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SUMMARY

This report describes the analysis, design, construction, and
testing of telescopes with high off-axis rejection to be attached
to three radiometric sensors designed and built by Utah State
University (USU). The three sensors are components of a CVF
(Circular Variable Filter) instrument to be flown on the SPIRE I
auroral mission. One sensor designated HS-2 is a long-wave (3.6 to
16.8 um) IR radiometer that operates at supercritical helium
temperature (less than 20 Kelvin). Anocher sensor designated NS-2
is a short-wave (1.35 to 4.6 um) IR radiometer that operates at
liquid nitrogen temperature (80 K). The third sensor designated
TPM-1 is a dual-channel photomultiplier using wavelenghs of 5000
to 7000 angstrom units that operates at non-cryogenic temperatures .
(above 270 K). ‘

| : PREFACE

| During the latter part of 1971, the Air Force Geophysics
Laboratory and Utah State University (the instrument supplier)
established a need for high off-axis-rejection telescopes
capable of operation at cryogenic and non-cryogenic temperatures
for USUs three radiometric instruments. 1In 1970, Honeywell
: Radiation Center had designed, built, and tested such telescopes
“ as part of the TOM program, These telescopes used all-reflecting
optics, had good off-axis rejection, and performed at cryogenic
temperatures, AFGL subsequently contracted with HRC to design,
build, and test the required USU telescopes; these telescopes
follow the same design precepts that had been successful for
the TOM sensor.
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1. INTRODUCTION

This report describes the design and analysis, build, and off-
axis rejection testing of three high off-axis rejection telescopes
for radiometric sensors to be flown on the SPIRE I auroral mission.
One, designated HS-2, is an LWIR (3.6-16.8 um) CVF instrument
operating at supercritical helium ( <20 Kelvin) temperature. Another,
designated NS-2, is a SWIR (1.35-4.6 um) CVF instrument operating
at liquid nitrogen (80 Kelvin) temperature. The third instrument,
TPM-1, is a dual channel photomultiplier, with wavelengths of
5,000 ® and 7,000 X, and operating at ambient temperatures.

During the latter part of 1971, the Air Force Geophysics
Laboratory and Utah State University, the instrument supplier,
established a need for high off-axis rejection telescopes capable
of operation at cryogenic temperatures for the above instruments.

A year before this time (1970), the Honeywell Radiation Center had
designed, built, and tested an all reflecting, high rejection,
cryogenically cooled sensor for the TOM Program. AFGL subsequently
contracted with HRC to design, build, and test the required USU
telescopes which follow the same design precepts as had been
successfully demonstrated by the TOM sensor.

Tradeoffs were conducted to select the best configuration.
Detailed structural, thermal, and optical analyses were performed
to support the designs. Supportive off-axis rejection analyses
made predictions of off-axis rejection performance. The telescopes
were OAR tested and, with appropriate baffling incorporated, are
judged to meet mission requirements for rejection of off-axis point
and extended sources. This report describes the above efforts and
summarizes the results obtained.

2. STRUCTURAL DESIGN

The HS-2, NS-2 and TPM-1 structures are designed to house
their respective optical systems so as to provide the mechanism
for maintaining the required spacing, decenter, tilt and stray-
light shielding during any of the environmental excursions incurred
during qualification test or a mission flight.

2.1 Material Selection. Because of mission requirements, the
anticipated target signal must be viewed against a cold background
with the telescope system cooled to the following temperatures:

77-1-12




Structure
Instrument Operational Temperature
HS-2 30 Kelvin (LHe)
NS-2 80 Kelvin (LN2)
TPM-1 290 Kelvin (ambient)

As a result of these cryogenic cooling requirements, a design
decision was made to make the mirror and the structure from the same
material. This decision was based upon the premise that if an
optical system is subjected to a uniform change in temperature,
alignment will be maintained without any thermal compensation devices
if the optical elements and the material that effects the spacing
between the optical element is the same. In other words, the
optical figure change due to a change in temperature is matched by
the change in the material that spaces the optics assuming isothermal
(no thermal gradient) conditions.

The choice of a common material for optics and structure was
between beryllium and aluminum. The decision to use aluminum
(6061-T6) was made because it satisfied all of the structural
requirements and it was cheaper and easier to machine and far less
expensive than beryllium. Finally, our experience in the TOM and
ELS Programs gave us every confidence that mirrors of the required
"low scatter' characteristics could be made from aluminum.

The choice of aluminum did not negate the ultimate possibility
of beryllium being used, particularly in that future telescope
requirements could involve a nuclear hardened system. This possi-
bility imposed upon the structure and mirror design the requirement
that should an all beryllium system be dictated sometime in the
future, the design as it exists for aluminum would be compatible
with the use of beryllium.

2.2 Structural Configuration. The stiuctural configuration
was determined by using the "GUERAP'Program™ in order to compare
four (4) basic designs; see Figure 1. Configuration 1 of Figure 1
is the TOM design with a straylight characteristic already evaluated.
As relates to straylight rejection characteristics, each of Con-
figurations 2, 3 and 4 was compared against Configuration 1. The
comparison revealed that straylight rejection characteristics, due
to differences in structural configuration, were not significantly
different from one configuration to the other. What was significant,
it turned out, was the amount of clearance between the perimeter
of the circle defining the primary mirror and the structural
enclosure: the greater the clearance, the better the rejection
characteristic (baffle cavity effect).

2
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Figure 1  CANDIDATE DESIGN SUBJECTED TO GUERAP ANALYSIS.
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The choice of configuration was quickly reduced to Configura-
tion No. 1 and No. 2. Configuration No. 2 (see Figure ?) was the
final choice for the following reasons:

5 a. The H-Frame aspect of Configuration No. 2 provides
a natural division of an upper and lower chamber
together with torque box construction providing
excellent strength characteristics.

b. The orthogonal sidewalls and base provide ease of
machining and the ready establishment of reference
surfaces.

c. Ready accessibility to optical elements within the
structure.

d. Sealing (photon leakage) could be more readily
effected because of the minimum closure area.

e. Beryllium application possible by trepanning upper
and lower chambers, effecting maximum savings by
machining economically from a single, beryllium
press.

2.3 Utah State's Dewar Interface. Utah State had experience
with a number of similar dewars as designed/negotiated with Cryogenic
Associates. To use this proven basic design approach and incorporate
as much of the applicable knowledge and experience as possible,

HRC tailored its optical structure design to be compatible with the
basic operational aspects of the C/A Dewar. In particular, the
optical structure as designed and fabricated by HRC would interface
with the C/A Dewar design as follows:

a. The telescope structure would have a main mounting
ring which would interface with a flange that would
be integral with a tube directly coupled to the plate
attached to the cryogen tank of the Dewar.

b. The telescope would butt up against the plate attached
to the cryogen tank and be held there by being spring
loaded (Belleville Washers) at the main mounting
ring and the interface flange, using a suitable number
of mounting screws, each set at assembly to a prescribed
loading pressure.

c. The rear of the telescope that butted up against the
plate attached to the cryogen tank would be positioned

4
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Figure 2 USU TELESCOPE OPTICAL BENCH




by pins of sufficient size and be located to main-
tain alignment between the telescope as a system and |
the detector and CVF. ‘

d. An indium interface between the telescope and dewar
would be required to maintain maximum heat transfer
' between the CVF and the telescope.

- B S R N~

The dewar interface with the telescope is as shown in Figure 3.

2.4 Structural Analysis.

2.4.1 Environmental Specification. The structural anilysis
was based upon an HRC generated environmental specification”.
This specification was approved by Utah State and AFGL, and in
general, consists of the following tests:

a. Vibration
Sinusoidal Sweep
Random Vibration
Pressure Profile Test (Door Mechanism Evaluation)

b. Shock
c. Acceleration

Each test has a qualification and a preflight level. The
CVF/Telescope/Dewar assembly was to be tested as an assembly without
the benefit of subassembly evaluation other than paper analyses.

All tests are to be performed in order to insure that the CVF/
Telescope/Dewar is capable of surviving an ascent in a Bristal
Aerospace LTD., Black Brandt 5C payload.

The qualif}gation test consists of an ''uncleaned" system
evacuated to 10 ~ Torr and submitted to test levels, as specified.
The preflight test is a.''cleaned" system (following the qualification
test), evacuated to 10 Torr and submitted to test levels, as
specified.

Throughout the tests, a failure is defined as a broken part, %
shift in boresight, a change in optical alignment, loss of function
or loss of hold time out of specification.

2.4.2 Structural Analysis. The CVF Environmental Specification
indicates that the driving function of all the tests is Random
"n_nmn

Vibration (white noise). The '"g'" level associated with this test
18 7.79 §'B
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From an evaluation of the HIRIS test data, a transmissibility
factor of 4 to 5 for the CVF system was determined as reasonable.
The HIRIS system uses a similar dewar design, the dewar is fabricated
by the same supplier and the mass and its distribution is similar
to the CVF/Telescope/Dewar system. This system has successfully
flown twice on rocket launched payloads.

Using a transmissibility of 4.5, the rated or expected 'g"
level seen by the telescope would be 7.75 x 4.5 or approximately
30 g's, 1 rms (lo). Using 30, the design level became 3 x 35 or
approximately 100 g's.

A stress analysis report3 was prepared and submitted to AFGL.
It highlights the following:

a. The HIRIS interferometer plus dewar has a base
natural frequency of 60 to 65 Hz, computed and
verified by test. The CVF/telescope/dewar system
is assumed to have a base natural frequency of less
than 60 Hz.

b. Analysis indicates that the telescope, free about
the mounting ring, has a natural frequency of
approximately 370 Hz. Since the design pins one
end of the telescope against the detector cover,
spring loaded by the USU mounting technique, the
actual natural frequency is greater than 370 Hz.

c. The natural frequency of the most flexible part of
the telescope (the front side panel) is about
400 Hz.

d. The natural frequency of the cantilevered spider

(to which is mounted the spherical secondary mirror,
M4) is approximately 600 Hz.

e. The buckling stress level is 15,000 to 16,000 psi.

£, The not to exceed stress level of any part of the
structure was pegged at 3000 psi, which is below
the PEL (precision elastic limit) of 6061-T4
aluminum (i.e., no expected creep).

The sizes of the various structural members of the basic
telescope are shown in Figure 4. The weights of the telescopes
are as follows:




PRIMARY
MIRROR

3/8 \ /—5/8

SUPPORT PLATE @ APERTURE PLATE

/— 1/4

' @ FRONT
|

1/8

COVER
1/16

3/8

M3 4 FRONT PLATE

ELLIPSOID SPHEROID

'@ SECONDARY MIRROR

1/8 TYP

Figure 4 USU STRUCTURAL ANALYSIS SUMMARY
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WEIGHT (LB)
ITEM

HS-2, NS-2 TPM-1

;i Optics 2.0 2.3
i Mounts 1.0 2.7
: Structure ; 21.0 24.0
| Straps 1.5 2.7
TOTAL 25.5 32.5

2.5 Mirror and Mount Design.

2.5.1 Mirror Design. All mirrors in the USU telescopes
consist of a basic disc whose diameter to thickness ratio is 10:1.
Behind the mirrored surface, integral with the basic disc and the
mounting pads, is a necked down interface whose diameter is 40 percent
of the clear aperture and whose thickness is 20 percent of the
disc thickness. As stated, the mounting pads are integral with the
interface and are arranged 120 degrees apart (3 foot pads), each
pad outboard of the neck diameter so as to isolate from the reflect-
ing surface the strain as introduced by the clamping screw torque.

Figure 5 illustrates the basic mirror design, as described.
The mirrored surface consists of electro-deposited, polished nickel
on aluminum. The nickel plate is all over, not just the mirrored
surface, masked off only from holes to accept helicoil inserts.

The mirror is fabricated from 6061-T6, forged. The forged
material reduces the possibility of voids in the surface to which
nickel is electro-deposited. The reduction in void probability
yields a corresponding reduction in the probability of blow holes
and pits in the mirrored surface.

2.5.2 Mirror Mount Design. All USU mirror mount designs are
based upon the premise that the focus of the mirror is the fixed
reference point. With this premise, the mount design must permit
the mirror to be located in accordance with the permissible tolerance
placed upon the focal length plus that of the critical thickness
of the mirror.

The mount design (see Figure 6) provides for a Mount No. 1
which is undersized (see dimension "A'") in order to include a shim
"B" to bring the focus to a predetermined spot in space, '"P'". Given
that the "A'" dimension is determined (quite probably different for
each of the 3 mirror food pads), Mount No. 2 (which is oversized)

77-1-12 10
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Figure 6 USU MIRROR MOUNT/ALIGNMENT TECHNIQUE
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is machined to dimension "C" which is equal to (A + B). Should

a difference exist in the (A + B) dimension for each foot pad,
Mount No. 2 is machined to the largest (A + B) dimension and hand
lapped for final focus positioning.

This technique of mirror mount eliminates the need for three
separate shims (one under each mirror fcot pad) which, in turn,
provides for a plane to plane interface and minimal thermal transi-
tions or maximum conductive cooling capability.

2.6 Alignment Considerations. The alignment procedure for
the HS-2 ang NS-2 telescopes is as specified in HRC specification
22914-ESO1. The alignment procedure for theSDual CVF(TPM-1) is
as specified in HRC specification 22914-ES03.

The alignment procedures call for the use of an alignment fixture
that attaches to alignment holes in the rear of the telescope; see
Figure 7. The rear of the telescope, see Surface "B', is set up
perpendicular to the LOS of an alignment telescope. The alignment
fixture is positioned in place and the alignment telescope is
translated so as to center the 1/8-inch diameter hole in the align-
ment fixture, see Figure 8. This establishes the lower centerline,

, of the telescope. Using crosshairs and a reticle, the common
focal point of the two confocal parabolas is established and all
mirrors are mounted and aligned within the telescope. The focus
of the telescope is positioned in the plane of the 1/8-inch diameter
hole in the alignment fixture.

This procedure (use of an alignment fixture) makes use of the
rear of the telescope as the main reference surface and requires
only two mirror mount surfaces that are machined to close tolerances.

The same alignment fixture is used by USU and is mounted on the
alignment pins in the detector cover. The 1/8-inch diameter hole
is used to center and position their detector which is centered
and positioned precisely relative to the telescope focus require-
ments.

2.7 Thermal Analysis. The thermal analysis report6 explains
in detail the thermal analyses performed, the premises upon which
the calculations are based and the results attained.

Briefly, the anticipated heat load was computed to be as

follows: |
11.3 watts, Solar Loading i
4.5 watts, Earth Loading
1.7 watts, Earth Emission
13
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for a total heat load of 17.5 watts. This value was computed to
induce a AT of 125 Kelvin across the length of the aluminum
telescope, which dictated the use of copper straps as thermal
shunts.

The addition of the copper straps lowered the AT to 14 Kelvin
which was within design specifications. The orientation of the
straps is as shown in Figure 9.

USU tests indicate that the telescope cools as predicted (every
measured point within 1 Kelvin). The telescope is cooled conductively
within the dewar. Since a temperature lag from front to rear was
virtually non-existent, the copper strapping has met design criteria.

To monitor the temperature distribution during thermal tests,
seven thermal sensors are used throughout the telescope. The loca-
tion of these seven sensors is as shown in Figure 10. The sensor
used is Lake Shore Cryogenics TG-100-KL, calibrated by HRC.

Following cryogenic evaluation, the telescopes (HS-2, NS-2 and
TPM-1) were refurbished by HRC. The refurbishment included the
discontinuing of the TG-100-KLs and replacing with two carbon
resistors, calibrated by Utah State, to be used during flight.

2.8 Photon Sealing. The H-frame structure that houses the optics

is divided into four basic compartments, each compartment having its
own cover, see Figure 2. The structure is integral so that any
photon leakage from the outside to the inside would have to be
through the cover-to-structure interface.

On the ELS Program, the Honeywell Radiation Center developed
a groove design that together with a continuous bead of indium
effects a photon seal between two interfacing pieces of aluminum.
Figure 11 shows the details of this design as used on the USU
telescopes. The groove is in the H-frame side wall.

Relative to the total groove area, the 0.021-inch diameter
indium bead is squeezed to effect a fill of from 38% to 58% with
the machining tolerance as specified.

2.9 Finish. The telescope exterior was left untreated for
thermal (emissivity) reasons. Some consideration was given to a
clear anodize surface treatment but was rejected as no real purpose
would be served.

16
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T 0.090+0.005 DIA
FULL
RAD
e 0.008
& |
|
/
0.019
0.016
e / <
!
0.031 -
‘ 0.028

USE WITH 0.031 DIAMETER INDIUM WIRE

58% MAX COMPRESSION
! 38% MIN COMPRESSION

EXTRUSION WILL NOT FILL 0.090 SLOT

Figure 11 PHOTON (INDIUM) SEAL CONCEPT
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The interior of the telescope was treated using a black
anodize or sprayed Cat-A-Lac black paint. The specifications for
both are as follows:

Anodize: Dull black anodize per MIL-A-8625
Type II, Class 2, masking where required

Paint: Cat-A-Lac 463-3-8 black (flat), material
specification MC8057-01, apply per speci-
fication PC 13410-02 Type 2

A specific problem exists relative to spray painting. Should
the spray paint operator hold the spray gun at too long a distance
from the object being painted, the paint when striking the object is
partially dried. As a result, particles of the paint will flake
off at the slightest provocation. This condition, of course, is
corrected by proper spraying technique.

Concern about particles and, in particular, contamination of
the low scatter primary mirror prompted HRC initially to brush
paint the Cat-A-Lac. The resulting effect was similar to a mirror
finish and the brush process was eliminated.

Tests indicate that emissivity values for Cat-A-Lac do not
indicate a temperature dependence between 4.2 and 80 Kelvin. It
has been shown, that uniformity between sprayed samples is directly
dependent upon the techniques for mixing the binder-pigment, the
treatment of the surface to which the coating is applied and the
aforementioned technique of application, including drying and
curing.

The emissivity value of the finish is in excess of 90 percent
up to 20~micrometer thickness.

3. OPTICAL DESIGN

3.1 Optical Design of the HS-2 and NS-2 Telescopes. The HS-2
and NS-2 telescopes are optically identical in all respects with the
HS-2 used in a USU supplied helium cryogenic system and the NS-2
used in a USU supplied nitrogen cryogenic system.

The single telescope design fits into a specified 9.75-inch
diameter space envelope (cross section) and provides the largest
collecting aperture possible in keeping with the use of a confocal
parabolic primary and secondary, all reflecting, optical system
with the appropriate apertures and stops required to effect the

20
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off-axis-rejection (OAR) requirements. After the single magnifi-
cation provided by the confocal foreoptics set, collimated target
energy is delivered to a Dahl-Kirkham system that focuses the
target energy onto the focal plane within a defined f-cone and at a
specified distance behind the rear face of the telescope structure.

3.1.1 Design Considerations. Using the original TOM Radiometer
concepts and the follow on, evolutionary, Earth Limb Sensor (ELS)
aperture stop concept, the design of the HS-2 and NS-2 optical train
took the following course (see Figure 12):

a. Given the OAR requirement, the selection of an all
reflecting foreoptics system was dictated. Using
the confocal parabolic concept of TOM and ELS, the
magnification of the fore telescope was set at 2:1
with the size of the primary selected at 4.00 inches
diameter clear aperture and the secondary at 2.00
inches diameter clear aperture.

b. The available length of telescope was specified by
USU to be contained within 22.625 inches. This
restriction dictated a 12-inch primary focal length
and a 6-inch secondary focal length.

c. The OAR design criteria includes the ELS aperture

stop approach. Since diffraction from the

- entrance aperture constitutes a major portion of
undesirable off-axis energy within the target sig-
nal, an "oversized'" entrance aperture is placed
in a plane which is perpendicular to the primary
optical axis and contains the common focal point
of the primary and secondary parabolic mirrors. -
The image of the entrance aperture edge is formed
after leaving the secondary and lies approximately
in the same plane containing the entrance aperture
when the plane is extended below the primary optical
axis. In this image plane, the lyot stop is placed
such that the image formed is out board of the
aperture, thus stopping (baffling) the imaged
diffraction main lobes. Referring to Figure 12,
the 4-inch entrance aperture is imaged to a 2-inch
image diameter at the lyot stop. The selected
1.6-inch lyot stop diameter now becomes the limiting
aperture and dictates an effective entrance aperture
diameter of 3.2 inches, as shown, given a fore-
telescope magnification of 2:1.

21
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The first field stop is sized to accommodate both
the OAR criteria and the blur as caused by the
off-axis primary mirror. The sizing of the first
field stop was set at 1 degree (0.210-inch diameter),
which dictates a 1 degree FOV for the fore-telescope.
The actual diameters of both the primary and secondary
mirrors are governed by the 1 degree FOV, specified
by the first field stop, plus a radial "roll-off"
for fabrication to effect the desired 1 degree clear
aperture, unimpaired by edge discrepencies due to
machining and polishing. Note that the sizing of
the secondary is driven by a 2 degree FOV due to

the 2:1 magnification of the fore-telescope. Sub-
sequent testing of HS-2 by USU and AFGL identified

-a problem in near field rejection performance, i.e.,
from 0.5 degree to 1 degree off-axis. A plateau

of signal radiation existed which was attributed to
off-axis scattering into the field of view, most
probably caused by the CVF filter elements. This
problem has been alleviated by reducing the first
field stop size to 0.5 degree (full angle). Attendant
with this change, however, is a tighter location
tolerance required for the detector to avoid
vignetting effects.

d. The Dahl-Kirkham (D/K) system is designed to collect
the signal energy from the lyot stop and focus this
energy upon the detector, located at a precise
location behind the rear surface of the telescope
structure, 0.673 inch, as specified by USU. Even
though the fore-telescope is delivering target
energy towards the D/K system with an FOV cf 2 degrees,
the detector is sized at approximately 1/4 degree FOV
relative to object space and, therefore, ''sees"

1/4 degree x 2 or 1/2 degree FOV target energy as
it exits from the lyot stop. Therefore, the D/K
system is sized to accept only the 1/2 degree FOV.

Obscuration of target energy due to the D/K secondary
is computed from the OD of the secondary referenced
against the lyot stop diameter, plus the obscuration
due to the three spokes within the 1.6 diameter
supporting the hub of the spider.
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The system focal length (SFL) of the telescope is
computed as follows:

SFL = Ml X M2 X F3

where M1 Magnification of the fore-telescope

M2 Magnification of the D/K system

F3 Effective focal length of the D/K primary
Referring to Table 1, Basic Optical Parametérs,
SFL = 2 x 3.1358 x 1.337
or System Focal Length = 8.385 inches
The square detector was sized by USU as 1 mm (0.0394
inch) across the diagonal and 0.707 mm (0.28 inch)

square. Using the 1 mm value, the FOV in object
space is computed as follows:

¢ -1 0.0394
FOV = tan 8385
or FOV = 0.269 degree

If the system focal length is used with the required
FOV of 0.250 degree, the detector size required
across the diagonal is as follows:

]

Detector Size = 8.385 x an 0.250 degree

0.0366 inch

Expecting some tail to the image at the focal plane,
the design of the optics accepts the 1 mm across the
detector diagonal but to do this an increase in the
FOV to 0.269 degree resulted. It should be noted that
all calculations involving the telescope optical
system should employ the following values:

System Focal Length = 8.385 inches
FOV (Object Space) = 0.269 degree

24
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Table 1
BASIC OPTICAL PARAMETERS, HS-2 & NS-2
Optical Item Optical Parameter/Spec Remarks

Detector Size

FOV, Entrance (lst Field Stop)

FOV, Effective Aperture (Detector)
Entrance Aperture

Effective Entrance Aperture

Primary (Parabolic) Focal length, Fl

Primary center ray displacement from
main optical axis

Secondary (Parabolic) Focal length, F,

Secondary center ray displacement from
main optical axis

lst Field Stop Size

Fore-Telescope Magnification, M1
Lyot Stop Size

Distance from Lyot Stop to Vertex of
Ellipsoid

Dahl-Kirkham Primary (Ellipsoid)
Effective Focal Length of D/K Primary,
F

3
Dahl-Kirkham Secondiry (Sphere)
D/K Primary to Secondary Spacing
D/K Secondary to Detector Spacing
Magnification of Dahl-Kirkham, MZ
System Focal Length, Fs
L/D of Fore-Telescope
Spot Size at Detector

Obscuration of D/K Secondary (on-axis)

Cone f/No. at Detector (on-axis)
System Efficiency, Ent.

System Efficiency, Rff

1 mm along diagonal (~0.028 sq)
0.5 degree

0.269 degree using 1 mm and Fs
4.0 dia
3.2 dia

Fl = 12.0 inches

3.75 inches

FZ = 6.0 inches

1.875 inches

0.5 degree or 0.100 dia

12 = 6= 2:1 or M, =2

1.6 dia

12.561 inches

2 Jd 22
(xfa ) x Gy /b)) =1

F3 = 1.337 inches
Rad of Curvature = 1.90051
0.689 inch
2.032 ‘inches
Nz =3/ 1358
F = 8.385 inches
LD = 5. 35
<0.005 inch

29.47%

f/No. 2.5

0.191 degree using 0.028 in. side of det

Diffracting Aperture

0.5 Jegree based upon spot size and
diffraction considerations

a = 4.78835, b = 3.57689

0.689 + 0.648 (Virtual Image)

oD = 0.84"

2.032 + (1.337 - 0.689)
FS = F3 X Ml X Mz
(22.625 - 1.231) + 4

0.785(0.84)% + 1.5(1.6-0.84) x 0.032
0.785 x (1.6)°

See discussion in text of report

See discussion in text of report

x 100
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The preceding is a narrative effort to describe the
sequence and rationale behind the optical parameters
and tolerances as presented in

Figure 12: System Optical Ray Trace
Table 1: Basic Optical Parameters
Figure 13: Basic Optical Tolerances

The system optical raytrace (Figure 12) presents the
basic limiting and effective apertures with the
nominal spacing involved between elements and how the
elements relate to the optical structure and the
required position of the focal plane.

The basic optical parameters (Table 1) tabulates

the constraints as portrayed in the optical raytrace
and presents the deviation and/or rationale behind
the selection or resulting value given.

The basic optical tolerances (Figure 13) identifies
each element, its spacing, clear aperture and the
defocus, tilt and decenter tolerance associated with
each element.

3.1.2 System Efficiency. The system efficiency of the HS-2 and
NS-2 telescope is computed one of two ways:

3 & Based upon the entrance aperture of 4.0 inches
diameter, NENT

9 Based upon the effective aperture of 3.2 inches,
diameter, NEFF

The system efficiency, based upon the entrance aperture of
4.0 inches diameter, is computed in accordance with the expression
as follows:

i=n
m
"ENT = 4=1 Rj X Np X g (1)
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LOS

PRIMARY OPTICAL

AXIS
|
8 8 7
(+1Ax Irreg)
SURFACE SURFACE GEOMETRY SPACING CLEAR APERTURE "DEFOCUS TILT DECANTER

0 Fore kntrance Plane X X X X X
1 Entrance Aperture Plane 2% (L eo 2 4" (3.2 effective) X X
2 Parabolic Primary 12" €2 €6 3) 4.052 dia +0.045 in +0.029 degree| +0.011 in.
3 lst Field Stop Plane 6" (3 to 4) 0.100 dia X X X
4 Parabolic Secondary 6’ (& to §) 2.058 dia +0.045 in +0.061 degree +0.011 in.
> Lyot Stop 12.561 (5 to 6) 1.6 dia X X X
6 Dahl-Kirkham Elliptical 0.689 (6 to 7) 1.707 dia +0.0087 +0.25 degree +0.0038 in.

Primary (FL = 1.337)
7 Dahl-Kirkham Spherical 2032 €7 € '8) 0.835 dia +0.0087 +0.084 degree +0.0038 in.

Secondary (R = 1.9005)
8 Focal Plane X 1 mm or diagonal X X X

"
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Figure 13
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where Ri = reflectivity of mirror surface.

n;, = step reduction factor that reduces the
entrance aperture from 4.0 inches to the
effective aperture of 3.2 inches, based upon
the insertion within the optical train of the
lyot stop.

np = factor of transmission as pertains to target

energy delivered to the detector as a result
of obscuration from the secondary of the Dahl-
Kirkham collecting optics system.

The system efficiency based upon the effective aperture of
3.2 inches diameter, is computed exactly as Ngy €Xcept delete
the factor N

i=n

= 2
Tgpy T 4=1 5y % g A
The computations for NENT and NgpFp are as follows:
iﬁ4
gy = jup e =020y (3)
where Ri = 0.85 for all mirror surfaces
2
1248} < 5.5
S Sl b &
ng = 1 - (obscuration of D/K secondary)
P 4
and NENT = (0.85)  x 0.64 x (1-0.294)
or "ENT = 23.6%
i 4
"R " =1 M 2T 5
4
= (0.85) x (1-0.294)
or NEFF = 36.9%
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3.2 Optical Design of the Dual CVF Telescope, TPM-1. The
Dual CVF (TPM-1) design consists of using the HS-2, NS-2 Dahl-Kirkham
and adding a relay optics system that splits the aperture, directing
each half of the aperture to a separate Dahl-Kirkham.

3.2.1 Design Considerations. A tradeoff study was performed that
revealed the differences between two basic design approaches. The two
approaches were as follows:

1L Split the energy from the lyot stop using a folding
flat that collected the energy from one side of the
total FOV cone and directed this energy to one
Dahl-Kirkham collecting system. The uncollected
energy passing under the folding flat would be
collected by a second, in-line Dahl-Kirkham system.

2. Split the energy from the lyot stop using a folding
flat with a hole through its center. The design
was such that the energy passing through the hole,
less that obscured by the secondary of the collecting
Dahl-Kirkham system whose secondary was smaller in
diameter than the projected hole diameter of the
folding flat.

Systems No. 1 and No. 2 are shown in Figures 14 and 15,
respectively. Transmission profiles are shown relative to selected
points of the full field.

A design review was held at USU where System No. 2 became the
selected design for the following reasons:

1. Over the FOV, System No. 2 delivers a uniform
transmission over all points of the field unlike
System No. 1 where the transmission varies from
+30% to -127% about the on-axis transmission percentage.

- Should the design ever be used to incorporate a
larger FOV, System No. 1 would become more difficult
to handle than System No. 2 even though the trans-
mission characteristics improve.

Figure 16 shows the relay optics as designed.

The basic optical parameters of TPM-1 are as presented in
Table 2. Included are the constraints as portrayed in Figure 16
and the derivation and/or rationale behind the selection or
resulting value given.

29
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Table 2

BASIC OPTICAL PARAMETERS, TPM-1

FORE-TELESCOPE
n
Optical Item 4e] 4 ‘arameter Remark
o~ S, |
FO Entrance (lst Field Stop) degree
|
FOV Effective Aperture (Detec r) 269 degree sing 1 mm d
|
Entrance Aperture . ia
|
ffective Entrance Aperture y |
Primary (Parabolic) Focal Length, F, F
»r Ray Displacemen rom
{
Axis 3 ) |
Secondary (Parabolic) Focal Length, F, F €
| Ray Displacement from |
| X
lst Field Stop Size degree or 209
|
Fore-Telescope Magnification, M, 12 + 6 1 or M |
.yot Stop Size 1.6
|
' r -1 |
L/D of Fore-Telescope 5.35 |

RELAY OPTICS
Optical Item Optical Parameter/Spec Remarks
System A System B
Distance from Lyot Stop to Hole in
Folding Flat 14.941 14.941
Diameter of Hole in Folding Flat X 1.214
Distance from Hole in Folding Flat to
Vertex of Ellipsoid 449 2.849
Cr S 2 2
Dahl-Kirkham Primary (Ellipsoid) s N 1 5, o RN | where a=4.78835, b=3.57689
a b a‘ b"
Effective Focal Length of D/K Primary,
Fs F! = 1.33% F} 1.337 0.689 + 0.648 (Virtual Image)
Dahl-Kirkham Secondary (Spheroid) R = 1.9005 R = 1.9005 OD = 0.84 (includes rolloff)
D/X Primary to Secondary Spacing 0.689 0.689
D/K Secondary to Detector Spacing 2.032 2.032
Magnification of Dahl-Kirkham, M, M, = 3.1398 M, = 3.1358 2.032 + (1.337 - 0.689)
System Focal Length, Fs Fs - 8.385 | p, =9385 Fs = F3 x M) x My
Spot Size at Detector <0.005 €0.005
Obscuration of D/K Secondary On-axis 59% 287% Obscurations significantly
different but energy split
is identical
Cone f/# at Detector, on-axis £i¢ 2.55 fl# 3.4
Efficiency of System, Ent. 10.2% 14 .47 See discussion in text
of report
Efficiency of System, Eff. 15.8% 22 .4% See discussion in text
of report
g
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The basic optical tolerances of TPM-1 are as presented in
Figure 17 which identifies each element, its spacing, clear aper-
ture and the defocus, tilt and decenter tolerance associated with
each element.

3.2.2 System Efficiency. System efficiency is computed one of
two ways:

1. Based upon the entrance aperture of 4.0 inches diameter,
"ENT

2. Based upon the effective aperture of 3.2 inches diameter,
n
EFF

The system efficiency based upon the entrance aperture of 4.0
inches diameter, is computed in accordance with the expression, as
follows:
i=n
B R, =0 xn (5)
io1 i L F

where Ri = reflectivity of mirror surface

"ENT =

= step reduction factor that reduces the entrance
aperture from 4.0 in. to the effective aperture
of 3.2 in. based upon the insertion within the op-
tical train of the lyot stop.

Ny,

= factor transmission as pertains to target energy
delivered to either Dahl-Kirkham, System A or B,
as a result of intercepting the folding flat with
the hole in the center

p

The system efficiency based upon the effective aperture of 3.2
inches, diameter, is computed exactly as that for n except delete
ENT
the factor Ny

i=n 6
"gFP = 4=1 Ry X "p
For System A:
166
MENT = fe1 Rg XN X g (7)
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I3 12
‘ 2
—hc) 0 LOSE.
15 += - L1
~
llA |
8 ; - 3 PRIMARY OPTICAL
l \ AXTS ==
- E
-n | o |
e +“U“'!” 6 5 4
\ |
9
SURFACE SURFACE GEOMETRY SPACING CLEAR APERTURE DEFOCUS TILT DECENTER
0 Fore Entrance Aper. Plane|12.0(1-2) X X X
1 Entrance Aper. Plane 12.0(1-2) 4"(3.2 effective) +.097(2A) | £.17° +00in
2 Parabolic Primary 12.0(2-3) 4,052 Dia. +00 (2)\) % +.067in
3 lst Field Stop 6.0(3-4) 0.209 Dia. X X X
4 Parabolic Secondary 6.0(4-5) 2.058 Dia. X X X
b Lyot Stop Plane 14.94(5-6) 1.600 Dia. X X
6 Folding Flat with Hole 2.160(6-7) 1.211 Dia. (Hole)
1.729 0.D. (Proj. X X X
7 Plane of D/K Secondary 0.689(7-8) X X X X
8 S\EES Elliptical Primary 0.689(8-9) 1.239 Dia. £.020(5\) | £.5 +.010in
Spherical Secondary 2.032(9-10) | 0.601 bia. +.002 3 +.010
10 | Image X X X X X
r
11 Folding Flat 4.600(6-11) X X X X
12 gys| Plane of D/K Secondary 2.160(11-12) X X X X
13 A{Elliptical Primary 0.689(12-13) |  1.795 £.020(5\) | .5 +.0104n
14 Spherical Secondary 0.689(13-14) 0.876 +.002in .3 +.010in
15 Image 2.032(14-15) X X X X
.
Figure 17 BASIC OPTICAL TOLERANCES, TPM-1
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where Ri = 0.85 for all mirror surfaces
2
we G 1T 5
nL —(4.0) 0.64
; .6 - a.216)Y
4 nF i 2 = 0.42
.j (1.6)
b and neny = (0.85)°% x 0.64 x 0.42 .
or "ENT = 10.2%
iﬁG
Tgwr ™ 1=1 & = W (8)
6
= (0.85)" x 0.42
or NEFF = 15.8%
For System B:
134
"ENT T =1 Rj X0 X ng 9)
where Ri = 0.85 for all mirror surfaces
ny = 0.64
Ly & peelys] -
ng > = 0.43
(1.6)
and NN = (0.85)* % 0.64 % 0.43
or "gNT = 14 .47
134
"EFF = i=1 Ry X " (10) .
4
= (0.85) x 0.43
or T']EFF — 22.4%
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3.3 Scatter Coefficient of the Primary Mirror. Cryogenic
E-O sensor designs at HRC have followed the approach of mirrors
and mating structures to be fabricated from the same base material.
The material selected for the USU telescope design was 6061-T6
aluminum. The general procedure used for the structure was to
machine to the approximate dimension, stress relieve, machine to
the final dimension, then lap where required. Mirrors were
machined to the approximate configuration desired, stress relieved,
the entire surface coated with an electroless deposition of nickel,
and with final figuring and polish, a low scatter reflecting surface
{ was effected. A number of problems have existed with both fabrica-
tion and testing of low scatter mirrors. The fabrication techniques
have ranged over the use of aluminum, beryllium, nickel, steel etc.
as a base metal, with or without a nickel overcoat, as required,
depending upon whether nuclear hardening was a requirement and the
material needed to be transmissive to soft xrays,

Claims of suppliers as to what type of fabrication technique
to use, what constituted a low scatter surface, and what was, in
fact, achievable, became more and more uncertain as each user had
their own method of measurement. Consistency in the measurement
methods became critical in assessing and evaluating mirror scatter
characteristics.

In an attempt to bring order to the situation, the Air Force
sponsored the following programs:

1) A determination of the state-of-the-art of low
scatter mirror surfaces.

2) Development of a low scatter test station at ARO,
Inc., Tullahoma, Tenn., under the direction of
Ray Young,

3) A "Round Robin' test sequence, to be performed by
Ray Young, such that a survey was conducted of all
contributing private and government low scatter
test facilities with test results referenced against
"controlled" data.

4) A mirror contamination amelioration program.

The results of these programs were significant. Today, the
, low scatter mirror measurement and test effort has matured beyond
the "black art" past to a situation of understanding and credibility.
Approved setups for low scatter test and evaluation exist in virtually
all major facilities that have a need for low scatter mirrors.
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Correlation between testing facilities exists as every accredited
facil%ty is referenced against Tullohoma's mirror test samples and
data.

In summary, fabrication and test capabilities exist that can
achieve the following:

a) test facilities exist that can reliably check
for,low scatter coefficients in the order of
10 ° at one degree off-axis.

b) low scatter mirrors less than 4% inches in
diameter can now be fabricated .to achieve a low
scatter coefficient of 1 x 10 © on a repeatable
basis. The mirror substrate is either aluminum
or beryllium and has an electroless nickel
deposition over the surface to be polished.

The USU telescope mirrors attained_g scatter
coefficient on the order of 1-2x10.

c) low scatter mirrors greater than 10 inches in
diameter can now be fabricated to_&chieve a
low scatter coefficient of 1 x 10 on a
repeatable basis.

d) achieving a 10-6 scatter coefficient in a
reproducible manner on any diameter surface is
seen only as a future possibility. This quality
surface will probably be attainable only on a
tilted sphere, not an off-axis parabola,

Finally, the low scatter surface contamination
problem due to improper cleanliness and/or
cleaning procedures is still a major concern.
Only exceptional diligence in adherence to
established, experience proven procedures of
handling eliminates contamination as a problem.

3.4 Foretelescope Baffling. The original telescope forebaffle
design premise for the TOM Sensor was to keep baffle edges to a
minimum. Baffle edge effects were felt to be a greater source of
off-axis noise than a straight, painted forebarrel wall. This
design philosophy became incorporated into the initial design of
the ELS, ELMS and the three Utah State CVF Telescope Systems.
Honeywell's ''GUERAP'" analysis (Ref 1) indicatgg that the USU telescope
design, as conceived, should yield a 3.9 x 10 ° reduction of off-axis
energy at the detector from % degree energy source incident angles.
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This prediction was based upon no baffles other than aperture and

field stops. However, the analysis made the assumption that reflection
off of structural surfaces was perfectly diffuse.

Continued system analyses and eventual subsystem and system tests
have indicated that off-axis grazing energy from an extended source
impinging upon the telescope forebarrel could introduce a substantial
increase in the off-axis scattered radiation striking the primary
and becoming a part of the '"target'" signal. A change in our design
philosophy came about with a greater understanding of grazing
effects and the realization that surface grazing energy could produce

an effect far worse than the baffle edges that we were trying to
avoid.

Surface scatter experiments conducted at HRC have shown that
given a grazing angle (90° - 8), where 6 is the angle of incidence,
a reflected specular angle exists that includes a lobe of specular
reflection; and the angle that includes this lobe may be upwards
to double the grazing angle. The specular reflection angle includes
energy which is a function of the grazing angle and the reflectivity
and scatter characteristics of the paint. See Figure 18.

SPECULAR LOBE

P

¥S 2« e PAINTED

SURFACE

© = ANGLE OF INCIDENCE
@ = GRAZING X
¥ = SPECULAR 4

Figure 18 TYPICAL GRAZING ANGLE ENERGY LOBE

The current baffle design for high off-axis rejection systems

is based upon the criteria that no specular reflection will exit from
the specular trap. See Figure 19.
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Figure 19 TYPICAL FORE TELESCOPE BAFFLE CAVITY DESIGN
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From the preceding, the attenuation of out-of-field, off-axis
energy impinging upon the telescope forebarrel at grazing angles of
less than 20 degrees is usually accomplished by inserting baffles
that accommodate a specular angle that is equal to or less than
twice the grazing angle.

When the USU telescopes were initially tested for off-axis-
rejection (OAR) capability, it was shown that the OAR characteristic
was 1% orders of magnitude away from meeting predicted performance.
A ray trace, as shown in Figure 20, showed how the specular lobe
was entering the first field stop and illuminating the field. The
use of a helium neon laser illuminating on and off the suspect
surfaces confirmed the structure areas needing to be baffled.

Having defined visually what was happening, a baffle system
was designed that could be inserted so as to shield certain structure
surfaces from off-axis energy. In particular the baffle system was
devised to perform the following functions:

a) Insert baffle edges that would shield all bulkhead
surfaces from viewing any near off-axis energy
source,

b) Insert a baffle trap in front of the first field
stop so that no baffle edge effect would impinge
reflected off-axis energy upon the structure surface
immediately in front of the first field stop.

The results of the redesignare shown in Figure 21. A summary
of the OAR test results 1is contained in Section 3.5 and the testing
is fully described in Reference 8.

3.5 Off-Axis Rejection (OAR) Analysis, Testing. Off-Axis
rejection describes the ability of a system to attenuate out of field
non-signal energy. It is simply the ratio of flux incident upon the
detector element due to an off-axis source to that produced by the
same unobstructed source placed upon the optical axis. If the target
|
|

divergence is small with respect to the system instantaneous field
of view, the ratio is considered the point source rejection ratio;
otherwise it must be considered the extended source rejection ratio.

A computer program developed at Honeywell Radiation Center
entitled SCAT calculates a worst case point and extended source

rejection ratio. The program model considers two sources of scattered g |
radiation in its point source rejection analysis: |
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® scatter by primary optics into the detector field
of view
® out-of-field scatter by flat baffle edges (extreme

model) rescattered by primary optics into the
detector field of view.

The degree of scatter exhibited by the optics as well as the
baffle edges must be supplied to SCAT as inputs. While scatter by
optical elements is a measurable system parameter, edge specular
scatter must be evaluated analytically.

Given these scattering inputs as well as shade geometry and
field-of-view information, the program determines the system point
source rejection ratio by means of view factors. Figure 22 shows
the predicted off-axis rejection of the HS-2 telescope as computed
by SCAT.

The Honeywell Systems and Research Center OAR test facility is
depicted schematically in Figure 23. A test laser output (10.6 um
or 1.06 uym available) is first passed through a chopper, into a
specially fabricated attenuator stack and then into confocal off-axis
paraboloids. The collimated output is then propagated through an
iris to flood the test telescope entrance aperture, simulating a
point source target.

Auxiliary mirrors are provided to allow injection of a
visible tracer beam and to measure the test laser power level
following attenuation. Tables 3 and 4 serve to further detail the
test system components.

The attenuators are reflective metal films on substrate discs
(Inconel on IRTRAN-2 at 10.6 um and chromium on Homosil at 1.06 um).
The discs are mounted snugly, but without binding or bonding in
metal rectangular holders. The holders slide in slots arranged to
hold the filter surface normals 40 degrees from the laser beam
direction. Carbon cones within the cylinders absorb the unwanted
reflected energy. The discs are half-moon coated on the first
surface so that two slide positions are created; one presents the
substrate only to the laser beam and the other inserts the substrate
and the reflective coat in the beam. This minimizes both the
effects of thermal transients and laser beam deflections when the
attenuators are inserted or removed. The alternating orientations
of the filters also reduce net beam deflection.
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Point Source Rejection

103 F
[USU Telescope
[ HS-2
| OAR - Predicted
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Figure 22 HS-2 OAR PERFORMANCE
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Table &4
EQUIPMENT COMMON TO ALL TESTS

Lock-in Amplifier: Brower Model 132
Preamplifier Model 261

Power Meters: Laser Precision Radiometer Model Rk-3440 with
RkP-345 Probe

Coherent Radiation Model 201

Alignment Telescope - Gaertner

Liquid Crystal Sheet - Edmund Scientific Stock No. 71,137, Range 20-25C

Chopper: Brower with Model 500 Programmer

Telescope Mount: Hofmann dividing head, 30 cm D, readable to
0.1 min arc

Cross-slide, 2-axis, 8" travel, readable to
0.0001 in.

47
77-1-12

A

SRS B K K5

-y o s

- G e AP v




The attenuators were calibrated using both the test telescope
with its detecter, where possible, and a power meter. The 10.6 um
(Hg,Cd)Te detector response was measured with a blackbody source
and geometric power variation (aperture and distance). This
detector behaves reasonably over 4 to 5 orders of magnitude, but
its curve is nonlinear. When used with the IRTRAN-2 attenuators
and the Brower lockin amplifier, the following expressions
were used:

3 1.054

Vo 1.39 x 10 V1’3 2 microvolts (1)

39.99 v 1:243

Vo 3

microvolts (12)

The symbols are:
Vo - signal expected without attenuators (uV)
’V1,3 - signal measured using attenuators 1 and 3 (uV)
V3 - signal measured using attenuator 3 (uV)

Similar treatment was not effective for the silicon detector
used with the 1.06 pm Nd:YAG laser. However, power meter measurements
of the attenuaggon were internally consistent. The transmittance
value 5.4 x 10 ° was measured and applied for the three attenuator
combination used.

No attenuators were required for signals measured at angles
> 0°40' off-axis. Due to the physical limitations of the test
setup, the telescope primary views the collimator mirror directly #
for angles less than 1 degree off-axis. Thus, to ensure absence
of collimator mirror effects no off-axis data were considered to
be due only to telescope scatter at angles less than 1 degree.
Therefore, laser attenuation was required only at 0°, and the data
reduction included an application of a normalizing factor, NF.

For the 10.6 um data the NF divided into each off-axis signal
reading was computed from Equation(ll) or(l12), depending on the
attenuators used. The 1.06 uym data were normalized by:

5,-1 4

NF = (5.4 x 10 7) VABC = 1.85 x 10 VABC
where V is the axial signal measured using attenuators A,B
ABC
and C cascaded
48
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The entire apparatus is mounted upon an isolation table within
a class 10,000 clean room. In an effort to limit sources of scatter,
the walls of the test room are lined with black fiberglass hexcell
absorbing sheets while the floor is coated with black epoxy.

The following test procedure was adopted:

i

With attenuators in the system, zero was established
by maximizing the detector output. Record the signal
output. Close the telescope and/or shutter the laser
to read the noise.

Test for room scatter by inserting a lightly sand
blasted aluminum plate into the telescope field of
view with the telescope turned aside at several
angles. Radical rises in signal indicates room
scatter level is excessive.

Rotate the telescope to the maximun. negative angle
(-16 degree for some runs; later -25 degree).

Rotate the telescope in prescribed increments to
+16 degrees or +25 degrees using attenuators as
necessary near zero.

Return the telescope to zero with attenuators and
repeat the maximum signal and the noise readings.

Figures 24 through35 depict the measured off-axis characteristics
of the three telescopes. The improved system (with baffles) does
not yet match the theoretical worst case curves supplied by the
SCAT computer program. Several possible sources of error are given

below:

77-1-12

SCAT does not accurately predict point source
rejection ratios for off-axis angles of +1 degree

or less.

The 10.6 um data was limited by a relatively high
noise floor (low S/N ratio) which prohibited
measurement of OAR comparative to theoretical values.
The test laser is subject to instabilities or drift.
Detector/attenuator non-linearity

Meter inaccuracies

Plant environment
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3.6 Calibration Data

The HS-2 radiometer was attached to the LBCF (Low Back-
ground Calibration Facility) for measurements of sensor radiometric
response and field of view. Radiometric response measurements
were made while viewing a 400K blackbody source through a dual
aperture/integrating sphere attenuator assembly. Calibration of
this assembly was done under separate contract F19628-76-C-0134
using the calibrated USU CVF Radiometer HS1B-2B as a calibration
transfer standard. Measurement results are given in Table 5 which
presents measured output voltage vs attenuation factor. Outputs
are given in terms of G3 equivalent volts using equivalence factors
supplied by USU. Actual radiance values corresponding to each
attenuator are the product of the given attenuation times the sensor
response to a 400K blackbody. Attenuation factors for attenuators
4 and 5 are calculated values rather than measured since they produced
a response below the noise level of the HS1B-2B used for attenuator
calibration.

Sensor NESR, in terms of the_gttenuation_gactor relative_
to the 400K source radiance, is 9 x 10 °, 1.3 x 10 °, and 2.5 x 10
for the 5.1, 9.6, and 16.2 um channels respectively.

7

Field of view mapping was performed with a point source
that undersized the sensor field by a factor of 9. Problems with
a scan position readout enabled high resolution scans only in the
vertical plane. Theocentralized vertical field map is shgwn in
Figure 36. The 0.27 wide field peaks while viewing 0.34" above
the local horizontal as defined by the normal to the sensor mounting
flange. The horizontal field distribution was determined from a
number of vertical scans taken at various field points. The rough
resultant profile is shown in Figure 37 for a horizontal plane near
to the center of the vertical field. Peak response is achieved with
the sensor viewing 0.17° to the right of the local vertical, however
a wide band of uncertainty exists about the field center due to the
readout limitations.
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Table 5
HS~2 SENSITIVITY PERFORMANCE

MINIMUM DESIGN

APERTURE  TRANSMISSIONS b o B B 6. Tvni
0 1.0.% 1075 . 20 Gyt 9.75 x 10°% 2.3x102 7.3z 1073

GZ: /9% 10-3 sat, sat,
1 0.29 Gy: 4.3 x R 110 8.5 % 1077

Gy: 2.5 x RO e St

G3: 2.8 x 10-4 sat. sat.
-5 <4

2 0.03 G,: NOISE &4 % 18 3.0 x 10
Gy: 5.0 x i TR S T
iz 5

Gy: 4.9 x 10 6.8 % .10 - sat.

(%]
3%
]
b
(<=

1

8

3 0.002 G,: NOISE 1.0 x 10 6.

Gyt 1.5 x Y i e et W
-4 o5

4 2 x 10 GZ: MOISE NOISE 3.0 x 10

-A = P
Gyt 5.8 x 1070 2.6 x 10 ® Roxi10”
-5 g ¥ -5

5 1 x 10 Gy: NOTSE NOISFE 2.8 x 10
Gq: 7.9 x 1076 . Gt 100 %1% 1077
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