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CHAPTER I

INTRODUCTION AND SUMMARY

In this dissertation we address the important problem of “failure

data analysis.” The significance of this problem for a practical imple-

mentation of reliability theory is too well known to warrant an explana-

tion here.

A standard approach to the analysis of failure data is based on

probability plotting methods, or the testing for “goodness of fit” [Mann ,
• Schafer, and Singpurwalla (1974), pp. 214, 355]. Underlying the use of

- these methods is the assumption that the data constitute a complete,
random sample from a fixed -but unknown pa rai netr ’ic family of distribu-

- tions. Typical of these are the exponential, the Weib’~1l, or the gaimna
distributions, and the problem is to test the hypothesis that the data

have arisen from a specified member of the family.

Over the past few years signif icant interest has developed in
failure data analysis, resulting in some imaginative approaches in the
general area. For instance, Barlow and Canipo (1975) have proposed the

• use of “total time on test plots” for a graphical analysis of failure
data. The data could represent either a complete or an incomplete (cen—

sored or truncated) sample from a fixed but unknown nonparwne trio family

of distributions. An example is the family of distributions whose failure

rate is increasing [Barlow and Proschan (1975), p. 73]. Singpurwalla

(1975) has proposed the use of time series techniques for analyzing data,

which can be construed as the realization of a stochastic process. Such

• 
a model is appropriate when the failure data is correlated either due to

• contamination, to periodicities, or to the basic failure generating mech—
• 

• 
anisin . The recent advances in testing for goodness of f i t  pertain to a

• • 

~

• •

______  _~ i~ • ~~~~~~~~~~~~~~~~~~~



T—373

theory for tests based on the empirical distribution function when the

parameters of the underlying failure distribution are estimated from the

data. The pioneering work of Lilliefors (1967, 1969) sparked a flurry of pa-

pers around this general theme , the most recent ones contributed by
Durbin (1973) and Serfling and Wood (1976). These latter two are unique

in the sense that they emphasize a general theory for such tests, and

are not directed towards a specific distribution.

In this dissertation we shall discuss our contributions to the

general methodology for failure data analysis. Our contributions can be

classified into two broad categories. Under the first we discuss the

development of goodness—of—fit tests for the Weibull distribution with

unknown parameters based on the empirical distribution function. Under

the second category we propose that the “Lorenz curve” methods of economic
theory be -considered for use also in the analysis of failure data. In

• the sequel we point out several interesting connections between some well—

known indicators in economic theory and a central concept in reliability

theory. In agreement with several researchers in the two fields, we feel
that pointing out the connections between the two apparently different

disciplines constitutes an important and perhaps a major contribution of

this dissertation.

A few words about the overall organization of this dissertation

will be helpful to the reader. Chapters II and III are devoted to the
• • problem of goodness—of—fit tests for the Weibull distribution with es—
• timated parameters. In Chapter IV we discuss the Lorenz curve and the

other measures of economic inequality; also discussed here are the rela-

tionships between these measures and a central concept in reliability
theory. These relationships suggest the use of Lorenz curve methods for

the analysis of failure data. Clearly, the theme of Chapters II and III
is different from that of Chapter IV. Hence, Chapter IV can be perused

• independently of Chapters II and III. Some elements of the theory of the

• 
- 

“weak convergence” of stochastic processes are relevant to both Chapters
II and IV; these are presented in Chapter II. Literature relevant to the

text of Chapters II and III is surveyed in Chapter II, whereas that which

is relevant to the text of Chapter IV is surveyed in Chapter IV.

2

• _
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In what f ollows we summarize the major aspec ts of  the material
• discussed in Chapters II, I I I , and IV.

In Chapter II we consider several test statistics based on the em-

pirical distribution function, for testing the null hypothesis that a ran-

dom sample belongs to a Weibuil distribution with unknown scale and shape

parameters. A foundation for testing such a hypothesis is provided by

the fact that the logarithm of a Weibull random variable has an extreme

value distribution with location and scale para meters , and by some recent
results of Durbin (1973) and of Serfling and Wood (1976). These results

pertain to the weak convergence of an associated “empirical” stochastic

j process under the null hypothesis. The asymptotic distribution of the

empir ical proces s serves as a basis f o r  Monte Carlo studies to determine
the appropriate critical points of the best statistics.

In Chapter III we give some results from a comparison of the power

o~ our tests and an ad hoc but powerf ul test due to Mann , Scheuer , and
Fertig (1973).

Chapter IV consists of several parts. We first show that the

“Lorenz curve” and the “Gin index” are related to the “total time on
test transform” and the “cumulative total time on test transform,” re—
spectively. Thus, the recently proposed tests for exponentiality based

on the Cm i  statistic inherit the well—known properties of the tests for

exponentiality based on the cumulative total time on test statistic.

Analogous to the “total time on test process” we define the “Lo—
renz process,” and •show its weak convergence to functionals of a Brownian
motion process. This provides us with a theory for developing goodness—

of—fit tests for any general distribution using the Lorenz curve and the
Gini statistic. In addition to the above , we also state some new results
on the geometry of the Lorenz curve that follow from the geometry of the

total t ime on test transform.

• ln order to motivate the use of Lorenz curve methods for the analy—

sis and interpretation of failure data, we show that there exists a

• •~ 

• 
3

• •~~~ -~~-•~~~•~~



- relationship between the “mean res idual lif e” and the Lorenz curve. We

illustrate our ideas by plotting and interpreting the Lorenz curves of
two sets of failure data.
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CHAPTER I I

GOODNESS-OF-FIT TESTS FOR THE WEIBULL DISTRI BUTION

WITH ESTIMATED PARAMETERS

2.1 Introduction

The two—parameter Weibull distribution has found many applications

• in the engineering and in the biological sciences . For instance , it has

been used by Cook , Doll , and Fellingham (1969) and by Doll (1971), to

• descr ibe the observed ag e dist~ibution of many human cancers. Its use

for describing failures of electrical and mechanical components is well

documented in the reliability literature.

In this chapter we address a f undamental problem involving any
application of the Wêibull distribution. We wish to test the null hy-

pothesis that a given random sample belongs to a Weibull distribution

with unknown parameters . Of the several methods for testing “goodness of
fit ,” those based on the empirical distrib ution function are the most common.

A foundation for these tests is the theory of weak convergence of stochastic

• processes. For the sake of completeness, we shall present in Section 2.2

the essential ingredients of this theory . In the sequel , we shall also
introduc e some notation and terminology .

2.2 Convergence of Stochastic Processes

In this chapter, as well as in Chapter IV , we will need to know

the limiting behavior of certain stochastic processes -that are of interest.

In order to be able to do this satisfactorily, we shall have to introduce

by way of preliminaries the following notations and definitions

.5
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2.2.1 Preliminaries

Let C be the space of all continuous real functions on the closed

unit interval [0,1] . We shall give C uniform topology by defining the

distance between two functions x and y of t E [0,1] as

p(x,y) = sup Ix(t) — y(t)I
O<t<l

Let the class of Borel sets in C be denoted by ~~~~~

‘

. Then the Wzene r

• measure W is a probability measure on (c ,~ ’) with the following prop-

erties:

(i) For each t C (0 ,1] , the random variable x(t) is, under
W , normally distributed with mean 0 and variance t

that is,

ci 2
W{x(t) < ct} / ~ e~~~ 

/2t
d

=

If t 0  , then W {x(O) .O} 1

(ii) For 0 < to < t1 < • • •  < t~ < 1 , the random variables

x(t
1
)—x(t

0
), x(t

2)—x(t1
), ... , x(t

k
)_x(tk_l)

are independently distributed under W

Billingsley (1968 , p. 62) proves the existence of a Wiener measure on

the space (c ,~ ’) .

We next consider some arbitrary probability space (
~2 v~~~~P)

where ..~~~~~ is the class of Borel sets in Q , and P is a probability mea-

sure on ~~~~~~ Let X be a P—measurable mapping from ~ into C ; that is,

Suppose that at any t , t C [0,11 , the value of the mapping

is denoted by X(t,w) , where c~C~2 . Then, {X(t,w), 0(tC1) is a sto—

chastic process. It is called a Wiener proces s or a Brawnia n motion process
if

P{t~: X(~ ) C Al ~ W(A) , A C ~~~~~

• 6

Ii 
_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _  
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• The mapping X from ~ into C is also known as a random function
(if it can be measured).

A random function X in C is Gaussian if all its finite dimen—
sional distributions are normal. The distribution of a Gaussian random

• function in C is completely specified by the means E{X(t,w) }  , and the
• product moments E{X(t,w)X(s,w) }  , 0 < s , t < 1 . Under a Wiener measure ,

E{X(t,o)} 0

and

• E {X(t ,w)X( a ,w) } — s , if $ < t

In order to study the behavior of empirical distribution functions,

we shall need to def ine another random f unction of  C , Y(t,ü~) , where
• 

- 

Y(t,~ )  = X ( t ,w) — tX(l,w) , 0 < t < 1 .

Clearly Y is a Gaussian rand om f unction of  C , and

E {Y ( t,w) }  — 0

and
E {Y( t,~ ) Y ( s ,w)} = s(l—t) , if s < t

- The random function Y is called the Brownian bridge , or a tied-down
Brownian motion. We also note that Y(O ,w) = Y(l ,w) 0 with probability

1. The stochastic process {Y(t ,w) ,  Q~t~l} is called the Brownian bridge
process. The space C is not suitable to describe processes which bontain

jumps. We are thus led to consider a space which includes certain discon—

tinuous functions.

The Skorokhod topology

Let D be the spac e of  f unctions x on [0 ,1] that are right
continuous and have left—hand limits:

( i)  For 0 < t < 1 , x(t
+)  — lim

+~
x(s) exists and x(t

+)  x( t)

• (ii) For 0 < t < 1. , x( t ) — lim
+~
x(s) exists.

I-

• 7
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Let A denote the class of strictly increasing, continuous mappings
• of [0,1] onto itself. If A CA , then A(0)0 and A (l)1

• For a pair of elements x(t) and y(t) of D , the Skoroithod
metric d (x ,y) is defined to be the infimum of those positive C for

which there exists in A a A such that

~~~ (A(t )  — t f  < e
0<t<l

and
sup Ix(t) — y(A(t))I < c
O<t<l

[cf. Billingsley (1968, p. 111)].

We are interested in probability measures on .~~~~~~, the Borel sets
generated by the open sets of D . Bill ingsley (1968, p. 137) shows that
the Wiener measure W which is defined on (C,~~

’) can be extended to

(D,.~~). Thus W can also be interpreted as a probability measure on

H - (D,.~~). -

2.2.2 Convergence of Probability Measures

• Consider arbitrary distribution functions F and F on the line.

I n

We say that F converges weakly to F , and denote this by F~ > F , if

F (x) 9- F(x)
L

• 
• for all continuity points x of F . For example, if

0 , if
• F (x) —

• •~~~ 1 , if x > ~~
• and

0 , if x < 0
F(x)

1 , if x~~~O

• then F > F even though F (x) b F(x) at x — 0

8

—----- —.•--— - _ -•- -- _ _ _ _ _ _
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The concept of weak convergence stated above is for the real line.

It can also be formulated for a general metric space S . Suppose that

and P are probability measures on eY’, where is the class of

• the Borel subsets of S . Then, P => P , if and only if

• • / fdP 9- / fdP , if f CC(S)
• S S

where c(s ) is the class of bounded, continuous, real—valued functions
on S

In order to discuss weak convergence in the space C we will

have to consider what l.a known as the “tightness” of a sequence of prob—

ability measures {P~} . The notion of tightness is too involved to pre-

sent here, but it is explained in detail by Billingsley (1968, p. 54).
Por weak convergence in C , we state

• 
• Theorem 2.2.1 [Bilhingeley (1968, p. 54)]: Let P and P be probabil-

ity measures on (c,~ ’) . If the finite dimensional distributions of P

converge weakly to those of P , and if {P~} is tight, then P ~~> P

An analogous theorem by Billingsley (1968, p. 124) establishes

conditions for the weak convergence of P to P in the space (D,..~~
) .

Let {X~} be a sequence of random functions on C , and let X

be a random function on C • We say that {x~} converge8 in diatr.Lbu-

tion to X. , written as

x - ~~> x ,

if the distributions P of X~ and P of X converge weakly; that

is, if P ~> P .-n

9 
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2.2.3 Convergence of the Empirical
Distribution Function

Let X (1)~ X (2 ) I . . .~~X( )  be an ordered sample from a distribution

F • The sample , or the empirical distribution funct ion (d.f.) of F is
defined as

0 , u < X (1)
Fn

(u) = i/n X
(i) 

< U < X(i+l)
1 , U > X ( )

Let F (t) denote the sample d.f. of a sample of n independent

observations from the uniform distribution on [0,1] , U[0,l] . We de-

fine

Y ( t) = ,~~~ (~~~~ (t )  — t)  , 0 .~~ t .~~ 1.

The stochastic process {Y
n
(t)

~ 
0<t<l} is called the eaipi-e proces s or

enrpir.ical proce ss. Note that Y~(t) C D . We can easily verify

that

E[Y (t)]— 0
n

• and

CovEY (s), Y ( t )]  — min(s ,t) — St , 0 < a , t <  1

Thus the mean and the covariance of the process {Y (t)} are identical

to the mean and covarlance of the Brownian bridge process {Y(t)} dis-

cussed earlier. Furthermore, it can be shown [cf. Billingsley (1968, p.

141)] that the distributions P of Y converge weakly to the distri-

bution P of Y . Thus, we may write

Y —> Y . (2.2.1)

A consequence of the above is that if g is a measurable function
on D which is continuous almost everywhere with respect to the distribution

10 
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• 
- 

of Y( t) , then by the continuous mapping theorem of Billingaley (1968,
Theorem 5.1), g(Y~(t)) converges in distribution to G(Y(t)) . As will

be pointed out in the subsequent text, this result is useful for finding
the asymptotic distributions of some test statistics used in testing for
goodness of fit.

2.3 Goodness—of—Fit Tests Based on the Empirical Distribution
Function for Testing Simple Hypotheses

Let X (1) < ... < X( )  be an ordered sample from a distri—

• bution F(x) . The goodness—of—fit test problem relates to the problem

of testing the null hypothesis

- 
H0

: F(x) — F
0

(x;O)

where 0 is a vector of several parameters. The null hypothesis H
0 

is

called “simple” if F (x;0) F (x) is completely specified. We shall0 0
assume that F

0(x) is continuous.

Let F
0

(x
(~)
) — t

(j) 
then if the null hypothesis H

0 
is true,

t (1) < t
(
~~
) 

< < t(n) is an ordered sample of size n from U[0,lJ

Let F (t) denote the empirical d.f. d~.rived of t (1)~~ t (2)I ... , t
(
~~
) 

.

We shall consider test statistics based on the empirical d.f. We

shall be concerned with two classes of test statistics. The first is typi-
fied by the Kolmogorov— Smirnov statistic

= sup IF ( t )— t I

0<t< 1 ~

— sup Y (t) ,
0<t<l n

and the other is the Cramer—von Mises statistic

2 . 1 2• W = n / [F (t) — t] dt
0 n

1
= / Y

2
(t)dt

11
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We observe that the above statistics can be written as functions

of the empirical process 1Y (t)} . Since 
~n 

—> Y , where Y is the

Brownian bridge process , g(Y~(t)) 
-

~~~~~> g(Y(t)) if g(Y(t)) is contin-

uous in d for all Y(t) C D • Thus the asymptotic distribution of

can be obtained from thE asymptotic distribution of g(Y(t))

For example, suppose that we are interested in obtaining the asymptotic
distribution of D

n 
sup IY (t) I . It has been shown that g(x(t)) =
0<t<l

sup I x ( t ) I is continuous in d for all x(t) CD , and that
t

- r ‘I 2 2
sup IY(t) ~ ci ( = 1 — 2 ~ (_1)K+h e 2K ci 

, ci ~~ 0
L0~t~l J K—h

[cf. Billingsley (1968, p. 85)]. Thus

P[D < ~] + 1 - 2 (1)K+l e 2K2U2 
, ci > 0

which is a classic result of Kolmogorov (1933).

• By using similar arguments we can obtain the asymptotic distribu—

tion of W2

There is another desirable feature of the statistic D . By the
n

Ghivenko—Cantelli theorem, when F = F0

P/him D “O\ ‘. 1.
n 1

r - Thus, tests based on D
n 

are strongly consistent against all alternatives ,

i.e., as more observations are added, a false hypothesis is eventually re—

jected with probability one.

Other well—known goodness—of—fit statistics based on the empirical

d.f. are:

12
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the Kolmogorov—Sinirnov one—sided statistics,

D~ 
= sup [F (t) — t ]

n 
o.St~l 

‘~

- • 
— sup (Y (t)I ,

0<t<l n

• • D — sup [t — F (t ) ]
n 0<t<1 n

= sup [—Y (t)J
O t<]. ~ -

the Kuiper statistic,

+ + -
D +fl

• U n n •

the Watson statistic, -

- U2 
= n / [F (t) — t _  

(F
(:) — t)dt]dt

- 
— / Y (t)dt — 1~

f Y (t)dt l
0 n LO ~~ 

J

and the Anderson—Darling statistic ,

H • A2 — n /
1 (Fn

(t)_t)2 
dt

r~~ . n t(l—t)

- 1Y 2
(t)

I 
~~ t(l_t) dt .

We also note that for a simple null hypothesis, the distributions of

all the above statistics do not depend on F (x) ; thus the tests based on

these statistics are called “distribution—free tests.”

I .

13
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2.4 Goodness—of—Fit Tests Based on the Empirical
• Distribution Function with Estimated Parameters

• • 
We shall now consider the problem of testing the hypothesis

H
0
: F(x) = F

0
(x;0)

where as before we assume that F
0
(x;0) is continuous; however, 0 is

a vector of unknown parameters which have to be estimated. For example,

H~ might be the hypothesis that data come from an exponential distribution

with unknown mean. From a practical point of view, situations where the

parameters are unknown are much more coimnon than those where they are known.

• Let t
(j) 

= F
0
(x
(~); §~~~) ~ where 

~n 
is a suitable estimator for

the unknown parameter 6 based on a sample of size n • Let ~~(t) de-

note the empirical distribution function derived from t
(]) ~ t(2) ~

_ We are interested in those situations for which the distribution
(U)

of t
15

t2,•~~~.,t does not depend on 8 . Otherwise, the significance points

of the test statistics based on ~~~ (t) would depend on 0 , which is un—

• known. If we restrict ourselves to the case where 0 belongs to a location

and scale family of distributions, and if we further assume that is

a complete sufficient statistic, then it follows from a theorem of Basu

(1955) that t(1)~ t(2)~ t
(j~) 

have a distribution which is independent

of 0.

Analogous to the test statistics for testing a simple hypothesis H0

we define the following modified test statistics:

• (i) the modified Kolmogorov—Smirnov one—sided statistics,

• 
• 

~+ 
— sup [~~~ 

(t)  — t]
n o<t<1 n

— sup [t — ~~ (t ) ]  ;n 0•~ t~ l

14
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(ii) the modified Kolmogorov—Smirnov statistic,

h+ A t
D — maxiD , D I ;
U ~~~fl U ,

(iii) the modified Kuiper statistic,

“±D D + D ;
U U

(iv) the modified Cramer— Von Mises statistic,

“2 1 2w — n /  [F (t) — t] dt ;
• 0

(v) the modified Watson statistic,

- 
,~~ 

— 

1 

[(~~
(t) — 

t) 
— I 

(
~~~~(t) — t)dt] dt ; and

(vi) the modified Anderson—Darling statistic,

“2 l (~~(t) — t)2
A = n f  ~ dt.• o t(1 t)

Unlike the test statistics considered in -Section 2.3, the modified
test statistics presented above do not converge in distribution to func—

tionals of a Brownian bridge process Y . However , their distribution does
• converge to a Gaussian process whose covariance depends on the assumed form

for the null hypothesis F0 (x;0) and the properties of . Thus the mod-

ified test statistics are not distribution— free, and do depend upon the form
of F

0(x;0) . In the following section we discuss the asymptotic distribu—

tion of the modified test statistics when the assumed distribution is a

• Weibull.

- L  

15 
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• 2.5 Goodness—of—Fit Tests for the Extreme
Value Distribution Based on the
Estimated Empirical Process

The two—parameter Weibuhl distribution i~ given by

r ri
F(u; 6,~) — 1_ ex P L_ (~) J ,  u ,~~O

— 0 , otherwise,

where the scale parameter ~ and the shape parameter $ are both assumed
to be positive.

If we make the transformation X — — 1nU , where U has a two—parameter
Weibull distribution, then the distribution of X is called the extreme value
distribution. It is given by

G(x; a,b) — exP {—exp [--. (2~ )]J , b > 0

where a — —Ln ô and b = -
~~ . We note that a and b are , respectively,

the location and the sca le parameters of the extreme value dtstribu~ton .

To make a test of fit to the Weibull distribution, we shall first
take the negative of the natural logarithms of the suppose~ Weibull data.
Thus, we wish to test~whether the distribution of a random sample

is an extreme value distribution with unknown location parameter a

and unknown scale parameter b . Specifically , we wish to test the “null

hypothesis ,”

H0: 1(x) — G(x;O) — C(x; a,b)

When a and b are known, then H0 is simple and we can use the

procedure discussed in Section 2.3. We shall now consider the case when
a and b are unknown. Stephens (1977) has also considered tests fo r- the
extreme value distribution based on the empirical distribution function .
However , his approach is completely different from ours and 1nvol~’e.
lengthy calculations utilizing numerical analysis. In Table 2.7. 1 we
shall show that our results compare favorably with his.

16
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2.5.1 The Convergence Theorem and the
Modified Test Statist ics

When a and b are not specified , that is , when - H0 is “composite ,”

we consider an approach based on (a ,G )  , the maximum likelihood estima—

tors of (a ,b)

Let

= -~~ 

~ I [G(X~ ; ~~~~~ 
< t] , 0 < t < 1

i=l=

where lE E ]  denotes the indicator of the event E . Analogous to the
• empirical process {y (t) } we define the estimated empirical process

{~~~~(t)} as

= ~~~~ [~~~(t) — t] , 0 .~~~ t ~ 1

Our convergence theorem pertains to the estimated empirical process

and is analogous to the result given by Equation (2.2.1) . However , before

stating the convergence theorem , we will have to introduce the following

notation given in Durbin (1973) , and verify that his conditions are satis-
fied.

- Let us denote by 0 the vector [a ,b]’ , and let 00 
be any con—

veniently chosen value of 0 . We state below a verification of the re-

quired conditions .

Condition A: The distribution G(x,00
) has a density f(x ,00) such

that, i~or almost all x , the vector ~Lnf(x,00
)/~00 -exists, and satisf ies

/~~nf(x ,6 ) 32.nf(x,0 )
E ’ _ _ _ _ _  

0 
-

• “ 
ae0 ‘ ~~ ~~~~

“ ‘

where is finite and positive definite.

17
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Condition B: Let 0 be the maximum likelihood estimator of 0 ; that

is, 
~n 

— 

~ n
’
~n~

’ . Then, it is well known [cf. Cramer (1946)] that

n 32nf(x ,0)
~3~’2 (~~—0~) — 1/2 ‘

~
“

~~~ ao0 
~ + ~

where c -‘ 0 , in probability.

Condition C: Let N be the closure of a neighborhood of 0
0 
. Let

• g(t ,0) = 9G(x ,0)/ aO when this is expressed as a function of t by means
of the transformation t = G(x;0) ; let g(t) = g(t;0

0
) . The vector func—

tion g(t,0) is continuous in (0,t) for all 0 C N , and 0 ~~ t ~~ 1

Theorem 2.5.1: By virtue of Conditions A, B, and C the estimated enipiri-
cal process Y~ determined by the extreme value distribution G(x; an ,

~ n)

~
iith ~~~~~~ as the maximum likelihood estimators, is such that

where Y is a Gaussian process in (D,d) with

E [~~( t )]  0 , 0 < t < 1
and —

“ ‘4 —l
• E[Y(s)Y( t)]  = min(s ,t) — st — g(s)~,.V g( t) , 0 < s , t ~~ 1 .

(2.5.1)

Proof : The proof follows from Durbin (1973) . II

If we choose 60 
= [0 ,1]’ , then we have shown in Appendix A that

g( t) — (t&n t , —t P. n t (Ln (— R4 nt) )]  ; also

• 
e~,

f_ l  [1
.10867 0.257 

],
0.257 0.60793

• ~
- [cf. Johnson and Kotz (1970, p. 282)]. Substituting the above into (2.5.1)

• 

• 

we have the covariance of our Gaussian process -

• 

18
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tnin(s,t) — St — l.l08(sR.ns)(ttnt)

+ 0. 257(s&ns) (t&nt) (2 .n(—R. nt ))
(2 .5.2)

+ 0.257(s24ns)(Ln(—9ns))(ttnt)

— 0.60793(s2ns)(Zn(-Zns))(tQ.nt)(2~n(—2.nt)) , 0 < s , t < 1

4-’ ‘4

Using the fact that if h(Y ) is a function of Y which is contin—
4 fl

A ‘4 ‘4+uous in metric d , h(Y ) —> h ( Y )  . Thus the limit laws of Dn , D
,. ~~+ “2 “2 “2

• 
D , D , W , U , and A under H~ are given, respectively , by the

laws of the random variables

• ‘4+ ‘4

B = sup Y(t)
0~t4~1

= sup [—2(t) ]

OSt

• B tnax(D ,D )

H ‘4+D = D + D
(2.5.3)

H 
- 1

= .r
0

1 11 12
= r (~~(t))2dt — 

~~~~~ 

Y(t)dtj ,n 0
and

“2 1—c
A = lim I dt .

c_,40 0+c t

• 2.6 Asymptotic Distributions of the
Modified Test Statistics

Monte Carlo methods were used to simulate the distribution of the
limiting random variables given in (2.5.3).  Following Serfling and Wood
(1976) we approximate the Gaussian process by its finite—dimensional distri—

• butions, corresponding to an evaluation of the process at 29, 99, and 119 
4

- 
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equally—spaced points in the unit interval. One thousand multivariate
- 

normal random vectors with the covariance given by Equation (2.5.2) were

— generated using a program from the International Mathematical and Statis—
— 

tical Library (INSL). The empirical distributions of the supremum , the

infimum, and the difference between the supremum and the infimum of the

resulting multivariate normal vector: were then tabulated, thus approxi—

mating the limit laws of D , B , D , and f
~ 
. Since the differencesn n n n

4 in the observed quantiles corresponding to the finite—dimensional distri-

butions of Y at 29 , 99, and 119 equally—spaced points diminished rapidly,
the approximating procedure was terminated at 119 equally—spaced points.

The asymptotic distributions of W
2 , , and were obtained by using

numerical integration techniques. For this we used Subroutine QSF from

the IBM Scientific Subroutine Package . The various sample quantiles for

the generated frequency distributions are shown in Table 2.6.1.

2 .7  Concluding Remarks

• As stated earlier , Stephens (1977) has also obtained the asymptoti c
-‘2 “2 “2percentage points for the statistics W , U , and A . Stephens also

gives a necessary modification so as to use these statistics for a finite

sample size. Even though our approach is different, it is encouraging to

note that our results seem to be in good agreement with those of Stephens.

A comparison of the asymptotic points we obtained with those of Stephens isj  
- given in Table 2.7.1. Stephens has made no power comparisons, and since

our results agree quite well with his , we conclude that our power compari-

sons given in Chapter III remain valid .

20
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TABLE 2.6.1

ASYMPTOTIC DIST~UBUTIONS OF TUE MODIFIED TEST STATISTICS
FOR EXTRE)~ VALUE DISTRIBUTION WITH ESTIMATED PARAMETERS

pth Quantile -

p 
4-’

~~~ 
A— A + “ 2 “2 -2B D B W U An n n n n n n

0.010 0.241 0.261 0.320 0.595 0.016 0.016 0.106

• 0.025 0.274 0.278 0. 343 0.645 0.019 0.018 0.136

0.050 0.296 0.306 0.369 0.681 0.022 0.021 0.155

0.100 0. 326 0.330 0.408 0.738 0.025 0.024 0.181

0.250 0.395 0.399 0.477 0.837 0.036 0.034 0.238

0.500 0.487 0.478 0.560 0.977 0.051 0.049 0.333
- - 

0.750 0.601 0.583 0.669 1.157 0.073 0.069 0.454

• 
• 0.900 0.722 0.707 0.785 1.305 0.105 0.098 0.623

0.950 0.785 0.787 0.841 1.408 0.123 0.117 0.746

0.975 0.850 0.853 0.910 1.497 0.147 0.140 0.849

0.990 0.908 0.977 0.981 1.614 0.175 0.164 0.991
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- CHAPTER III

POWER COMPARISON FOR THE VARIOUS GOODNESS-OF-FIT

TESTS FOR THE WEIBULL DISTRIBUTION

3.1 Introduction

In order to evaluate the effectiveness of tests discussed in Chapter

II, we evaluate their power against the lognormal distribution as an al—

ternative. The lognormal distribution is chosen because it appears to be

a natural competitor to a Weibull distribution. We also compare our tests

with a test due to Mann, Scheuer , and Fertig (1973). We shall also con—

aider some real failure data to illustrate the use of the modified test

statistics.

3.2 Computing Formulas for the
Modified Test Statistics

Let 0 be a suitable estimator of 0 , and let 
~ (j) 

F
0

(X(j)~ 0 )  ~
H 

~—1,2,...,n , where X(1) < X(2) ~~~ ... ~ X~~~ is the observed sample. We

obtain the following formulas for computing the modified statistics dis—

cussed in Section 2.4.

• 

• 

- 
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U “D — max I—  — t

l<i~n ~~ 
(i)

H- i—lD

~ 

— 

l~i~n 
~t(j) 

—

A A~~ ‘4—D - max(D ,D )n n n

‘4± ‘4+ ‘4D - D + D
n ~ •(3.2.1)

• ~2 - (~~ 
2i-l~ ~~~~ _~~~~ _

i—l ’~~ 1~ 2n1 12n

— 

:~~~~~ 

- 
9

2 ~~ 
- ~ t

(j)

— -

~~ 

(2i_l) (tn2 (j ) + tn (i. — t
(~~+1_~~

))) 
—

For large samples, if the calculated value of a statistic in (3.2.1)
exceeds the critical value at a given level of significance, then we reject
the hypothesis H0 at tha t level of significance.

For a finite sample of size n , the calculated values of the sta—
tistica obtained by using formulas (3.2.1) be multiplied by a factor of
(I + 0.2/ ,4 ) and then compared with the values given in Table 2.6.1. This

‘-2 “2• fal tor was suggested by Stephens (1977) for ~‘t , U , and A and from

our experience we have observed that this factor works well with the use

of , , , and for finite samples.

3.3 The Mann—Scheuer—Fertig (MSF) Test

The only other known procedure for testing goodness of fit for the

Weibull that is not based on the empirical, distribution function is a test

proposed by Mann, Scheuer, and Pertig (1973).

• 
24
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The MSF test is based on a statistic S , and can be used for
censored as well as uncensored samples. However, the percentage points

of S and certain quantities that are used in calculating S are avail—

able only for sample sizes of up to 25. However, along with the neces-

sary factor, the test statistics we have discussed can be used fOr any
sample size.

For a sample of size n , censored at m , the statistic S is
defined as

rn-i

. i~~[zJ2)+1 
(x (i+l)

_x (j )) I [E(Y~~ 1) — 
E(Yi

)]

i~l 
(x(j+l)

_x
(i)) / [E(Y~~1) — E(Y

1)J

where and [r] denotes the greatest integer contained in

r • Mann, Scheuer, and Fertig give percentage points of S and the values

of the quantities [E(Y i+i) — E(Y~ )] for samples of size 3 to 25.

3.4 Power Calculations and Conclusions

The power comparisons were made numerically. For this random sam-

ples of size 20 , 25 , and 30, respectively, were generated from a logno~mal
(normal) distribution with parameters —0.5 (mean) and 1.00 (variance),

respectively.

Maximum likelihood estimators of the parameters a and b of the

extreme value distribution were obtained by numerically solving the fol—

lowing equations simultaneously:

— ~ X~/n — [
~ 

X~ exP (_X
j /~ )] [

~ 
exP (_ X

j I~)] 
—l 

(3.4.1)

and

• — _
~Ln[~ exP (_X

j /~ ) /n] . (3 4.2)

2~



-- -

T—373

The results of our power comparisons are shown in Tables 3.4.1,
3.4.2, and 3.4.3, and these are based on 1000 replicates. Based on this

limited experiment, it appears that for samples of sizes 20 and 25, the
NSF test has better power. For samples of size 30, the NSF test could

not be used , and our modification of the Anderson—Darling test appears

to have better power.

3.5 Example

• Table 3.5.1 gives the failure data for the right rear brake on a

D9G—66A Caterpillar tractor. Using total time on test plots (to be dis—

cussed in Chapter IV) , Barlow and Campo (1975) conjecture that the data
could have come from a Weibull distribution. We shall test this conjec—

- ture using our modified test statistics. Using the computing formulas

(3.2.1), we obtain B107 = 0.505 , D107 0.453 , D107 — 0.505

D107 — 0.957 
~~O7 = 0.050 , 

~~O7 — 0.049 , and — 0.346

• Comparing these values with those given in Table 2.6.1, - we observe
• that they are not signif icant even at a level of significance of approxi-

mately 50%. Thus, based on our analysis, we confirm the conjecture of
Barlow and Campo (1975) that the data could have arisen from a ~Weibull
distribution. 

-

—
-4
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-: TABLE 3.5.1

FAILURE DATA FOR RIGHT REAR BRAKE
- ON D9G—66A CATERPILLAR TRACTOR

56 1253 2325
- 83 1313 2337
- 104 1329 2351
• 116 1347 2437
- • 244 1454 2454

I 305 1464 2546
- 429 1490 2565

452 1491 2584
453 1532 2624
503 1549 2675
552 1568 2701
614 1574 2755
661 1586 2877
673 1599 2879

- - , 683 1608 2922
685 1723 2986

- - 
- 

- 75’ 1769 3092
7 

- 763 1795 3160
• 806 1927 3185

- 834 1957 3191
838 2005 3439

- - 
862 2010 3617

897 2016 3685
904 2022 3756

- 981 2037 3826
1007 - 

2065 3995
- 1008 2096 4007

- 1049 2139 4159

1069 2150 4300
1107 2156 4487
1125 2160 5074
1141 2190 5579

-
• 1153 2210 5623

1154 2220 6869
• - • 1193 2248 7739

- 1201 2285

I

’
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CHAPTER IV

THE USE OF THE LORENZ CURVE AND THE

GINI INDEX IN FAILURE DATA ANALYSIS

= 4.1 Introduction

- A unifying concept in the statistical theory of reliability and
— 

~~
- life testing is the “total time on test transform,” first discussed by

1 
Marshall and Proschan in 1965. Barlow (1968) and Barlow and Doksum

(1972) have introduced and studied a scale—free test for exponentiality

based on the “cumulative total time on test statistic,” which is derived

- from the total time on test transform. Barlow and Campo (1975), and
Barlow (1977) have studied the geometry of the total time on test trans—

- form, and have also used it for a graphical analysis of failure data.
Langberg, Leon, and Proschan (1978) provide characterizations of the to—
tal time on test transform•

- 

- 

Measures of income inequality used by econometricians are the
-
~~ Lorenz curve and the C m i  index (which is derived from the Lorenz curve).

The Lorenz curve plots the percentage of total income earned by various

portions of the population when the members are ordered by the size of
- 

their incomes. Gastwirth (1972) has studied the various properties of

the Lorenz curve and the Gini index. Recently, in a series of papers,

-

- 
Gail and Gastwirth (l977a, 1977b) proposed scale—free tests for exponen—

- tiality based on the Lorenz curve and the Gini statistic. Among other

- 
• - things, they have shown that tests for exponentiality based on the Lorenz

statistic and the Gini statistic are powerful against a variety of alter—
- 

- 

natives.

- 31
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Our objective is to demonstrate that there exists a relationship

between the total time on test transform and the Lorenz curve, and be—

tween the cumulative total time on test transform and the C m i  index.
Thus the tests for exponentiality proposed by Gail and Gastwirth (l977a,

1977b) inherit some very general properties of the tests for exponentiality

based on the cumulative total time on test statistic given by Barlow and

Dokeum (1972). The relationship mentioned above also prompts us to define

what we call the “Lorenz process” and discuss the weak convergence of this
process to functionals of a Brownian motion process. Such a result in—

• creases interest in the Lorenz curve and the Gini index, since it provides
a theory for developing goodness of fit tests for any general distribution

using the Lorenz curve and the Cm i index. -

Gastwirth (1972) has given some properties of the geometry of the

:1 Lorenz curve that are of interest to an economist. In this chapter we pre—
sent some additional properties of the geometry of the Lorenz curve,
and generalize some of Gastwirth’s results.

4.2 Definitions and Notation

• Let X be a random variable with distribution F , and let p

be the mean of F ; let F(0 ) 0 . Then, the total time on tea t trana —
fo rm is def ined in

Definition 4.2.1:

1 d f
H

~~ 
(t) ~~~ ‘ I F(u) du , 0 < t < 1

0

where ~ (u) = 1—F(u) and F 1(t) , the inverse of F(t) , is def ined by

F~~~’( t )  inf {x : F(x) > t} .

It is eaèy to verify that H~~(l) = p

32
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The scaled tota l time on tea t trans fo rm is defined in

Definition 4 .2.2:

WF(t) 
~~~~~~~ ç

’(t) 
, 0 ~

H~~ (l)

In Figure 4.2.1, we show a plot of the scaled total time on test

transform for a gaimna distribution with shape parameters a — 1 and 2 ,

respectively. Other properties of the scaled total time on test transform

are discussed by Barlow and Campo (1975).

The OWirul%2tive tOtal time on test tranafo r,n is defined in
¶ De~jnition 4 .2.3:

1 1
• V

F ~~~~ J. WF(u)du ~ I H~~(u)du

Thus, the cumulative total time on test transform is simply the area under

the scaled total time on test transform.

Gastwirth (1971) has defined the Lorena curve corresponding to a
random variable X with distribution F , F(0 ) 0 , and mean p as

Definition 4.2 .4:  -

L~.(p) ~~~ ‘~~f F~~ (u)du , 0 < p < l  .
H 

1
~ o — —

In econometrics, L~ (p) denotes the fraction of total income that the

holders of the lowest pth fraction of incomes possess. In Figure 4.2.2,

we show a plot of the Lorenz curve for a g a a  distribution with shape

parameters a 1 and 2 , respectively. It is easy to verify that the

Lorenz curve is always a convex function of p

Analogous to Definition 4.2.3, we def ine the cumulative Loz ’enz curve in

‘ ‘ Definition 4.2.5:

.19 1- 
- 

- (CL)~~~ ~~~~~ / L~,(p)dp 
— — / I F (u)du dp .

0 ~~~ 0

~~~ a_I_I ~~~~~~~~~~~~~~~~~~~~~~~~~ 
7- — • -

~~ 
.
~ *

—a—- ~~ - • ~~~~~~~~~~~~~~~~~~~ - • - - • - - ~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~ --



1.00 • - , -

H 

‘ 

- - •
, 

.‘ 
- •

- w (t) -
F - 4:’- -

• ~~. 
‘ ‘ 

I

t 
-

• - -
• - 
. 

- 
-

I...
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The most common measure of income inequality is the Gini index,
defined in

Definition 4.2.6:
1

-
~~~~

— L~.(p)dp 
- 

-

- CF 
— (1/2)

That is , the C m i  index is the ratio of the area between the Lorenz curve
L~ (p) and the 45° line , to the area under the 45° line (which is 1/2) .

The area between the 45 line and L~ (p) is called the area of concen-
tration.

4.3 Some Relationships Among the
Concepts of Section 4.2

We now establish some relationships that exist among some of the

concepts introduced in Section 4.2.

- 

1 F~~(t) -

Integrating WF
(t) — — / F(u)du by parts, we have

- ~~0

or 

~*~~(t) = -
~~~ (l—t)F

’
~~(t) ~ F~~ (u)du

W~(t) — ~ (l— t)P~~ (t) + LF(t) -, 
0 < t < 1 . (4. 3.1)

Thus, the scaled total time on test transform is related to the Lorenz
curve as shown in (4.3.1).

1
Since V

F 
— .1 WF(t)dt  , 

•

- 0

—1 l~~~~~~~-~~l 
-

VF 
— .1 (l—t)F (t)dt + — I I F (u )du dtp
0 ~~O 0

Integrating by parts , we obtain

36 
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-
~~~~~ 

l t  t 1 1 
1

• / / F~~ (u)du dt = t / F~~(u)du — / tY ( t)dt
0 0  0 0 0

- 1 1
- 

= / P~~ (u)du - I tF 1(t)dt
0 0

1
— I (1—t)F~~(t)dt

— 
- 

0

Thus

1 i t
I VF 

— / (l—t)F~~(t)dt — a F~~ (u)du dt
p
0 ~~O 0

or
VF 2 (CL) F . (4.3.2)

Thus the cumulati ve total time on teat transform is twice the ownulative
Lorenz curve.

In order to see the relationship between the Cmi index and the
- cumulative total time on test transform, we note that

1
GF 2L

~ 
- 

~~ 
LF(P)dPJ

-
• l 1 p 

~= 1 — 2 / — / F (u)du dp
- 0

or

- C
F 

— 1 — VF

Thus the Gini index is sinrp iy one minus the cwnuiativ ’e tota l time on • 
-

teat transf orm.

Relationships (4.3.1) , (4.3.2), and (4.3.3) now enable us to state
some other results for the Lorenz curve and the C m i  index.

~~~ 
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4.4 Some Properties of the Lorenz 
-

Curve and the C m i  Index

Gastvirth (1972) has given several properties of the Lorenz curve
and the Gini index that are of interest. We give here some additional prop-
erties which follow naturally from the results of the previous section.

• Remark 4.4.1: , the inverse of L~ , is a distribution function with

support on [0 ,1] ; also LF is concave.

Proof: The conclusion follows from the fact that

1

LF(l) — I F~~(p)dp 1

~~0

when P(0 ) 0 , and that L~~ (p) increases in p C [0,1] . Since LF
is convex , L~

1 is concave. -

We shall make use of Remark 4.4.1 in Theorem 4.4.6.

Definition 4.4 .2 :  Let be the class of continuous distributions on
[0,w) , and let {deg}- be the class of degenerate distributions. Then F

1

is star ordered with respect to F
2 

, denoted by P1 ~ F~ , if F1,F2 C
—1P
2

P (x) —1
I9~~~U 

(~eg} -
, and - is nondecreasing in x for 0 ~~ x ~~ F

1 
(1) .

We shall now state and prove

0O -~~~~~

Theorem 4.4.3: If F - F2 , and if / xdF1 (x) / xdF2 Cx) — p , then
— 1 0 0

(a) L~ (p) > L~~ ~~~~~
1 2

— 

. 

- 

(b) ~~~~~~~~ ~ 
(CL)~~ and

Cc) G~, ~ G~ . 

38
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Proof: Consider ~~~(p) - L~~(p) — I ~~~ ~~~~~~ 
— F~~(u))du ; let

7 h(u) — F1
1(u) — F;~ (u) . and note that / h(u)du — 0 . Since F1 ~ F2 ,

by the “single crossing property” of star ordered distributions [cf. Bar—
low and Proachan (l97i), p. 107], it follows that h(u) changes sign

exactly once, and from positive to negative values. Thus,

i p
— f  h(u)du > O

• 
p
0

and this completes part (a) of the theorem. Proof of parts (b) and (c)

follow from the above result and the definitions of (CL)
F 

and C
F

If F
1 ~ 

F
2 , 

and if F
2 is taken to be an exponential distri-

bution, then F
1 

belongs to the class of distributions which have “in—

creas.ing failure rate average” [cf Barlow and Proschan (1975)]. Theorem

7 of Gastwirth (1972) is analogous to Theorem 4.4.3 of this paper. However,

our theorem is more general than that of Gastwirth, since it applies to a
much larger class of distributions.

Definition 4 .4 .4 :  Let be the class of continuous distributions on
[0,oo) , and let {deg} be the class of degenerate distributions. Then

is convex ordered with respect to 
~2 

denoted by P
1 ~ 

F
2 , if

F1,F2C9’ U (degi , and F~~F1(x) is convex in x for 0 < x ~ Fj
1(1)

Remark 4.4.5: F
1 

< F
2 

implies F1 ~ F2 [cf. Barlow and Proschan (1975 ,

p- 107)].

In the following theorem we shall show that the convex ordering

property is preserved by L;
’ 

, the inverse of L
F 
. If F

1 
< F~ , and

39
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if F2 is taken to be an exponential distribution, then F
1 

belongs to

the class of distributions which has an “increasing failure rate” [cf.
Barlow and Proschan (1975)].

Theorem 4.4.6: If F < F 
- then L 1 

<
i c 2 F

1
c F

2

Proof: We wish to show that L.f L~~ (x) is convex in 0 < x < F
1(l)

2 1  1

We shall assume that F
1 

and F
2 are absolutely continuous. Then we

need only show that -
~~~~

- L~~[L
’(x)] is nondecreasing in 0 < x ~ F~~~~(i)

( 
Let -p

~ and p
2 be the means of P

~ 
and F

2 , respectively. Then

—1

- 

— —  

L~ 
-

dx Lp [ L~.’(x)] = 

~~ ~
‘2 0 

F2
1(u)du

-l / - i  ~ -lF2 1L~ (x) i dLF (‘)
‘1  / 1= 
p

2 
dx

Let

x = L~~~(p)

—l
o F1 (p)

uX

~~1

~~~~~~~~_ 1 

— 
— .dx F1

1(p) p — L~’(x) F11[L~’(x)]

Hence

dç’(x) 

-1
F
i

- 

U - - -—  - • - — - --___________ —— ~~~— -~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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and

— 1
L
F 

(x) p F 1fL
1(x)

P
2 

(u)d u —1 —1- X ~2 0 p
2
F
1 [L~~(x)]

F 1F (x) —lSince F
1 

< P
2 

implies that is nondecreasing in 0 ~~ x < P1 
(1) ~

and since F
1
L~~ (x) = t is nondecreasing in 0 $ x $ F~

1(l) , a change of
1

L;’(x)

variable shows that 
~
j
~
— -~~- f F~

1(u)du is nondecreasing in 0 ~ x 
<

F 1(1) . Since continuous distributions can be approximated arbitrarily

closely by absolutely continuous distributions, the proof of the theorem

is completed.

4.5 S~m~ Statistics of Interest

Let X < X < ... < X denote the order statistics corre—
(1)= (2) =~ (it) -

sponding to a random sample of size n from a distribution P , where

F(Ci’) 0 . The tOtaZ time on test statistic to the ith failure, T(X(.))
is defined by

-

‘ 

T(X(j)) 
~~~~~~~ ~~ 

(n_ i+1)(X(~) 
- X(~~l)) 

. (4.5.1)

Barlow and Campo (1975) have used the scaled total time on teat

- - statistic, , def ined as

i
~ (n_i+l) (X, . — x 

)lit def 1
W~ —J 1 

(4. 5 . 2 )

for analyzing failure data.
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The cumulative total time on test statistic , V , defined as

n-i
v ~~~~ _.L~ ~ w(l)n n—i ni=l

has been used by Barlow and Doksum (1972) for testing for exponentiality.

They show that a test based on V is asymptotically minimax against a

class of alternatives defined by the Kolmogorov distance.

Gail and Gastwirth (1977a) have proposed a test for exponentiality

based on the Lorenz statistic, L (p) , defined as

[np ] ndef rL (p) L X(j) / L X(i) 
-

i—i ‘ i—i

where 0 < p < 1 , and [rip ] is the largest integer in np . The sta-

tistic L (’S) is shown to have good power against a range of alterna-

tives; this is based on a Monte Carlo investigation.

Recently, Gail and Gastwirth (l977b) proposed another test for

-
• 

- exponentiality based on the Gini statistic, C , def ined as

de j
~1 

i(n_i)(X(i+l) - 
X (1))

C . (4. 5.5)- 

(n-i) ~ X~1i=l

Based upon Monte Carlo studies, Gail and Gastwirth (197Th) have concluded

that C~ is i~v~re powerfuZ than L (.5) for n20 , against most of the

alternatives that are studied.

We can easily verify the following relationships between the van —

ous test statistics that we have discussed thus far:

w(-t) — L (-&
) 

+ ( 4 .5 . 6 )

~ X(~ 
-

~ ~
- 

-
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- V — 1 — C . (4.5.7)
n ii

In view of (4.5.7) above , the test for  exponentiality based on the Gini
atatie tic is identica l to the teat for ex ’ponentiaUty based on the ownu-
lative total time on teat statistic. Thus, we can say that the test for
exponentiality based on the Gin statistic is asymptotically minimax

against some restricted alternatives.

The exact distribution of C under exponentiality follows from

Theorem 6.2 of Barlow, Bartholomew, Bremner, and Brunk (1972) , and from
Equation (4.5.7) ahove. Gail and Gastwirth (l977b) have also derived the

exact distribution of C , but by using a - different argument.

4.6 The Lorenz Process and its Weak Convergence

- 
Using previous notation, we def ine the Loz’enz process, (2~

’(t)

• o~~ t~~~1) , as

- 

- (t) = vc 
{L (i) — LF(t)J , < t < 1

1 ( I < n ; (4.6.1)

= 0 .

We are interested in the asymptotic behavior of this process for F in

general. 
-

4.6.1 Weak Convergence of the Lorenz Process

Let v
~
(u) be a discrete measure putting mass 1/n at u — i/n ,

• 
i—l,2,...,n . Then

- 
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I

= ~~ 
X~~ i/n X([flu]) dv (u)

— f
where X ~~ X~~~/n , and [nu] is the greatest integer in nu

i—i

t
Since L (t) = / F 1(u)du , substitution in (4.6.1) givesP p

0

= 

i/n 
1X

([ ]) 
- 
F~~(u) dV (u)

(4.6.2)

+ 

u n  
~~ F~~(u) d(V (u) - u]

Co

If we assume that I xdF(x) < ~ , and if g F 1 has a nonzero continu-

ous derivative g’ on (0,1) , then by Shorack (1972),

f{X([nu]) — 
F
~~
(t)I P 

— 
g’(t) Y( t) — 

g(t) 
~

• Tnu]+t 
p

In the expression above “ >“ denotes convergence In probability,
Co

Y is the Brownian bridge process on (0,1) , and Z = I Y(F(x)]dx is
0

2 2• normal with mean 0 and variance , where c~, is the variance of F

Since the second term of (4.6.2) converges deterministically to zero,

it follows that

~~~~~~

(t) -

~~~~~~~ ~ t 

- (g
’()~ Y(u) + 

g(u) 
z) 

du -~~~(t) .

We can also express ..~~ (t) as

44
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F 1(t) L (t) Co

.2’t) — — -
~~~ / Y [F(xfldx — F j y[F(x)]dxp 0 ~ 0

By a direct but tedious calculation [cf. Gail (1977)1, it can be shown
that under exponentiality

var(. it)) = 2(l—t)~n(1—t) + t  + t(l—t) 
— (t + (1—t)Ln(i—t))

2

Thus, in contrast to an analogous result based on the convergence of the
total time on test process [see Barlow and Campo (1975)], under exponen—
tiality 1..~ ’(t) ; 0 ~~ t ~ 1) is not the Brownian bridge.

4.6.2  Uses of the Lorenz Process

The Lorenz process can be used to find the asymptotic distribution of

sup 4~ L (&) — L (1)
l<i<n n n  F r i

which by the invariance principle discussed in Section 2.2 is the same as

• 
that of

~~~~~~~

0<t-< 1

This statistic can be used to test the hypothesis that the given data has

distribution P versus the general alternative that it does not. As seen

at the end of Section 4.6.1, under exponentiality it is not the ~Co1mogorov—
Smirnov statistic, and this is not very pleasing.

Another statistic that can be used for the same purpose is the area

between the curve of L 1-~-~ and the curve of L (t) . A consideration of
n~ni F -

this area leads us to Theorem 4.6.2, which follows from Theorem 6.6 of

Barlow et a].. (1972) .
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Theorem 4.6.1 (Barlow, Bartholomew, Bremner, and Brunk (1972)]: If

Co 
2

I xdF(x) < Co and a (F) < Co
- 

0

where

• a2(P) 2 I / f2[1-F(s)] - v~} x {2[l-F(t)] - V~)F(s)(1_P(t)) ds dt
S<t

then

• - V
F~~ ~~~~~

> N (o~ 
c~~ F))

where • 
“-!~~~~~~>“ denotes convergence in distribution.

Using the fact that C = 1.—V , and C 1—V , we are now in aF F n n
position -to obtain the limiting distribution of the Cmi statistic. We

have

Theorem 4.6.2: Under the conditions of Theorem 4.6.1,

~c(c~
_G
~) ~~~~~~~> N(0~ 

~~~~~~~~~~~

In the case of F exponential, C~ — ~~~
- and a

2(F) — . Thus

- 

~‘T~ (c — .
~
) .~~~~~> N(0 ,1)

a result also obtained by Gail and Gastwirth (197Th) using some arguments

due to Hoeffding (1949).

4.7 The Lorenz Curve and the Mean
- Residual Lifetime

Bryson and Siddiqui (1969) and also Hollander and Proschan (1975)

have pointed out that the notion of “mean residual lifetime” is especially
useful for the analysis of biological data. In this section we point out

the relationship between the Lorenz curve and the mean residual lifetime.
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Such a relat ionsh ip suggests to us that the Lorenz curve methods , which

• 

• 
have so far been mainly used in the social sciences, could also be used
in the biological sciences. This possibility has also been hinted at

by Thompson (1976)-.

The mean residual lifetime corresponding to a random variable X

with distribution F , F(0 ) E 0 , is defined in

Definition 4.7.1:
Co

f F(u)du -
‘

• x
CF

(x) = _________

F(x)

We say that a distribution F has a decreasing (increasing) meon i ’s-
sidua l lifetime if L

F
(x) is decreasing (increasing) in x for all

x > 0

Bryson and Siddiqui (1969) have used the decreasing mean residual

lifetime property to interpret some survival data on patients suffering

from leukemia.
• I —

If we denote the mean of F by p , then we can write ~~ (x) as

e
F

(x) = 

~[1 -

From Definition 4.2.2, it follows that

1

thus

u[l — w (F(x))]
c~ (x) _

F

F (x)

The above expression when used with Equation (4.3.1) gives us a relationship
• between £~ (x) and L~() ; specifically, we have
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— 
- L~(F(x)) — 1 — ~~~~ [CF (x) + xl . (4.7.1)

In order to demonstrate the use of the Lorenz curve for biological

applications, we shall consider the data given by Bryson and Siddiqui

(1969). These data pertain to survival times (in days), from the time

of diagnosis, of patients suffering from chronic granulocytic leukemia.
The ordered 43 survival times in days are: 7, 47 , 58, 74 , 177, 232 ,
273, 285, 317, 429, 440, 445 , 455, 468, 495, 497 , 532, 571, 579, 581,
650, 702, 715, 779 , 881, 900, 930 , 968, 1077, 1109, 1314, 1334, 1367,
1534, 1712, 1784, 1877, 1886, 2045, 2056, 2260, 2429 , 2509.

If we denote the number of survivors at time x by S , and if

~~ 

“

~~
- the size of the initial population is denoted by n , then Bryson and

Siddiqui estimate the mean residual life at t ime x by

~(x) = S~
1 Z (X~~x) ,

• where denotes the survival time of the jth element and the sum is

for those having survived up to time x

In Figure 4.7.1 we show a plot of ~(x) versus the time x , for
the data in question. Thus, the distribution of survival times has a

decreasing mean residual life; this conclusion is based upon an it-tepee—
tion of Figure 4.7.1.

• In Figure 4.7.2 we give a plot of the sample Lorenz curve for these

data. The sample Lorenz curve is simply a plot of the Lorenz statistic

L (p) (defined in Section 4.5) versus p , 0 < p < 1 . The sample Lorenz

curve L (p) represents the proportion of the total lifetime contributed

by the least fortunate p•100 percent of the patients; for example, 50¼
of the patients contribute only 20¼ of the total lifetime. The sample

Lorenz curve can also be used to compare the heterogeneity of the survi—
val patterns of two groups of patients. To illustrate this, we give in

• Figure 4 .7.3 the Lorenz curves for the data on the survival times of guinea
pigs considered by Dokeum (1974). The Lorenz curve for the “control
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Figure 4.7.1——Sample mean residual lifetime versus
time of leukemia patients
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- Figure 4.7.2——Sample Lorenz curve versus proportion
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- of leukemia patients

r - -

50 

— - - - - -4 -- -  -_—--_ - - - -  - -4— - - — --- ---__ - --4- —--4---- - -i

~~~~~~~~~~~~~~~~ 
—- ‘- -4—  -

~~~~
—--——

~~~~~~~~~~~~~~~~~~~~ 

-~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



T-~-37 3

1.0

4~~~

0.9
• 

-4

I .~~
- 0.8

C
’

:~~~:

- 
~ 0.5

• • 1.1 -.
Q S

‘—~ •‘ S

- 
.~~ 0,4 ç,40 

~~

-~~~~
• 

0.3 - ‘ o’~-4- ‘~~ .‘ G~S • &

0.2 

~~~ 
~~~~~~~

t 
• 

, 

0.1 

~~~~~~ 
0~

_________________________________________________________________ 
Proportion

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Guinea Pigs

Figure 4.7.3—Sample Lorenz curves versus proportion
• of guinea pigs
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group” lies below the Lorenz curve for the “treatment group” for p less
• 

S than about .8 ; the curves cross near p ~ .8 . Thus, initially the

treatment group is less heterogeneous than the control group and the re-

verse is true later on. This can also be verified by an inspection of the

- actual data.
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CHAPTER V

RECOMMENDkTIONS FOR FUTURE WORK

In chapter ii we have given the asymptotic percentage points of

our modified test statistics for testing the goodness—of—fit statistics

for the Weibull distribution with unknown parameters. Finding the exact

percentage points of these test sta tistics for finite samples is an open
+ and challenging question. Durbin (1975) is the only one who has given the

exact percentage points for the modif ied statistics when the underlying
distribution is an exponential. We find that his work involved a tremen-

dous amount of theoretical and computational effort. We feel that finding

the exact percentage points of the modified test statistics for the Weibull

distribution would require a much greater effort. However, as we have
stated in chapter I, the analysis of failure data is an important problem,

and thus such an effort would be well justified. This w~l1 also enable us
to gain a better underst’anding of the power of our tests against various
alternatives.

In chapter IV, we have pointed out the connections among some

well—known indicators in economic theory and a central concept in reli—

ability theory. We hope this will help to consolidate and integrate sta-
tistical knowledge that has independently evolved in two different areas
of application.

Up to this t ime the statistics based on the Lorens curve, the Gini

r - 
I 

- index, and the total times on test transforms have been used to develop
tests for exponentiality. It is well known that the test for exponen—

tiality based on these statistics have more power against most of the

alternatives than the tests based on the empirical distribution function.

We feel that tests for the gamma and the Weibull distributions based on

53
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the Lorenz curve may prove to be more powerful than those proposed here.
- 

- Our results on the weak convergence of the Lorenz process has already given

- 
us the necessary theory to pursue the development of such tests. Another

possible direction of research is the extension of the concepts of the

Lorenz curve and the Gini index to the multivariate case. Analogous

developments in reliability theory regarding the multivariate total time

- 
on test transform could be used. This motivates us to propose a new con—

- cept in economic theory, namely , a multivariate measure of social inequal—

- 
ity. Thus there is a strong potential that further exploitation of the

- connections that we have pointed out here will be possible.

i i

I

C’

~~~ 
- 

- 

-4
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APPENDI X A

• 
DERIVATION OF g( t)

Let G(x; a,b) = exp{_exp[— (2~~~)]} 
= t . Then

x a — b £n [—Lnt] . (Li)

Let

a,b) = 
3G(x, a,b)

and 

= — 
~ exp{_exp[_ (

2t.~)]} . exp [_ (?)]

F g.1,(x; a,b) = 
aG(xLa,b)

Then 

= - 
(x_a)2 

exp{—exp[_ (2~~~)]~ . exp[_ (.2~!)] •

[~~~~~~~~~~~~

; a ,b)1
g(x; a,b) f I . (A.2)

L~~
(x; a,b)J

From (A l) and (A.2) we get

tint
g(L. ) g(t ; 0,1) = r- 

L—t2~nt(—2.nt)

H 

- 
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