
F~*O—AO56 lisa CORNELL UNIV ITHACA N Y DEPT OP CONPtJTfl SCIENCE F/S 12/1
THE DIRECTED SUBGRAI.’H HOMEOMORPHISM PROBLEM. (U)
.M4 7$ S FORTUNE, a ~4OPCROFT . .1 WYLLIE N00014—76— C—oo18

UNCLASSIFIED CU—C5O—TR—7$—34t

END
DA T E

flt~ E 0

—78
DOT



LEVEL W (~
)

~~J1E ~~~RECTED ~JJBGRAPH j J~oMEOMORPHISM *

~ ROBLEM~~~~~~~~~~~~~~~~~~
__

lb Stev n /Fortune) ) 
~~~~~~~~~~

____  

/ 
L..__—~-——-’

>- _

D D C

) Department of Computer Science

Ithaca, NY 14853

This research was supported in~ .rt ky the 9ffice of Naval
Research under contract number Np

~
?14_76_c_

~~
18)..

~
J

EDISTFJBUT?OU 8?A1VVTh3IT A
Apptov.d for public i.I.~~~ 

-

Dtstzibuti~~ Uu~~~i.d

7~. ~::~ I
_ _ _ _ _ _  

p •
~~~~~ ~~~~~~~~~~~ — 

0

— 

_~ 0. 0 
~~~~ 

— 
‘0’—S~



THE DIRECTED HOMEOMORPHISM PROBLEM

By

Steven Fortune
John Hopcroft
James Wyllie

Department of Computer Science
Cornell University

Abstract

The set of pattern graphs for which the fixed directed sub~raph

homeomorphism problem is NP-comp le te is characterized.  A po ly-

nomial time algorithm is given for the remaining cases. The

restricted problem where the input graph is a directed acyclic

graph is in polynomial time for all pattern graphs and an al-

gorithm is given.
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Introduction

The subgraph homeomorphism problem is to determine if a

pattern graph P is homeomorphic to a subgraph of an input graph

G. The homeomorphism maps nodes of P to nodes of G and arcs

of P to simple paths in G. The graphs P and G are either both

directed or both undirected. The paths in G corresponding to

arcs in P must be pairwise node-disjoint. The mapping of nodes

in P to nodes in G may be specified or left arbitrary .

This problem can be viewed as a generalized path-finding

problem. For example, if the pattern graph consists of two

disjoint arcs and the node mapping is given , then the problem

is equivalent to finding a disjoint pair of paths between

specified vertices in the input graph.

It is easy to see that the problem is NP-complete if it

is posed as “Given a pair (P,G) as input, possibly with a node

mapping specified , does G contain a subgraph homeomorphic to

P?” This follows from the Hamilton circuit problem if the node

mapping is unspecified and the results of Even , Itai and Shamir

[2] on multi—commodity network flows if the node mapping is

specified. LaPaugh and Rivest [41 discuss this in more detail.

We consider the question , for fixed pattern graph P,

“Given as input a graph G with node-mapping specified , does G

contain a subgraph homeomorphic to P?” We refer to this as

the fixed subgraph homeomorphism problem. In this paper,

under the assumption Pp~NP, we characterize the pattern graphs

for which the fixed directed subgraph homeomorphism problem

is NP-complete and for which pattern graphs it is polynomial

time decidable. We also show that if the input graphs are
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restricted to being directed and acyclic, then there is always

a polynomial time algorithm. The general case of the undirected

fixed subgraph homeomorphism problem remains open , although

polynomial time algorithms are known for the pattern consisting

of a cycle of length three [4] and the pattern of two disjoint

edges [6].

Definitions

A directed graph G consists of a set N of nodes, a set

A of arcs, and two functions head and tail mapping arcs to

nodes. Given an arc a, we say that its head is the node head (a),

or that a is incident to head (a). The tail of an arc and the

expression “incident from” are defined analogously. We use this

definition to allow graphs to have multiple parallel arcs as

well as loops (a loop is an arc with identical head and tail).

A path of length k from node x to node ysis a sequence of arcs

H (al,a2,...ak) such that x = tail (a1), y = head(ak) and tail(a~
) =

head (a1_1) for i = 2,...k . A path from x to y is simple if no

node occuring as the head or tail of an arc is repeated , except

that x may equal y. Two simple paths are node-disjoint if they

have no nodes in common except that endpoints may be equal.

Given directed graphs P and G and a mapping m of the nodes

of P into the nodes of G, we say P is homeomorphic to a subgraph

of G if there exists a mapping from arcs of P to pairwise node-

disjoint paths in G such that an arc with head h and tail t is

mapped to a simple path from m(t) to m(h). The fixed subgraph

homeomorphism problem, for fixed pattern graph P , is the problem
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of determining on an input graph G and a node mapping m whether

P is homeomorphic to a subgraph of G. We assume without loss

of generality that every node in P has at least one incident

arc.

We note that paths could be required to be pairwise

arc—disjoint rather than node—disjoint. However, LaPaugh and

Rivest [4] have shown that the two formulations are computationally

equivalent for directed graphs.

The General Directed Case

Under the assumption that P~NP we now characterize those

directed pattern graphs for which the fixed subgraph honieo-

morphism problem is polynomial time decidable and those for

which the problem is NP-complete . Let c~ be the collection of

all directed graphs with a distinguished node called the root

possessing the property that either the root is the head of

every arc or the root is the tail of every arc . Note that the

root may be both the head and tail of some arcs and thus loops

at the root are allowed. Equivalently , a graph is in C if

when all loops at the root are deleted and multiple arcs between

pairs of nodes are merged into single arcs , the resulting

graph is a tree of height at most one.

Theorem 1: For each P in C there is a polynomial time algorithm

for the fixed subgraph homeomorphism problem with pattern P.

Proof: We will use the fact that finding maximum single-commodity

flows in a directed network with node capacities is computable

in polynomial time [1]. Suppose the pattern graph P is in C;

‘— .~~~~~~~~ — - -
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we will assume all arcs in P are directed away from the root.

The case with the reverse direction is analogous. Also suppose

we have an input graph G together with a mapping of the nodes

of P to nodes of G.

We first note that if there are loops at the root of P,

we can obtain an equivalent problem without loops as follows.

We split the root of P into a new leaf and new root, with the

loop arcs directed from the new root to the new leaf. All

other edges incident from the old root are incident from the

new root. In the input graph G we must now split the image

of the old root into two nodes, one with all the incoming arcs

and one with all the outgoing arcs. The new root in P is

mapped to the node with outgoing arcs; the new leaf in P is

mapped to the node with incoming arcs. Clearly, the original

problem has a solution if and only if the new one does.

Now label the image of the root of P as a source with

capacity equal to the outdegree of the root of P. Label the

image of every other node in P as a sink with c~ icity equal

to the indegree of the node in P. Give every unlabelled node

in G capacity one, and every arc in G capacity one . Now

decide if there is a flow in G equal to the capacity of the

source. Clearly , since P is “tree-like” , if P is homeomorphic

to a subgraph of G, the flow exists. Conversely , if the flow

exists then the condition that all non-source, non-sink nodes

have capacity one guarantees that the arcs in P map to node-dis-

joint paths in G. 0
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Next we show that for each pattern P not in C the fixed

subgraph homeomorphism problem with pattern P is NP-complete .

We proceed with several lemmas.

Lemma 1 Suppose P is a subgraph of Q, and the subgraph homeo-

morphism problem is NP-hard with pattern P. Then it is NP-hard

with pattern 0.

Proof Given a graph G together wi th  a mapp ing g of node s of

P into nodes of G, we construct a graph H together with a

mapping h of nodes of Q into nodes of H such that P is homeo-
morphic to a subgraph of G if and only if Q is homeomorphic to

a subgraph of H.

Let Q—P be the graph consisting of arcs in Q not in P,

together with incident nodes. Form H by adding to C a copy

of Q-P, where a node n of Q-P also in the node set of P is

identified with the node g(n) in G. Extend the mapping g to

a mapping h from nodes of Q to nodes of H in the obvious way.

If a is an arc in Q-P, then we denote by a ’ the corresponding

arc in the copy of Q-P added to G.

Clearly, if P is homeomorphic to a subgraph of C then 0

is homeomorphic to a subgraph of H. We show the converse by

induction on the number of arcs in 0—P. This is vacuously true

if Q—P is empty, so suppose Q-P is not empty and Q is homeo-

rnorphic to a subgraph of H. We first note that the image of

any arc a in Q-P with at least one endpoint not in P can only

have as its image the corresponding arc a’ in the copy of Q-P.

Hence no arc in P can have image containing an arc a’ in the

copy of Q—P , where arc a in Q-P has at least one endpoint not

in P. Now if every arc a in P has image in G, then P is
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homeomorphic to a subgraph of C. So suppose some arc p in P

has image containing arc q ’ in the copy of Q-P. Arc q in Q-P

must have both endpoints in P, hence q ’ must be the entire

image of arc p, and arcs p and q are parallel in Q. Now if

we change h so that the image of arc p is the image of arc q,

and delete arc q from Q and q ’ from H, we have Q—{q) homeo-

morphic to a subgraph of H-{q ’). By the induction hypothesis ,

P is homeomorphic to a subgraph of G. U

Lemma 2: Consider the subgraph in Figure 1. Suppose there

are two node-disjoint paths passing through the subgraph -- one

leaving at node A the other enter ing  at B. Then the path leaving

at A must have entered at C and the path entering at B must

leave at D. Further, there is exactly one additional path through

the subgraph and it is either 8-~9-~1O-*4-41 or 8’-~9’ -~l0’ -~4’ -~1l’

depending on the actual routing of the path leaving at A.

Proof: Consider the path leaving at A , call it the “A-path ” .

It must use either arc 1 or arc 1’. Since the subgraph is

symmetric , assume it uses arc 1. Thus it must also use arc 2.

The path entering at B, call it the “ B-path ” canno t use a rc 6 ,

hence it must use arc 6’ and arc 2’ . It cannot use arc 1’ , so

it must use arc 7’ and arc 9. The A—path cannot use arc 6, so

it must use arcs 3 and 4. It cannot use arc 10, so it must use

arc 5 and enter at C. The B-path cannot use arc 10 so it must

use arc 12 and leave at D. The path 8-~9-÷lO~ 4-’-l1 is now blocked

and 8’~~9’ -’-l0 ’~~4 ’ --1l’ is free. Notice that if a path enters at

8’, it must leave at 11’ as arcs 3’ and 12’ are blocked. Sim-

ilar].y, if a path leaves at 11’ it must enter at 8’. 0

— - .  -
‘- ----—----—— - - - - -—-~~~~~ — - - — -~~ ----- -
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We call the subgraph of Figure 1 a switch . We can stack

arbitrarily many switches and still have the lemma apply by

merging the C and D arcs of one switch with the A and B arcs

of the next  switch , respect ively. A switch is represented

schematically in Figure 2, where the vertical arcs represent

the paths 8-~9-+10-~4-*l1 and 8’-~.9’+l0’-*4 ’-~ll’ and the horizontal

line, not an arc, indicates that at most one of the vertical

arcs can be used. The A- and B-paths are imp l ic i t  in Fi gure 2 .

Lemma 3: Let P consist of two disjoint directed arcs and the

four incident vertices. Then the fixed SUP with pattern P is

NP-hard .

Proof: We wil l  reduce the s a t i sfi a b il it y  problem for  Boolean

formulas in 3-CNF to the subgraph homeomorphism problem with

pattern P. Fix a formula F with variables x1.. . xk and clauses

t1.. . t~ . We construct a graph GF as follows.

For each variable x1 make a copy of the subgraph appearing

in Figure 3. We associate one column of vertical arcs with the

literal x., the other with ~~~~.. The number of arcs in each
1

column is the number of occurrences of its associated literal

in F. The subgraphs are stacked by connecting the bottom node

of the suhgraph for x~ to the top node of the subgraph for

x1~ 1 by an arc. There are also nodes n0.. .n~ corresponding

to the clauses t1. . . t~ of F, with three arcs directed from n~ to
ni+l for each i. There is also an arc from the bottom of the

subgraph of X
k 
to n0. 

— --— — —-— - - — -- . — -—---
~~~

---——-- -

-g
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o ‘ 0

o a
Figure 2. Schematic representation of a switch .

Figure 3

- —-—------— — - —~~~~
-
-—--- ---— ------- --- - .- -
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Now for each literal y appeariz~ in each clau$e t1 we replace

one of the arcs between n
~~ i 

and n. and one of the arcs in the

column associated with y by a switch. The switches are linked

together as described in the discussion after lemma 2. Finally

we add nodes labelled W, X , Y and Z. The arc from Y is identi-

fied with the B input arc of the first switch , the arc from

the D output of the last switch is connected to the top node

of the subgraph for x1, and there is an arc from n~ to Z. The

C input arc of the last switch is connected to W and the A out-

put arc of the first switch is connected to X. An example of

CF is shown in Figure 4.

We claim there are node-disjoint paths from W to X and

from Y to Z in CF if and only if the formula F is satisfiable .

Suppose F is sa t i s f iable. Then the path from Y to Z can go

through the column associated with y if y is true in the satis-

fying assignment. Then since at least one literal in each clause

t~ is satisfied , there will always be at least one switch path

usable from n1 1  to n.. Conversely , if node-disjoint paths

exist they must pass through the switches as described in

Lemma 2. Hence the Y to Z path must proceed through the sub-

graphs for the x1’s and through nodes n0 to n~ . The assignment

realized by setting literal y to be true if and only if the Y

to Z path uses the column associated with y must satisfy F.

This reduction from 3—CNF satisfiability to the fixed SHP is

computable in polynomial time, hence the fixed SHP with pattern

P is NP-hard. 0
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Theorem 2: For each P not in G the fixed subgraph homeomorphism

problem with pattern P is NP-complete.

Proof: The fixed SHP for any pattern graph P is clearly in

NP , so we need only show that for P / C , the problem is NP-hard.

An alternative characterization of C is that a graph G is not

in C if and only if G contains one of the following subgraphs:

i) two disjoint edges, one or both of which may be a
loop ,

ii) a path of two arcs visiting three distinct vertices, or

iii) a cycle of length two.

By showing that the fixed SHP for each of the above three

subgraphs is NP-hard and then by applying Lemma 1, the theorem

is established for all pattern graphs containing one of these

graphs as a subgraph and hence for all graphs not in C. Lemma

3 establishes the NP—hardness of subgraph (i) in the case that

there are no loops. If there are ioops, identifying W with X

and/or Y with Z allows the same construction to be used. For

case (ii), identifying X and Y establishes the theorem, and

finally in case (iii), identifying the pairs of vertices W, Z

and X, Y allows the proof of Lemma 3 to carry over to this

case. 0

• Directed Acyclic Graphs

In this section we show that for any fixed pattern graph

the directed subgraph homeomorphism problem for acyclic input

graphs has a polynomial time algorithm. The degree of the

- - --------- -•-----—•- - -- -‘- ‘— — — —~•- - -
----—-‘-----
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polynomial depends on the particular pattern graph. The al-

gorithm works whether or not the node mapping of patteriz to

input graph is specified. The result is a generalization of

Perl and Shiloach ’s algorithm [51 for finding two node-disjoint

paths in a directed acyclic graph.

Fix a pattern graph and assume for the moment that

the mapping of the nodes of the pattern graph to nodes of the

input graph is specified with the input graph . The algorithm

is described in terms of a pebbling game played on the nodes

of the input graph . Pebbles will correspond to the arcs of

the pattern graph; the path traced by a pebble during the game

will be the image of an arc in the pattern graph .

We define the level of a node in the input graph to be

the length of a longest path in the graph from the node .

Clearly, if there is a path from v to w , then the level of v

is greater than the level of w.

The rules of the pebbling game are as follows :

Cl) For each arc a1 in the pattern graph there is a

pebble p1. Initially , for each node s in the

pattern graph, the pebbles corresponding to arcs

leaving s are placed on the image of s in the input

graph.

(2) At any step pebble p1 may be moved along a directed

arc from n to m if
(a) n has the highest level of any pebbled node.

(If two pebbles are on nodes of equal, highest

level either may be moved), and
(b) either m has no pebble ort it,

___________________ -- —
‘- ‘• •—-——----------—
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H and Cc) IY’ is not the- ‘image of any node in the pattern

graph , except possibly the head of

(3) Pebble p~ may be removed from the graph if it is placed

on the image of the head of a1.

The game is won if all pebbles can be removed from the input

graph.

Lemma 4: The pebbling game can be won if and only if the

pattern graph is homeomorphic to a subgraph of the input graph .

Proof: First suppose there is a winning strategy . Clearly

the sequence of arcs traversed by pebble p1 is a path from the

image of the tail of a1 to the image of the head of a1. We

need to show that all the paths are node-disjoint, except of

course for endpoints. Suppose the paths of pebbles p1 and p~

intersect at a node m which is not the endpoint of path i.

Node m is not the image of a node in the pattern graph by con-

dition (2c). Without loss of generality we can assume pebble

visits m first. By condition (2b), pebble p~ must leave m

before pebble p~ arrives. But this contradicts condition (2a),

as the level of the node on which p~ resides must be higher

than the level of node m, on which p~ resides. Hence all paths

are node-disjoint.

• - Conversely , assume that the pattern graph is homeomorphic

to a subgraph H of the input graph . Number every arc in H by

the level of its tail in the input graph. It is easy to see

that repeatedly executing the following strategy wins the pebbling

game. Choose a highest numbered arc a in H, move pebble p~ along

a where is chosen so that the image of arc a1 contains a , and

delete a from H. If p1 is now placed on the image of the head of

arc a1, remove Pj from the graph.
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Theorem 3 For any fixed directed pattern graph P, there is

a polynomial time algorithm to decide if a directed acyclic

graph G contains a subgraph homeomorphic to P.

Proof We first assume the node mapping is specified. Suppose

P has k arcs. For an input graph with n nodes, there are

4fl.f 1) k ways of putting up to k pebbles on the graph , hence at rtost as

many configurations of the pebbling game. A polynomial time

algorithm can construct a graph G’ where nodes correspond to

configurations and arcs to legal moves. A path finding algorithm

can then decide if there is a path from the node corresponding

to the starting configuration to the node of the winning con-

figuration .

If node mappings are not given , the above algorithm can
n

be run for all (s) possible mappings where s is the number of

nodes in the pattern graph . 0

We note that the result of Even, Itai and Sharnir [2) on

multicommodity flows implies that the directed subgraph horneo-

morphism problem is NP-complete if both pattern and input graphs

are given as input, even if the input graph is acyclic.

Conclusions We have characterized the complexity of the

fixed directed subgraph homeomorphism problem for all pattern

graphs. However, many questions remain open. One obvious one

is the problem for undirected graphs. We do not know how to

construct a “switch” , as in Lemma 2, to prove the prob lem

NP-complete. It is conceivable that there are polynomial time

algorithms for all undirected pattern graphs , wi th the polynomial

~~¼ •.—~~~~ ‘ ‘ — - -‘- —- -
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depending on the pattern. LaPaugh and Rivest [4] have given

a polynomial time algorithm for the pattern consisting of a

cycle of length three; Shiloach [6] has given a polynomial

time algorithm for the pattern of two disjoint edges. The

problems for the corresponding directed patterns are NP-complete.

Another possible question is to study other restricted

classes of input graphs. For example , the question of whether

the fixed directed subgraph homeomorphism problem for planar

graphs is NP-complete is open.

If we consider the subgraph homeomorphism problem when

node mappings are not given , that is, when we are to find a

homeomorphic image of the pattern graph anywhere in the input

graph , the problem is still NP-complete . This follows since

we can effectively label vertices in both input and pattern

graphs by giving them high degree. In fact, it is amusing to

note that testing for the presence of the subgraph in Figure

Sa is NP-complete, while the subgraph of Figure Sb is. absent

if and only if the graph is reducible, a condition which can

be tested efficiently [31. An interesting question is whether

the directed subgraph homeomorphism problem without node map-

pings is NP-complete when all nodes in both pattern and input

graphs have either indegree 1 and outdegree 2 or indegree 2

and outdegree 1.

Alternatively one could study collections of patterns.

Testing for the presence of the subgraph in Figure 6a or testing

for the presence of the subgraph in Figure 6b are both NP-com-

plete prob lems . Nevertheless if we don ’t care which subgraph

¼ ~~~— - ~~~~‘ 
_____________________________ —
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is present there is a polynomial time algorithm. Conceivably

in the undirected, unlabelled case, determining if a specific

Kuratowski subgraph is present is NP—complete even though there

is a polynomial planarity testing algorithm.

L 
— —- - 

-
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