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resultant stiffness coefficients for an
orthotropic layer
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fixed coordinate values
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symbol denoting degree of continuity of a
function

lamina stress-strain coefficients in material
coordinates

subscript denoting the sandwich core(s)
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Hermite interpolation polynomials

column vector of polynomial interpolation
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approximate metric used in Fletcher-Powell
solution

element identifiers

individual lamina identifier

stiffness matrix

element stiffness matrix

moment and direct stress resultants

matrices used in constructing an approximate
metric in the Fletcher-Powell method

number of Gaussian quadrature points per
coordinate direction

subscript denoting the undeformed state,
or the midplane of a layer
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i NOMENCLATURE, continued
] P - applied pressure load
: P - surface traction components
E {p} - column vector of applied forces
] } Q - loading parameter
{g}, (R} - moment and shear stress resultants
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! Si - search direction in nonlinear solution
i T - denotes typical term in strain energy or energy

i gradient. Also used to indicate matrix

A transposition
ﬂ t; - thickness of layer i
% f U - strain energy
| ! u, vV, W - displacement components at an arbitrary point
E ‘ u, v, w - midsurface displacement components

? {u} - column vector of displacements
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| v = volume
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k| forces

ﬁ* X, Y 2 - Cartesian coordinates
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F o {x}, (¥} - column vectors containing geometrical mapping 3
b parameters
i §i - vector used in constructing an approximate

metric in the Fletcher-Powell method

one-dimensional search parameter in Fletcher-
Powell method

T
Q
{

Bs - parameter used in determining step direction in
Fletcher-Powell method
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SECTION 1

INTRODUCTION

The development of light weight, high strength advanced com-
posite materials affords the designer numerous possibilities for the
production of improved high-performance aerospace structures. 1In
order to fully exploit this progress, analysis capabilities must
be expanded to keep pace with advances in both materials and
fabrication technology. This comment is particularly true in the
case of sandwich composites. Sandwich construction is an attractive
alternative to other, more common structural configurations, since
substantial benefit in terms of load-carrying capacity can be
obtained under little or no weight penalty. However, modes of
failure which are unheard of in simpler types of construction are
possible in sandwich structures due to the inherent complexity of
the gecmetry. Design and analysis methods which predict these modes
of failure accurately and economically are therefore a necessity.

A particularly important consideration in the efiective
utilization of sandwich composite construction is the development
of nonlinear analysis capabilities. It is a well-known fact that
the shear flexibility which is typical of sandwich core
materials places severe restrictions upon the range of validity
of linear analysis methodslf Linearization has been shown to
be particularly restrictive in the stability analysis of sandwich
shells having significant curvaturez.

It is clear that the finite element method is the most
promising approach to the development of analysis tools which
will be adequate for the consideration of sandwich composite
structures of a very practical and general nature. The piecewise
nature of finite element representations permits the treatment
of complex and irregular geometries in a straightforward, unified
manner. The consideration of very general loading systems and
boundary conditions also presents no particular difficulty.

- * Numerical superscripts indicate references listed at the end

of the report.
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The present report outlines a procedure for the finite
element analysis of sandwich structures by both linear and non-
linear methods. A theory of sandwich plates is presented, and
some important aspects of discretization using higher-order (cubic)
finite element representations in parametric coordinate space are
discussed. Several examples illustrating the accuracy and flexi-
bility of the numerical analysis are given.

Since the sandwich structure analysis system described is
not yet fully developed, many limitations remain and a number
of desirable features have not yet been implemented. The limi-
tations of the existing methodology are discussed and a number
of suggestions for further development are mentioned. It is
thought that the analytical approach adopted herein represents a
useful foundation for the further development of a reliable and
comprehensive mathematical model for the analysis of practical
structures which employ sandwich composite construction.

1.2 Description of the Problem

Sandwich construction is a type of built-up panel configura-
tion characterized by a number of thin, high-modulus layers (face
sheets or skins) which are separated and stabilized by thicker, low-
modulus layers (cores). Such a panel can be made extremely light-
weight, while offering considerable bending rigidity due to the
separation of the face sheets. The function of the sandwich core is
analogous to that of the shear web of an I-beam section in coupling
the response of the face sheets by transferring shear stresses
between them.

While sandwich composites are an extremely attractive
concept due to their light weight, their use in practical struc-
tures introduces a number of possible failure modes which are not
encountered in other structural confiqurations. Specifically,
these additional failure mechanisms are attributed to:

1. weakness of the core layer(s) in comparison with the
face sheets, both in shear and in compression
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2. 1inadequacy of the face sheets for resisting loads
near fasteners and inserts

3. lack of a continuous interface between face sheets and
core in cellular (honeycomb) core constructions

4. the possibility of defective bonding between layers.

Each of the above properties give rise to a particular local mode

of failure which is unique to sandwich type construction. Since
each of these types of failure must be considered both in formulating
and qualifying a particular design, extensive analysis is required.
Furthermore, a separate checking procedure for each possible type

cf failure may not always be sufficient, particularly when the
structural component in question is to undergo large deflections

or inelastic behavior.

Thus, it is clear that sandwich composite materials present
a number of unique problems for the designer or analyst. Proper
treatment of these problems requires a detailed analysis of the
sandwich geometry and state of deformation, to which the finite
element approach is ideally suited.

1.2 Scope of the Analysis

The present analysis addresses the problem of static defor-
mation of flat sandwich panels. Material behavior is restricted
to be linear and elastic, although geometric nonlinearity is
considered. The analysis is thus applicable to problems of
large displacements, elastic buckling, and postbuckling.

Sandwich face sheets are idealized as thin, layered com-
posites obeying the Love-Kirchhoff assumptions. Isotropic and
orthotropic thin plates can therefore be considered as special
cases. The sandwich is of the anti-plane type (non-direct stress
carrying), with normal deformations considered. The finite element
discretization is performed in such a way that multicore panels,
"half-sandwich" constructions, or thin laminated composites are
easily considered by stacking elements or eliminating individual

layers within an element as required.
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External loads applied to the sandwich panel may consist of
concentrated forces and distributed pressure or body forces. Due to
the numerical integration which is necessary for calculation of the
. element properties, the specification of more complex distributed
' forces (i.e., hydrostatic or sinusoidal distributions) is also
permitted.

The finite element discretization presented is based upon a
Hermite bicubic displacement approximation in isoparametric
coordinates. Skewed panels, or sandwich having arbitrary
curvilinear boundaries can therefore be considered. The method
described represents the first development of an isoparametric
sandwich finite element which has the properties of both

completeness and full compatibility of displacements as
well as bending slopes. Considerations in the parametric
representation of finite element geometry in the undeformed state

T — e e—

| are discussed in Section 3.

4 The research reported here also represents one of the

k| first applications of the parametric bicubic formulation

to nonlinear problems. A similar finite element treatment of sandwich
analysis has been presented by Monforton3, but is limited to
rectangular shapes in Cartesian or cylindrical coordinates. Signifi-

e g o e

cant gains in efficiency have also been made in the present work
f for the computation of nonlinear strain energy and energy gradients
L 1 for use in numerical solutions by direct function minimization methods.
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SECTION 2
SANDWICH PANEL ANALYSIS

A brief description of the sandwich theory which is used as
a basis for the finite element analysis is given in this section.
The geometry of deformation for a typical sandwich panel is dis-
cussed, and the total potential energy is formulated in terms of
the displacement field unknowns. The theory presented is similar
to that outlined by Monforton3, but is extended to include
normal deformations within the sandwich core. Large displacements
are considered, but the development is limited to small elastic
strains and moderate rotations.

2.1 Kinematics of Deformation

Consider a flat, three-layer sandwich construction, as
shown in Figure 1. The two face sheets are taken to be thin
laminates, each composed of a number of orthotropic layers of
arbitrary orientation. The sandwich core is a thicker, relatively
flexible layer having constant thickness and material orientation.

Each face sheet is considered to deform according to the
Love~Kirchhoff assumptions; that is, linear filaments originally
straight and normal to the face remain so after deformation, and
undergo no extension. In terms of the displacement variables at a
general point in the face sheet, this assumption implies that

e W N BN
Vf = vf - szf,y
We o= g v F a 1,2, (2.1)

Here upper case letters are used to denote the displacement
components at any arbitrary point, and lower case symbols to
represent those within the midplane of a face. The coordinate z¢
is measured upward from the face sheet midplane.

In the core layer, it is assumed that linear filaments
originally straight and normal to the layer remain straight, but
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Figure 1. Sandwich Panel Geometry.




need not be normal to the deformed layer. This state of

deformation is pictured in Figure 2. The core displacement state

therefore takes the general linear form

Uc = uc + zc¢
Vc = vc + zcw
Wc b PR (2.2)

where z is measured from the midplane of the core.

The parameters or Mo W $, ¥, X can be eliminated from

c
Equation 2.2 by enforcing continuity of displacements between
the faces and core. Perfect continuity between layers is

assumed, so that the possibility of debonding failure is not

considered. At the lower bond line, zy = tl/2 and z, = -tc/2
so that
tl tc
L A ) B el e
tl tc
i e T Y Y
tc
Wy ik T o L (2.3)
Similarly, for the upper bond line,
t2 tc
b SIS g’ T Ol - 9 ¢
t2 tc
vy + wz,y - Ny % z— )
" = v+ 7X, (2.4)

Solving Equations 2.3 and 2.4 for the core displacement parameters

and substituting in Equations 2.2, one obtains

o
U =5 (g * 0y ¢80 x - "1M1.0)
zc t tl
i g =Wy o' T M.y
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3 E VC - %(VZ
zc
a7 (vg=vy * £, o F L) :
1 Zc E
wc - (w2+wl) + E; (wz-wl) (2.5) i

Lo

Thus, the displacement components of any point within the sandwich
faces or core are completely determined by the six components of

i nan ki

displacements within the faces: Ugr Ver Wei £ = 2%

Calculation of strain, stress and strain energy within the
core layer is simplified considerably if Equations 2.5 are replaced
by approximate conditions of continuity, based on the assumption
that the face sheets are very thin in comparison with the core.

I The displacement continuity equations are then applied at the =
i ’ midplanes of the faces, with the resulting core displacement 3
‘ expressions given by

E |
f u:

z
A | c i~

Uu_ = 5 (u2 + ul) + E; (u2 ul)
; 1l zc
| LT el L T
{ 1l zc
| W, == (W, + W,) + — ]
% c 2 2 1 tc (w2 wl). (2.6)
t

Equations 2.6 are used in what follows to enforce disnmlacement con-
tinuity of the sandwich forces and core(s).

The strain-displacement equations of a thin face sheet,

valid for large displacements and moderate rotations, are given
B . by Novozhilov?:

2 1 .2
Cxt “ Ve, x * T Ve ,x T %e xx
- R e

WE T Yy T2y T Ly
{ = + - .
| Yxye =Yg,y * Ve, x t VE,xYe,y T 2%6Y, xy (2.7)

£ & 152,
i s
| { For the sandwich core, the strain energy arising from inplane

deformations is assumed to be negligible, and therefore only the

10
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transverse shear and normal strains need be considered. Further-
more, it is assumed that the strain energy of the core is adequately
represented by a linear relationship between strain and displace-

ment. Thus, the strains within the core layer are calculated

from 5
=1 & 1 _c %
Yxze = Eé(u2 Hpd * 2(w2,x+w1,x) % t, (w2,x wl,x)
z
% | . 1 _c 2
szc tc(v2 Vl) + 2(w2,y+wl,y) + tc (wz,y wl,y)
€ =1 (W,=w.) (2.8)
zc £ 2.1 -
c

It will be convenient in what follows to refer to Equations
2.7 and 2.8 in matrix form. Letting

B 4 =
{E}f = Lexf & nyij if = 1,2 (2.9) i
and
N (2.10)
{E}c — l?xzf Yyzf ech 5

the strains are of the form

{e}f {e°}f + 2z {K}f; £ w1, 2 (z2.11)

and

{e}

- {€°}c + zc{K}c. (2.12)

2.2 Stress-Strain Equations

Each of the sandwich face sheets is taken to consist of a
number of thin layers, each of which possesses a stress-strain
relationship of the form

o1 11 Y32 %l =

o2 Y = |C12 Gz Ca6 €2

712 Ci6 “28  Ses Y12
11
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where 1,2 denote the principal material axes of the layer. Equation

—————

2.13 can be referred to the structural reference axes x,y by a
linear transformation of coordinates, with the result

Eo k) L) (k) (k) (k)
5 Oy 9117 Q2 5 €
(k) (k) (k) (k) (k) .
9% 2 =|%2 % 9 €y
(k) (k) (k) (k) (k)
“xy | %167 %26 % Yxy (2.14)
£ ¢ £

h

refers to a stress within the kt individual

Here the notation oig)
layer of face f. By substituting for the strains from Equation

2.11, Equation 2.14 is integrated through the face sheet thickness

with respect to the weighting factors 1 and ze to yield5 :
] ! 3
i { {4
| :
| e P ALl Bye Eag it Pua 17Bys g ) j
Ny F1a Bag Pog i By Bop By €y
: )
? 4 Ny } =« | P3¢ Pug Pog Pl Poe Pop 4 Yxy }(2.15)
. - == U TR R G R I Gt
My By By Pie Pax P B x
t M, Bia By Bye !Dy, Dy, Dy ¢
' \Mnyf LP16 P26 P66 ‘P16 P2s PesJ \“xyJ .
! where
| t./2 t./2
= £ (0] = f
Ny a2 <. . 0xzfdzf
! _tf/z —tf/2
t./2 t 72
ol £ (2.16)
N_ = 0 dz = .
y f £ My f cyzf dzf
~t./2 ~tg/2
te/2 £ l2
| f f
N R o
f xy = [ xy FE g | Ted e :
~tg/2 ~t/2
, and
i
» 12

TR e e T e

R R R T S 00, JORPPNIS N G SR REPE T IO SO L 0, o 0 SO U




T T T T X Y Y T e

SRS EE—

=

t./2
£ (k) 2 .
(Aij.BiJ’ iy e = f Qijf (,zg,2g) dz; £ = 1,2 (2.17)

The coefficients A 14 and.Dij in Equation 2.15 are the overall
membrane and bending stiffness of the face, respectively,
including extensional-shear coupling properties. The Bi'
represent the effects of coupling between membrane and bending

action due to asymmetry about the midplane of the laminate.

For a sandwich core with orthotropic properties, the stress-
strain relation is of the form

Txz ze 0 0 Yxz
Tyz = 0 Gyz 0 sz
o 0 0 E €
z e z * z & (2.18)

Using Equation 2.12 to evaluate the vector of strains, and
integrating over the thickness with respect to weighting factors
1 and z, yields the following

B,

where
t../2
T [o}
{Q}" = o_ |dz
o -tc/z l_xz vz zJ c
£. /2
{R}T - c l_xz 2 o J z dz (2.20)
c -t /2
c
and

13
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tc/2 ze 0
(Al = {t o B 8.0 dz
2 c
=
tc/2 ze 0 0-1
By, = [ 0 Gyp O z, dz_ (2.21)
-t /2 Lo
c 0 0 B J
— 2 C
=
tc/2 rbxz g 0 2
D}, = f [ SO z°-dz
C =& /2 Y2z C C
c 0 0 E
- Z-J C

2.3 Potential Energy Formulation

Since the problem under consideration is conservative, it is
possible to deduce a potential energy of deformation, m_, such
that the necessary conditions for equilibrium are defined by the
condition

= 0. 2.22
an ( )

In particular, the potential energy is given by

=U-W 2.23
wp ( )

where U represents the strain energy stored in the body due to
its deformation, and W is the potential of the forces applied to
the body, both expressed in terms of displacement functions.

In terms of Lagrangian stress and strain functions, the total
potential energy has the form

m, = f‘fff 2 13T {odav - [f (w}T(P)an, (2.24)
o s;
where S; is the portion of the surface over which loads are
prescribed, and the extent of integration is the initial
(undeformed) volume. The vector {P} consists of generalized

external forces conjugate to the components {u} of generalized
displacement.
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For the present case, the stress and strain functions
in the sandwich face sheets are defined in Equations 2.7, 2.11,
and 2.15; in the core, they are given by Equations 2.8, 2.12,
and 2.19. Making use of the direct stress and moment resultant
forms of the stress parameters, the total potential energy of
the deformed sandwich panel is as follows:

o T : 4
p ol Bl T e

=
I

Aot B s, o
(e
- [f {u}T(P} aa, (2.25)
Sg

where the strains are defined by Equations 2.7 and 2.8.

Expanding the energy functional in terms of displacements

gives
n =l“‘ xzc(u_u)2+_x_z_c(v_v)2+E_z__c_:_(w_w)2
R 3 2™ t 271 T 3%y

A° c c e

(=
* GpacMamuy) Wy W x) P Cupe (V) (W Mo o)

1 2 2o
i §zectc(w2,x & wl,x wl,xw2,x)

1 2 2
i EGYZCtC (wz,y + wl,y wlzywz,y)] i

2

1 2 2 2

b 7251 [1 {81169 x * Boad"s,y * Pess Ve, y™e )
Ao
£

* 206Y %,y Y 2ygeYe,x t RogeVe,y) Ve, vt Ve, x)
- B w

2 IByyeYe,xe, xx ¥ Ba2eVe, v e, vy 2 Be6e Ve, xy e,y VE, ¥
* Broe Ve, xxtUe, xYe,yy) * Ples¥e,xx Ve, vVe,x)
+2B +B

,x)+ZB

16£%¢,x%¢,xy "B26eVe,yy Ve, yVe 26fuf,wa,xy]+
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=

R B

+ 2D

2 2 2
*D116%, xx * D22¢¥e,yy ¥ 4Psee¥E, xy 126%¢, xx£, vy

+ 4D + 4D

16£7¢, xx" £, xy 26£7¢,yyVE, xy

2 2 +v )
ByygUs Ve, x * Pa2eVe, e,y tPReet¥e, x"e,y (Ve,y Ve x

)

+

+

2 2 2 -
Blog(Ug W,y * Ve, g%, x ) Pree¥e,x (Ue,y™VeEx

(u )

+

2
i
669 e, x"e,y ¥ P2ee¥e,y e,y TV E X

*2o6eVe, vVE, x"E,y

P 2 2 S
X [%llf“f,gxwf,x % Bzszf,ywa,y + 4Bgge Ye,x"E,y" £,xy
. )

+

2 2 2 "
Bloe e, xxVe, o7 Ve, yy¥E, )t 2Pres Ve, xyVe, Ve, xx"E 2y

2
* 2Boee (Ve xyVE,y Tt Yf,yy"f,x“f,y)]
)

1 4 4 1 2o
+ 7 Breve x * PoaeVe,y) YlReer Y ZP12e) Ve, x"E,y

3 3 }
* (BygeVe o¥e,y T Paef¥e,xVe,y)f P (2.26)
2
'2: fj(pxuf & Pyvf = Pzwf) oA
=] AE

Thus, the potential energy of the deformed sandwich panel
is expressed as a function only of the displacements within the
face sheets and their spatial derivatives. The displacements
(and therefore the potential energy) of the sandwich core are
obtained by what may be thought of as a linear interpolation
between the face sheets.

The potential energy as formulated in Equation 2.26 is
sufficiently general to describe a flat sandwich panel, of an
arbitrary shape, undergoing large deflections, which may be due
either to the intensity of loading or to buckling instability.
Dissimilar face sheets are considered as well as any asymmetry of
either face sheet about its own midsurface. It should be noted
that in obtaining Equation 2.26 it is assumed that the core prop-

Gyzc’ Ezc are uniform through the thickness of the

erties G i
X

zC

sandwich. This corresponds to setting [B]c equal to zero in
Equation 2.19.
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SECTION 3
FINITE ELEMENT DISCRETIZATION

The potential energy of a flat sandwich panel undergoing
finite displacements has been formulated in Section 2. 1In the
following, the details of a finite element discretization of the
structure are considered. Interpolation of the element displace-
ment state is established using the natural (parametric) coordinates
of a finite element. The enforcement of continuity of both dis-
placements and transverse slopes between finite elements and the
representation of arbitrary undeformed geometries are also
discussed.

3.1 Interpolation of Element Displacements

The choice of a method of interpolation for the displace-
ment variables over a single element is of fundamental importance
in the formulation of structural finite elements. Not only
should the displacement field be well-represented; the computation
of strain and stress information by differentiation of the
interpolation formula must also yield acceptable accuracy with a
minimum of elements. For isoparametric elements where the
undeformed geometry is also represented by interpolation, a
careful choice of basis functions is essential to modeling
accuracy and efficiency.

Due to the adoption of the Love-Kirchhoff assumptions for
the sandwich face sheets in the present analysis, the potential
energy functional contains second derivatives of the transverse
displacements. In the application of the finite element
discretization, it is therefore required that the approximate
transverse displacement field be of class Cz* on the interior
of a single finite element, and of class C1 across interelement
boundaries7. A suitable displacement approximation, having
extremely good convergence properties, has been introduced by

# A function is taken to be of class C" if it possesses at least
n-continuous, nonzero derivatives within the region of interest.
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Bogner, Fox and Schmita. However, that formulation is restricted i
to rectangular boundaries. In the present analysis, the discretiza-
tion is performed in natural, or parametric, coordinates, so that
any restrictions on the undeformed element geometry can be
eliminated. It will be shown that considerable accuracy can be
obtained both in displacement and stress prediction by this

method of discretization.

Consider first the problem of interpolating a function F (&) }

in one dimension such that continuity of both the function and its

slope are everywhere preserved. By requiring the interpolation to 1

1 reproduce both function and slope exactly at each sampling point
| one obtains the first order Hermite interpolation formulag,

2
i F(E) =2 [Hy (B)Fy + Hy (E)F 4], (3.1)

= £

where the Hij(g) are cubic polynomials satisfying the conditions

dn
e Hyy (8

= 6§ .6 {3.2)

ni jk’

| where ¢, are the interval endpoints (see Figure 3).

3 ; For the purpose of obtaining an interpolation formula in a [
non-rectangular two-dimensional region, a new set of coordinates
can be defined within a unit rectangular region which is then [

related to the true element shape by suitable transformation of
coordinates. This new set of "parametric" axes may be thought of
b as a set of curvilinear coordinates, imbedded within the original
geometric region (Figure 4). A function F(£,n), defined on the
rectangular region -12(£,n)<l, can be represented by the inter-
polation formulae,

2 2
| POED =TT [H @ Py ¢ By O P

+ Hog (E)H 5 ()F

ij * Hli<£)Hlj(”)anij] (3.3)
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obtained from the product of two one-dimensional formulas having
the form of Equation 3.1. On the interval (51=—1,§2=+1), the

Hermite polynomials have the following forms:

H;(8) = p(l+g,6) 2 (2-£,8)

ol

= -1 : 2 - ST
Hy; (8) = -7 £, (1+£,8) " (1-E,8); i=1,2. (3.4)

It is important to note that the interpolation takes place within
the rectangular region in {,n coordinates, and that the nodal

i)’ - wmij’? SEndj
respect to the natural coordinates defined within a single element.

parameters F represent partial derivatives with

The derivatives of each of the displacement components
with respect to the natural components (£,n) must be related to
derivatives in the (x,y) coordinates in order to properly establish
the conditions of interelement continuity. By the chain rule, the

transformation is of the form

(0 ) [*/p  yig 1 0 0 0 B e )

i ¥ L, SR R IR R ol

{“'aa $= e Ry T 4 Mrax $

Y on Xign Yonn, %55 Yo X1 Yo Yryy

UEn) UM gh iegg 0 S agig SIVeTRR R et Y A gl
(3.5)

The above transformation can be obtained from the equations of the
region to be considered (for example, the polar coordinate trans-
formation in the case of a circular shape), or by interpolations
based upon nodal coordinate datalo. In the present investigation,
the transformation indicated in Equation 3.5 is obtained by
approximating the spatial coordinate variables in terms of the
natural coordinates of an element in the same form as Equation 3.3,
and simply differentiating the interpolation formula. Some
details and implications of this process are indicated in Para-

graph 3.2.




In the present development, all three displacement components
in each face of the sandwich panel are represented by the bicubic
expansion indicated in Equation 3.3. Although this order of
interpolation is greater than the required linear formula for the
insurface displacement components, the additional degrees of
freedom permit the option of enforcing continuity of membrane
strains in adjoining elements. The resulting stress predictions
are correspondingly more accurate, and exhibit only minor dis-
continuities (due to local bending) between elements.

The displacement approximation for a typical finite element
X is cast into a convenient form as the inner product
! T
| uc(g,n) = {H(E,m}" {u}; £ =1,2 (3.6)
i where
|
i o
! | H(E, =
§ ‘ {H(E,n)} lfOI(E)HOI(n), Hyy (EYHg) (n), Hy) (E)H ) (n), Hyg (E)H ) (n),
| 3
3 Hop (BYHop (M), Hyy (E)H}G, (), Hyy (E)H 5 (), H), (8)H ,(n), i
i (3.7) ;
i Hop (B)Hgp(n), Hyy (E)Hy, (), Hy, (E)H,, (), Hy, (E)H ,(n), i
‘ Hoa (8)Hgy (n) . Hyp (8)Hgy (), Hy, (E)H (1), 512‘5’“11‘ﬂd %
i and E
:' {u )Tx u u u u u
2 £ £11’ “f££11’ “£nll’ “fenll’ Y£127 Yge12' Yen12’ Ygrni2’

1x16 (3.8)

& U227 Y££22’ Yen22¢ Ygen22¢ Ye21’ Yee21’ Yen21! “fsnzﬂ :

The remaining displacement functions vf(Ern) and wf(g,n) have similar
forms. A displacement vector for the entire sandwich element is
then assembled in the form

T T T T T T T
(wg)” = [tw)T, (0", v, v, et AL R E )
1x96

E The resulting sandwich element therefore possesses 96 external degrees
of freedom.

e e g
"

It should be noted that since the unknown displacements within
the entire sandwich panel are expressed in terms of the face sheet
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displacements, the consideration of multicore constructions presents
no particular problem. Two or more sandwich elements can be "stacked"
to represent multicore geometry, simply by the proper specification
of element connectivity data. The displacement vectors (Equation 3.9)
of stacked elements are joined in exactly the same manner as for

two adjacent planar elements during the accumulation of the system
equations.

3.2 Parametric Mapping Considerations

In most applications of the isoparametric element formulation
(e.g., solids, plane-stress elements), only the physical displace-
ments are needed as nodal parameters. However, the requirement of
slope continuity in elements based upon the Kirchhoff assumption
necessitates the use of derivatives of the displacements as
nodal variables to fulfill the conditions of interelement compati-
bility. Since the displacement derivatives are computed in parametric
coordinates, it is instructive to consider the constraints placed
upon the geometric mapping by displacement compatibility conditions
on the interelement boundaries.

For the enforcement of displacement (but not slope) continuity
on an interelement boundary, examination of Equation 3.3 reveals
that the displacement at any point on the boundary depends upon the
nodal displacement values and parametric derivatives tangent to
the boundary, evaluated at the endpoints of the edge. Thus, it is
sufficient to require that the parametric coordinate tangent to the
interelement boundary be the same for any two adjacent elements on
their common edge. Such a requirement presents no difficulty, even
for mappings of a very general nature.

The need for slope continuity between adjoining finite elements
is a somewhat more subtle problem. Consider first the establishment
of slope continuity between adjacent rectangular elements (Figure 5).
It is easily shown using Equation 3.2/that a matching of the
parametric derivatives and cross—deriéatives at common vertices
produces continuity of transverse slopes in parametric space along
the entire boundaryll. Thus, if the mapping x=x(§ n) and y=y(&,n)
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Figure 5.
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possesses continuous first derivatives on the common boundaries,
the physical slopes (w,x and w,y) are made continuous as well

whenever w_.., w .. and w, .. are matched at the boundary endpoints.

E13* “ni) Enij

For non-rectangular elements (Figure 6), compatibility of the
physical slopes is obtained under similar conditions. However,
since the transformation from parametric to physical coordinates
may now have nonzero second derivatives, one must examine the
conditions under which equality of the cross-derivatives wgnij
at the common nodes is admissible. For two adjoining elements of
identical thickness, Equation 3.5 dictates that a matching of
wEnij at common vertices is permitted only if the transformation
of coordinates possesses continuous first derivatives on the
interelement boundaries and continuous second derivatives at the

nodal points.

Under the conditions stated above, equality of wij’ wiij'

and w ensures the continuity of w, w,g and w,n (and hence

W s
tﬂii of w,in;gd w,y) along the common edges of adjacent elements.
For most problems having reasonable geometries, no particular
problems are encountered in establishing an acceptable mapping;
in the most general case, conditions of compatibility can be
satisfied by the enforcement of linear constraints between nodal

variables involving parametric derivatives.

In the present development, the geometric mapping between
the physical and parametric forms of a single finite element is
based upon the same interpolation formula as the displacement
approximation:

x(E,n) = (H(E,m)1T (X}

{H(g,m T (¥} (3.10)

y(E,n)

The vectors (X} and {Y} contain values of x,y and their derivatives
with respect to the parametric coordinates £,n evaluated at the nodes
of an element. The geometric mapping given by Equation 3.10 is
identical to the well-known "surface patch" representation introduced

10

by Coonslz. Palacol and Stanton have adapted the bicubic patch

method to the analysis of thin orthotropic plates and achieved

excellent results.
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Adjacent Nonrectangular Elements.
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By means of Equation 3.10, the problem of representing
irregular geometries in the undeformed state is reduced to the
selection of an acceptable set of mapping parameters {X} and {Y}
at the nodal points. For many shapes, the parameters may be obtained
analytically. As an example ccnasider the circular element sector

shown in Figure 7. Taking r(n) anc 6(f) to be linear functions,

1
ro + 5 (14n) Ar

r

the polar coordinate transformation yields x(&,n), y(&,n) explicitly

as
X

[ro + %(1+n)Ar] cos%(l-E)Ae

y

[r, + 3(1+n)Ar] sing(1-£) A6 (3.12)

The vector {X}, for example, contains the entries

T
(X} = %0 Xgpo Xpye Xegge Xpr o0 Xggy) (3.13)

For the annular sector, from Equation 3.12,

1 )
{x)T =[r0 cosA® » 5 T AB8sinAb 4
%Ar cosAd %ArAesinAe !
1 ;
(ro+ r)cosAb, 5(r0+Ar)A651nAe,
1Ar cosAe %ArAesinAe :
ry + Ar , 0
% Ar 7 0 4
ro ;0 ’
% Ar - I (3.14)

As a second example, consider the elliptical element shown in
Figure 8. By taking the element edges along concentric elliptical
lines and lines of constant angle 6, the following description of
the boundary curves of an element is obtained:
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Line 1-2: (x/a)2 + (y/b)2

= C
Line 3~4: (x/a)? + (y/b)® = &%
Line 1-4: 0 = 0
Line 2-3: 6 = eb (3.15)
Let
2 2 2
(%) + (g-) 2 [%(l—.‘;)c + %(1+§)d]
9 = %[‘1‘”)°a + (1+n)eb] = tan"L(y/x) . (3.16)

Equations 3.16 can be solved for x(£,n) and y(&,n) as

T(1-E)c + 2(1+6)a

FLanli= AT gy 1 :
J;—z + gztan [7(1_n)ea+f(l+n)eb]

y(E,n) = %(E,n)tan [%(1-n)ea + %—mmeb] (3.17)

The patching parameters are obtained as before by differentiating

Equations 3.17 and evaluating the results at the four nodes of
the element.

Geometric mappings for more general shapes can be defined by
interpolating over an entire region, or by defining the mappings
over a number of subdomains with the region. However, care must

be taken to satisfy the continuity requirements outlined earlier
in this section.

3.3 Compatibility Constraints

In practical applications, the geometry of a region to be
modelled often requires that the parametric coordinate mappings
in adjacent elements possess discontinuous derivatives. An
example is shown in Figure 9. For the case shown, the natural
coordinate n is the same in both elements, but the relationships
x=x(&,n), y=y(&€,n) exhibit discontinuous &-derivatives on the
common boundary. Although the continuity of w (which depends
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Constraints.
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only on the nodal values wlj and wnlj) on the common edge
presents no particular problem, it is required that the slopes
in physical coordinates, L and w,y, be everywhere continuous

on the boundary. The required conditions of continuity are

found by setting
w w,
{w'x} - {w X} (3.18)
y ‘y

I II
or
II II
i ) S e x's Y'z w'a
wrn xln Y'TI xvn Yv (3.19)
II I

For the simple case shown in Figure 9, the mapping between
the global and natural coordinates can be chosen as bilinear,
I

X" = a(l-g)/2

vyl = b(1-£)/2 + d(1+n) /2 (3.20)
and

xT = c(1+8) /2

v = a(1+n) /2 (3.21)

Using Equations 3.20 and 3.21 and performing the arithmetic
gives the constraint equation

w,g -c/a -bc/ad] w,g
{w,n}=[ 0 1 {w, } (3.22)

n
IT I

which must be satisfied on the entire common boundary. The
second equation, which reflects the fact that n is identical in
both elements on their common edge, need not be considered
further. The remaining equation,

Iz . B i B %
Wre % “gWegi ok i o) (3.23)
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must be expressed in terms of the nodal parameters at the

points A,B to arrive at the final constraint relations. Using
the element interpolation functions (Equation 3.6), Equation 3.23
can be expressed as a polynomial in n, whose coefficients are the
nodal variables at A and B in elements I and II. By requiring
the coefficient of each power of n to vanish, one arrives at the
discrete form of the constraint relations,

Wa 5
fwB

bt 2 |

WgB >
T ﬁw (3.24)
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Similar constraints to ensure interelement compatibility of
displacement and transverse slopes can be evaluated for more
general element shapes and orientations. Equation 3.19 is
again used as a starting point, but the required cdnstraints
can become considerably more complicated than Equation 3.24.
In such cases the calculations are best performed numerically,
in terms of the mapping parameters of an element.

It should be noted that in most cases, an acceptable
parametric mapping can be constructed even in the presence of
highly irregular geometries. For example, the above case can
be considered without the imposition of linear constraints,
even though the physical boundary slopes approaching the edge
at x = 0 are double-valued. Instead of the bilinear form,
consider the mappings

| % (£,1) (1-3¢ + 382 - &3)

I
®|0° oo

y(g,n) =3 (-3¢ + 362 - £ + 42 (1-n)) (3.25)
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and 31
| x(£,m) = S (1 + 36 + 362 + %) |
s
i y(E/m) = ‘-g— (1 + ) (3.26)

for elements I and II respectively. It is easily verified that
the above parametric mappings are twice continuously differ- !
entiable across the common boundary, which is more than adequate
to ensure interelement displacement and slope compatibility.
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SECTION 4
NUMERICAL CONSIDERATIONS

The selection of the best and most efficient numerical
analysis is an important consideration in the implementation of
any finite element procedure. In particular, the calculation of
refined element representations and the evaluation of nonlinear
effects must be done efficiently if the analysis program is to

be cost effective.

In this section, a number of aspects of the process of 1

;

{

i

{

‘.
1 setting up and solving the finite element equations are discussed.
H Many of the details involved in implementation of the finite ;
1

f element technique are widely accepted13, and will not be repeated i

i here. The computational techniques considered are those less
common in finite element analysis, or developed specifically for
use with the present method.

4.1 Calculation of Element Stiffness Matrices

The computation of the linear stiffness matrix (corresponding
to quadratic terms in the potential energy, Equation 2.26) is
considered below. Evaluation of the nonlinear potential energy

and the energy gradient for large-displacement problems is
discussed in the following section.

Since the element geometry is not predetermined, it is
necessary to perform numerical integrations to obtain the
element stiffness. The most common method gives for the stiff-

ness matrix the integral14
11
Kl = ”l[N]T[B]T[D] [B] [N] |TJ|d&dn (4.1)
) -

where [N] is a matrix of polynomial functions, [B] is the strain-
displacement relationship and [D] is a matrix of elastic constants.
The integration can be carried out by Gaussian quadrature, with

the integrand being evaluated at each of a number of sampling points.
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The above method of integration is not practical in the present
case, since the order of the matrices is large (the element matrix,
[K]e, is of order 96), and because many integration points are
required for the exact evaluation of the higher-order polynomial
functions. By taking advantage of repetitive patterns occurring
in the polynomial terms in the original functional (Equation 2.26),
the number of operations required for the evaluation of
Equation 4.1 can be reduced by a factor of approximately 250,
thereby reducing substantially the amount of computing time
required for setting up the system of equations to be solved.

In the potential energy (Equation 2.26), each quadratic term ;
can be expressed in the form

& o 8
o Ue 55 Ug ko dx dy, (4.2)

\

—
\ ) o B
where c represents-a_material constant, ue and ug denote the

4 A components of displacement“ﬁ¥7\zfi‘or We within a single face

sheet, and the indices i, j. k, 2 indicate the appropriate

P spatial derivatives of the displacement components. Restricting
i the discussion to cases for which ¢ is constant over the element,
the use of Equation 3.6 gives

b T = 5 (a3} O, 3, 0T dx dy (uf)

c B HE T o
| + 5 (ud 37 ff tm,, HE, )T ax ay {uf) (4.3)
s Thus, regardless of the values of a,B, only the 16x16 matrix
{f ta,, . 3m, )T ax a (4.4)
549 "k Y .

and its transpose must be evaluated for each combination of
i,j,k and 2 in order to calculate all of the possible combina-
tions to the stiffness matrix. The number of combinations of
i,j,k and 2 is further reduced when only the upper triangle of
{ the element matrix is considered, since the component matrices
can be transposed when required during the actual assembly of
E the matrix.
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The numerical integration indicated in Equation 4.4 is performed
as follows. At a particular integration point, the vector {H(¢,n)}
(Equation 3.7) and its derivatives with respect to the coordinates
(€,n) are computed, and transformed by the chain rule to (x-y)-
derivatives. The resulting vectors are multiplied by the square
root of the product of the Gaussian weight and the Jacobian %
determinant, to reduce later computations. Finally, all possible |

outer products of the vectors {H,ij} and {H'kl} are formsd, and the j
sums accumulated over an nxn grid of integration points. Having b
formed the component matrices, it remains only to multiply through ]
1 by the appropriate elastic constants and accumulate the products ]
into the element stiffness matrix.

It is significant that numerical experiments performed using
?1 ‘ Equation 4.1 with a 4x4 integration grid and eliminating the
1q multiplication of all-zero submatrices, yield computing times on
: the CDC-6600 of more than 120 seconds for a single element

stiffness matrix. The above method using component matrices

requires approximately one-half second on the same machine, using

the default level of compiler optimization. This amount of
fr computation is approximately the same as that expended in the
E stiffness calculation for the well-known 20-node (60 d.o.f.)
E solid element using a 3x3x3 integration grid. The half-second
: computation time for a single element matrix can be made even
F less by further compiler optimization of the code.

4.2 Evaluation of the Nonlinear Strain Energy

In the present analysis, the solution to the nonlinear problem
is obtained by seeking a minimum of the potential energy functional

3 directly. Hence, only the potential energy and its gradient with
: respect to the unknown displacement parameters must be evaluated

* Polynomial terms of degree 2n-1 are therefore integrated exactly.
{ Integration with n=4 is sufficient for most geometries.
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(see Section 4.3). Since the function and gradient evaluation
represents a large portion of the total solution time, and must
be performed a number of times, it is important to organize the
computations as efficiently as possible. The numerical inte-
grations upon which the calculation of the linearized stiffness
matrix is based (Section 4.1) provide a means of obtaining all
of the information required for evaluation of the nonlinear
strain energy terms, so that very little added computation is
necessary.

Consider first the linearized potential energy, which can be
expressed as
gy 1
P 2
since the global stiffness matrix [K] is symmetric, the required
gradient is given by

m (uT k] {ut-{u3T{p} (4.5)

Vn;“= [k]1{u}-{P}. (4.6)
The direct evaluation of Equations 4.5 and 4.6 is the most efficient
means of carrying out the computation, when the common terms and
matrix symmetry are taken into account. Although it is not
necessary to form a global stiffness matrix (indeed, this feature
has often been cited as an advantage of minimization methods of
solution), the evaluation of the potential energy and its gradient
element-by-element is a relatively inefficient process. A count

of the multiplications* and input-output operations required is
evidence of this fact.

As an example of the evaluation of the nonlinear terms of
the strain energy, consider the cubic term

- a 8 Y
: —ff C Ue i Yg, ke Yf,mn dx dy (4.7)
i

* On the CDC 6000 series computers, where memory-access operations

can consume somewhat more time than floating-point arithmetic, a
similar argument holds in favor of the present method.
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where the notation is that used in the previous section. For
the purpose of evaluating the term itself, it is convenient to
evaluate ug,ij' “g,kz and u},mn directly, using the vectors
{H’ij} of Equation 4.4 and the element displacement vector

{UE} (Equation 3.9). This computation is made at each Gaussian
quadrature point, and the weighted sums accumulated to evaluate
T. The computational expense involved is small, since the
vectors {H,ij} have already been calculated at each integration
point during the linear stiffness matrix evaluation. Furthermore,
only a limited number of terms of the form u;,ij appear in the
energy, and repetitive patterns are easily taken into account.

Evaluation of the gradient of Equation 4.7 is performed in
a similar manner. Since

= {0, 17 10%), (4.8)

the cubic term can be rewritten in the form

T = T aP Y
SfJ 351" ug kg0 o WY (VD)
f

Ol w2 el sk o B
££ £,i5H}” uf | axay(vl)

(4.9)
+cff u? ., uf T
ii Uf,15 Ug, kg (Hrpn}” dxdylug)
When a is different from B and vy, the gradient of T with respect
to the entries of {Ug} is given by

9T
G, = a8 Y
a{ug} — Sl (B, 31" Ueiyy e mn 9 dY  (4.10)

g s P
and again the integration is carried out numerically. Since each
of the individual terms in Equation 4.10 has been at least
partially evaluated in evaluating the energy function, the total
gradient evaluation requires only a small amount of additional

computation.
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Alternative methods of organizing the calculation of nonlinear
strain energy contributions have commonly employed very large
matrices, whose entries are associated with each of the possible
combinations of nodal variables within individual elements3’15.

Such techniques often require excessive amounts of storage (for

the present element, a vector of length 9316 would have to be

saved for each element merely for the evaluation of quartic

terms in the strain energy) and input-output time. The present

method uses a minimal amount of core storage, since only a single

vector of length 80n2 is needed fnr each element, where n2 is 5
the number of Gaussian integration points. It is clear that the '

computational procedure described here represents a very effective

e

approach for use in the solution of problems involving geometric
nonlinearities.

e s

i 4.3 Solution of the System of Nonlinear Equations

In the present analysis, a solution is sought by direct

minimization of the discrete potential energy with respect to
the undetermined nodal displacement parameters. The solution
i process is therefore one of unconstrained function minimization.
' Gradient methods of minimization have been shown to be the most
F powerful class of solution techniques for such problemsls. Two
; such methods which have been implemented in the present analysis

§ are described in the following section.

4.3.1 Fletcher-Powell Algorithm

4 The Fletcher-Powell (or variable metric) method of
minimization bears a close resemblance to the familiar Newton-
Raphson iteration. However, the Fletcher-Powell technique makes
use of an approximate metric in place of the matrix of exact
second derivatives during each iteration. The algorithm,
originally suggested by Davidon17 and improved upon by Fletcher
and Powellle, is quadratically convergent and possesses extremely
good stability properties.
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Given a function F(§) which is to be minimized, the
Fletcher-Powell iteration proceeds as follows:

1. An initial estimate of io of the solution is
selected. Usually this estimate consists of a linear solution,
or an extrapolation of previous nonlinear solutions.

2. The gradient of F is computed, and an initial
search direction §o is selected along the direction of steepest
descent; that is,

->

So = —[H]OVF(XO) (4.11)

where [H]o is the identity matrix.

3. A value of o is determined in such a way that
F(ii + Ggi) is minimized.

4. The vector of unknowns is updated by

> >
By =X a§i (4.12)

5. The following quantities are calculated:

- S o > v >
¥, = P&, - FE (4.13)
W
[M]i = ai ..S,—T"—:Y,— (4.14)
1 1

[N], = (4.15)
z ¥.T my, ¥
i ! i
6. A new metric is computed from
[H]i+1 = [H]i + [M]i + [N]i (4.16)

7. A new search direction is determined according to

VF (X,

>
8,4 = -(Hl,, P& D (4.17)

and steps 3 through 7 are repeated until convergence is achieved.
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The Fletcher-Powell technique exhibits extremely fast
convergence in practice, and is particularly effective when a
scaling transformation is used to normalize the vector X of
unknownsls. The scaling implemented in the present analysis

adjusts the unknown variables according to the diagonal elements

of the linearized stiffness matrix, since these constitute a rough

approximation to the second derivatives of the function.

§ The primary disadvantage of the Fletcher-Powell
i minimization is the need to retain a full matrix [H]i at each
!

step, since storage requirements may become excessive for

larger problems. This limitation is eliminated altogether with

the Fletcher-Reeves algorithm, as discussed in the following

section. For smaller problems, however, the Fletcher-Powell
. scheme is possibly the most powerful of the gradient methods
{

’ of minimization, and is preferred over the Fletcher-Reeves
procedure.

4.3.2 Fletcher-Reeves Algorithm

The Fletcher-Reeves (or conjugate gradient) method

] of minimization19 is similar to the variable metric technique,

but utilizes a less involved method of selecting a direction

25 for search. In this case, the information retained about higher

derivatives of the function consists of a single vector, rather

than a full matrix. The current search direction § is then

selected according to

|VE (X)) i
, = — (4.18)
3 C (2
|vE (X, _)) |
and
§, = -VF(X,) + 8,8, (4.19)

replacing steps 5 through 7 of the Fletcher-Powell algorithm
(Equations 4.13 through 4.17).

It can be seen that the computer storage require-
ments for the conjugate-gradient algorithm are substantially

——
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less than for the Fletcher-Powell procedure. However, even
though the Fletcher-Reeves method is theoretically quadratically
convergent, convergence difficulties can arise in practice due

to successive roundoff accumulated in the § vector from iteration
to iteration. Periodic restarts of the iteration are therefore
often necessary, and convergence may require substantially more
effort than is theoretically expected. A thorough discussion of
this problem, with numerical examples, is presented in Reference
20.

Substantial improvement in the performance of the
Fletcher-Reeves minimization is obtained by virtue of the scaling
transformation mentioned in the previous section. This |
modification of the problem serves to minimize the eccentricity
of the function space under consideration, thus improving the
numerical behavior of the iterations. A number of examples
demonstrating the effects of the scaling transformation are
cited in Reference 16.

J
i
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SECTION 5

COMPUTER PROGRAM

The sandwich finite element analysis reported herein has
been implemented in a computer program, which is briefly
described in this section. Both linear and nonlinear analyses
can be performed with the program, and multiple-pass capability
is provided for nonlinear problems. Although the code has
been developed on the CDC 6600 computer, it can be made com-
patible with other machines with relatively few modifications.

5.1 Program Size and Capacity

The sandwich finite element code presently consists of
slightly more than 5000 FORTRAN statements, distributed among
68 subroutines and the main program. Although the compiled
program occupies less than 70,000 (octal) storage locations
on the CDC 6600, linear problems having up to 6000 degrees of
freedom aand nonlinear problems of more than 1000 degrees of
freedom can be accommodated. These limits are easily adjusted
upward by modifying appropriate array-dimensioning statements.
Multiple load cases may be considered for linear analysis. Three
types of finite elements (plates, cylindrical shells, flat
sandwich panels) are presently available in the program; all of
these are based upon the bicubic interpolation scheme outlined
in Section 3.1.

5.2 Program Organization

The computer program is arranged in modular form, and utilizes
the CDC segmentation loader21 to obtain a maximum of flexibility
in ordering the computations. The segmented structure allows for
a greater subdivision of the computational tasks than is feasible
with the conventional overlay organization, and hence larger
problems may be considered with quite modest central memory
requirements. Furthermore, provision for creating "copies"
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of certain commonly-used service routines makes these routines
available to the necessary sections of the program, even though
they are not retained in high-speed memory during the entire
problem solution.

All internal data is normally kept on disk files, in contrast
to an "overflow" type of data structure. The motivation for this
is the large number of degrees of freedom involved in a single
element (96 for the flat sandwich panel element), so that problems
considered by the program would normally be solved out-of-core
regardless of the data organization. The handicap for small
problems is minimal, as shown in Section 5.3.

Five different equation-solving routines are presently avail-
able to the finite element analysis. For linear problems, an
in-core band solution or an out-of-core block solver are provided; i
a conjugate gradient (Section 4.3.2) algorithm and two versions
of the variable metric (Section 4.3.1) solution (in-core and
out-of-core) are implemented for nonlinear analysis. The
method of equation solution is chosen according to problem type,
problem size, and available memory, as indicated in Table 1.

e Rl et el Lt i el g L et L

The present computer code contains partial generation
capabilities for nodal coordinates, element connectivity and
boundary condition data, to reduce the effort required by the
user. Geometry data and distributed loadings may alternatively
be described in equation form through the use of user-written
subroutines. A partial restart capability is also provided for
use in nonlinear analysis.

5.3 Computing Time and Memory Requirements

Memory allocation for the present finite element analysis

program is diagrammed in Figure 10, according to blocks of
routines which represent major steps in the computational
procedure. The maximum field length requirement is 67740 octal
words of memory, with this being determined by the storage
required for the nonlinear solution. Linear solutions can be
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*
performed using only 62500 words of control memory. To demonstrate

the efficiency of the analysis program, the code has been tested
on a small problem and compared with the general purpose programs
SAP-IV22 and NASTRAN23. The problem is that of a thin, flat plate
loaded at the center, as shown in Figure 1l1. A four-element
discretization was chosen, resulting in eight degrees of freedom
for the SAP-IV and NASTRAN analyses, and nine freedoms for the
present method (the additional degree of freedom corresponds to
the cross-derivative nodal parameter at the interior point). All
three programs were executed on the same machine, using similar
compiler options. Results of the analyses, including computer
run times, are summarized in Table 2, and central deflection
results are compared with a closed form solution given by
Timoshenko.24 Deflection results from NASTRAN and the present
analysis are quite good, while the deflections given by SAP-IV
show a significant error. It can be seen that the run times
required for the program here compare favorably with those of the
other two programs. It should be pointed out that the sandwich
computer code is at a slight disadvantage for such a small problem,
since it works completely out of core. Furthermore, stress
computations were performed at 25 points in each finite element by
the sandwich code, while stresses were obtained only at the
element centroids from the other programs.

* The above computer memory requirements are based upon capacities of
6000 degrees-of-freedom for the linear problem, and 1000 for nonlinear

analysis, on a CDC 6600 machine.

48

5 "

AR REN N SRR =S5 Y LTI PR VN JINLARICN TORET L0 L T %, S S 5 I G

e e S it




2.5 LB. TRANSVERSE LOAD
2

I
l‘ 5"1 " 5ﬂ

E=1.X107 psi
v=0.30
t=0.10in.

Figure 11. Flat Plate Problem for Computer Progranm
Comparisons.
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TABLE 2

RESULTS OF COMPUTER PROGRAM COMPARISON:
ANALYSIS OF THIN PLATE WITH CONCENTRATED LOAD

Present

Program NASTRAN SAP-1IV Analysis
Central Memory 1400008 1040008 640008
CP Time 10.1 6.0 6.2
I0 Time 36.9 14.7 26.6
PP Time 37.5 21.9 21.2
Total System Time 84.5 42.6 54.0
Degrees of Freedom 8 8 9
Computed Central 0.2397 0.2178 0.2400
Deflection
Error 2.0% 11.0% 1.9%
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SECTION 6
DEMONSTRATION PROBLEMS

Several numerical solutions based on the present analysis are
presented in this section. Both linear and nonlinear problems
are considered. Applications of the method to multicore sandwich
constructions and nonrectangular panels are illustrated. It is
shown that good accuracy is obtained for predictions of both dis-

P
F placement and stress response, even in the presence of geometric
:
s

singularities.

6.1 Linear Analyses

A number of linear analyses are presented in the following
sections. The bicubic displacement approximation is seen to

produce very smooth stress distributions as well as good repre-
sentation of natural boundary conditions, even where very few
elements are used in the discretization.

6.1.1 Multicore Sandwich Beam

ki The five-layer cantilever beam shown in Figure 12 is

1 considered. All three faces are isotropic, with E = 10.0 x 106
lb./in.z, v=0.30, and are 0.025 inch in thickness. Two sets

of core properties (strong and weak cores) are analyzed. The beam

is subjected to a transverse end load of 10. 1b.

The finite element idealization consists of eight
sandwich elements, four in each layer of the beam. The use of
longitudinal symmetry and the enforcement of displacement contin-
uity in the central layer results in a total of 237 independent
degrees of freedom.

Calculated displacements for the two cases considered
are listed in Table 3. The tip displacements for the weak-core

case indicate the importance of considering normal deformations
; in the core layer; end deflections of the upper and lower faces
are different by more than four percent in this example. Total
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TABLE 3

FREE END DISPLACEMENTS OF MULTICORE BEAMS

A. Weak Core Beam

Displacement on

Displacement on

Centerline Free Edge
Upper Face (Unloaded) 0.113 0.106
Central Face 0.114 0.106
Lower Face (Loaded) 0.118 0.108

B. Strong Core Beam

Displacement on

Displacement on

Centerline Free Edge
Upper Face (Unloaded) 0.0856 0.0839
Central Face 0.0856 0.0839
Lower Face (Loaded) 0.0858 0.0840
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stresses in the lower sandwich face, along the centerline of the
beam, are shown in Figure 13. Stress distributions for both beams
are quite similar, except near the free end where high local face-
bending stresses occur for the weak-core case. At the clamped

edge, the total stresses are in agreement within three percent. The
total moment developed at the root section is computed as 227. in.-1lb.,
based on average membrane stresses in the two outermost faces. The

actual moment due to the tip load at this section is 200. in.-1lb.,
so that the natural boundary condition is well-represented despite
the relative coarseness of the discretization. It should be
mentioned that the above stresses have been computed along element
edges, and that the values given for x =0., 5., 10., and 20.

are true nodal stress values, which are notorious in most finite
element formulations for their sporadic behavior. The primary
reason for the smoothness of the stress profiles in the present
analysis is the enforcement of continuity of the membrane strains
along interelement edges, made possible by the use of derivative-
degrees of freedom. The differences between adjacent elements in
total stresses, evaluated at the common nodes, are 0.15%, 0.80%,
and 3.9% for the strong-core sandwich, and 4.6%, 5.2%, and 16%

for the beam with a weaker core.
6.1.2 Skewed Sandwich Plate

A flat, rhombic sandwich plate having a skew angle of
45 degrees is analyzed for response to a pressure loading. Such a

problem has been solved previously by finite elements25 and by the

Ritz methodze. The face sheets and core of the sandwich have the

following properties:
7

1b./in.?2 v

i O
- 500. 1b./in. t.

0.32 te = 0.025 in.

1. x 10

E

£ £

G 1.00 in.

The transverse compression modulus of the core is taken to be very

large, so that normal deformations in the core are suppressed. A
uniform lateral pressure load of 1.0 lb./in.z is applied to the

entire panel.
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For this example, the entire panel is modelled by sixteen
sandwich elements, as shown in Figure 14. The discretization shown
involved 328 independent degrees of freedom,

Monforton and Michailzs, using a finite element approach
developed specifically for skewed sandwich panels, obtain for the ;
present problem a central deflection W, @ 0.135 in., and a maximum
principal moment resultant M = 25.3 in.-1b./in. Results given by
Kennedy from a Ritz assumed-mode approximation are W, 0.142
and M = 25.4. Solution of the problem by the present finite
element method gives Wi 0.126 in. for the maximum transverse
deflection, and M = 26.0 in.-1b./in. for the principal moment
(based on the average membrane stress in each face). Thus, the
present analysis shows the panel to have a slightly greater result-
ant bending stiffness than the earlier solutions.

It has been pointed out that the sandwich finite element
developed herein allows the enforcement of continuity of membrane
strains between adjacent elements. However, the local face-
bending stresses depend upon the curvatures of the face sheets,
and therefore cannot be made continuous. It is interesting to note
that, for all four elements whose corners intersect at the central ]
node of the skewed panel, corner stresses identical to four decimal 4
places are obtained by the present analysis, even though the local %
face-bending stress represents approximately 25% of the total
stress at the central node point.

6.1.3 Axisymmetric Annular Plates

As an example of the accuracy which is attainable for
nonrectangular shapes using the present method, a thin (t=0.020 in.)
annular sheet under uniform pressure is considered. The inner and
outer radii of the plate are 10.0 in. and 20.0 in., respectively
(see Figure 15). On the inner edge, the plate is fixed to a rigid
shaft. The outer edge is left completely free.

The geometrical representation for this problem is

described in Section 3.2, and the natural coordinates £,n are
shown in Figure 7. Since r = r(n) and 6 = 6(£) in this case, the
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E¢=1.% 107 psi Ge = 500. psi
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Figure 14. Skewed Sandwich Panel Discretization.
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Figure 15. Thin Annular Sheet Geometry.




nodal parameters wgij and wgnij are zero due to the condition of
zero tangential slope. The plate is modelled with a single finite
element, resulting in a total of four unconstrained degrees of
freedom. The nonzero nodal parameters correspond to wij and wnij
at each of the two nodes on the outer radius.

For a total load of 1 1b. (p = 0.00106 psi), the one-
element solution yields a maximum deflection of s 0.1929
inches, and a maximum radial stress of gy ™ 748.4 pgi at the
support. An analytical solution given by Timoshenko shows
that Vo ™ 0.1989 and I 1102.4 psi. The errors in transverse
deflection and maximum stress are therefore 3.0 percent and 32.1
percent, respectively, for the numerical solution. This degree of
accuracy, using only a single element, is quite good particularly
when one notes that the average aspect ratio of the finite element

used is slightly greater than nine to one.

The same problem (with r, = 5.0 inches), has been
solved using a 12 element discretization with 46 degrees of freedom.
For this model, displacement results given by Timoshenk024 are
reproduced exactly, and the maximum stress at the clamped support
is different from the analytical solution by 1.4 percent. The
calculated stresses along a radial line are shown in Figure 16,
normalized with respect to the maximum radial stress. As in the
previous problem, a five degree sector of the plate is considered
in the model, so that the average element aspect ratio is close
to unity.

6.1.4 Circular Sandwich Panel

A uniformly loaded circular sandwich plate, shown in
Figure 17, is considered. The face sheets are 0.025 in. aluminum,
with Ef = 107 and Ny 3.30. Properties of the core are Gc =
26,000 psi and Ecz = 10 , with a thickness of 0.450 inches.

A previous finite element solution of this problem has been
obtained by Sharif127, using eight axisymmetric sandwich elements

in the radial direction. The discretization used here has three
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elements on the radius, with the innermost of these containing a
geometric singularity where the element edge degenerates to a
point.

Stress distributions for the lower face of the circular
sandwich, shown in Figure 18, agree quite well with the results
reported in Reference 27. For the central bending moment, the
eight element discretization of Sharifi yields a value of
M = -340 in.-1b./in., while the present three-element model gives
M = -360 in.-1b./in. At radius r = 20, the results of Reference

27 are Mr = 485, Mg = 150; the present sandwich element gives

Mr = 417, MB = 155 (units are in.-1b./in in each case).

This particular example is an excellent demonstration
of the ability of the Hermite bicubic element to maintain good
stress accuracy for structures having curved boundaries as well as
geometric singularities. It should be noted that the quality of
the solution does not diminish in the vicinity of the singularity,
since the stress computations at the plate center are just as
accurate as those at the clamped edge.

6.2 Nonlinear Analyses

Examples of the geometrically nonlinear analysis of sandwich
plates using the present finite element method are described in
the following sections. Load-deflection data are presented for
the case of a clamped rectangular panel, for which a previous
solution is available, as well as for the skewed panel whose
linear solution has been given in Section 6.1.2.

6.2.1 Rectangular Sandwich Plate

A 50 inch square panel, clamped on all edges, is

subjected to a uniform pressure load p. The sandwich faces are
® 1b./in.?, v, = 0.30) and 0.015 in. in

thickness. The core layer is 1.0 in. thick and has shear modulus
G, = 50000 1b./in.’

aluminum (Ef = 10.5 x 10

The finite element model for this problem consists of four
nonlinear sandwich elements, as shown in Figure 19. Due to the
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double symmetry of the problem, only one quadrant of the panel is
considered; the resulting discretization has 120 independent
degrees of freedom. Solutions for various values of the pressure

loading are obtained using the variable-metric method of minimiza-
tion (Section 4.3.1).

The load-deflection path for the present problem is
shown in Figure 20 in terms of a central deflectlon ratio w /t
and the loading parameter Q = 12 pa (l-u )/Ef 2, where

2a = 50 in. is the edge dimension of the panel These results are

compared with previous solutions given in References 3 and 28. The
analysis presented in Reference 28 involves a perturbation solution
for g in terms of the parameter w /t , and is 11m1ted to a two-term
expansion of the form Q = C (w /t ) + C (w /t ) , where the ratio

3 % wc/tc is on the order of one In Reference 3 a finite element

2 A G IR Lo s b
R o e

‘ solution is given, wherein it is assumed that the pressure loading
acts at the midplane of the sandwich; such an assumption is

necessary due to the neglect of normal deformations in the sandwich
core. Antisymmetry conditions requiring that u,= -u,, v;= -v, can
then be imposed to reduce the number of degrees of freedom. It is
more reasonable to suppose that the loading acts over one face of
the panel, and this approach is taken in the present analysis.
Figure 20 shows that the present method yields a solution which

E | is slightly more flexible than that of the previous finite element

| analysis, and substantially more so than the perturbation solution
' of Reference 28.

gt

f. The importance of a nonlinear analysis capability is
evident from the load-deflection path for the present example.
The deflection predicted, for example, at Q = 30. (p = 27.7 psi)
by the linear analysis is more than 55 percent greater than that
‘. obtained by taking geometric nonlinearities into consideration. 5

6.2.2 Skewed Sandwich Plate

The rhombic sandwich panel considered in Section 6.1.2
is reanalyzed, this time including the effects of geometric non-
linearities. A sixteen element model consisting of 328 independent
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degrees of freedom is employed as the linear analysis. The
Fletcher-Reeves method is used to obtain numerical solutions.

Load-deflection results for the skew panel are shown
in Figure 21. Numerical solutions at pressures of 1.0, 2.5 and
5.0 psi are used to determine the curve, with the starting
estimate for each solution vector extrapolated using all previous
solutions. Although the Fletcher-Reeves iteration has been found
to perform sluggishly at times on smaller problems (less than 100
degrees of freedom), its performance in the present problem is
quite good. Using the linear solution at p = 1.0 psi as a start-
ing point, the nonlinear iteration converges in only 17 iterations.
The solutions for 2.5 psi and 5.0 psi are converged in 279 and 154
iterations, respectively, using a linear and then quadratic
extrapolation for the starting vectors.

The effect of nonlinearity upon the response of the skew
panel is a great deal more pronounced than for the square plate

considered in the previous example. For the skew panel, the central

deflection predicted by a linear analysis at a pressure of only
5.0 psi is more than 67% too large.

The importance of the computational procedure for the
element potential energy and its gradient (Section 4.2) is evident,
since more than two such evaluations, on the average, are necessary
at each iteration in the minimization solution. For the present
example, the average execution time per iteration is 1.38 seconds;
thus, the method outlined in Section 4.2 is seen to be quite
effective.
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SECTION 7

SUMMARY AND RECOMMENDATIONS

A parametric finite element formulation for the linear and
geometrically nonlinear structural analysis of sandwich composite
panels has been presented. The theoretical development includes
effects due to local bending deformation in the sandwich faces,
and both transverse shear and normal strains within the core
layer. Use of the face sheet displacements as primary unknowns
in the discretization permits the consideration of thin laminates,
multicore sandwich, and "haif-sandwich" constructions as well as
the more common three-layer geometry. The discrete model is
based upon Hermite bicubic interpolation in parametric coordinates,
and is thus applicable to panels having curvilinear or skewed
boundaries. Orthotropic material properties and effects due to
membrane-bending stiffness coupling are also accounted for in the
analysis, Displacement and stress results obtained using the
parametric sandwich finite element are quite good, even on

relatively coarse meshes, and solution accuracy is maintained

even when modelling curvilinear shapes with degenerate elements.

The results summarized in this report represent a preliminary
state of development of a more comprehensive sandwich composite
analysis capability. The discrete formulation described, which is
capable of considering a fairly general class of undeformed panel
geometries, can be extended to model sandwich shell geometry as
well as multiple plate or shell constructions joined at arbitrary
angles. Provisions fcr including stiffening members and attach-
ments to surrounding structure are important as well, but were not
implemented in the present effort. Future extensions to the
present analysis should also include consideration of material non-
linearity, and dynamic as well as static structural response.

The research described herein suggests that refined finite
element approximations such as the parametric bicubic can be
successfully adapted to the general nonlinear analysis of structures
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of a practical nature. Although the element formulation is

relatively complex, the resulting numerical performance is

extremely good. Computational requirements are generally modest
due to the high solution accuracy which is attained on relatively

coarse grids.
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