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In this dissertation we deal with the important problem of '"failure
data analysis." Our contributions can be classified into two broad cate-
gories. Under the first category comes the development of some goodness-
of-fit tests for the Weibull distribution with unknown parameters. Our
test statistics are functions of the empirical distribution function, and
are based on an adaptation of some recent results on the theory of goodness-
of-fit tests. Under the second category comes our proposal that the "Lorenz
curve" methods of economic theory also be considered for use in the analysis
of failure data. In the sequel, we point out several interesting connec-
tions between some well-known indicators in economic theory and a central
concept in reliability theory. We feel that pointing out these connections
between the two apparently different disciplines coustitutes an important
contribution of this dissertation.
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CHAPTER I

INTRODUCTION AND SUMMARY

M A A i

In this dissertation we address the important problem of "failure

data analysis." The significance of this problem for a practical imple-

mentation of reliability theory is too well known to warrant an explana-
tion here.

A standard approach to the analysis of failure data is based on

i

probability plotting methods, or the testing for 'goodness of fit" [Mann,

’ Schafer, and Singpurwalla (1974), pp. 214, 355]. Underlying the use of

k| . these methods is the assumption that the data constitute a complete,

random sample from a fixed -but unknown parametric family of distribu-
tions.

Typical of these are the exponential, the Weib=:1l, or the gamma

distributions, and the problem is to test the hypothesis that the data
have arisen from a specified member of the family.

e

,; Over the past few years significant interest has developed in
3 é failure data analysis, resulting in some imaginative approaches in the
% general area. For instance, Barlow and Campo (1975) have proposed the

use of '"total time on test plots" for a graphical analysis of failure
data.

The data could represent either a complete or an incomplete (cen-

'sored or truncated) sample from a fixed but unknown nomparametric family

of distributions. An example is the family of distributions whose failure

rate is increasing [Barlow and Proschan (1975), p. 73]. Singpurwalla

1 (1975) has proposed the use of time series techniques for analyzing data,

which can be construed as the realization of a stochastic process. Such
a model is appropriate when the failure data is correlated either due to

contamination, to periodicities, or to the basic failure generating mech-
anism.

The recent advances in testing for goodness of fit pertain to a
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theory for tests based on the empirical distribution function when the

parameters of the underlying failure distribution are estimated from the

data. The pioneering work of Lilliefors (1967, 1969) sparked a flurry of pa-

pers around this general theme, the most recent ones contributed by
Durbin (1973) and Serfling and Wood (1976). These latter two are unique

in the sense that they emphasize a general theory for such tests, and
are not directed towards a specific distribution.

In this dissertation we shall discuss our contributions to the
general methodology for failure data analysis. Our contributions can be
classified inté two broad categories. Under the first we discuss the
development of goodness-of-fit tests for the Weibull distribution with
unknown parameters based on the empirical distribution function. Under
the second category we propose that the '"Lorenz curve' methods of economic
theory be considered for usé also in the analysis of failure data. In
the sequel we point out several interesting connections between some well-
known indicators in economic theory and a central concept in reliability
theory. In agreement with several researchers in the two fields, we feel
that pointing out the connections between the two apparently different

disciplines constitutes an important and perhaps a major contribution of
this dissertation.

A few words about the overall organization of this dissertation
will be helpful to the reader. Chapters II and III are devoted to the
problem of goodness-of-fit tests for the Weibull distribution with es-
timated parameters. In Chapter IV we discuss the Lorenz curve and the
other measures of economic inequality; also discussed here are the rela-
tionships between these measures and a central concept in reliability
theory. These relationships suggest the use of Lorenz curve methods for
the analysis of failure data. Clearly, the theme of Chapters II and III
is different from that of Chapter IV. Hence, Chapter IV can be perused
independently of Chapters II and III. Some elements of the theory of the

"weak convergence' of stochastic processes are relevant to both Chapters

II and IV; these are presented in Chapter II. Literature relevant to the
text of Chapters II and III is survéyed in Chapter I1I, whereas that which
is relevant to the text of Chapter IV is surveyed in Chapter 1IV.




o o s i

e
1

. e e i, . S AR A

RPN

?.ﬂ(&' )

B IR Tovce oy

L ——

T-373

In what follows we summarize the major aspects of the material
discussed in Chapters II, III, and IV.

In Chaptef II we consider several test statistics based on the em-
pirical distribution function, for testing the null hypothesis that a ran-
dom sample belongs to a Weibull distribution with unknown scale and shape
parameters. A foundation for testing such a hypothesis is provided by
the fact that the logarithm of a Weibull random variable has an extreme
value distribution with location and scale parameters, and by some recent
results of Durbin (1973) and of Serfling and Wood (1976). These results

~pertain to the weak convergence of an associated "empirical" stochastic

process under the null hypothesis. The asymptotic distribution of the
empirical process serves as a basis for Monte Carlo studies to determine

the appropriate critical points of the test statistics.

In Chapter III we give some results from a comparison of the power
of our tests and an ad hoc but powerful test due to Mann, Scheuer, and
Fertig (1973).

Chapter IV consists of several parts. We first show that the
"Lorenz curve" and the "Gini index'" are related to the "total time on
test transform" and the '"cumulative total time on test transform," re-
spectively. Thus, the recently proposed tests for exponentiality based
on the Gini statistic inherit the well-known properties of the tests for
exponentiality based on the cumulative total time on test statistic.

Analogous to the "total time on test process" we define the "Lo-

renz process,"”

and show its weak convergence to functionals of a Brownian
motion process. This provides us with a theory for developing goodness-
of-fit tests for any general distribution using the Lorenz curve and the
Gini statistic. In addition to the above, we also state some new results
on the geometry of the Lorenz curve that follow from the geometry of the

total time on test transform.

In order to motivate the use of Lorenz curve methods for the analy-

sis and interpretation of failure data, we show that there exists a
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relationship between the "mean residual life" and the Lorenz curve. We
| B illustrate our ideas by plotting and interpreting the Lorenz curves of
two sets of failure data.
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CHAPTER II

GOODNESS-OF-FIT TESTS FOR THE WEIBULL DISTRIBUTION

WITH ESTIMATED PARAMETERS

2.1 Introduction

The two-parameter Weibull distribution has found many applications

R e o L bl L it o e

! in the engineering and in the biological sciences. For instance, it has

} been used by Cook, Doll, and Fellingham (1969) and by Doll (1971), to

‘ describe the observed age distribution of many human cancers. Its use
for describing failures of electrical and mechanical components is well

documented in the reliabiiity literature.

In this chapter we address a fundamental problem involving any
application of the Weibull distribution. We wish to test the null hy-
~pothesis that a given random sample belongs to a Weibull distribution
with unknown parameters. Of the several methods for testing ''goodness of

fit," those based on the empirical distribution function are the most common.

A foundation for these tests is the theory of weak convergence of stochastic

processes. For the sake of completeness, we shall present in Section 2.2
the essential ingredients of this theory. 1In the sequel, we shall also
introduce some notation and terminology.

2.2 Convergence of Stochastic Processes

| § In this chapter, as well as in Chapter IV, we will need to know
; the limiting behavior of certain stochastic processes -that are of interest.
In order to be able to do this satisfactorily, we shall have to introduce

by way of preliminaries the following notations and definitions.
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2.2.1 Preliminaries

Let C be the space of all continuous real functions on the closed
unit interval [0,1] . We shall give C uniform topology by defining the
distance between two functions x and y of t € [0,1] as

p(x,y) = sup |x(t) - y(e)] .
0<t<1
Let the class of Borel sets in C be denoted by g Then the Wiener
measure W 1s a probability measure on (C,g) with the following prop-

erties:

(1) For each t € [0,1] , the random variable x(t) is, under
W , normally distributed with mean 0 and variance ¢t ;
that is,

o

2
Wix(e) <a} = f 27U /2y,
- Y2mt

If t=0 , then W{x(0)=0} =1 .

(i1) For O <t

0=*t

]S e S 2 1 , the random variables

x(tl)—x(to), x(tz)-x(tl), ey x(tk)-x(t: )

k-1

are independently distributed under W .

Billingsley (1968, p. 62) proves the existence of a Wiener measure on

the space (C,g)' ;

We next consider some arbitrary probability space (ﬂ,\Z P) s
where g is the class of Borel sets in Q , and P 1is a probability mea-
sure on .g . Let X be a P-measurable mapping from  into C ; that is,

X-lgc g Suppose that at any t , t € [0,1] , the value of the mapping
is denoted by X(t,w) , where w€ Q . Then, {X(t,w), 0<t<1l} 1is a sto-
chastic process. It is called a Wiener process or a Browmian motion process
if

Plw: Xw) €A} =w@A) , AE€EE.

Sl e el s
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The mapping X from § into C is also known as a random function
(if it can be measured).

A random function X in C 1is Gaussian if all its finite dimen-
sional distributions are normal. The distribution of a Gaussian random
function in C is completely specified by the means E{X(t,w)} , and the

product moments E{X(t,w)X(s,w)} , 0<s , t £1 . Under a Wiener measure,

E{X(t,m) } =0
and ;

E{X(t,w)X(s,w)} =8, 1f s<t.

In order to study the behavior of empirical distribution functions,

we shall need to define another random function of C , Y(t,w) , where
Y(t,w) = X(t,w) - tX(L,w) , 0<t<1l.
Clearly Y is a Gaussian random function of C , and
E{Y(t,w)} =0
and
E{Y(t,w)Y(s,w)} = s(1-t) , 1if s <t .
The random function Y 1is called the Brownian bridge, or a tied-down
Brownian motion. We also note that Y(0,w) = Y(1,w) = 0 with probability
1. The stochastic process {Y(t,w), Q;t;l} is called the Brownian bridge

process. The,spaée C is not suitable to describe processes which ¢ontain

jumps. We are thus led to consider a space which includes certain discon-
tinuous functions.

The Skorokhod topology

Let D be the space of functions x on [0,1] that are right
continuous and have left-hand limits:

(i) For 0t <1, x(t+) = 11ms+tx(s) exists and x(t+) = x(t) .

(ii) For O < ESd, x(t-) = 11ms+tx(s) exists.

V. T
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Let A denote the class of strictly increasing, continuous mappings
of [0,1] onto itself. If XA €A, then A(0)=0 and A(1l)=1 .

1 i For a pair of elements x(t) and y(t) of D , the Skorokhod
metrie d(x,y) is defined to be the infimum of those positive €& for
which there exists in A a A such that

sup [A(t) - ¢t < €
0<t<1
and
sup |x(t) - y(A(®))]| < €
0<t<1

B —

[cf. Billingsley (1968, p. 111)].

S Y i

We are interested in probability measures on .@ » the Borel sets
| generated by the open sets of D . Billingsley (1968, p. 137) shows that
' the Wiener measure W which is defined on ( C,g) can be extended to
1 ‘ : (D,.@). Thus W can also be interpreted as a probability measure on

i - (0, 9).
i 2.2.2 Convergence of Probability Measures

Consider arbitrary distribution functions Fn and F on the line.

i

!

:
F v We say that Fn converges weakly to F , and denote this by Fn => F , if
2

¢ Fn(x) + F(x)

!

for all continuity points x of F . For example, if

0, if x <%
Fn(x) - ’

3 [ if x> 2

=n

and

3 : o, if x<O0
E F(x) = .

] 1, 1if x>0

* ' then Fn => F even though Fn(x) FF(x) at x=0 .
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The concept of weak convergence stated above is for the real line.
It can also be formulated for a general metric space S . Suppose that

Pn and P are probability measures on y s, where ..y is the class of

the Borel subsets of S . Them, P =>P, if and only 1if

J fdp. > [ fdP , if f €c(s) ,
n
S S
where. C(S) 1is the class of bounded, cohtinuous, real-valued functions

on S .

In order to discuss weak convergence in the space C we will
have to consider what is known as the "tightness" of a sequence of prob-

ability measures {Pn} . The notion of tightness is too involved to pre-

sent here, but it is explained in detail by Billingsley (1968, p. 54).

For weak convergence in C , we state

Theorem 2.2.1 [Billingsley (1968, p. 54)]: Let Pn and P be probabil~

ity measures on (C,g) . If the finite dimensional distributions of Pn

converge weakly to those of P , and if {Pn} is tight, then P => .

An analogous theorem by Billingsley (1968, p. 124) establishes
conditions for the weak convergence of Pn to P 1in the space (D,.@ )

Let {xn} be a sequence of random functions on C , and let X
be a random function on C . We say that {Xn} converges in distribu-

tion to X , written as

9

Xn s x 9

if the distributions Pn of xn and P of X converge weakly; that

is, 1f P => P ..
n
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2.2.3 Convergence of the Empirical
Distribution Function

Let x(l),x(z),...,x(n) be an ordered sample from a distribution

F . The sample, or the empirical distribution function (d.f.) of F is
-defined as

1
1 SRR © - X(l) 1
Fn(u) =(i/n , X(i) fuc< X(i+1) .
1 . u > X(n)

Let Fn(t) denote the sample d.f. of a sample of n independent ;

observations from the uniform distribution on [0,1] , U[0,1] . We de-
fine

¥ (e} = /n (Fn(t:) =), WL

A
A

1.

The stochastic process {Yn(t), 0<t<1} 1is called the sample process or i

empirical process. Note that Yn(t) € D . We can easily verify
that
E[Yn(t)] =0

and
Cov[Yn(s), Yn(t)] = wmin(s,t) -8t , 0<8 , <1,

Thus the mean and the covariance of the process {Yn(t)} are identical

to the mean and covariance of the Brownian bridge process {Y(t)} dis-
cussed earlier. Furthermore, it can be shown [cf. Billingsley (1968, p.
141)] that the distributions Pn of Yn converge weakly to the distri-

bution P of Y . Thus, we may write

P

Y =< vy. (2.2.1)
n

A consequence of the above is that if g is a measurable function

on D which is continuous almost everywhere with respect to the distribution

10
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of Y(t) , then by the continuous mapping theorem of Billingsley (1968,
Theorem 5.1), g(Yn(t)) converges in distribution to G(Y(t)) . As will

be pointed out in the subsequent text, this result is useful for finding

the asymptotic distributions of some test statistics used in testing for
goodness of fit.

2.3 Goodness—-of-Fit Tests Based on the Empirical Distribution
Function for Testing Simple Hypotheses

Lat' R 2%, £ . E ' Cotri-
a) =20 =~ =,X(n) be an ordered sample from a distr

bution F(x) . The goodness-of-fit test problem relétes to the problem
of testing the null hypothesis

HO: F(x) = Fo(x;e) ’

where © 1is a vector of several parameters. The null hypothesis Ho is

called "simple" if Fo(x;e) = Fo(x) is completely specified. We shall

assume that Fo(x) is continuous.

Let FO(x(i)) = t(i) s then if the null hypothesis H. is true,

0
< LN < f .
t2) £ v+ S t(;) 1s an ordered sample of size n from u[o,1]

A

i¢H)
Let Fn(t) denote the empirical d.f. dcrived of t(l)’ t(2)’ sisiely t(n) 5

We shall consider test statistics based on the empirical d.f. We
shall be concerned with two classes of test statistics. The first is typi-
fied by the Kolmogorov-Smirnov statistic

D = sup |F (t)- t|
= Osesl  ©

& aep 1)
oge<1 ™

and the other is the Cramer-von Mises statistic

2 1

wn = n é [Fn(c) - t]2dt

-
= é Yn(t)dt .

11
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We observe that the above statistics can be written as functions

! of the empirical process {Yn(t)} . Since Yn-———> Y , where Y is the

9

Brownian bridge process, g(Yn(t)) ==> g(Y(t)) if g(Y(t)) 1is contin-

uous in d for all Y(t) €D . Thus the asymptotic distribution of
g(Yn(t)) can be obtained from the asymptotic distribution of g(Y(t)) .

sdi oo

For example, suppose that we are interested in obtaining the asymptotic

distribution of D = sup IYn(t)I . It has been shown that g(x(t)) =

0<t<1
E sup |x(t)| is continuous in d for all x(t) €D , and that
@ t
E ‘ ' ' o K+ -2k%0’
| ‘ Pl sup |Y(t)| <a| = 1-2 ] (-1)7 " e o .,
i 0<t<1 k=1

[cf. Billingsley (1968, p. 85)]. Thus

252
+ -
K+1 = 2K a : a>0.

P[Dn < a] s W Kzl (-1)

which is a classic result of Kolmogorov (1933).

By using similar arguments we can obtain the asymptotic distribu-

tion of w2 ¢
n

There is another desirable feature of the statistic Dn . By the

E Glivenko-Cantelli theorem, when F = Fo 5

P(lim D -o) -1,
n

n-ee
{ Thus, tests based on Dn are strongly consistent against all alternatives,

i.e., as more observations are added, a false hypothesis is eventually re-
jected with probability one.

Other well-known goodness-of-fit statistics based on the empirical

é . d.f. are:

i 12
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the Kolmogorov-Smirnov one-sided statistics,

D = va sup [F (t) - t]
o<t<1

sw [Y ()],
0<t<1

o
]

va sup [t - F (t)]
0<t<1 ,

= gup [-Yn(t)];
0<t<1 '

the Kuiper statistic,
+ -
B %D D
n n n
the Watson statistic,

2 1 i 2
@ - o g [Fn(t) &t é (Fn(t) & c)a{l dt

i i 2 1 2
= é‘ Yn(t)dt-[g Yn(t)dEl 5

and the Anderson-Darling statistic,

2
1 (F (t)-t)
2 n
An = n é ——E?T:EY-_ dt
1 Yi(t)

* L e

0

dt .

We also note that for a simple null hypothesis, the distributions of
all the above statistics do not depend on Fo(x) 3 thus the tests based on

these statistics are called "distribution-free tests."
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2.4 Goodness-of-Fit Tests Based on the Empirical
Distribution Function with Estimated Parameters

We shall now consider the problem of testing the hypothesis

HO: F(x) = Fo(x;G) ¢

where as before we assume that Fo(x;e) is continuous; however, 6 is

a vector of unknown parameters which have to be estimated. For example,

H, might be the hypothesis that data come from an exponential distribution

0

with unknown mean. From a practical point of view, situations where the

) parameters are unknown are much more common than those where they are known.

i Let E( = Fo(x §n) , where §n is a suitable estimator for

1) 1’
the unknown parameter 6 based on a sample of size n . Let ?n(t) de~

note the empirical distribution function derived from E(l) < E(Z) L ...

We are interested in those situations for which the distribution

A
2t

() °
of €1’€2"'°’€n does not depend on 6 . Otherwise, the significance points

of the test statistics based on ﬁn(t) would depend on 6 , which is un-

e

By - | known. If we restrict ourselves to the case where 6 belongs to a location

: and scale family of distributions, and if we further assume that ﬁn is

;3 , a complete sufficient statistic, then it follows from a theorem of Basu

(1955) that t have a distribution which is independent

) Lol 75 Lt B )
» Of 6.

- Analogous to the test statistics for testing a simple hypothesis HO s
we define the following modified test statistics:

P | (i) the modified Kolmogorov-Smirnov one-sided statistics,

E | 5 « /& sup 1R () -21,
: n O;C._S__l n 5
»'
k3 ﬁ; = va sup [t - ?n(t)] :
. : 0<t<1

14
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(i1) the modified Kolmogorov-Smirnov statistic,

D = max(ﬁ+ ; ﬁ-) ;
n T

(iii) the modified Kuiper statistic,

at A A
D = D+ +D ;3
n n

(iv) the modified Cramer~Von Mises statistic,
o .
w2 = n/S [F(t) - t]zdt 3
n n
0
(v) the modified Watson statistic,

ﬁ: = n gl [}fn(t) - t) - gl (fn(t) - t)dt:]zdt ; and

(vi) the modified Anderson-Darling statistic,

-~
i

e 1 (?n(t) - t)z

An = n g GRS dt .

e o

Unlike the test statistics considered in ‘Section 2.3, the modified
test statistics presented above do not converge in distribution to func-
tionals of a Brownian bridge process Y . However, their distribution does
k| . converge to a Gaussian process whose covariance depends on the assumed form

for the null hypothesis Fb(x;e) and the properties of 6n . Thus the mod-

ified teét statistice are not distribution-free, And do depend upon the form

of Fb(x;e) . In the following section we discuss the aaympfotic distribu-

tion of the modified test statistics when the assumed distribution is a
Weibull.

e

15
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2.5 Goodness-of-Fit Tests for the Extreme
Value Distribution Based on the
Estimated Empirical Process

The two-parameter Weibull distribution is given by

F(u; 8,8) = 1 - exp[— (—‘65)8], u>0
0

- otherwise,

where the scale parameter & and the shape parameter R are both assumed
to be positive.

If we make the transformation X = ~%nU , where U has a two-parameter
Weibull distribution, then the distribution of X 1s called the extreme value
distribution. It is given by

G(x; a,b) = exp{-exp[} (5%5 ]} 5 b>0,

where a = -2n§ and b 8-% . We note that a and b are, respectively,

the Zocation and the scale parameters of the extreme value distribucion.

To make a test of fit to the Weibull distribution, we shall first
take the negative of the natural logarithms of the supposeé Weibull data.
Thus, we wish to testwhether the distribution of a random sample xl,xz.

_...,Xh is an extreme value distribution with unknown location parameter a

and unknown scale parameter b . Specifically, we wish to test the "null
hypothesis,"

Ho: F(x) = G(x;0) = G(x; a,b) .

When a and b are known, then Ho is simple and we can use the
procedure discussed in Section 2.3. We shall now consider the case when
a and b are unknown. Stephens (1977) has also considered tests fcr the
extreme value distribution based on the empirical distribution funccion.
However, his approach is completely different from ours and involves
lengthy calculations utilizing numerical analysis. In Table 2.7.1 we
shall show that our results compare favorably with his.

16

Emea e e S
’ N T T AT PN W AR O R A :
e P oo LG i o i s N o A&?f&.vﬂh s e ¥ e siandd L




T-373

2.5.1 The Convergence Theorem and the
Modified Test Statistics

When a and b are not specified, that is, when' HO is "composite,"
we consider an approach based on (Qn,ﬁn) , the maximum likelihood estima-

tors of (a,b) .

Let

A —ln oA
Glr) = E I6(x; a,6)<tl, o0<geg1,

where I[E] denotes the indicator of the event E . Analogous to the
empirical process {Yn(t)} we define the estimated empirical process

{?n(t)} as

Ty = MG @ -t], 0se<l.

Our convergence theorem pertains to the estimated empirical process
and is analogous to the result given by Equation (2.2.1). However, before
stating the convergence theorem, we will have to introduce the following
notation given in Durbin (1973), and verify that his conditions are satis-
fied.

Let us denote by 6 the vector [a,b]' , and let 6, be any con-

0
veniently chosen value of 6 . We state below a verification of the re-

quired conditions.

Condition A: The distribution G(x,eo) -has a density f(x,eo) such

that, for almost all x , the vector Ban(x,eo)/aeo ‘exists, and satisfies

o4nf (x,6.) dnf(x,6,.)
0 0
E( 30 e ) = oF 5

0

where c,fz-is finite and positive definite.

17
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Condition B: Let 6n be the maximum likelihood estimator of 6 ; that

is, én = [an.snl- . Then, it is well known [cf. Cramer (1946)] that
3nf(x,,0.)
§i2 o 1 -1 % i’°0
n (en eo) - n'l_/'z / 121 aeo + en ’

where an + 0 , in probability.

Condition C: Let N be the closure of a neighborhood of 90 . Let

g(t,0) = 3G(x,0)/90 when this is expressed as a function of t by means
of the transformation ¢t = G(x;0) ; let g(t) = g(c;eo) . The vector func~

tion g(t,0) is continuous in (8,t) for all O EN, and 0 <t <1.

Theorem 2.5.1: By virtue of Conditions A, B, and C the estimated empiri-
cal process ?n determined by the extreme value distribution G(x; an’ﬁn)

vith (Qn,sn) as the maximum likelihood estimators, is such that

where Y is a Gaussian process in (D,d) with

E[f(t)1] =0, O0<t<1

and
E[f(s)¥(t)] = min(s,t) - st - g(s)& 'g(t) , 0<s,t<1.
(2.5.1)
Proof: The proof follows from Durbin (1973). //

If we choose 60 = [0,1]' , then we have shown in Appendix A that

g(t) = [tont, -t&nt(n(-2nt))] ; also
fl-[

[cf. Johnson and Kotz (1970, p. 282)]. Substituting the above into (2.5.1)

we have the covariance of our Gaussian process

1.10867  0.257 :]
0.257 0.60793

18
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E[¥(s)¥(t)] min(s,t) - st - 1.108(sns) (tint)

+

0.257(s%ns) (tint) (2n(~2nt))
(2.5.2)
+ 0.257(sins)(%n(-2ns)) (tint)

0.60793(s2ns) (&n(-2ns)) (t&nt) (n(-2nt)) , 0<s , t <1.

Using the fact that if h(?n) is a function of Qn which is contin-

A=

A A A
uous in metric d , h(Yn) JEZ; h(Y) . Thus the limit laws of Dn s

n
A At A2 A2

D ,D ,W , U , and 32 under H
n n

s L ¥ are given, respectively, by the

0

laws of the random variables.

! ﬁ+ =  sup ?(t) i
0<t<1 |
' b = sup [-%(t)] :
0<t<1 |
b = max(ﬁ+,ﬁ.)
S
(2.5.3)
~2 e o
W=7 (Y(c)) dt
0

Sl % ¢
5 = 5 (%)% - [r Twrae| ,
0 0

and

ok i sl cii PP v v - -
o I L S A e S b A e 2 .

i
.

,\ T P
N —t—f{%—dt.
€0 Ote

2.6 Asymptotic Distributions of the
Modified Test Statistics

Monte Carlo methods were used to simulate the distribution of the
limiting random variables given in (2.5.3). Following Serfling and Wood
(1976) we approximate the Gaussian process by its finite-dimensional distri-

;b ; butions, corresponding to an evaluation of the process at 29, 99, and 119
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equally-spaced points in the unit interval. One thousand multivariate
normal random vectors with the covariance given by Equation (2.5.2) were
generated using a program from the International Mathematical and Statis-
tical Library (IMSL). The empirical distributions of the supremum, the
infimum, and the difference between the supremum and the infimum of the

resulting multivariate normal vectors were then tabulated, thus approxi-

A A - A +
mating the limit laws of D: 5 Dn > Dn , and ﬁ; . Since the differences

in the observed quantiles corresponding to the finite-dimensional distri-
butions of ¥ at 29, 99, and 119 equally-spaced points diminished rapidly,
the approximating procedure was terminated at 119 equally-spaced points.

2 a2

The asymptotic distributions of W . Un , and 3: were obtained by using

n
numerical integration techniques. For this we used Subroutine QSF from
the IBM Scientific Subroutine Package. The various sample quantiles for

the generated frequency distributions are shown in Table 2.6.1.

2.7 Concluding Remarks

As stated earlier, Stephens (1977) has also obtained the asymptotic

percentage points for the statistics ﬁi s ﬁi

, and Kﬁ . Stephens also
gives a necessary modification so as to use these statistics for a finite
sample size. Even though our approach is different, it is encouraging to
note that our results seem to be in good agreement with those of Stephens.
A comparison of the asymptotic points we obtained with those of Stephens is
given in Table 2.7.1. Stephens has made no power comparisons, and since
our results agree quite well with his, we conclude that our power compari-

sons given in Chapter III remain valid.

20
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TABLE 2.6.1
ASYMPTOTIC DISTRIBUTIONS OF THE MODIFIED TEST STATISTICS 5
FOR EXTREME VALUE DISTRIBUTION WITH ESTIMATED PARAMETERS i
pth Quantile f
p A A A A ~
ot D D B* ? g2 i
n n n n n n n

0.010 0.241 0.261 0.320 0.595 0.016 0.016 0.106

0.025 0.274 0.278 0.343 0.645 0.019 0.018 0.136

0.050 0.296 0.306 0.369 0.681 0.022 0.021 0.155 i
0.100 0.326 0.330 0.408 0.738 0.025 0.024 0.181

0.250 0.395 0.399 0.477 0.837 0.036 0.034 0.238

0.500 0.487 0.478 0.560 0.977 0.051 0.049 0.333
0.750 0.601 0.583 0.669 1.157 0.073 0.069 0.454
0.900 0;722 0.707 0.785 1.305 0.105 0.098 0.623
0.950 0.785 0.787 0.841 1.408 0.123 0.117 0.746

0.975 0.850 0.853 0.910 1.497 0.147 0.140 0.849

0.990 0.908 0.977 0.981 1.614 0.175 0.164 0.991
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CHAPTER III

POWER COMPARISON FOR THE VARIOUS GOODNESS-OF-FIT

TESTS FOR THE WEIBULL DISTRIBUTION

3.1 Introduction

In order to evaluate the effectiveness of tests discussed in Chapter |

II, we evaluate their power against the lognormal distribution as an al-

ternative. The lognormal distribution is chosen because it appears to be
a natural competitor to a Weibull distribution. We also compare our tests
with a test due to Mann, Scheuer, and Fertig (1973). We shall also con-

sider some real failure data to illustrate the use of the modified test :

IS

statistics.

RpTnTT

3.2 Computing Formulas for the
Modified Test Statistics

it e

Let en be a suitable estimator of 6 , and let t(i) = Fo(x(i),en) s

G
B o A et
i

i=1,2,...,n , where X(l)‘; X(Z)-é oo £ X(n) is the observed sample. We J

obtain the following formulas for computing the modified statistics dis-

e

-

cussed in Section 2.4.

: ]
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At i -
Dn - max [|— - t(i))

1<i<n P

A 1-1
D =  max (t - -——-)
1gicn VDB

A A A
D max(Dn,Dn)

n
Bl ay
5 A (3.2.1)
- & __23-_1.)2+_1_
n jo1 V(D) 2n 12n
' 2 n
a2 ~2 (— 1) ] A
7 = W-nft-3] ;5 t== 1 ¢
n n 2 oL @
Kz e E (2i-1) 2nt + ln(l -t ) -n
n noLo (1) (n+1-1) <

For large samples, if the calculated value of a statistic in (3.2.1)
exceeds the critical value at a given level of significance, then we reject

the hypothesis H

0 at that level of significance.

For a finite sample of size n , the calculated values of the sta-
tistics obtained by using formulas (3.2.1) be multiplied by a factor of
(L + 0.2//n) and then compared with the values given in Table 2.6.1. This

factor was suggested by Stephens (1977) for ﬁz s ﬁz

, and 32 and from
n n n

our experience we have observed that this factor works well with the use

At - A at
of Dn 3 ﬁn s Dn , and Dn for finite samples.

3.3 The Mann-Scheuer-Fertig (MSF) Test

The only other known procedure for testing goodness of fit for the
Weibull that is not based on the empirical distribution function is a test
proposed by Mann, Scheuer, and Fertig (1973).
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The MSF test is based on a statistic S , and can be used for
censored as well as uncensored samples. However, the percentage points

{ of S and certain quantities that are used in calculating S are avail-

T T T A T Y R T T T TR

! able only for sample sizes of up to 25. However, along with the neces-
sary factor, the test statistics we have discussed can be used for any

sample size.

For a sample of size n , censored at m , the statistic S is

defined as
m-1
i=[m§21+1 (x(1+1)‘x(1)) /(B ,) - E(Y)]
s — y
izl (x(i+1)'x(1)) IR = B

X, .\—a
where Yi --—S%l—— and [r] denotes the greatest integer contained in

r . Mann, Scheuer, and Fertig give percentage points of S and the values

4 of the quantities [E(Y.,,) - E(Yi)] for samples of size 3 to 25.

i i+l

3.4 Power Calculations and Conclusions

The power comparisons were made numerically. For this random sam-
ples of size 20, 25, and 30, respectively, were generated from a lognormal
(normal) distribution with parameters -0.5 (mean) and 1.00 (variance),

‘; respectively.

Maximum likelihood estimators of the parameters a and b of the
extreme value distribution were obtained by numerically solving the fol-

o lowing equations simultaneously:

L -1
. 3 b = 7 Xj/n -1 X:I exp(-X /3)] [z exp (-X /ﬁ)] (3.4.1)
3 3 ] 3 ]

and

Gl e o e b

a = -Szn[z exp(-Xj/G)/n] : (3.4.2)
k|

e ————————————
[ ks = VI 1 Wiy B, 1 BTl e & R AR
J 3 - S ) X T ok - 5 £ i

-




e

e

i
1
i
i
L4
=

el

T T R T T A

-

NS

—

P L

T-373

The results of our power comparisons are shown in Tables 3.4.1,
3.4.2, and 3.4.3, and these are based on 1000 replicates. Based on this
limited experiment, it appears that for samples of sizes 20 and 25, the
MSF test has better power. For samples of size 30, the MSF test could
not be used, and our modification of the Anderson-Darling test appears

to have better power.

3.5 Example

Table 3.5.1 gives the failure data for the right rear brake on a
D9G-66A Caterpillar tractor. Using total time on test plots (to be dis-
cussed in Chapter IV), Barlow and Campo (1975) conjecture that the data
could have come from a Weibull distribution. We shall test this conjec-

- ture using our modified test statistics. Using the computing formulas

R A4 i Ae i A 4
(3.2.1), we obtain D107 = 0.505 , D107 0.453 , D107 0.505 ,
B .. %005, £ =006, 0F =000 sod K, =0.3%6
107 i 3 107 5 2 107 3 ? 107 5

Comparing these values with those given in Table 2.6.1, we observe

that they are not significant even at a level of significance of approxi-

mately 50%. Thus, based on our analysis, we confirm the conjecture of
Barlow and Campo (1975) that the data could have arisen from a Weibull
distribution.
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TABLE 3.5.1

FAILURE DATA FOR RIGHT REAR BRAKE
ON D9G-66A CATERPILLAR TRACTOR

56 1253 2325

v 83 1313 2337

. 104 1329 2351

, 116 1347 2437

. 244 1454 2454

305 1464 2546

| 429 1490 2565

| 452 1491 2584

' 453 1532 2624

503 1549 2675

552 1568 2701

614 1574 2755

661 1586 2877

673 1599 2879

683 1608 2922

; 685 1723 2986

! 752 1769 3092

i . 763 1795 3160

:‘ 806 1927 3185

1 ' 834 1957 3191

B 838 2005 3439

i 862 2010 3617

b, 897 2016 3685

4 904 2022 3756

} 981 2037 3826

& 1007 2065 3995

i - 1008 2096 4007

R 1049 2139 4159

g 1069 2150 4300

§ : 1107 2156 4487

1125 2160 5074

1141 2190 5579

1153 2210 5623

4 1154 2220 6869

3 1193 2248 7739
i 1201 2285
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CHAPTER IV

THE USE OF THE LORENZ CURVE AND THE

GINI INDEX IN FAILURE DATA ANALYSIS

4.1 Introduction

A unifying concept in the statistical theory of reliability and
life testing is the "total time on test transform," first discussed by
Marshall and Proschan in 1965, Barlow (1968) and Barlow and Doksum
(1972) have introduced and studied a scale-free test for exponentiality
based on the "cumulative total time on test statistic,' which is derived
from the total time on test transform. Barlow and Campo (1975), and
Barlow (1977) have studied the geometry of the total time on test trans-
form, and have also used it for a graphical analysis of failure data.

Langberg, Léon, and Proschan (1978) provide characterizations of the to-
tal time on test transform.

Measures of income inequality used by econometricians are the
Lorenz curve and the Gini index (which is derived from the Lorenz curve).
The Lorenz curve plots the percentage of total income earned by various
portions of the population when the members are ordered by the size of
their incomes. Gastwirth (1972) has studied the various properties of
the Lorenz curve and the Gini index. Recently, in a series of papers,
Gail and Gastwirth (1977a, 1977b) proposed scale-free tests for exponen-
tiality based on the Lorenz curve and the Gini statistic. Among other
things, they have shown that tests for exponentiality based on the Lorenz
statistic and the Gini statistic are powerful against a variety of alter-
natives.

31
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E |
t ! Our objective is to demonstrate that there exists a relationship
between the total time on test transform and the Lorenz curve, and be-
i tween the cumulative total time on test transform and the Gini index.
% i Thus the tests for exponentiality proposed by Gail and Gastwirth (1977a,

1977b) inherit some very general properties of the tests for exponentiality
based on the cumulative total time on test statistic given by Barlow and
Doksum (1972). The relationship mentioned above also prompts us to define
what we call the '"Lorenz process" and discuss the weak convergence of this
process to functionals of a Brownian motion process. Such a result in-

creases interest in the Lorenz curve and the Gini index, since it provides

a theory for developing goodness of fit tests for any general distribution

using the Lorenz curve and the Gini index.

L l Gastwirth (1972) has given some properties of the geometry of the |
3 ‘ Lorenz curve that are of interest to an economist. In this chapter we pre-
sent some additional properties of the geometry of the Lorenz curve,

and generalize some of Gastwirth's results.

4.2 Definitions and Notation

Let X be a random variable with distribution F , and let u
: be the mean of F ; let F(0 ) = 0 . Then, the total time on test trans-
3 form is defined in

R e

Definition 4.2.1:

R
R .

: : =1
: 2 Fo(e)_
B : Ho(r) 4eE (J)‘

2 where F(u) = 1-F(u) and F-l(t) , the inverse of F(t) , is defined by

Fl(e) = inf {x : F(x) > t} .
A ' X

|
!
!
|
f.,
1

It is easy to verify that H;l(l) =U .

T




“o

TPt . A2t e = e .

-

The scaled total time on test transform is defined in
Definition 4.2.2:

H;I(t) ]

= 0<e<1.

Wo(t) ==

Bl

In Figure 4.2.1, we show a plot of the scaled total time on test 3
transform for a gamma distribution with shape parameters a =1 and 2 ,
respectively. Other properties of the scaled total time on test transform
are discussed by Barlow and Campo (1975).

The cumulative total time on test transform is defined in

o6 R 1
B = S WF(u)du == f H_ (u)du .
0 Bl ok

Definition 4.2.3:

Thus, the cumulative total time on test transform is simply the area under
the scaled total time on test transform.

Gastwirth (1971) has defined the Lorenz curve corresponding to a
random variable X with distribution F , F(0 ) = 0 , and mean U as

Definition 4.2.4:

P

ef %~f
0

LF(P) —— F-l(u)du y . B p ;'1 .

In econometrics, LF(p) denotes the fraction of total income that the

holders of the lowest pth fraction of incomes possess, In Figure 4.2.2,
we show a plot of the Lorenz curve for a gamma distribution with shape
parameters O =1 and 2 , respectively. It is easy to verify that the

Lorenz curve is always a convex function of p .

Analogous to Definition 4.2.3, we define the cwmulative Lorenz curve in

Definition 4.2.5:

1 19
ey L e =1 1 Flwd ap .
0 0 0

33




Pigure 4.2.1--Total time on test transforms for gamma distribution

A b4 )\aua_le-’m
; F(x) =/ g SRS du for a=1,2.
.‘ y o 4 .
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o 4 i
: _

Lp(p).

o3

Figure 4.2,2--Lorenz curves for gamma distribution e
F(x) = S
0

du for a'- 132 ]
ro y
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‘ defined in

Definition 4.2.6:

tration.

. 4.3 Some Relationships Among the
Concepts of Section 4.2

concepts introduced in Section 4.2.

FPl(tl_

t

or
WF(t) il

curve as shown in (4.3.1).

1
Since VF = g WF(t)dt s
1 4 T
1 -1 1
V, = = - + =
r m g (1-t)F “(t)dt m

1 . Integrating by parts, we obtain

1 -1 1 -1
.WF(t) m (1-t)F “(t) + U g F “(u)du ,

T-373

The most common measure of income inequality is the Gini index,

That is, the Gini index is the ratio of the area between the Lorenz curve
LF(p) and the 45° line, to the area under the 45° line (which is 1/2).

The area between the 45° line and LF(p) is called the area of concen-

We now establish some relationships that exist among some of the

Integrating WF(t) ='% i) F(u)du by parts, we have
. 0 e

L Q-OF () +L(e) , 0Lt<l.  (4.3.1)

Thus, the scaled total time on test transform is related to the Lorenz

R f.l(u)du dt ;
0 0

e —— e el e

ST TR W e ey
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o g S e
S [ F "(uWdudt = t [ F (u)du - [ tF “(t)dt
00 0 0 0
1l 1 4
= ; Flwdu - £ eFie)ae i
0 0
x -1
= [ (1-t)F (t)dt .
0
Thus
1l H R
v, = 27 a-oFtwa = 27 5 7 lwau ae ,
Yo Yo o
or _

Thus the cumulative total time on test transform is twice the cumulative
Lorenz curve. :

In order to see the relationship between the Gini index and the

cumulative total time on test transform, we note that

1 1
G, = 2—2'-3' LF(P)dP

il
= 1~-2/f =/ F (u)dudp ,
o Mo

or

GF = Vf . ; (4.3.3)

Thus the Gini index is simply ome minus the cumulative total time om
teat transform.

Relationships (4.3.1), (4.3.2), and (4.3.3) now enable us to state
some other results for the Lorenz curve and the Gini index.




——

T

! ey

-1
o R ol
U {ﬂ_es} , and ———— is nondecreasing in x for 0 <x < F, Q) .
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4.4 Some Properties of the Lorenz
Curve and the Gini Index

Gastwirth (1972) has given several properties of the Lorenz curve
and the Gini index that are of interest. We give here some additional prop-
erties which follow naturally from the results of the previous section.
1

Remark 4.4.1: L; , the inverse of L

support on [0,1] ; also Ly is concave.

P is a distribution function with

Proof: The. conclusion follows from the fact that

1
L1 = %é Flep = 1 ;

s’ 30 S e e i

when F(O-) = 0, and that L;l(p) increases in p € [0,1] . Since LF

is convex, LF is concave.
We shall make use of Remark 4.4.1 in Theorem 4.4.6.

Definition 4.4.2: Let hfgp' be the class of continuous distributions on
[0,2) , and let {degl be the class of degenerate distributions. Then Fl

is star ordered with respect to F, , denoted by F, §F, , if F,F, € 5

We shall now state and prove

Theorem 4.4.3: If F, < F, , and if [ xdF (x) = J =xdF.(x) =} , then
1 %2 0 1 0 2

(a) Lg (P) 2 L (p)

1 2 g
(b) (cL), > (CL), , and :
F1 F2 1
(¢) G, <G, .
L

38
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P
Proof: Consider L (p) - Lp () = J
1 2 0

(le(u) - F;l(u))du s let

e -

h(u) = FIl(u) - F'z'l(u)' , and note that / h(u)du = 0 . Since F,sF
0

by the "single crossing property" of star ordered distributions [cf. Bar-

low and Proschan (1975), p. 107], it follows that h(u) changes sign

2 »

exactly once, and from positive to negative values. Thus,

1 P
=/ h(u)du >0 ,
u 0 e

and this completes part (a) of the theorem. Proof of parts (b) and (c)
follow from the above result and the definitions of (CL)F and GF .

If ]i‘1 s F2 , and if F2 is taken to be an exponential distri-

bution, then F1 belongs to the class of distributions which have "in-

creasing failure rate average" [cf, Barlow and Proschan (1975)]. Theorem
7 of Gastwirth (1972) is analogous to Theorem 4.4.3 of this paper. Hewever,
our theorem is more general than that of Gastwirth, since it applies to a

much larger class of distributionms.

Definition 4.4.4: Let (9 be the class of continuous distributions on
[0,) , and let {deg} be the class of degenerate distributions. Then

171 is convex ordered with respect to F2 , denoted by 'Fl s F, if

Fl,F2€.9 U {deg} , and F;]'Fl(x) is convex in x for 0 < x < FIl(l) 3

Remark 4.4.5: Fl é I"2 implies Fl % F2 [cf. Barlow and Proschan (1975,

p- 107)1.

In the following theorem we shall show that the convex ordering

property is preserved by L;I , the inverse of LF ¢ AL Fl ‘<: l-‘2 , and
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if F2 is taken to be an exponential distribution, then F_, belongs to

1
the class of distributions which has an "increasing failure rate" [cf.
Barlow and Proschan (1975)].

; |
Theorem 4.4.6: If F1 é F, then L~ <L~ .

2 Flc F2

l(x) is convex in 0 < x < FII(l) .
1

We shall assume that F1 and F2 are absolutely continuous. Then we 3

Proof: We wish to show that Ly L;,
2

need only show that B S L L_l(x) is nondecreasing in 0 < x < F—l 1)..
dx F2 Fl ="="]

I;et -ul and uz be the means of Fl and F2 , respectively. Then

1
d

L;. (x)
L [ '1(x)] et oh f : F;l(u)du
dx F2 LF1 dx 112 0 2

-1/.-1 -1
F (l-Fl(x)) g )
= uz dx °
Let
x = (p)
LFl
-1
ax F,o(p)
dp Hy
- 2 :1 PR ul1 :
. F. (p) = L_"(x) Foo|Lo (%)
g W@ F, 5 1 [ F, "]
Hence
-1
d (x)
5 i =
dx =-1r. -1
Fl [LF (x)]
1
40

e el




and
) <1p =1
F # WF, [LF (x)]
d. 1 -1 1
= f F2 (u)du = iy vt .
20 W, F [L (x)]
21 |'F
1
Since F1 é F2 implies that -——::———— is nondecreasing in 0 < x < F1 1 ,
~1 -1 - -1
and since Fl LF (x) = t 1is nondecreasing in 0 < x < Fl (1) , a change of
1
L (x)
d 1 f -1
vuhﬂemwsmu-ya— FzmMuismMumwmgm 0<xZ<
0
‘ F—l(l) . Since continuous distributions can be approximated arbitrarily

closely by absolutely continuous distributions, the proof of the theorem
is completed.

4.5 Some Statistics of Interest

Let X(l):i X(z) S e £ X(n) denote the order statistics corre-
sponding to a random sample of size n from a distribution F , where
F(0") = 0 . The total time on test statistic to the ith failure, T(X(i)) 4

is defined by

( (i)) del z (n-j+1)( 0 x(j-l)) . (4.5.1)

Barlow and Campo (1975) have used the scaled total time on test

statistic, w(%) , defined as

% (a=3+1) (X5 = X(501))

w(i—) def j=1 - (4.5.2)

PR

for analyzing failure data.
F “

B e L B ——

'3 & ¢“-7»."5'¢A L. \-Q- :;
u.m STVRRAEY WY et W -(‘Lu.a‘ b b I 8
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The cuwmulative total time on test statistic, Vn , defined as

has been used by Barlow and Doksum (1972) for testing for exponentiality.
They show that a test based on Vn is asymptotically minimax against a

class of alternatives defined by the Kolmogorov distance.

Gail and Gastwirth (1977a) have proposed a test for exponentiality

based on the Lovrenz statistie, Ln(p) , defined as

[np] n
def
s fia Lo

where 0 < p <1, and [np] is the largest integer in np .

The sta-

tistic Ln('S) is shown to have good power against a range of alterna-

tives; this is based on a Monte Carlo investigation.

Recently, Gail and Gastwirth (1977b) proposed another test for

exponentiality based on the Gini statistie, Gn , defined as

n'}-:l
i(n-i)(X - X
§ def w1 ( (i+1) (i))
n ; E 7
(n-1) X
g=1 )

(4.5.5)

Based upon Monte Carlo studies, Gail and Gastwirth (1977b) have concluded
that Gn is more powerful than Ln(-S) for n=20 , against most of the

alternatives that are studied.

We can easily verify the following relationships between the vari-

ous test statistics that we have discussed thus far:
(n-1)X
w(_i.) e % (1) P
n n\n n

X
o

42

(4.5.6)
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|
| and
Vn = 1 - Gn o (4.5.7) ?
! In view of (4.5.7) above, the test for exponentiality based on the Gini 5

statistic i8 identical to the test for expomentiality based on the cumu-
lative total time on test statistic. Thus, we can say that the test for "
exponentiality based on the Gini statistic is asymptotically minimax

é against some restricted alternatives.

% | The exact distribution of Gn under exponentiality follows from
é Theorem 6.2 of Barlow, Bartholomew, Bremner, and Brunk (1972), and from
¥

Equation (4.5.7) above. Gail and Gastwirth (1977b) have also derived the
ib z exact distribution of Gn » but by using a different argument.

Aatediani il det it S s At b S e e i )

4.6 The Lorenz Process and Its Weak Convergence

Using previous notation, we define the Lorenz process, {:Zi(t) 5

PR s i s AR

0<t<1l¢, as

¢ &
{ Lo -l ), ecgs |
!

' 1.8 ficmy (4.6.1)

Z (0

]

0.

e e

We are interested in the asymptotic behavior of this process for F in
general.

4.6.1 Weak Convergence of the Lorenz Process

Let vn(u) be a discrete measure putting mass 1l/n at u = i/n ,

i=1,2,...,n . Then

43

PO

b o e
sy sy Trag
T e

A b 4

—" Oy B e e e s s S A e




T-373

i
Ly e
n (1) i/n
(i) - —il— - lzud) 4 ) .
n\in n n
1 0 X
%L X
=1
- def - |
where X def 2 X(j)/n , and [nu] 1is the greatest integer in nu . |
j=1 |
gty |
Since LF(t) s S F (u)du , substitution in (4.6.1) gives |
0
i/n X -1 :
L /Ef—ﬂ—ﬂﬁ“ = }av (u) :
nln M n
0 X
(4.6.2)
i/n -1
+ f g ) d[v_(u) - vj .
0 K ¥
e 1
If we assume that J =xdF(x) <~ , and if g =F has a nonzero continu-
0
ous derivative g' on (0,1) , then by Shorack (1972),
X -1
/ﬁ! ([nu]) _F (t)} Bois: g'(t) Y(t) - g(t) 7
= M noe u 2 i
= Tnul~t B
In the expression above n_Esn denotes convergence in probability,

-]

Y is the Brownian bridge process on (0,1) , and Z =/ Y[F(x)ldx is
0

normal with mean O and variance o; , where cg is the variance of F .

Since the second term of (4.6.2) converges deterministically to zero,

it follows that

n->o

t '
Zw g £ (B v + £ Yo AL g
u

% We can also express JE??t) as

T
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~1
F ~(t) L.(t) «
Lley » xS Y[F(x))dx - —E—— f Y[F(x))dx .
Ly L)

By a direct but tedious calculation [cf. Gail (1977)], it can be shown
that under exponentiality

Var((At)) = 2(1-t)n(l-t) + t + t(1-t) - (¢t + A-)en(1-t))> .

Thus, in contrast to an analogous result based on the convergence of the
total time on test process [see Barlow and Campo (1975)], under exponen-
tiality‘{_g??t) s €k < 1} is not the Brownian bridge.

4.6.2 Uses of the Lorenz Process

The Lorenz process can be used to find the asymptotic distribution of
i) 1)
Ln(n) LF(n l 2

which by the invariance principle discussed in Section 2.2 is the same as

sup /I;
1<i<n

that of

sup
0st<1

.?(t)l..

This statistic can be used to test the hypothesis that the given data has
distribution F versus the general alternative that it does not. As seen
at the end of Section 4.6.1, under exponentiality it is xnot the Kolmogorov-
Smirnov statistic, and this is not very pleasing.

Another statistic that can be used for the same purpose is the area

between the curve of Ln(%) and the curve of LF(c) . A consideration of

this area leads us to Theorem 4.6.2, which follows from Theorem 6.6 of
Barlow et al, (1972).

45
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Theorem 4.6.1 [Barlow, Bartholomew, Bremmer, and Brunk (1972)]: If

J =xdF(x) < ® and GZ(F) <o |
0
where
?(®) = 27 (20-F(s)] - V} x (2[1-F(8)] - V_}F(s) (1-F(t)) ds dt ,
s<t
then
2
T 2 i)
u
where 4"£229' denotes convergence in distribution.

Using the fact that GF = 1—VF , and Gn = 1-Vh , we are now in a

position ‘to obtain the limiting distribution of the Gini statistic. We

have |

Theorem 4.6.2: Under the conditions of Theorem 4.6.1,

due to Hoeffdiqg (1949).

/'(c -GF) = N( °:§F)).

In the case of F exponential, GF = %‘ and © (F i; . Thus

/iza (Gn 5 -;-) ;—%> N(O,1) ,

a result also obtained by Gail and Gastwirth (1977b) using some arguments

4,7 The Lorenz Curve and the Mean
Residual Lifetime

Bryson and Siddiqui (1969) and also Hollander and Proschan (1975)
have pointed out that the notion of "mean residual lifetime" is especially

useful for the analysis of biological data. In this section we point out
the relationship between the Lorenz curve and the mean residual lifetime.
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Such a relationship suggests to us that the Lorenz curve methods, which
have so far been mainly used in the social sciences, could also be used
in the biological sciences. This possibility has also been hinted at
by Thompson (1976).

The mean residual lifetime corresponding to a random variable X
with distribution F, F(0 ) =0 , is defined in

Definition 4.7.1:

f -f(ll)du 7 |
ep(x) = ET—mow . |
5 F(x)

We say that a distribution F has a decreasing (increasing) mean re-
stdual lifetime if eF(x) is decreasing (increasing) in x for all

x>0,

Bryson and Siddiqui (1969) have used the decreasing mean residual
lifetime property to interpret some survival data on patients suffering

from leukemia.

If we denote the mean of F by u , then we can write EF(x) as

o2 -4 7 ou)
L - =/ F(u)du
¥o

EF(x) =

F(x)

From Definition 4.2.2, it follows that

1 X<
3 é F(u)du = WF(F(x)) ;
thus
ult - w_(F(x)
EF(x) = [ - F )] 2
F(x)

The above expression when used with Equation (4.3.1) gives us a relationship
between eF(x) and LF(‘) s specifically, we have

47
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Fﬁ“’ [egG0) + x] . (4.7.1)

LF(F(x)) - 1-

In order to demonstrate the use of the Lorenz curve for biological
applications, we shall consider the data given by Bryson and Siddiqui
(1969). These data pertain to survival times (in days), from the time
of diagnosis, of patients suffering from chronic granulocytic leukemia.
The ordered 43 survival times in days are: 7, 47, 58, 74, 177, 232,

273, 285, 317, 429, 440, 445, 455, 468, 495, 497, 532, 571, 579, 581,
650, 702, 715, 779, 881, 900, 930, 968, 1077, 1109, 1314, 1334, 1367,
1534, 1712, 1784, 1877, 1886, 2045, 2056, 2260, 2429, 2509.

If we denote the number of survivors at time x by S , and if
the size of the initial population is denoted by n , then Bryson and
Siddiqui estimate the mean residual life at time x by

Bx) = 8§ L3 X0

where xj\ denotes the survival time of the jth element and the sum is

for those having survived up to time x .

In Figure 4.7.1 we show a plot of E(x) versus the time x , for
the data in question. Thus, the distribution of survival times has a
decreasing mean residual life; this conclusion is based upon an inspec-
tion of Figure 4.7.1.

In Figure 4.7.2 we give a plot of the sample Lorenz curve for these
data. The sample Lorenz curve is simply a plot of the Lorenz statistic
Ln(p) (defined in Section 4.5) versus p , 0 < p <1 . The sample Lorenz

curve Ln(p) represents the proportion of the total lifetime contributed

by the least fortunate p°100 percent of the patients; for example, 50%

of the patients contribute only 20% of the total lifetime. The sample
Lorenz curve can also be used to compare the heterogeneity of the survi-
val patterns of two groups of patients. To illustrate this, we give in
Figure 4.7.3 the Lorenz curves for the data on the survival times of guinea

pigs considered by Doksum (1974). The Lorenz curve for the "control

ki
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Figure 4.7.1--Sample mean residual lifetime versus
time of leukemia patients
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group" lies below the Lorenz curve for the "treatment group" for p less
than about .8 ; the curves cross near p = .8 . Thus, initially the
treatment group is less heterogeneous than the control group and the re-
verse is true later on. This can also be verified by an inspection of the

actual data.
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CHAPTER V

RECOMMENDATIONS FOR FUTURE WORK

In Chapter II we have given the asymptotic percentage points of
our modified test statistics for testing the goodness-of-fit statistics
for the Weibull distribution with unknown parameters. Finding the exact
percentage points of these test statistics for finite samples is an open
and challenging question. Durbin (1975) is the only one who has given the
exact percentage points for the modified statistics when the underlying
distribution is an exponential. We find that his work involved a tremen-
dous amount of theoretical and computational effort. We feel that finding
the exact percentage points of the modified test statistics for the Weibull
distribution would require a much greater effort. However, as we have
stated in Chapter I, the analysis of failure data is an important problem,
and thus such an effort would be well justified. This will also enable us

" to gain a better understianding of the power of our tests against various

alternatives.

In Chapter IV, we have pointed out the connections among some
well-known indicators in economic theory and a central concept in reli-
ability theory. We hope this will help to consolidate and integrate sta-
tistical knowledge that has independently evolved in two different areas
of application.

Up to this time the statistics based on the Lorenz curve, the Gini
index, and the total times on test transforms have been used to develop
tests for exponentiality. It is well known that the test for exponen-

tiality based on these statistics have more power against most of the

alternatives than the tests based on the empirical distribution function.
We feel that tests for the gamma and the Weibull distributions based on
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the Lorenz curve may prove to be more powerful than those proposed here.
Our results on the weak convergence of the Lorenz process has already given
us the necessary theory to pursue the development of such tests. Another
possible direction of research is the extension of the concepts of the
Lorenz curve and the Gini index to the multivariate case. Analogous
developments in reliability theory regarding the multivariate total time

on test transform could be used. This motivates us to propose a new con-
cept in economic theory, namely, a multivariate measure of social inequal-

ity. Thus there is a strong potential that further exploitation of the
connections that we have pointed out here will be possible.
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APPENDIX A

DERIVATION OF g(t)

Let G(x; a,b) = exp’-exp[— (5%2 ]} =t ,

Xx = a~->b n[-nt] .

g, (x; a,b) = 29&5%;9491

- <gonfonf (52 of- 5]

and

: - OG(x; a,b)
gb(x’ a,b) 5

=gt i"—'];—;-Lz exp{‘exl’[‘ (E%ém

Then

ga(x; a,b)
8(x; a,b) =
gb(x; a,b)

From (A.1) and (A.2) we get

A tint
git) = g(e; 0,1) =
~tint (-2nt)
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. (A.2)

Then

(A.1)

- exsf- (59]] -
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