEPS: a list of ALGS to bs executed if the CONDITION is TRUE.

COND
CASES:
a list of ALGS whose tlype is CASE. The firet CASE whoss condition
i8 TRUE is executed. The raet are ignored.

ENUMERATE
ON: a OATA whoee type ie SET.
STEPS:
a list of ALGS to be executed sequentially for each siement in
ths ON eet. The iteration element is represented by the generic
element of the ON sel,

LOOP

EXITS: a liet of ALGS whose type ie CASE.

COUNTER:

a CATA of type INTEGER whoee value ie the nuinber of times
thes L.OOP has been exsecuted.

STEPS:
a list of ALGs which includes every CASE in EXITS. The ALGs in
STEPS are repeatedy executed until the condition of a CASE in
EXITS is satisfied.

CALL
PROCEOURE: an ALG of type PROCEOURE.
ARGS: a list of OATAe which are bound to the args of PROCECURE.

Figure 5.1

Control structure ALGorithm types

|

e — e T, DAL ==

1

b

The remaining ALGorithm types can be divided Into predicates and primitive

sl ekt Gy L

:
:

|

The Interpreter 11

operatlons. The number of these Is essentlally unlimited, since anything the PSI
coding module can code can without Instructions from the user can be consldered
primitive. Flgure 6.2 provides some sampies of '-e primitive operations and

predicates used by the current system.

MAP

ARG e DATA componenta whoee type ia MAPPING.

ARG2: a DATA component

ARG2: e DATA component
MAP is the program eoecification primitive for aesociating one DATA component
(ARG2) with enother (ARG3) vie the mapping ARG!. it is e gensraiizetion of
ths Lisp PUTPRDP command. IMAP correeponds to GETPRDP.

IMAP

ARG a DATA components whoea type ia MAPPING.
ARG2: e DATA component

RESULT: the DATA component that ARG mapa ARG2 to.

COMPUTE
DN: 8 DATA componsnt which is e eet.
RESULT: e JATA component which ie a eat.

QUANTIFY: either ALL, SOME or DATA component which ie an integar.
ASSERTIONS:

e list of ALGs which are essertione invoiving the gensric
eiemsnt of the RESULT sst.

The RESULT sst is a eubset of the DN eet which consiete of sail, some or any
n (dspending on the vaiue of QUANTIFY: ALL, SOME or a number n) of the
of tha alemants in tha DN eet which satiefy tha ASSEATIDN liat.

INPUT
ARGS: e list of the DATAa bsin? read in.
PROMPT: a DATA of type STRING which ia output to heraid tha INPUT.,

MEMBER
ARG a DATA component.
ARG2: 8 DATA cuomponent which is a SET.
RESULT: e DATA of typs BODLEAN which raflecte whether ARG1is in ARG2.

FDRALL

BINDINGS: e liet of DATAe whose t¥ps ie BOUND.
PREDICATE: an ALG with 8 RESULT.
RESULT: a BDDLEAN which ie the truth value of universai quantification.

Figure 5.2

Primitive operatione and pradicatas

Data structures, like primitive operations, ccme In any form that the coder Is able to

handle. Figure 6.3 shows some DATA types and example DATAs,

The iInterpreter 112

SET
ELEMENT: a OATA which is ths generic slement of the set.

RECORO
FIELOS: = list of OATA components whoes typs is FIELD.

FIELO
OATA: a8 DATA component which the conteats of NAME filed of a RECORDO.
NAME: the name of the FIELO.
QUANTIFY: sither ALL, SOME or DATA component which is an integer.

class OATA
type SET [the empty est]
value PHI

class OATA
type BOOLEAN {the boalean value TRUE]
value TRUE

class DATA

type RECORD

rep GRAPH

instanceof AGOO!
assertione (AD0O2 AQDND3)

The DATA above illustrates the three descriptore any OATA may hae.
The REP descriptor indicnies that tha program designer ie refarring

to this component by the word “grapii*, ALG componente may also have
REP descriptors. The INGTANCEQOF descriptor indicates that the
siruciure of this component is the same as the etructure of the
component which ADOO! points to. The ASSERTIONS desciiptor contains
a list of assertions about the component.

i

i

L

Figure 5.3

Oata siructure types and examples

5.1.2 An example and comparlson

L 0 e i GG i e

This section lllustrates how these pleces are combined In a program description.
Flgure 5.4 contalns a short dialogue, the program speclfication the Interpreter has

built from It, and the pretty printed version of the specificatlion.

iy G

AT e

=
=
=
=

ol |

e e

|

T e ket B P S

The Interpreter 113

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?
Lessall.
DESCRIBE LESSALL.

Lessall takes a nuruer and a liet of numbere as er nts. | returns True if
the number is less than every number in the liet. Otherwiee it returne False.

* type PROCEOURE
name X«

definition *e————————
args % %
T I x type COND * type NAME
f l cases xedk value LESSALL
x type BOUND x type BOUND
J boundto x boundto x
* type CASE x type CASE
* type NUMBER | = t?pe LIST condition x condition TRUE
element x steps x steps x

¥ tupe NUMBER % tupe RETURN | % type RETURN

argl TRUE argl FALSE
* type FORALL
—% type BOUNO predicate e type IMPLIES
boundto x bindings x antecedent %«
consequent x
x type MEMBER
b element % * type LESS
set *e argl xe——
arg2 *e

LESSALL (B1 B?;
1f FORALL{B3) IMPLIES(MEMBER(B3 B2)

LESS(B1 B3))
Then RETURN(TRUE)
else RETURN(FALSE)

B3 is a variable bound to Al. B2 is a variable bound to A2.
Bl 1s a variable bound to A3. A3 is a number. Al is the generic element of A2,

A2 is a 1ist whose generic element is & number.

Figure 5.4

Leesall and ite progrem specification

Vo

§

The Interpreter 114

The top node in the program specification is aiways a PROCEDURE component. In
this case, it has twb arguments, which are bound to a number and list of numbers
respectively. This structure information is required by the coder, as it enabies it
choose its algorithm based on the deta structures the algorithm is meant to
manipuiate. The body of the procedure is a COND with two cases. if the condition

("V¥ X ¢ B2 => Bl < X", where B1 is the number and B2 the number list) is True,

then True? is returned. If not, the STEPS siot is Ignored and the second CASE is
tried. The condition of the second case is T-ue, so anytime the first condition does
not obtain, False will be returned. The control structure and data descriptions
beneath the specification diagram are the distiiiation (as obtained by the
specification pretty printer) of the proygram description information contained in the

diagram.

The LESSALL program was taken from a paper on the Dedaius system, [MANNA 77].
Dedalus Is an automatic program synthesis which uses a formal spncification
language as its input, rather than English. Since the interpreter’s output
corresponds to the input of such a system, a comparison between the two is a
useful measure of the effectiveness of the Interpreter. in this case, the two are
virtually identical: the Dedalus input for LESSALL is

LESSALL(X L) ¢== compute X < al/{L)
where X is a number and L is a list of numbers.

The expression X € all(L) means that "..X Is less than every member of the iist L."

2 7o save space, TRUE and FALSE have been used to represent the BOOLEAN
components whose vaiues are TRUE and FALSE.

HILA Ui i

B A0l A e

(it s

L

The Interpreter 116

§.1.3 Meta-comments

Some of the program designer's Instructions to the system do not describe the
program, but insteed are intendnd towards directing the course of the dialogue.
Comments ilke,

i don’t understand.

What we were taiking about?

What did you mean by "the predicate fits"?

Forget about proinpts.
do not fit into the program specification, but are meaningfui nonetheless. Such
statements are sent to the dialogue expert as a fiiled In case frame. The case
frame is actualily a concept (next sectlon) and it Is fiiied in In exactly the same way
that concepts are Instantiated. The oniy difference is that Instead of being added

to the program specification, the instantiated concept is sent to the PSI dialogue

module for processing.

As an example, we wiil examine the concept of #USER-QUESTION-REQUEST.
Statements like,

Ask about the scene before the concept.

Let's talk about the scene.

ASsk me about prompts before asking me about the scene.

Ask me about the structure of the scene first.,
which are addressed to when and which questions should be asked are mapped to
#USER-QUESTION-REQUESTs. A #USER-QUESTION-REQUEST Is specifled by three

descriptors:

QUESTION: w«lither a question type (eg., STRUCTURE), a question (eg.,
{STRUCTURE A0012)) or a component (eg., AO012).

TIME: elther BEFORE, AFTER (in which case REFERENT must be present)
or LATER or NOW.

REFERENT: takes the same values as question.

Gt

i i e it R

i

The interpreter 116

The interpretaticy of a #USER-QUESTION-REQUEST is ask
{one of}
all que - ‘ ns of type QUESTION
this paits ular QUESTION
any questions about the component which is QUESTION

either NCW or | ATER, or
BEFORE or AFTER asking

{one of}
all questions of type AEFERENT
this particular question which is REFERENT
any questions about the component which is REFERENT

Then if AOOO1 points to the scene, and AOOO2 to the concept, we have,

Ask about the scene before the concept.
[#USER-QUESTION-REQUEST Guestion: AOOO1 Time: BEFORE Referent: A0002]

Let's talk about the scene.
[#USER-QUESTION-REQUEST Question: AOOO1 Time: NOW]

Ask me about piompts before asking me about the scene.
[#USER-QUESTION-REQUEST Question: PROMPT Time: BEFORE Referent: A0001]

Ask me about the structure of the scene first.
[#USER-QUESTION-REQUEST Questlon: (STRUCTURE A00O 1) Time: NOW]

5.2 The knowliedge base

The knowledqge base used by the interpreter consists of two declarative blocks of
krowledge, and a set of programs «~hich make use of the Information in them. The
programs ore used to construct the specification, using the descriptions contained
In Concepts and Definltions, the two declarative blocks. There Is no formal
definition of what constitutes a concept; a concept Is anything which the
Iinterrreter can reason about. Hence there is a concept behind every ALGorithm
and DATA type in the specification, as well as several higher order concepts. A

definition Is a means of mapping a sequence of English words Into a concept.

The Interpreter 117

65.2.1 Concepts

Concepts express many thinys, but are oriented towards supplying the information
needed to instantiate and reason about components. instantiation refers to the
process of creating a component and filling In its descriptors with other components

in the specificatlon, so that it too becomas part of the specification.

The information contained in a concept is
Descriptors. What descriptors the concept can take, the type
checking constraints the descriptors must obey, auestions to ask
if the concept is presented without a necessary descriptor, and
defauit descriptor values.

Postconditions: what is true after the concept has been
executed

Side effects: what changes to make to the program specification
when the concept has been recognized
For an example, consider the concept #MAP. #MAP represents the primitive

operation In the specification which ailows the user to associate one data with

another. Figure 5.5 contains the #MAP concept.

The Interpreter 118

HNAP
DESCRIPTORS:
STEPOF

CHECK1: [SA HALG
QUESTIONS: Where does the #MAP belong?

1

2CHECKI: ISA #HMAPPING

CHECK!: 1SA #DATA

CHECK2: HMAP-CHECK2 (ARG1 ARG2 ARG3)

G3GUESTIONS: What is being #MAPped?

CHECK]: 1SA #DATA

CHECK2: H#MAP-CHECKZ2 (ARG1 ARG2 ARG3)

QUESTIONS: What is ARG2 being #¥MAPped to?
POST-CONJITIONS: (#EQUAL (#IMAP ARGl ARG2) ARG3)

SIDE-EFEECTS: iTAPPING-UPDATE (ARG1 ARGZ2 ARG3)

Figure 5.5
The sMAP concept

Figure 5.5 shows that a #MAP is specified by four descriptors. Each descriptor has
information associated with it which assists the interpreter in filling In the
descriptor stot. For instance, ARG2 must be a DATA component (#DATA refers to the
concept of a DATA component). VThe second check provides a more contextual type
cihecking which is used during matching and the parser/interpreter interface. Since
the check Is more complicated than a simple type check (eg., ISA #DATA}, a program
(MAP-CHECKZ2) Is called which returns True or Faise, depending on whether ARG is
a MAPPING which maps components of type ARGZ2 into ARG3. il a #MAP Is to be
instantiated and ARGZ2 is not present, then the question "Whai is the second

argument of the map?", represented by (ARG2 A0O001) where AOOO? points to the

il
L'}
w,
k

The Interpreter 119

Instantlated MAP, Is asked. SIDE-EFFECTS conslsts of things which should be done
whenever a component |Is Instantlated. In the case of #MAP, SIDE-EFFECTS
consists of a program (MAPPING-UPDATE) which updates the range and domalr of
ARG1 If necessary. The POST-CONDITIONS are what Is true after the concept has
been executed. Section 5.3 on matching e..plaliis how the POST-CONDITIONS and

CHECKS are used.

Flgure 5.6 shows the Interpreter’s concept of #DATA and #SET.

ATA
DESCRIPTORS:
INITIAL-VALUE

CHECK1: 1SA HDATA

ALUEUEST]ONS: What is the initial vatue of the DATA?
CHECK]: ISA HDATA

PREPQOS] TIONS:

WITH
CHECK] : 1GA #DATA

- MEANING: (#ASSOCIATE data object)
CHECK]: 1SA #SET

MEANING: (AMEMBER data object)

HSET
DESCRIPTORS:

ELEMENT
CHECK1: 1SA #HDATA
DEFAULT: instantiation of a DATA whose REP is ELEMENT,

CHECK1: ISA #INTEGER
CLASSIFIERS: ELEMENT
PRES?S ITIONS:

CHECK}: GENERIC-ELEMENT()
MEANING: ELEMENT

Figure 5.6
The sDATA and »SET concepts

The concepts In Figure 6.6 both have Informatlon about prepositionali modifiers.

Such Information is usually assoclated with Individuai word definitlons, but when the

e — .

T

TR

E
i
%%
g
3
3
E
£
-
.
E
=
-
=
E
3
5
-
-
1
-
3
%
1
=
1

The interpreter 120

modification is standard for the concept, regardiess of how it is expressed in
Engiish, the information is tied to the concept itseif. The "in" modification for #DATA
means that every time a word which maps to a #DATA Is modified by a prepositional
phrase whose preposition is "in" and whose object is a #SET, the meaning of the
modification Is that the component tie word matches to is a member (represented
by the interpreter concept #MEMBER) of the component the preposition object
matches to. The "of" modification for #SET is siightly different in that the meaning
of the modification is a descriptor of #SET rather than a concept. This means that
the object of the preposition fiiis that siot in the #SET description. The check for
"of" is a program which makes sure that the preposition object is a piural noun

which is a #DATA.

Tihhe CLASSIFIERS siot is simiiar to PREPOSITIONS in that it appears in definitons,
rather than concepts, except in cases in which the meaning of the ciassifier is the
same for aii nouns mapping to the concept. For #SE,, the CLASSIFIERS siot says
that if a noun modifies a noun mapring to set, and the noun satisfies the checks for
ELEMENT, then it filis the ELEMENT descriptor of the #SET. eg., in "the integer iist",
"integer" Is a ciassifier of "list" which maps to #SET. Since "integer" is a #DATA, it

is assumed to be the generic element of the list.

To avoid neediess dupiication of information, the concepts are arranged in a
refinement tree in which every concept shares aii the information associated with
its parent in the tree. #SET is a refiner.ent of #DATA. Thus when checking #SET
for information, aii the information connected to #DATA applies. ey., If A0424 has
just been instantiated as a set, the question "What is the initiai vaiue of A04247?"
wiii be pending. Of course, if the system can answer the question (perhaps AQ424

is the argument of an INPUT), it wiii never be asked of the program designer.

L

e

The Interpreter 121

Concepts are also used to capture regularities In language. English provides many

different ways to express the same thought. For example, X Is a function of Y can
be stated as,

X depends on Y.

X Is caiculated from Y.

X Is determined from Y.

X Is calculated on the basis of Y.

X cen be found from Y.

X Is based on Y.

X is obt~ir.ed from Y.

X Is related to Y.
X is found by examining Y,

As an aid In writing definitions, It Is useful to have all these phrases map Into a
single manipulable entity, namely the concept of #CALCULATION. #CALCULATION has

two descriptors, ARG1, which Is a #DATA, and ARG2 which is #PREDICATE. Methods

for using concepts iike #CALCULATION are explained In the following section on

definitions.

6.2.2 Definitions

Definitions are used to map from Engiish words to concepts. At the same time, they

provide the parser with measure Information It needs.

The Information contained In a definition is,
Concept: What concapt the definition maps to.
Word: what word the definition is a definition of.
Case-Descriptor relatlonships: Which verb cases canh be used to
fill the descriptor siots of the concept. Which cases must be, or
are preferred to be, present for the definition to succeed.

Prepositions: Which descriptors prepositions can fiii.

Conjunctions: Which descriptors conjunctions can fliil.

i

A

Wm

i

TR

LA G e

The Interpreter 122
Defauits: Defau't vaiues for some descriptor siots.
Ciauses: Which descriptors can be filed by clauses not

introduced by conjunctions.

Figure 6.7 contains an exampie.

14#MARK)
DEFINITION-OF: MARK
ISA: H4MAP
CASES: (SUB STEPOFi (0BJ ARGZ Must) (10B ARG3 Preferred)
PREEOSITIONS:

CHECK1: 1SA HDATA

MEANING: ARG3
DEFAULTS:

ARG1: GET-MAPPING (MARK)

14COLLECT]ON
DEFINITION-OF COLLECTION
ISA #SET

Figure 5.7

A definitions of mark and coiiection

Suppose that the Iinterpreter receives the sentence "Mark the scene
‘necessary'". The parsels

(MARK NN
[SuB YOUr}
[OBJ (SCENE THE))
[10B "necessary")

The definition wiii successfuily map the sentence into the concept if ali the
requiraments for the concept descriptors are met. Foliowing the CASEs siot, YOU* is
matched to an ALGorithm component as the STEPOF descriptor, and "the scene" and
"necessary" are matched to #DATAs as the ARG2 and ARG3 of the #MAP to be

instantiated. The "Must" in the OBJ mapping indicates that the OBJ case must be

==

The Interpreter 123

present for the definition to succeed. Similariy, the "Preferred" In the iOB case
means that IOB case Is strongiy preferred to be present, but not necessary. This
means that using the verb "mark", something can be marked without specifying
what the marking is, but a marking cannot be specified without mentioning what is
being marked. ARG1 of the #MAP comes from the defauit siot of the definition; the
vaiue of a program (GET-MAPPING) which finds the MAPPING component be used for
"mark", or creates one If this is the first instance of "mark" In the program

specification.

Nouns are defined simiiarly to verbs, with the exception that the case information is
missing (it is usua'ly replaced by ciassifier information). Figure 6.7 contains the

Interpreter’s definition of “coiiection".

Figure 5.8 contains two deflnitons which utilize the #CALCULATION concept.

1HCLASSIFY
DEFINITION-OF: CLASSIFY
{SA: HCALL
CASES: (SUB STEPQF) (DBJ ARGS)
CLAUSES:
CHECK1: 1SA HCALCULATION
MEANING: PROCEOURE [extract ARGZ]
DEFAULTS:
RESULT: instantiation of a DATA whose REP is CLASSIFICATION,
1#BASE

DEFINITION-OF: BASE
ISA: HCALCULATION
CASES: (0BJ ARGL)
PR%SDSI TIONS:

CHECK): 1SA HPREDICATE
MEANING: ARG2

Figure 5.8

Definitions for "ciassify" and "base"

Consider the processing of the sentence "it ciassifies the scene based on whether

e T M e e s

ﬁ‘.!‘
]

AR

A Rl

The Interpreter 124

it fits the concept." "based on whether it fits the concept" is mapped to a
#CALCULATION whose ARG2 is the predicate "it fits the concept". it is also a
clause which modifies "classify" (anticipating section 5.5 on the parser/interpreter
interface, we note that the reason the parser knows "based" modifies "classify"
rather than "scene" is precisely because one modification is meaningfui (all the
words -> definitions -> concepts maps succeed) and the other is not). According to
the definition, a clause can modify "classify" If it is a #CALCULATION. If it is, the
modification instructions are to fiil the PROCEDURE siot of the "classify" #CALL with
ARG2 of the #CALCULATION. This work is done during Formatting, so the parse for
the sentence is,

(IMP {CLASS'FY NN
[STEPOF YOUx]
[ARGS (SCENE THE)]
[PROC {FIT NN
[ARGS 1T]
] [ARGS (CONCEPT THE)]
}

Had the sentence been,
Classify the scene on the basis of whether it fits the concept.
Classify the scene as a function of whether it fits the concept.
Classify the scene depending on if it fits the concept.
etc.

the resuit would have been the same.

Many times, unknown words are used to refer to undefined predicates or supparts
of the program being described. Since it wouid be unreasonabie to expect ali words
to be inciuded in the systein, and often, the definitons of such words are inferable
from context, the Iinterpreter uses a "template" definition to try to create a

definition for any unknown words which are used in the dialogue,

The interpreter 1256

Here is an example:

e

The program reads a graph and a node. A graph is a set of pairs.
Each pair consists of two nodes, which are primitive. The program
prints a list of all the nodes which can be reached from the input
node.

When the interpreter encounters the iast sentence, it has no information about

E "reach" other than tirat it is a verb. Because it is being used as the main verb of a

clause which modifies & noun, the interpreter assumes that it represents a

predicate which the program designer has yet to define. The "tempiate" predicate

definition and its instantiation for "reach" is shown in Figure 5.9.

PREODICATE-TEMPLATE
QEFINITION-OF: ---
ISA: #PROCEOURE
CASES: (SUB ARGS) (0BJ ARGS)
PREPOSI TIONS:
match
CHECK]: ISA HOATA
MEANING: ARGS

14REACH
DEFINITION-QOF: REACH
iSA: #PRUCEDURE
CASES: (SUB ARGSi (0BJ ARGS)
PREPOSI T1ONS:
FRON

CHECK1: ISA HDATA
MEANING: ARGS

Figure 5.9

TR TR

A tempiate definition and its instantiation

% The tempiate definition maps to a #PROCEDURE. The "match" in its PREPOSITIONS
é siot matches to any preposition that the interpreter cannot attach to anything eise.
1

3 The resuliting definition of "reach" asserts that "reach" is a PROCEDURE, and that
3

=

é the preposition "from" can be used to introduce one of its arguments.

.

-

3

1

s o S B e T i i L T e S = e R e e e y s (5 e ———— == et o i

Y YT AT

The Interpreter 126

: 5.2.3 Procedural embedding

Most of the interpreter's knowledge about programming is represented by
procedures. This information is necessary In order to incorporate what the program
deslgner has said in the program specification without asking questions which the
designer would feel his statements have implicitiy addressed. it is not intended to
help the Interpreter from a probiem soiving (eg., writing efficient aigorithms from
Inefficlent descriptions) standpoint. The information was modelled procedurally

since this seemed to be provide the easiest way to encode and appiy it. The

i

disadvantages of the procedurai approach (primarily opacity) do not apply, as the

infarmation encoded in tie procedures is not needed eisewhere In the system.

T

[The Information Is organized into several moduies whichh are expert In buiiding
various constructions in the program speclfication. There are modules which buiid
7 CONDs from a series of CASES, construct COMPUTESs, note scoping ambiquities, buiid
: quantifled expresslons from phrases llke "ali reiatlons in the concept not in the

scene...", etc. As an example, we wlii consider the EXIT-TEST moduie.

g

The EXIT-TEST module is responsible for setting up the exlt conditions of loops. its
arguments are the ioop and the phrase which indicates the exit condition. The
method for buliding a iocp from each of the phrases it knows about is simpiy

programmed out. Here is an exampie.

Figure 6.10 contains a fragment of a program specification.

Fodha o T T R T RO T T T TRRTE - T _; = Sl il e R e S

T

Cibslbtilitatl Fl

iy

The Interpreter 127

* type LOOP

steps ke—sxe—ix
A

* type INPUT * type CALL
args x procedure ke—s
args % x
I o type SET

element ke———

Figure 5.0

The program epecification before proceseing the sentsnce,
'Stop when the user types 'Quit'."

The Interpreter is about to procass the response the sentence "Stop when the user
tyres ‘Quit’." which was in response to the question "Should there be an exit test

for the loop?"

EXIT-TEST recelves [#INPUT (ARGS "Quit")] and the LOOP as its input. When the
phrase Is an #INPUT concept, EXIT-TEST finds an INPUT In the loop and places a
test for the ARGS of the #INPUT concept after it. The resuit Is shown In Figure

6.11.

Pl

=

M

I

|
|

T

G

The interpreter 128
* type LOOP
exits %
steps x *o—nfo—o*
* type INPUT * type CASE * type CALL
args % condition x procedure Ke—
t args % %
* type EQUAL
args %x %
sk tll;pe ALTERNATIVE
Alternatives % X
l-»* tupe STRING L type SET
value "Quit" element xe——
Figure 5.11
The program specification after processing the eentence,
"Stop when the user typiz 'Quit'.’
The exit test bullding program has added four new components: the CASE

component which {3 the exit test, an EQUAL component which is the condition of the

exit test, and a STRING and ALTERNATIVE component. The ALTERNATIVE component,

which replaced the SET as the argument to tiie INPUT, reflects the fact the

arguments to the INPUT may now be either the SET or a STRING whose value is

"Quit". The ALTERNATIVE has been installed as one of the arguments of the exit

test, while the SET remains as one of the arguments to the CALL following the test.

e e

ARt A

LAt

T

1 G A o G Ul

The interpreter 129
5.3 The processing cycle

The processing cycle refers to the sequence of actlons taken by the Interpreter
during the processing of a user reply. The cycle begins with the receipt of a
questlon and user reply from the PS| dlalogue module. The reply may be a phrase or
any number of sentences. The questlon typlcaiiy consists of a descriptor slot and a
component (the questlon object) which Is missing Information for the slot. (eg.,

(ARGS X} means "What are the arguments for X".

The first action taken by the Interpreter Is to update the Focus to the object of the
question. Sectlon 5.4 explalns the use of the Focus and its companion, the Data

Focus.

Then each sentence in the reply is parsed and the resuit is analyzed. The analysls
consists of determining which concepts the sentence invokes, finding (or creating)
components to flil in the descriptor slots of these concepts, and instantlating the
concepts found Into components in the program specification. Analysis has several

side effects besides the building of the specification.

Throughout anaiysis, the Focus and Data Focus are constantly updated to reflect

the components the program designer is taiking about.

Another important side effect is the qguestions are posed by the Instantiation of
Incomplete concepts. For Instance, the repiy,

"It reads a scene, tests whether it fits the concept, verlfles the

resuit of this test wilth the user, and updates the concept. Then

it repeats the process."

.auses the questions,

What Is the structure of the scene?

The Interpreter 130

What Is the structure of the concept?

What Is the Initial value of the concept?

Describe verlfying the test resuit.

Describe updating the concept.

Describe the test of wheiher the scene fits the concept?
What Is the exlit test of the loop?

to be plucead the question queue.

The Instantlation v. an Incomplete concept may alsc lead to a job belng put on the
background job queue. The bacx3round job queue conslsts of questions which the
Interpreter cannot answer immediately, but expect= to be able to answer after
more Information has come :n. If the Information never arrlves, the Intarpreter
assumes that the program designer was leaving the implementation to the PSI
coding modt .2, These questions are placed on the background job queue (rather
than the question queue) queue to ensure that they will never be asked of the
user. The background job queue is Implemented &as a list of procedures and thelir
orguments, which are run at the end of cvery processing cycle. Those that
succeed In answering theli questions are removed from the cycle. An example of a
background Is the one associated with the #ASSOCIATE concept. #ASSOCIATE Is
used by the Interpreoter as an intermediate representation of the fact that two
+*TAs are somehow bzing associated. For instance, In

"Cookbook reads a recipe list, and then repeatedly reads a name

and prints the recipe with that name"
'viith that n~m2" maps Into an #ASSOCIATE whose args are "the recipe" and "the
na.ae". At this point, there is no way to tell how the program designer expecis
"names" and "reclpes" to be assoclated, so a background job is set up. A

background job Is used rather than a questlon since if an answer ls nevar found,

i

Wl

|
i

The interpreter 131

the PSi coder wiil be abie to choose an efficlent Implementation, and In fact, the
user may be too unsophisticated to answer such a question. The background job

remalns active until the program designer says,

"A recipe has a name, an I~gredient-list, and directions."

This defines "recipe" as record structure vith three fieids, one of which is a name.
One of the sltuations the #ASSOCIATE background job knows how to resolve Is the
case where one of the associated DATAs is a fieid of the other. it changes THE
#ASSOCIATE assertion from

[ASSOCIATE arg1: 21 arg2: A2]

to
[EQUAL args: ([FETCH argl: A1 labei: NAME] A2)]

where A1 and A2 point to the recipe and name, and FETCH is the interpreter

primitive which gets the DATA of the labei FIELD of its ARG1.

When each sentence In the program designer’s reply has beer anaiyzed, the
background jobs are run and the que-tion iist is examined to see if any of the
questions have been answered by subsequent analysis. The revised question list is
sent to the PSi diaiogue module, which seiects a questlon, gets a reply from the
program designer, and gives the question chosen and the de.igner’s response to

the interpreter to start another cycie.

The !nterpreter 132

5.4 Matching

This section is concerned with the identification of English noun pihrases. which
occurs during the filiing in of a concept's descriptor siots, and consists of finding
the component, or creating the component if none exists, which is the contents of
the descriptor siot being filied, based or the English presentation of the component

(eg., the noun phrase).

The system's handiing of pronouns and nouns s virtualiy the same. The oniy
difference lies in the possibie match set. A pronoun may match any component in
the specification which has been mentioned and meets the syntactic requirements
(eg., piural, animate etc.) of the pronoun. A noun may match any component in the
specification which has been referred to in the same (or a synonymous) way. The
key to the matching process is the context supplied by the concept whose siot is

being tilied.

§5.4.1 Nouns

The first time a roun is usad, the system creates a component which is indexed
under the noun's definition. Thus, "it reads in a scene." would cause the
component:

Al

ciass DATA

rep 1#SCENE
to be created, where 1#SCENE is a definition the interpreter creates for "scene'.
1#SCENE is assumed to be a #DA1A so that it satisfies the type constraints of the
ARGS of an #INPUT. Associated with 1#SCENE is the fact that A1 is an

instantiation of "scene". The situation we have outiined ieads to the simplest kind

The Interpreter 133

If the user says, "Print the scene.", "the scene" is matched to A1

of matching.
because the “ihe" implles that the referent shouid be found in the specification, A1
Is the oniy Instantlation of "scene" in the speclfication, and it satisfies the type

constraints of the ARGS of #OUTPUT.

Now consider a slightly more complicated sltuation. Suppose we have scenes and
concepts, each of which are sets of relatlons. Further, the relations In the concept
are marked either "possibie" or "necessary". Figure 56.12 shows how this wouid be

represented In the program specification.

———x A2

class DATA
rep RELATION
assertions

*x Al *x A3
class DATA class DATA
type SET type SET
rep CONCEPT rep SCENE
element x element x

* A4
class DATA
rep RELATION

b

* class ALG
type EQUAL

Args K Kk cias
?pe ALTERNAT]VE
lr— alternatives x x
% class ALG
type IMAP
argl ke—x AS
arg2 % class DATA x class DATA x class DATA
type MAPPING type STRING type STR]NG
name MARK value "possible” value "neceseary"
Figure 5.12

Scenee, concepte and relations

The user says, "Print the

which is parsed to,

relations In the concept which are marked ‘possibie’".

T

g

The Interpreter 134

{ 1#4PRINT NN
[STEPOF YOUr]
[ARGS (RELATION iPL THE (IN (CONCEPT THE))
{ 1#MARK PN
[ARG2 !match_to_head_noun)
[ARG3 “possible"]
N]
}

The interpreter must find (or create) a component which can he used as the ARGS
of the #OUTPUT 1#PRINT maps to. If the noun group were simply "the relations",
the interpreter would match it to 41 or A3, whichever was mentioned iast. But in

this case, there are modifiers which wili presumabiy narrow down the cholce.

The first modifier is the prepositional phrase "in the concept". The #DATA concept
(Figure 5.6) is used to determine the meaning of the modification. it is (# MEMBER
A6 A1) where "the concept" has been matched to A1 and A6 is being used to
represent the DATA which wiii be the finai answer to the match. #MEMBER Is
treated as a special case in the matching process. The first #MEMBER in the
modifier iist which is not negateda. and whose ARG1 is the noun in question, is
transformed to the descriptor-siot/vaiue pair of (ELEMENTOF X) where X is the
ARG2 of the #MEMBER. So in this case, the #MEMBER is resoived to (ELEMENTOF
A1). Following the ELEMENT siot of A1 leads to A2 which becomes the only match
possibiiity. |f there were no more modifiers, tie match process wouid return A2 as

the "relations in the concept".

The next modifier is a #MAP. Tha post condition of #MAP (Figure 6.6) is fiiled in
with the #MAP descriptors, yieiding, (#EQUAL (#IMAP A5 A6) "possible"). if this did

not contradict the assertion list of A2, then A2 wouid be returned as the meaning of

3 in "The relations which are not in the concept"”, the meaning of the prepositionai

‘modification is (#NOT (#MEMBER A6 A1)), which is inserted in the assertions iist.

P T A e g

il

L

g

T

TR AT

!
[
|
£
E
£
I

The Interpreter 136

the noun phrase. It does, though, since the the assertion list of A2 asserts that a
relation In the concept may be marked either "possible” or "necessary". Therefore
a new component must be created, one which Is the generlc element of a subset of
A1 which conslsts of all relatlons marked "possible". This Is accomplished via the
SUBSET module, which Is another example of a small bit of knowledge belng bound
up In a procedure. The SUBSET module takes a set and an assertlon list and
creates a COMPUTE component which bullds the subset. The COMPUTE created is

shown In Flgure 6.12

class ALG
type COMPUTE
quantify ALL

on Al
resul t kxe——— A7
assertions x class DATA
1 t*pe SET l
element x~—————% AG
class DATA

rep RELATION
assertions %

—x class ALG

tupe EQUAL
args *x xe———x class ALG
type [MAP
argl AS
arg? »xe———-—J
* class DATA
type STRING

value "possible"

Figure 5.12
The COMPUTE for "The relatione in the concept marked 'poseible’."

A8 is the result of the matching process. The COMPUTE Is inserted Into the program

specificatlon when the "print" OUTPUT component Is.

T

Wil

U
i

[

el

The Interpreter 136

5.4.2 Pronouns

As we have Indicated, the difference between pronoun reference and noun
reference is in the poussible match set. The interpreter keeps track of two speciai
compo ents, the Focus and Data Focus, whici are used to help reduce the number

of pron~un match possibiliities.

When the program designer begins his reply, the Focus rafers to the object of the
question. During the processing of the program designer's reply, the Focus
changes, so that it always points to the last component modified by the interpreter.
We are making a distinction between "modifyina" ard "creating" a component. For
example, the phrase, "it tests the concept", wilt cause a CALL component to be
created with ARGS "concept"; we do not consider the CALL component to have
been modified untli some of its olher descriptors (eg., PROCEDURE) have been filled.
The Data Focus Is the last DATA component which has been modified, described as a
part of another DATA, or vsed as the ARGS o1 ARG1 of an ALGorithm component. The
ruies for the Focus and the Data Focus have been selected so that they are the
most likely referents for any pronouns used by the program designer. Of course,
tiey still must satisfy the requirements of the descriptor they are being proposed
for. if they don't, the interpreter faiis back on searching for a referent from the

pronoun reference list, which is a list of each component that has been mentioned

by the program designer.

We can see how this works on the following question/repiy pair:

PSI: Describe the program.

USER: It reads a scene, tests whether it fits the concept,
verifies the result of this test with the user, and
updates the concept. Then it repeats the process.

11, TN

I TR

TUTIIY1ETTY | TR N

T i S S R R R e

L T

TRFATFTE

F
|
E
i
|
2

The interpreter 137

The question sets the Focus to "program". The first "it" is matched to the Focus
since "input" requires that It's SUB be an ALGorithm. The Data Focus Is sat to the
"scene" because "scen=2" is the ARGS of the most recentiy created ALGorithm
component (the INPUT). The second "it" is matched to the Data Focus, since the
Focus Is not a DATA (as Is required by the ARGS of "fit"). The third "it" is matched
to the Focus, since the STEPOF of "repeat" must be an ALGorithm. Note that none
of "test", "verify", or "update" were proposed as referents for the third "it", even
though they are all ALGorithm components. if there is no reason not to use %he

Focus or Data Focus as the referent, no other possibiiities are checked.

When the Data Focus and the Focus both refer to DATAs, the preference checks
glven In the concepts are used to choose from between the two. Consider the
diaiogue fragment below:

The two major data structures in the program are the

concept and the scene. The concept is a set, which is read

at the start of the program. The scene has two parts. The

first part Is a name. The second part Is a list.

1. It should be read In after the concept.

2. It consists of three elements.
Either sentence 1. or 2. can logically i1ollow the preceding paragraph, yet the "it" in
1. refers to the "scene", which is the Focus, and the "it" In 2. refers to the "list",
which is the Data Focus. In 1., the cholce between the two Is resolved by the
CHECKZ2 of #INPUT. The check prefers that the ARGS of #INPUT should not be parts
of other components, or ARGS of an aiready Instantiated #INPUT. Since the "list" Iis
part of the scene, the "scene" is preferred as the referent. A similar process is

used to find "list" as the proper match In 2. The definitlon of "consists"” that

succeeds Is one that assigns the structure of the OBJ to the SUB. Naturally, it

L

UG L

1Kol

Il

ki

HALL R U

11 Ll L L

il

L

The Interpreter 138

prefers that its SUB have elither no structure, or a structure which does not conflict
with the OGBJ. Since "scene" is known to be a RECORD with two flelds, "list" is

preferred for the match.

The methods we use for resolving reference amount to a heuristic filtering of
possible referents (the Focus and Data Focus) foliowed by iype checking on the
surviving candidates. It works because the objects in our domain are easily
classliflable, as are the effects (represented by which slots the objects have filled)
of various actions upon them. Furthermore, the fact the we are taiking about
programming severely limits the different number of contexts things can be said in,
which means that the preference checks associated with each component are likely
to be consistently correct. Also, a conscientlous program designer will probably find
himself not using pronouns when he is intentionally violating these preferences. For
instance, if one really wanted to write a program In which the "it" in 1. referred to
the "name", he would find himself saying, "The name should be Input after the

concept".

For difflcult reference problems, the Interpreter relies on the power of the
situational checks associated with each concept's descriptors. Section 1.5.2
provided an example of their use in noun reference. In some respects, the
situational checks are equivalent to methods proposed In other systems. [Hobbs
77] presents a system in which some pronoun reference Is achieved by "detecting
intersentence relations". One such relation is,

A sentence asserts a change, and the following sentence

presupposes the final state of that change.

When there Is a reference problem, It is resolved In a way which realizes an

The interpretsr 139

Intersentence relatlon. The relation above helps match the "It" In 1., 2. and 3.
below,
1. Decrease N by 1. If Itis O, reset it to MAX.

2. Decrease Nby J. If Itls O, reset It to MAX.
3. Subtract J from N. If It has thereby gone down to O, reset It to MAX,,

since N was changed In the first sentence and the second sentence has assumed
(vla the "if") the final state of "it". If "It" Is matched to "N", the pattern holds, If It

Is matched to elther "1" or "J", It does not.

The Interpreter achleves the same effect by assoclating a sltuational check with
the ARGS of #EQUAL which prefers that one of the ARGS be a varlable whose value
has been changed. Advocating such rules lays one open to charges of "ad
hockery", but the situationa! checks are used for both noun and pronoun reference,
as well as the parser/interpreter Interface. When an Individuali check seems
obscure, it Is only because It refliects something which people rarely think
consciously about. it is true, of course, that the situational checks currently
assoclated with each concept are not now compiete enough to handle all the
reference problems one might encounter. However, the system’s heurlstics enable
It to cope nicely with reference problems it must handle without complete
Informatlon. For Instance, even though the three sentences from [Hobbs 77] were
chosen to break the usual pronoun heurlstics (the first introduces the problem, the
second refutes the "O shouldn’t equal 1" method, and the third disproves the
"positional" hypothesis), the Interpreter would have found the correct referent In
each case with the #EQUAL situational check omitted. The Data focus In all three

sentences Is "N", since It Is the ARG1 of the most recently created component (the

0 el i B At i 0Ll e ol

{daahea G ot i O i e e el et

T

The Interpreter 140

SUBTRACT), and In the absence of any other information, it wouid be chosen as the

referent of "it",

5.4.3 Ma*ching to Impiicitiy mentioned components

Often, the interpreter will have to match to a component which has been impilcitly

mentioned by the user. A slmpie exampie of this can be seen in the phrase,

"...classlfy t! 2 » ~ere and print the resuit."

"Resuit" refers to the resuit of the classification. The methods described above
would simpiy look for a component indexed by resuit, and not finding one, would
create a new component as the resuit of the match. The soiution Is to do a little
preprocessing before the matching process begins. Whenever a component Is
created which has a resuit, (in the example sentence, the CALL component created
by "classify") a DATA compcnent Is instantiated, and then indexed through "result"
and Its synonyms, as well as any defauit indexing set up by the verb's detinition

(eg.. "ciassification™ for "ciassify", as shown in Tigure 5.8)

A more subtle exampie occurs during proposed interchanges between the desired

program and its user. Consider what might foliow the sentence,

"i"ii request a story by typing a key word".

The program designer might say notiing, in which case the system should sk how
the request shouid be answered. Or, the user might foiiow immediateiy with a
description of how the request shouid be handied. And finaily, the user might just
say what the "reply"” should be. in that case, It is up to the system to reaiize that

"reply"” refers to the answering process, and that the "repiy" shouid be printed out,

0 AR L

Litiedad s Lisdidatls ot AR U gt i THIT

il

Ll

The interpreter 141

Verbs which imply an Interchange of data between the program (eg., ask, request,
answer, etc.) are mapped into #INTERCHANGE concepts. #INTERCHANGE concepts
are represented In the specification by a SEQ with the appropriate steps. The SEQ
Is set up by a procedure assuclated with #INTERCHANGE. When the program is
asking something of the user, the procedure’s execution results in a SEQ whose
first step Is an OUTPUT component. A data Is created which is Indexed to "reply"
(and "reply" synonyms) and a bachground job is set up to complete the SEQ if tha
user says nothing further. Completing the SEQ consists of setting up an INPUT
component whose ARGS Is the "reply" data set up by the #INTERCHANGE procedure.
it the program is responding to a user query, the #INTERCHANGE procedure sets up
a SEQ whose first step Is an INPUT along with a "reply" DATA. A slightiy ditferent
tackground program Is used, however, which sets up a SEG which takes care of the
processing required to answer the user’s query. The #INTERCHANGE background
job does nothing If the "reply" data has been used as the ARGS of a last INPUT or
OUTPUT of the #INTERCHANGE SEQ. This machirery allows the interpreter to handie
the following examples:
"Output the result of the test, ask the user if this is correct, and
read In the user's response."

In this example, the designer has followed the #INTERCHANGE ("ask") with a
description of the remainder of the #INTERCIHANGE. "Response' matches to the
"reply" DATA set up by the #INTERCHANGE procedure and the dialogue continues.
The #INTERCHANGE background does nothing s nce the "reply" data is in the ARGS
of an INPUT (the "read"). if the user had said only, "..and ask the user if this
correct.", the background job would have been called to create an INPUT with the

"reply" DATA as ARGS.

=

e e

e i ot A 6 s

The Interpreter 142

An example of a user Initlated #INTERCHANGE s,

PSI: Describe the program.

USER: It has a data base of news stories. Each story has a set
of key words associated with it. I'il request a story by giving a
key word. The response should be all the storles with that key
word.
"Request" sets up an #INTERCHANGE. "Response" Is matched to the "reply" DATA

and the background program sets up an OUTPUT to print the "response" (as deflned

by the program designer) to the user.

5.4.4 Coerclon

The type restrictions impiemented in the definitions and concepts are too strict to
account for casual language usage. Peopie often refer to an object by one of its
parts, to a part of an object by the entire object, to an attribute of an object by
the object, etc. The interpreter must be able to "coerce" the component the user
has specified into the one he reaily meant, eg., the one which satisfies the type

constraints of the descriptor siot being tiied.

For Instance, suppose the user defines a graph as "a set of nodes and a mapping
which maps a palr of nodes into an edge.” The interpreter assumes that a graph Is
a record with two fields, a set and a mapping. Then If the user mentlons "the nodes
In the graph", the Interpreter, If using a strict Interpretation of type restrictions, will
fali to understand, since the meaning of "In" leading to #MEMBER requires that its
object be a #SET, This Is just a speclfic case vf the more general "If X is a record
and falls to satisfy a type check, the speaker may have Intended one of the fields

of X"

The Interpreter 143

The Interpreter's type checking Is Implemented through the function ISA and the
more complex secondary checks. |ISA returns False If Its object falls to satlsfy the
check, and a component If the object satisfies the check. The component may be
the orliginal object, or, If the object falls to satlsfy the type but can be coerced Into
it, the component resulting from the coercion. Thus If (ISA X #SET) is evaluated and
X Is record structure with a field whose DATA Is the set Y, then the result of the

evaluation wlll be Y and Y willl be used to fill the descriptor slot.

This type of matching allows the Interpreter's matching rules to be written with a
great deal of flexlbihty. In sectlon 1.6.2, we used,

"It reads In a trlal-ltem, matches the input to the Internal concept

model, and prints the result of the match."
to Hlustrate how /nput Is matched to "trial-item" rather than "the read "Input"
operation" because cof the requirement that the ARGS of "match" be a #DATA. It s
actually Implemented through the coerclon feature. In the absence of a component
being explicitly referred to as an "input", the matching process looks for an #INPUT
operation. When an INPUT iIs found, and Is required to be a #DATA, ISA returns the

ARGS of the INPUT.

6.6 The Reader/Interpreter Iinterface

The Reader function Format Is the Interface between Reader and the laterpreter.
Sectlon 4.1 listed the criteria used by Format to supply each parse structure with a
measure. Reader uses the measures to choose from among competing parse
structures. The information required for measuring Is,

1. Does the verb have all Its required cases?
2. Are the case contents of the verb understandable?

el

The Interpreter 144

3. Do the case ccntents satisfy the case requirements?

The Interpreter supplies tue measure informaiion through Its concepts and
derinitions. Whether a verb has all s cases can be ¢ ~d directly from the
definition. If it Is missing cases the defnition has marked "Must", the rating is
unacceptable. If It has ali the Must cases, but is missing cases murked "Prefered",

the ra..g is acceptable. Otherwise it is perfect.

Determining whether ‘ne case contents are understandable consis. of checking
tha ‘*he meaning of all modifications in the case contents are covered by definitons.
it they are not all covered the rating is unacceptabie. If they are covered, but not
all contextual checks in the relevant definitons are satlsfied, the rating Is

acceptable. Otherwise It is pcriect.

Checkiiig that the case contents of a verb satisfy the verb's case requlrements
makes use of the descriptor checks in the concept the verb is being mapped to. If
the case satisfies the first check it Is acceptable. If it satisfies the the second

check, then it is perfect. Otherwise, the case is unacceptabie.

The remalnder of this section conslsts of three examples iiiustrating how the three

different measure parts are used to affect the parsing process.

In the sentence "The program stores and retrieves data.", "data" : '.ouid be viewed
as the object of "store" as weii as "retrieves". As we noted in 4.3.3, .is depends
on the meanings of "store” and "data", and Is not true for ail sentences with this
Syntax. The parser decides whether to use "data" as the OBJ of "store"

depending on which is better, the measure of "The program stores", or the mneasure

ST

T T TR T T AT

T O T TR T (Y

iLithigk e

A e A

Ll

The interpreter 145

of "The program stores data." The measure of the latter is better since the
deflnition of "store" states that the OBJ case is preferred, and "data" does not

violate the case preferences of "store".

For an example of the case preferences at work, consider the sentence, "if the
scene fit and the user sald the guess was ‘correct, then every...". The clause

Introduced by "if" has two syntactic readings, namely

{IF (CONJ AND or [IF {SAY PN
. [SuB AND (FIT THE SCENE)
{FIT PN (USER THE)]
[SuB (SCENE THE)) [WHAT (BE PN
} [SuB (GUESS THE)]
[oBJ "Correct"]]
{SAY PN }]

[SUB (USER THE)]

[WHAT (BE PN
[sus (GUESS THE)]
{oBJ "Correct”)]]

}
)]

the definition of "say" which maps to #INPUT requlres that the SUB case satisfies
the check (ISA #10-DEVICE). This gives the first parse a better measure than the
second, since the SUB of the second inciudes "fit" as part of Iits compound SUB, and

"tit" cannot be viewed as #i0-DEVICE.

The noungroup "each relation in the concept which is In the scene." provides an
example of the "understandabliity” criteria. There is no a priorl reason for it to

mean

[NOUN (RELATION EACH (IN (CONCEPT THE))
{ 14BE NN
[ARG] !match_to_head_noun]
{ARG2 (SCENE THE)]

NJ

rather than

[NOUN (RELATION EACH (iN (CONCEPT THE (14BE NN
[ARG! !match_to_head_noun]
TARG2 (SCENE THE)]

)l

AR etk SRR B L

it e

|

Ll i

i

TR

The Interpreter 146

But if scenes, concepts and relations had been defined as shown in Figure 6.12, the
first parse would obvlously be correct. The first modificatlon in each is perfect.
The reason is that "relation" is a #DATA (Figure 6.6), hence there is a meaning for it
to be modified by a prepositional phrase whose preposition is "in". The meaning of
the modification Is #MEMBER, and "concept" satisfies both #MEMBER checks; it Is a
set, and its generic element is a "relatlon". The second modiflcation In the first
parse is also perfect. 1#BE maps to #MEMBER, and "scene" satisfies both checks.
The second modification of the second parse is only acceptable, however, since it
fails the second #MEMBER check since "concepts" cannot be viewed as the

generlc element of the scene.

5.6 Future work

5.6.1 Tense evatuation

The Interpreter makes elmost no use of the tense Information returned by the
parser. This does not affect its performance greatly, as the dialogues it has
handled have all been straightforward (with no sklpping about into the future or

past) linear algorithm descriptions.

But it is easy to see how the oroper interpretatior of tense information Is necessary

fc: understanding even the types of dialogues we have been consldering.

in "Set X to the tall of X. If the head ot X is/was 5, then ..." the use of "Is" or

"was" determines whether the program designer means the first or secend element

of the originai X.

Pl WWW

Wi

UL

The Interpreter 147

Simllarly, In

"Test If the scene fit the concept and print "fits" If it does. Then
modlfy the concept. if the scene fits/fit the concept..."

the use of "fit" or "fits" determines whether the "fit" predicate should be

recaiculated for the new modifled concept, or whetiler the old value should be

accessed.

5.6.2 More domain and general programming support
Programming and domaln knowledge Is necessary for several reasons. A system

well versed in programming and domain knowledge willl ask fewer unnecessary

questlons of of the user, thereby making for a more practical system. A well

Informed system will also be able to follow the program designer that inuch more

easlly.

For Instance, If the designer says,

"Write me a program which sorts a list of words. The comparlson
function should be alphabetical order.",

understanding the second sentence requlres knowing something about sorting

programs. Information like this will be forthcoming from the two PS| modules

concerned with domaln end general programing support. The modules and the

Interface between them and the Interpreter are being developed.

b
3
]
3

The Interpreter 148

6.6.3 Building up more concepts and definitions

Expanding the interpreter’s collection of concepts and definitons Is the most
obvlous improvement that can be made to the system. It Is Impossible for the
interpreter to understand a primitive idea uniess It has a concept to represent that
thought. Thus a simple sentence like "Print the greatest number In the list" cannot
be understood unless the system has the concepts #GREAT and #GUPERLATIVE.
And If It can understand that sentence, the Interpreter still won't be able to
understand, "Print the number in the list which Is larger than any other number In the
lIst" unless It has definitons which map "larger" into #GREAT and "any other

numbar" Into a #SUPERLATIVE.

However, with the proper concepts and definitions, which are easy to write, the
Interpreter can understand these sentences and many more. By having people
exercise the system, and thlen teaching the system any unknown concepts and
definitions which have been used, we hope to build up a collection of concepts and
definitions which will be comprehensive 'ough o support mos:. reasonable
dialogues. Appendix A contalns dialogu2s Wustratlive of the system's current

capabilities.

|

M A R LA

e,

T e e

i Vo G

Qi e Gl gl

Gl B

T

149

6. References

[Balzer 75]
Baizer, R., Impreclse Program Speclfication, Technical Report RR-75-36,
USC/information Science Institute, Marira Del Rey, Califorla, 1975.

[Barstow 77]
Barstow, D., A Knowledge-based System for Automatic Program Constructlion,
Proceedings of the Fifth International Joint Confereice on Artificlal
Intelligence, 1977,

[Bobrow 76]
Bobrow, D. and Winograd, T., An Overview of KRL, a Knowledge Representation
Language, Memo 293, Stanford A. i. Project, Stanford University, 1976.

[Brooks 74]
Brooks, M., Another Approach to English, Working Paper 73, MIT Artificlal
intetligence Labratory, 1974.

[Bruce 72]
Bruce, B., A Model for Temporal References and Its Application in a Question
Answerlng Program, Artificial Intelligence, Volume 3: Number 1, 1972,

[Bruce 75]
Bruce, B., Case Systems for Natural Language, Artificlal inteiligence, Voiume 6:
Number 4, 1876.

[Filimore 64]
Filimore, C., The Case for Case, in Universats in Linguistic Theory, Eds. .Bach, E.
and Haurms, R., Holt, Rineheart and Winston, New York, 1968.

[Gardner 76]
Gardner, M., Sclentitic American, June 1876, pages 120-126.

[Green 76]
Green, C., The Design of the PSI Program Synthesls System, in Second
International Conference on Software Engincering, San Francisco, CA.,
October, 1976.

[Green 77]
Green, C., The Design of the PSI Program Synthesls System, Proceedings of the
Fifth Internationa! Joint Conference on Artificial Inteiiigence, 1977.

[Grishman 76]
Grishman, R., A Survey of Syntactic Analysis Procedures, American Journal of
Lingulstics, Microfiche 47, 1976.

R

bl

Loy A

L s

TIFHTITRHI

e A

=
E
3
3
=
E
1

References 150

[Heidorn 74]
Heidorn, G., English as a Very High lLevel Language for SImuiation Programming,
Proceedings of a Symposium on Very High Level Languages, Sigplan Notices,
Vol. 9, No. 4, 1974,

[Heidorn 76]
Heidorn, G., Automatic Programming Through Natural Language: A Survey, IBM
Journai of Research and Deveiopment, Voi. 20, No. 4, 1976.

[Hobbs 77]
Hobbs, J., From "Well-written" Algorithm Descriptions Into Code, Research
Report #77-1, Department of Computer Sciences, City Unlversity of New York,
July, 1977,

[Kant 77]
Kant, E., The Selection of Efficient impiementations for a High Level language,
Proceedings of Symposium on Artificial inteliigence and Programming
Languages, SIGPLAN Notices, Volume 12, Number 8, SIGART Newsletter, Number
64, Auqust 1977.

[Kuno 63]
Kuno, S., and Oettinger, A., Multiple Path Syntactic Analyzer, in information
Processing, North-Holland Publishing Co., Amsterdam, 1963.

[McCune 77]
McCune, B., The PSI Program Model Buiider: Synthesls of Very High-level
Programs, Proceedings of Symposium on Artificial Inteiligence and
Programming Languages, SIGPLAN Notices, Volume 12, Number 8, SIGART
Newsietter, Number 64, August 1977,

[McCune 78]
McCune, B., Building Program Modeis incrementaily from informal Descriptions,
Ph.D. thesls, Al Memo, CS Report, Artificial Inteiligence Laboratory, Computer
Science Department, Stanford University, Stanford, California, to appear.

[Malhotra 75]
Malhotra, A., Design Criteria for a Knowledge-Based English Language System
for Managemeni: An Experimental Analysis, Technlcal Report TR-146, Project
MAC, MIT, Cambridge Massachusetts, 1875,

[Manna 77]
Manna, Z, and Waidinger, R., Synthesis: Dreams => Programs Memo 302,
Stanford A. 1. Project, Stanford University, 1877.

[Marcus 75]
Marcus, M., Diagnosis as a Notion of Grammar, in Proceedings of a Workshop
on Theoretirai Issues in Naturai Language Processing, Eds. Schank, R. and
Nash-Weber, B., Cambridge, Mass., June, 1876,

R R

I g e

T s

References 1561

[Philllps 78]
Phillips, J., The use of inference in automatic programming systems, Al Memo, CS
Report, Artlficlal Intelligence Laboratory, Compiiter Sclence Department, Stanford
Unlversity, Stanford, California, to appear.

[Rlesbeck 74]
Riesbeck, C., Computer Analysis of Natura/i Language in Context, Memo 238,
Stanford A. I. Project, Stanford Unlversity, 1974,

[Rleger 74]
Rieger, C., Conceptual Understanding: A Theory and Computer Program for
Processing the Meaning Content of Natural Language Utterances, Memo 233,
Stanford A. |. Project, Stanford University, 1974,

{Robinson 75]
Robinson, J., A Tuneablie Performance Grammar, SRI Artificlal Intelligence Center
Technical Note 112, 1975,

[Sager 73]
Sager, N., The String Parser for Scientific Literature, In Rustin, R., Ed., Natural
Language Processing, Algorithmics Press, 1973.

[Steinberg 78]
Steinberg L., A D/aiogue Moderator for Program Specification Dialogues in the
PSi System, Ph.D. thesis, Al Memo, CS Report, Artificlal Intelligence Laboratory,
Computer Sclence Department, Stanford University, Stanford, California, to
appear.

E
3

[Stockwell 73]
Stockwell, R., Schachter, P. and Partee, B.,, The Major Syntactic Structures of
English, Holt, Rinehart and Winston, INC., 1973.

[WIliks 73]
Wilks, Y., Preference Semantics, Memo 206, Stanford A. |. Project, Stanford
University, 1973.

{Winograd 72]
Winograd, T., Understanding Natural Language, Academic Press, 1972.

[Winston 75]
Winston, 1., Learning Structurai Descriptions from Exampies, In Winston, P., Ed.
The Psychology of Computer Vision, McGraw-Hill Book Company, Inc., 1975.

[Woods 70]
Woods, W., Network Grammars for Language Analysis, Communications of the
ACM, Voulume 13, Number 10, October 1970.

[Woods 72]
Woods, W., Kaplan R. and Nash-Weber B., The Lunar Sciences Natural Language
information System, BBN Report No. 2378, 1972.

T D Ty N Ly i . o - - om, 2 B = = 3 r e e i iR

References 162

[Woods 73]
Woods, W. An Experimentai Parsing System for Transition Network Grammars, in

Rustin, R, Ed. Natural Language Processing, Algorithmics Press, 1873.

T T AR AT

TR

Lt

G e S R G

UL

E
£

]
é;

T

T

163

Appendix A, Example Dialogues

Here we present a number of dialogues handied by the system. Some are target
dialogues for PSI system and others were written to iliustrate a point in natural
language processing. Each dialogue is followed by the program specification the

Interpreter produced from it.

The first dialogue is one of the original PS| target diaiogues. in it, the user wishes
to write a program similar to one described in [Winston 76). The program, known as
a concept formation program, is "...a type of simple learning program that takes as
input several objects that are Instances of some concept and also several objects
that are not instances of the concept. As output, it produces an abstracted
description of the concept so that given a new instance, it can classify that
instance as representing the concept or not" [GREEN 76]. The seaond dlalogue Is
another version of the same program. The next three diaiogues are PSi target
dialogues which are simpier versions (from a coding standpoint) of concept

formation programs.

Dlalogues six and seven are two different ways of specifying a graph traversal
aigorithm. The first Is a description of what the algorithm is to accomplish. The

second describes how the aigorithm should be implemented.

The last four dlalogues are all variants of information retrieval programs.

L ([P

AL AR

o

T

E

By D G

R A T e AT e A

mr

il il sl A A

Lt U g

“TFHIT

Appendix A Example Dialogues 164

-DIALCGUE 1-
WHAT 1S THE MAME CF THE PROGRAM YOU WISH TO WRITE? TF
DOELS TF HAVE A SPECIAL PROGRAM TYPE? Theory formatlon

DESCRIBE TF,
1t Inputs a scene, tests whether It fits the concept, verifies the resuit of this test
with the user, and updates the concept. Then it repeats the prccess.

WHAT IS THE STRUCTURE OF THE SCENE?
An input scene wlil just be a coliection of relations, each of which Is a property name
followed by the names of the objects aver which the proporty holds,

WHAT IS THE STRUCTURE OF THE CONCEPT?
It should be a set of relations, aach marked elther "possible” or "necessary".

WHAT IS THE INITIAL VALUE OF THE CONCEPT?
inttlally the concepl has no descriptions at atl.

PLEASE DEFINE WHAT !T MEANS FOR A SCENE TO FIT A CONCEPT,
The scene fits the concept If all of the relations In the concept
that are marked "necessary" are part of the scene.

DESCRIBE VERIFYING THE CONCEPT,
Output the resuit of the test, ask the use! If this Is comrect, and Input the user's response.

WHAT IS THE ARGS OF THE ASK?
"correct or wrong>"

WHAT IS THE STRUCTURE OF THE RESPONSE?
The response should be "correct” or “wrong”.

DESCRIBE UPDATING THE CONCEPT,
There are four cases. If the scene fit and the user said the guess was correct, then
every relatlon that Is part of the scene bul not part of the concept should be 2dded to
the concept and marked "possible",

DESCRIBE THE NEXT CASE.
The next case Is If the scene fit and the user sald "wrong": then find a relation In the
concept which Is marked "possible” and which Is not In the scens. Change Its marking to "necessary",

DESCRIBE THFE NEXT CASE.
I tne scene did not fit, and the user said "correct”, then do nothing.

DE SCRIBE THE NEXT CASE.
i the scene did not it, and the user sald "wrong", then for each refation In the concept
marked "necessary® that Is not In the scene, re-mark It "possible".

WHAT IS THE FORMAT OF THE OUTPYT?
Output "1It" If the scene 111, "didn't f1t* If it didn't,

WHAT IS THE EXIT TEST OF THE LOOP?
Stop whan the user types "quit" Instead of an Input scene.

ARE WE FINISHED? yes

Rl

iy

m

E

T

E
E

T

G N

il 0 R

&
f
E
E
E

et L L

Appendix A Example Dialogues

TF
Rl « PHI
LOOP1:
PRINT ("Ready for the SCENE™)
P2 « RERGQ)
11 EOUAL (R2 "quit")
Then GO EXIT]
R4 « FIT(R2 A1)
Cases: 1f R4
Then PRINT("11t"™)
eise 11 NOT(R4)
Then PRINT("didn"t {it")
PRINT("corract or wrong?")
RS « RERD()
Cases: 1f ANO(R4 EQUAL (RS “correct”))

NOT(HEMBER(R1B R1))
For all RIB in Rl do:
Rl « INSERT(RID RD)
HMRP (R3 A1B “possibie”)
eise 11 ANG(R4 EQURL (RS "wrong™))

Then A7 « The set of any 1 A6 in Al such that:

ANOD (NOT (MEMBER (R6 R2))

EOURL (1MAP (A3 A6) "possible”))

For ail R6 in R7 do:
MAP (R3 A6 "necessary”)
eise 11 AND(NOT(R4)
EQUAL (RS "correct™)
Then NIL
eise 11 ANO(NOT(R4)
EQUAL (RS “wrong”})

Then R9 « The sat of aii RS 1n Rl such that:
ANO (EQURL (IMAP (R AB) "necessary”)

NOT (MEMBER (R8 R2)))
For aii A8 in RS do:
MRM (A3 A8 "possibie”)
Goto LOOP]
EXITL:

FIT(R] B2)
FORALL (B3) INFLIES(AND(EQUAL (IMRP(A3 B3) “necessary”)
MEMBER (B3 B2))
MEMBER(R3 B1))

RS is either a string whose vaiue is "wrong” or a string whose vaiue is “correct”.
R4 is either TRUE or FALSE. Bl Is a variabie bound to R2.

A3 is a mapping from the elgments of Al to either & siring whose value

is "necessary” or & string whose value is “possibie”.

B3 is a variable bound to R12. BZ is a variable bound to RIl.

A2 is either a set whose gereric eiement 15 & record whose fieids are
PROPERTY: a primitive name and NRHE-SET: a set whose generic siement is

A primitive name or a string whose vaiue is "quit”,

Rl is a set whose generic eiement is a record whose fleids are PROPERTY:
a primitive name and NRME-SET: a set whose generic eliement is a

primitive name with assertions:
EQURAL (IMAP (R3 R12) RI13)

R13 is either & string whose vaiue is "necessary” or a gtring whose

vaiue is "possiblg”
p

R12 is the generic eiement of Al.

Then A1l « The set of aii RIB in R2 such that:

166

ol

Appendix A Example Dialogues 166

-UIALOGUE 2-

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?
Arch.

DOES ARCH HAVE A SPECIAL PROGRAM TYPE?
Theory tonnatlon.

DESCRIBE ARCH.
The program Is a loop. On each iteratlor, It reads In a
trial-1tem, matches the wout to the Internal concept model, and
prints the result of the matcix The user must then inform the
program whether of not the gues: Is correct, and the program
modifles Its model of the concept accordingly,

WHA 1S THE STRUCTURE OF THE TRIAL-ITEM?
A trlal-Item Is a set of relations.

WHAT IS THE STRUCTURE OF THE MODEL®
The model Is a et of relatlons, each marked *necessary” or
"passible®,

WHAT IS THE STRUCTURE OF THE RESPONSE?
"conect" or *wrong".

WHAT IS THE STRUCTURE OF T 'E RELATIONS IN THE TRIAL-ITEM?
a relation Is » property name and a list of atoms.

WHAT IS THE INITIAL VALUE OF THE MODEL?
Nit,

PLEASE DEFINE WHAT IT MEANS FOR A SCENE TO MATCH A CONCEPT.
A trial-item matches the model It all the re.ations In the model
‘hat are marked "necessary” are elements of the trial-ltem.

WHAT IS THE FORMAT OF THE PRINT?
Type "the trlal-1tem mitches” If the triai-item matched and
"the trial-1tem does not match™ If It didn't.

DESCRIBE MODIFYING THE MQODEL
It the trial-Iter matched and the user said the guess was correct,
then every relation In the trial-item which Is not In the model
should be put In tre model and marked “possible™. It the
trial-ltem matched and the user sald "wrong™ , then changa the
marking of a relation marked "possible” which Is In the model and
not In the tria’-1tem to "necessary”. It the trial-Item didn't
match, and the usar saild "comrect" , then do nothing. I the
trlal-1tem did not mateh, and the user said "wrong” , then re-mark
each relation In the model mark~d "necessary” that is not in the
triat-ltem "possible™,

WHAT IS THE EXIT TEST OF THE LOOP?
stop when the user types "quit" Instead of a trlal-item,

ARE WE FINISHED? yes,

Appendix A Example Dialogues

ARCH
Al « PHI
LOOP1:
PRINT ("Ready for the TRIAL-1TEH")
A2 « RERO()
1¢ EQUAL (R2 "quit™)
Then GO EXITI
A4 + NATCH(A2 AL}
Cases: 14 R4
Then PRINT("the triai-item matches™)
else 11 NOT(R4)
Then PRINT("the trial-item does not match"™)
RS « READO)
Cases: 1 ANO(R4 EQUAL (RS "correct™))
Then ALl + The set of all A18 in A2 such that:
NOT (MERNBER(R18 A1)
For aii n18 in All do:
Al + INSERT(A18 A1)
MAP{R3 ALY "possibie™)
sise I ANO (R4 EOURL (RS "wrong™)
Then A7 « The set of any 1 ARG in Al such thatt
ANO(NCT (NERBER (RE R2))
EOUAL (INAP (R] A6) "possibie™))
For ail R6 in A7 do:
HRP (R3 R6 "necassary”)
eise It ANO(NOT (R4)
EQUAL (RS "correct™))
Then NIL
else It ANO(NOT (R4)
EQUAL (RS "wrong"))
Then RI « The set of all A8 In A} such thats
ANC (EQUAL (IMAP (R RBY “"nacessary”)
NOT (REHBER (R8 A2)})
For all A& in A3 do:
HAP (A3 A8 "possible™)
Goto LOGPI
EXITl:

HATCH (B B2}
FORALL (B3) INPLIES (AND (EQUAL (INAP (A3 BI) "necessary™)
HEMBER (B3 B2))
HEMBER (B3 B1))
RS is either a string whose value is "wrong” or a string whose value Is "correct”.

A4 is either TRUE or FALSE. B3 is a variable bound to RI12,

R3 is a mapping from the siements of Al to either a string whose vaiue
Is "rossible” or a string whose vaiue is "necessary”,

52 is » variable bound to Al. Bl is a variable bound to R2.
R2 is eithar a set whose generic element is a record whose fieids are
PROPERTY: a primitive name and ATON-LIST: 2 iist whose generic eiement
is & primitive or & string whose value is "quit",
Al Is a set whose generic zlemant Is & record whose flelds ars PROPERTY:
a primitive name and ATON-LIST: a !ist whose generic element is a
primitive with assertions:
EXISTS (B4) EQUAL (IMAP(R3 B4) A1)
R13 is either a string whose vaiue is "possibie” or a string whose vaiue is "necessary",

B4 iIs a .ariable bound to A12, RI12 is the gensric eiement of Al.

167

Apperdix A Example Dialogues 168

-DIALOGUE 3-
WHAT 1S THE NAME OF THE PROGRAM YOU WISH TO WRITE? CLASS
DOES CLASS HAVE A SPECIAL PROGRAM TYPE? Ne

DESCRIBE CLASS,
CLASS flirst inputs a concept. Then it repeatedly accepts an Input scene from . user, classifies
It based on whether or not it fits the concept, and outputs this classifica.ion to the user.

WHAT IS THE STRUCTURE OF THE CONCEPT?
The concept wiit just be a coliection of relations, each of which is a properiy name
fnllowed by the names of the objects over which the property holds.

WHAT tS THE STRUCTURE OF THE SCENE?
The scens has the same structure as the concept,

PLEASE DESCRIBE WHAT IT MEANS FOR A SCENE TO FIT A CONCEPT.
The scene fits the concept If all of the reiations In the concent are part of the scene.

WHAT t~ THE FORMAT OF THE OUTPUT?
Output “it" H the scena fit, "Didn't f1" If it didn't.

WHAT IS THE EXIT TEST OF THE LOOP?
Stop when the user types "Quit" Instead of an ltout scene.

ARE ‘WE FINISHED? yes
CLASS
PRINT("Psady for the CUMCEPT™)
Al « RERODO)
LOCP}:
PRINT (“Ready for the SCENE™)
A2 « REAODO)

1+ EQUAL (A2 "Quit™)
Then GO EXITI
A3 « FITtA2 A1)
Caser: ¢ 7
Then PRINT("F1t")
eise If NOT(AR3)
Then PRINT("Oidn't fit")
Goto LOOP}
EXITL:

FIT(B1 B)
FORALL(B3) IMP| YES (MEMBER (B3 B2)
MEMBER (B3 B1M)
A3 is elther TRUE or FALSE. Pl is a variable bound to R2.
B3 is a variable bound to A4, B2 .s a variable bound to Al,
A2 is either a set whose generic element is a record whose fleids are
PROPERTY: a primitive name and NAME-SET: a set whose generic element is

a primitive name or a string whose vatue is "Quit”,

Al is a set whose generic siement Is a record whose fisids are PROPERTY:
4 primitive name and NRMC-SE': a set whose geaneric eiement s 2 primitive name.

A4 s the generic stement of Al.

Rl el e R

Appendix A Example Dialogues 169

~-DIALOGUE 4-
WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?
Class1
DOES CLASS1 HAVE A SPECIAL PROGRAM TYPE?
no
DESCRIBE ZLASS!1.

It reads a concept. Then It repeatedly reads a string and tusts It it
Is In the concept. It It s, It types "its Int". Otherwlise, It types
"no’ In", The concept Is a collection of strings.

WHAT IS THE EXIT TEST OF THE LOOP?
Stop when the user types "quit"
ARE WE FINISHEO?

Yes.

CLRSS1
PRINT("Ready for the CONCEPT*)
Ri « RERO()
LOOPI:
PRINT ("Ready for the STRING™)
R2 « RERDO)
1¢ EQUAL(R2 "quit™)
Then GO EXITH
A3 - NMEMBER(A2 RAY)
1¢ A3
Then PRINT("its in!™)
else PRINI("not in")
Goto LOOP}
EXITL:

A3 is elther TRUE or FALSE.
A2 (s elther & string or & striny whose value Is "quit”,

Al Is a set whose generic element Is a string.

it s A L AL i T |

T

T

e

Appendix A Example Dialogues

-DIALOGUE 5-
WHAT 15 THE NAME OF THE PROGRAM YOU WISH TO WRITE?

ClassO.
DOES CLASSO HAVE A SPECIAL PROGRAM TYPE?

no,

DESCRIBE CLASSO.
It reads a concept,

WHAT IS THE STRUCTURE OF THE CONCEPT?
a collection of strings,

ARE WE FINISHED?

Then it repeatedly reads a set of strings and prints "Its a s'bset” If all the
elements In the se! are In the concept. Otherwlse It prints "not a subset”.

WHAT IS THE EXIT TEST OF THE LOOP? '
Stop when the user types "quit",

ARE WE FIN YED?

Yes.
CLASSE
PRINT("Ready for tha CONCEPT™)
Al « REARODO)
LOOP]:
PRINT (“Ready for the ELEMENT-SET")
A2 « READ()
11 EQURAL (R2 "quit™)
Then GO EXITL
It FORALL(BI) IMPLIES(MEMBER(B1 R2)
MEMBER(3’ Al))
Then PRINT("its a subset”}
aisa PRINT("not a subset™)
Goto LOOP]
EXITL:

Bl is a variable bound to R3.

A2 is either a set uhose generic elamant is a string or a string whose
value is “quit”,

Al is a set whosa generic element is a string.

A3 is the generic eisment of A2,

I}

bl

i

160

Appendix A Example Dialogues 161

-DIALOGUE 6-

WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE? Findnodes

DOES FINDNODES HAVE A SPECIAL PROGRAM TYPE? no

DESCRIBE FINDNODES,

The program should Input a graph and a node. A graph Is a set of palrs.
Each palr consists of two nodes, which are primitives. The program
outputs a list of ail the nodes which can be reached from the Input node.

PLEASE DESCRIBE WHAT IT MEANS FOR A NODE TO BE REACHED FRDM ANOTHER NODE.

A node X Is connected 1o a node Y If there exists a pair in the graph
such that X and Y are In the palr. X can be reached from Y If X Is
connected to Y or If X can be reached from a node which Is connected to V.

ARE WE FINISHED? Ves.

F INDNDODES
PRINT("Ready for the GRAPH and the NDOE™)
Al « REARDO)
R2 « KREAD()
RS « The set of aii A3 in ait A4 In Al such that:
RERCH(R3 A2)
PRINT (AS)

REACH (B1 B2)
DR (CONNECT(B1 B2)
EXISTS(B6) AND(CONNECT(BS B2)
REACH(B1 B6)))

CONNECT (B3 B4)
EXISTS (BS) AND(MEMBER(BS A1)
MEMBER (B3 BS)
NEMBER (B4 BS))

BE is & variabie bound to RS. BS is a variabie bound to A7.

84 is a variabie bound to Y. B3 is a variabie bound to X .

- B2 Is & variable bound to Y. Bl is a variable bound to X

R4 is the generic eiement of Al. A2 (s a primitive.

Rl is a set uhose generic siement is a set of size
E olement is a primitive.

2 whose generic
3 X is a primitive. Y |5 a primitive,

R7 is & set of size 2 whose generic element Is a primitive,

A6 is a primitive.

t
i
"

it

i

Appendix A Example Dialogues 162

-D!ALOGUE 7-
WHAT 1S THE NAME OF THE PROGRAM YOU WISH TO WRITE? Reach.
DOES REACH HAVE A SPECIAL PROGRAM TYPE? No.

DESCRIBE REACH,
1t reads a graph and a node. The graph is a set ot nodes and a mapping which maps a pa'r of
nodes Into an edga. Nodes and edges are prin.iives. The program puts the Input node Into
a set Nodes. Then It r~peatediy finds a nude In Nodes which Is not marked "done" , marks it
"dona” , and places all tha graph nodes connected to it which are not In Nodas into Nodes,

WHAT 1S THE INITIAL VALUE OF NODES? Nit,

PLEASE DEFINE WHAT IT MEANS FOR A NODw TO BE CONNECTED TO ANOTHER NODE.
Two nhodes are connected if they are mapped into an edge.

WHAT IS THE EXIT TEST OF THE LOOP?
Stop when there are no nodes in Nouss which are not markad "done".

ARE WE FINISHED? OQutput Nodes
WHICH ONE CF EITHER REACH OR T!4E LOOP DOES THE OUTPLT BELONG IN? Reach.

REACH
NODES « PHI
PRINi ("Ready tor the GRAPH and the NDOE™)
Al « RERDO)
2 « RERDO
NODES « INSERT(A2 NODODES)
LooP:
R4 « The sat of any I R3 in NODES such that:
NOT(EQUAL (IMAP (RS A3) "done"))
11 EQUAL (R4 PHD)
Then GO EXITI
For all R3 In R4 do:
MAP (RS A3 "done™)
R8 + The set of all A6 in A7 such thai:
AND (FORALL (RI) IMPLIES (MEMBER(BI A4)
CONNECT(R6 BI))
NOT (MEMRER (R6 NOOES)))
For all A6 in R8 do:
NODES « INSERT (A6 NOOES)
Goto LOOP}
EXITL:
PRINT(NDOES)

CONNECT(R2 B3) EXISTS(R4) EQUAL (IMAP (A9 (B2 B3I) B4)

A9 iz the DATA ot the MAPPING tieid of Al. B4 is a variable bound to RIB. A2 is a primitive,
B2 is a variabie bound to Al2. Bl is a varisbie bound t5 R3. B3 is a vartable bound to ALl.

A7 is the DATA of the NODE-SET fieid of Al. NUDES !s a set whose ganeric element is a primitive.
RS is a mapping from the elements of A4 to a string whose value is “done”

Al is a record whose fieids are NOOE-SET: a set whose generic element is a primitive and
MAPPING: a mapping trom a set ot size 2 whose generic eiement is a primitive to a primitive.

Al2 is a primitive., ALl is a primitive. AID 1s a primitive.

Appendix A Example Dlalogues

-DIALOGUE 8-
WHAT IS THE NAME OF THE PROGRAM YOU WISH TC WRITE?
COOKBOOK
DOES COOKBOOK HAVE A SPECIAL PROGRAM TYPE?
no.
DESCRIBE COOKBOOK.

Cookbook inputs a reclpe list, and then repsatediy Inputs @ name and
prints the reclpe with that name.

WHAT IS THE STRUCTURE OF THE RECIPES IN THE LIST?

A recipe has a name, an lr'nredlent-llst, and directions. The name and the directions are

strings of characters. An ingredlent-list Is a list whose elements have an Ingredient and an amount.

WHAT IS THE STRUCTURE OF THE INGREDIENT?

An ingredlent and an amount are both strings of characters.
WHAT IS THE EXIT TEST OF THE LOOP?

Stop when the user types "quit" as a recipe name.

ARE WE FINISHED? Yes.

(COOKBOOK NIL
PRINT ("Ready for the RECIPE-LIST")
Al « READ O}
LOOP}:
PRINT("Ready for the NAME™)
2 « READO
It EQUAL(A2 "quit™)
Then GO EXITI
A4 « The set of ai! A3 :n Al such that:
EQUAL (A2 FETCH(A3 NAME))
For atli A3 In A4 do:
PRINT (R3)
Gote LOOP}
EXITI:
}

A2 is either a primitive name or a string whose vatue Is “quit®

Al is a list whose generic element is a record whose flelds are NAME: @
string , INGREDIENT-LIST: a 1ist whose generic slerent Is 8 record whose
fields are INGREDIENT: a string and AMOUNT: a string , and
DIRECTION-SET: a set whose generic eiement Is a string.

163

Appendix A Example Dialogues

~DIALOGUE 9-
WHAT IS THE NAME OF THE PROGRAM YOU WISHK TO WRITE?
Recipe.
DO S RECIPE HAVE A SPECIAL PROGRAM TYPE?
no.
DESCRIBE RECIPE.

It reads in a tecipe list. A recipe consists of a name and a string.
Then It enters a loop which reads a recipe name and prints the recipe

with that name. It there ' 7o recipe with that name, print "no such recipe”.

WHAT IS THE EXIT TEST OF THE LOOP?
Stop when the user types “quit"
ARE WE FiNISHED?

Yes.

RECIPE
PRINT("Ready for the RECIPE-LIST")
A1 « RERDO)
LODPI:
PRINT("Ready for the NAME")
R2 « RERDO)
T4 EQUAL (A2 "quit™)
Then GO EXITY
A4 +« The sat of all A3 in Rl such that:
EQUAL (FETCH (A3 NAME) A2)
I¢ EQUAL (A4 PHI)
Then PRINT("no such recipe”)
else For ai! R3 in R4 do:
PRINT(R3)
Goto LOOPI
EXITI:

R2 is either a primitive name or a string whose value ie "quit”,

Al is & list whose generic element is 8 record whose fieids sre NRHE: a

primitive name and STRING: a string.

164

I

T

TR T YT

|

Appendix A Example Diaiogues

-DI4LOGUE 10-
WHAT S THE NAME OF THE PROGRAM YOU WISH TO WRITE? News.
DOES NEWS HAVE A SPECIAL PROGRAM TYPE? News retrieval,

DESCRIBE NEWS,
It answers guestions about a data basa,

WHAT 1S THE STRUCTURE OF THE GENERIC ELEMENTOF THE DATA-BASE?
The data base s a ilst of descriptors, each of which describes one newspaper story.

WHAT IS THE STRUCTURE OF THE DESCRIPTOR?
A descriptor consists of a set of features.

WHAT IS THE STRUCTURE OF THE QUESTION?
A faature and a flag.

WHAT IS THE STRUCTURE OF THE FZATURES IN THE DESCRIPTOR?
Each feature consists of a property and a value. A property Is a name which
Is a character string. A value Is elther a number or a string of characters.

WHAT IS THE STRUCTURE OF THE FLAG?
The flag wiil be elther "descriptcrs”™ or "number”,

WHAT 1S THE INITIAL VALUE OF THE DATA-BASE? Unnecessary.

DESCRIBE THE ANSWER,

It the flag Is "descriptors” , then the program should print each
descriptor that contalns the feature,

ARE WE FINISHED?

If the flag is "number" , then it should just print the total
number of such descriptors.

ARE WE FINISHED? VYes.

NEUS
PRINT ("Ready for the QUESTION™
Al « READC)
A4 « The setl of ail A2 In A3 such that:
HEMBER (A5 A2}
1t EQUAL (RS "descriptors™)
Then For ali R2 In A4 do:
PRINT (R2)
11 EQUAL (A "numbher™)
Then PRINT(A7)

A6 is the ORTA of the FLAG ftield of Al. AS is the DATA of the FERTURE ftield of AI,

A7 is a number which is the size of A4,

A3 is a li1st whose generic element !5 & set whose genericC element is a record
whose f{lelds are PROPERTY: a string and VRLUE: either a string or a number,

Al is a record whose fleids are FEATURPE: a record whose fields are PROPERTY:
a string and VALUE: elithar a string or a number and FLAG: either a string
whose value is "number” or a string whose value {s "descriptors”.

165

g,

ki

TR,

Appendix A Example Dialogues

-DIALOGUE 11-
WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE?
Write me a news retrieval program
WHAT IS THE NAME OF THE PROGRAM YOU WISH TO WRITE? News
DESCRIBE NEWS.

It has a data base of news storles. Fach story has a set of key words assoclated with it. 'l
request a story .y giving a key word. The response should be all the storles with that key word.
it the command s "number® followed by a key word, then the number ot storles having that

k:ay word should be printed.

WHAT IS THE STRUCTURE OF THE STORYS IN THE DATA-BASE?
they are strings,

WHAT IS THE STRUCTURE OF THE KEY-WORDS IN THE SET?
primitive.

WHAT IS THE INITIAL VALUE OF THE DATA-BASE?
unnecessary.,

WHAT IS THE INITIAL VALUE OF THE KEY WORD SET?
unnecessary.

ARE WE FINISHED? yes

NENS
PRINT ("Ready for the REY-HORD")
R! « RERDC(?
Cases: 1f EQUAL(RL RID)
Than A1B « The set of ail R in A3 such that:
HEMBER (R1]1 IMARP(R6 R))
PRINT(RI®)
eise 1{ EQUAL (A1 RR)
Than R4 + The set of all B2 in R3 such that:
HEMBER (RS IMAP(RG R2))
PRINT(R7)

RI1 is a praimitive,

A8 s a record whose fisids are STRING: & string whose vaiue Is "number”
and KEY-WORD: a primitive.

R? is & number which Is the size of Ra,
R6 is a mapping from the elemants of R3 to a set whose generic element is & primitive,
A5 is the DRTR of the KEY-WDRD fieid of A8,

R3 is a st whose ganeric element is a string. Al Is either R1l or A8,

166

