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1. INTRODUCTION

This report presents an algorithm for computing the stationary
point of a quadratic function of n variables subject to a set of m(m < n)
linear equality constraints, The procedure is compact in the sense that it
requires no two-dimensional arrays of computer storage beyond that needed
to store the problem data. The use of a Householder orthogonal decom-
position by this method should not degrade the numerical conditioning of the
original problem. This method is applicable to problems with singular
Hessian matrices, and can be adapted for use in a general quadratic
programming algorithm.

In the subsequent sections of this report, the identifying numbers
of equations in the text are enclosed with parentheses, and the identifying

numbers of references are enclosed with brackets.
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2. PRELIMINARIES

Define the quadratic function
fx) = #x° Ax + blx (1)
and the linear constraints
Cx = d (2)

where A is an n x n symmetric matrix, b is an n-vector, Cisanmxn
matrix of rank m, d is an m-vector, and x is an n-vector for m < n, Define
the solution x to be the vector which: (a) satisfies the constraints, (b)
minimizes the norm of the gradient of f restricted to the constraint surface

and, (c) minimizes the length of the orthogonal projection of x on the

constraint surface,

When A is positive (negative) definite, the solution defines the unique
stationary point which corresponds to the minimum (maximum) of f restricted
to the constraint surface, While the stated problem may be of interest by
itself, typically it may appear as a subproblem in a more general application,
For example, many quadratic programming algorithms solve a series of
problems of this type with different constraint sets, Furthermore, an
algorithm designed to optimize a non-quadratic function subject to nonlinear
constraints may pose a series of quadratic-linear problems to approximate
the behavior of the actual functions. Consequently, it is desirable to develop
a computational algorithm which will compute a solution to the problem with-
out restricting the rank of A. The computed solution should be the unique
solution when it exists, and should be uniquely defined by the algorithm when
a unique solution does not exist,

When the minimum norm of the projected gradient is zero, the solution
to the stated problem is a stationary point of the Lagrangian function
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i, k) » Bxr Bx 4 BE x4 A" (Cx - @) (3)

where A is the m-vector of Lagrange multipliers, Setting the derivative of
this function with respect to x and A equal to zero yields the set of linear

equations

= . (4)

The optimal solution x* and the corresponding multiplier values x*
can be obtained by solving the system (4). It is not necessary to assume that
A is of full rank, When the problem has a unique solution, the system may
be solved using a suitable algorithm for linear equations, If the possibility
of a non-unique solution exists, the system may be solved as a linear least
squares problem, This approach has been uaedl’ # utilizing the linear
least squares algorithm of Hanson and Lawson3. A defect in this approach

is the need to store the (n + m) x (n + m) coefficient array,

An approach which can be implemented using only the storage required

for A and C can be derived by inverting the coefficient matrix in a partitioned

1J. T. Betts, ""A Gradient Projection - Multiplier Method for Nonlinear
Programming,' Journal of Optimization Theory and Applications,
Vol 24, No, 4 (April 1978).

ZJ. T. Betts, "An Accelerated Multiplier Method for Nonlinear
Programming, '' Journal of Optimization Theory and Applications,
Vol 21' NO. 2 (February 1977).

3R. J. Hanson and C, L, Lawson, ''Solving Least Squares Problems, "
Prentice-Hall, Englewood Cliffs, N,J. (1974).
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form, It is easily demonstrated that
T
A C B1 B2
= T (5)
C (o] Bz B3
where
B W e e (6)
B, = At c"m! (7)
B. = a? 8
% (8)
and
M = catet (9)

The partitioned form of the inverse plays an important role in a number of
quadratic programming algorithms, including those of Goldfarb4 and

Fletcher™, as well as in the constrained minimization algorithm of

Murtagh and Sargent6. Two significant points deserve comment regarding 1

First, if it is assumed that A'1

Goldfarb, Murtagh, and Sargent assume that A is

this approach. exists, the submatrices in (5)

can be computed directly.,

4D. Goldfarb, '""Extension of Newton's Method and Simplex Methods for

Solving Quadratic Programs, '' In Numerical Methods for Nonlinear
Optimization, F, A, Lootsman (Ed,) Academic Press, London, ch, 17
(1972).

5R. Fletcher, '""A General Quadratic Programming Algorithm, "

J. Inst, Math, Appl., Vol 8 (1971).

6B. A, Murtagh and R, W, H, Sargent, '"A Constrained Minimization

Method for Quadratic Convergence,' In %Btimization, R. Fletcher
(Ed.), Academic Press, London, ch, 14
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positive definite, which ensures that A is of full rank. If the algorithm is part

of a more general nonlinear programming algorithm as in [1] and [2], it is

restrictive to assume that A is of full rank. For example, the approach could

not be used as part of an algorithm to optimize a linear function subject to
nonlinear constraints. In these general applications, it is really only
necessary that the Hessian matrix restricted to the constraint surface be
definite. Fletcher does not assume A is definite, noting that the partitions
Bl’ BZ' and B3 must exist if the solution to the problem is unique. However,
to compute the initial submatrices in the computer implementation of his
quadratic programming algorithm7, it is necessary to invert the full

(n + m) x (n + m) matrix.

Even if A is assumed to be definite, the partitioned approach to the
problem suffers from a second defect. This occurs when A =1, M = CCT,
which is referred to as the normal matrix. In this case, the condition
number of M is the square of the condition number of C and it is generally

recognized that the formation of M is to be avoided.

In summary, direct solution of the system (4) is not compact from a
storage standpoint. The various forms of solving the partitioned system (5),
although compact, require operations which can degrade the numerical
conditioning of the given problem and are arbitrarily restrictive with regard
to Hessian matrix A. A new algorithm will be proposed which is compact,
does not degrade the numerical conditioning, and makes no restrictions
concerning the rank of A.

7R. Fletcher, "A FORTRAN Subroutine for Quadratic Programming, "

Report No. AERE R6370, UKAEA Research Group, Harwell, England.
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3. ORTHOGONAL DECOMPOSITION ALGORITHM

In this section, an algorithm is developed for solving the stated
constrained stationary point problem using an orthogonal decomposition of
the constraint matrix, The algorithm is an extension of the linearly con-
strained linear least squares algorithm LSE given in [3], and makes use
of Theorem (3, 19) and Theorem (2. 3) stated therein,

Define the orthogonal decomposition of C by
C = RKY (10)
where K is an n x n orthogonal matrix and R

R = [R,, O] (11)

where Rll is an m x m nonsingular triangular matrix, Substituting (10)
into (2)

RKT x = d, (12)
Define the n-vector y by

y = K™ x (13)

and the partitions of K and y

K = [K, K,] (14)
m n-m
"1 |m
- (15)
Y, ‘n-m
-9-
- R
T * TRIpEN 0 0 W

L .T.‘w'.'nu;va. ———

ko




From (11), (13), and (15), one can write (12) as

y
RETx & Ry = R, O] [y;] =Ry =4 (16)

Since Rll is non-singular, (16) determines the m-vector e Call the solution

?1. The (n-m) -vector y, is arbitrary,

Pre-multiply (13) by K to give

Ky = KK'x = x (17)

where KKT = I, since K is orthogonal, From (14) and (15), (17) becomes

Y
x = Ky = [K K] [y;] = Ky, + Ky, (18)

Observe that all points satisfying the constraints in Eq. (2) can be represented as
functions of the n-m parameters Y, when the solution of (16) 91 is substituted
in Eq. (18). In fact if there were no other conditions to satisfy, a reasonable
choice for the arbitrary parameters Y, would be zero, in which case x is the

minimum norm solution to the constraints,

Instead of setting y, = 0, the choice of Y, shall be determined by a
different criterion, Substitute the parametric representation of x from (18)
withy, = ;'l into (1) to obtain

. a L “
f =% (K ¥, + Ky,)" A K§ + K,y,)
(19)
T >
+ BT (K §) + Kyy,) .
The gradient with respect to the variables Y, is
vf = KTAK,Y, +Ky) + K.Tb (20)
K 171 + K7, 2 be
«10-
y e A - ‘
TP e
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Let us define ?Z to be the value of y, which minimizes

T T

leofll = |k, T AK,y, + K," b+ K," AK 9| 21)

2 2Y2

and is of minimum norm, i.e., minimizes || Y, “. If a stationary point of f
restricted to the constraint surface exists, then " vf ” = 0 and 92 defines the
optimal value., If the matrix KZT AK2 is indefinite, the minimum norm
criterion uniquely determines §2. In fact, when the rank of KZT AKZ is zero
as is the case for a linear objective function, the solution which minimizes
the norm of || Y, || is just “yz = 0, Notice also that the formation of the
matrix K2 AK2 should not degrade the conditioning of the original problem,
Observe also that a solution which minimizes || Y2" minimizes “ szz || since

I = IK,y, |l, and K_y_ is just the orthogonal component of x in the
¥ 22 22
constraint surface,

In summary, the original constrained optimization problem is replaced
by a lower dimensional unconstrained least squares problem in thewvariablee
Yoo after choosing the variables y, to satisfy the constraints, The method
has the property that the unique minimum length solution of the derived
unconstrained problem defines the unique solution of the constrained problem
when it exists, When the constrained problem has no unique solution, the
algorithm computes a unique point which satisfies the constraints, minimizes
the norm of the gradient on the constraint surface, and minimizes the length

of the orthogonal component in the constraint surface,

-11-
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4, COMPUTATIONAL ALGORITHM

In this section a computational procedure based on the approaca derived

in Section 3 is developed., The procedure is organized so that no additional

two-dimensional arrays are needed, Specifically, the original problem data

stored in A, C and b is destroyed by the algorithm, Quantities written with

a tilde can replace quantities without a tilde in storage, and quantities written

with a circumflex can overwrite quantities written with a tilde,

Step 1. Compute the orthogonal matrix K and postmultiply C by it to

triangularize C, i,e.,

CK = ["'l_c_)_]lm

m n-m

Step 2. Compute

= KTA

>

~

Step 3. Form the last n-m rows of the matrix A where
A = AK

Observe that from (23) and (24)

T T
: K AR K AKZ] |m
A= K ag = J
T T
B, Ak, RS AR, ,n-m
- =5
Ay A
A1 Ay
-13-
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(24)

(25)
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Step 4., Compute

? = kT (26)

Step 5. Solve the lower triangular system

€y, = d (27)

for the m-vector 91.

Step 6, Compute

52 = -b2 - AZIYI (28)
where
% b1 lm 'B’l lm
% P = (29)
b2 !n-m bz l n-m

Step 7. Determine '}'rz as the minimum length solution of the linear

least square problem

-~

min [|A,, y, - b, (30)

Observe that this process is equivalent to solving (21)

Step 8., Construct the solution vector
x = K¥ (31)

using irl as computed in Step 5, and ;'Z from Step 7,

-14-
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The algorithm described has been implemented in the subroutine
HSQP, The FORTRAN listing of this subroutine is found in [8], The sub-
routine makes extensive use of the subroutines HFTI and H12 which
implement the algorithms referred to as HFTI, H1, and H2 in [3]). The
subroutine HFTI computes the minimum length solution to a linear least
squares problem, HFTI requires storage for the problem data and three
one-dimensional work arrays, The subroutine H12 implements algorithm
H1 and H2 for the construction and application of a Householder transform-
ation, Using H12 it is not necessary to explicitly form the orthogonal matrix
K of Eq. (10). Instead, the elements necessary to construct the matrix can
be stored in the upper triangular portion of the original matrix C and some
one-dimensional work arrays, Successive applications of the matrix K to

other vectors implicitly reconstruct the original transformations,

The total storage required for subroutine HSQP, including that re-
quired to specify the problem data, is N1 =n(m +n) + 5n - m + 4. In contrast, -
any algorithm which solves (4) directly will require at least N2 = (n + m)

(n + m + 1) storage locations, Consequently, for some problems N2 can be
nearly twice as large as Nl‘ The algorithm is used repeatedly as part of

the general nonlinear programming algorithm described in [1]. In particular,
all of the extrapolation steps used in the constraint phase of this algorithm
employ HSQP, Computational experience with the algorithm includes its

use to solve the set of 17 equality constrained and 34 inequality constrained
problems in [1], as well as a number of larger engineering applications,

One typical application is described in [9]. The largest engineering applica-
tion of the algorithm to date occurred in an optimum solid rocket motor
design problem which involved 48 variables and 83 constraints.

8 ;
J. T. Betts, "Algorithm (To Appear): The Stationary Point of a Quadratic

Function Subject to Linear Constraints,'" ACM Trans, Math, Software.
§

9.'I. T. Betts, '""Optimal Three Burn Orbit Transfer,' AIAA Journal,

Vol 15, No, 6 (June 1977).

-15-
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5. SUMMARY

An algorithm for computing the stationary point of a quadratic function
of n variables subject to m linear equality constraints is developed. The
algorithm has been implemented in FORTRAN, The implementation is
compact since it requires no two-dimensional arrays beyond that needed to
define the problem., The algorithm avoids mathematical operations which
would degrade the conditioning of the original problem by utilizing an
orthogonal decomposition of the constraint matrix, The solution generated
by the algorithm is characterized by three properties: (a) the constraints
are satisfied, (b) the norm of the gradient of the objective function restricted
to the constraint surface is minimized and, (c) among all solutions satisfying
the first two properties, the minimum length solution is chosen. When the
stated problem has a unique solution, satisfaction of the first two properties
defines the point. Nevertheless, the algorithm is not restricted to problems
with definite Hessian matrices, The algorithm has been successfully tested

as part of a general nonlinear programming algorithm,

-17-
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APPENDIX

THE STATIONARY POINT OF A QUADRATIC FUNCTION
SUBJECT TO LINEAR CONSTRAINTS

This algorithm implements the method developed in the preceding

sections of this report.

SUBROUTINE HSQP(A,B,C,D,M,N,TAU,G,H,U,IP,MAXRA,MAXRC,DJINORMN,X,
$ KRANK)

naO

DIMENSION B(1) ,D(1) ,G(1),H(1),0(1),IP(1),DINORM(1),X (1)
DIMENSION A (MAXRA,1),C(MAXRC,1)
PROGRAMMER AND DATE: J.T.BETTS, JAN., 1978,

PURPOSE: GIVEN AN M X N MATEIX C (OF RANK M), AN M VECTOR D,
AN N X N SYMMETRIC MATRIX A, AND AN N VECTOR B, FIND THE
STATIONARY POINT X OF THE QURDRATIC

J = (5% (X**T)*A*X + (B**T) *X

SUBJECT TO THE CONSTRAINTS

CxX = D.

IF A STATIONARY POINT DOES NCOT EXIST THE ALGORITHM WILL FIND
A POINT WHICH SATISFYES THE CONSTRAINTS AND MINIMIZES THE
NORM OF THE GRADIENT OF J PROJECTED ON THE CONSTRAINT SURFACE.

ALGORITHM: ORTHOGONAL DECOMPOSITION OF C MATRIX USING
HOUSEHOLDER TRANSFORMATIONS, FOLLOWED BY APPLICATION OF THE

naoaccaoononoaonoaoacaoonanan
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THIS PAGE IS BEST QUALITY PRACTICABER
FROM COPY FURNISHER 10 DDO =

OPTIMALITY CONDITIONS IN THE FFDUCED VARIABLES.,
INPUT:

N X N SYMMETRIC HESSIAN MATRIX
N DIMENSIONAL GRADIENT VECTOR
M X N JACOBIAN MATEFIX (RANK M)
M DIMENSIONAL CONSTRRAINT VECTOR
THE NUMBER OF CONSTFRAINTS
THE NUMBER OF VARIRABLES
AU PSEUDORANK TEST PAFAMETER., FOR A MACHINE WITH K
SIGNIFICANT FIGURES AN APPROPRIATE VALUE IS
TAU = 1,E-(K+2),

HZRoNOom»

G AUXILLIARY STORAGE (LENGTH M)

H AUXILLIARY STORAGE (LENGTH N-NM)
U AUXILLIARY STORAGE (LENGTH N-M)
Ip AUXILLIARY STORAGE (LENGTH N-M)

MAXRA MAXINMUM ROW DIMENSION OF A (MAXRA N)
MAXRC MWAXIMUM ROW DIMENSION OF C (MAXRC M)

OUTPUT:

DJINORM PROJECTED GRADIENT NORM (ZEPO IF X IS A STATIONARY
POINT, NEGATIVE IF THERE IS AN INPUT ERROR)

X COMPUTED STATIONARY POINT

KRANK PSEUDORANK OF PROJECTED HESSIAN MATRIX (K2**T)*A*K2,
WHEN KRANK .LT, N-M THE PROJECTION OF X ON THE
CONSTRAINT SURFACE HAS MINIMUM NORM,

NOTE: THE INPUT VALOES OF A,B,C, AND D ARE DESTROYED.
INITIALIZATION

KRANK = 0

MPT1 = N ¢+ 1

NMM = N - N

DJNORM (1) = -1,

CHECK FOR INPUT ERRORS

IF(NeEQe0sOReNoeGTs MAXRA,OR M GT, MAXRC, OR4MsGT, N) RETURN
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IF THE PROBLEM IS UNCONSTRAINED GO TO STEP 7

IF(M.EQ.Q) GO TO 100

STEP. Y. COMPUTE ORTHOGONAL MATRIX K., TRIANGULARIZE C,

DO 10 I = 1,1
CALL H12(1,I,I+1,N,C(I,1),MRXRC,G(X),C(I¢1,1),MAXRC,1,H~1I)

19 CONTINUE

IF (M. EQ.N) GO TO 50
STEP 2. COMPUTE ATILDA = (K**T)=*A

DO 20 I = 1,M
CALL H12(2,I,I+1,N,C(I,1),MAXRC,G(I),A,1,MAXRA,N)

29 CONTINUE

STEP 3. FORM THE LAST N-M ROWS OF AHAT = ATILDA*K; I.E.
COMPUTE A21HAT = (K2#*=*T)*A*K1 AND A22HAT = (K2%%T) =A%K2

DO 35 I = 1,1
CALL H12(2,I,I+1,N,C(I,7),MAXRC,G(T),A (MP1,1),MAXRA, 1, NNN)

3) CONTINUE

STZP 4. COMPUTE BTILDA = (K**T)*B

DO 40 I = 1,n
CALL H12(2,I,T¢1,N,C(XI,1),MAXRC,G(I),B,1,1,1)

49 CONTINUE

aaanao

...... cecocnveceerceecsccTcocecrcocrce et e Attt f T e ccTacacTe cererececeseceaewescen

STEP 5. COMPUTE YT1HAT BY SOIVING THF LOWER TRIANGULAR
SYSTEM C*YY = D, STORE IN X.

50 CONTINUE
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X(1) = D(1)sc(1,1)
IF(M.EQ.1) GO TO 80
DO 70 I = 2,M
M1 =1 - 1
X(I) = D(I)
DO 60 J = 1,INM1
X(I) = X(I) = C(I,J)*x(J)
60 CONTINUE
X(I) = X(I)/C(I,X)
79  CONTINUZ
80 CONTINUE

WHEN THERE ARE NO DEGREES OF FREEDOM GO TO STEP 8

IF(M.EQ.N) GO TO 14¢Q

STEP 6., COMPUTE B2HAT = -B2TILDA - A21HAT*Y1HAT

DO 93 I = MP1,N
B(I) = -B(I)
DO 90 J = 1,M
B(I) = B(I) - A(I,J)*X(J)
90  CONTINUE

STEP 7. SOLVZ A22HAT*Y2 = B2HAT FOR Y2 USING HFTI
130 CONTINUE
COMPUTE PSEUDORANK TEST PARAMETER EPS

EPS = TAU

DO 129 J = MP1,N

COLNRM = C,

DO 110 I = MP1,N

COLNRM = COLNRM ¢ A(I,J)**2
112 CONTINUE

EPS = AMAX1(EPS,TAU*SQRT(COLNRMN))
120 CONTINUE

CALL HPTI(A(MP1,MP1) ,MAXRA,NMM, NHN,B(MP1),1,1,EPS,KRANK, DINORN,

)

B < 2l . m_m”—uggsw:«

B end
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$ H,U, IP)
DO 130 I = NP1,N
X(I) = B(I)
130 CONTINUT
c
c IF THE PROBLEM IS UNCONSTRAINED, RETURN.
C

IF(M.EQsC) RETURN

STEP 8, COMPUTE X = K=Y

QN an

140 CONTINUE

DO 150 K = 1,M

I = MP1 - K

CALL H12(2,I,I+1,N,C(I,1),MAXRC,G(I),X,1,1,1)
15C CONTINUE

RETURN
END
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