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THE DIRECTED HOMEOMORPHISM PROBLEM

By

Steven Fortune
John Hopcroft
James Wyllie

Department of Computer Science
Cornell University

Abstract

The set of pattern graphs for which the fixed directed subgraph

homeomorphism problem is NP-complete is characterized. A poly-

nomial time algorithm is given for the remaining cases. The
restricted problem where the input graph is a directed acyclic

graph is in polynomial time for all pattern graphs and an al-

gorithm is given.
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Introduction

The subgraph homeomorphism problem is to determine if a
pattern graph P is homeomorphic to a subgraph of an input graph
G. The homeomorphism maps nodes of P to nodes of G and arcs
of P to simple paths in G. The graphs P and G are either both
directed or both undirected. The paths in G corresponding to
arcs in P must be pairwise node-disjoint. The mapping of nodes
in P to nodes in G may be specified or left arbitrary.

This probiem can be viewed as a generalized path-finding
problem. For example, if the pattern graph consists of two
disjoint arcs and the node mapping is given, then the problem
is equivalent to finding a disjoint pair of paths between
specified vertices in the input graph.

It is easy to see that the problem is NP-complete if it
is posed as "Given a pair (P,G) as input, possibly with a node
mapping specified, does G contain a subgraph homeomorphic to
P?" This follows from the Hamilton circuit problem if the node
mapping is unspecified and the results of Even, Itai and Shamir
[2] on multi-commodity network flows if the node mapping is
specified. LaPaugh and Rivest [4] discuss this in more detail.

We consider the question, for fixed pattern graph P,
"Given as input a graph G with node-mapping specified, does G
contain a subgraph homeomorphic to P?" We refer to this as
the fixed subgraph homeomorphism problem. In this paper,
under the assumption P#NP, we characterize the pattern graphs
for which the fixed directed subgraph homeomorphism problem
is NP-complete and for which pattern graphs it is polynomial

time decidable. We also show that if the input graphs are




restricted to being directed and acyclic, then there is always

a polynomial time algorithm. The general case of the undirected
fixed subgraph homeomorphism problem remains open, although
polynomial time algorithms are known for the pattern consisting
of a cycle of length three [4] and the pattern of two disjoint

edges [6].

Definitions

A directed graph G consists of a set N of nodes, a set
A of arcs, and two functions head and tail mapping arcs to
nodes. Given an arc a, we say that its head is thé node head(a),
or that a is incident to head(a). The tail of an arc and the
expression "incident from" are defined analogously. We use this
definition to allow graphs to have multiple parallel arcs as
well as loops (a loop is an arc with identical head and tail).
A path of length k from node x to node ysis a sequence of arcs

(al,az,...ak) such that x = tail(al), y = head(ak) and tail(ai) =

head(ai_l) for i 2,...k . A path from x to y is simple if no
node occuring as the head or tail of an arc is repeated, except
that x may equal y. Two simple paths are node-disjoint if they
have no nodes in common except that endpoints may be equal.
Given directed graphs P and G and a mapping m of the nodes
of P into the nodes of G, we say P is homeomorphic to a subgraph
of G if there exists a mapping from arcs of P to pairwise node-
disjoint paths in G such that an arc with head h and tail t is

mapped to a simple path from m(t) to m(h). The fixed subgraph

homeomorphism problem, for fixed pattern graph P, is the problem

A
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of determining on an input graph G and a node mapping m whether
P is homeomorphic to a subgraph of G. We assume without loss 1
of generality that every node in P has at least one incident
arc.

We note that paths could be required to be pairwise
arc~disjoint rather than node-disjoint. However, LaPaugh and
Rivest [4] have shown that the two formulations are computationally

equivalent for directed graphs.

The General Directed Case

Under the assumption that P#NP we now characferize those 4
directed pattern graphs for which the fixed subgraph homeo-
morphism problem is polynomial time decidable and those for
which the problem is NP-complete. Let C be the collection of
all directed graphs with a distinguished node called the root
possessing the property that either the root is the head of
every arc or the root is the tail of every arc. Note that the
root may be both the head and tail of some arcs and thus loops
at the root are allowed. Equivalently, a graph is in € if
when all loops at the root are deleted and multiple arcs between
pairs of nodes are merged into single arcs , the reéulting

graph is a tree of height at most one.

Theorem 1: For each P in C there is a polynomial time algorithm

for the fixed subgraph homeomorphism problem with pattern P.

Proof: We will use the fact that finding maximum single-commodity
flows in a directed network with node capacities is computable

in polynomial time [l]. Suppose the pattern graph P is in C;




we will assume all arcs in P are directed away from the root.
The case with the reverse direction is analogous. Also suppose
we have an input graph G together with a mapping of the nodes
of P to nodes of G.

We first note that if there are loops at the root of P,
we can obtain an equivalent problem without loops as follows.
We split the root of P into a new leaf and new root, with the
loop arcs directed from the new root to the new leaf. All
other edges incident from the o0ld root are incident from the
new root. In the input graph G we must now split the image
of the o0ld root into two nodes, one with all the incoming arcs
and one with all the outgoing arcs. The new root in P is
mapped to the node with outgoing arcs; the new leaf in P is
mapped to the node with incoming arcs. Clearly, the original
problem has a solution if and only if the new one does.

Now label the image of the root of P as a source with
capacity equal to the outdegree of the root of P. Label the
image of every other node in P as a sink with ca'icity equal
to the indegree of the node in P. Give every unlabelled node
in G capacity one, and every arc in G capacity one. Now
decide if there is a flow in G equal to the capacity of the
source. Clearly, since P is "tree-like", if P is homeomorphic
to a subgraph of G, the flow exists. Conversely, if the flow
exists then the condition that all non-source, non-sink nodes
have capacity one guarantees that the arcs in_P map to node-dis-

joint paths in G. O




Next we show that for each pattern P not in C the fixed
subgraph homeomorphism problem with pattern P is NP-complete.

We proceed with several lemmas.

Lemma 1 Suppose P is a subgraph of Q, and the subgraph homeo-
morphism problem is NP-hard with pattern P. Then it is NP-hard

with pattern Q.

Proof Given a graph G together with a mapping g of nodes of
P into nodes of G, we construct a graph H together with a

mapping h of nodes of ¢ into nodes of H such that P is homeo-
morphic to a subgraph of G if and only if Q is homeomorphic to

a subgraph of H.
Let Q-P be the graph consisting of arcs in Q not in P,

together with incident nodes. Form H by adding to G a copy
of Q-P, where a node n of Q-P also in the node set of P is
identified with the node g(n) in G. Extend the mapping g to
a mapping h from nodes of Q to nodes of H in the obvious way.
If a is an arc in Q-P, then we denote by a' the corresponding
arc in the copy of Q-P added to G.

Clearly, if P is homeomorphic to a subgraph of G then Q
is homeomorphic to a subgraph of H. We show the converse by
induction on the number of arcs in Q-P. This is Vacﬁously true
if Q-P is empty, so suppose Q-P is not empty and Q is homeo-
morphic to a subgraph of H. We first note that the image of
any arc a in Q-P with at least one endpoint not in P can only
have as its image the corresponding arc a' in the copy of Q-P.
Hence no arc in P can have image containing an arc a' in the
copy of Q-P, where arc a in Q-P has at least one endpoint not

in P. Now if every arc a in P has image in G, then P is




homeomorphic to a subgraph of G. So suppose some arc p in P
has image containing arc gq' in the copy of Q-P. Arc g in Q-P
must have both endpoints in P, hence g' must be the entire
image of arc p, and arcs p and g are parallel in Q. Now if
we change h so that the image of arc p is the image of arc q,
and delete arc q from Q and q' from H, we have Q-{g} homeo-
morphic to a subgraph of H-{g'}. By the induction hypothesis,

P is homeomorphic to a subgraph of G. ]

Lemma 2: Consider the subgraph in Figure 1. Suppose there

are two node-disjoint paths passing through the subgraph -- one
leaving at node A the other entering at B. Then the path leaving
at A must have entered at C and the path entering at B must

leave at D. Further, there is exactly one additional path through
the subgraph and it is either 8-9-10+4-11 or 8'-»9'-»10'~>4'~>11"

depending on the actual routing of the path leaving at A.

Proof: Consider the path leaving at A, call it the "A-path".
It must use either arc 1 or arc 1'. Since the subgraph is
symmetric, assume it uses arc 1. Thus it must also use arc 2.
The path entering at B, call it the "B-path" cannot use arc 6,
hence it must use arc 6' and arc 2'. It cannot use arc 1l', so
it must use arc 7' and arc 9. The A-path cannot use arc 6, so
it must use arcs 3 and 4. It cannot use arc 10, so it must use
arc 5 and enter at C. The B-path cannot use arc 10 so it must
use arc 12 and leave at D. The path 8-+9+10+4+11 is now blocked
and 8'+9'+10'+4'+11' is free. Notice that if a path enters at
8', it must leave at 1l1' as arcs 3' and 12' are blocked. Sim-

ilarly, if a path leaves at 11' it must enter at 8'. 0




Figure 1.

A Switch
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We call the subgraph of Figure 1 a switch. We can stack
arbitrarily many switches and still have fhe lemma apply by
merging the C and D arcs of one switch with the A and B arcs
of the next switch, respectively. A switch is represented
schematically in Figure 2, where the vertical arcs represent
the paths 8-29-10+4-11 and 8'+9'+10'>4'~>11"' and the horizontal
line, not an arc, indicates that at most one of the vertical

arcs can be used. The A- and B-paths are implicit in Figure 2.

Lemma 3: Let P consist of two disjoint directed arcs and the
four incident vertices. Then the fixed SHP with pattern P is

NP-hard.

Proof: We will reduce the satisfiability problem for Boolean
formulas in 3-CNF to the subgraph homeomorphism problem with

pattern P. Fix a formula F with variables Xee e Xy and clauses

tl"'tl’ We construct a graph GF as follows.

For each variable Xy make a copy of the subgraph appearing
in Figure 3. We associate one column of vertical arcs with the
literal X4 the other with §i. The number of arcs in each
column is the number of occurrences of its associated literal
in F. The subgraphs are stacked by connecting the bottom node
of the subgraph for x4 to the top node of the subgranh for
X541 by an arc. There are also nodes Nye..ng corresponding

to the clauses tl"'t2 of F, with three arcs directed from ng to

n for each i. There is also an arc from the bottom of the

i+l

subgraph of Xy to ng-




Figure 2. Schematic representation of a switch.

Figure 3
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Now for each literal y appearing in each clause t, we replace
one of the arcs between n;, , and n, and one of the arcs in the
column associated with y by a switch. The switches are linked
together as described in the discussion after lemma 2. Finally
we add nodes labelled W, X, Y and Z. The arc from Y is identi-
fied with the B input arc of the first switch, the arc from
the D output of the last switch is connected to the top node
17 and there is an arc from n, to Z. The

C input arc of the last switch is connected to W and the A out-

of the subgraph for x

put arc of the first switch is connected to X. An example of
GF is shown in Figure 4.

We claim there are node-disjoint paths from W to X and
from Y to Z in GF if and only if the formula F is satisfiable.
Suppose F is satisfiable. Then the path from Y to Z can go
through the column associated with y if y is true in the satis-
fying assignment. Then since at least one literal in each clause
ti is satisfied, there will always be at least one switch path
usable from n; 3 to n, . Conversely, if node-disjoint paths
exist they must pass through the switches as described in
Lemma 2. Hence the Y to Z path must proceed through the sub-
graphs for the xi's and through nodes n, to n. The assignment
realized by setting literal y to be true if and only if the Y
to Z path uses the column associated with y must satisfy F.
This reduction from 3-CNF satisfiability to the fixed SHP is

computable in polynomial time, hence the fixed SHP with pattern

P is NP-hard. O
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B input of
first switch

D output of
last switch

Xl+x2+x7
to x7
x1+x2+x15
C input of
_ last switch

15

A output of
first switch

Figure 4.
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Theorem 2: For each P not in G the fixed subgraph homeomorphism

problem with pattern P is NP-complete.

Proof: The fixed SHP for any pattern graph P is clearly in

NP, so we need only show that for P £C, the problem is NP-hard.

An alternative characterization of C is that a graph G is not

in C if and only if G contains one of the following subgraphs:

i) two disjoint edges, one or both of which may be a
loop,

ii) a path of two arcs visiting three distinct vertices, or

iii) a cycle of length two.

By showing that the fixed SHP for each of the above three
subgraphs is NP-hard and then by applying Lemma 1, the theorem
is established for all pattern graphs containing one of these
graphs as a subgraph and hence for all graphs not in C. Lemma
3 establishes the NP-hardness of subgraph (i) in the case that
there are no loops. If there are loops, identifying W with X
and/or Y with 2 allows the same construction to be used. For
case (ii), identifying X and Y establishes the theorem, and
finally in case (iii), identifying the pairs of vertices W, Z
and X, Y allows the proof of Lemma 3 to carry over to this

case. 0

Directed Acyclic Graphs

In this section we show that for any fixed pattern graph
the directed subgraph homeomorphism problem for acyclic input

graphs has a polynomial time algorithm. The degree of the

e ST o R
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polynomial depends on the particular pattern graph. The al-
gorithm works whether or not the node mapping of pattern to
input graph is specified. The result is a generalization of
Perl and Shiloach's algorithm [5] for finding two node-disjoint
paths in a directed acycl?c graph.

Fix a pattern graph and assume for the moment that
the mapping of the nodes of the pattern graph to nodes of the
input graph is specified with the input graph. The algorithm
is described in terms of a pebbling game played on the nodes
of the input graph. Pebbles will correspond to the arcs of
the pattern graph; the path traced by a pebble during the game
will be the image of an arc in the pattern graph.

We define the level of a node in the input graph to be
the length of a longest path in the graph from the node.
Clearly, if there is a path from v to w, then the level of v
is greater than the level of w.

The rules of the pebbling game are as follows:

(1) For each arc a; in the pattern graph there is a

pebble P;- Initially, for each node s in the
pattern graph, the pebbles corresponding to arcs

leaving s are placed on the image of s in the input

graph.

(2) At any step pebble p; may be moved along a directed
arc from n tom if
(a) n has the highest level of any pebbled node.
(If two pebbles are on nodes of equal, highest
level either may be moved), and
(b) either m has no pebble on it,
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and (c) m is not the image of any node in the pattern
graph, except possibly the head of a;

(3) Pebble p; may be removed from the graph if it is placed

on the image of the head of a; .

The game is won if all pebbles can be removed from the input
graph.
Lemma 4: The pebbling game can be won if and only if the

pattern graph is homeomorphic to a subgraph of the input graph.

Proof: First suppose there is a winning strategy. Clearly

the sequence of arcs traversed by pebble pi_is a path from the

image of the tail of a; to the image of the head of a; - We

need to show that all the paths are node-disjoint, except of

course for endpoints. Suppose the paths of pebbles Py and pj

intersect at a node m which is not the endpoint of path i.

Node m is not the image of a node in the pattern graph by con-

dition (2c). Without loss of generality we can assume pebble

pj visits m first. By condition (2b), pebble pj must leave m

before pebble Py arrives. But this contradicts condition (2a),

as the level of the node on which Py resides must be higher

than the level 6f node m, on which pj resides. Hence all paths

are node-disjoint. |
Conversely, assume that the pattern graph is homeomorphic

to a subgraph H of the input graph. Number every arc in H by

the level of its tail in the input graph. It is easy to see

that repeatedly executing the following strategy wins the pebbling

game. Choose a highest numbered arc a in H, move pebble'pi along

a where p; is chosen so that the image of arc a; contains a, and

delete a from H. If P; is now placed on the image of the head of

arc a;, remove p,; from the graph.
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Theorem 3 For any fixed directed pattern graph P, there is
a polynomial time algorithm to decide if a directed acyclic

graph G contains a subgraph homeomorphic to P.

Proof We first assume the node mapping is specified. Suppose

P has k arcs. For an input graph with n nodes, there are

’(n+1)k ways of putting up to k pebbles on the graph, hence at most as

many configurations of the pebbling game. A polynomial time
algorithm can construct a graph G' where nodes correspond to
configurations and arcs to legal moves. A path finding algorithm
can then decide if there is a path from the node corresponding

to the starting configuration to the node of the winning con-
figuration.

If node mappings are not given, the above algorithm can
be run for all (g) possible mappings where s is the number of
nodes in the pattern graph. [

We note that the result of Even, Itai and Shamir [2] on
multicommodity flows implies that the directed subgréph homeo-

morphism problem is NP-complete if both pattern and input graphs

are given as input, even if the input graph is acyclic.

Conclusions We have characterized the complexity of the

fixed directed subgraph homeomorphism problem for all pattern
graphs. However, many questions remain open. One obvious one
is the problem for undirected graphs. We do not know how to
construct a "switch", as in Lemma 2, to prove the problem
NP~complete. It is conceivable that there are polynomial time

algorithms for all undirected pattern graphs, with the polynomial




=16~

depending on the pattern. LaPaugh and Rivest [4] have given
a polynomial time algorithm for the pattern consisting of a
cycle of length three; Shiloach [6] has given a polynomial
time algorithm for the pattern of two disjoint edges. The
problems for the corresponding directed patterns are NP-complete.

Another possible question is to study other restricted
classes of input graphs. For example, thé question of whether
the fixed directed subgraph homeomorphism problem for planar
graphs is NP-complete is open.

If we consider the subgraph homeomorphism problem when
node mappings are not given, that is, when we are to find a
homeomorphic image of the pattern graph anywhere in the input
graph, the problem is still NP~-complete. This follows since
we can effectively label vertices in both input and pattern
graphs by giving them high degree. In fact, it is amusing to
note that testing for the presence of the subgraph in Figure
5a is NP-complete, while the subgraph of Figure 5b is. absent
if and only if the graph is reducible, a condition which can
be tested efficiently [3]. An interesting question is whether
the directed subgraph homeomorphism problem without node map-
pings is NP-complete when all nodes in both pattern and input
graphs have either indegree 1 and outdegree 2 or indegree 2

and outdegree 1.

Alternatively one could study collections of patterns.
Testing for the presence of the subgraph in Figure 6a or testing
for the presence of the subgraph in Figure 6b are both NP-com-

plete problems. Nevertheless if we don't care which subgraph

—
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is present there is a polynomial time algorithm. Conceivably
in the undirected, unlabelled case, determining if a specific
Kuratowski subgraph is present is NP-complete even though there

is a polynomial planarity testing algorithm.




Figure 5a

Figure 6A
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Figure 5b
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