: e
AD=AOS8 448 CORNELL UNIV ITHACA N Y DEPT OF COMPUTER SCIENCE F/6 12/1 e
THE COMPLEXITY OF EQUIVALENCE AND CONTAINMENT FOR FREE SINGLE V==ETC(U) -
MAY 77 S FORTUNEr J HOPCROFT) E M SCHMIDT NOOO14=76~C=0018
UNCLASSIFIED CU=CSD=TR=77=310 NL

END
DATE
FILMED

|1 =78

| BEEY s e
The Complexity of Equivalence and
Containment for Free Single Variable

Program Schemesp

ADA058448

Steven,Fortune,

JohanOpcroft

Erik Meineche’Schmidt

TR 77-310

D0 FiLE -copY

S e IS J

=8 @F{D—‘W H——°W
(Sooosi-ttpors \ BRSO
@i\ QTt brital pepty /

| for pxbxc re' oo and scls. i3
distribution is unlimited.

The Complexity of Equivalence and Containment

for Free Single Variable Program Schemes

Steven Fortune
John Hopcroft
Erik Meineche Schmidt
Department of Computer Science

Cornell University
Ithaca, New York 14853

Abstract

Non-containment for free single variable program schemes
is shown to be NP-complete. A polynomial time algorithm for
deciding equivalence of two free schemes,provided one of them has
the predicates appearing in the same order in all executions,
is given. However, the ordering of a free scheme is shown to

lead to an exponential increase in size.

This research was supported in part by the office of Naval
Research under contract N00014-76€0018 and by Aarhus University,

Aarhus, Denmark. '

1. Introduction

Much work in the theory of program schemes has gone into
the investigation of decidability properties for different
classes of schemes [G,M!. In the cases where a problem is
decidable, a natural question is to determine the complexity
of the decision procedure. Some of those questions were
answered in [CHS] where it was shown that noncontainment and
nonequivalehce for single variable program schemes and for
monadic linear recursion schemes are NP-complete.

In this paper we investigate the complexity of these two
problems for the class of free single variable program schemes.
The requirement of freedom (i.e. absence of pieces of code which
cannot possibly be executed), is a very natural one if we want
to consider schemes which are models of real programs. Although
most real programs have more than one variable, we show that
even in the single variable case the equivalence problem is
difficult.

We show that the noncontainment problem for free schemes
remains NP-complete. We do not know the complexity of the
equivalence problem for free schemes (except that inequivalence
is in NP), but we can reduce it to the problem of determining
equivalence of acyclic schemes involving only predicates and
terminal assignment statements. We present a partial solution

to the equivalence problem by showing that if one of the schemes

has all predicates appearing in the same order, then there is

a polynomial time algorithm. However, we show that there are
schemes in which ordering the predicates causes an exponential
increase in size, indicating that preprocessing by ordering one
of the schemes cannot lead to a polynomial time algorithm.

The paper is organized in 5 sections. In section 2 we
introduce the notion of a B-scheme, which is an acyclic
single variable program scheme containing only predicates and
terminal assignment statements. Section 3 contains the proof
that noncontainment for free B-schemes is NP-complete as well
as the polynomial time algorithm for the case where one scheme
is ordered. 1In section 4 we present an unordered B-scheme with
no small equivalent ordered scheme, and in section 5 we show
that equivalence for the full class of free single variable
schemes is decidable in polynomial time if and only if the
equivalence problem for free B-schemes is decidable in
polynomial time.

Although this is a paper about program schemes, some of the
results, notably the exponential blow-up in section 4, are of
interest in their own right. Since these results are formulated
in terms of standard concepts from graph theory, no particular

knowledge from program scheme theory is required.

2. Preliminaries

A B-scheme is a labeled rooted dag whose vertices have

outdegree 2 or 0. Vertices with outdegree 2 are called tests

and are labeled with Boolean variables; vertices with out-
degree 0 are called leaves and are labeled by function symbols.
One edge from a test is labeled T, the other F. |S| denotes
the number of nodes in scheme S. A B-scheme is free if there
is no path Erom the root to a leaf which contains two or more
tests with the same label.

Let S be a B-scheme. A B-assignment A (assignment for short)

is a mapping from the Boolean variables of S to {true, false}.
t(A) is the path constructed by starting at the root and
selecting the edge labeled T (F) whenever encountering a test

labeled b where A(b) = true (false). The value mapping Val

maps pairs of schemes and assignments to function symbols and
is defined as follows:
val(s,A) =f iff the leaf reached by the path t(A) has label f.
The B-schemes S1 and 82 are equivalent, (Slzsz), if and
only if for each assignment A, whose domain contains all Boolean
variables in S, and Sz,Val(Sl,A) = Val(S,,A). One function
symbol § is designated as a special symbol and represents the

undefined function. S, is contained in Sz, (S1 < Sz), if and

1
only if for each assignment A whose domain contains all Boolean
variables in s1 and Sz,either Val(sl,A) = Q or Val(sl,A)

Val(Sz,A).

TN p—

We note that if the leaves in a B-scheme are replaced
by a HALT-statement, then we obtain the switching schemes of

[CHS] .

3. Containment and equivalence for free B-schemes

Here we show that the containment problem for free
B-schemes is NP-complete, and that in certain cases we can

find polynomial time algorithms for equivalence.

Theorem 3.1: The set

BNCONT = {(S,,S,) | s, and s, are free B-schemes and
S, £ 8,1}

is NP-complete.

Proof: The usual guess and check method shows that BNCONT
is in NP.

To show that BNCONT is NP-hard we reduce 3-CNF.satisfiabi1ity
to it. Let F be a 3-CNF formula with variables xl’xz";'xk' and
let X, appear uncomplemented in F 129 times and complemented
q; times. Let ui,u;,...,u;ibe new variables and replace every
uncomplemented occurrence of X in F by a distinct ui. Similarly
let vi,vi,...vé_ be new variables and replace every complemented
occurrence of xz by a distinct vi. Let F' be the formula
obtained by replacing every X We will construct two schemes
S, and S, such that § é.sz iff the original formula F is
satisfiable. Intuitively, when S, £ Sy 8 will force the

1

satisfiability of the formula F' and S, will enforce the

2

abhe

Py,

e

i i

1 1 = = = i =----'i = = i
restriction that ul u2 ies uPi v1 PP s vqi.
] R
Let F' = (al+bl+cl)(a2+b2+c2)...(am+bm+cm). Then the

schemes Sl and 52 are

il e CNEENGONET P

e ik i i i

Now if the original formula F was satisfiable we can find an
assignment A such that Val(Sz,A) = g and Val(Sl,A) = f, so

sl.f SZ' Conversely, if Sl'£ Sz,
A such that Val(sl,A) = £ and Val(Sz,A) = g. But Val(Sz,A) =g

then there is an assignment

only if, for each i, ui=u;=...=u; =Vi=...=5; . Hence assigning
: i i
to each X; the value A(ui) satisfies F. Since Sl and 52 can

be written down in time polynomial in the length of F, BNCONT

is NP—hard.’ e
We now turn to the equivalence problem for free B-schemes.

First we show that if the two schemes are ordered, then there

is a polynomial time algorithm for deciding equivalence.

Definition 3.2: A B-scheme with Boolean variables bl...bk is
ordered if whenever a test labeled bi is a predecessor of a
test labeled bj then i<j. 1

In the proof of the next theorem we use the observation
that if a scheme is ordered, then the size of the finite

automaton accepting the interpreted value language [G] is

polynomial in the size of the scheme.

Theorem 3.3: There is a polynomial time equivalence algorithm

for ordered schemes.

Proof: Let S1 and 52 be schemes in which the Boolean variables

bl"'bk appear. We will construct deterministic finite

such that S,=S, iff

and M, from S, and 82 1357

automata M1 2 1

L(Ml) = L(M2). Mi will accept the string V ...V. f (where

A
Vj is either T or F and f is a function symbol) iff val(S;,A) =

f where A is the assignment

true if Vi = T
A(b.) =
* false if v, = F.

M, is constructed as follows. We extend S, so that every

Boolean variable is tested on every path from root to leaf.

We may need to add extra tests if (1) the root is not labeled
blr(2) there is an edge from a test labeled bi to a test
labeled bj’ and j>i+l, or (3) there is an edge from a test
labeled bi to a leaf, and i<k. For example in the second case

the edge

\4
@“__’ j>i+l, V=T or F

is replaced with

T T
v =
‘* @
’ ~— A
F F

We add a new accepting node and for each leaf labeled f an
edge labeled f from the leaf to the accepting node. Then the
resulting graph is the state graph. of Mi; nodes are states,

edge labels are state transitions, the test labeled bl is

the start state, and the accepting node the only accepting state.

Since the Boolean variables are ordered it is clear that

L(Ml) = L(Mz) 1L $138,. Since M, and M, can be computed in

time polynomial in the size of s1 and Sz, and equivalence of

— -

i B i ol e

-10-

deterministic finite automata can be done in polynomial time

[AHU] , there is a polynomial time algorithm for ordered schemes.
We close this section by proving that Theorem 3.3

remains true in the case where just one scheme is ordered.

The method can be characterized as "graph pushing".

Definition 3.4: Let S be a free B-scheme and b a Boclean

variable. Then S[b=true] is the scheme obtained from S by
setting b tg be true. More precisely:
1. For each vertex v labeled b in S, do the following.
Delete v and any edges connected to it. Let u be
the vertex such that (v,u) was labeled T. If v was
the root, make u the root. Otherwise for each
vertex w such that (w,v) was in S, insert edge
(w,u) and give it the label of (w,v).

2. Delete any inaccesible vertices,

S[b=false] is defined analogously. -
Lemma 3.5: Let Sl and 52 be free B-schemes. Then SlES2
if and only if
Sl[b=true]ESZ[b=true] and Sl[b=false]ESZ[b=false]
n

Proof: Immediate.

We now present a polynomial time algorithm which solves
the equivalence problem for two free B-schemes, provided one

is ordered.

Y

Algorithm 3.6:

Input: Free B-scheme S, and ordered B-scheme S,-

1
Output: "Yes" if the schemes are equivalent, "No" otherwise.
begin

comment L is a list of pairs of graphs which must be

equivalent in order that S, and S, be equivalent;

2
initialize L to (Sl,Sz);
repeat :

let n be a node of Sl all of whose predecessors have
been marked and let v be the subgraph with root n;

let (v,vl),...,(v,vm) be all the pairs of graphs on
L in which v occurs;

comment Since VyiVyree., v oare subgraphs of an ordered
scheme, the method in Theorem 3.3 can be used to
test their equivalence;

if 4 (levzz...Evm) then output ("No") and halt;

if v is a leaf then
comment since v is trivially ordered, the method
in Theorem 3.3 can again be used to test
equivalence of v and vyi
if 4 (val) then
output ("No") and halt;
else
A: add to L the pairs (v',v1[b=true]) and (v“,v1[b=false])
where b is the label of v's root n and v'(v")
is the subgraph of S1 reachable via n's
outgoing T-edge (F-edge)
£i;
remove the pairs (v,vl),...,(v,vm) from L;
mark n;

until all nodes of S1 have been marked;

output ("Yes") and halt;

=12-

Theorem 3.7: Algorithm 3.6 works correctly and runs in poly-

nomial time.

Proof: It follows from Lemma 3.5 that the property

P: Sl:S2

is an invariant for the loop. To show correctness then, it

<=> V(v,vi)cL T VEV,

is sufficient to note that P is true intially and that when
the algorithm stops, one of the following is true:
a) all nodes have been marked, the list L is empty
and the answer is "Yes".
b) not all nodes have been marked, there is a pair
(v,vi) on L such that vai and the answer is "No".
To see that the algorithm runs in polynomial time
observe that the loop is executed at most |Sl| times and each
execution of the loop requires at most |82| equivalences of
ordered schemes which can be done in polynomial time by
Theorem 3.3. m
Note that the freedom of Sl guarantees that the graph

v'(v") in the statement labeled A in the algorithm is equal

to v[b=true] (v[b=false]).

4. A scheme with no small equivalent ordered scheme

Here we construct a free B-scheme S0 whose smallest

ordered equivalent has size "exponential" in ISOI. First we

need some extra notation.

Let S be a B-scheme. A partial B-assignment (partial

5

assignment for short): is a partial mapping from the Boolean

varaibles of S to {true,false}. Two partial assignments Al and

=13~

A, are consistent if they have the same value whenever they

2
are both defined. The union of two consistent partial assignments

A. and Az, A, UA is defined to be

1) i

Al(b) if Al(b) is defined
(AluAZ)(b) = Az(b) if Az(b) is defined
undefined otherwise
A partial assignment Al is an extension of A2 if for each
Boolean variable b, Az(b) defined implies Al(b) = Az(b).
Let S be a scheme. A partial assignment A determines a
path from the root to a node which is either a leaf or a test
with a label on which A is not defined. Nodes on this path
are said to be specified by A. Any node specified by some
extension of A is said to be reachable via A. Note that the path
determined by A can not be extended arbitrarily by an extension
of A since certain tests not on the path may already be specified
by A.
Assume that n is a power of 2. The scheme S0 will contain
2n-1 Boolean variables ul""'un-l’vl'°"'vn' We say that a
partial assignment A satisfies an equality ui=vj if A(ui) and
A(vj) are both defined and are equal. Given a set of egualities
{ui =v, ,---,ui =Vi } we construct the scheme, called a column,

e m m
shown below

"

>la

Note that if A satisfies all equalities then the node labeled

1 is reachable via A.

The

a)

b)

The
a)

b)

scheme s0 is now constructed in two stages

The base of S, is a complete binary tree with n-1

0
interior nodes labelled with UpreeesUp g The leaves

are numbered from 0 to n-1l.
The i'th leaf is replaced by the column Ci’ obtained as

follows. Remove from the set of equalities

0 =Y (141)mod n’ 2™V (2+1)mod n’* " "®n-1"V(n-1+i) mod n’

all equalities involving variables that occur on the path
from the root to leaf i, and construct Ci from the
remaining equalities. Note that the sets of 'equalities
are just cyclic permutations of equalities between
{ul,...pn_l} and {vl,...,vn}.

following facts about S, are evident

0

So is free and has n-1+3(n-1-109n)-n+2n<3n2 nodes.

No equality constraint appears more than once.

s ke T anmby

BEUE————

) B

c) Every path from the root to a leaf labeled 1 is missing

log n variables among the v's.

Now let S, be an crdered B-scheme which is equivalent to
1
SO' and let Y be the V“/z Boolean variables which come first

in the ordering. We shall show that there are "exponentially"

many assignments to variables in Y which compute different functions
of the remaining variables. Since each of these different functions
must be represented by different nodes in Sl' Sl must have
"exponentially" many nodes.

Relabel the variables such that Y = {yl,...{JE.} and let the
2

| 3

2n-1-
\/n/z
in S0 acceptable if there is no equality Yo = yj between two

elements of Y appearing in the column. There are at most

remaining variables be g = {zl,...z Call a column

(\/g_)2= % unacceptable columns. Call an assignment A to
variables in Y acceptable if there is some acceptable column
reachable via A.

Now we show the key result of this section, that if two
acceptable assignments are "a little different" then they can
be extended such that one of them specifies a node labeled 1

and the other a node labeled 0.

Lemma 4.1: Let Al and A2

variables in Y) which differ in more than log n variables. Then

be acceptable assignments (to the

there is an assignment A to the variables in Z such that

Vél(AluA,So) # Val(AzuA,So).

s TR e

~-16-

Proof: Since A1 and A2 are acceptable assignments, we can

always reach acceptable columns via Al and A2. There are two

cases to consider:
1) Assume that some acceptable column C is reachable

via both Al and Az. There are 2 log n variables which

do not appear in C. Half of them are u's which appear on the
path from the root to the column. The other half consists of

L}
v's. Al and A2

the root to C since C is reachable via both Al and Az. Thus

even if Al and A2 differ on all the log n u's missing from

column C, there is at least one variable, yieY, which appears

cannot differ on the variables on the path from

1 and A2 differ. (The variable

y; may be either a u or a v, we don't care which.) The equality

in an equality of C on which A

in whichlyi appears must be of the form yi=zj, zjez since the
column is acceptable, that is, the column has no equality
between two y's. Since S0 is free, zj does not appear on
the path from the root to C. Hence we can find an assignment
A to the variables in 2 such that A,uA and A

1 2

lUA satisfies all equations in C. However, A(zj) =

Al(yi) # Az(yi) S0 Val(AluA,So) = 1 and Val(AzuA,So) = 0.

UA both specify

C and A

2) Assume that there is no acceptable column C which is

reachable via both Al and A2. We first find a partial

assignment A to the variables in 2 such that A,uA specifies

1
a column which can be satisfied by some extension, A', of
AluA. Then we show that we can choose the extension A' such
that it satisfies the cloumn specified by (AluA) but the

column specified by (AzuA)uA' is not satisfiable.

-:!_7_

Let Cl be an acceptable column reachable via Al and let A

be the minimal partial assignment such that A uA specifies C

1 1

and all equations in C, involving variables in Y are satisfied

1

(this is always possible since A, is acceptable, S, is free and

1 0
no yi=yj appears in Cl). A is now defined for at most |Y|+log n =
Vn/2+1og n variables. Perform the following step while AzuA

does not specify some column: let z be the label of the last

k
node specified by AzuA. Extend A by setting zy to be false, and
if zk=ze appears in Cl’ extend A to set z, to false. (Setting
z) and z, to true would work equally well.) This process

terminates after adding at most 2 log n vVvariables to A, after

which AzuA specifies some column C,y (C2 is not necessarily

acceptable). Note that all equalities in C1 involving variables

in A uA are still satisfied. There are at least (n-log n-|Al|)/2 =

(n-log n- Vn/2 - 3 log n)/2 equalities in C1 all of whose variables

are unassigned by AluA. There are only 2 log n variables not

appearing in C2, thus there is a zi=zj in Cl' zi;and zj not

assigned in A, uA, and Z{=X_ s SOme X, is in C,. Xq is not zj

1
by the construction of S

2

0° Now by extending A so that all equalities

in Cl are satisfied, and A(zi) = A(zj) # (AzuA)(xe), we can

whereas A

ensure that A uA satisfies C uA does not satisfy C

1 1 2 2°
This completes the ‘proof of the lemma. L]

T i e TR

-18-

Before we can show that there are many acceptable assignments
which differ by more than log n of the variables we prove the
following lemma which states that the total number of acceptable

assignments is big.

Lemma 4.2: Let S be a B-scheme whose graph is a complete binary
tree, with 2k-1 interior nodes labeled with variables

uy,...uk) and 2* leaves labeled over {0,1}. ‘Let M be any subset
of the variables of size m and let the number of leaves labeled 1
be g. Call an assignment to the variables in M acceptable if

a leaf labeled 1 is reachable from it, and denote by A(m,g,k) the

number of acceptable assignments. Then A(m,g,k)zng/Zk.
Proof: The proof is by induction on k, the height of the tree.
Basis: The result is immediate for k=0.

Induction step: Assume that A(m,g,k-1) 2 ng/2k'-l and consider

complete binary trees with 2k leaves. Let the number of leaves
labeled 1 in the left subtree be 9, and in the right subtree
9+ Let the number of variables from M in the left subtree be
£ and in the right subtree r. There are two cases to consider.
1) The root is not labeled with a variable in M, hence
24r = m. Now
A(m,g,k) = 2°a(r,qg_,k-1) + 2"A(L,q,,k-1)
- A(r,gr,k-l) A(z,gz,k-l)

and using the inductive hypothesis

-]9w

A(m,g,k)

v

22(2rgr/2k-1) " zr(zlgz/zk-l)

- (2%q,/257h) (2%g /2K
= 2" (g +9,1/271- g9 /22 (K7D,
= 2Mig/2" + 972" - gyq 722D,

k-1

v

k
ng/2 as gy g, < 2

2) The root is labeled with a variable from M. Then
2+r+1 = m and

A(m,g,k) = 2£A(r,gr,k-l) + 2rA(2,gz,k-l)
k—l)

v

ST e B W
2+ k-1
2 g, * 9.1/

ng/zk

Now we can prove that any ordered scheme equivalent to E%

must be big.

Theorem 4.3: Let S, be an ordered B-scheme which is equivalent

to so. Then

2
|Sl| el el where m = V",2

Proof: From the discussion preceding Lemma 4.1 we know that Sb

contains at least "/2 acceptable columns. Since Y contains m

variables there are at least A(m,”/2,log n) acceptable assignments

to variables in Y. From Lemma 4.1 we know that if two of these
assignments differ by more than log n of the variables then

they must lead to two different nodes in Sl' Now there are at

e ey

-20-

most (?) assignments to m variables which differ from a given

assignment in i variable values. Hence there can be at most
log n log n

E: (?) < }: R assignments which differ from a
i=0 i=0

given assignment by at most log n variables. Therefore, there

are at least A(m,n/2,log n)/mlog Bl acceptable assignments which
differ by more than log n variables and hence]sl| >
A(m,n/z,log-n)/mloq REL By lemma 4.2 we now get
" y
'Sll > (2 '(n/2)/210g n)/mlog n+1l
> 2m_—l/z(log n+l) log m
- pM1-(log n+l) (log n-1)/2 (recall that m = VT /2)
1 2 :

= oM 3(log™n+l)

and the theorem is proved. L

5. Extension to single variable program schemes

In this section we show that the equivalence prbblem for
free single variable program schemes (free Ianov schemeé) is
polynomial time equivalent to the equivalence problem for free
B-schemes.

A single variable program scheme (an I-scheme) is a rooted
directed graph (not necessarily acyclic) whose nodes have
outdegree 0,1 or 2. Nodes with outdegree 2 are tests and are
labeled with Boolean variables. Nodes with outdegree 0 and 1 are
called function nodes and are labeled with function symbols.

Only vertices with outdegree 0 may be labeled with Q. Edges

Roa dFere o

_-—. e A __a

i

=20

leaving tests are labeled with T and F as in B-schemes. An
I-scheme is free if every B-scheme which is a subgraph is free.

We shall only be interested in the behaviour of our schemes
under Herbrand interpretations (free interpretations [G]) Qhere
the wvalues of the Boolean variables can change after each function
step. We extend the notion of B-assignments in the following way.

Let F be a set of function symbols. An I-assignment A maps

elements from (F{Q})* into B-assignments. The interpretation

of A(w) is the mapping defining the values of the Boolean
variables in state w (the state after computing the functions in w).
Thé path determined by A in S is the obvious generalization of

the trace t(A) defined for B-schemes. ;

The proof that we can determine equivalence of free I-schemes
in polynomial time given an oracle for equivalence of free
B-schemes uses a procedure which is very similar to the minimi-
zation procedure for deterministic finite automata on p. 124-127
in [AU].

Let F be a set of function symbols, and denote by (F—{Q})*k

the set of all strings over F-{Q} of length k or less. A

k-assignment is defined as a I-assignment except that its

domain is (F—{Q})*k rather than (F-{Q})*.
The path label pf(S,A) for I-scheme S and k-assignment
A, is the string of function symbcls appearing along the path
determined by A. (The string may be of length less than k if
the path reaches a leaf.) Let function nodes ny and n, appear in

2

1 and S2 be the (sub)-schemes with n, and n, as roots.

Then n, is k-equivalent to n, if for each k-assignment A, pl(SI.A) =

S, and let S

‘r

A

Boad

=22~

pl(Sz,A). Thus for example two function nodes are O-equivalent
iff they have the same label.

The next lemma, the proof of which we leave to the reader,
states that k-equivalence can be determined from (k-1)-equivalence

and some equivalence tests on B-schemes.

Lemma 5.1: Let S be a free I-scheme with function nodes nl and

n Let vi be the B-scheme whose root is the descendant of ni,

2"
i=l or 2 (vi may be simply a function node). Label each leaf 2%

in vy by its equivalence class [2] in the (k-1)-equivalence

k-1

relation. Then n, and n, are k-equivalent if and only if n

and n, are (k-1)-equivalent and vlzvz,

is of B-schemes. =

1
where the last equivalence

Theorem 5.2: Let S be a free I-scheme with t nodes. Given an

oracle for determining equivalence of free B-schemes, there is
a polynomial time algorithm for determining if two fu ction nodes

in S are k-equivalent for all k.

Proof: It follows trivially from the preceeding lemma that two
nodes are k-equivalent for all k if and only if they are
t-equivalent. Since 0O-equivalence is easy to determine (the
nodes must have the same label), we can use Lemma 5.1 to compute
‘k-equivalence for k = 1,2,...,t. At most t2 B-scheme tests are
made for each value of k, hence at most t3 B-scheme tests are

made altogether. []

Having shown how to handle k-equivalence for all k we now

iy o 1 e,

-23-

define what it means for two I-schemes to be equivalent.
Let S be an I-scheme and A an I-assignment (i.e. A maps

elements from (F-{Q})* to B-assignment). The value mapping

Val is defined as follows.

('the function symbols on the path determined
by A if the path is finite and does
val(s,a) = <
not end in Q
L 2 otherwise
Two I-schemes sl and 52 are equivalent if Val(sl,A) = Val(sz,A) for

all I-assignments A. It is clear that this definition means

equivalence under all Herbrand interpretations (free interpretations)

and it is well known that this implies equivalence under all
interpretations (G].

We.would like to show that two schemes are equivalent iff
their root nodes are k-equivalent for all k. Unfortunately this
is not quite true; the problem is that the schemes may both
compute @ but do so in different ways.

A free I-scheme is compact if from every non-leaf node there

is a path to a leaf not labeled Q.

Lemma 5.3: There is a polynomial time algorithm to transform

any free I-scheme into an equivalent compact free scheme.

Proof: Immediate. ||

Lemma 5.4: Two free compact I-schemes sl and 82 are equivalent

iff their roots n, and n, are k-equivalent for every k.

PR =u— F= SIS~ YR

-24-

Proof: It is clear that if nl and n, are k-equivalent for all

k, then S, is equivelent to S Conversely, suppose Sl is equivalent

1 2°
to S, and let k be the smallest value for which there is a

2
k-assignment A such that pl(Sl,A) # pl(SZ,A). Not both of

pZ(Sl,A) and pz(Sz,A) can end in 2, so assume pQ(Sl,A) does not.
We can extend A to an f-assignment A', 22k with A'(w) = A(w)
for all w, |w|sk, such that A' defines a path to a leaf not

labeled 2 in Sl. Now since the kth symbol on the path defined

by A' in S, is different from the 2 symbol on the path ir Sy

and Val(Sl,A') # Q, we must have S, not equivalent to S a

1 2.7
contradiction. i

Now the following theorem is an immediate corollary of

the preceding lemmas.

Theorem 5.5: There is a polynomial time algorithm to decide

equivalence of free I-schemes if and only if there is a polynomial

time algorithm to decide equivalence of free B-schemes. -

We close this section with the remark that non-inclusion
for I-schemes is NP-complete. Inclusion for I-schemes is
defined exactly as for B-schemes with "I-assignment" replacing
"B-assignment". That the problem is NP-hard is clear from

Theorem 3.1. That it is in NP is shown ih [CHS].

e

References

{AHU]

(AU]

[CHS]

[G]

[M]

A.V. adho, J.E. Hopcroft, d.D. Ullman: "The Design and
Analysis of Computer Algorithms", Addision-Wesley Publishing
Company, 1974.

A.V. Aaho, J.D. Ullman: "The Theory of Parsing, Translation,
and Compiling" Volume I: Parsing, Prentice-Hall, Inc.,
Englewood Cliffs, N.J. 1972.

R.L. Constable, H.B. Hunt III, S. Sahni: "On the Com-
putational Complexity of Scheme Equivalence", Proc.
Eights An. Princeton Conf. on Information Sciences and
Systems, Princeton University, 1974. Also submitted to
SIAM J. Computing.

S.A. Greibach: "Theory of Program Structures: Schemes,
Semantics, Verification", Lecture Notes in Computer
Science 36, Springer-Verlag, 1975.

Z. Manna: "Mathematical Theory of Computation", McGraw-
Hill Inec. X974.

e —

Secunty Classification

DOCUMENT CONTROL DATA-R&D

rSecurity classiliciation of tithe, hodv ol absrrac® an bandoxe annotation cot Lo entered when the averall eopoet o0 ¢l ifiody

' OMIGINATING ACTIVITY (Lormporate wuthor) . 2o, HEFOWT SECUMITY CLAZSIFICAIION
Computer Science Department ’
Cornell University 2b. crouP
Ithaca, NY 14853

3 REPORT TITLE

The Complexity of Equivalence and Containment for Free Single Variable
Program Schemes

4. DESCRIPTIVE _No'rtls (Type of report and, inclus:. - dates)
technica

S. AUTHORI(S) (First name, middle initial, last nume

Steven Fortune, John Hopcroft, Erik Meineche Schmidt

6. REPORTY DATE 7a. TOTAL NO. OF PAGES 75. NO. OF REFS
May 1977 26 5

8. CONTRACT OR GRANT NO. 98. ORIGINATOR'S REFORT NUMBERI(S)
ONR N00014-76-C-0018 TR77-310.

b. PROJECT NO.

'A 9b. OTHER REPORT NO(S) (Ang other numbers that may be assigned
this report)

none

10. DISTRIBUTION STATEMENT

Distribution of manuscript is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT

\\T:S>Non-contaipment for free single variable program schemes is
shown to be NP-complete. A polynomial time algorithm for deciding
equivalence of two free schemes, provided one of them has the pre-
dicates appearing in the same order in all executions, is given.
However, the ordering of a free scheme is shown to lead to an
exponential increase in size.

N

DD JSeculd]S Pk)

S/N 'f'_°' _00776.” i - Security Clussification S~ Sean
e T —Q\ f’-—_‘—v_-._—\rA 23 — _— —

= - P 4

Y

%
!
—

« Secunty Classification

LINK A Linre D Lirim €
KEY WORDS
ROLE wy HOLT! wT HOL® wr

free schemes

analysis of algorithms

computational complexity

-

FORM
DD ¥ NOV .31473 (BACK)
S/N 0101-807-632) Security Classification A<31409

R —————— -

