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I. INTRODUCTION

The signals at the input to the difference and sum channels
of a monopulse receiver are (in complex envelope notation)

D(t) =[- (e) gs (e) A + ND] eiwt (I)

SMt) - [g( (6) gs5() A + NS] eiWt (2).

where gD(e) and gS(e) are the one way voltage gains (for off-boresight

angle, e) of the difference and sum antennas; A is the voltage return at
an isotropic antenna (it includes transmitter power, target range, target
backscatter coefficient, etc.); and ND(t) and NS(t) are zero-mean Gaus-

sian receiver noises. It is assumed in Equations (1) and (2) that the
target has been illuminated by the sum pattern and received by both
difference and sum patterns.

Alternatively, the following can be written:

DR - Real D(t) - x cos wt - y sin wt (3)

SR - Real S(t) - u cos wt - v sin wt (4)

where x, y and u, v are the in-phase, quardrature components in the
difference and sum channels, respectively.

The monopulse ratio is defined as

r Rel (__t xu + y LPF(5
f DS~dt(5r RelfS(t) u + v 2 fS 2t "

LPFR

Clearly, when there is a single target and no noise,

g (9)
Sa&s(e) .(6)

Since the right side is a monotonic function of 6 (to avoid ambiguities)
in the region of interest, measuring rl yields 6, the angle of the tar-

get with respect to boresight. This result is independent of target
amplitude fluctuations which are manifest in A.
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Figure 1.

When noise is present, the following is obtained:

( + n) (u+nu)+(y+n+ ) n +nv)
r 2 2 (7)1(U+ nU) + (V+ n,)

where the over bar represents a statistical mean caused by the presence
of the target. Because the phase reference is arbitrary, the target
phase can be used as a reference i.e., the target is set completely in
the in-phase components; then, I

(x+ n ) (u+ n) + n nx u y Vrl 2 2 (8)
1 (+nu + n

u v

II. APPROXIMATE ANALYSIS

At this point an approximate analysis is usually made which
goes as follows: Since the signal-to-noise ratio is large, the quadra-
ture terms (which have no signal) compared to the in-phase terms can
be neglected:

+ n
r + (9)

u+ n
u

so that r 1 is the ratio of two Gausssians. Again, using the fact that

the signal-to-noise ratio is large, i.e.,

-2 2u >> nu (10)

4
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the noise in the denominator of Equation (9) compared to the signal
there can be neglected; thus,

-- nI x
r 1 + -. (11)

u u

and because n is zero mean
x

U

i.e., the estimate is unbiased, and

2
2 nx
r -2

%1=-'2 " (13)

-2 -2Since u is the total sum signal power and n is half the noise dif-

ference power, [Equation (8)], the accuracy of the monopulse measurement
is taken as

a m - "(14)

This approximate analysis linearizes the monopulse ratio and states
that the average of a quotient equals the quotient of the averages
(of numerator and denominator). Clearly, Equation (12) cannot be valid
because by decreasing nu in Equation (9) by a small amount, e,-rl is

increased more than it is decreased by increasing nu by an equivalent

amount. Thus, a bias must exist. A further critique of the passage
from Equation (9) to Equation (11) is in order. The validity of Equa-
tion (10) does not allow the assumption that nu, the instantaneous value

of the noise, is always less than 1. After all, the noise is Gaussian
and can assume all values.

In the exact analysis given in the following equations, tha bias
will be made manifest and no assumptions concerning large signal-to-
noise ratio will be invoked.
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III. EXACT ANALYSIS

Equations (1) and (2) can be rewritten for the situation of
multiple targets as

gt (0 n) g (e n) A n + ND) e iWt (15)

S(t) = g(n) s(en) A + NS eiWt (16)
n-"l

The noise-free monopulse tatio is defined:

N
^ • I rn Bn

r -Re N

L n-lBJ

where

12
Bn =g (e n) An

this the sum channel return from the n target and

Sg)("n)
rn '

is the monopulse ratio associated with the nth target. The random
phases of the targets are included in the complex numbers, An, and

give rise to glint, but in this analysis they are treated as constants.

As distinct from the single target case, the following no longer applies:

u V

The following auxilliary variable is introduced:

xixiu~y$v(r) xu + yv - r(u2 + v2) 2 (21)

6
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then,

Pr. (rI - r) Pr. (Q O) , (22)

thus the probability density function (PDF) of r is given in terms of

the PDF of t by

0

p (r) - d p. (23)

Note that t does not involve a ratio.

The Fourier transform of pt(a) is defined by
CO

E (w) - f pa(a) e'•wd (24)

and the Fourier integral theorem states

p (a) f F&± .bdc (25)

It appears at first glance that to find p,, Ft is needed and con-

versely to find Ft, pt is needed - so what is the use of introducing the

Fourier transform? However, Equation (24) states that F (w) is the
expectation of e . This may be calculated over the domain, of the
random variables x, u, y, v. Thus,

Gorri 2 2F() f- ff -id[xu + Yv - r(u + v )] Pxtupytv (x,u,y,v)dx...dv.
jjjj (26)

The in-phase and quadrature noise components in each channel are
independent and identically distributed. Independence between the noises
in the difference and sum channels of the receiver is assumed so that
the joint density in Equation (26) becomes the product of the four
densities

px) 1 -(xx)2  (27)

7



-2
) -e 2(28)

/ a 2a 2

U1 -2
((u))- - (29)/ib 2b 2

1 -(v) 2-v
p =v --- 'e- .e (30)Pv~v ,/ --- 2b 2

thus

p x~u~y~v(X~u~yv) Px(x) Pu(u) Py(y) Pv(v) (31)

Hence

F t (t) "f e'Iw(xu'n', 2 ) Px(X) Pu(u) dx du

(32)
COf e"i(yvrv 2) py(y) Pv(v) dy dv

The double integral in x, u is evaluated by completing the squares
in the exponent and yields

216( ] -b ]rb;
7-- 2-2 2labu 2 Ut

2- 2 , 2b . u 2 •qa~0? 2 b• bL2w. 21rbb,, + L

""2 b. (33)

The double integral in y, v is obtained from Equation (33) by replacing

x, u by y, v, respectively. Thus

. -[ +; .12 + + ;2]
2b

a b w - 2"i-b + I

2 -2 ~ (3)
-e.. , ;6 -2- -,2 + 2; -- 2 +

2b2 [•,2b2 -2 21.b + 1]

8



where

6 br
8(r) a( 

)

a -
.. ( 3 6 )

s2 a; 
(37)

When only a single target is present:,~,, - 3

In the absence of noise ttc aropulie ratio 1,,g iven by

-2 -2 
(~

Define also

2A -2"
'~L u a~ + V a

a -2 +-2

and

^2 2 1 va 2 -2 A 1-^2
t _- I - a + 1 0(10t2 - -2 -2 2

AA
For a single tairget t - s.

With the aid of Equations (38), (3.9), and (40), Equattou (34)simplifies to

^2 1ab~t + ) -(t + )
F().e- x(t + 1) e a2 b2 w2 -2isabw + (41).

b W 4. W i

whcre the sum channel hignal-to-noise ratto has been nrdc!

+ b 
(42)
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Since this is not a function of s - • unless 0 - 0, or from Equation

(39) T/U - 0 F/7, it was concluded that unless there is a single target
on boresight, there will be a bias in the estimate of rI. Substituting

Equation (25) into Equation (23), the following is obtained:

b.f 1

(r) - d F (w) e iwC d dt (43)

or

0 b

(r) -F wo ab d f (44)Prl a f- f• To b

Since F (w/ab) is given by Equation (41), the differentiation performed

and the following is obtained:

2 0 anA
2

A
2b iw~ +- fx•f2 -Z21w(ts + s) - (f+ 1)

pr (r) a 2( i+ .. ..-•~~~ • o .t212rw+l

,2 A2 (45)
-x 2iw(ts + (t +,1)

2 2 Zs~ ab
(W _ 21sw + 1e

In carrying out the w integration, the factor iw/ab corresponds to
differentiation with respect to t; this combines with the subsequent
integration over t from -• to 0 so that the result of the w integration
needs to be evaluated only at 0 - 0. Thus in terms of

-X A2 A A- 2iw s +s) - (t j2

*(,)- f " 2 2is., +1 /
G(¶) f (W2 2sw + 1)2 (46)

the PDF of the monopulse ratio becomes

"2baX(2+1) [(x't 2)G(1)+G' (,)-471
Prl(r) (47)

10



In order to evaluate G(T), the integrand is written as a productin tera,•s of the '-s.ential singularities at

r +, ) 
(48)

ia'r4B

G() f eWW1 e w-w2 (9

where

S' (s + ,/ T2 + 1]12 + 5) (

(50)~ ~'~f~a~s -P7s )+ Aj2 (2 -S2) ( / '

(I1)
since r• ies in t:he upper hial• plane and w2 lieu in the lower half

pla.-:.e, it is eaiily shcwn by completing the contour and employing a
Leu•'ert expL~'ion that

:2 A 2 ) 2

(52)

w2"a
plae iti eajl shw dy comletigtecnt ou n mlyn

11/

1• --( )2 ei dw re 1 + -g (-l) eoz izt 2 rFt

' (52)

i' where 1"1 deno~~~jte hmoiedBse fucon

1 f W 2 i~t 1 -sn

A.Ae ... L • ,



Thus using Parseval's theorem, Equation (49) becomes

-21/2 1/2
G(T) f] e V/" t (3L) (TIT Ij (2&,yr)Il (2V'F-t)dt

0 (54)

Expanding the Bessel functions into power series and employing the
Cauchy product, the following is obtained:

G(~) ? -2 /~ [ ccr ________

G(J) e v 1 . I (n - m)!(. + n - m)!

0 n-0 Lm-0'

0Tm ( 52+n5)
• ml(l + m)! dt

Termnyise, integration yields

C(T) 1 (2 + n)I
(2 8 + )3 n-0

n S(81a)m ar n• (56)

ml (1 + m) I(n - m)! (I + n - 1 4)!l 2-

Since P/a is independent of x, this yields G(T) and hence G' (T) and
hence the PDF of the monopulse ratio as a power series in a which is
proportional to the signal-to-noise ratio. This is most inconvenient
for large X. To obtain a representation in closed form, it is noted
that the polynomial in parentheses is a degenerate hypergeometric

function namely:

nI (61a) t m

m!(l + m)l(n - re)(l + n - m)I
m-0

- 1 2n(-n, -n -1; 2; PaX) (57)n! (l + =)I

1Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
National Bureau of Standards Appl. Math. Series Vol. 55, March 1965
(Formula 15.1.1).
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This is expressible in terms of a Legendre function of the first kind;

the following quadratic transformation2 is employed:

2 1(-n, -n -1; 2 ; z) 1/2 =)l+nl'I (l+z) (58)

l+ii

where P" Iis the Legendre function of the first kind of order -1 anddegree i + n. This is valid whenever lag(l - z)j < i and z does not

lie between 0 and -•. Since 0/a is positive, Equation (58) holds when.
ever z (- O/c) < 1. Assuming that a > 8, then Equation (58) holds.
Using the relation between the Legendre functions of the first kind wit
negative order and the Legendre functions of the first and second

kind with positive order,3 the following is obtained:

P- 11-, + (z+n I P + 'i Q / +Z (59)

thus

n

mM(1 + M)!(n - m)(1 + n m)!
M-0

I + 1 . (a + 8l " (60)

Since for w > 1,4 the following is obtained:

P (w) - (w2_ /2 M (w) (61)
(1)+a

where P( 1) (w) is the first derivative of the Legendre polynominal ofI+. ..
degree I + n, G(r) becomes

G(:) 2 (()) (62)• O(•) = (1 + n)l 1+n -a (:

S2 bid. (Formula 15.4.14).

3Ibid. (Formula 8,2.5).

4Ibid. (Formula 8.6.6).

13
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Since G(-r) is invariant with respect to an interchange of ( and 8
[Equation(54)], if •/a ) 1, then a and B can be interchanged. Thus
a-P ia Equation (62) may be replaced by la-1j and Equation (62) will
hold for all a and 1. Returning to Equation (47), the PDF of r, is
written as

X^2 00 2)
eKt +i) m (m -X ()t-

pr1  = )( e m) P m(z) m (63)

where

A= C....& (64)

Ia - (

t, (65)
/2

2 a -1-

Since P0 (z) is a polynominal of order zero inz, the lower summation

limit in Equation (63) is extended to zero.

A generating function for the Legendre polynomials is given by5

COm etz

2 P~)Me I0 t IZ2l (66m=O

hence Equation (63) becomes

p (r) b e -x(t z 1 d(r) 2a 2 3/2 t dz " dt 2Pl(s +1i) A.LJ(67)

Carrying out the t differentiation, the following is obtained:

^2 /

bid + et -Xt +z2 .) 1 dt 2 -' 2)(8

Prt 2a (a2 +r) 2a )3/2 t dz0

(68)

I5bid. (Formula 22.9.13).

14
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where the following relation6 has been used:

I d
-0 W) (t) (69)

Now let

w tZ . (70)

2V2 +1

so that

b eX(t +1) w W( ^)I(2t
(r) ---2 (s2 + 1)3/2 dw--

+eW 2 -t 11,x~7~)~(71)

The following function is intijduced:

H(m~k,w) e' wm - 'k~,/~/(2= e 4 w - t 2 (72)

then

"b e x(t+l) dp(r) =- --H(l,0,w) - Xt2 (0,0,w) ±H(0,l,w)r I 2a (s2+ 1)3/2 dw
: ~(73)•

Since 7

1 A [xklk )] k-!iklx)(4
dx Ixk(

differentiation of the composite function H(m,k,w) yields

d H(mk,w) H(m,k,w) + mH(m - 1,k,w) + H(m + 1, k l,w)

(75)

/6 bid. (Formula 9.6.27).
7Ibid. (Formula 9.6.28).
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Employing
8

Ik(x) - I-k(x) (76)

and collecting terms, the following is finally obtained:

A2

r e- X(t +1)3/ 2 t2Pr 1(r) ( a (2 + 1) 3/2 low +l-Xt2 10 +•q.

+(2w 2 - ~t 2  t ~2 If****)1(77)

This is closPA form solution valid for any monopulse radar, and it is
suitable for computation. It yields the PDF of the monopulse ratio
(which as pointed out in the text is biased), as a function of the mono-
pulse ratio, r. If p6  (e) is desired, themonopulse ratio as a function

of the off-boresight angle e, one merely starts with the one-way voltage
antenna difference and sum patterns and calculates

r(8) - (6) (78)as(e)

(Figure 1) and its derivative, then

p6(e -prr(6)] Ijd (,)1 (79)

There are many papers in the literature which attempt to analyze
the performance of a monopulse radar. All but one confine their atten-
tion to a linear r(0) characteristic and assume large signal-to-noise
ratio.. None come to grips with the nonlinearity inherent in the mono-
pulse ratio and hence do not arrive at a bias or a PDF. They are limited
to approximating the variance of the PDF. In order for the sceond
moment to exist, i.e.,

f r 2pr (r) dr <'- (80)

8. Ibid. (Formula 9.6.6).

16



the PDF must fall off as Irl, - , faster than r"3 For large isf,

a and 0 approach a constant times a, and w and t approach constants,
-3

Thus p (r) falls off only as fast as r" . It is concluded that the

second moment does not exist and hence that the variance is infinite for
any signal-to-noise ratio. However, the distribution has a spread which
may be calculated by comparison with that of a Gaussian PDF as

R1 "R 2  (81)

or 2

where R and R2 are given by the solution of the equations

J Pr (r)dr C ' d413 f. 1 e d (82)

-(r-r)2

R 2r G 2aG 2

pr(r)dr -0.1587 = e dr) (83)

Since pr (r) given by Equation (77) is convenient to program, R1 and R2

are readily calculable.

The only analysis which does not ignore the fundmental nonlinearity
9

in the monopulse ratio is one in the Soviet literature . The authors
employ a brute force transformation of variables, and, after integrating

over three of the four variables involved, succeed in obtaining the

following expression for p (r):

[1 + 1/2 2+)

"Pr (r-j) . b .e I ()k(2 151/) ( 1

r b 2a 2  3 /2  kO~ (2k)!

9Alexandrov, V. G. and Fedosv, V. P., "Statistical Characteristics of
Signals at the Output of a Monopulse Radar Receiver with Non Fluctuating
Input Signals," Academy of Sciences, U.S.S.R., Radioelectronica, Vol. 17,

No. 4, April 1974 (in Russian). 17
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a2 2 2 k

2ba-2 + r

z 
b 2( b)kL a 2a 2 a a2  

2

z + 1 R2 E (85)
LV+ iq2 b

and 5k0 is a Kroneker delta, Ik is the modified Bessel function of order

k and 1F1 is the confluent hypergeometric function. Since each term in

the infinite series involves a different Bessel function and hypergeo-
metric function, their expressio:a is, to say the least, unwieldy.

The procedure to be followed to calculate the PDF of r1 is to choose

the target location or locations arbitrarily and assign values to x, y,
u, v, a, b. Then Equation (42) gives x. For a selected value of r,
s(r) is calculated from Equstion (35), a1 and a2 from Equations (36)

and (37). Then t and are available from Equations (39) and (40).
Equations (50) and (51) give a and while Equations (65) and (70) give
t and w. These values are employed in Equation (77) and as r is varied,
the PDF of r 1 is computed.

18
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