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NOMENCLATURE

A -ar ea

A ,B - identifiers for specific node points

~~~~ B.~~1 ~~~ — resultant stiffness coefficients for an

orthotropic layer
a,b — major and minor semiaxes of an ellipse
a,b,c,d - fixed coordinate values

C - arbitrary material constant

Cnl 
- symbol denoting degree of continuity of a

function

C. . — lamina stress-strain coefficients in materialiJ
coordinates

c - subscript denoting the sandwich core(s)

c1, c2 - undetermined coefficients
E~ - modulus of layer i
F - function value
f — subscript denoting a sandwich face sheet

— shear modulus of layer i
- Hermite interpolation polynomials

{H} - column vector of polynomial interpolation
functions

[H] . - approximate metric used in Fletcher-Powell
solution

I, II — element identifiers
k - individual lamina identifier
[ K ]  — stiffness matrix
[ K]  — element stiffness matrixe
M., N. - moment and direct stress resultants
1 3.

E M ] . ,  [N] u — matrices used in constructing an approximate
metric in the Fletcher-Powell method

n - number of Gaussian quadrature points per

coordinate direction

o — subscript denoting the undeformed state,
or the midplane of a layer
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~~
1 0

S. — search direction in nonlinear solution
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gradient. Also used to indicate matrix
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- thickness of layer i
U — strain energy
U , V W — displacement components at an arbitrary point
u , v , w — midsurface displacement components
{u} - column vector of displacements
{U E

} — column vector of element displacements
- column vectors of displacement components

-
‘ 

{u} - Cartesian displacement components
V ~~~ volume
W — work potential function for applied external

forces
x , y, z — Cartesian coordinates
x~~, y~~, z~ — local coordinate system at layer i

- a vector of unknowns
{x }, {Y} - column vectors containing geometrical mapping

parame ters
- vector used in construc ting an approxima te

metric in the Fletcher-Powell method

-. one-dimensional search parameter in Fletcher-
Powell method

— parameter used in determining step direc tion in
Fletcher-Powell method
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- componen ts of extensional strain
{c} — column vector of strain components
0 — angular polar coordinate
{ K }  — column vector of curv ature chan ges
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SECTION 1

INTR ODUCTION

The development of light weight, high strength advanced corn-
posite ma terials affor ds the designer numerous possibilities for the
production of improved high-performance aerospace structures. In

or der to fully exploit this progr ess , analysis capabilities must
be expanded to keep pace with advances in both materials and

fabrication technology . This comment is particularly true in the

case of sandwich composites. Sandwich construction is an attractive

alternative to other, more common structural configurations , since
substantial benefit in terms of load-carrying capacity can be

obtained under little or no weight penalty . However , modes of
failure which are unheard of in simpler types of construction are

— possible in san dwich struc ture s due to the inheren t complexity of
the geo~netry . Design and analysis methods which predict these modes

of failure accurately and economically are therefore a necessity .

A particularly important consideration in the eIi~ective
utilization of sandwich composite construc tion is the development
of nonlinear analysis capabilities. It is a well-known fact that

the shear flexibility which is typical of sandwich core
materials places severe restrictions upon the range of validity

1*of linear analysis methods . Linear ization has been shown to
be par ticularly res tric tive in the stabili ty analysis of sandwich
shells havin g significan t curva ture 2.

It is clear that the fini te element method is the most
promising approach to the development of analysis tools which

will be adequate for the consideration of sandwich composite

• structures of a very practical and general nature. The piecewise

na tur e of finite elemen t re presen tations permi ts the treatmen t

of complex and irregular geometries in a straightforward , unified
manner. The consideration of very general loading systems and

boundary conditions also presents no particular difficulty .

* Numerical superscripts indicate references listed at the end

of the report.

1
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The present report outlines a procedure for the f ini te
element analysis of sandwich structures by both linear and non-
linear methods. A theory of sandwich plates is presented , and

some important aspects of discretization using higher-order (cubic)
finite element representations in parametric coordinate space are
discussed . Several examples illustrating the accuracy and flexi-

bility of the numerical analysis are given.

Since the sandwich struc ture analys is system descri bed is
not yet fully developed , many limitations remain and a number
of desirable features have not yet been implemented . The limi-

tations of the existing methodology are discussed and a number

of suggestions for further development are mentioned. It is

thought that the analytical approach adopted herein represents a

useful foundation for the further development of a reliable and

comprehensive mathematical model for the analysis of practical
struc tur es which employ sandwich composite construction.

1.1 Description of the Problem

Sandwich construction is a type of built-up panel configura-
tion characterized by a number of thin , high-modulus layers (face
sheets or skins) which are separated and stabilized by thicker, low-
modulus layers (cores). Such a panel can be made extremely light-

weight , while offering considerable bending rigidity due to the
separation of the face sheets. The function of the sandwich core is

analogous to that of the shear web of an I-beam section in coupling
the response of the face sheets by transferring shear stresses

between them .

While sandwich composites are an extremely attrac tive
concept due to their light weight , their use in practical struc-
ture s introduces a number of possible failure modes which are not
encountered in other structural confiqurations. Specifically ,

these additional failure mechanisms are attributed to:

1. weakne ss of the core layer (s) in comparison with the
face sheets, both in shear and in compression

L L ________ 
- 
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2. inadequacy of the face sheets for resisting loads
— near fasteners and inser ts

3. lack of a continuous interface between face sheets and
core in cellular (honeycomb) core constructions

4. the possibility of defective bonding between layers.

Each of the above pro perti es give rise to a par ticular local mode
of failure which is unique to sandwich type construction . Since

each of these types of failure must be considere d both in form ula ting
and qualifying a par ticular design , extensive analysis is re quired .
Fur thermore , a separate checking procedure for each possible type

• of failure may not always be sufficient, particularly when the

structural component in question is to undergo large deflections
H or inelastic behavior .

Thus , it is clear that sandwich composite materials present
a number of uni que problems for the designer or analyst. Proper

treatment of these problems requires a detailed analysis of the
sandwich geometry and state of deformation , to which the fini te
element appro ach is ideally suited .

1.2 Scope of the Analysis

The presen t analys is addresses the problem of static defor-
mation of fla t san dwich panels . Material behavior is restricted

to be linear and elastic, although geometric nonlinearity is
considered. The analysis is thus applicable to pro blems of

o lar ge displacemen ts, elastic buckling , and postbuckling.

Sandwich face sheets are idealized as thin, layered corn-
posites obeying the Love-Kirchhoff assumptions. Isotropic and
orthotropic thin plates can therefore be considered as special

cases. The sandwich is of the anti-plane type (non-direct stress

carryin g), with normal deformations considered . The finite element

discretization is performed in such a way that multicore panels,

“half-sandwich” construc tions , or thin laminated composi tes are
easily considered by stackin g elements or elimina ting individual

- 
- 

- 

layers within an element as required .

.
~ 
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External loads applied to the sandwich panel may Consist of

concentrated forces and distri buted pressure or body forces. Due to

the numerical integration which is necessary for calculation of the

element proper ties, the specification of more complex distri buted
forces (i.e., hydrostatic or sinusoidal distributions) is also

permitted.

The finite element discretization presented is based upon a

Hermite bicubic displacement approximation in isoparametric

coordinates. Skewed panels, or sandwich having arbitrary

curvilinear boundaries can therefore be considered. The method

describe d represen ts the firs t development of an isoparametric
san dwich fini te element which has the proper ties of both
completeness and full compatibility of displacements as

well as bending slopes. Considerations in the parametric

representation of f inite element geometry in the undeforme d state
are discussed in Section 3.

The research reported here also represents one of the
f i rst applications of the parametric bicubic formulation
to nonlinear problems . A similar fini te elemen t trea tment of sandwich
analysis has been presen ted by Monfor ton3, but is limited to
rectangular shapes in Cartesian or cylindrical coordinates. Signifi-

• - 
cant gains in efficiency have also been made in the present work

for the computation of nonlinear strain energy and energy gradients

for use in numerical solutions by direct function minimization methods.

___________ • •
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SECTION 2

SANDWI CH PANEL ANALYSIS

A brief description of the sandwich theory which is used as

a basis for the finite element analysis is given in this section .

The geometry of deformation for a typical sandwich panel is dis-

cussed, and the total potential ener gy is formulated in terms of
the displacement field unknowns. The theory presented is similar

to that outlined by Monforton3, but is extended to include

normal deformations within the sandwich core. Large displacements

are considered , but the development is limited to small elastic

strains and moderate rotations.

2.1 Kinematics of Deformation

Consider a flat, three—layer sandwich construction, as

F shown in Figure 1. The two face sheets are taken to be thin

lamina tes, each composed of a number of or thotropic layers of
- 

- arbitrary orientation . The sandwich core is a thicker, rel atively
flexible layer having constant thickness and material orientation .

Each face sheet is considered to deform according to the

Love-Kirchhoff assumptions; that is, linear filaments originall y
straight and normal to the face remain so after deformation , and

undergo no extension. In terms of the displacement variables at a

general point in the face sheet , this assumption implies that

Uf — U
f 

— zfwf X

Vf 
= V

f 
— Z f Wf y

Wf 
= W

f 
; f = 1,2. (2.1)

Here upper case letters are used to denote the displacemen t
componen ts at any arbi trary point , and lower case symbols to
represent those within the midplane of a face. The coordinate Z

f

is measured upward from the face sheet midplane.

In the core layer , it is assumed that linear f ilaments
ori ginally strai ght and normal to the layer remain straight , but

5

- 
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need not be normal to the deformed layer. This state of

deformation is pictured in Figure 2. The core displacement state

therefore takes the general linear form

U = u  + z 4c c c
V = v  + z~~C C

W = w  + z ~~ ( 2 . 2 )
C C C

where Z
c 
is measured from the midplane of the core.

The parame ters ut,, v , w,~, 4~ ~ x can be eliminated from

• Equation 2.2 by enforcing continuity of displacemen ts between
the faces and core. Perfect continuity between layers is

assumed , so that the possibility of debonding fai lure is not
considered . At the lower bond line, z1 

= t1/2 and Zc = -t
~
/2

so that
t t

Ul
_
~~
!
~
Wl,x = U c

_
~~
24I

L

H t
= w~ — 

~~-X .  (2 . 3 )

Similarly , for the upper bond line ,
t t2 cu +— w  = u  + —2 2 z,x c 2
t t

V
2
+
~~~~~~

W
Z y

V
c

+
~~~~~~~

1)

tcw2 = W c + r•X (2.4)

Solving Equations 2.3 and 2.4 for the core displacement parameters -

and subs tituting in Equations 2.2, one obtains

Uc =
~~~~

(u2 + u l + t 2w2,x
_ t

lwl,x)

7
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Figure 2.  Deformed Confi guration of the Sandwich Panel.
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Figure 2. Deformed Configuration of the Sandwich Panel
(concluded) .
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t t
Vc =~~ (v2 + v i +~~

iw2,x
_
~~~Wi,x

z
+ ~~2 (v 2 -v1 + t2w2~~ + tiwi~~

)

= ~~ 
(w 2+w~ ) + E~

- (w 2-w1) (2 .5 )

Thus, the displacement components of any point within the sandwich
faces or core are completely determined by the six components of
displacements within the faces: U

f 
1 V

f P W
f
; f = 1,2.

Calculation of strain , stress and strain energy within the
core layer is simplified considerably if Equations 2.5 are replaced

by approximate conditions of continuity, based on the assumption

that the face sheets are very thin in comparison with the core.

The displacement continuity equations are then applied at the

midplanes of the faces, with the resulting core displacement

expressions given by

U~ = 
~~~ (u~ + u1) + ~~~~~~ (u2—u1)

V~ = ~ (V
2 

+ v
1

) + 
~~~~~~ 

(v 2 - v1)

W~ = ~- (w 2 + w1) + 

ç 
(w 2 - w1). (2.6)

Equations 2.6 are used in what follows to enforce disniaceNent con-
tinuity of the sandwich forces and core(s).

The strain—displacement equations of a thin face sheet,
valid for large displacements and moderate rotations, are given

o by Novozhilov4 :
1 2c a — u  + W  — zx~ f ,x 2 f ,x f ,xx

~~~~= u  + — w  - z wy~ f,y 2 f,y f f1.yy

~xyf = U
f ,y + V f x  + W f xW f y  - 2z f wf X Y ; (2 . 7)

f = 1,2.

For the sandwich core, the strain energy arising from inpiane
— deformations is assumed to be negligible , and therefore only the

10
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transverse shear and normal strains need be considered . Further-

more , it is assumed that the strain energy of the core is adequately

represented by a linear relationship between strain and displace-
ment. Thus, the strains within the core layer are calculated

from
‘
~
‘xzc = ~~~ (u

2
-u
1
) + 

~
(w2~~

+w1,~
) + 

~~~~~

. (w2~~
-wi~~

)

= ~~ (v2-v1) + ~~(W2 y +W1y ) + 
~~~ 

(w
2 ,y

_w
l ,y )

= 
1 (w2—w1) (2.8)

It will be convenien t in wha t follows to refer to Equations
2.7 and 2.8 in matrix form. Letting

= 
Vx~ 

Cyf I f] 
; f = 1,2 (2.9)

and

T (2.10)

~~~~~ 

= 

N~ 
1yzf £zcj

the strains are of the form

{ C }
f = {c 0}

f 
+ Z

f 
{ K }

f
; f = 1,2 (2.11)

and
{c} = {C o}  + Z { K } . (2.12)

2.2 Stress—Strain Equations

Each of the sandwich face sheets is taken to consist of a
number of thin layers , each of which possesses a stress-strain

rela tionship of the form

a1 C11 C12 C16~ ~i

= C12 C22 C26 ~ (2.13)

112 C16 C26 C66] ~l2

11
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where 1, 2 denote the principal material axes of the layer . Equation
2.13 can be referred to the structural reference axes x ,y by a
linear transforma tion of coor dina tes , with the resul t

1a (k~ (k) (k) (k) ( (k)
x Q12 C

) (k)t Q(k) (k) (k) I
~~ Cy /1 = 14 Q26

I (k)~ (k ) (k )  ( k ) I (k)
L
TXy J I4••~

1xy (2.14)

Here the notation ref ers to a stress within the kth indivi dual
layer of face f .  By subs tituting for the strains fr om Equation
2.11, Equation 2.14 is integrated through the face sheet thickness

with res pect to the weighting fac tors 1 and Z
f 
to yield5

Nx A11 A12 A16 B11 B12 B16 C

A12 A22 A26 I B12 B22 B26 C~~,

Nxy = 
A16 A26 A66 B16 B26 B66 1xy (2.15)

B11 B12 B16 D11 D12 D16 
K

M~ B12 B22 B26 
I D12 D22 D26 K

Mxy 
~ 

B16 B26 B66 i D16 D26 D66 
K xy 

~

where
tf/2 tf/2N

~ 
= C dzf M = Z

fdZf
tf/2 

_t
f/2 - 

-

tf/2 t/2
= C dz f M~ = C

y
Z~ dz f 

(2.16)

tf/2 
_t
f/2

t
~f
/2 t

f/2 -

• ~
- N T dz M — r dZxy = f xy f xy I XY

zf f -

—t f /2 _t
f /2 - -~

and 
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~~ tf/2 (k) 2
~~~~~~~~~~~~~~ = 1. Q 1~~ (1,zf~zf) dzf; f = 1~.2 (2.17)

The coef ficients 
~~~ 

and ~~~ in Equation 2.15 are the overall
membrane and bending st iffness of the face , respectively,
including extensional-shear coupling properties. The

represent the effec ts of couplin g between membrane and bending
action due to asymmetry about the midplane of the laminate.

For a sandwich core with orthotropic properties, the stress-
strain relation is of the form 

-

Txz f
Gxz 0 0 1xz

Tyz = ~0 ~~~ 
0

a
~ [0 0 E

~ 
C (2.18)

-c c C

Using Equation 2.12 to evaluate the vector of strains, and
integrating over the thickness wi th respec t to wei ghting factors
1 and Z

c 
yields the followin g

(~~~~~~~ i~ ‘ B] (C °~

~~ c ~~~~ ~] c ~1c 
(2.19)

where
t/2

= LTxz T
YZ 

cY
~~
jdZ

{R}T = 1
tc~

’2 
LTXZ Tyz cY~J z~dz

~ 
(2.20)

c

-
. - 

and

IL I-

- 
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r G o ot /2 i xz
[A]

~ 
= 1 c  0 

~~~ 
0 dz

c LO 0 E.~
C

t/2 [ G O  01
[B]

~ 
= Lc,2 10 ~~~ 

0 z~ dz~ (2.21)
c 1 0 0 E lL ZJ~~~

t/2 rG~~0 0-i
[D]

~ 
= 0 

~~~ 
0 dz

c L° 0 EJ

2.3 Potential Energy Formulation

Since the problem under consi deration is con serv ative , it is
possible to deduce a potential energy of deformation , 

~~~~

, such
that the necessary conditions for equilibrium are defined by the
condition6

0. (2.22)p

In particular, the potential energy is given by

it = u — w  (2.23)
-
~~~~ 

p

where U repres ents the strain ener gy stored in the body due to
its deformation , and W is the potential of the forces applied to
the body , both expressed in terms of displacement functions .
In terms of Lagrangian stress and strain functions , the total
potential ener gy has the form

IT = f f  f ~ {~~}‘
~
‘ {a}dv — ff  { u} T{P}dA , (2.24)

V

where S° is the portion of the surface over which loads are
prescri bed, and the extent of integration is the initial
(undeformed) volume . The vector {P) consists of generalized
ex ternal forces con jugate to the components { u} of generalize d
displacement.

14
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For the presen t cas e, the stress and strain functions
in the sandwich face sheets are defined in Equations 2.7, 2.11,

and 2.15; in the core, they are given by Equations 2.8, 2.12,

and 2.19. Making use of the direct stress and moment resultant

forms of the stress parameters , the to tal poten tial ener gy of
the deformed sandwich panel is as follows:

~~~ 

~ ‘ ‘ ~~~~~~~C
{’J

C

C

+ 

~ ~
-
~
} [

~
—
~
- 
~~ ~~_}f

— f f  { u} ’~{p} ~~ (2.25)

S~

where the strains are defined by Equations 2.7 and 2.8.

Expanding the energy functional in terms of displacements

gives

• 

= ij ~j [G (u2
-u

1) 
2 

+ ~X!2 ( v v )  2 + ~~ZC (w2-w1) 
2

+ 

~~~~~~~~~~~ 
(w i~~

+w 2~~~
) + G

~~~~
(v2-vi) (w1~~w2 )

+ + —

+ 
~~~~~~~ 

+ w~~y 
— w

1~~~
w~~~~,)] 

~~~

+ ff {A~1~u
2
~~~ + A22f

V~~ + A66f (Uf y
+V f x )2

+ 2A,2fuf XV f ,y + 2(A 16f u f x + ~~26f V f ~ ) (u f y +vf x )

—2 ,xWf,xx + B22f vf y
W
f yy+2B66fw f x y (~ f y +vf x i

+ B12f (v fx x +uf ,xwf y y ) + BlGf wf x x (u f y +vf,x)

+2B l6f uf x wfx y +B26fwf YY
(u
f Y

+vf x )+2s26f u f Y wf XY]
+
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+Dllf w~~xx + D22f W~ yy + 4D66fw~~xy + 2Dl2f wf , xxWf ,yy

+ 4D16fW f xx~’f xy + 4D26f W f y y wfx y

) + + A22fVf,~ W~ ,~ +2A66fwf,x
wf ,y (uf , y +Vf,x)

+ A12f (U f xW f y  + Vf ~Wf ~ 
) + A l6f Wf x  (u f ,y ~~ f , x)

— 
- + 2A lGf Uf,xwf , xWf ,y + A26fw~ ,y (t1f,y

+V f , x)

+2A 2Gf Vf ,y Wf,xWf,y

- [s lj f wf xx~
’f,x 

+ B22fWf ~~~~~~~~ + 4B661 wf x Wf ,yWf,xy

+ BI.2f
(wf,xx~~ ,y + w e~~~

w
~ ,~~

) + 2s16f~
wf,x y , x f ,~t~~ e,x

t1f ,y )

+ 2B26f
(wf,xyW~ ,y + wf Y Y wf X wf,Y)]

+ ~ + 
~~~~~~~~~ 

+(A66f + IAl2f
)wf x Wf,y -

+ (A l6fw~~x
wf ,y + A26fwf,Xw~ ,Y)} 

dA ( 2 . 2 6 )
2

f f  (~~ u~ + P~’f 
+ p

z
w
f
) dA

~
1 Ao

Thus , the potential energy of the deformed sandwich panel
is expressed as a function only of the displacements within the
face sheets and their spatial derivatives. The displacements
(and therefore the potential energy) of the sandwich core are

obtained by what may be thought of as a linear interpolation
between the face sheets .

- 
- The potential energy as formulated in Equation 2.26 is

sufficiently general to describe a f la t  sandwich panel , of an
arbitrary shape , undergoing large deflections, which may be due
either to the intensity of loading or to buckling instability .
Dissimilar face sheets are considered as well as any asymmetry of

either face sheet about its own midsurface. It should be noted
that in obtaining Equation 2.26 it is assumed that the core prup- —

erties 
~~~~~ 

Gyzc~ E~c are uniform through the thickness of the
sandwich . This corresponds to setting [B] c equal to zero in
Equation 2 .19 .
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SECTION 3

FINITE ELEMENT DISCRETIZATION

The potential energy of a flat sandwich panel undergoing
finite displacements has been formulated in Section 2. In the

following, the details of a finite element discretization of the
structure are considered . Interpolation of the element displace-

ment State is established using the natural (parametric) coordinates

of a f inite element . The enforcement of continuity of both dis-
placements and transverse slopes between finite elements and the
representation of arbitrary undeformed geometries are also
discussed .

3.1 Interpolation of Element Displacements

— j The choice of a method of interpolation for the displace- 
-

ment variables over a single element is of fundamental importance

in the formulation of structural finite elements. Not only

should the displacement field be well-represented ; the computation

of strain and stress information by differentiation of the

• interpolation formula must also yield acceptable accuracy with a
minimum of elements. For isoparainetric elements where the

• undeformed geometry is also represented by interpolation, a
careful choice of basis functions is essential to modeling

accuracy and efficiency.

Due to the adoption of the Love-Kirchhoff assumptions for

the sandwich face sheets in the present analysis, the potential

energy functional contains second derivatives of the transverse

displacements. In the application of the finite element

discretization, it is therefore required that the approximate
2*transverse displacement field be of class C on the interior

of a single finite element, and of class C1 across interelement
boundaries7. A suitable displacement approximation , having

extremely good convergence properties , has been introduced by

* A  fünction is taken to be of class Cn if it possesses at least
n-continuous, nonzero derivatives within the region of interest.

17
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Bogner, Fox and Schmit8. However, that formulation is restricted
to rectangular boundaries. In the present analysis, the discretiza-

tion is performed in natural, or parametric, coordinates, so that
any restrictions on the undeformed element geometry can be
eliminated. It will be shown that considerable accuracy can be
obtained both in displacement an4 stress prediction by this
method of discretization.

Consider first the problem of interpolating a function FU)
in one dimension such that continuity of both the function and its
slope are everywhere preserved. By requiring the interpolation to
reproduce both function and slope exactly at each sampling point

one obtains the first order Hermite interpolation formula9,

F(~ ) =~~~ [H0~~(E)F~ + H1~~(~ )F~~.]~ (3.1)

where the H1~ (E~) are cubic polynomials satisfying the conditions

~~n 
Hij~~k

) 6ni~jk’ 
(3.2)

where are the interval endpoints (see Figure 3).

For the purpose of obtaining an interpolation formula in a
non—rectangular two—dimensional region, a new set of coordinates
can be defined within a unit rectangular region which is then
related to the true element shape by suitable transformation of
coordinates. This new set of “parametric” axes may be thought of

o as a set of curvilinear coordinates , imbedded within the original
geometric region (Figure 4). A function F(E ,~ ), defined on the
rectangular region ~~~~~~~~~~~~ can be represented by the inter-
polation formula8,

-
. 

- 

F(~~, r ~) ;~l~~l 
[
H.(~ )H~~ (~)F.. +

+ ~~~~~~~~~~~~~~~~ + H1i(~
)H1j(r~

)F
~~ .j] (3.3)
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Figure 3. One-Diniensional Hermite Polynomials.
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obtained from the product of two one-dimensional formulas having

the form of Equation 3.1. On the interval (
~1

=_1,
~ 2

=+1), the
Hermite polynomials have the following forms :

= 
~~

( l+
~~~~

E)
2 (2— ~ .F)

= —
~~~~ ~~~~~~~~~~~~~~~~~~ 

i=l,2. (3.4)

It is important to note that the interpolation takes place within
the rectangular region in ~~ coordinates , and that the nodal
parameters F~1~ 1 ~~~~ ~~~~~ represent partial derivatives with

respect to the natural coordinates defined within a single element.

The derivatives of each of the displacement components
with respect to the natural components (~~,fl) must be related to
derivatives in the (x ,y) coordinates in order to properly establish
the conditions of interelement continuity . By the chain rule, the

transformation is of the form

1ut
~ 

•) =x ,~ y ,~; I 0 0 —

• 1u ,~ x , y ,  0 0 0 U ,

~~~~~ ~ ~~~~~~~~~~~~~ ~~~~~~~~~ y~~ 
— 

~~~~~~~ I 
U~ xx

• x , ,1~ Y~~]~ y~~ 2x ,~ y, 1 u ,~~
Lu,

~ nJ x ,~~ y, ~~~~~~ y ,~ y,  ~~~~~~~~~~~~

(3.5)

The above transformation can be obtained from the equations of the
region to be considered (for example , the polar coordinate trans-
formation in the case of a circular shape), or by interpolations
based upon nodal coordinate data10. In the present investigation,
the transformation indicated in Equation 3.5 is obtained by

approximating the spatial coordinate variables in terms of the
natural coordinates of an element in the same form as Equation 3.3,
and simply differentiating the interpolation formula. Some
details and implications of this process are indicated in Para-
graph 3.2.

I -
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In the present development, all three displacement components
in each face of the sandwich panel are represented by the bicubic
expansion indicated in Equation 3.3. Although this order of
interpolation is greater than the required linear formula for the
insurface displacement components, the additional degrees of
freedom permit the option of enforcing continuity of membrane
strains in adjoining elements. The resulting stress predictions

are correspondingly more accurate, and exhibit only minor dis-
continuities (due to local bending) between elements.

The displacement approximation for a typical finite element
is cast into a convenient form as the inner product

uf
(~~~f l )  = ,~H(~~,n )}

T {Uf}; f = 1,2 (3.6)

where

(H(
~~
,n)}T LHoj~~ol~~. R ( ~~~) M ~~~~~(~~~) ,  H 01 (~~~) H 11 (~~~) ,  H 11 (~~~) H 11(~~~) ,

1401 (~~~ )H 02 (~~~ ) , H11(~ )H02 (~ ) , H01(~ )H12 (~ ) , H11(~ )H12 (i) ,

R02 (~ )H02 (r1), H12 (~ )H02 (~~), H02 (~~)H12 (~~), H12 (UH 12 (n) ,

H02 (~ )II01(~~) , H12 (~ )H01 (n) , H 02 (~~) H
11

(rj ) , H i2
(~~) H

11
(T) ~j

-
~~~ and

{U
f

} = Luf11~ 
Uf~11~ U

f~~11I U
f~~~~1j F  U f12~ U

f~~12~ U f 12’ U
f~~~~12~

(3.8)
U~~22 .  U

f~~2 2 .  ‘1fn 2 2 ’  U
f~~f l 2 2 l  U f 2~~ . ‘1f~~21’ U

f~~21~ U
f~~~~2~~

The remaining displacement functions V
f
U~r f l )  and W

f
(~~~1) have similar

forms. A displacement vector for the entire sandwich element is 
- •

then assembled in the form

{U
E
} LU }

T {U }T ~V }T {v 2 }T , {w
1
}T, w2

ITJ (3 9)

lx96
The resulting sandwich element therefore possesses 96 external degrees

of freedom.

It should be noted that since the unknown displacements within
the entire sandwich panel are expressed in terms of the face sheet

22
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displacements, the consideration of multicore constructions presents
no particular problem. Two or more sandwich elements can be “stacked”
to represent multicore geometry, simply by the proper specification
of element connectivity data. The displacement vectors (Equation 3.9)
of stacked elements are joined in exactly the same manner as for
two adjacent planar elements during the accumulation of the system
equations.

3.2 Parametric Mapping Considerations

In most applications of the isoparametric element formulation
(e.g., solids, plane—stress elements), only the physical displace-
ments are needed as nodal parameters. However, the requirement of
slope continuity in elements based upon the Kirchhoff assumption
necessitates the use of derivatives of the displacements as
nodal variables to fulfill the conditions of interelement compati-
bility. Since the displacement derivatives are computed in parametric

coordinates, it is instructive to consider the constraints placed
upon the geometric mapping by displacement compatibility conditions
on the interelement boundaries.

For the enforcement of displacement (but not slope) continuity
on an interelement boundary , examination of Equation 3.3 reveals
that the displacement at any point on the boundary depends upon the
nodal displacement values and parametric derivatives tangent to
the boundary, evaluated at the endpoints of the edge. Thus, it is
sufficient to require that the parametric coordinate tangent to the
interelement boundary be the same for any two adjacent elements on

o their common edge. Such a requirement presents no difficulty, even
for mappings of a very general nature.

The need for slope continuity between adjoining finite elements
is a somewhat more subtle problem . Consider first the establishment
of slope continuity between adjacent rectangular elements (Figure 5).
It is easily shown using Equation 3.2~that a matchIng of the
parametric derivatives and cross—derivatives at common vertices
produces continuity of transverse slopes in parametric space along

• the entire boundary~~. Thus, if the mapping x=x ( ~, ‘i) and y=y (~ ,n)

23
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possesses continuous first derivatives on the common boundaries,
the physical slopes (w,~ and w1~~) are made continuous as well
whenever ~~~~ w~~~ and wr . . are matched at the boundary endpoints.
For non—rectangular elements (Figure 6), compatibility of the
physical slopes is obtained under similar conditions. However,
since the transformation from parametric to physical coordinates

may now have nonzero second derivatives, one must examine the
conditions under which equality of the cross—derivatives w

Er~ij
at the common nodes is admissible. For two adjoining elements of

identical thickness, Equation 3.5 dictates that a matching of

~~~~~ at common vertices is permitted only if the transformation
of coordinates possesses continuous first derivatives on the

interelement boundaries and continuous second derivatives at the
nodal points.

Under the conditions stated above, equality of w
1~~ 

W~jj~

~~~ and ~~~~ ensures the continuity of w, w,~ and w, (and hence
that of w,~ and W ay

) along the common edges of adjacent elements.
For most problems having reasonable geometries, no particular
problems are encountered in establishing an acceptable mapping;
in the most general case, conditions of compatibility can be
satisfied by the enforcement of linear constraints between nodal
variables involving parametric derivatives.

In the present development, the geometric mapping between
the physical and parametric forms of a single finite element is
based upon the same interpolation formula as the displacement

approximation:

x(~~,~~) = {H(~~,n)}
T {X}

y(~~,r~) = {H(~~,r~)}
T tY) (3.10)

The vectors {X} and {Y} contain values of x,y and their derivatives
with respect to the parametric coordinates 

~~~~~ 
evaluated at the nodes

of an element. The geometric mapping given by Equation 3.10 is

identical to the well-known “surface patch” representation introduced
by Coons12. Palacol and Stanton1° have adapted the bicubic patch
method to the analysis of thin orthotropic plates and achieved

excellent results.
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By means of Equation 3.10, the problem of representing
irregular geometries in the undefornied state is reduced to the
selection of an acceptable set of mapping parameters {x } and {Y}
at the nodal points. For many shaoes, the parameters may be obtained
analytically. As an exa~”pie ccnsider the circular element sector
shown in Figure 7. Taking r(~ ) and O (~ ) to be linear functions,

r = r 0 +~~~~(1+ri )~~r

0 = ~~
- (1—~ )~~0 (3.11)

the polar coordinate transformation yields ~~~~~~~ y(~~,~~) explicitly
as 

= [r ~ + ~-(l+~ )Ar] cos~-(l— ~ )A0

y = Er0 + ~- (l+ri )~~r) sin~-(l—~ )A0 (3.12)

The vector {xJ , for example , contains the entries
{x} T 

= [x~~ X~1, X 1, X~~ 1
, X2~ 

x~~4J (3.13)

For the annular sector, from Equation 3.12,

{x}T =
1..
r0 cosL~0 , ~~- r~~ 0sin1~0

~Ar cost~0 , ~~rA 0sin~0

(r0+ r)cost~O , ~-(r -4-~r)~~Osin~ 0,

cost~0 , ~-Ar~ Osin~0

r0 +~~r , 0

r0
0 j. (3.14)

As a second example , consider the elliptical element shown in
• - Figure 8. By taking the element edges along concentric elliptical

lines and lines of constant angle 0, the following description of
the boundary curves of an element is obtained:
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• . 2 2 2Line 1-2: (x/a) + (y/b) = c

Line 3-4: (x/a) + (y/b) = d

Line 1—4: 0 =

Line 2—3: 0 = 0b 
(3.15)

Let

+ (
~~

)
2 

= 
[~~

l_
~~c + ~.(1+~)d] 

2

e = 
~~
[(l_fl)0a + (1+rl)O

b] 
= tan~~(y/x) . (3.16)

Equations 3.16 can be solved for xU,n) and yU,n) as

~(l-~)c +

x(~~,~~) =  1 1 2 1  1

Ja2 + 

~~
( l_ fl )0a+~

(l+fl)0bl

y(~ ,n) = x U , n )  tan 
[~~

(l_fl)0a + 
~
-(1+rl)0

b] 
(3 17)

The patching parameters are obtained as before by differentiating
Equations 3.17 and evaluating the results at the four nodes of

the element.

Geometric mappings for more general shapes can be defined by
interpolating over an entire region, or by defining the mappings
over a number of subdomains with the region. However, care must
be taken to satisfy the continuity requirements outlined earlier
in this section.

3.3 Compatibility Constraints

In practical applications , the geometry of a region to be
modelled of ten requires that the parametric coordinate mappings
in adjacent elements possess discontinuous derivatives. An
example is shown in Figure 9. For the case shown, the natural
coordinate ri is the same in both elements, but the relationships
x=x (F ,~~), y y ( ~~,n) exhibit discontinuous c—derivatives on the

4 common boundary. Although the continuity of w (which depends

: -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~
-- -

~~~~~
• •--~ .-- ~~II_ 

-

~~~~~~~~~ -~ - ~~

_

~~~I_j~ • -
~~~~
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r ~~~~~~~~~~~~~~~~~~~ 
-

y

(o d)1 (c ,d)

(a ,b+d)/” ~~~~~ ir

~~~~~~~~~~~~~~~~~~~~~~~~~~~ (c ,o ) X

(a , b)

I -  I
Figure 9. Adjacent Elements Requiring Compatibility

Constraints.
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only on the nodal values ~~~ and w11j) on the common edge
presents no particular problem , it is required that the slopes
in physical coordinates , w,

~ 
and w , ,  be everywhere Continuous

on the boundary. The required conditions of continuity are
found by setting

(w , ~ (w , ~~ x~ = ~ 
x~ (3.18)

I II
or 

w,~ 
- 

1x~ ~~1 1~~ Y~t]
’
w
~~

— 

L~
’
~ 

~s~] [x ~~ Y,~ j  W,~ (3.19)
II I

For the simple case shown in Figure 9, the mapping between
the global and natural coordinates can be chosen as bilinear ,

x’ =

y1 = b(1—~)/2 + d(l+~ )/2 (3.20)

and

x~~ = c(1+~)/2

= d(l+~)/2 (3.21)

Using Equations 3.20 and 3.21 and performing the arithmetic
gives the constraint equation

jw, ~ ~ [~
c/a -bc/ad] 

5 
w,

0 1 } ~~~~~~~~~~~~~~~~ (3.22)
II I

which must be satisfied on the entire common boundary. The
second equation, which reflects the fact that r~ is identical in
both elements on their common edge, need not be considered

• further. The remaining equation,

w~~ -~ (w,~ + ~~~~ (3.23)
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must be expressed in terms of the nodal parameters at the

points A,B to arrive at the final constraint relations. Using

the element interpolation functions (Equation 3.6), Equation 3.2 3

can be expressed as a polynomial in n, whose coefficients are the
nodal variables at A and B in elements I and II. By requiring

the coefficient of each power of ii to vanish, one arrives at the

discrete form of the constraint relations ,

A

WB

W
~A

0 - 2  0 -2~ 0 0 0 W
B

W
~~~ 

b b 

1 -3 0 -2~ 1 1 W 

(
3.24

W
~~flA 

3~ -3~ 0 0 4~ 2a 2 0

H 
l4~
W
~ flBJ 

-3~- 3~ 0 0 -2~- -4~- 0 -2

W
~~flB II

Similar constraints to ensure interelement compatibility of

displacement and transverse slopes can be evaluated for more

general element shapes and orientations. Equation 3.19 is

again used as a starting point, but the required constraints

can become considerably more complicated than Equation 3.24.

In such cases the calculations are best performed numerically,
in terms of the mapping parameters of an element.

It should be noted that in most cases , an acceptable
parametric mapping can be constructed even in the presence of

highly irregular geometries. For example, the above case can
be considered without the imposition of linear constraints ,
even though the physical boundary slopes approaching the edge
at x = 0 are double-valued . Instead of the bilinear form,

consider the mappings

x (~~,r~) = ~ (l—3~ + 3~ 2 — ~3)

y(E~,r~
) = 

~~
- (l—3~ + 3~ 2 — + 4~ (l—r~)] (3.25)
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and
x (~,n) = (1 + 3~ + 3E 2 

+ ~3)

y(~~,n) = (1 + n) (3.26 )

for elements I and II respectively . It is easily verified that

the above parametric mappings are twice continuously differ-

entiable across the common boundary , which is more than adequate
to ensure interelement displacement and slope compatibility.

_____ — 
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SECTION 4
NUMERICAL CONSIDERATIONS

The selection of the best and most efficient numerical
analysis is an important consideration in the implementation of
any f inite element procedure . In particular, the calculation of
refined element representations and the evaluation of nonlinear

effects must be done efficiently if the analysis program is to
be cost effective.

In this section , a number of aspects of the process of
setting up and solving the finite element equations are discussed.
Many of the details involved in implementation of the finite

{ element technique are widely accepted13, and will not be repeated
here. The computational techniques considered are those less
common in finite element analysis, or developed specifically for
use with the present method.

4.1 Calculation of Element Stiffness Matrices

The computation of the linear stiffness matrix (corresponding
to quadratic terms in the potential energy, Equation 2.26) is
considered below. Evaluation of the nonlinear potential energy
and the energy gradient for large-displacement problems is
discussed in the following section.

Since the element geometry is not predetermined , it is
necessary to perform numerical integrations to obtain the
element stiffness. The most common method gives for the stiff-
ness matrix the integral14

1 1
(K] = ff [N]

T [B] T[D] [B] [N] I J~d~ dn (4.1 )e

where [N] is a matrix of polynomial functions, [B] is the strain-
displacement relationship and ED] is a matrix of elastic constants.
The integration can be carried out by Gaussian quadrature, with

the integrand being evaluated at each of a number of sampling points.
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The above method of integration is not practical in the present

case , since the order of the matrices is large (the element matrix ,
[Kle~ 

is of order 96), and because many integration points are
required for the exact evaluation of the higher—order polynomial

functions. By taking advantage of repetitive patterns occurring

in the polynomial terms in the original functional (Equation 2.26),

the number of operations required for the evaluation of

Equation 4.1 can be reduced by a factor of approximately 250,

thereby reducing substantially the amount of computing time
required for setting up the system of equations to be solved.

In the potential energy (Equation 2.26), each quadratic term
can be expressed in the form

T = J
•f c u~~~1~ U~~~k~ dx dy, (4.2)

where c repres s-.aj!
~!~

rial constant, u~ and Uf denote the
components of displacement ~ ,-- 3~~, or W

f 
within a single face

sheet, and the indices i, j• k, t indicate the appropriate
spatial derivatives of the displacement components. Restricting

the discussion to cases for which c is constant over the element,

the use of Equation 3.6 gives

T = ~~
- {u~~} 

T

f f( f i  } {~ }T dx dy {u~ }

+ ~ {u~ }
T 

f~~~ 
{HIk~

}{H
~ij

}T dx dy {u~} (4.3)

Thus , regardless of the values of ct,8, only the 16xl6 matrix

ff {H,jj}{R ,k~)
T dx dy (4.4)

and its transpose must be evaluated for each combination of
• i,j,k and £ in order to calculate all of the possible combina-

tions to the stiffness matrix . The number of combinations of
i,j,k and £ is further reduced when only the upper triangle of
the element matrix is considered , since the component matrices

can be transposed when required during the actual assembly of

the matrix.
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The numerical integration indicated in Equation 4.4 is performed

as follows. At a particular integration point, the vector {HU ,n)J

(Equation 3.7) and its derivatives with respect to the coordinates

(~,r~) are computed, and transformed by the chain rule to (x-y)-
derivatives. The resulting vectors are multiplied by the square

root of the product of the Gaussian weight and the Jacobian

determinant, to reduce later computations . Finally , all possible
outer products of the vectors {H,. .1 and {H,k~

} are formed, and the
13 *sums accumulated over an nxn grid of integration points. Having

formed the component matrices , it remains only to multiply through
by the appropriate elastic constants and accumulate the products

• into the element stiffness matrix.

It is significant that numerical experiments performed using $
Equation 4.1 with a 4x4 integration grid and eliminating the

multiplication of all-zero submatrices , yield computing times on
the CDC-6600 of more than 120 seconds for a single element

stiffness matrix. The above method using component matrices

requires approximately one-half second on the same machine, using

the default level of compiler optimization . This amount of

computation is approximately the same as that expended in the

stiffness calculation for the well-known 20—node (60 d.o.f.)

solid element using a 3x3x3 integration grid . The half-second
- - computation time for a single element matrix can be made even

less by further compiler optimization of the code.

4.2 Evaluation of the Nonlinear Strain Energy

In the present analysis, the solution to the nonlinear problem
is obtained by seeking a minimum of the potential energy functional 

—

• directly. Hence, only the potential energy and its gradient with

respect to the unknown displacement parameters must be evaluated

* Polynomial terms of degree 2n—l are therefore integrated exactly.

Integration with n=4 is sufficient for most geometries.
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(see Section 4.3). Since the function and gradient evaluation

represents a large portion of the total solution time , and must
be performed a number of times , it is important to organize the
computations as efficiently as possible. The numerical inte-

grations upon which the calculation of the linearized stiffness

matrix is based (Section 4.1) provide a means of obtaining all

of the information required for evaluation of the nonlinear
strain energy terms , so that very little added computation is
necessary.

Consider first the linearized potential energy, which can be
expressed as

w~~~ = ~.{u}
T[K]{u}_Cu}T{p} (4.5)

since the global stiffness matrix [K] is symmetric , the required

gradient is given by

[KUU}—{P} . (4.6)

The direct evaluation of Equations 4.5 and 4.6 is the most efficient

means of carrying out the computation , when the common terms and
matrix symmetry are taken into account. Although it is not

necessary to form a global stiffness matrix (indeed, this feature
has often been cited as an advantage of minimization methods of
solution), the evaluation of the potential energy and its gradient
element-by—element is a relatively inefficient process. A count

*

of the multiplications and input-output operations required is

evidence of this fact.

As an example of the evaluation of the nonlinear terms of

the strain energy, consider the cubic term

T = (f  C ~~~~~ ~~~~~ 
U
~~,mn dx dy (4.7)

_ _ _ _ _ _ _ _ _ _ _ _ _ _  

Af

* On the CDC 6000 series computers , where memory-access operations

can consume somewhat more time than floating-point arithmetic, a
similar argument holds in favor of the present method .
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where the notation is that used in the previous section . For

the purpose of evaluating the term itself , it is convenient to
evaluate ~~~~~~ U~ ,kL and U~ ,mn directly, using the vectors
{H~~~ } of Equation 4.4 and the element displacement vector
{U
E} (Equation 3.9). This computation is made at each Gaussian

quadrature point, and the weighted sums accumulated to evaluate
T. The computational expense involved is small, since the
vectors {H,. .) have already been calculated at each integration
point during the linear stiffness matrix evaluation . Furthermore ,

only a limite d number of terms of the form ~~~~~ appear in the
energy, and repetitive patterns are easily taken into account.

Evaluation of the gradient of Equation 4.7 is performed in

a similar manner. Since

a 
— {H }T{Ua} (4 8)u

f
~~~

3 
— 

f

the cubic term can be rewritten in the form

‘P = CLf {HF1~ }
T uf,k~

uf~~fl 
dxdy{U~)

+ cff u~ jj{H,k~ }
T 
U
~ ,mn dxdy~r4}

a
+ Cf I U

f j~ U f k ~~
{H

~mn 1 dxdy {rJ~ }

When a is different from ~ and Yr  the gradient of T with respect

to the entries of (U~} is given by

= C f f  {H~~~~}T U f~ k~ ~~~~~ dx dy (4.10)

and again the integration is carried out numerically . Since each

of the individual terms in Equation 4.10 has been at least

partially evaluated in evaluating the energy function, the total
gradient evaluation requires only a small amount of additional

-• 
computation.

~
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Alternative methods of organizing the calculation of nonlinear

strain energy contributions have commonly employed very large
matrices , whose entries are associated with each of the possible

combinations of nodal variables within individual elements3’15.

Such techniques often require excessive amounts of storage (for

the present element, a vector of length 9316 would have to be
saved for each element merely for the evaluation of quartic
terms in the strain energy) and input-output time. The present

method uses a minimal amount of core storage , since only a single
vector of length 80n2 is needed frr e1ach element, where n

2 is

the number of Gaussian integration points. It is clear that the

computational procedure described here represents a very effective

approach for use in the solution of problems involving geometric

nonlinearities.

4.3 Solution of the System of Nonlinear Equations

In the present analysis , a solution is sought by direct

minimization of the discrete potential energy with respect to

the undetermined nodal displacement parameters. The solution

process is therefore one of unconstrained function minimization .

Gradient methods of minimization have been shown to be the most

powerful class of solution techniques for such problems16. Two

such methods which have been implemented in the present analysis

are described in the following section.

4.3.1 Fletcher-Powell Algorithm

The Fletcher-Powell (or variable metric) method of

minimization bears a close resemblance to the familiar Newton-

Raphson iteration. However, the Fletcher-Powell technique makes

use of an approximate metric in place of the matrix of exact

second derivatives during each iteration . The algorithm ,

originally suggested by Davidon17 and improved upon by Fletcher
and Powell18, is quadratically convergent and possesses extremely
good stability properties.
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Given a function F(~ ) which is to be minimized , the

Fletcher-Powell iteration proceeds as follows:

1. An initial estimate of of the solution is

selected. Usually this estimate consists of a linear solution,

or an extrapolation of previous nonlinear solutions.

2. The gradient of F is computed , and an initial
search direction is selected along the direction of steepest

descent; that is,

= —[H] VF (~0
) (4.11)

where [HI0 is the identity matrix .

3. A value of a is determined in such a way that

F(X
~ 

+ ~~~~ is minimized.

4. The vector of unknowns is updated by

~i+1 
= + ct~~. (4.12)

5. The following quantities are calculated :

-~~ 4. 4.
Y. = VF (X .~~1) 

— VF(X.) (4.13)

+
S. S.

[MI . = a. 4.T (4.14)
1 i

~~~~~~~~ • ~~~~~1 1

-
~~ T( [H] . Y . )  ( [H] . Y . )

I N ]  . — 
1 ~ i 1 (4.15)

1 
+ T  +Y~ E H I ~~~~ Y~~~

6. A new metric is computed from

[H]~~~~~~~~
1 

= [H]~~~~ + [M]~~~~ + [N]
1 

(4.16)

7. A new search direction is determined according to

sj~1 
= —(M]~~~ VF(~~~ 1) (4.17)

and steps 3 through 7 are repeated until convergence is achieved .
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The Fletcher-Powell technique exhibits extremely fast

convergence in practice, and is particularly effective when a
scaling transformation is used to normalize the vector of
unknowns16. The scaling implemented in the present analysis

adjusts the unknown variables according to the diagonal elements

of the linearized stiffness matrix , since these constitute a rough
approximation to the second derivatives of the function .

The primary disadvantage of the Fletcher—Powell
minimization is the need to retain a full matrix [H1~ at each
step, since storage requirements may become excessive for
larger problems. This limitation is eliminated altogether with

the Fletcher-Reeves algorithm , as discussed in the following
section. For smaller problems, however, the Fletcher-Powell

scheme is possibly the most powerful of the gradient methods
of minimization , and is preferred over the Fletcher-Reeves

procedure .

4.3.2 Fletcher-Reeves Algorithm

The Fletcher—Reeves (or conjugate gradient) method

of minimization19 is similar to the variable metric technique ,
but utilizes a less involved method of selecting a direction
for search. In this case, the information retained about higher

derivatives of the function consists of a single vector , rather
than a full matrix. The current search direction is then

selected according to

I V F ()
~~~ 1

2
— 2 (4.18 )

~~ 

IVF (~~~ 1)I

and

= —V F (~~~~~~~) 
+ 

~~~~~~ 
(4.19 )

replacing steps 5 through 7 of the Fletcher-Powell algorithm

(Equations 4.13 through 4.17).

It can be seen that the computer storage require-
ments for the conjugate-gradient algorithm are substantially
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less than for the Fletcher—Powell procedure . However , even
though the Fletcher-Reeves method is theoretically quadratically

convergent, convergence difficulties can arise in practice due
to successive roundoff accumulated in the vector from iteration

to iteration. Periodic restarts of the iteration are therefore

of ten necessary, and convergence may require substantially more
effort than is theoretically expected. A thorough discussion of

this problem , with numerical examples, is presented in Reference
20.

Substantial improvement in the performance of the

Fletcher—Reeves minimization is obtained by virtue of the scaling
- _ transformation mentioned in the previous section. This

modification of the problem serves to minimize the eccentricity

of the function space under consideration , thus improving the
numerical behavior of the iterations. A number of examples

demonstrating the ef f ects of the scaling transformation are
cited in Reference 16.

F- ~
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SECTION 5

COMPUTER PROGRAM

The sandwich finite element analysis reported herein has

been implemented in a computer program , which is briefly

described in this section. Both linear and nonlinear analyses
can be performed with the program , and multiple-pass capability

is provided for nonlinear problems. Although the code has

been developed on the CDC 6600 computer , it can be made com-
patible with other machines with relatively few modifications.

5.1 Program Size and Capacity

The sandwich finite element code presently consists of

slightly more than 5000 FORTRAN statements, distributed among

68 subroutines and the main program . Although the compiled
program occupies less than 70,000 (octal) storage locations
on the CDC 6600 , linear problems having up to 6000 degrees of
freedom a~d nonlinear problems of more than 1000 degrees of
freedom can be accommodated . These limits are easily adjusted
upward by modifying appropriate array—dimensioning statements.
Multiple load cases may be considered for linear analysis. Three

types of finite elements (plates , cylindrical shells , f lat
sandwich panels) are presently available in the program; all of

these are based upon the bicubic interpolation scheme outlined
in Section 3.1.

5.2 Program Organization

The computer program is arranged in modular form , and utilizes
the CDC segmentation loader21 to obtain a maximum of flexibility
in ordering the computations. The segmented structure allows for

a greater subdivision of the computational tasks than is feasible

with the conventional overlay organization , and hence larger
problems may be considered with quite modest central memory
requirements. Furthermore , provision for creating “copies”
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of certain commonly—used service routines makes these routines
available to the necessary sections of the program , even though

they are not retained in high—speed memory during the entire

problem solution.

All internal data is normally kept on disk files , in contrast
to an “overflow ” type of data structure. The motivation for this

is the large number of degrees of freedom involved in a single

element (96 for the flat sandwich panel element), so that problems
considered by the program would normally be solved out-of-core

regardless of the data organization . The handicap for small

problems is minimal , as shown in Section 5.3.

Five different equation—solving routines are presently avail-

able to the f ini te  element analysis. For linear problems, an

in—core band solution or an out-of-core block solver are provided ;

a conjugate gradient (Section 4 .3.2) algorithm and two versions
of the variable metric (Section 4.3.1) solution (in-core and

out—of—core) are implemented for nonlinear analysis. The
method of equation solution is chosen according to problem type,
problem size, and available memory , as indicated in Table 1.

The present computer code contains partial generation

capabilities for nodal coordinates, element connectivity and
boundary condition data , to reduce the ef fort required by the
user. Geometry data and distributed loadings may alternatively

be described in equation form through the use of user-written
subroutines. A partial restart capability is also provided for

use in nonlinear analysis.

5.3 Computing Time and Memory Requirements

Memory allocation for the present finite element analysis

program is diagrammed in Figure 10, according to blocks of

routines which represent major steps in the computational

procedure . The maximum field length requirement is 67740 octal

words of memory , with this being determined by the storage
required for the nonlinear solution. Linear solutions can be
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performed using only 62500 words of control memory . To demonstrate

the efficiency of the analysis program , the code has been tested
on a small problem and compared with the general purpose programs

sAp -.1v22 and NASTRAN23. The problem is that of a thin, flat plate
loaded at the center , as shown in Figure 11. A four-element

discretization was chosen, resulting in eight degrees of freedom
for the SAP-IV and NASTRAN analyses, and nine freedoms for the

H present method (the additional degree of freedom corresponds to

the cross-derivative nodal parameter at the interior point). All

three programs were executed on the same machine , using similar
compiler options. Results of the analyses, including computer
run times , are summarized in Table 2, and central deflection
results are compared with a closed form solution given by
Timoshenko .24 Deflection results from NASTRAN and the present
analysis are quite good, while the deflections given by SAP-IV
show a significant error. It can be seen that the run times

required for the program here compare favorably with those of the
other two programs. It should be pointed out that the sandwich
computer code is at a slight disadvantage for such a small problem ,

since it works completely out of core. Furthermore , stress

computations were performed at 25 points in each f inite element by
the sandwich code , while stresses were obtained only at the
element centroids from the other programs.

* The above computer memory requirements are based upon capacities of

6000 degrees-of-freedom for the linear problem, and 1000 for nonlinear
• analysis, on a CDC 6600 machine .
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TABLE 2

RESULTS OF COMPUTER PROGRAM COMPARISON :

ANALYSIS OF THIN PLATE WITH CONCENTRATED LOAD

Present
Program NASTRAN SAP-IV Analysis

Central Memory 1400008 1040008 6400 08

CP Time 10.1 6.0 6.2

10 Time 36.9 14.7 26.6

PP Time 37.5 21.9 21.2

Total System Time 84.5 42.6 54.0

Degrees of Freedom 8 8 9

Computed Central 0.2397 0.2178 0.2400
Deflection

Error 2.0% 11.0% 1.9%

H
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SECTION 6
DEMONSTRATION PROBLEMS

Several numerical solutions based on the present analysis are
presented in this section . Both linear and nonlinear problems

are considered . Applications of the method to multicore sandwich

constructions and nonrectangular panels are illustrated . It is

shown that good accuracy is obtained for predictions of both dis-

placement and stress response , even in the presence of geometric
singularities.

6.1 Linear Analyses

A number of linear analyses are presented in the following
sections. The bicubic displacement approximation is seen to

produce very smooth stress distributions as well as good repre-

• sentation of natural boundary conditions, even where very few

elements are used in the discretization .

6.1.1 Multicore Sandwich Beam

The five-layer cantilever beam shown in Figure 12 is

considered. All three faces are isotropic, with E = 10.0 x 106

lb./in.2, ii = 0.30, and are 0.025 inch in thickness. Two sets
of core properties (strong and weak cores) are analyzed. The beam

is subjected to a transverse end load of 10. lb.

The finite element idealization consists of eight

sandwich elements, four in each layer of the beam. The use of

longitudinal symmetry and the enforcement of displacement contin-
uity in the central layer results in a total of 237 independent
degrees of freedom.

• 
- 

Calculated displacements for the two cases considered
are listed in Table 3. The tip displacements for the weak-core

case indicate the importance of considering normal deformations
in the core layer; end deflections of the upper and lower faces
are different by more than four percent in this example. Total
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TABLE 3

FREE END DISPLACEMENTS OF MULTICORE BEAMS

A. Weak Core Beam

Displacement on Displacement on
Centerline Free Edge

Upper Face (Unloaded) 0.113 0.106

Central Face 0.114 0.106

Lower Face (Loaded) 0.118 0.108

B. Strong Core Beam - •

Displacement on Displacement on
Centerline Free Edge 

—

Upper Face (Unloaded) 0.0856 0.0839

Central Face 0.0856 0.0839

Lower Face (Loaded) 0.0858 0.0840

4- -

4
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stresses in the lower sandwich face , along the centerline of the
• beam, are shown in Figure 13. Stress distributions for both beams

are quite similar , except near the free end where high local face—

bending stresses occur for the weak-core case. At the clamped
• edge , the total stresses are in agreement within three percent. The

total moment developed at the root section is computed as 227. in.-lb.,

based on average membrane stresses in the two outermost faces. The

actual moment due to the tip load at this section is 200. in.-lb.,

so that the natural boundary condition is well-represented despite

the relative coarseness of the discretization . It should be

mentioned that the above stresses have been computed along element
edges, and that the values given for x = 0., 5., 10., and 20.
are true nodal stress values, which are notorious in most finite

• element formulations for their sporadic behavior . The primary

reason for the smoothness of the stress prof iles in the present
analysis is the enforcement of continuity of the membrane strains
along interelement edges, made possible by the use of derivative-
degrees of freedom . The differences between adjacent elements in

total stresses , evaluated at the common nodes, are 0.15%, 0.80%,

and 3.9% for the strong—core sandwich, and 4.6%, 5.2%, and 16%

for the beam with a weaker core.

6.1.2 Skewed Sandwich Plate

A f lat, rhombic sandwich plate having a skew angle of
45 degrees is analyzed for response to a pressure loading . Such a

problem has been solved previously by finite elements25 and by the
Ritz method26. The face sheets and core of the sandwich have the

following properties:

Ef = 1. x l0~ lb./in.2 Uf 
= 0.32 tf = 0.025 in.

Gc = 500. lb./in .2 t = 1.00 in.

The transverse compression modulus of the core is taken to be very

large, so that normal deformations in the core are suppressed . A

uniform lateral pressure load of 1.0 lb./in.2 is applied to the
entire panel .
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For this example , the entire panel is modelled by sixteen
sandwich elements , as shown in Figure 14. The discretization shown

involved 328 independent degrees of freedom .

Monforton and Michail25, using a finite element approach
developed specifically for skewed sandwich panels , obtain for the
present problem a central deflection wc = 0.135 in., and a maximum
principal moment resultant M = 25.3 in.-lb./in. Results given by
Kennedy26 from a Ritz assumed-mode approximation are w

c 
= 0.142

and M = 25.4. Solution of the problem by the present finite
• element method gives Wc = 0.126 in. for the maximum transverse

deflection, and M = 26.0 in.-lb./in. for the principal moment

(based on the average membrane stress in each face). Thus, the

present analysis shows the panel to have a slightly greater result-

ant bending stiffness than the earlier solutions.

It has been pointed out that the sandwich finite element
developed herein allows the enforcement of continui ty of membrane

- • strains between adjacent elements. However , the local face-
• bending stresses depend upon the curvatures of the face sheets,

and therefore cannot be made continuous. It is interesting to note

• that, for all four elements whose corners intersect at the central
node of the skewed panel , corner stresses identical to four decimal
places are obtained by the present analysis, even though the local
face-bending stress represents approximately 25% of the total

stress at the central node point.

6.1.3 Axisymmetric Annular Plates

As an example of the accuracy which is attainable for

nonrectangular shapes using the present method , a thin (t=O.020 in.)
annular sheet under uniform pressure is considered . The inner and

• outer radii of the plate are 10.0 in. and 20.0 in., respectively
• 

- 
(see Figure 15). On the inner edge, the plate is fixed to a rigid
shaft. The outer edge is left completely free.

• The geometrical representation for this problem is

described in Section 3.2, and the natural coordinates ~,fl are

shown in Figure 7. Since r = r(~ ) and e = O(~ ) in this case , the
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nodal parameters 
~~~~ 

and ~~~~~ are zero due to the condition of

zero tangential slope. The plate is modelled with a single finite

element, resulting in a total of four unconstrained degrees of
freedom. The nonzero nodal parameters correspond to ~~~ and
at each of the two nodes on the outer radius.

For a total load of 1 lb. (p = 0.00106 psi), the one-

element solution yields a maximum deflection of w0 = 0.1929

inches , and a maximum radial stress of a . = 748.4 psi at the

support. An analytical solution given by Timoshenko24 shows
that w = 0.1989 and an 

= 1102.4 psi. The errors in transverse

deflection and maximum stress are therefore 3.0 percent and 32.1
percent, respectively, for the numerical solution . This degree of

accuracy , using only a single element, is quite good particularly
when one notes that the average aspect ratio of the finite element

used is slightly greater than nine to one.

The same problem (with r~ = 5.0 inches), has been
solved using a 12 element discretization with 46 degrees of freedom.
For this model , displacement results given by Timoshenko24 are
reproduced exactly, and the maximum stress at the clamped support
is different from the analytical solution b.y 1.4 percent. The

calculated stresses along a radial line are shown in Figure 16,

- - 
normalized with respect to the maximum radial stress. As in the

- 
- 

previous problem, a five degree sector of the plate is considered
in the model , so that the average element aspect ratio is close
to unity.

6.1.4 Circular Sandwich Panel

A uniformly loaded circular sandwich plate, shown in
Figure 17, is considered . The face sheets are 0.025 in. aluminum,

with Ef = l0~ and = 0.30. Properties of the core are Gc 
=

26,000 psi and Ecz = l0~ , with a thickness of 0.450 inches.

A previous finite element solution of this problem has been

obtained by Sharifi27, using eight axisymmetric sandwich elements
in the radial direction. The discretization used here has three
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elements on the radius, with the innermost of these containing a
geometric singularity where the element edge degeneratE-s to a
point.

Stress distributions for the lower fac~ of the circular
sandwich, shown in Figure 18, agree quite well with the results

reported in Reference 27. For the central bending moment, the

eight element discretization of Sharifi yields a value of
M -340 in.—lb./in., while the present three-element model gives

M = -360 in.-lb./in . At radius r = 20, the results of Reference
27 are Mr 485, M0 150; the present sandwich element gives
Mr 

= 417, Me = 155 (units are in.-lb./in in each case).

This particular example is an excellent demonstration

of the ability of the Hermite bicubic element to maintain good

stress accuracy for structures having curved boundaries as well as

geometric singularities. It should be noted that the quality of

the solution does not diminish in the vicinity of the singularity ,

• 

-

~ since the stress computations at the plate center are just as
accurate as those at the clamped edge.

6.2 Nonlinear Analyses

Examples of the geometrically nonlinear analysis of sandwich

plates using the present finite element method are described in
the following sections. Load-deflection data are presented for

the case of a clamped rectangular panel , for which a previous
H solution is available, as well as for the skewed panel whose

linear solution has been given in Section 6.1.2.

6.2.1 Rectangular Sandwich Plate

• A 50 inch square panel, clamped on all edges, is
subjected to a uniform pressure load p. The sandwich faces are
aluminum (Ef = 10.5 x 106 lb./in.2, %Jf = 0.30) and 0.015 in. in
thickness. The core layer is 1.0 in. thick and has shear modulus

= 50000 lb./in.2

The finite element model for this problem consists of four
nonlinear sandwich elements, as shown in Figure 19. Due to the
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double symmetry of the problem, only one quadrant of the panel is
considered; the resulting discretization has 120 independent

degrees of freedom. Solutions for various values of the pressure

loading are obtained using the variable-metric method of minimiza-

tion (Section 4.3.1).

The load—deflection path for the present problem is

shown in Figure 20 in terms of a central deflection ratio w /t 
—

and the loading parameter Q = 12 pa (1_u f )/Eftftc , where
2a = 50 in. is the edge dimension of the panel. These results are

compared with previous solutions given in References 3 and 28. The

analysis presented in Reference 28 involves a perturbation solution
for q in terms of the parameter Wc/tc~ 

and is limited to a two-term

expansion of the form Q = C1(Wc/tc) + C2(wc/tc)
3, where the ratio

Wc/tc is on the order of one. In Reference 3, a finite element
solution is given, wherein it is assumed that the pressure loading
acts at the midplane of the sandwich; such an assumption is

necessary due to the neglect of normal deformations in the sandwich

- 
• core. Antisymmetry conditions requiring that u1 -u2, v1= -v2 can

then be imposed to reduce the number of degrees of freedom . It is

more reasonable to suppose that the loading acts over one face of
the panel , and this approach is taken in the present analysis .
Figure 20 shows that the present method yields a solution which

is slightly more flexible than that of the previous finite element

analysis, and substantiall y more so than the perturbation solution
of Reference 28.

The importance of a nonlinear analysis capability is
evident from the load-deflection path for the present example.

The deflection predicted, for example , at Q = 30. (p = 27.7 psi)
by the linear analysis is more than 55 percent greater than that

• 
obtained by taking geometric nonlinearities into consideration .

6.2.2 Skewed Sandwich Plate

The rhombic sandwich panel considered in Section 6.1.2

is reanalyzed, this time including the effects of geometric non-
linearities. A sixteen element model consisting of 328 independent
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degrees of freedom is employed as the linear analysis. The

Fletcher-Reeves method is used to obtain numerical solutions.

Load-deflection results for the skew panel are shown

in Figure 21. Numerical solutions at pressures of 1.0, 2.5 and

5.0 psi are used to determine the curve, with the starting

estimate for each solution vector extrapolated using all previous
solutions. Although the Fletcher-Reeves iteration has been found

to perform sluggishly at times on smaller problems (less than 100

degrees of freedom), its performance in the present problem is
quite good. Using the linear solution at p = 1.0 psi as a start-

ing point, the nonlinear iteration converges in only 17 iterations.
The solutions for 2.5 psi and 5.0 psi are converged in 279 and 154

iterations, respectively, using a linear and then quadratic
extrapolation for the starting vectors.

The effec t of nonlinearity upon the response of the skew
panel is a great deal more pronounced than for the square plate
considered in the previous example. For the skew panel, the central
deflection predicted by a linear analysis at a pressure of only
5.0 psi is more than 67% too large.

The importance of the computational procedure for the
element potential energy and its gradient (Section 4.2) is evident,

since more than two such evaluations, on the average, are necessary
• at each iteration in the minimization solution . For the present - 

-

example , the average execution t ime per iteration is 1.38 seconds;
thus , the method outlined in Section 4.2 is seen to be quite
effective.
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SECTION 7

SUMMARY AND RECOMMENDATIONS

A parametric finite element formulation for the linear and

geometrically nonlinear structural analysis of sandwich composite
panels has been presented . The theoretical development includes

ef fects due to local bending deformation in the sandwich faces ,
and both transverse shear and normal strains within the core
layer. Use of the face sheet displacements as primary unknowns

in the discretization permits the consideration of thin laminates,
— multicore sandwich, and “haif-sandwich” constructions as well as

the more common three—layer geometry . The discrete model is

based upon Hermite bicubic interpolation in parametric coordinates ,
and is thus applicable to panels having curvilinear or skewed

boundaries. Orthotropic material properties and effects due to

membrane-bending stiffness coupling are also accounted for in the

analysis. Displacement and stress results obtained using the

parametric sandwich finite element are quite good , even on
relatively coarse meshes , and solution accuracy is maintained
even when modelling curvilinear shapes with degenerate elements.

The results summarized in this report represent a preliminary
state of development of a more comprehensive sandwich composite
analysis capability . The discrete formulation described , which is
capable of considering a fairly general class of undeformed panel
geometries, can be extended to model sandwich shell geometry as
well as multiple plate or shell constructions joined at arbitrary
angles. Provisions for including stiffening members and attach-

ments to surrounding structure are important as well , but were not
implemented in the present effort. Future extensions to the

present analysis should also include consideration of material non-
linearity , and dynamic as well as static structural response.

The research described herein suggests that refined finite
element approximations such as the parametric bicubic can be
successfully adapted to the general nonlinear analysis of structures
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of a practical nature. Although the element formulation is

relatively complex, the resulting numerical performance is
extremely good . Computational requirements are generally modest

due to the high solution accuracy which is attained on relatively

coarse grids.

4
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