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ABSTRACT

Two implementations of quadriphase direct-sequence spread-spectrum
3 multiple-access (QDS/SSMA) communication systems are discussed and their
- performance is investigated. The average signal-to-noise ratio is related
to the correlation parameters of the signature sequences for each system,
The asymptotic behavior of the key aperiodic correlation parameters is
investigated and preliminary numerical results are obtained. The results

£, for QDS/SSMA are compared and contrasted with previous results on biphase

- direct-sequence spread-spectrum multiple-access systems,
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CHAPTER I

INTRCDUCTION

Recently there has been considerable interest in a class of code-
division multiple-access communication systems known as direct-sequence
spread-spectrum multiple-access (DS/SSMA) systems. Previous investigations
of such systems have primarily dealt with biphase DS/SSMA system models
[1-5]. In this thesis, the analyses of quadriphase direct-sequence
spread-spectrum multiple-access (QDS/SSMA) systems are presented.

There are a number of reasons for considering QDS/SSMA systems.
Many of the important performance parameters of DS/SSMA systems exhibit
a dependence on the length of the signature sequences. For biphase DS/SSMA 3
systems these parameters, for the most part, change favorably with

increasing sequence lengths [2], [3], For many practical DS/SSMA systems,

the bandwidth and data rate, and hence the sequence length, are constrained.
However for a given bandwidth and data rate, QDS/SSMA systems can employ
signature sequences which are twice the length of the sequences in a
biphase system. Also, the comnsideration of QDS/SSMA using quadriphase
signature sequences allows the investigation of larger classes oi codes

for use in DS/SSMA systems., Hence it is expected that the comsideration

of QDS/SSMA may result in improved system performance.

Many of the analytical results used to evaluate biphase DS/SSMA
systems have been established for complex-valued sequences (e.g., L&),
(16]). Moreover, certain classes of complex-valued sequences have been
extensively studied in the radar literature and elsewhere (e.g., L6],[11],
[18]). Thus it is anticipated that a number of performance parameters for

QDS/SSMA systems may be evaluated using existing results.
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Two implementations of QDS/SSMA systems will be considered. The first,
described in Section 2,1, is a QDS/SSMA system with orthogonal biphase-
coded carriers, The second is a QDS/SSMA system with quadriphase-coded
carriers and is described in Section 2,2, The correlation receiver output
signal-to-noise ratio for each system is expressed in terms of the key
aperiodic correlation parameters identified in [4]. These aperiodic

correlation parameters are investigated and preliminary numerical results

are obtained for a special case of signature sequence assignment,
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CHAPTER 2 ,

SYSTEM MODELS AND ANALYSES

2.1. QDS/SSMA System with Orthogonal Biphase-Coded Carriers

2.1.1. System Moda1l

The QDS/SSMA system we will consider in this section, shown in Figure 1
for K users, is an extension of the biphase DS/SSMA model analyzed in [2].
The k-th user generates a pair of data signals, bZk(t) and bZk_l(t),
where each is a sequence of unit amplituZe, positive and negative,
rectangular pulses of duration T. The data signals represent alternate

bits of the k-th user's binary information sequence bk and are given by

,1:

-]
! : b t) = Z b t=4T)
! . e R

E | - o
: b £y ='E b t=4T
L e L) e

.- where b, JzE[+1,-1} and p (t) =1 for 0< t < T and p,(t) = O otherwise.
3

The k-th user is assigned two code waveforms, aZk(t) and a2k-1(t)’ each

I consisting of a periodic sequence of unit amplitude, positive and negative
; rectangular pulses of duration 'rc. Thus, the code waveforms can be written
3
} I as

=]
(Zk)
a,,(t) = L a p. (t=nT )

. . I 2k S0y Sk A c

|
. i it g AR ey
F i 2k-1 ques B 'I.‘c ¢
|
B

k -

i 1 ' where (ar(l2 )) and (al_(lZk 1)) are the discrete periodic signature sequences
[‘ assigned to the k-th user. We assume that each of the k-th user's codes

! '):{ l has period N = T.'/Tc so that there is one code period per data symbol.
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/P ay(t) sin (wet + &)

by () ——&

bz (t)
VP aa(t) cos{wet + 1)
VP az(t) sin(wet +82)

bz (t )—’é

JP aalt) cos (wet + 87)

VP azk1(t) sin (wet + k)

bok-1(t) 'é

bak(t)

/P azk(t) cos (wet + 8k)

Receiver

FP-5Q7C

Figure la., QDS/SSMA system with orthogonal biphase-coded carriars.
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azj-1 (1) sin(wet)

iy

az;(t) cos (wet)

Figure 1b, Correlation receiver for the i-th user.
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The k-th user's data signals are modulated onto the phase-coded
carriers cZk(t) and czk_l(t) given by 4
Cpp () = JP 3y (t)cos(w t + 0, 2.1 i

C =P 85,1 (B)sin(w t +8,) {2.2)

so that the transmitted signal for the k-th user is
sk(t) = bZk(t)CZk(t) + b2k_1(t)c2k_1(t)

= VP (b, (t)ay, (E)cos(w t +8,) + by, 1 (E)a,y, ,(E)sin(w t +8,)).
(2.3)
In the above expressions W, is the common carrier frequency, P is the
common signal power, and ek is the phase of the k-th user. While the
assump;ion of a common carrier frequency and common signal power are made
to allow a more concise expression for the effects of multi-user
interference, the results that follow can easily be modified to consider
the more general case.
We will consider the system to be asychronous; i.e., we do not
require that a common timing reference be made available to the K trans- .
mitters or that compensations be made for the various transmission pa
delays. Each signal, then, will experience a time delay Tk 3S shown in
Figure. 1. The channel noise process n(t) is assumed to be an additive

white Gaussian process with two-sided spectral density NOIZ.
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The received signal, r(t), is given by

K
r(t) = L AP {by(t=T)a,, (E=T )cos(w t + @)
k=1

* Bo1 (E= Ty g (E-Tsin(e b + 0} + n(E)

where Ty is the time delay for the k-th signal and ¢k = ek - 0Ty For
the analysis of the interference effects on the i-th receiver we are
concerned only with relative phase shifts modulo 2m and relative time
delays modulo T, hence there is no loss of generality in assuming that
Gy w7, = 0 and considering only 0= T, < T and 0= 8, < 2 for k # 1i.
The i-th receiver consists of a pair of synchronized correlation
receivers. The even numbered branch of the i-th receiver is matched to
the phase-coded carrier c21(t), thus allowing a decision corresponding to
the i-th user's data signal bzi(t). Similarly, the odd numbered branch of
the i-th receiver is matched to CZi-l(t) and produces an estimate of
b21-1(t)' If r(t) is the input to the i-th receiver, the output of the

even numbered branch ZZi(t) at sample time t = T is expressed as

T
z,, = _fo r(t)a,, (t)eos(w t)dt .

The corresponding output zZi-l(t) of the odd numbered branch of the i=-th

receiver at time t =T is

T
Zpgoq ™ j‘o r(t)a,; ;(t)sin(a t)dt .

We assume that w, >> T-l since this condition is always satisfied in a

practical SSMA system and, given the frequency response of a realistic




hardware implementation of the correlation receiver, we can ignore the

double frequency components in the above integrands. The output 221 of -3

the even numbered branch of the i-th receiver becomes -2

N
Zyy =% [bi aB% zlljb
k#i

k) + b

k,-2R2k, 21 (7 k,0R2k, 24 (T 1c0s 2y

S kzltb ,=1R2k-1,20 (T * P, 1Rok-1,21 (T 1sin 2, N
k#i

T -
+ fo n(t)a,, (t)cos w tdt (2.4)

and the output sz__1 of the odd numbered branch of the i-th receiver is

/5

K
29101 = %3 T+ Z [b

k=1
k#d

{b ) +b

191 k,-2%2K,21-1C k, 082k, 24-1 (T 1sin 8, “

K

* kzlfbk ~1*2k-1,21-1(T3) * By, 1Rop- -1,21-1(Ti)1c0s 8,

k*i -

T
+ J‘o n(t)ay, ;(t)sin w_tdt (2.5)

where Rk i and ﬁk g are the continuous=-time partial cross-correlation
9 ’

functions defined in [2] as |
i

T 4
' R 1) = _{’0 a, (tm)a (t)de , ! -

T -
4 Ry, 4(7) = j‘T a, (t=T)a, (£)dt I .

for 0SS T<T. For 0< AT ST < (z+1)rc < T, it is painted out in [2] that

 p—— v e
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Rk’i('r) = ck’i(z-u)rc + [ck’i(z-n+1) - Ck’i(l,-N)] (T=4T,) (2.6)

and

R 1(T) = Cp ;T + [C, 4+ - € (1)) (r=T,) (2.7)

where Ck i is the discrete aperiodic cross-correlation function for the
?

sequences (a(k)) and (agi)) defined by

j

/ N-1-g
L oah a§iz ) 0= 4 =N-1
=0

C, (2) ={ N-1+g 2 :
k,i < B ) T I-N<2<0 (2.8)

et e

\ 0 > lzl 2N

Note that C, .(Z) =C (-2), hence, the periodic cross-correlation
k,i i,k
function ek’i is given by ek,i(z) = Ck’i(z) + Ck’i(z-N) for 0< g < N.
The odd cross-correlation function ék g SO named by Massey and Uhran L7]
b4
since 6 @) = - 8 (N-£) for 0= g4 < N is given by
k,i k, i
ek’i(u = Ck’i(Z) = Ck,i(Z-N)-

The average probability of error and the average signal-to-noise
ratio are two important measures of system performance. Although the
former is difficult to compute, Yao [3] has obtained upper and lower
bounds for biphase systems of interest. The latter, which involves much
less computational effort, is considered in [2] and [1] for the biphase
system and is discussed in the next section for the QDS/SSMA system

with orthogonal biphase-coded carriers.

Ty AT I R A
2 T O e Tl 8 e
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2.1.2. Average Signal-to-Noise Ratio

In this section we treat the phase shifts, time delays, and data
symbols as mutually independent random variables and compute the signal-
to-noise ratio by means of probabilistic averages with respect to these
random variables. The interference terms appearing in (2.4) and (2.5)
are thus random variables which we treat as additional noise. We assume
that for k # i, ¢k is uniformly distributed on the interval [0,2r] and
that 7, is uniformly distributed on (0,T]. We also assume that the data
symbols take values +l1 or -1 with equal probability.

We will first consider the output ZZi of the even numbered branch of
the i-th receiver. By symmetry, we need only consider the case when

bi 0 = 41, thus the desired signal component of Z is &ﬁT while the

2i

variance of Zu is

var{z, } = & £ lj‘Tzz{[b R Ty +b, R (1)12 z
Sy T T e 2k, 21¢ K, 082k, 24 (7)1 €08 Oy
k#i

5 3 2
+ (b 1Ropeq, 210 () + By 1Roppy, 4 (M1 sin"g, Jar

B, T
0 2 2
+ 2 IO aZi(t)cos wct dt
K N-1 (2+1)T
P (T ~2
=(3=) £ & (r (T) +R ()
ST et pud o1, 2k, 21 2k, 21
ki
N.T
2 a2 0
* Ro1,21() + Ry 9y (Mldr +

where E denotes expected value.
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Substituting for Rk i('r) and ik i('r) from (2.6) and (2.7) and evaluating
b s

the integral we have

£ pre | K NI
VariZ |- — s + Ty Tt s (2.9)
217 T 0 | ke 2k021 7 2k-1,21 4
ki
where
N-1 , :
SR z-otck’iu-m +C { UM  B-N41) + e (4-N+1)

2 2
+ ck’i(z) + ck’i(z)ck,i(z-u) + ck’i(z+1)}.

In terms of the cross-correlation parameter By i(n) defined in [2] by
?

N-1

we have the identity [2, Eq. (14)]
Bpa A 0 ¥ g (D

This may be seen by noting as in [2] that

N-1 2 N-1 2 2
T U RN i
N-1 2 2
= ﬁ.o Ck’i(z-N-l) + Ck’i(z+l)
and that
N-1

N-1

= LEO Ck’i(z-N)Ck’i(z-N+l) + ck’i(z)ck,i(z+1) .
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Hence (2.9) becomes

T N,T
PT 0
Varliand "2t B G a0 (Dt 00 (g 200 g 0] * T -
kfi

The signal-to-noise ratio at the output of the even numbered branch of the
i-th correlation receiver is the desired signal component, %,Jf T, divided

by the r. m. s. noise, JVar!ZZi[, and is given by

SNR,; = (68" Z E2“2k 21 (0¥ 55 (DF2g) g 23 (DFigy ;) 21(1)3+ zb

k#i
(2.10)

where Eb = % PT is the energy per data bit. Recalling (2.5) and using a
similar analysis, the signal-to-noise ratio at the output of the odd

numbered branch of the i-th correlation receiver is seen to be

K
e
MRy = LG8 ;ilcz“zk,21-1(°) *Hog,21-1(1)

k#i

0 1-%
E } " (2.11)

* Bgaq,21-1(0) F gy 95 (D] +3

It was shown in [4] that for binary sequences

N-1 N-1
Z G ¢ ;Um) = Z CL(2)C;(44n)
PR Pt St 4 gelen ¥ :

where the aperiodic autocorrelation function Ck K is denoted Ck' Hence
’

Mg i(n) can be computed directly from the aperiodic autocorrelation func-
»
tions for (a(k)) and (a(l)), so that knowledge of the cross=-correlation

] 3

function is not required.

s R T e e A B . B ~~-rsv~« e 03
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Notice that for K = 1, (2.10) and (2.11) become

SNR,, = SNR

21 21-1 = V2Ey/Ng

with associated bit error probability Pe =1 - §Q/§E;7ﬁg) where & is the
standard Gaussian cumulative distribution function. Yao [3] showed that ;
for practical values of N and K, 1 - Q(SNRi) is a very accurate
approximation to the average bit error probability.

For the biphase DS/SSMA system model analyzed in (2], the signal-

to-noise ratio at the output of the i-th receiver, SNRi, is given by
-1 K N -3
1
SNR = (&%) 2 [2u-k £ O+ (D] + E.}

k"i

where Eé = PT is the energy per data bit for the biphase system, In [5]

it was shown that the approximation

3,~1 %
(6N7) z By o™ (K-1)/3N (2.12)
k,1
k=1
k#i
is very accurate for large values of the ratio N/K. 1In fact, for random

signature sequences, (K-1)/3N was found to be the expected value of the

left hand side of (2.12). 1In terms of (2.12) we have, as in [2],
N
[} .K_'._]:. _Q.._ ";5
SWR; & {555 + ZE.;} ;
Applying (2.12) to (2.10) and (2.11) we see that

w1} Mg ne
SNR,, &~ SNR Ak, 0}sj

24 2.1~ Ty ; (2.13)

If biphase signature sequences of the same period are being considered,

it oo

S b oaa e tE T T e A I A e A
it it gt O ‘mrhlhm“hm;m“ ‘&hhu#l}_‘:‘h‘.,. iy
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the signal-to-noise ratio at each branch of the i-th receiver of the

orthogonal biphase-coded QDS/SSMA system with K users is approximately .d
that of a biphase DS/SSMA system with 2K users. The numerical results
obtained for the biphase case can thus be used in the preliminary design
of QDS/SSMA systems using orthogonal biphase-coded carriers.

For certain digital communication systems employing orthogonal
biphase-coded carriers it is advantageous [8] to delay, by some time £y
one modulated carrier with respect to the other to produce, in terms of “,i
(2.3)

s, (6) = ﬁ[bZk(t)aZR(t)cos(wct +0,) by (t-ta,, . (t-t)sin(u t + 8],

Such signals are known as offset quadriphase-shift-keyed 8], staggered 'y

quadrature amplitude modulated [9], or double binary PSK [10] signals.

For certain choices of t., it has been shown [9], [10] that signals formed

03

in this manner make more efficient use of available signal bandwidth than

conventional QPSK. It should be noted that the above analysis holds for

such systems and that the signal-to-noise ratios (2.10) and (2.1l) are

i
§ independent of a relative time delay, to.
J

2.2, QDS/SSMA System with Quadriphase=-Coded Carriers

Using equations (2,.,10) and (2.11), che average signal-to-noise ratio
for a QDS/SSMA system with orthogonal biphase-coded carriers can be computed
if knowledge of the binary aperiodic correlation functions is available.

I1f, however, for a class of quadriphase codes, only complex correlation

R

data is available, it is not clear that any useful performance measures

: . BT R i It .+ 2 ot
& e S R 500 B 0y i i, R o, M 1 SR oS L
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may be evaluated. It is felt that, at least for some quadriphase

sequences, knowledge of the complex correlation parameters is not enough
to specify the signal-to-noise ratios in (2.10) and (2.11). Any quadri-
phase sequence may be represented as a pair of biphase sequences. However,
there are examples of quadriphase séquences that have a certain correla-

tion property which cannot be represented as a pair of binary sequences

which have the same type of correlation property. For example, there are
quadriphase Barker sequences of length 15 [6], but there are no binary
Barker sequences of that length.
The system considered in this section, shown in Figure 2, is a
modified form of the system of Section 2.1. We will see that for this
s modified system, important performance measures can be computed from the
complex correlation parameters.

2.2.1. System Model

The k-th user's code waveforms, a2k(t) and a (t), defined as in

2k-1

A Section 2,1, are used to generate the quadriphase-cc 2d carriers c2k(t)

- and cZk_l(t) given as

I MO N3 cos(w,t + 8, + a,(t)) (2.14)

and

Cop-1(t) =P cos(w t + 8, + a,(t) +m/2) (2.15)

3r 5m 7
where ak(t) € { %, -Lar, —E', -—Z 1 9

The k-th user's data signals, bZk(t)
and bZk_l(t), defined in Section 2,1 are modulated onto the quadriphase-

coded carriers so that the transmitted signal sk(t) becomes

e oo Vb
N ALY e - -
s e

T T T
g 2 «’lr Car
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} /P cos(wet +ay(t) +8; +7/2)
“ by (1)  Delay
o= T}
ba (1) ‘
VP cos (wet +ay(t) +6;)
| VP cos (wet +alt) + 8, +7/2)
b3 (t) }
&= = CoRiE
ba(t)—@— ] a3 ”\( ~ Receiver
i
/P cos (wet +az(t) +85) n(t)
f /P cos (wet +ag(t) +8x +7/2)
} bak-1(t) 1
:I Q e TK
é bok (1) s
i «/Ecos (wet +ak(t) + k) - 1]
;i £P-6069 ‘E ?
& ]

Figure 2a., QDS/SSYMA system with quadriphase-coded carriers.
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Figure 2b.
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Correlation receiver for the i-th user.
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S(E) = By (E)egp () + by 1 (B)Cp 1 (V)
=P by (t)cos (w t+8 +a, (t)) +.P bZk_1(t)cos(wct+ek+ak(t)+ﬂ/2)- (2.16)

Note that (2.16) is not equivalent to (2.3). In Section 2.1, sk(t) is
a combination of the biphase-coded carriers given by (2.1) and (2.2)
and derives its quadriphase property through the orthogonal combination

of biphase components. The signal defined in (2.16), however, is a

linear combination of the quadriphase-coded carriers (2.14) and (2.15)
and, unlike sk(t) given by (2.3), can be expressed as a product of
quadriphase signals.,

To clarify the purpose of forming sk(t) in this manner, consider the
following. Suppose the k-th user's complex signature sequence, (Eék)) is

defined a2s a complex combinatiou of its biphase signature sequences by

~2k) - (aézk) e jaz(Zk-l)) :

where j =4/-1, so that the complex code waveform is given by

2

® ®
3.0 = £ 3 () = T VB @P9 - ja(2k'1))pTc(t-zTc)

P
=== 2 Tc L===
jay (t)
N

for a_(t) € {E, éﬂ; éﬂ, Zﬂ&. The quadriphase-coded carriers (2.14) and
k 4> &4’ 4 4

(2.15) become

jlw t +8,)

Cpp(t) = Re{d, (EWP e ¥ ;

where Re denotes the real part, and
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jw.t +0,)
Cop-p(E) = -Im{%k(t)/F & o

where Im denotes the imaginary part. Similarly, if the k-th user's complex

data signal is defined as

[--] [--]
b(t) = T B, ,p(t4T) =5 T (b + jb )P (t-2T)
k oy ET Pl k,24-1"Pr
3by (€)
= e

where bk(t) € {%5 é%, 223 Z%ﬁ, then sk(t) is given by

= j(w t +86,)
s, (t) =Re(b ()3 (eWTFe °© K

= /2P cos(wct + ek + bk(t) + ak(t)) . (2.17)

For the asynchronous system of Figure 2, the received signal r(t) is

K
r(t) = T /2P cos(u .t + @, + b (t = T,) +a(t-1)) +n(t) .
k=1

The i-th receiver is similar to the receiver of Section 2.1 with the
even numbered correlation receiver matched to the quadriphase-coded
carrier c2k(t) and the odd numbered correlation receiver mat:-hed to

czk_l(t). The output Z21 of the even numbered branch of the i-th receiver

is written as

T

Z,, = fo r(t)cos(u t + a (t))dt.

Ignoring the double frequency terms in the integrand, we have

T E T
2y, = [ WP72 cos(b, (t))dt +4P/2 L [ cos(b, (t=T) + a, (t=T)=a, (£) + ¢, )dt

0 k=1 O
ki
i
+ ] n(t)cos(w t + a, (t))de
0




®1.0 LT = s "
= JP/2 { T+ I Re{[bk’_le,i(Tk) + bk,oRk’i(Tk)]e }}
2 k=1
ki
T
+ [ n(t)cos(u_t + a,(t))dt (2.18)
v 0 c i
where Rk i and ﬁk j are now the continuous-time complex cross=-correlation
3 3

functions defined by

X
R ;) = j‘o 3 (t - T)a:(:)dt

R (T = j'T 3, (t - T (t)dt

%
for 0< 1t =< T where a denotes complex conjugate of a. Similarly, for the

odd numbered branch of the i-th receiver, the output 221_1 is
b, K ¢
¥ ot - = & k}
Zog1 = JP72 L—-'-—ﬁ T +kE]_Im{[bk’-le’i(Tk) + bk,oRk’i('rk)]e }

k#i

T
- a(t)sin(u t + a (t))de (2.19)
0

For 0= LTC <7< (J2,+1)Tc < T the complex cross-correlation functions in

(2.18) and (2.19) may be expressed as

Ry, () = Cp g (U-MT, + [Cp ; (4=N+1) = Cp { (4-N)](T=LT) (2.20)

] Ry 1) = G (T, + [ U+ = € ((](r=LT) (2.21)

o

i s L ARy ST T
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where the discrete, aperiodic complex cross=-correlation function Ck i for
’
the sequences (Eék)) and (5;1)) is defined in [4] by
(N1t (1 (1yo%
E gy la % 0< 4 < N-1
] j+
s
Ck’i(z) : ) N-1+¢
£oaMatint.  amegoep
=51
j=0
\ 0 3 2] 2 N . (2.22)

2.2.2.

We assume, as in Section 2.1, that the phase shifts and time delays are

that the binary data signals are mutually independent random variables

taking values +l1 or -1

first the output of the even numbered branch of the i-th receiver we find
that the desired signal componment of ZZi is % ﬁ T while the variance of

the noise components of Z21 becomes

P

Var{ZZi] e

k#i

+ [m{bk,-le,

No

goiigta e pd AR g e Wkl ‘
e H k=1 2=0 zTc IRk,i(T)I o le,i(T)l dar + T . .

k#i

Average Signal-to-Noise Ratio

mutually independent, uniformly distributed random variables for k # i and

i ~ o % 2 sy 2
kza:lT fo E{[R e{bk,-le,i(T) + bk,ORk,i(T)n (Refe 1]

¢
2
+_2J‘0 cos “(w t + a, (t))dt

21

with equal probability for k # i. Considering

% ik jo
{C7) + bk’oRk’i(T)}]z[Im{e k}]z}d'r
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We substitute for Ry i(‘r) and ﬁk i(-r) from equations (2.20) and
? ?

(2.21) and evaluate the integral to obtain

, 8 R N.T
PT 0
Var{z,.} == [ T r + = (2.23)
LSl e L A
k#i

where
Rl 2 2
Ty g =Z§0{]ck,i(z-w)| + le,i(£+1-N)|

% %[Ck’i(z-N)C:’i(zﬂ-N) % c’;’i(z-N)ck’i(zu-N)]

+lo ;@7 + [o jG+D|” + 5 [c, ;e @+ + 0 (4)C, ; (+1)]].
If we define the complex cross-correlation parameter o i(n) by

N-1 7
e, 4@ = T O 3 (G () (2.26)

then we can write r as
k,i

Fp = g, g (O + Ay () +ug (DD,

The signal-to-noise ratio at the output of the even numbered branch of

the i-th receiver, then is

I Soul S Yo \"’
SNR,, = ((3N") kiltzu.k’i(m -+ Re{uk’i(l)}] +71-:'; ] S 1%}
\ ki )

A similar analysis applied to the output of the odd numbered branch of

the i-th receiver, 221_1, yields a result identical to (2.25) so that

for this system, SNR,., = SNR,. ;.
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Notice that the signal-to-noise ratio for either branch of the i-th
receiver may be evaluated without knowledge of binary correlation functions.
Moreover, it has been shown (4] that the discrete complex aperiodic

cross-correlation function in (2.22) satisfies

N-1 z N-1 2
£ € @), () = I C(2)C;(t+n)
4=1-N °’ » £=1-N

where the complex aperiodic autocorrelation function Ck K is denoted by
L}

c Thus, the complex cross-correlation parameter defined in (2.24) may

ko

be computed directly from the complex aperiodic autocorrelation functions.

2,2,3. Mean-Square Difference Criterion

Correlation parameters of complex sequences have been considered in
the radar literature for some time (11]. A radar performance measure that
is related to complex correlation functions is the mean-square-difference,
where mean denotes time average. It is interesting to note that, when
applied to the signals discussed in Section 2.2.1, the mean-square
difference gives rise to the same complex correlation parameters considered
in that section., Specifically, we express the signals given in (2.17)

as a function of time t and carrier phase ek by
sk(t,ek) = /2P cos (wct + ek + ak(t) + bk(t)).
We then define the mean~square difference 8§ 4 by
b4
(s, (t-7,,8.) - s,(t,0)]%d¢
k ¥k 5 it

where il is the time delay (modulo T) of the k-th signal and we assume that

si(t,O) defines our point of reference, i.e., (T ei = 0.

o - e P —
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In general it may be difficult to compute €i’i since the analysis
will involve both the essential baseband term as well as a double
frequency term. To avoid this cumbersome analysis it is desirable to
work in terms of a class of signals having only one sided spectra. Such
signals are known as complex analytic-signals [12].

Most generally, the correct complex analytic-signal representation
for a given waveform is composed of a real part which is, as desired, the
original signal, and an imaginary part which is the Hilbert transform of
the original signal. However, we are concerned only with signals which
have the form of sk(t) in (2.17) where ak(t) and bk(t) are real signals
applied to phase modulate the carrier. In this instance, if the carrier
frequency, W, > is sufficiently high so that there is negligible low-
frequency energy, then the complex analytic-signal representation for
sk(t,ek) which we will denote Ek(t,ek) may be closely approximated as

Ek(t,ek):~ vﬁ? eJ(wct + ek + ak(t) + bk(t)) :
For the analysis to follow, the above approximation will suffice. Thus
we will assume that the complex analytic-signal representation of
sk(t,ek) is given by

(ot + 8)

3,(5,0,) = Bk(c)“ak(t) J2P e (2.27)

where %k(t) is the k-th user's complex data signal and ik(t) is the k-th

user's complex code waveform as defined in Section 2.1.1.

e i i b R e "
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An important property of complex analytic-signals is that (2.26)

! ) can be replaced [12] by
T
2 -~ ~ 2
e " Hﬁo |3, (t=7,8,) - 3,(t,0)| “at

& where 'ék(t-'rk,ek) and "éi(t,O) are the complex signal representations of
sk(t-'rk,ek) and si(t,o), respectively. Expanding the above integral

yields
| 2 L R 2
‘ X 2y 4 -J'o |3, (e-7,8,0 ] de +Jo |3, (t, 00| "at

T
- Lk
-2 foRe{sk(t-'rk,ek)si(t,0)}dt
or equivalently, using (2.27)

Jj(w .t +0,)
e c k

":1"" sl Sl

T
2 - <
k1 = 2PT - fo Re{B, (t-7 )3, (t-T) /2P e

-jw t
. 'B:(t)i’;(t) J2P e © }dt

B - iy s s
5 >

BR
2PT - Re{Xk’i(‘rk,¢k)}
I where
T k(1)
“ “ ok % k
; I X, 1 T8 2P J’O b (t=T )8, (e OB (£)F (t)e Tdt
. 2
; l and where ¢k ek wc‘rk. The mean-square difference, 8k,i’ then depends
L only on the real part of xk i(Tk’d’k) which is termed the time-phase
¥ b

i SRR SRR B, 5 o P 2y T
i el Aactis A »
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{ cross-correlation function [13]. Straightforward calculation shows that

i for 0 < z,'l‘c < Tk < (l,+1)'1‘c A8 xk,i(Tk’¢k) may be written as -

e
Xi,1Tie8i) = 2P By ;b 48 {Ck,i(z-N)Tc{Ck’i(z-l-l-N)-Ck’i(z-N)]('rk-z'l‘c)}

i i

+ 20 By by qe (0, (T HC (H)-C (0D (r 2T )]

where Co i is the discrete aperiodic complex cross-correlation function
]

SR il e

given in (2.22). Thus we see that for the signals given by (2.17),
the mean-square difference may be specified in terms of discrete,

aperiodic correlation functions; a well-known result [11].

s N

For some applications, such as radar resolution, the mean-square E}

difference criterion is used to evaluate the ability to distinguish between

e e R ety =

a signal and a version of itself which has been shifted in time, frequency,

¥ AT

or phase. For such applications, a '"good" signal is one which makes the

S

mean-square difference between itself and a perturbed version of itself

as large as possible. An important measure of this criterion is the

Py
presbuny

radar ambiguity function [11], [12].
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When considering the average performance of DS/SSMA systems we have
seen in Section 2,1.2 that it is desirable to design signals which minimize,
in a statistical sense, the effects of the k-th signal on the i-th
correlation receiver. A measure of these effects which is analogous to T
the radar ambiguity function is the cross=-ambiguity function., It is
defined [13] as the square of the magnitude of the time-phase cross- x
correlation function, i.e., !xk’i(fk,mk)lz. In terms of average system .

performance we wish to minimize the expected value of the cross-ambiguity

f T
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funetion, Hence E[]xk i('rk,q)k)]z} is a measure of the average interference
b ]
effects of the signals being considered., Following the procedure used to

compute Var[221} in Section 2.2.2 we find that

2, _ 4pl1? %
E{| Xi’,_('rk,qbk)l } = _3N3 {2 B, (0 + Js[pk’i(l) + uk,i(l)]}
where B i is the complex cross-correlation parameter defined in (2.24).
b

Thus, the multi-user interference appearing in the signal-to-noise

ratio in (2.25) may be completely specified in terms of the expected ]

value of the cross-ambiguity function.
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CHAPTER 3

[ S

ANALYSIS OF CORRELATION PARAMETERS

3.1. Random Sequences |

For practical DS/SSMA systems the period N of the signature sequences %E
must be constrained for obvious reasons. However, in order to gain insight
to the effects of multi-user interference it is useful to consider the ijs
asymptotic behavior of the interference terms defined in Chapter 2 for

random signature sequences as the sequence length grows very large.

) .
b | ——
i e &

We define random sequences as sequences of independent, identically }
distributed random variables which take on each allowed value with equal

probability., Hence for biphase sequences we mean sequences, (wn) for which

P{wn= +1} = P[wn= -1} = % and for quadriphase sequences we mean sequences
of the form Gn = J§ (wn + jzn) where (wn) and (zn) are randoa biphase
sequences and j = JTT.

Here and hereafter unless otherwise stated we will refer only to the
correlation parameters generalized to complex-valued sequences given in
Section 2,2. For real-valued sequences, these reduce to the corresponding
functions given in Section 2.1.

As was previously noted, Roefs and Pursley 5] have considered
the asymptotic behavior of correlation parameters for random biphase
sequences and found that

} = (1{-1)21\:2

k,i
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for large values of the ratio N/K. This result can be extended to
quadriphase sequences by considering random quadriphase sequences as a
complex combination of random biphase sequences and applying the analysis

to the resulting correlation parameters of the composite biphase sequences.

Recall that for the quadriphase sequences ('ﬁn) and (’\"rn) we have

/ N-1-g n
~ ~ < 2
! B wlv 17, 0ss=¥-1
Cs ~(2) ={ N=1l+
ey S8 ﬁn_zt?fn]*, 1-NS £ <0
{ n=0
k 0 l¢] = N
and
*
r..&’.‘.’ = 24-1';:1,"*,(0) + JE[LJ:TJ,';,(]-) + U-—a";,(l)] (3.1)
where
N-1 P
o = X 3 o 3.2
u%,v(n) z=1_NCT1,v(z)C'\'x,v(z+n) . (3.2)

If the quadriphase sequences (ﬁn) and (‘i’zn) are formed by complex

combinations of the biphase sequences (xn), (yn), (wn), and (zn) by

'iin = J; (xn +jyn) Vn
and
?’n = ﬁ (wn + jzn) ¥n

then we have

CyvW) = B(C, () +Cy (1)) + §¥(C, () = Cp ®)) .

N—— Ay
» - : o e iy 5. ‘.‘:Tp"w."—- o, ol ,.‘ proe
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The correlation parameters My V(H) in (3.2) can be written as
b}

N-1 2 2

2
e 2400 = %ZSZI_NCX’W(L) +Co () + c}z,’w(z) +Cp )

+ ZCX,W(Z)CY,Z(L) - ZCX’Z(Z)CY’W(Z) (3.3)

and
N-1 i 3
Re{uu v(n)} =% & o G0y L(24m) +C w(Z)Cy L (411) ¢
’ 2’1-N ’ ? 4 ’ >

i cy’z(z)cx,w(z+n) 3 CYsz(Z)CYsz(z+n)

+ cy’w(z)cy w(z+n) - cy,w(z)cx’z(z+n) -i‘

= Cx’z(l)Cy’w(L+n) + Cx’z(z)Cx,z(l+n) v (3.4)

Following the development in [14] for biphase sequences we have for

[ -

0<s ¢ <N-1

| R——

N-1-¢
Cx’w(.ﬁ) s nEO X w .

1f Cx’w(Z) = d, then we must have that T £ for exactly %(N-1+d)

integer values of n in the range 0 < n < N-1-g. Clearly we have
|d| < N-p and it is easy to see that N-¢+d is an even valued integer.
Thus, for each sequence (wn) there are
N-£
b(¢,N,d) =
E(N-2+d)

choices for the sequence values (xO’xl""’xN-l-z) for which Cx,w(L) = d

is satisfied. There are.ZN choices for the sequence (wi) and 22 choiees :]

e
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for the sequence value§ (xn-z”"’xﬂ-l)' Hence there are a total of ]
h(L,N,d) = 2V2%b(s,N,d) ;

distinct pairs of sequences (xn), (wn) for which Cx W(l,) =d, A similar
’

argument for 1-N < 4 < 0 yields
hee,N,a) = 292143 0)

so that for ]d[ <N - |1,| we obtain the probability mass function

N-|2] o] ,

LAt -(N-|2]) .‘

P{Cx,w(“ d} 2 . (3.5) 3
5(N-|2]+d)

The statistics useful in evaluating the average performance may be
easily obtained using the moment generating function which for this

probability mass function is given by

aC_ (1)
M) = E{le Y 7}
N-¢ oa(xw )
fefe WY e e
n=0
N+¢ a(x w_)
Tele 4%} 1N<2<0
n=0
N-|2]
® 0 K™
n=0

- [cmsh(cx)]wml
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Hence we find the first two moments of Cyp &) to be

SM(x)
E{Cx,w(‘e')} 4 5qa la=0 i Iz')[COSh(Q)}N |¢]- 1sinh(a)l

a-O
e{c’ L} = ——’“gﬂ (N ‘“) Leosh(@)] ™ 1412 g ok ay]? |
a=0
+ (N-|¢] )[cosh(a)]“"lz“1cosh(a)| = N-|4]
o=

Also, it is easy to see that for |g| < N-1,

E{Cx’w(z)cx,w(£+1)] ) S

If we apply these statistics to evaluate the expected value of the

correlation parameters in (3.3) and (3.4) we find that

E{Refguﬁ’.‘.’(l)}} E{% 2 Gy, w8ICy LUHL) +C (2T (4+1)

g=1-N *

+ cy’z(z)cx,w(z+1) + cy,z(z)cy’z(z+1) ar Cy’w(z)C

Cy w)Cy ,U4HL) = G L(£)C, (4+1) +C  (4)C

while
B 2 2 2
Eluy, 3(O} = E Jzz zi Cx,u8) Oy () 4 Cp @) + € ()

2
+ 2Cx’w(z)Cy’z(£) = ZCX’Z(JZ)Cy W(Z)} =N

3

Application of the above results to (3.1) yields

2
E{rﬁ,“»’} = 2N .

e 8 TR B Ml e
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| It should be noted that the evaluation of the mathematical expectation |
5 of the asynchronous interference may be donme directly in terms of the
i
correlation parameters for random quadriphase sequences. In particular, 3
. for the random quadriphase sequences (ﬁn) and (%n) we have
3
i 1 N-l-z [ ]* 3
3 C. ~(£) = T ul¥
§ u,v awg B n+{
; fo§ 0< 4 < N-1l. Let ﬂl equal the number of integer values of n in the
| * ’
< N-1- ~ - ~
% range 0 < n < N-1-¢ for which u [vn+£] and let ﬂz equal the number of
3 iy *
l ‘ integer values of n in the range 0 < n < N-1-¢ for which (-j )'i'xn = ["'Jnﬂ] -
‘ i 1f Re{C. ~(£)} + m{C. ~(2)} = d' then it follows that
;’ " u,v u,Vv
; ‘ﬁ
! i Tll = T]z 3 %(N'L'*'d Yils q
f i It is clear that |d'| < N-¢ and it can be shown that N-g+d' is even.
‘ % Hence, there are
| =
3 N-4 N-4 3
' =
3 i | q(,N,d") = 2 (%(N_z+d.)) |
E - :
3 & choices for the sequence (ﬁo,ﬁl,...,ﬁu_l_z) which satisfy
T Re{C.‘..1 v(z)} + Im{CZ.‘..1 ()} =d'. Since there are 4N choices for the
- b b
; - ' 3 3
sequence (Vi) and 4" choices for the sequence (uN-z""’uN-l)’ there are a
total of h'(2,N,d') = ANazq(z,N,d') sequence pairs (ﬁi), (%i) that satisfy
s

Re{caﬁ(l)} + Im{c%ﬁ(z)} =d', For 1-N< £ < N-1, we have
h'(4,N,d') = 4“4"'q(|zl,N,d'>

so that we obtain the probability mass function
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-12]
|2] +4d")

p{Re{cy ()} + Imlcy G0} = a'] =(w_ 2~ (12> (3.6)

which is identical to (3.5) with d replaced by d'. If we evaluate
the moment generating function for the probability mass function in (3.6)

for the first two moments, we find that

E{Re{ca’-;’(z)} + Im{C-ﬁ’;-’(Z)]} =0 (3.7)

and

e{lreley 400} + miey 0117 = w-|e| . (3.8)

It is not immediately apparent that the above statistics yield the desired

result., However, if we note that
P{Re{C« ~()} + mic. ~)} = d'} = P{Re{& (O} - Tmic, (2)} = 4]

u,v u,Vv u,v u,V S
then we have from (3.7)
efreley )1} + e{mic, (WY = efreley 1} - B{mic; q@)} =0
hence we see that

Blcy 50} = lreley 2}} + sE{mmic; L1} = 0.

Similarly, for the second moment in (3.8) we have

E{ERe{cﬁ,;,(z)} + Im{cﬁ’;,u)}]z} . E{[Re{cﬁ,;,cm . m{cﬁ,~v<z>}]2}

or equivalently

N

D PR e, PR VIR h y e e i

B SRS Sl gl
s & TR ] .0;:"""“","" L ol e DO iele
SO > as® pos il o Sh ) Colet g




i esab

i A

R

T

X (»r'm-«:- P

Shaw

P et e -

35

:
efRelcy 5117 + mlc 50} + 2reley julmlcy )]

:
4 E{Re{ca’;,u)}z * m(CT,,;,u)}z - 2Re{Cy ()} m{cy L]y
so we find that

*
B{Cy 56 5 ()} = N-[g] .

Again, it is easy to see that for |1,| < N-1

*
E{C )G 5 (4+1)] = 0.

Finally, if we apply the above results to evaluate the expected value

of the interference parameter S % in (3.1) we have as before
’

2
E{rﬁﬁ} = 2N°,

Hence, for a QDS/SSMA system with quadriphase coded carriers we have,

for K users

o 2
E{ = rk,i} = (K-1)2N

I o

where N is much larger than K and the k-th user's random quadriphase

e |

signature sequence is denoted by ('ii[(lk)). In terms of this expectation,
the signal-to-noise ratio (2.25) at the output of either branch of the
i-th receiver for the QDS/SSMA system with quadriphass coded carriers

becomes

. el e e
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|
}
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{_L__Z*'__Q

SNR
2Ey,

_V

2%

which is identical to the result in (2.13) for the QDS/SSMA systeam with
orthogonal biphasa-coded carriers. Thus, when long random sequences are
employed, the signal-to-noise ratios of both systems are equivalent and

for either branch of the i-th receiver

SNR = _iz K,_'_l_*'&\..%
3N ZEb J

3.2, Maximal-Length Shift-Register Sequences

For the implementation of a practical DS/SSMA system, the sequence
length N as well as the signature sequences themselves must be fully

specified. One class of sequences that have been considered for a

variety of applications are Maximal-Length Shift-Register Sequences or
m-sequences. The properties of m-sequences have been investigated for a
aumber of years and an excellent tutorial as well as a survey of the
literature appears in £15]. Roefs [14] has considered the performance of

bipnase DS/SSMA systems employing m-sequences, In this section, we will

investigate the performance of QDS/SSMA systems where m-sequencas are
used as signature sequences.

3.2.1. Introduction to m-Sequences

T

A binary m-sequence (zk) with period N = 2%-1 is a sequence of

elements from GF(2) which satisfies the linear recurrence relation

EOEae an h s

SR Tk
Tl g

regardless of which of the two QDS/SSMA system models is being considered.
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where the fi are the coefficients of a primitive polynomial, £(x) of

degree n over GF(2) given by

n n-1

f(x) = £.x +f1x +...+fn_x+fn.

0 i

A polynomial of degree n is primitive if it divides x®-1 for m = 2°-1
but not for any m < 2%-1. The roots of a primitive polynomial of
degree n are primitive elements of the extension field GF(Zn). Thus
every nonzero alement of GF(Zn).can be wfitten as a power of any root of
a primitive polynomial of degree n.

The polynomial £(x) specifies an n-stage linear feedback shift-
register, as shown in Figure 3 for f(x) = x4 + x + 1, where there is a
feedback tap connected to the i-th stage of the register if fi =1 and no

feedback tap connection otherwise.

¥e43 o L »d Tisl o Yx —e Output

cee ,dz,dl,do

4
Figure 3, Shift register specified by £(x) = x + x + 1.
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15 4 (ai+k) denotes the k-th cyclic shift of the sequence (ai) then the

set of m-sequences generated by the primitive polynomial £(x) of degree n

consists of (ai) and the 2"-2 distinct cyclic shifts of (ai) given by
O’i+k) for ksl,...,2n~2. To each sequence in this set there corresponds
a unique initial shift register loading (ao,al,...,an_l) consisting of
not more than (n-1) zeros. Hence any m-sequence may be completely
specified in terms of its primitive polynomial and its shift-register
loading. For convenience we will represent the primitive polynomial
and initial register loading for the sequence (ai) in octal notation.
For example if n=4 and
f(x) = x4 +x+ 1= 0-x5 + 1°x4 + 0~x3 + 0°x2 + lex + 1
then we have
£(x) = [o10011] = 23 .
Similarly, for the initial register loading, if
(do,o(l,az,a3) = (1,0,1,1)
then
(ao,al,az,a3) =i540

For each m-sequence (ai) generated by the primitive polynomial £(x)

of degree n, there is an m-sequence (al) generated by its reciprocal

polynomial f(x) given by

%(x) = xnf(l/x).
The sequence (al) is called the reciprocal of the sequence (ai) and is
expressed as

ai -~ 1’0’1,000,N‘1

IN-1-1

where N = Zn-l.
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In the next section we consider biphase signature sequences (ak)

s

which are obtained from binary m-sequences (ak) by the relation
%
a = (-1 , k=0,...,N-1

where N is the period of the binary m-sequence.
3.2.2, Numerical Results
In order to optimize the average performance of biphase DS/SSMA
for a given set of m-sequences, it would be desirable to minimize, with
respect to the cyclic shifts of each m-sequence, the biphase interference
K
parameter I L

k=1
k#FiL

i However, for typical values of N and K, this
’

minimization requires a prohibitive amount of computation if the T 4
b

are computed directly for each cyclic shift of the k-th sequence.

In [16] it was pointed out that for most applications, the

' - approximation
' 1 N-lC2
! : R

is satisfactory even for moderate values of N. Also, it was shown [16]

that
2 '
u.k’i(O)SN +2{sksi}
where
1 N-1 ,
q S, = & Cc .
L=1
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Thus the autocorrelation parameter Sk’ called the sidelobe energy [14],
may be employed as a useful performance criterion for the selection of
m-sequences which minimize the biphase interference rk,i' Using a
computer search, Roefs [17] has found sets of least sidelobe energy
(LSE) m-séﬁuences for periods 31, 63, 127, and 255, An m-sequence
(aik)) is said to be a LSE sequence if for all k

sk<s St
where

@i = i

CN

are the cyclic shifts of the sequence (an Clearly, if the m-sequence

L]
(aék)) is a LSE sequence, then its reciprocal, (3§k )) defined in

Section 3.2.1 is also a LSE sequence since S, = S The LSE sequences

It

found in [17] along with their reciprocals are given in Tables 1, 2, 3,

k

and 4 for sequence lengths 31, 63, 127, and 255 respectively.

While it is clear that LSE sequences are good candidates for use
as signature sequences in QDS/SSMA systems with orthogonal biphase-
coded carriers; it is not apparant that quadriphase signature sequences
formed from complex combinations of LSE sequences are desirable choices
for use in QDS/SSMA systems with quadriphase-coded carriers. Not
withstanding this fact, it is of interest to evaluate the performance of

both QDS/SSMA systems when LSE sequences are employed.

B e i g e b o e, e St R e L ’ Gy
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Sequence #
1

2

Sequence #
1

2

Table 1.

Poly.
103
133
147

LSE m-sequences of length N=31

Loading Reciprocal Poly.

46 T4 51
60 2! 73

74 3! 57

LSE m-sequences of length N=63

Loading Reciprocal Poly.
02 15 141
42 2! 155

61 3! 163

Loading
50
24
44

Loading
37
54

53




Sequence i

1

2

Sequence #

i

2

Table 3.

Poly.

211
217
235
247
277
357
323
203

325

Table 4,

Poly.

455
453
435
537
545
543
607

717

Loading

620
024
300
134
464
570
754
334

254

Loading

674
777
604
550
146
214
702

346

LSE m-sequences of length N=127

Reciprocal

-
a0
2t
-
X
;.
yi
o

9'

LSE m-sequences of length N=255

Reciprocal

g
5t
5
4
i
5
.

8'

Loading

234
7174
104
304
034
010
070
554

224

Loading

006
220
770
170
554
522
566

170
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For a given set of sequences, there are various ways in which pairs 1

! of sequences may be assigned to each of the K users of a QDS/SSMA system.
In this section we first consider systems where each user is assigned a LSE
sequence and its reciprocal. Thus, for the QDS/SSMA system with orthogonal

L § biphase-coded carriers, which we will refer to as the orthogonal-biphase ;
7 system, we assume that the k-th user phase-modulates the cosine and sine
carriers with the signature sequences (aék)) and (aék')) respectively.

Accordingly for the QDS/SSMA system with quadriphase-coded carriers, which

will be referred tc as the quadriphase-coded system, we assume the k-th

(k)

| s user's complex signature sequence (En ) is given by

"é,(,k) =5 (aék) o+ jarfk')), n=0,...,N-1.

-

=

This particular method of assignment was chosen for a preliminary

evaluation of the two QDS/SSMA systems for a variety of reasons. In

SNR for the orthogonal-biphase system , we have

2i-1

]
(% - particular if (aik)) and (arfk )) are reciprocal sequences, the biphase
is
;: T interference parameter T g and Ty 4 are identical., Thus, for the
H s ’ ’
} interference terms appearing in the signal-to-noise ratios, SNR2i and
;
¢

Fok,21 © Tak-1,24 © Tak,21-1 7 T2k-1,21-1

T T T T R T

and we may represent these simply by r Also, it was pointed out [14]

k,i’

e

that for biphase sequences, the interference r between a sequence and

k,i
I itself or its reciprocal is considerably larger. Hence, it would not be

R T




desirable to assign a particular sequence or a sequence and its recirpocal

i to two different users for the orthogonal-biphase system, Finally, the "

same assignment was made for the quadriphase-coded system in order to
exhibit the differences inherent in the implementation of the two
QDS/SSMA systems when all other considerations are the same.

For the LSE sequences of length 31 in Table 1, the interference

parameters, r, ; are given in Table 5 and Table 6 for the orthogonal-
?

biphase and the quadriphase-coded system respectively. Only a portion

of the values are tabulated since for either system T4 =°T
bl

self-interference parameters T appearing on the diagonal are included i ?
’ ¥

i,k The : ?

i

} here for completeness, For this method of sequence assignment, the ?
: interference values for the orthogonal-biphase system are the same as
| those calculated in [17] for the biphase DS/SSMA system. This is alse
true for lengths N = 63, 127 and 255.

The interference L for the LSE sequences of Table 2 are given in
3

R T

Table 7 for the orthogonal-biphase system and in Table 8 for the quadriphase-

¢
3 coded system. Similarly Tables 9 and 10 list the interference parameters
: for the LSE sequences of length 127 in Table 3, and the interference

parameters for the LSE sequences with period 255 in Table 4 are tabulated

-
oA [ L T s

in Tables 11 and 12 for the orthogonal-biphase and quadriphase-coded

egefe s

system respectively. Notice that for lengths 31 and 63, the interference

{

E for the worst case of the quadriphase-coded system is less than the

interference for any particular user of th- orthogonal-biphase system.




| . Table 5. Interference parameter rk,i for the QDS/SSMA system with
' orthogonal biphase-coded carriers: >.I=31 :
i= 1 2 3
k= 1 2182 1706 1890 ]
7 2 2414 1902 ‘
\ . 3 2206 }
{ { -
: Table 6. Interference parameter rk,i for the QDS/SSMA system with
‘L 2L quadriphase-coded carriers: N=31
; i L i= 1 2 3
. I S e 3350 1642 1714
%‘ ; . 2 3486 1742
: { 3 3254
AL
& :
L
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Table 7.

Table 8.

Interference parameter r for the QDS/SSMA system with

k,i
orthogoral biphase-coded carriers: N=63
1 2 3
9574 8262 7050
9526 7706

9094

Interference parameter r for the QDS/SSMA system with

k,i
quadriphase-coded carriers: N=63
1 2 3
14278 7662 5962
13094 7834

13742

<

A B M A
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Table 9. Interference parameter r for the QDS/SSMA system with

k,i
orthogonal biphase-coded carriers: N=127

is= 1 2 3 4 5 6 9
k= 1 40158 33370 31638 32330 31898
40222 30874 31406 31934
40454 32538 29722
40326 32654
32710
33190
31750
32106

40262

RO DR AN b 31 e

Table 10. Interference parameter r for the QDS/SSMA system with

k,i

quadriphase-coded carriers: N=127

1 2 3 4 S
59718 29802 27942 33434
63230 29826 31022
65806 34826

61678

TR T i 0 AR
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Table 11. Interference parameter r

48

orthogonal biphase-coded carriers: N=255

i= 1 2 3

4

k=1 169694 133218 127770 130282

2 167366 128718

3 166366

Table 12. Interference parameter r

127678
131958

167422

5
125758
128882
132586
129658

165126

quadriphase~coded carriers: N=255

i-= it 2 3
k=1 255030 141354 133882
2 249230 126742
3 254430
4
5
6
7
8

4
127642
137854
139758

256478

5
126550
143370
140738
130370

246606

6
130102
131754
135650
125010
136710

164718

6
139766
134394
121074
126866
137206

254718

7
134830
132162
124474
131210
119646
128374

165942

7
140438
136634
131346
134074
118222

129550

252566

Lie for the QDS/SSMA system with
?

8
127706
126702
136614
130454
132682
136162
127322

162438

e for the QDS/SSMA system with
’

8
127850
123830
138926
134790
124178
150810
124074

236350
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Also, we see that for sequence length 127 the performance of the
quadriphase-coded system is slightly better, in most instances, than
that of the orthogonal-biphase system, while for sequence length 255,
the quadriphase-coded system shows higher interference values than the
orthogonal-biphase system for almost all cases.

It would be very natural to attempt to draw conclusions about the
relative performance of the two systems based on the data just presented.
However, these results represent only a preliminary investigation of
QDS/SSMA systems and do not necessarily indicate what advantages might be
realized by one system relative to the other for more carefully considered
choices of signature sequences. For example, when considering biphase
sequences for use in QDS/SSMA, it is undesirable to assign a sequence or
a sequence and its reciprocal to two different users of the orthogonal-
biphase system, while for the quadriphase-coded system this is not always
the case.

In particular, for N=31 and K=3, an exhaustive computer search was
conducted to find the best possible sequence assignments from a class of
sequences with minimum odd autocorrelation, ékk' Such sequences are
commonly called auto-optimal (AO) sequences and have previously been
considered for use in biphase DS/SSMA systems in [7] and [14].

It was determined that for the orthogonal-biphase system, the optimum
choice was to assign a different sequence and its reciprocal to each user.
On the other hand, for the quadriphase-coded system, the minimum

interference was obtained by assigning the same AO sequence for use as

- e e el et
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the real part of the signature sequences of two different users, while
for only one user was a sequence and its reciprocal employed as the real
and imaginary parts of the complex signature sequence. For this optimum
sequence assignment the worst-case interference for the quadriphase-
coded system was found to be twelve percent less than the interference

for any of the users of the orthogonal-biphase system. If, in contrast,

the AO sequences were assigned to the quadriphase-coded system in the
same manner as for the orthogonal-biphase system, the quadriphase-coded
system exhibited as much as fifteen percent more interference for any one

user than did the orthogonal-biphase system.

Finally, it should be pointed out that for the quadriphase-coded
system, we have only considered signature sequences which are complex
combinations of biphase sequences with desired correlation properties.
Sequences formed in this manner as well as other classes of quadriphase -
codes would need to be considered before the performance of QDS/SSMA

systems with quadriphase-coded carriers can be properly evaluated.
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CHAPTER &

CONCLUSIONS

Two different implementations of QDS/SSMA were discussed and analyzed. ]

i The QDS/SSMA system with orthogonal biphase-coded carriers was seen to be

i viad o

a direct extension of biphase DS/SSMA systems. The average signal-to-

noise ratio for this system was related to the aperiodic autocorrelation

- s
.

functions of the biphase signature sequences. The average signal-to-noise
! 7 ratio for the QDS/SSMA system with quadriphase-coded carriers was related
‘ to the complex-valued aperiodic autocorrelation functions of the

quadriphase signature sequences.

N5 i s . SN s e oo
L

‘e The asymptotic behavior of the aperiodic correlation parameters of

random sequences was investigated for both systems. It was found that

the expected value of the interference was the same for both QDS/SSMA

& A

systems and that this value was exactly twice the corresponding value

ff £y for biphase DS/SSMA when random signature sequences of the same period

s
.
'

are employed. It should be noted that if the energy per bit, the data

p rate, and the signal bandwidth are fixed, the QDS/SSMA system can employ
signature sequences which are twice the length of the sequences employed
by the biphase DS/SSMA system. Comparing the results presented in
Section 2,1.2 (from [2]) for biphase DS/SSMA with the results obtained
in Section 3.1 for QDS/SSMA, we see that for the more realistic
constraints of equal bit energy, data rate, and signal bandwidth, the

expected values of the signal-to-noise ratios are identical,

| .
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A preliminary numerical investigation for a special case of signature

sequence assignment revealed that the QDS/SSMA system with quadriphase-
coded carriers produced as much as twelve percent less interference than
the QDS/SSMA system with orthogonal biphase-coded carriers. The data
obtained for this special case is not sufficient to allow a prediction
of the relative performance of the QDS/SSMA systems for larger classes
of codes. However, preliminary results indicate that the quadriphase-
coded system may achieve substantially lower interference values for

most sequence lengths of interest.

It should be noted that while the average signal-to-noise ratio is
an important measure of system performance, other performance parametars
such as acquisition time, worst-case error probability, and immunity to
multipath interference must be carefully studied before QDS/SSMA can be
considered for use in a practical system. The analysis and preliminary

results presented here indicate that further investigations of various

performance parameters and methods of signature sequence design is warranted

and it is anticipated that QDS/SSMA will become an attractive alternative

to other forms of code-division multiple-access.
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