AD=AD58 434

UNCLASSIFIED

AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OMIO F/6 9/2
SIMPL=M CODE GENERATION FOR THE INTEL 8080 MICROCOMPUTER.(U) y

NOV 77 J B BLADEN

AFIT-CI-T.-OQ NL

=
p ¥

—————

AD No.—

ADAO0S8434

*\\\;¥
|
N |
t
X |
Lk
S
Gy
% |

—

A Thesis
Presented to
the Faculty of the School of Engineering and Applied Scienge
University of Virginia

’ Masterls thests, z 2

oA

gu—

In Partial Fulfillment
of the Requirements for the Degrég"“‘- F

Master of Science in Computer Sclence

(o sTnan] @)

@gmﬂ{wﬂ 977/

DDC FILE -COPY’

78 08 31 003
O12 RO LB

éfﬁfL-M Code Generation for
the Intel 8g8¢ ﬁicrocomputer. .

e

QS —

—————UNCLASSIFIED —
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE~ -

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO|
CI 78-65

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
"SIMPL-M Code Generation for the
Intel 8080 Microcomputer"

S. TYPE OF REPORT & PERIOD COVERED

Thesis

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
Captain James B. Bladen

8. CONTRACT OR GRANT NUMBER(s)

9. PERF G ORGANIZATION NAME AND ADDRESS

AFIT Student at the University of Virginia,
lottesville VA

10. PROGR ELEMENT, PROJECT TASK
& ORK UNIT NUMBER

11. CONTROLLING OFFICE NAME AND ADDRESS

AFIT/CI
WPAFB OH 45433

12. REPORT DATE
1978

13. NUMBER OF PAGES

‘F T8 MONITORING AGENCY NAME & ADORESS(if different ftom Controlling Oftice)

15. SECURITY CLASS. (of this report)

Unclassified

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited

7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if ditferent from Report)

18. SUPPLEMENTARY NOTES

)
H P. HIPPS, Major,

or of Information, AUG 1 5 1978

19. KEY WORDS (Continue on reverse side if y and identify by block number)
20. AISTaCT (Continue on reverse side If 'y and identify by block ber)

4

DD 150N lm

EDITION OF | NOV 65 IS

A e e

APPROVAL SHEET

' This thesis 1s submitted in partial fulfillment of the
requirements for the degree of

Master of Sclence in Computer Science

Author
l

This thesis has been read and approved by the Examining
Committee:

: Thesis Adviser

T N T e e

Accepted for the School of Engineering and Applied Sclence:

Dean, school of Engineering
i and Applied Scionpe

“wiite Section @
guff section O

ot
UNANNOUNCTD
WsTe cieaTioY

NTIS

B e i s

R A S

N ABSTRACT
Microcomputers add a new dimension to modern com-

puters.~ Their small size and price make them economic

for ications which seemed impractical a few years ago.

. SHowever, since microcomputers are not well-sulted to

running large compilpfs, the medium of communication
between the programmer and micros has traditionally been
assembly language. '

The computer software industry realized some time ago
that the most'effegtive means of generating a software
system 1s by using,a compiler capable of communicating
claarly both with the programmer and the computer hard-
ware. Such compliers are necessarily large, and
are generally used to create machine oode for the big
machines they run on. However, by replaciﬁg a compiler's
code generator with the §ode generator of a small machine,
a compller can run on the large machine and generate code
for a small 6ne, and the size limitation problem is elim-
inated.

This thesis presents just such a cross-compiler.

The large machine is the CDC 6000 and the very capable
oonbiler is the SIMPL compiler written by Victor R. Basili
and Albert J. Turner. The microcomputer chosen as the
target machine for the Rode generated is the Intel 8080,

a well known miocro and typical of the architecture and

instruction capability of microcomputers. The cross-

compliler created by adding the new code generator to
SIMPL is called SIMPL-M and the code generator itself is
called CODGEN.

CODGEN was created using the CDC version of SIMPL-T
written by John G. Perry, Jr. However, since CODGEN is

written in SIMPL, and therefore is independent of the
CDC hardware and software, it can easily be transported
to other SIMPL packages such as the UNIVAC 1108 version,
Further, CODGEN has been written with enough flexibility
that 1t could be used as a guideline in the extension of
SIMPL-M to other microcomputers.

SIMPL-M utilizes separately loaded Input/Output
modules rather than a system library. In this way I/0
modules can be permanently loaded into the microcomputer's
PROM memory for use by SIMPL-~M's external éubroutine
features, ! ' >

SIMPL-M has been verified in that: 1) a significant
but not sufficient program named HADAM has been compile@ g
on the CDC Cyber 172, 2) a paﬁer tape of the Intel machine |
code was punched, 3) the tape was loaded on thé UVA Modular
System Intel 8080, 4) the program executed successfully.

—— e S—— . e —— S ——
T — e e S R T T T e . = —

Table of Contents

i o L

1. Introduction { ; 1

2. communication between SIMPL-T and SIMPL-M
Figure 1. SIMPL-M Conceptual Flow Chart
2.1 Quad File S$QUAD
2.1.1_ Quad Format ' 10
2.1.2 Quad Interpretation 11 *
2.2 Symbol Table Array SYMTAB : 1
2.2.1 Uninitialized Globals - 12 1
Pigure 2, The Glohai Chain 14 {

: Pigure 3. The Constant Chain 15

TIPS S Fip iRy A TR 1T

2.2.3 Parameters and Locals - PROC IDPROC 13 :
Figure 4, The Parameter/Local Chain 16

2.2,4 More on SYMTAB 13
2.3 Pile S$DATA - Initialized Globals |

N——

Pigure 5. Pile S$DATA Integers 18
Pigure 6. PFile S$DATA Arrays ' : 19

3« Machine Code File COMPAS 20
3.1 Sequential Code - PROC WRITCODE i 20
3.2 Non-Sequential Code - PROC WRITBACK 20

4, Code Generation Holligou : 21

4,1 Required Output 21
4,2 Optional Output 21

i
i
)
i
1
:\
i
I
I
[2.2.2 Constants - PROC CHECKCONSTANTS 13
|
|
I
i
1
{
|
{

7 et o> e e

R BN

5. Input/Output and Start Load Capabilities
6. Optimization and Verification

7. Conclusion

Bibliography

Appendix I. Sample SIMPL-M Program

Appendix II. SIMPL Quads Used by SIMPL-M
Appendix III. TypicallQuad Sequences '

Appendix IV, Procedure for Re-Compiling SIMPL-M
Appendix V. SIMPL-T on the UVA CDC Cyber 172
Appendix VI. SIMPL-M User's Manual

Appendix VII. CODGEN Listing : ;

Page

22

22

23

i,

&
¥

’
¢
s
¥
&£
E
3
;;
#

:

=

PR N) N G e ey e e e e B e D B B

.

1. Introduction

Microcomputers are a new and powerful addition to mod-
ern computing technology. They can be distinguished from
other computers in that many computing functions are incorp-
orated into one integrated circuit. This allows computing
with a minimum investment of a CPU and a power supply.

Adam Osborne describes a microcomputer by: "A microcomputer
is a logic device. More precisely,'it is an indefinite var-

lety of logic devices, implemented on a single chip; and

" because of the microcomputer, logic design will never be the

same again”" (7, p.t-1). :

A microcomputer is not very useful by itself., Data and
commands must be traﬁsmitted in and out; 1in other words,
some form of communication between the uéer and the micro-
computer must be established. ' ;

One device that must be added by a micro user is some
sort of data storage device. This can be a teletype with
paper tape capability, a mass storage device such as a mag-
netic tape or disk drive, or one of the many fo;ms of memory
available to the micro user.

Ihe cholce of which storage device to use is generally
determined by usér needs and budget. Often a small system
is established, and then expanded as greater needs and
resources a{: realized.

Thus a microcomputer system is tailored by the user

to his requirements, uluilly with little concern as to how

| —

P PR RN R G N M e e e e b e e e G B D

his system complies with other micro systems. While this
flexibility is an asset which makes micros useful to many
users, it puts a great demand on the programmer since each
system can vary widely in configuration and capability.

One good way to program such a system is in the
machine's own language since this language is tailored to
the specific requirements of the computer's hardware. Many
microcomputer users program small applications in machine
language since it requires a minimum investment in storage
space and input/output capability. However, machine lan-
guage coding is tedious and impractical for large programs.

The next higher language level is assembly language.

Assembly language instructions correspond
exactly with machine language 1nstruct16ns, but are more
intelligible to the user. Most microcomputers presently in
use are programmed with assemblers. Those who are familiar
with microcomputer assemblers are also probably familiar
with the technique of assembling a program on a large compu-
ter and then transmitting the machine code outbut'to the
micro. This could be called cross-assembling since one mach-
ine is used to generate the code which another wachine exe-
cutes, The term cross-compiling as used later in this text
is comparable to cross-assembling.

Still ;‘highor level language is available to the

micro user. Compilers are written in languages which

¢ i SAPRESTRE

ey, e aEam BB B

—

2 s TR

are highly readable and logical to the programmer. Also
compilers are generally designed to £111 a user need; that
1s, the compiler satisfies the requirements of the user
first, and then generates whatever machine code is necessary
to satisfy the requirements of the machine. For this reason,
a compller may not produce machine code which is compacted
to the minimum number of instructions which will do the job.
The luxury of writing a program in compiler language is paid
for by less than optimal machine code.

The beneflté of high-level languages far outweigh the

weaknesses. Some 0f these benefits are:

1) Compiler languages are easier to learn and use
than lower languages.
2) Compiler languages are problem; rather than machine-

oriented.
3) Compilers can be mada'to be transportable from
one machine to another.

4) Good compiler languages are self-documenting and

have extensive error checking capability. -

But thgse benefits present still another problem other than

less than.optimai machine code. The more powerful the comp-
ller, the larger it must be. Compilers are ilmpractical for

most micro uifr' since they require much more storage than

many machines can address. Therefore compiler execution is

slow due to input and output of the memory loads required by

- e e e R

PN RN R) G DI D e e ey ey

A EE

such large programg.

The obvious answer to the problem of executing a large
program which is to produce machine code for a small comp- 1
uter is to implement a cross-compiler similar to the cross-
assembler previously mentioned.

This thesis presents jJust such a cross-compiler. The

compller chosen to convert to a cross-compiler is SIMPL-T,

Py

written by V. R. Baslili and A. J. Turner of the Unlversity
of Maryland. They describe SIMPL-T by: "SIMPL-T is a mem- {
ber of a famlly of languages that are designed to be rela-
tively machine independent and whose compilers are relatively
transportable onto a variety of machines. It is a procedure
oriented, non-block structured programming language that was
designed to conform to the standards of.structured program-
ming and modular design." (1, p.v) ‘ i

SIMPL-T was chosen because it is a very capable lang-

. uage, and yet it is "simple" in that 1ts only data structure

is the one-dimensional array. Also it allows three types of
data: integer, string, and character. For a qomplete
description of SIMPL-T see reference (1).

The new language created by converting SIMPL-T to a
cross-compiler h#s been designated SIMPL-M (for micro).

Some features of SIMPL-T such as recursive procedures and

string data type have not been implemented in SIMPL-M since
they were judged impractical for microcomputers. However,

since the SIMPL-T compiler itself still has the potential of

0% e AR R . A ey . b et i‘\'j{’.,v‘ A '
NS S £ mrmmmme——y Figr, vt o, i

e s

——r—— T T—
@RI P
'

s |

P e R Y e b G b e e e e e B G B D

providing these features, 1t 1is feasible that they can
be added in the future. A complete 1list of SIMPL-M restric-
tlions is listed in reference (2).

SIMPL-T, like most good compilers, has a modular design.
It 1s made up of the following basic modules; 1) Scanner,
2) Parser, 3) Code Generator. The SIMPL-T compiler can be
made to generate ﬁachine code for virtually any machine
by first implementing it on a host machine, and then replacing
module'B with a code generator for the new machine. This
requires no alteration to the existing compiler whatsoever
beyond replacing the code generator.

SIMPL-T was originally implemented on the UNIVAC 1108
computer, Since this project was accomplished at the
University of Maryland; the first 9bsta¢le was to transfer
SIMPL-T to UVA's CDC Cyber 172, Fortunately, John Perry of
Dahlgren Labs, Va. has already implemented SIMPL-T on the
CDC 6000 (9) and he provided a copy of his program for this
project. This compiler has been brought up on the UVA
Cyber and can be run using the procedure outlined in
Appendix V.

The next and greatest obstacle was to decipher the
documentation of Perry's compiler in order to determine
what lanformation the SIMPL-T compiler modules pass to the
code generatgr module. A large part of this paper is
dedicated to the documentation of how SIMPL-T communicates

with 1ts code generator in order to remove this obstacle.

S ——— TR
A S NI e

F—

PO

e

e e A it it . T .

Er=—s

The cholce of which microcomputer to choose as a
target machine for the cross-compiler was easy. The
Intel 8080 is representative of the capabilities of many
micros and has been used as a standard for many newer ones.
Adam Osborne (8, p. 4-1) states that; "The 8080A is the
most widely known of the microcomputers (described in this
chapter); as such, it becomes the frame of reference in
many people's minds as to what a microcomputer should be.
«so.the 8080A was designed...at a time when no definable
microcomputer user public had established itself...

"The success of this microcomputer is due either to the
farsighted genius of 1ts designers, or to the fact that
the power of most microcomputers so overwhelms the needs
of microcomputer applications, the CPU Qesign becomes
almost irrelevant when compared to product.costs and
product availability." (8, p. 4-1)

Although SIMPL-M has been implemented for the Intel
8080 only, it is intended to be flexible enough to be
applicable to other micros.

The SIMPL-M cross-compller is the SIMPL-T compiler
modified with a ;eplacement code geherator module CODGEN.

The CODGEN module is itself written in SIMPL-T and is
compiled separately from the rest of the SIMPL-T package.
Once it has beeru compiled and assembled into CDC machine
code, it 1s merged into the rest of the SIMPL-T}package
at load time. The resulting absolute binary core image 1is
catalogued as SIMPL-M. Due to the large size of the total
package, six levels of overlays are required for the final
load. A complete description of the process to compile,
overlay, load, and catalog SIMPL-M is given in Appendix IV.
This thesis is intended to document the code'generator
CODGEN as 1; is presently written, to act as a guide in
future changes.to CODGEN, and to clarify the communication
process between the SIM?L-T compiler and its code generator.

A user's manual for SIMPL-M has been written which will be

" changed as SIMPL-M is updated (refefence 2).

2. Communication between SIMPL-T and the SIM?L-M Code

Generator - CODGEN
As we have noted, SIMPL-T 1s made up of three basic

modules; 1) Scanﬁer, 2) Parser, and 3) Code Generator.

Due to the large size of the compiler, these modules are

not resident in the Oyber memory all at once. Instead, a
driver program and a symbol table array stay fixed in memory,
and the modules are swapped in and out 1p sequence.

Figure 1 is a conceptual flow chart or.tho SIMPL-M systenm.
Some of the compller's features have been omitted or altered

for clarity.

" g

|
l SIMPL-M
| Source
1 I Source
' r Listing
‘I - : , Scanner
Tokens
e 3 l \
4 ’SE Initial
g "'5; Values
E o o Parser Pile
Al 23 : S$DATA
: &5 [
Quads . ;
File g
S$QUAD
| |
Quad,
Code
Generator - “'::':ly’
ot CODGEN Machine
I Code
l Listin
gachinc' ;
ode
cowpas \ =~ Zoader

ORISR | ST

" ey el e BN D

The scanner examines the entire source deck and passeé
the input to the parser in the form of tokens. The
parser analyzes the tokens and generates quads which 1t
passes to the code generator. These quads, the initial
data file, and the symbol table array contain all the
information necessary for the code generator to produce
machine code for the target machine (the Intel 8080 in
the case of SIMPL-M).

As seen in Pigure 1, CODGEN receives input from the
S$QUAD file, the SYMTAB array, and the S$DATA file. We

will discuss each in turn,

2,1 Quad File S$QUAD

SIMPL-T passes information to the code generator in an
intermediate language called quads. Wh.en the code generator
takes over, all the quads have been defined and have been
stored in the external file S3QUAD. Each quad has an ID
number followed by optional integer values according to
the number of quad parameters required. Array NQ contains
a code number which signals PROC NQUAD (VIII, 603)% to read

zero or more quad parameters.

-t

#jyhere appropriate, specific procedures in this text
will be followed by the Appendix number of a listing and
& line number.

MRS

:
M

e

10

2.1.1 Quad Format
: A quad that would represent an operator, such as +,

has the following sequence in S$QUAD:

D
APLAG

BFLAG

" RPLAG

Where ID is the number 7;‘ AFLAG, BFLAG, and RFLAG tell the
type of entry to follow, and A, B, and R fields are either
1) pointer to SYMTAB, 2) a éemporary number, 3) an immediate
value. : .

The quad flags, AFLAG, BFLAG, and RFLAG must be
logically anded with the following values to dgtcruino how
a corresponding field should be handled:

u sk Type

pa Temporary
2 SYMTAB Array Pointer
3 Ismediate

Unfortunately, these masks do not define all possibilities

for quad values. A complete breakdown can be obtained using

R ———

e AN VAU G AT S, AT PR

T ot o

TS e - B BB

—

1

the algorithm defined by FUNC LABEL (VIII, 775).

2.1.2 uad terpretation
The quads themselves can be regarded as macro instruc-

tions. For example, the statement

DOG := (CAT + RAT) - LOST

generates the quads:

- 0 4 2 R
LINE 1

+ CAT RAT TEMP1
- *~ TEMP1 LOST TEMP2
i= TEMP2 DOG

Appendix III lists typical quad sequences for SIMPL-M

statements. §
2,2 Symbol Table Array SYMTAB '

The symbol table SYMTAB is a collection of inter-
related arrays maintained by the SIMPL-T compiler. All
identifier names, constant values, PROC (procedure) names,
local variable names, parameter names, intrinsic names, and

key words are contained in these arrays.

Discussion of the symbol
table will be limited to only those parts which require
referencing by CODGEN. A more exhaustive

discussion of the symbol table is contained in
reference (95.

T gﬂ’mw,:w-‘@ R
e Y

- . s

e s TR TIRGRAS TR T

12

The symbol table entries consist of three or more word§
which are formatted after the UNIVAC 1108 36-bit worda On
the CDC cybgf, this means the least significant 18 bits form
the right half-word, the next 18 bits form the left half-
word, and the rest of the CDC 60-b1t.word is all zeroes:

24 Zeroes Left Half |Right Half
59 ' 36 35 18 17 [

This configuration leaves 24 unused bits in the CDC word;
however, by keeping the original format, the compiler retains
its portabllity to machines with smaller word size.

Entries of similar type in SYMTAB are linked by pointers
which make up a type chain. The entry in each chain {s
passed to CODGEN via an external pointeﬁ. . For example, all
constants are linked Sy 2 éhain and the first entry is
pointed to by PCPTR. The next three sections discuss the
three type chains used by CODGEN.

2.2.1 Uninitialized Globals - PROC ALLOCGLOBALS

The first symbol table type examined in CODGEN is
uninitialized globals. All globals are linked in SYMTAB by
the global chain. PROC ALLOCGLOBALS (VIII, 617) examines
the entries in the global chain and dedicates a memory
location to~Uninitialiged globals only (initialized globals
are dealt with in PROC ALLOCDATA (VIII, 663)).

As PROC ALLOOGLOBALS traverses the global chain, it

el B

——

28

13

checks the description entry of each global; and 'when 1t
finds an uninitialized entry, it allocates a memory location
and puts the address in the right half of the I3 word of the
SYMTAB entry. See Figure 2.

2.2,2 (Constants - PROC CHECKCONSTANTS

PROC CHECKCONSTANTS (VIII, 650) traverses the constant
chain and checks the range of all constants. Since the

Intel 8080 has an 8-bit word, and the most significant bit

. must be treated as a sign bit to uniquely identify a number,

the range checked ' 1s =27 to 27-1 or -128 to 127. Numbers

as large as 255 can be input, ' but will generate a diagnostic

warning. See figure'3.

2.2.3 Parameters and Locals - PROC IDPROC
When a PROC (procedure) quad is encounptered by CODGEN,

its parameters and local variables must be given memory
locations. These are located in the symbol table and are
connected by the parameter/local chain. The entry pointer
to the parameter/local chain is in the right half of the
I0 word of the PROC symbol table entry. See Figure 4,

2.2.4 More on SIMIAR
The name of any symbol table gntry is retrieved with

the external function NAME (VIII, 393). NAME has two para- |
seters, the Tt address of the symbol table entry and the
number 1. The valus returned is a string. A NAME must be

P e e s R

—_

FGPTR

g
I

I2
13

I
I2

I3

19

I

I2

13

§ Next Global

Description

§ Name Array

Intel Address

¥ Next Global

Description

1 Neme Array

Intel Address

Descrip

tion

{ Name Array

Intel Address

-F.s —

14

v

L

=

(.

Constant Value

I

Description

? Constant Chain

13

I4

Iﬂ.

Constant Value

I

Description_

I3

¢ Constant Chain

I4

18

Constant Value

I

Description

15

e st - 4
ey e e B

. BRI LN

Quad Ptr

19
I

I2

I
I2
13

1¢
I
12
13

PROC

$ Next P/L

Description

? Name Array

Intel Address

Parameter 1

{4 Next P/L

Description

¢ Name Array

Intel Address

Local 1
[}
Description
% Name Array
Intel Address

16

pr— o — — — p—

=

17

declared as:
. EXT STRING FUNC(INT,INT) (virz, 12)

The type of any symbol table entry is obtained by per=-
forming a logical AND with a bit mask and the SYMTAB des-
cription word. PROC LABEL (VIII, 775) demonstrates the use
of the following binary masks:

SYMTAB Mask Iype
1 Integer
IRRR FUNC
1213% - 3 Array
1219 Constant
1231 Initialized (S3DATA entry)
1222 Parameter
1225 Reference Pgrameter
2.3 le S3DATA - Initialized Globals - PR LOCDATA

Initial values assigned to globals are stored in file
S$DATA., PROC ALLOCDATA (VIII, 663) searches this file and
stores initial values in tye memory. The memory address |
is then stored in the SYMTAB entry for the globain If ALLOC-

DATA encounters an initial value greater than the maximum

allowable integer (presently 127), the initial value is

#As in SIMPL-T, the N2nn notation denotes there are
decimal nn zeroes following the number N.

T

EWELA D

Py sy peese

= e e

assumed to be an address.

18

In this case, the value itself 1s

stored in the SYMTAB address field, and no memory location

is allocated

as 1t is presently defined.

This feature is necessary for input/output

Pigure 5 shows the S$DATA representation of integers

and Figure 6 shows the representation of arrays.

SYMTAB Ptr 1 18
Value 1 It Description
SYMTAB Ptr 2 I2 ¢ Name Array
Value 2 I3 Intel Address
I Description
I2 {4 Name Array
Y I3 Intel Address
SYM Entr
EOIF
Eile SSDATA
Zigure 5, TFile S§DATA Integers

T

il

sl

e]

po—

19

Format: 1
Sym tab Ptr L\Iﬂ;
' I Description
Integer Value I2| t Name Array
Repeat Factor 13 Intel Address

"l

Integer Value

Repeat Factor

¢*

EOIF

File SS§DATA

Example: INT DOG = 9 -
INT ARRAY PILE(6) = (4, 6(3))

SYMTAB Entry

These are boolean tests for the end 1
of the array.

¢ DOG \ |
9 I1 (Integer) : f
|
3 PILE P il !
1 11 (Integer Array) 1
. 4 SYMTAB Descriptions
(L . -
§ 1
| E 6
; 3 |
| ! ;
| [EOIF .. |
N ' l, Eile S$DATA g
By Figure 6. File SIDATA Arrays |
1 [{
w L W'ﬂu e ':r—- i i,‘l‘,‘-w& R ;

f— ¢ e— e ccm— —

20

3. Machine Code File COMPAS
Intel 8080 machine code is output to external file

COMPAS in string format. Each call to external PROC WRITEC
outputs a string record to COMPAS (Appendix I, next to last
page), and puts an EOR mark at the end. The header LDR and
delimiter ; are also written to COMPAS as required by the
UVA Modular System (2).

3.1 Sequential Code - PROC WRITCODE

Intel machine code for each instruction i1s included in
the assembly code string declarations (VII ., 47). During

code generation, immediate values and addresses are con-

catenated to this and the resulting string is passed to

PROC WRITCODE (VII , 843). WRITCODE considers all inmput

to it sequential and increments the non&ry pointer accord-
ingly. The machine code is removed from the input string as
a substring, and this is concatenated to a buffer string
(CODEBUF). When the buffer becomes full, or it is to be
flushed (see section 4,2), the buffer is output to file
COMPAS.,

3.2 Non-Sequential Code - PROC WRITBACK

Porward reterences in CODGEN are kept in the SAVE stack.
As the values of these refereuces becomes known, they are
written outsgt sequence by PROC WRITBACK (VII , 882).
WRITBACK always checks to see if the code buffer is onpty '

before it outputs to prevent WRITCODE from writing a dummy ‘/

P sl e R

21

value over the forward reference. If the buffer is noc-empty

then it is flushed before WRITBACK outputs the reference.

4, Code Generation Messages

Two types of printed output are aQailable from CODGEN;
optional and required. Optional output is specified on the
compiler execution card as an L or Q parameter (see refer-

ence 2, compller options).

4,1 Required OQutput

If a start load address was specified in the program
then 1t is printed ‘out first (the default start load address
is zero). Next the maximum address used by the compilation
is written, and finally s start execution address is written.
These three parameters are sufficient totdefine a comﬁiled
module for external use. .

The only other required messages are errors and they

are delimited by:
Y>9>ERRORC(C< error message »»>>»ERRORC(LL

Error messages contgin a source line number where appli-

cable. .

4.2 Qptional OQutput
Spdoifyins L as a compiler option generates Intel 8980

~assembly oodi’and memory addresses. No labels are generated

since actual addresses are listed. 3ome clarifying comments

have been addcq using * as a delimiter.

i ST w—w(ey i ka0l e L e
’ :'"ﬁ%%'iﬁ ‘.t.,“ R e

T

(Rt

N R Y IR

Y RTINS

P PR RN DR PR SRR R g e ey ey e e e e W I

22

Specifying Q as a compiler option prints out the quads’
in comment format. PROC LABEL (VII , 775) determines what
type A, B, and R fields are by examining the appropriate
flags and SYMTAB entries.

5. Input/Output and Start Load Capabilities

There 1s no program library avallable for the present
version of SIMPL-M. Instead, there are facilities to call

external pre-loaded routines such as the ones usually avail-

able in the PROM monitor or loader of a microcomputer.

These routines are called by PROO EXTPROC and FUNC EXTFUNC
(see reference 2, i/o). EXTPROC (VII , 395) and EXTFUNC
(VII', 393) are reserved words within CODGEN only. An
external procedure's start address is passed as a parameter
80 that any number of pre~loaded routines may be utilized.
Both EXTPROC and EXTFUNC require that the subroutine argu-
ment be passed in the accumulator., See section 7 for a
more thorough explanation of SIMPL-M 1/0.

STARTLOAD (VII., 688) is another CODGEN reserved word.
When it is encountered, the memory pointer leset to its
declared value., The default is zero, and if STARTLOAD is
declared it shouid‘be the first statement in a progran,

6. QOptimization and Verification
Some code optimization has been utilized in CODGEN,

This 1s accomplished with a look-ahead technique. The next
quad is always available so that a temporary is not'pulhod

AR -

|
)
|

i
|
|
|
l
l
|
|
l
[,
l
|
l
|
|
[
[
[

T . A S X TEE v ——— v S—

a3

into the Intel stack if the A field of the next quad is a
temporary.‘ Thus the temporary is held in the accumulator
to avoid a PUSH command followed immediately by the POP com-
mand,

The SIMPL-M compiler has been tested only in that:
1) a significant but not sufficient program was compiled
on the Cyber 172, 2) a paper tape of the Intel machine
code was punched, 3) the tape was loaded on the UVA Modular
System Intel 8080, 4) the program executed successfully.
The test program HADAM (I) multiplies the 8x8 Hadamard matrix
times an input vector, and outputs the result. Since the
matrix was known in sdvance to have all entries either +1
or =1, no P multiplication is performed.

This test program uses many of the capabilities of the
SIMPL-M compiler, but not all of them. For this reason;
SIMPL-M cannot at this time be considered ;erified, but its

verification will be completed when time permits.

7. GConclusion
One of the most important assumptions underlying this

thesis is that a 7-bit integer is reasonable for most appli-
cations of the Intel 8080. The 8080 has double word instruc-
tions so that the word size could and should be extended to

15 bits. However, if all integers in SIMPL-M are to be
treated as 15 bits, then the efficiency of the resultant .
machine code will drop considerably since 16-bit manipulations

are cumdbersome on this machine. For this reason, the addition

e Boss - S

.

IR
ey sl G D

24

of extended precision to SIMPL-M must be treated as an
optional rather than a mandatory featu;e since limited
memory size §111 probably continue to be important to
8080 users. :

The second important assumption is that since micro
users have widely varied I/0 resources, exhaustive
library facilities are out of the question. ' SIMPL-M does
not have a set of library routines which are loaded with the

program or which are disk-resident awaiting a call from the

t.lylton loader. Instead, this theslis contends and demon-

strates that I/0 can be handled by accessing preloaded
routines - particularly those routines which are permanently
resident in PROM. Most existing systems have ; monitor with
its 1/0 routines resident in PROM. By using these routines,
they need not be loaded each time théy are used, plus each
user can tailor his I/0 to his requirements and still
interface with SIMPL-M,

Tho‘bclt Qay to demonstrate how SIMPL-M performs I/0
using pre-loaded routines is with an example. The program
HADAM, which was previously mentioned, is a good example
of SIMPL-M 1/0. HADAM was written for the UVA Modular
System which has Very basic I/0 subroutines and, therefore
much of the program is dedicated to handling I1/0. More
sophisticated, I/0 could easily be accomplished by extending
the existing PROM routines. The notation (lan __) used
throughout this section refers to line numbers in the HADAM

b —

iy

a5

routine in Appendix I.

The UVA Modular System has a PROM resident monitor
in the first 1K of address space. Note that HADAM's program
load starts at @@@@ (ln 6). Included in the monitor are
'some limited I/O routines. The start address of each of
these routines is declared in HADAM from ln 12 through
ln 18 as integers. As mentioned in Section 2.3, any initial
value greater than 127 decimal is assumed to be an address.

The UVA monitor I/0 routines assume the subroutine

: ‘argument is always passed in the accumulator and the

EXTPROC and zxrrukb facilities (see Section 5) also make
this assumption. EXTPROC and EXTFUNC are key words within
CODGEN which signal the code generator to perforn a sub-
routine call to the address passed as the first parameter.
In the case of EXTPROC, before the call is' made, the accumu-
lator is loaded with the value of the second argumeit.

In the case of EXTFUNC, the call is made and the returned
accumulator value becomes the returned function value.

Thus 1n 92 loads the accumulator with an ASCII .minus and per-
forms a subroutine call to location HIOOA6! which has a pre-
loaded character -- print routine. Llkewise, 1ln 71 performs
a function call to location HY¢@D9 P which has a preloaded
character-read routine. The value returned in the 8080
sccumulator.then becomes the function argument and is com-
pared wich ASCII minus in the IF statement (actual assembdly

and machine code for this statement can be found under

26

line 71 in the assembly listing in Appendix 1).

By filling an initislized array (1ln 43) with ASCII
characters and inserting the character-print call in a
WHILE loop (ln 59), string output can be accomplished
even with fﬁe existing primitive constructs. Printing the
8X8 Hadamard matrix is relatively simple by nesting
PRINTVECTCR (1ln 85) in a WHILE loop (1n 106) and using
the preloaded print-two-hex-characters routine THCHO(la 97).

SIMPL-M's interactive capability is demonstrated by
QUERY (In 113). When QUERY is called (1ln 146), it asks if
the previous outpﬁf is OK and then inputs a character
(ln 116). QUERY returns TRUE if the input is ASCII N for NO,
or FALSE if the input is otherwise. The output created by
HADAM as 1t executes on the UVA Modular’' System Intel 8080
is the last‘page of Appendix 1, .

SIMPL-M's capability to use pre-loaded subroutines
Will be expanded as the need arises. The next obvious
addition will be a call which passes an address and an
integer as arguments so that a preloaded string output
routine will have a string start address and a string length
to work with, Once all combinations of external
routine execution requirements have been defined and im-
Plemented in SIMPL-M, any new or existing I/0 facilities can
be handled with SIMPL-M by accessing user defined procedures.

Bibliography

(1) Basili, V. R., and Turner, A. J. 1976. SIMPL-T: A

Structured Programming Language. Palladin House
Publishers, Geneva, Ill.

e e e 3R B

(2) Bladen, J. B., Basili, V. R., and Turner, A. J. 1977.

SIMPL-M: A Structured Programming Language for
Microcomputers. Technical Report. The University i

of Virginia, Charlottea§111e, Va.

(3) Cyber Common Utilities Reference Manual. 1975. Control 1
Data Corporation, St. Paul, Minn. {

(4) Intel 8080 Assembly Language Programming Manual. 1976. {

Intel Corporation, Santa Clara, Ca.

(S) McDonald, Wesley E. UVA Modular Microcomputer Systems '
aaaicIMon;tor. 1976. Unpublished Paper. The '
University of Virginla, charlottghville,_Va.

(6) NOS/BE 1 Reference Manual, Cyber 170 Series. 1977. |

Oontrol Data Corporation, St. Paul, Minn.
(7) Osborne, Adam. 1976. An Introduction to Microcomputers.

i L ol § ¢ _Co ts. Osborne and Associates,
¢

" Inc. Berkeley, Ca.

_ (8) Osborne, Adam. 1976. An Introduction to Microcompu

; E - Yolume II : Some Real Products. Osborne and

; Assoclates, Inc. Berkeley, Ca.

B (9) Perry, 7. G., Jr. 1976. QDO 6000 SIMPL-T Compiler Int-
. ernal Documentation. Unpublished Masters Thesis.

The University of Maryland, College Park, Md.

(10) R1l1l, J. K. and Stager, T. W. 1974. PUNPAPR - Punch

]nformation on Paper Tape. LIB - 0023, Computing 1
Center, The University of Virginia, Charlottesville, T

- - -

p—

Va.

(11) UPDATE Reference Manual. 1975. Control Data Corpora-
tion, St. Paul, Minn.

o

A

O R

THIS PAGE 1S BEST QUALITY PRACTICABLE

FROM COPY FURNLSHED T0DDC . —— ‘

Appendix I. HADAM Listing

. N |
(]
§

- - R —— . .- - e o — e

2 I9THIS 'IOGRAH DEHO“STNAIES PRE-LGADED llO ROUTINES IN SINPL=M.#/
r s 1 /2 THE PROGRAM_INPUTS A VECICR FROM THE KEYBOARDs PEREORMS THE HADAMARGS/
4

/*TRANSFORM ON THE VECTOR, AND PRINTS OUT THE RESULT¢/
6‘ AR INT stllflﬂlo -mn06l36;-_'——‘__-.”~_"w' B T S
1
8 EXT INT FUNC EXTFUNCCINT)
e 9 e __EXT_PROC_EXTPROCCINTLINTY P B e i
10
A /%EXTERNAL.SUBROUTINE. AOORESS. OECLARATIONS®/
12 INT CRLF = H®0181%, /*PRINT CARRIAGE RETURN, L(NE FEEO‘I
-13 CHOUL 2 _H200A62s /*PRINT _ONE_ASCII_CHARACTER®L
14 CHIN = HtQ00D9*, /®INPUT ONE ASCII CHARACTER®/
- 15 DIGOUT .= HT0143%,. /*0UTPUT ONE HEX CHARACTER®/ {
16 GETA = HtQ167%, /*INPUT ONE MEX CHARACTER®/
.17 JHCHI..»__ Ht0153%s /¢INPUT TWO_HEX_CHARACTERS®/.
18 ! THCHO = Ht0132® /¢QUTPUT TWO HEX CHARACTERS*/ 4
_19
20 /#ASCII CHARACTERS®/ 5
el INT ____MINUS_ = Ht20fs BLANK = H®2Qts 2ERO_s HT3Qt»
22 COMMA = H?2C*) NCHAR « 78
o A e S it G T e
26 /%0THER GLOBALS®/
25 INL N s B, /¢SIZ7F OF MAIRIX®/ 1
26 TRUE = 1, FALSE = O *
-] i ek i, Sk
28 /*HADAMARD MATRIX®/ : 4
-9 o _INT_ARRAY H(B&) o _(15 15 15 15_1,.15. 101> e 1
30 br=ls 1r=1» 1s=1l» 1ls-1y, ,
= 31 . b 1Y ‘Lﬂl&l‘ 1a_ls=1s=1, H
32 ; 1s=19=1y 1, 1s-15-1y 1,
o 15 15 1s_ 1lo=19=1ls=1s=]» Al {
= 34 lo=1s 1s=1s=15 1ls=ls 1, |
il 1 S, 1y Yo=lo=lo=ly=ls_ 1y ds ___ __ __ {
I’ 36 15=1s=1y 15=1, 1y 1,-1)
-dl
- 38 J*INPUT DATA AND OUTPUT RESULT VECTORS*/
PRk | AR INT_ARRAY_DATALB), RESULT(O) i
40
[st ISASCLL BESSAGE ARRAYSS/ A
42 I9CR,LEsLFSLFsLF, W, ln > Os Ay Ms As Ry Ds o Mo Ape/
-4 INT ARRAY MEADER(2619(13,105,100105102725655685652272065982,68232:72265%5s
44 7% T, Ry Iy XsCRILF,LFyLFe/

45 84,82,73,88,5,13,10510,10)»__ A,
(1 : g I9CRoLFsLFy» Os KsQS» » (s No sy Np 00)» #/
.67 OKE18)2013510510079,75563932560,78+61,78,79,41,32)»_ __
48 : /OCRyLFsLFy Is N» Py Uy Ty 5 Vs E» C» To Os RyCRy¢/
05,86232:0862069:67,06029,82513s

[50 ISLF)LFe/ -
= 10010), TN §
52 I%CRILFILF) Ry E» S» Us Ly ToCRoLFyLF/ i
- OQUINESS(120 o (13210010202,09209,09,76284»1350Q0000 i
| |
]

P - ’ - e ce- - - -

e

L

—

Sy s e g e

- -

.59 ______PROC PRINTUINT ARRAY OUT, INT LOUT) .. _. S

TS PAGE TS BEST QUALTTY PRACTICAELE
FROM COPY FURNISHED ™DC

56 INT LVAR
57 1 1 LVAR 1 O

%0 : 3 WHILE LVAR <> LGUT DO :

$9 . __.3..2 __. CALL EXTFRCC(CHQUT,OUT(LVAR)) LA A ! IR SR R e

60 « 2 LVAR te LVAR ¢ 1

el ; _EKD/OWNILE®/ 4

62 9 1 RETUMN

63

66 PROC INVECTOR(INT ARRAY VECTOR)

69 /9INPUT REQUIRED IS 1) ¢ OR = DR BLANK. 2) 2 HEX CHAR NUMBER ¢/ . _

66 INT CNT,COL,COMPL,COM»LCL

o7 6 __ 1 _____ CALL_PRINT(INMESS,18) 2

68 7T 1 CNT 1o N COL 832 0

69 __ S _ 1___ WHILE CNT 0O e A el it e e

70 10 2 _COM ts 0O COMPL 3o FALSE

. .12 .2 " IF EXTFUNC(CHIN) = MINUS THEN _ - .

72 13 3 COMPL 3= TRUE

R Te e o ks

76 16 2 _LCL te EXTFUNCITHCHI)

75 .t IF LCL>127 THEN RETURN END pvahey

76 17 2 IF COMPL THEN LCL te (.CoLCL) ¢ 1 /925 connenentu

17 19 3 COMPL te FALSE _ . e s L

78 END

79 ___20 _2_______ VECTLR(COL) _se LCL__. __

€0 2l 2 COL s COL ¢ 1 CNT t= CNT = 1

8l 23 2 1F CNT THEN CALL EXTPROC(CHOUT» COMMA) END

82 END/*WHILE*/

83 25 1 RETURN RS

() <

85 PROC PRINTVECTOR(INJ_ARRAY VECTOR, INI _PIR)

66 INT CNT,LCL

87 26 _ 1 _ _ CNT ss N oS R S B e e e, U N

(1] 27 1 CALL EXTPROCICRLFj0) : L
29 28 1 _ MHILE CNT 0O " o 4 L T I o ey

90 29 2 LCL = VECTOR(PTR)

OV 30.__ 2 IE LCL.AJH?8OT_ THEN !
92 31 3 CALL EXTPROC(CHOUT,MINUS) !
93 32 _ 3 e LCL ts (C.LCL) + 1 742S COMPLEMENT®/ {
G4 LS

[ISR - iheT e CALL EXTPRCC(CHOUT,BLANK) _ _ . . _.__ . ___

96 END

S7 .36 _ 2 _________ CALL EXTPROC(THCHOsLCL) . __

58 5 2 IF CNT THEN CALL EXTPROC(CHOUT,COMMA) END

99 37 2 _ CNT ts CNT = 1 PTR ts PTR ¢ 1 A G SRR TN s N A0S

160 END/OWHILE®/

1C1 39 .. 1 RETURN Sy T e SR S e D R i

1¢2

103 _¢ ' __ __PRGC PRINTMATRIX __ __ e

104 INT PTR, RCNI

105 40 1 _ - RCNT ts N PIR 1= 0 S o LRI B AT UL et

106 42 1 WHILE RCNT DU -
107 43 2 CALL PRINTVECTOR(HsPTR) TR Sl R e R e) |
108 “ 2 RCNT te RCNT = 1

109 4 2PTR 1 PIR ¢ N

110 ENO/OWHILE®/

111 _ 46 1 _KETURN A

112

THIS PAGE IS BEST QUALITY PRACTICABLE
l FROM COPY FURNISHED T0DDC
I-3

: 116 L]] 3 ar EKIFUM:(LNIM o NCHAR THEN RETURN(FALSE)
117 _.% . 2 ELSE KETURN(TRUE) TRt =

. 118 END
Y RN AN : : - s He
120 PROC TRANSFCRM(INT ARRAY DATAV, INT ARRAY RESULTV)

, .121 INT RCNT>ROWSCCNILLCL2PTRCOL

: 122 51 .1 RCNT t= N ROW 15 0 PTR 3= 0 :
123 . . 56 1 . _MHILE RCNT 00 S SEameEs s Lo e A R
124 535 2 LCL = 0 CCNT s N COL 3= o
125 __.%8 ... 2 _______WHILE CCNT 0O . .. : B SO Tomeie ALl
126 59 3 IF H(PTR) = =1 THEN -
12t 60. & LCL 2= 1CL - DATAVICOL)
128 ELSE
129 61 4 5 - LCL t= LCL ¢ DATAV(COL) LA N Sk e
130 . END
131 _ 62 3 e . . CCNT s= CCNT - 1 S R BN N T
132 63 3 PTR t= PTR ¢ 1 COL 8= COL ¢ 1
2133 END/$WHILE®/
134 65 2 RESULTV(ROW) = LCL
135 __66__. 2 . _ RCNT s RCNT. = 1_ROW 3= ROW &)} _____ . __ __ ___.____
136 " END/OWHILE®/
33 5 RN T s e el e e Y e
139 PROC HADAMARD
140 J*IPAGE DATA PROCESSING B8Y HADAMARO TRANSFORMN®/
161 ... 69 1 CREL PRINFUMEABERZEY . |l i oo emiiains it <tk e i - b
162 70 1 CALL PRINTHATRIX
L1643 | | WRILE 1 0O
144 72 2 CALL INVECTCR(DATA) £
145 73 2 x CALL PR INTVECTORICATA,0) ¥
16¢ 76 2 1F CSUERY THEN /#INPUT IS CDRIECHI
167 o 753 .o . CALL THANSFCFM(DATA,RESULT). 2%
160 76 3 CALL FRINT(CUTMESS,12) -
149 .77 3 CALL PREINTVECTCR(RESULT,0)
15¢C ENC
151 END/SWHILES/
152 START HADAMARD
77 STATEMENTS IN FROGRAM
1 FUNCTION, 6 PRCCEDURES
AVEPAGE STATEMENTS PER PROC/FUNCE:. 11.0 __ . B O peA%

T A el ¢ AT

THIS PAGE IS BEST QUALITY PRACTICABLE

l FROM COPY FURNISHED 10 DDC - I-4 %
—3803¢¢SINTEL A0S0 ASSEMOLY AND MACHMINE CODESS90090
I | G4AC NV] A 3E 00
S L e SR | EOR 04AE LXI W 21 0490
¢ DECLARATION OF INITIALIZED GLOBALS 0481 MOV M,A 77
START_LOAD AT 0400 _ ¢ LINE 58 A S
* ADDRESS CRLF ¢ WHILE O
: # ADORESS CHCUT o_<2 LVAR_LOUT_TERRL
* ADORESS CHIN C482 LXI H 21 0490
o * ADORESS 0IGOUT _ = : 0485 _ MOV A,M _ 7E._
* ADORESS GETA 0486 LXI H 21 049€
* ADDRESS THCHI OMEChoE Wiy 0489 MOV D,M.. S6 ____
* ADORESS THCHO 048A SUB D 92
* MINUS 04BB_JZ __ _ADR_CA_Q&CO
0400 EQU 20 04B8E MVI A 3E 01 i
BLANK SR . % WHTEST TEMPL. . __ __ . .
T0401 EQu 20 064CO ORA A 87
e o RO L 04C1 JZ ADR CA AAAA &
0402 EQU 30 ¢ LINE 59
*_COMMA - _CALL.. EXTPROC _______O_ {
0403 EQU 2C : ¢ PARM CHCUT 0
* NCHAR _ # ARYLOC OUT LVAR TENPL __
0404 Equ 4E 04C4 MVI B 06 00 4
* N_ 04C6 LXI H 21 0490 . _
0405 E€EQU 08 ;| 04C9 MOV CoM 4E
*_TRUE | 04CA_ LHLD ADR _. 2A O49F e
0406 EGU ol ' 04CD 0AD B 9
s & ENaR. 04CE MOV CoM &E iRt f
0407 EQU 04CF PUSH B CcS5
¢ ARRAY H STARTS AT 0408 . ¢ PARM TEFPL 0:.—-
ARRAY HEADER STARTS AT 0448 ¢ PARM ALREADY ON STACK
& ARRAY_OK STARTS AT 0460 :% ENOPRM .. . ___
* ARRAY INMESS STARTS AT 046E 0400 POP B (9
® ARRAY GUTMESS STARTS AT 0480 __ 401 MOV AC 79 Pk AR 1
® DECLARATION OF NON-INITIALIZED GLOSBALS 0402 CALL ADR CD 00A®
____. EXTFUNC = _ . ¢4 LINE 60 3
048C €OV 00 LI LVAR 1 TEMPL
® BRRAY DATA STARTS AT 0480 0405. LXI _H.___21_0490
* ARRAY RESULT STARTS AT 0495 0408 MOV A,M T7E
RNING = CONSTANT OUT OF RANGE = 128 0409 MVI D 16 01 . __
* LINE 55 0408 ADD O 82
$ PROC. PRINT __ * 1 TEMPL . LVAR .
140C LxI H 21 0490
——_$%%¢ PROC_PRINT s¢ee Y4DFE__MOV__. MsA __72
¢ LOCAL LVAR ol ¢ LINE €l
_0490 _EQU 09 i . % ENOWH B
* VAL PARM LOUT {
049€ _ECU 00 ; * LOAD OUT OF SEGUENCE._ ___
* REF PARM OUT : F04C2 EQU 04€3
L) Q00 2 Ebe o S A Sl o =
* SAVE RETURN ADOR 04E0 JMP ADR C3 0482
04A1 POP O 01 R EIREY e e
T & PUT VALUES IN nlns * RETURN O ‘
064A2_POP B C1_ : 04E3 RETURN c9 PR TS ey | |
T04A3 LXI M 21 049€ * LINE 66 | ,1‘
0446 MOV__M,(71 imeeeam® ENOPRC _ 1
04A7 POP H : ¢ PROC INVECTOR |
04AE_ SHLD AOR zz 049F ; :
® PUT RETURN AQOR BACK ON STACK "eeee PROC INVECTOR seée Il
04A8__ PUSH 0 0% 65 i S S o . % LOCAL LCL__ ot |
¢ LINE 57 04E4 EOQU 00 ¥ |
¢ 1 0 AL o LOCAL_CON ¥
04ES €ou 00 .
_.% LocaL, ccnn__,,_______
0sE6 EOQU 00 :
"' |
|

(s s

W S

e s e N

THIS PAGE IS BEST QUALITY PRACTICABLE

I-
FROM COPY FURNISHED TO0DDC o - 5
fes G537 MOV ApM Tt
04E8 EQU 0o 0938 Lxl H 21 04E6 : g
¢+ REF PARM VECTOR R 0538 MOV MyA 77
04E9 EOU 0000 * LINE ¥ e e et
¢ SAVE RETULRN ADOR e | ¢ ENDIF
04EB PCP 0 01 Somn G Al s I
..® PUT VALUES IN PARMS_____ ___ * LOAD OUT OF SECUENCE
04EC POP H El 0532 EQU et T 1 kiR e
04E0 SHLD ADR 22 Q4E9 . L
¢ PUT RETURN ADDR BACK ON STACK - ¢ LINE 76 : s
04FQ PUSH O _ 05 ___ __. e ¢ CALL EXTFUNC TEMPL
¢ LINE 67 i Sl WoPAPH. TMCHY . -0 -
L ¢ CALL___ PRINT__ Q 053C CalLL ADR CO 0153
T ¢ PARM INMESS 0 | 3 * ENDPRM SRR e,
04F1 LXxI H I 4 LY S LY] TEMrPL LcL
04F& PUSH H €S 053F LxI H 21 04E4 s
¢ PARM 18 SO RSN SR 0542 MOV FsA 77
04FS MVI C 0E 12 SR T T R N SN MRS)
O4F7_ PUSKH B __ C5 . > LCL 127 TemP1
¢ ENDPRM 0563 X! H 21 OGBS . . __ . _.
04F8 CALL ADR CoOIQ8AY 0546 MOV AsM 7€
¢ LINE o8 €547 MVI. O L3 A e P AL
¢ te N ___ _ CNT C5«9 Sus 0O 92
04FB8 LXI H 21 0405 Co4A JP ADR F2 OSB3 - i iz
_O4FE __ MOV _ApM__ TE_ . U240 XRA A AF
04FF LXI H 21 O4E8 CS4E JEP ADR €3 €553
0502 MOV MpA 77 L AT €551 MVl A 3E 01
4 1 (1) cot ¢ IF TEMPIL
0503 MVI A I e 0553 ORA & a7
0509 Lxl ® 21 O4E7 C554 JZ AJR CA AAAA IS e
0508 MOV MyA 77 __ * LINE 7%
" & LINE 69 ¢ RETURN 0
* WHILE O T Lt 0557 RETURN c9
¢ WHTEST CNT ¢ ENDIF
0509 LxI H THCME . o
050C MOV A,M 7€ ® LOAD CUT GF SECUENCE..... _ _ __
0500__ORA__A___ 87 0555 E€nv " 0958
050€ JI ADR CA AAAA
¢ LINE 70 2 PR T ¢ LINE 76
* s 0 con - s LF coMPL
0511 MVI A 3€ 00 o Chib LX]1 H 21 0&4E6
0513 LXxI W 21 O04E5 CHSB RAV Myl Thee . s o
0516___NOV__MyA 77 C55C OR, A 87
L) FALSE compL 055C JZ A0R CA AAAA
0517 X1 W 21 0407 I S * LINE 7¢
0514 MOV ApM TE ¢ Co LcL TenPl
C51B LXxI W 21 O%Ek6 . CS¢C LXI H 21 G4ES
051E MOV M,A 7 L N [U SRS 1 R S g R e
s L RENED LY ’ 05¢4 CIA 2F
¢ CALL EXTFUNC TEMPL . TEMPY 1 TEMP2
¢ PARM CHIN, - S A 0sty Mvl O 16 C1
¢ ENDPRM Ty el ¢ 3s TEMP2 LcL
s TEMPL MINUS TEMP2 2568 LXI W 21 04E4
0522 LXI W S R I, TR 0SEB MUY NoA 77
Q%525 MUV 05N 56 ¢ LINE 77
0%26 Sus O 92 e i St it * i FALSE compL
0527 41 AOR CA 052¢ 05¢6C LXI M 21 0407 i
0%52A XRA A AF e e 056F MUV AWM 7€ {
0928 JMP ADR C3 0530 0570 xI M SLHONEE. i S
0526 _MVI _A 3 Q1 0573 KOV MeA 77 ;
. 1F Tenr2 & LINE 78 S
0530 ORA A 87 _ . s ENOIF
0931 J42 ADR T €A Aasd
"‘

ul

a

F —

B T T

B 7 1

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDC 1-6

¢ LINE 76 8800 PROC PRINTVECTOR eo¢ee
& ARYLOC VECTOR COL TEN’X & LOCAL LCL
€574 MV B ce 00 e 05E1 : EQU A R e
9576 LXI H 21 04€7 & LOCAL CNT
. 0579 _ MOV . CoM__ &€ . . 0582__EQU.. ____ _ 0Q
0574 LHLO ADR 2A O04E9 ® VAL PARM PTR
0570 O0AC B8 _ 09 st AN 0563 _ EQU . T R . S5 T
057€ PUSH H (1] ¢ REF PARM VECTCR
* 3= LCL ... TENPL 0584 EQU T R e
057F LXI H 21 04E4 ¢ SAVE RETURN ADOR
0582__MQV__A,M__ 7€ __ 0586 _POP O ____.D1. ___
0583 PCP H El ¢ PUT VALUES IN PARNS
05864 MOV M,A 77 PR A 0587 PO0P 8 __ Cl LRI AL |
¢+ LINE €0 0588 LXI H 21 0583 4
¢+ ...COL 1 TemPy __ ___ 0588 MOV M,C 71
0585 Lx! H 21 04E7 0586C POP H El i
0588 _ MOV _A,M__ 78 _. 0580 _ SHLD AODR . 22 0584.__ ___ . ‘
0569 MVI D 16 01 ¢ PUT RETURN ADDR BACK ON STACK |
0568 ADD O _ B2 SNIERE IR 05C0 PUSH O ..\ @5 __ o |
* 1 TEMP] coL * LINE 87
0SEC LXl M L ONEY e T G CNT _ : {
058F MOV MyA 77 05C1 LXI H 21 0405
Lo ONY L JiENRL - - 05C4 . MOV AyM _ 7€ . . ____ |
0550 LXI M 21 04Ee 05¢5 LXI H 21 0582 :
0593 MOV AyM__ TE et o 05C8 MOV M,A 77
0564 MVI O 16 01 ~ ¢ LINE 88
GS96 - SUB 0. 982 . o nn # CALL EXTPROC ns O S |
* e TEMPL CNT ¢ PARM (CRLF 0
0597__LXI H ___ 21 _04ES . ..% PARM 0. ._.._0
0594 MOV M,4 77 05€9 MVl ¢ 0€ 00
* LINe 81 Gmlm e e 05C8 PUSH B c5
s IF CNT ¢ ENOPRM
0598 LXI M 2l O¢E8____ ______ 0sCC PGP B8 c1
059E MOV A,M 7€ C5¢0 MOV ‘A,C 79
059F _CRA__A____ B7____ CSCE.. CALL ADR.. €O .0181
0540 JZ ADR CA AAAA * LINE 89
¢+ LINE 81 Ll SR W * WHILE ’0
¢ CALL EXTPROC 0 ¢ WHTEST CNT [
¢ PORM CHCUT OS] 0501 (Xl H 21 0582
¢ PARM COHMMA o 0504 MOV A,M 7€
C543 _LXI_H 21_0403 0505._ORA . A __ B7. .._
0546 MOV CHM (13 0506 J2 ADR CA AAMA
QY&r PUSW-B " - % Sl s * LINE S0 !
¢ ENOPRM ¢ ARYLOUC VECTOR PTR TEMPL
058 fO0Pp 8 __C1 . __ C5CY MVI B c6 00 Lok o 1
0549 MOV AsC 79 0568 Xl M 21 0583
05AA__CALL ADR__CD. 0046 CSCE MOV CoM . &€ .. . _._____.
¢ ENDIF 0SCF LHLD ADR 24 0584
Vit : e i e S 0562 DAC 8 09. A
¢ LOAD OUT OF .SEQUENCE 0SE3 PUSH H ES
05A1 _EQU .. 054D _ R * 1. TEXPL L TR
0St4 POP M €1
—t LINE___ B2 05€5 KOV A»M ¢ Ee R L s e
¢ ENOWH 0%€6 LX1 H 21 ossl
i (et e e CSE9 MLV Mea 77 A BT
e LCAD OUT OF SESUENCE * LINE 91 |
050¢__EQU _ 0380 * A, LCL 128 TEMPL |
: * 0SEA LXI H 21 0%81 |
0540 _JMP__ADR__C3 0309 0SED_. MOV . AsM__._7E_. i
¢ LINE 83 OStE MVI © 16 €0
¢ RETURN 9" _ 05F0 ANA O i (e S NI S
0580 RETURN c9 ¢ 16 TEND
j w——

TAIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDC
I-7
¢ CaLL EXTPRCC 0 Coe2a LXI KW 21 0403
® PARN CROUT bgy 1 e Ve 0620 MUV (oM (13 T
* PARM © MINUS 0 062E PUSH @ (4]
CSFS LXl W 210400 _ .. __ ® SNDPRM 3
0SF8 MOV CoM ' &E 0¢2¢ POP B c1
OSF9 _PUSH B .. €S . CO30._ MOV _ AsC __..79__ __
¢ ENOPRHM 0631 CALL ADR CO 00AS
QSEs paf - § eyl ¢ ENDIF P
05F8 MOV AsC 79 :
05FC CALL ADR CD Q0AG .. ____. ¢ LOAD OQUT OF SECUENCE __. _
& KINE 93 > Co62¢ EOQU 0636
el ® € RCL. . -JENPL_ cemb e ea e
O5FF LX]: M 21 0381 * LINE 99
0602 MOV AyM 7E . . __ * -« CNT 1 TEMPL____ _
0603. CMA 2F 0636 X1 H 21 0582
A _.TEMP1 1 TENP2 __.. 0637 MGV AN 7€
0606 MVI D 16 01 0638 MVI DO 16 01
0606 _A00 O . __ 82 _ Al T 063a_Su8._.0 _.__ 92 _ - _
$ ts - TEPP2 LCL * 1 Terel CNT
0607 LXxI M 21 Gsel 0638 LXxI H 21 0582
Q6CA MOV HMyA 7 Q63€E MOV MyA 7
¢ LINE 96 AR LK PTR 1 TEMP1 SV
¢ ELSEILF 063F LXI H 21 0583
J DS e LN CESZ - NON- Aol 78 -
. ¢ LOLD LUT GF SEQUENCE 0643 HMVI O 16 01
05F3 ECU 0606 __ 0645 ADD O Y]]
; ¢ le TEMPL PTR
06C8 JMP ADR C3 AAAA €46 Lx1 K 21 0583 o LA
¢ LINE $5 0669 MOV MyaA 77
. ® CALL _ExTPROC T [e ¥ LINE 00— e S
® FARM ChGUT 0 ¢ ENDWH
¢ PARM BLANK 0 s
0LCt LxI W 21 0401 ¢ LOAD OUT OF SEQUENCE
Q611 MUY CHM L1 0507 EQU 0640
0612 PUSH B (4] 2
¢ ENCPRM AR e 064A__ JMP ADR...C3 050L1..
ccl3 PUF B (9 § ¢ LING 101
Cs14 MCV A,C 79 * RETURN 0
Ghl5 CaHLL ADR CL 00AS 0640 RETURN (o)
¢ LINE 96 * LINE 103 < i L i
¢ ENDIF ¢ ENOPRC
ol e S, Ahe S —————® PROC___PRINTMATIRIX
¢ LJAD OUT CF SEGUENCE !
040C EWU 0618 #0604 PROC PRINTMATRIX sese
¢ LOCAL RCNY
s LINE 97 - g 064 EQU = . i A I e
¢ CaLL EXTPRCC - (] ¢ LOCAL PTIR
* PARM ThCHO... . ___ . . Q0_.___ Q84F__EOQU . ____._°_00
¢ PAPM LcL 0 ¢ LINE 105
Cs18 LXI H 21.0%81 ¢ 1 N RCNT _.....
0518 MOV C,M 4E 0650 LXxI W 21 0405
061C PUSH B8 (] I £ 0653 MOV AN TE Sl e el
* ENDPRM 065¢ LXxI W 21 O0b4E
0610 PLP B8 _ C1 _ _ g 0657 MGV _ M,A .77
0olE MUV A,C 79 s ge 0 PTIR
061F CALL ADk CD C132 0656 MVI A _ 3E 00 ______
¢ LINE 9 e 0654 LxI H 21 064F
. 1t CNT 0650 _ MOV MsA YT ___ . o
0622 Lxl W 21 0%82 ¢ LINE 106 we
0629 _MGV AN _ TE * WHILE._ O.
0626 CRA 4o =7 * MNTEST RCNT ;
0627 JT ADR CA AMAA 065€ __LXI W _ 21 O6a€___
o LINE 98 NARY PNV AW 78

gt

MITS PAGE IS BEST QUALL

Ty PRACTICABLE

FROM COFY FURNISHED T0DDC

¢ CALL PRINTVECTIOR (']
¢ PARM M 0 e
0666 LXI H 21 0408
0669 PUH H [e B o e
¢ PARM PTR 0
066A _LXI__H ____ 21 _0064F
0660 MOV CoM &E
2 Q66 PUSH O €3 . .o
® ENOPRNM
066F CALL ADR. . CD 0586 . ARG AL
. ¢ LINE 108
LI _RCNT_3_TEmMPL____
0672 LXI H 21 064E
0675 MOV AN TE s (T it
0676 MVI O 16 01
0678 Sus 0 9 g no o
¢ 1 TENPL RCNT
0679 _LXI H ___ 21 0646 __
067C MGV MeA 77
¢ LINE 106 S e
¢ s PTR N TEMP)
0670 LXI H 21 086F - .
CLEO MOV ApM 7€
COSEL LXK - 21 08§08 o
0686 KOV DoM %6
0685 ADD O 62 .. >
* is TENPY PIR
06es LXI H 21 Q64F
0689 MOV MyA 7
% LINE 110
¢ ENOWH
¢ LUAD OUT OF SEGLENCE
0664 EQU 0680
068A _JMP ADR C3 065 4+ 2y
* LINE 111
RETURN O
C680 RETURN c9
* LINE 113 el
¢ ENDFRC
LG EREC CuEwY o e i
sede FUNC CUERY ®9de g
¢ LINE 115
s CcaLL PRINT A SR
¢ FARM UK 0
06EE LXI H el Q880 .t
0591 PUSH H (1]
¢ PARM 14 .0
0662 VI € 0€ CE
0696 PUSKH B cs e e
¢ ENOPRM
0695 _ CALL DR CO OhAY _ __.__
¢ LINE 116 ‘
¢ Call EXTFUNC . _TEMPL
¢ PARM CHMIN 0
C698 _CALL ADR €D Q009 _ _ _ __ _ .
¢ ENOPRN %
o o ___TENPL NCHAR JEBP2
0668 XTI M 34 0404
069E _MOV_0O,n __ S6 _ __ . -
069¢ Sue 0O 92

C6A7 MVl 4 3t o1
T TELPZ
0649 ORA A 87 b
06AA JZ ADR CA AAAA . _
¢ LINE 116 {6, S gea
cee® RETURN FALSE
G646 X1 W 21 0407
G560 MOV A,M 7E
0681 RETURN co et S
* LINE 117 "
* ELSEIF A5
* LOAD OUT OF SEQUENC
0648 EQU .eeaggﬁff__."_.__
0682 JMP ADR C3 AdAA
¢ LINE 117 R e
- .. .—.* RPETURN TRUE. _ __
0685 LX1 M s
0688 MGV AsM 7€
0689 RETURN N O e
B BN e
* ENOILF SR
* LUAD OUT OF SEQUE
0683 Eou 3..2‘““
¢ LINE 120 S
* ENDPRC T

———ewe-® PRGC . TRANSFOR"“
$34% PROC TRANSFGRM #96e¢ L

* LuCAL COL Rer
0¢8A Eou
¢ LOCAL PIR SR
0688._ECU . . oo
* LocaL L{L
068C EoQU 00
¢ LOCAL CCNT g
0430 EQU 00
¢ LOCAL RCW Y
CeBE_EOU _.__ __ __ co_
* LOCAL RCNT
060F EoU o
® PEF PAKM RE
06C0 EaQu ‘3853
* REF PARM DATAV. -
06C2 Eou . A
¢ SAVE RETURN AQOR T
06Ce POP O o1
* PUT VALUES
06C5 POP M exlh i
06C6 SHLO ADR 22 06CO
06C9 POP H _E1._ .
osCa f":o ADR 22 06C2
UT RETURN ADDR
06C0 PUSH 0 05 i e
_* LINE 122
* e N RCNT ™~ T

O6CE_LXI_M__ 21._0405_

g::: mOV AL 7€
JAXI W s i
0ANS NV .4 ;; e

R———,—

e

e I IS TR AT

Py el RN

]
wm———d

——

L - S

CABLE
U 'ﬂﬂﬂcﬂ' 19
,g:s!ﬂuﬂilsinuqu“gngnnc e ; g
FROM COPY
oeos nov mea 377 o L WE tet
. .
o e 0 PR 0734 LxI W 21 o068¢
060C NV & 3E 00 i 0737 NGV RyA 77
060E LXI W 21 o688 $ LINE 128 .
QLEL MNCV MA 77 B ¢ ELSEIF
= ® UINE 123 ____ s BB o e s e o it
* WHILE 0 ¢ LOAD OUT OF SEQUENCE
osca &y UMTEST ReNr - A 071f €Qu 0738 . ._.
Lxl H 21 @
06ES MOV AsM _ 7€ e 0738 JMP ADR C3 AAAA __ ___.
06E6 ORA A 87 L * LINE 129
0657 Jl ‘oa—c‘..““‘ - ..—... ‘RYLOC D‘TAVCOL_TEHP..L_
s LINE 126 = 0738 NVI 8 06 00
. ie ° LeL 0730 LYl H 21 0684
COEA MVI A 3€ 00 T 07640 MOV C,M &E
056C LXI M 21 068¢ 0741 LHLD AUR 24 OoC2
06EF MOV M,A 77 S : givé. 00 8 09
iy i e OIA . MOV, Col.. W8 .
06F0 LXI W 210405 CTee PuSH B c3
OAF3 MOV ApM_ 7 e LCL TEMPL TEMP2
06f4 LXI H 21 0680 " T 0747 LXI W 21 06pcC
s ¢ te 0 G T e 0;«5 PCP B €1
COFB_ MVi A ___ 3E .00 _ 0 :C MOV 0,C 51 ; By
06FA” LxI M 21 088A = 97h0 4B .0 82
06FD MGV M,A 77 e 1 TEKP2 LcL
¢ LINE 125 =it 07%¢ X1 W 21 cetC
¥ MOE ¢ 0751 MGV M,a 77
WHTEST CCNT * LINE 1230
OLFE _LXI H ____ 21 0680 - ¢ ENDIF .. I g
0701 MCV AN 7€ AP
0702 ORA 4 o - * LOAD OUT UF SECUENCE
0703 J2 ADR CA AAAA Nl i i (I PH
¢ LINE 126
¢ ARYLOC W PIR TEMPL *hamg o AN
0706 _MVI B _____Cb 00 > SRR H -....CChl 1 TENPY .o ...
o7ce LXI M 21 o8t s Ml B 21 0680
07CB MOV CoM &€ €755 MCV A, 7E
070C LXI W 21 0408 - deht . Y. 16 01
07CF DAD B8 4 0758 SUP D @2
071C MOV AN . 7€ R Dahs ik e CoNt
i e " G TS T R)
S ek 6..-_151:1'352111.1&22._ C?75C MLV FKoA 77
0713 sus O 92 : X0 ;;5 e
0714 JZ AOR CA R e Enel
C717 XRA A AF s €720 LxI ™ 21 oess
¢718 Jnp ADR €3 o710 T RISR NN 89N TR -
0718 MVI A, _ . 3¢ 01 ity =t 8 16 01
o IF TEMP2 S N RNy s 0763 400 O 82
0710 ORA & 87 2 ¢ te TENPL PIR
O71E JZ ADR CA A4AA 2 t7e4 X1 M 21 0cod
¢ LINE 127 Vet 'R0 S W
¢ ARYLOC CATAV CCL T iy = CuL 1 TEMP)
0721 vl e 0¢ cﬁ. e e7er Lxl M <) oeta B
0723 Xl W 21 0sBa T T U8 moY LN
0726 MGV CoM &E ¥ 07¢C nvl o 16 ol
0727 LHLO ADR 24 08C2 e et o 0. &
072A 0AD B8 09 o g Terel coL
0728 MOV CoM € “ 076 Lx1 W 2] osda
°’zc- 'us"“. -.—‘—c"-’ iy 0"‘.- ”0' “" 4 o s Ak o e
i, . LCL TLAPT TemPZ g Ml
avsa " -nv"""a".'i"'— 52"““—“ R R o
"' ‘:gpi. i{\ i

m—— {

¢ WMTEST 1

JHIS PAGE IS BEST QUALITY PRAGET
COPY FURNISHED TODC
FROM I-10
0773 9
y tm:w 1323 06HE ¢ LINE 144
¢ ARYLOC RESULTV ROW TEMPL : R et ek
0776 MVl B8 06 00 0784 S S g s
o778 X! M 21 068E 0787 - M S G
0778 . MOV CoM__oE . _ :u::o:un g
077C LHLD ADR 0788 “cD 04€8
oniC " LWt a° 5; 06C0 0788 CALL ADR CD 04€B
A ey .. % LINE 145 5 s S
e L :uu PRINTVECTOR 0
0781 LxI W 21 osd€ ~ o7 v B e Sl
0764__MOV.__ApM___7E i St
0784 Moy 7€ O78E__ PUSH M ____E5
0786 MOV MsA 77 e " ’
. o A T O;IF vl ¢ 0 00 BRI 5o
L 07C1 PUSH B ¢S
0787 LXI H 21 068F e gt ‘ R
M o Y 07C2 CALL AOR CD 0586
c788 mvi 0 16 o1 o R A s
o I uw : CALL CUERY TENPL
¢ ta TEMP1 ~ RCNT 07¢s i R
078 LxI W 21 O&®F i R e Pgoe
. 0791 MOV MsA 77 R R S e A=e
e w s RONE TR °’§3 il £A i
o795 et v1 reme 07 -:z AR CA MMMl
0795 MOV AN TE i il
0795 MOV Ao . 7€ L e ¢ CALL TRANSFORM Ly
0798 400 O w2 St 3
400 w2 et 3;22 Lxt M 21 0480
0799 _LXI H ___ 21_068E :usn " .
079C MCV M,A 77 il e v
v P T 0700 Xl H 21 0493
L. S R 0703 PUSH M €5
¢ ENDPEN
s e e C704 Eau LOR €D C6CH
P i LINE *© 168
8_¢ A S g:u.-.v;}mt R AT
0790 JMP A N e g
. une” 13? (] = BRI . 707 LXI W 21 0480
o SEeun 8 C720A PUSH H €S
0740 RETURN o SRR D 075 i f
R 58 VI ¢ 0E 0C
- LINE 139 0700 :u:ro;a" B8 0 e s
% PROC WADAMARD _ C70E cu.t ADR CD Ceal
sse¢ PR b ohi
gl ocl»::omno S48 ¢ CALL PRINTVECIOR 0
b i * PARM FESULT 0
¢ PARN HEADER) g;? '5!-' . gt
0741 LXI M 21 0448 i o“h ‘ "
07A6 PUSH W €S AR 0 e o
g 5 Ll . 765 MVl ¢ cE 6O
e ok 18« T C7L7 PUSH B s
O7A7__PUSH 8 cs iy
s ! C7E6. CALL ADR €D 0585._ ____ ARSI,
O7A8 CALL ADR CO 04al e T
: :lne 142 ARve e T e o B
A
e E”:I;“" PRINTRATRIX _ ¢ LOAD OUT OF SEQUENCE A
07AB__CALL ADR__.£0 0650 L i
¢ Like 153 o LINE 181 2
WHILE O * ENDWM

. ———— e
——— - ——— - ——

: THIS PAGE IS BEST QUALITY PRACTICABLE
l FROM COPY FURNISHED T0 DDG ™ o

| ; [
Ot 9nP ADR C3 074AE
_ & LINE 152 el U
¢ ENOPRC
: ¢ TTART HWADAMARD
i O7EE RST 1 CF
’ ; [‘ s T Ret S E L e e L
g 4 MAXIMUM ADDRESS IS O7EE
5 START EXECUTION AT ADORESS O07A1.
1 4
{ K
B
| :
= B
 §
§ U

L e

[———

T T TR Y
e’ Al Al

WG Lt

‘

s s

f— s e R

.$020782EC070FA2

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TODDC e

UVA LOR
$1€6C4C02020302C4E0E010001010201C201C10101FFOLFFOLFFOBLE .
3160616V1FFOLO0LFFFFOLOLFFFFOLFFFFCI101FFFF01010101010030
$16C42CFFFFFFFFGIFFGLFFFFOLFFOLCI01FFFFFFFFGLIC1I00FFL113E
$31ECL42FFQOLFFOLCLFFODOACAQAQALRL144414D41524642040610A60
$16065356524958000A0A0A0C0A0A4F463F202€4E3D4E4F29200893
$16064EEVDOAOALI4ES055542C5645435644F52000A0A000A0A52088C
$1€06864553554C54C00£0A0000000060GCLCOCC0C00C0000000648
$17045400000000CC000CI1C1219€0471E1229F04053EG02190040AF2
$10048177219D0047E219€E045692CAC0043E01B7CAAAAA06002150040095
3léCtCQhEZAQFOGOQQECJC119CDA600219006751601822190040C5£
3C104DF2703527 -

3G2C4C2E30609A7

.$1704£0C38204C9C000000000000001E122E90405216E04E50E120C67 _ . _

$1604F 7C5COAL042105047€21E806773E0021E7047721E8047E0CBC
316050087CAAAAA3E0021E504772107C47E21E60477C009002100040080 .
3l¢o5zsaeqzCAzeoSAchaoosaeoxnICaAAaaz1090475215604000;
3010538770593 =
$9209323C0%50470
$17053CC0530121E40647721E4047E16TF92E25105AFC35305360100F3 _ ___
3C5055387CAAAAAC90EF6
30205555805CAAF
$17055021E6047EB7CAAAAA2LESO47E2F16018221E4047721070400C8
30505¢F7E21E604770774 !
3C2055€76090A0¢
3170574060021E7044E2AE90409E521E4047EEL7721E7047EL16010070
$1805686221E7067721k30647EL0019221E8047721E8047EB7CAAAAAGFCO
$0A05A32103044EC5C179C0A6000995

$0205A1A0050850
sozososucosoac1 % 2
$17C5A0C30905C9G00000000001C121830571E1228405052105040CF5
31705C47E21R205770E00C5C179¢D81012162057EB7CAAAAAO6COOF3S
$160503218305%E2AR40509E5€E17E218105772181057E1680A20€23
$1605F1B7CAAAAA2100044EC5C179C0A600218L057E2F1601820EDE
$0640607218105770759
30205F30€060C03
5000603C3AAAA21G1044ECSC179C0A66G0CLS
$02060C18060C26 il o R
31605182 oxo>~scsc119coszoxz1020515urcnnaa;z:oaos«eoesa
306062EC5C179C0A60009A6 . . _.. . _ _ . _ . S R
$102C52834C606C5E ’
$1606342182057€160192218205772183057€160182218305770C08
$02C50 740CE0C26
$17C€4AC30105C900C02105047€214E06773E002164F0677214E0608F7 ___
$17CE617ERLTCAAAAAZLICBOGES2)14F004ECSCOBEUY214E06TELG010EF8
$12067892214E0677214F067E2105069682214F06770A€8
$32066480G60CF3
51L0EBACISE06CI216004E50ECECS5CDAL064C0090021040456920F06
$1206A0CAAT06AFC3A90¢EIE0L37CAAAAAR]ICTC4TECSO0ED]
$302C5A8350¢600¢2 .
;osaeszcaassnzxcooavecooass

$206E3AA05006F e
:x1coaAoooooooooooooooooooocxtxzzcocee122czceosznoso~oc3!
$16060176218F007736002186067736C021830677218F067EBT0CE0E
$1606E7CAAAAAIE00218C067721050676215006773E00218A060005

31C06FD772180067EETCAAAAAOECO21PLOCLCER)000409TELOFFOECO.

$17071392CA18074FCI100736018 7CAAAAAOBOC21BA064E2AC2060FT9
S0E072A094EC5218C06T7EC15192218C06770C8)

S R SIEN —

,3C2071F 3R070€E5C

71607522100C67E1€01922180067721600067€1601082218806770E20
JOBGT7+2218A067€160102218A006770AC3 .
$020706476070¢E 7C
$17C773C3FE060600218E064F2AC00609€65218CO06TEEL1TT218F061007 . .
313070A7€160193346F0067721BE067E160182218€06770079
$J0206E8A00CT70€68A _ __
$170790C3€206C9214804E50E18C5C0A104C050063E0187CAAAAAL20E
$1€0784218004E5C0EB804218004E50E00CS5CO8605CDOE0OBTCAAAAALDGY
lllo7¢¢810000!5219900!QCDCQOQIIIOOQ(SOEOCC,COAIOQZIQSOQIIQC
3OTO 7€ 4 S0E00C SC086050028 .
30207CAEB070F87

Cmame e s e e e mesime—— e .sen . - -

$0407EBC3AEOTCFCA3G
j00

I-12

ROk OOFX TURAISEER 2

oJ 791

HADAMARD MATRIX

g 0 0 0

Saddee
[1
.. INPUT VECTOR

g1, ~02, =03, -P%, , P2, 23, 4

'g‘ 'g '5%;'52, gl g 531 g#

0K? (N=NO)Y

RESULT

29, o9, P8, ﬂﬂ.“h’.ﬂat g8, g9
INPUT VEOTOR

’ ’ v““: 4 8, ¢¢
ppo ggo gﬁo ggo' 4, 54 gg: ¢¢

OK? (N=NO)Y
RESULT

'ﬂav"gv"at’aﬁo ﬂat 'gn 18, 2¢
INPUT VEOTOR

UALITY PRACTICABLE
mumnsnnsﬂ 10 DDG i

I-13

Note: This _page is a typed duplicate of the teletype print-
out produced by HADAM executing on the UVA Modular System

Intel 8080.

g
.
I 11-1 .
e : | | j
l Appendix II. SIMPL Quads Used by SIMPL-M
i gy i |
l 1D Name Quad Fields and gzges’ ;
] LINE A=1 '
[% A=s,I,T B=S,I,T R=T 1
T 2 > "o " "
3 < " " "
4 P ; " & "o :
5) - ; 2 i '.' ‘
.6 y= - " " {
] 7 + " " L " 4
8 - " S " 4
9 # " " " 1
1w / " " "
41 .A. (bit and) S e " |
12 .V. (bit or) " " "
13 .X. (bit xor) " " "
14 +RL, (rt log shift) . " " |
B 15 .IL. (1f log shift) " Z "
i L 16 NEGATE A=8,I,7 G
g 17 «C. (bit compl) " "
18 .NOT. (logical) " "
& | 19 .AND, (logical) A=S§,1,7 B=S§,I,T R=17 |
_ 20 .0B. (logical) ’ " .
| 30 1= (bédomes) A=8,I,7 | R=8
(l 31 1P : A= 81,7
BTN

i I1-2 :
k ID Name Quad Plelds and Yypes* :
32 ELSEIP 1
33 ENDIF
34 WHILE T
35 WHTEST A=8,I,7
36 ENDWH
37 INITOS i
38 CSTEST A& S,I,7 RET
39 CASE : Az I |
. 40 CSEND |
| 41 OSELSE . ~ ‘
42 ENDCS ’ !
l 43 CALL s 8 = 1,2 |
44 PARM = 8,I,7 2 I |
45 ENDPRM : oty ’]
46 ARYLOC =8 B=s R=1T P
47 START e 8,1 j
48 RETURN A=S |
49 EXIT Ael ’
50 PROC A=S8S
i 51 ENDPRC

l III-1 1

[Appendix III. Iypical Quad Sequences
Note: All LINE quads have been omitted.

IF Statement:

IPF DOG = CAT THEN
FRUIT := APPLE

. ELSE
‘ FRUIT := ¢ 2
END {
Quads Produced:

ID
£ b
IP TEMP1

$= APPLE" FRUIT :
ELSEIF -

t= @ FRUIT
ENDIF :]

Qo

WHILE Statement: :)

CNT := 18 !
WHILE CNT DO . -
IF ONT = OFF THEN EXIT END
CNT := CNT - 1

END/ #WHILE+*/
Quads Produced: : ! |

" ID :
[, = 2% o %kr

WHILE
. WHTEST ONT %
[= CNT OFP TEMP1 ;

. IF . TEMP1 |

EXIT |

- CNT- 1 TEMP2

1= TEMP2 ONT

ENDWH .

|
| S |
|

Wy 2

P e e

CASE Statement:

CASE INDEX-1 OF
2112 312> INDEX := 1§

> INDEX := @
BLSEB%NDEX = 8l
END/#CASE®/

Quads Produced:

1D R
INITCS 4 2 2

- INDEX 1 . TEMP1
CSTEST TEMP1

CASE 1"

CASE 12

= 18 INDEX
CSEND

CASE 3

= P INDEX
CSEND

CSELSE

= 8 INDEX
CSEND

ENDCS

R Statement:

L]

PROC ADDIT(INT APPLE, INT WHICH, REF INT DOG)
Quads Produced:

igbc ﬁDDIT ’ & -

Note: Parameters must be sought in the parameter/local

chain as described in Section 2.2.3.

III-2

e B I |

| Sh—

'C Statement:
CALL ADDIT(FRUIT, LEAST(BOTH), ANIMAL)
LEAST 1s a PUNC

Note:
Quads Produced:

i
CALL
PARM
CALL
PARM
ENDPRM
PARM
PARM
ENDPRM

I

ADDIT
FRUIT
LEAST
BOTH

TEMP1

TEMP1

III-3

Array Reference: All array references produce an ARYLOC

quad which assigns thé array location or value to a temp-

orary.

PILE(12) := HEAP(@) + 5

Quads Produced:

1D
ARYLOC
+

ARYLOC

A B
HEAP)
TEMP1 5
PILE 12
TEMP2

R
TEMP1
TEMP2
TEMP3
TEMP3

¢ ———.) “\-]

III-4

The Following quads need further explanation:

1D Name Explanation
'] LINE A is the line number
3# WHILE A 13 the designator and 1s ignored
38 CSTEST R is data type and is ignored
39 CASE A is the case number
43 CALL A 1s the PROC/FUNC and R = temporary for
FUNC and @ for PROC
44 PARM A 1s the argument and R = { for REP and
g for value . ,
47 START A 18 the main PROC or @ if none
- 48 RETURN A 1s SYMTAB address of value to return or
j @ Af none
49 EXIT A 18 the designator and 1s ignored
50 PROC A is the PROC/FUNC
\. :
' A N — i N g —
\-,‘A\ R As’,;‘w& v & L3 .o:m“”‘.

IV

Appendix IV, Procedure for Re-Compiling SIMPL-M

Step 1. Compile a new version of CODGEN 1

Job Card

UPDATE, N.

REWIND, COMPILE,
l ATTACH, SIMPLT,

: REQUEST, COMPAS, *PF.

SIMPLT, S, COMPILE.
CATALOG, COMPAS, CODGEN, RP=£.
7/8/9 1
#*DECK CODGEN
Source Deck

6/7/8/9

P— p— — ey EE

: Sfep 2. Assemble output code in file CODGEN, merge new
code generator with existing SIMPLT package, merge this
with overlay structure, and save this as the new SIMPLM
compiler.

Job Card ¥
ATTACH, COMPAS, CODGEN, . 1
COMPASS, I=g, I=COMPAS. .
ATTACH, LCL, SEPFLS. s
- COPYL, LCL, LGO, NEW.
ATTACH, OVER.
COPYL, OVER, NEW, OVFLS.
REQUEST, ABS, #PPF,
ATTACH, RSL.
LIBRARY,RSL,
RFL, 75000.
LOAD, OVFLS.
1 & NOGO, ABS.
: N CATALOG, ABS, SIMPLM,
6/7/8/9

- . oUW

i | Step 3. The SIMPL-M compiler can now be utilized with the

» . {

procedure outlined in reference 2.

L 4

Appendix V. -T on the U ber 172

SIMPL-T as it is available on the Cyber 172 is cumber-
some 1n that it produces assembly code which must be assem-
bled ,before it can be executed. See reference 9 for a
complete explanation of CDC SIMPL-T.

At present SIMPL-T is only avalilable on tape. When
SIMPL-T becomes available as a disk file, Step 1 will not

be necessary.

.- Step 1. Read SIMPL-T and its library from tape.

Operator request card

Job Card - specify MT1

REQUEST, OLDPL, VSN=SIMPLT, HY, NORING,
REWIND, OLDPL,

REQUEST, SIMPLT, #PF,

COPYBF, OLDPL, SIMPLT.

CATALOG, SIMPLT, RP=30.

REQUEST, RSL, *PF, :
COPYBF, OLDPL, RSL.

CATALOG, RSL, RP=30. ’
6/7/8/9

Step 2. Complle SIMPL-T program using UPDATE.

Job Card
UPDATE, N,
REWIND, COMPILE.
ATTACH, SIMPLT,
ATTACH, RSL.
LIBRARY, RSL.

. REQUEST, COMPAS, #PP,
SIMPLT, S, COMPILE,
CATALOG, COMPAS, RP=£.
7/8/9
*DECK program name
Source deck
6/7/8/9

- e—e

V=2

Step 3. Once compilation errors have been eliminated,

assemble COMPAS.

Job Card
ATTACH, COMPAS.
COMPASS, I=@, I=COMPAS.

1GO,
6/7/8/9

Py s

Appendix VI. SIMPL-M User's Manual

SIMPL-M:

A _Structured Programming Language
for Microcomputers

A User's Msnual
; =

James B. Bladen
. Victor R. Basili
Albert 3. Turner

Prepared for the
Computer Science Department of the UNIVERSITY OF VIRGINIA
ENGINEERING SCHOOL, Charlottesville, Va. 22901.

B e

B & S

)

Sy

PREFACE

SIMPL-M is a member of the SIMPL family of languages as designed by
Victor R. Basili and Albert J. Turner of the University of Maryland.

This user's manual is based on their manual (1).

The SIMPL-M compiler is implemented on the UVA CDC Cyber 172 computer.
The original CDC implementation of SIMPL was written by John G. Perry, Jr.
of Dahlgren Labs, Va. Mr. Perry's system is an implementation of SIMPL~T
and is documented in (2). :

The SIMPL-M compiler runs on the CDC and generates machine code for
the Intel 8080 microcomputer. Reference (3) gives a thorough explanation
of the Intel 8080 assembly and machine codes.

- The loader format generated by SIMPL-M conforms to the requirements
of the UVA Modular System (4). The paper referenced in (4) is reproduced
in Appendix 1V.

Internal documentation of the SIMPL-M code generator is contained

in SIMPL-M: A Cross-Compiler for the Intel 8080 Microcomputer, a master's
thesis by James B. Bladen (5).

2
Al] CONTENTS
: Page |
| l_ 1. Introduction : RS |
' 1.1 Features of SIMPL-T not Supported by SIMPL-M 1
I 1.2 New Features Offered by SIMPL-M 1
1.3 SIMPL-M Restrictions ' 1
2. The Basic SIMPL-M Language 2
. 2.1 Program Structure 2
! : 2.1.1 Declarations 2
2.1.1.1 Ihteqer Declaration 2
| 2.1.1.2 Integer Array Declaration 3
2.1.1.3 Declaration List 4
2.1.2 Segments 4
2.1.2.1 Procedures 4
2.1.2.2 Funttions 5
2.1.2.3 Local Declarations 5
2.1.3 Scope of Identifiers 5
2.2 Comments and Blanks 6
2.3 Statements : s 6
2.3.1 Assignment Statement : 3
2.3.2 If Statement : : 6 -
2.3.3 While Statement 7
2.3.3.1 Exit Statement 8
2.3.4 Case Statement 9
2,3.5 Call Statement 10
2.3.6 Example 10
2.3.7 Parameter Passing by Reference 11
: 2.3.8 Return Statement 12
' 2.4 Interger Expressions 13
2,4.1 sSubscripted Array Variables 13
2.4.2 Function Calls 13
2.4,3 Constants 13
f ' -
!
§

o S

i

e ———— e o T ——— a———— .t v

2.5 Basic Integer Operators
2.5.1 Arithmetic Operators
2.5.2 Relational Operators
2.5.3 Logical Operators
2.5.4 Precedence -
2.5.5 Examples
. . 2,6 Identifiers
2.7 Basic 1/0
2.7.1 Function EXTFUNC (INT)
2.7.2 Procedure | EXTPROC (INT,INT)
2.7.3 Example
3. Start Load Specification

4. Additional Language Features
4.1 Bit Representation for Integer Constants
'4.2 ' Bit Operators
4.2.1 shift Operators
4.2.2 Bit Logical Operators
4.2.3 Precedence
4.3 Compiler Options
4.4 Source Program Print Commands ;
Appendix I. Compiling a SIMPLM Program on the CPC Cyber 172
Generate a Loader Tape once a SIMPLM program is
correct.
Appendix II. Precedence of Operators
Appendix III. Keywords
Appendix IV. UVA Modular Microcomputer Systems Basic Monitor

.

14.
14
14
15
15
16
16
17
17
17
17
18

18
18

19
19
19
20
20
20

S Ay A ST

1. Introduction

SIMPL-M is a cfoss-compiler that executes on the CDC 6000 and Cyber
series computers, and generates Intel 8080 machine code. SIMPL-M also
Produces an assembly language style printout which lists the quads gener-
ated by the compiler and the Intel code produced for each quad. The current
‘implementation produces a paper tape which is read into the microcomputer
via a teletype tape reader (See Appendix I for a guide for executing
SIMPL-M) . '

SIMPL-M is the SIMPL-T compiler with a new code generator module
‘substituted for the CDC6000 module. Since the Intel 8080 microcomputer
has greatly reduced capability and size compared to_the CDC, many of
the features offered in CDC SIMPL-T have been eliminated. Some new
features have been added due to the flexible nature of microcomputers.

1.1'.Features of SIMPL-T not Supported by SIMPL-M.

1. Recursive procedure calls.
2.. String data and Paf%ﬁbrds.
3. Files. '

4. WHILE descriptors.
S. Disk-resident program library.

1.2 'New Features Offered by SIMPL-~M.

l. Start load specification. Any memory address can be declared as a
starting point for the program load. The default is address zero.
2. Address specification for external subroutines. Pre~programmed
and loaded procedures can be executed by specifying the address.
in the EXTFUNC 6r EXTPROC procedure call, This takes advantage
of pre-programmed modules often resident in the PROM of micro-
computers. .

1.3 SIMPL-M Restrictions.
1. The only data type is integer.
2. Integers must be in the range =128 to 127 decimal.

3. The only datt structure is the one-dimensional array,
4. The maximum array length is 127.

These restrictions apply only to the Present version of SIMPL-M.
Future revisions will modify them.

T W g PSS

g p—

2. The Basic SIMPL-M Language

2.1 Program Structure
The syntax for a SIMPL-M program is illustrated by
{<declaration 1ist>} <segment list> START <identifier>

The <declaration list> defines the variables that may be used anywhere
in the program. The <segment list> is a collection of procedures (sub-

routines) and functions, and <identifier> names the procedure with which

execution is to begin. (The <segment list> may consist of only a single

procedure.)

The following example illustrates this progian structure.

INT X,Y,2 } declaration 1list
PROC SUM(INT A, INT B)

- Z:=A+B =

PROC MAINPROG

X =3

Y := 4

CALL SUM(X,Y)
START MAINPROG

segment list

Thus a SIMPL-M program contains a (possibly empty) set of global

' declarations and a set of procedures and functions. Execution begins

with one of the procedures, and the procedures and functions are called
as needed during execution.

2.1.1 Declarations

The initial declaration list of a program contains declarations for
all variable 1dengifier‘nlmes that are global, A global identifier is an
identifier that is known to all segments of a program.

2.1.1.1 Integer Declaration .
An integer variable may have any integer value between -128 and 127,
inclusive. An 1ntog;; variable declaration consists of the keyword INT

followed by one or more identifier names, separated by commas. Initializa-
tion may also be specified as illustrated by the following vqlid declaration

P

alha.

list.
INT X
INT CAT, DOGl
INT M=3, N=-1, I

In the above example M and N are initialized to the values 3 and -1,
respectively. This means that these variables will have the specified
values when execution of the program begins. The value of an uninitialized
variable is initially zero. '
2.1.1.2 Integer Array Declaration

The only data structure in SIMPL-M is the one-dimensional array.

This is an ordered collection of elements, all of the same data type. The

elements are numbered 0, 1, ..., n-1 , where n is the number of elements
in the array.

Integer array declarations begin with the keywords INT ARRAY , and
are completed by listing the array identifiers and the number of elements
for each array. The number of elements must be a positive integer, and is
enclosed in parentheses. FOr example, '

INT ARRAY TOTALS (10)

declares an array of 10 elements: TbTALs(O), TOTALS(1),..., TOTALS(9).

An array can also be initialized by specifying a list of values for the
array elements. 1Initialization begins with the first element (number 0) and
proceeds until the list is exhausted (or all array elements are exhausted). .

A repetition factor can be specified by enclosing the factor in parentheses
tollbwing the initialization value.

Some examples are

INT ARRAY A(3), BAT(95), VECTOR(20)
INT ARRAY Al1(10), B(5) = (2,3,-1)
INT ARRAY C(11) = (0,1,3(9))

The second declaration specifies that B(0) , B(l) , and B(2) are to be
initialized to 2, 3, and -1 , respectively. The third declaration
initializes C(0) to 0, C(1) to 1, and C(2)-C(10) to 3.

.See Section 1.3 for restrictions on SIMPL-M arrays.

- -t

VNG U3k gt

"G

-4 -
2.1.1.3 Declaration List

A declaration list{ such as the list of global declarations at the _

beginning of a program, consists of one or more declarations. Declarations

follow one another wifh no separator (except blanks). More than one declara-

‘tion for the same type can appear in a declaration 1ist. All identifiers

used in a program must be declared. 1
An oxanple'of a declaration list is

INT X, Y

INT I

INT ARRAY INPUTS (20),0UTPUTS (20)
INT SUM

sl

2.1.2 Segments
A segment is a procedure or function definition. Segments contain a
list of statements to be executed when the segment is invoked, : 1

2.1.2.1 Procedures

The syntax for a procedure definition is illustrated by

PROC <identifier> {(<parameter list>)} {<local declaration list>}
<statement list> {RETURN}

where {identifier>iis the name of the procedure.
An example of a procedure definition is . 1
PROC TEST (INT X, INT Y) s
/* THIS PROC SUMS X AND Y */
INT 2
Z := X+Y

A procedure is a subroutine that, when invoked, executes its <statement list>
and returns to .the callér. A procedure may access any global identifier
~“ (unless the Procedure has a local identifier by the same name) as well as its

local identifiers and parameters. :
The items of the <parameter list> , separated by commas, are of the

form INT <identifier> or INT ARRAY <identifier> . These parameters are

passed to the procedure when it is invoked (called).. ,
Integer parameters are passed by value (unless otherwise specified as i

in 2.3.7. This means.that if a procedure changes the value of an integer

parameter, the niv value is effective only to thnt'proccduxo. For example,

if procedure P is defined by: |

PROC P(INT X)
INT Y
X = 7

and the statements
X = 3
CALL P(X)
Y = X

are executed, then Y will become 3 (not 7).
Array parameters, however, are passed by reference. Logically, this
means that the array itself is passed (rather than the value as for integer
parameters). Thus any modification to an array parameter by a procedure
will be a modification to the actual array passed as an argument by the caller.

2.1.2.2 Functions
The function definition syntax is illustrated by

INT FUNC <identifier> { (<parameter list>)} {<local declaration 1list>}
{<statement 1ist>} RETURN(<expression>)

A function is similar to a procedure. The main differences are

1) the value of <expression> is returned (as the value of the function
evaluation) to be used in the same manner as the value of a variable
would be used;

2) functions may not have side effects, that is, tﬁpy may not change the

L

values of any nonlocal variables or arrays,

2.1.2.3 Llocal Declarations !
All local variables must be declared in the local declaration list.

Local declarations are similar to global declarations, but initialization

is not allowed. (The values of local variables at first entry to a seg-

ment are zero.) ;

2,1.3 Scope of ldentifiers

Global identifiers, including segment names, are accessible from all
segments unless a segment declares a local with the same name as a global.
Local declarations override global declarations so that a global indenti~

~fier is not availab{:;to a segment in which that identifier is declared

local.
Local identifiers are only accessible to the segment in which they
are declared. Both globals and locals may be passed as parameters. The

!

|

—— ememe S Ll - —

-6 =

value of all locals is undefined at entry to the segment, and locals do
not necessarily retain their values between successive calls to the seg-
ment.

2.2 Comments and Blanks

Blanks may appear anywhere in a SIMPL-M program except within an .

. identifier, symbol, keyword, or constant. Blanks are significant delimiters

and may be needed as separators for identifiers or constants. For example,

IF X

IFX

are not equivalent.

A comment is any character string enclosed by /* and */ . A comment
may appear anywhere that a blank may occur and has no effect on the execu-
tion of a program. The foliowing illustrates a comment:

/* THIS IS A COMMENT. */

2.3 Statements : ;
The syntactic entity <statement list> denotes any sequence of SIMPL-T
statements. No separators (other than blanks) are used between statements.

2.3.1 Assignment Stateﬁent

The syntax of the assignment statement is given by
<variable> := <expression>

where <variable> is either a simple variable (i.e., an integer identifier) or
a subscripted variable. The assignment statement causes the value of the

<expression> to be assigned to the <variable> . Examples of valid SIMPL-T
assignment statements are

X = Y+2
X = Y=2
- A(I) 1= A(EF1)+a(3-2) *x

2.3.2 If Statement :
The IF statement causes conditional execution of a sequence of one or

S o
A

6, " R ety g "
o b

-7 -
4
1
l more statements. The syntax is 3 : !
4
[IF <expression> ‘ |
THEN <statement list>

1]
{ELSE <statement nu>2} END
At execution, the value of the <expression> determines the action taken.
If the value is nonzero, <statement 1i.st>1 is executed and <statement
1ist>2 (Lf there is an else part) is skipped. If the value is zero,
<statement list>2 (if it exists) is executed and <statement list>1 is not

executed. Execution proceeds with the next statement (following END) after
execution of either <statement list> . 1

Example
IF X<3 .AND. ¥Y<X

THEN
Y:=X
ELSE
X:=X+1
Ye=Y-1
IF X>Y %
THEN '
© Xzmy : ‘
END
END

Note that the ELSE part of the main IF statement also contains an IF
statement that will be executed only if the ELSE part is exgcuted.
Example.
~IF X THEN Y:=Y/X ELSE Y:=Y/2 END

This statement divides Y by X if X is nonzero and divides by 2
if X is zero.

-2.3.3 while Statement |
The WHILE stateiient provides a means of iteration (looping) :

nnin: <expression> DO <statement list> END

The value of the <expression> determines the action at execution time, just

-

{

e — — —————— N — e
b o au ; > B oo 5 R T L SR ——-

as for the IF statement. If the value of <expression> is nonzero, then
<statement 1list> is executed; otherwise <statement list> is skipped and
Aexecution proceeds with the statement following END . However, if <state-
ment list> is executed, then execution proceeds with the WHILE statement again.
Thus if <expression> _1s nonzero, then <statement list> is executed until
; ' <expression> becomes zero.
" Exampl ; The following statement list sums the odd and even integers

from 1 to 100.

OoDD := 0
' EVEN := 0
I:=0 . '
WHILE I<100
DO
I s= I+l g)
IP I/2 * 2=] ’

THEN /* EVEN INTEGER */
EVEN := EVEN + I
ELSE /* ODD */
: ODD := ODD + I
END
END

2.3.3.1 Exit Statement

The EXIT statement provides a means of escaping from a WHILE loop.

In its basic form, the statement

| U EXIT : {

causes the immediate termination of the (innermost) WHILE statement |

containing the EXIT statement. Execution proceeds as if the WHILE i

|
i
s ﬂ o Statemeat has termingced DormAlMY ey e

~ g el
- - = - - . L - L.

P e b e

-9 -
2.3.4 Case Statement

Exactly one of a group of statement lists may be executed by using the
CASE statement. The syntax is illustrated by

CASE <expression> OF
3p}3 <statement list>1
> : >
sz_ <statement list 2

k ’
{ELSE <statement list>k+1} END

>n. > < >
2n > statement list

where each nl,'hz,...,nk is a constant or a negated constant.

If the value of <expression> is nj, then <statement list>, is
executed and the other statement lists are not executed, If <expression>
does not evaluate to any of the ni;s,'thén the ELSE part (<statement
list>k+1) is executed, if there is an ELSE part, and none of the state-
ment lists is executed if there is no ELSE part. The cases may be in any

-—e e B o

e e i

S ———

order, and more than one case designator n, may be used with the same
statement list, as is illustrated in the following example.

Example : ;
CASE X*Y+Z OF : p
212
X := 3 ‘
2-8> /* CASES NEED NOT BE IN ORDER*/
1 IF X<Y
g THEN
T X s= Y .
END
“ Y := Y+L
Zﬂzgi /* CASES 4 AND 6 COINCIDE */
A X := 2
Y ¢= 3 .
; ELSE
| Xi= 0 :
END

Py e e b

- 10 =
2.3.5 Call Statement
The CALL statement
CALL <identifier> { (<argument 1ist>))}

causes the procedure named <identifier> to be executed. Each argument in

the argument list may be an expression or an array, and the arguments must
agree in numbet.and type with the parameters in the procedure definition
for the procedure that is called. Arguments in <argument list> are sepa-
rated by commas.

Upon completion of the execution of the procedure, execution resumes
with the statement following the CALL statement, :

Example. To invoke the procedure DOIT with arguments X+Y and the
airay A , the statement

CALL DOIT (X+Y, A)

is used. .

2.3.6 Example
PROC SORT (INT N, INT ARRAY A)

/* THIS PROCEDURE USES A BUBBLE SORT ALGORITHM TO SORT THE
ELEMENTS OF ARRAY 'A' INTO ASCENDING ORDER, THE VALUE OF
THE PARAMETER 'N' IS THE NUMBER OF ITEMS TO BE SORTED, */

INT SORTED, /* SWITCH TO INDICATE WHETHER FINISHED */

 LAST, /* LAST ELEMENT THAT NEED TO BE CHECKED */

b /* FOR GOING THROUGH ARRAY */
SAVE /* FOR HOLDING VALUES TEMPORARILY */
IF N>1

THEN /* SORT NEEDED */
SORTED := O /* INDICATE NOT FINISHED */
LAST := N-1 /* START WITH WHOLE ARRAY */

" WHILE .NOT. SORTED
DO /* CHECK CURRENT SEQUENCE FOR CORRECTNESS */
SORTED := 1 /% ASSUME FINISHED */
T =1 /* INITIALIZE ELEMENT POINTER */

WHILE I <= LAST
DO /* COMPARE ADJACENT ELEMENTS UP TO 'LAST' *y

3 TR,

- YL -

IF A(I-1) > A(T)
THEN /* OUT OF ORDER */

- oS

SAVE := A(I) /* INTERCHANGE */
A(I) := A(I-1) /* A(I) AND %/
A(I-1) := SAVE /* A(I-1) */
SORTED := O /* MAY NOT BE FINISHED */
{ END ’
' I := I+l
H s END /* LOOP FOR COMPARING ELEMENTS */

/* A(LAST),..., A(N-1) ARE NOW OK */

i LAST := LAST -1

' : END */ LOOP FOR CHECKING CURRENT SEQUENCE */
END /* IF N>1 */

B i END PROC 'SORT' */

{ 2.3.7 Paramgter Passing Qy'hefezence

Procedures may communicate scalar (integer or string) results through
the parameters passed to it by specifying that a phrametef is a reference
parameter. Logically, this means that the scalar variable itself is passed
to the procedure rather than the value of the variable, just as for array
parameters. Thus a procedure can then change the value Qf a variable in a
CALL argument list. ‘ ' ¥

A procedure declares a.scalar parameter to be a reference parameter by
means of the keyword REF . The following program illustrates the difference
between norﬁhl parameter passing (by value) and reference parameters.

INT X, 2=2, M
PROC ADD1l (INT X, INT Y)
X =X+ Y)
PROC ADD2 (REF 'INT X, INT Y)
X =X+ Y .
PROC MAIN_
X = 3
1 T CALL ADDL (X,2)
: M= X
- CALL ADD2 (X,2)
i M= X
START MAIN

-12 -
This program would set M to 3 then 5

Note that only variables (simple or subscripted) may be passed by .
reference. That is, netiher constants nor expressions (that do not consist
of a variable only) may be passed by reference.

Functions may also have reference parameters.

py e b e

2.3.8 Return Statement

The RETURN statement causes a return to the calling procedure or
function. It may be any statement in a segment, The form

RETURN

is used for procedures, and the form
RETURN (<expression>)

is used for functions.

A function FIND which attempts to find a number in an array can be
written to illustrate this statement:

INT FUNC FIND (INT NUMBER, INT ARRAY VALUES, INT SI1ZE)
INT I _ / -
I =]
WHILE I <= SIZE
DO
IF VALUES (I) = NUMBER
THEN /* FOUND */
RETURN (I)
- ELSE
1= I+
¥ END
END
RETURN (0) /* NOT FOUND */
/* END FUNC 'FPIND™! #/
Note that the last statement in a function need not be a RETURN
| (<expression>) if the structure of the function's statement list is such

ﬁ | .
- " i s IS Dok vt fpog
. P— - v Foiahils . S
& e 7D v e i A

T

i]

P e e m

g |

-13 -
that a return is always made from within the statement list.

2.4 Integer Expressions

" An integer expression represents an integer value. An integer ex~

.pression may be : : : _

l) a scal#r integer variable (either a simple variable or a subscripted
array variable);

2) an integer constant;

3) .an integer function call;

4) an integer operation (such as + or -) where each operand may also
bg an expression; -

S5) an integer expression enclosed in parentheses.

2.4.1 sSubscripted Array Variables

An array element is degignated by following the array name with a
iubsctipt. enclosed in parentheses, whose value designates the number of
the array element to be used. The subscript can be any integer expression.

For example

A(3)
designates the 4th element of array A , while

A(X + A(Y))

designates the element whose number is tﬁe value of X plus the value of
the array element designated by A(Y) .

2.4.2 Function Calls
A function call has the form

<identifier> { (<argument 1list>))}

where <identifier> is the name of the function. The rules for <argument
list> are the same as for the CALL statement. :

-'2;4.3 Constants

An integer con;g;nt‘nny be designated by any sequence of decimal
digits representing a valid non-negative integer value. Note that nega-
tive constants may usually be used where desired although such a constant

- 14 =

"is formally viewed as the unary minus operation on a nonnegative constant

in integer expressions.
' For example, the following are valid SIMPL-M integer constants.

3"

- 127
0

2.5 Basic Integer Operators

The operators described in this section all have integer éxpressions
as operands and yield an integer result. Any arithmetic overflow that
occurs in a calculation is ignored.

2.5.1 Arithmetic Operators
{ Addition (+) , subtraction (-) , and multiplication (" are binary
operators with the usual meaning. The integer divide (/) operator yields
the integer quotient of its operands. Thus if the result of X/Y is @,
then X = Q*Y + R, where R is the remainder that was discarded in the
integer divide.
The unary minuz (=) operator yields the negative of its operand.

Note that the expzeésioh =3 is formally viewed as the unary minus opera-
tion on the constant 3 although it would probably be logically (And
equivalently) viewed as the constant "minue three" by the programmer, There
is no unary plus operator in SIMPL~M.

2.5.2 Relational Operators
The relational operators are equal (=) , not equal (<>)" , less than .

(<) , less than or equal (<=) , greater than (>) , and greater than or
equal (>=) « The expression X=Y has value 1 if X and Y are equal,

and value 0 otherwise. The remaining relational operators are similarly

‘defined.

Note that the result of a relational operation always has value 1 or

‘Zex0, depending on ﬁﬂ:thot the relation is true or false, respectively.

The relational operators can also be denoted by .EQ. , .NE. , .LT. ,

«LE. , .GT. , and .GE. , respectively,

e

SRR

- 15 -

2.5.3 Logical Operators

The logical operators ,AND. , ,OR. , and ,NOT. are defined by:

X.AND.Y is 1 if both X and Y are nonzero, and is 0 other-

wise X.OR.Y is O if both X and Y are zero, and is 1

otherwise .NOT.X is 1 if X is zero and is 0 otherwise

As is the case for relational operations, a logical operation always yields
the result 1 or 0.

Note that the logical operators yield the "natural® result.

For example,
the expression

X<Y .AND. ¥Y<2

will ha&c the value 1 (i.e., will be “true") if Y is hoth greater than

X and less than 2 , and will have the value 0 (i.e,, will be "false")

otherwise. . : 3
2.5.4 Precedence e 1
The precedence of the basic integer operations, from highest to lowest, 2 1
is :
«NOT. - (unary) unary
L arithmetic E
+ = (binary) ‘ ! g
=< < > <= >m relational ‘ i
+AND, :
logical

i
+OR. > |

The order of evaluation between operators of equal precedence is left to
right (except between unary operators, which is right to left).
As an example, the exproolion
“A+B+C**p
would be evaluated by
(1) negating the value of A

(2) adding the value of B to the result from (1)
(3) multiplying the value of ¢ by the value of D
(4) adding the.msesults from (2) and (3)

T

‘- 16 =

Parentheses may be used to alter the normal precedence. Thus (A+B)*C
would cause the values of A and B to be added and the result to be
multiplied by the value of C . :

2.5.5 Examples
The following are examples of valid SIMPL-T expressions.

(1) X+Y/7*2
(2) X<3 .OR. X>8
(3) X>3 .AND. X+Y<1l0 °

(4) X + (X*(Y+1)<500) ; ‘ : i
gor X=9 and Y=12 these expressions have the values
(45 TS 5 TS |
(2) 1 ' ‘
T, 0 1
(4 10 "

2.6 Identifiers

Identifiers (i.e., names) in SIMPL-M may be any string of letters or
digits that begins with a letter. For usage.in an idéntifier, the symbol
$ is considered to be a letter. Identifiers are used tq denote variables,
arrays, procedures, functions, and other entities in a program. All
identifiers used in a program must be declared.

There is no formal restriction on the length of identifiers. However
identifiers may not cross the boundary of a source input record (e.g., card),
so that there is an actual restriction to the length of an input record

* (e.g., 80 characters).

Certain reserved words (keywords) may not be used as identifiers in a
SIMPL~M program. These keywords (such as IF , INT‘) are listed in Appendix
III. Due to the special meaning given to eh;sc keywords, rather disastrous
results may occur if a keyword is used as an identifier in a SIMPL-M program.
This is especially true of keywords used in declarations (such as INT ,
ARRAY , PROC). The tolulting diagnostics generated by the compiler may ‘not
be too helpful for u-ch an error, prinarily because the programmer often

[; ‘ ' -17 - 9

4
overlooks this type of error as a possible cause of the diagnostics, ’
Since many keywords are used for more specialized features of the

s'IHPL-H language, the list in Appendix III should be tonsulted before]
writing a SIMPL-M program.

2.7 Basic I/0]

There is no pre-defined I/0 for SIMPL-M (See Sections 1. and 1.2).
Instead, the programmer can specify the start address of previously ;
loaded I/0 subroutines anywhere in memory above location 127. This is
done by declaring EXTPROC and EXTFUNC as external and specifying the 1
procedure start address as a parameter. :

2.7.1 Function EXTFUNC (INT)

i EXTFUNC performs a function call to the address specified by its
parameter. The parameter is declared as a global initialized to the external

subroutine address. EXTFUNC assumes the external procedure will return its
argument in the 8080 accumulator. See Example 2.7.3.

2.7.2 Procedure EXTPROC (INT,INT) .

" EXTPROC pgrforms a procedure call to the addtesé sgecified by its
- first parameter and passes its second parameter to the subroutine in the i ‘
‘ accumulator. The first parameter is declared as a global initialized to
e 18 the external subroutine address. See Example 2.7.3.

2.7.3 Example
1 EXT INT FUNC EXTFUNC (INT)

EXT PROC EXTPROC (INT,INT)

INT DOG=6, CAT=3 { : |
. INT GETA=H?01674/%GETA IS A PRE-LOADED ROUTINE*/ |
/*IN PROM WHICH INPUTS ONE HEX*/ '
X ' /*DIGIT TO THE ACCUMULATOR*/
INT DIGOUT=H$01434/*DIGOUT IS A PRE-LOADED ROUTINE*/
/*IN PROM WHICH OUTPUTS ONE HEX*/
/*DIGIT FROM THE ACCUMULATOR®/

f
| e—

 wrmtn

PROC TESTIO B 1
CALL EXTPROC (DIGOUT,DOG+CAT+l)/*WRITE HEX A*/
CAT s= EXTFUNC (GETA)/*INPUT ONE HEX CHARACTER*/
/*INPUT AND ECHO ONE HEX CHARACTER*/
CALL EXTPROC (DIGOUT,EXTFUNC (GETA))

e e e

START TESTIO

i : ;

X 3. Start Load Specification

The Intel 8080 machine code can be loaded starting at any address

in memory. This is done by putting the following statement as the very i
first statement in the input deck.
INT STARTLOAD= (start address) : T 1
Where (start address) is an integer constant as described in Section 4.1. 1
The startload address must be in the range @ to 65,535. The default is
address zero. The memory load is sec;uential and uninterrupted from the 1
start load address.
Examples '. '

1 INT STARTLOAD=H*$4¢d+
INT STARTLOAD=6¢

[4. MAditional Language Features
4.1 Bit Representation for Integer Constants

Integer constants may be specified in binary, octal, or hexadecimal,

as well as decimal. However, these additional representations specify the
bit pattern for the word in which the integer is stored, rather than the

1 value of the integer. Thus a maximum of 7 bits may be specified for the

r'i A bit representation consists of the letter B, 0 , or H , followed

: by the binary, octal, or hexadecimal, respectively, constant enclosed in up

-19 =
§
arrows. (Embedded blanks are permitted.) For example, integer value 23 :
can also be specified by any of the following: 4

B+10111+ Bt010 1114 ; 1
0t274
Ht174

Trailing zeros may conveniently be specified by ending the constant in

quotes by the letter 2 £oilowed by the decimal number of zeros to be included.
For example,

p— e sl e B

B+1123¢ = B+11000%

A bit representation may occur anywhere in a SIMPL-M program that an 4
integer constant may occur.

4.2 Bit Operators

4.2.1 Sshift Operators

There: are two shift operators in SIMPL-M: Left logical shift (.LL.),

e

and right logical shift (.RL.). These are binary operators that are used
in the form. :

' <integer expression> <shift operator> <shift count>

where <shift count> is an integer expression whose value is the number of
bits to shift. '

4.2.2 Bit Logical Operators
. The bit logical operators complement (.C.), and (.A.), oz (.V,), and
: exclusive or (.X.) also function the same as the corresponding INTEL 8080
S hardware instructions. Examples are : 5
g .C. HAEY = miEL4 : i
B+1101014 .A. B+11001+ = B+010001+
i B+1101014 .V, B%0110014 = B+111101+ -
p#110101+ .x. B+011001+ = B+1011004

,;, . :
| »
2

—
*

- 20 - L]
4.2.3 Precedence : 1
Bit complement (.C.) has the same precedence as the other unary operators 1

but the binary bit operators have Precedence over all other binary integer ‘
operators. Among the binary bit operators, -the precedence (highest first) is 1

P e e G e

Ll .LLQ .RL. . : shift |
| A, |
' . V. X. "bit logical
i : : ' |
4.3 Compiler Options : :
1 The following parameters may be listed on the SIMPL-T execute card to
_} specify output. |
s Print source deck
| B Print Intel 8080 machine code |
by Q Print SIMPL quads
F . Print cross-reference table.
See Appendix A for the proper format.
| 4.4 Source Program Print Commands - y
The following commands may be included anywhere in a SIMPL-M program to
| control print format.
/+ EJECT +/ Jump to top of next page.
/* SKIP n +/ " Skip n lines
b - /+ PRINTOFF +/ Suppress printing between
3 ! f 4 /+ PRINTON +/ these two directives
[
T r) ‘
[é -t |

_— v,,,w,,w.»:m
PR s - ac iy

o

i

By ey e e

Appendix I.

1. Compile a SIMPL-M program on the CDC Cyber 172.

Job Card

UPDATE,N.

REWIND,COMPILE.

REQUEST,COMPAS, *PF.
ATTACH,SIMPLT,SIMPLM.
SIMPLT,SLQ,COMPILE. (See Note)
CATALOG,COMPAS , INTEL, RP=0,
7/8/9

*DECK Program Name

Program Deck
6/1/8/9

2. Generate a loader tape once a SIMPLM program is correct,

Operator Request Card
Job Card

REQUEST, PAPER, TP. .
ATTACH (TAPE30, INTEL)

UVALIB (PUNPAPR,P1,,,,,P6)
6/7/8/9

Note: Leave off L and Q until program compiles to suppress printout of
assembly code and quads.

B T R b T ———

Appendix II - Precedence of Operators

The SIMPL-M operators are listed below in order of precedence from

¥ highest to lowest. ’
" .~ .C. .NOT. - (unary) unary : 1
+RL. .LL. : shift
s bit logical
Ve ok ;
* / ; 3
% (binary) arithmetic
=<> <> <= >= relational
l +AND. 3

. . .OR. - ' logical

Appendix III - Keywords

I The “f.ouow:lng are reserved keywords and may not be used as identifiers

in a SIMPL-M program.

ARRAY
CALL
CASE
CHAR
DEFINE

- EXTPROC

DO
ELSE

ENTRY
EXIT
EXTFUNC

FILE

FUNC

IF

INT
STARTLOAD

OF
OTHER

-PROC

REC
REF

RETURN
START

" STRING

THEN
WHILE

Appendix IV ~ UVA MODULAR MICROCOMPUTER SYSTEMS - BASIC MONITOR

Wesley E, McDonald, James H, Aylor

INTRODUCTION r
" The monitors which are available for the various microcomputer
modular systems at the CSL have the same basic instruction set common to
all. The methods of implementation are different for each, although this
is transparent to the user. A description of the basic monitor is presented,

followed by a discussion of each system's particular differences.

BASIC MONITOR INSTRUCTION SET
There are five instructions to the monitor, each consisting of one
letter; the first letter of the desired function. These are;

1) Memory Display -

M
2) Next Memory Display ~ N
3) Jump % -J
4) Load Hex b
5) Proceed - P

Any memory location may be altered by entering a colon and the new
data in hexidecimal immediately following the monitor's response to either
M or N. For example: ‘ ;

.« M 0000 AF : CD
will result in location 0000 (which had AFIG in it) being changed to a CDIS'

The instruction formats are presented below. Any underlined items
are characters input from the TTY. Xs denote Hexidecimal characters. The
groups of fout characters specify addresses and the groups of two characters
specify data items.

M oxxxx xx : xx

"M xxxx xx CR LF

oN xxxx + 1 xx : xx

oN'xxxx + 1 xx CR LF

-J xxxx CR

".B CR v

‘oL (LOAD DATA according to format)

|

o by

- R ——— o s

LOAD HEX

The load hex instruction has special provisions which allow communi-
cation with time share basic, If time share is not available, ,L still will

function as a paper tape loader. The paper tape format is:

LDR xoff CRLF

3 <BYTES><ADDR><DATA><CHECKSUM>CRLF

<BYTES><ADDR><DATA><CHECKSUM>CRLF

? <BYTES><ADDR> <DATA><CHECKSUM>CRLF

; 00 CRLF

<CHECKSUM> = 4 Hex words, or 2 Hex
bytes, The sum of all Hex data in
line, e.g. BYTES+ADDR+DATA
<BYTES>=# of bytes of hex code in
line not to include the

checksum bytes
<ADDR> = starting address of data

<DATA> consists of xx 2 hex words

of data = 1 Hex Byte

The LDRXoff CRLF indicates to the loader that data will follow,
The semi-colon indicates that data follows immediately,

An end of record, specified by a ;00 terminates loading, and results in

termination of the load phase. To run the loaded program, execute ,J xxxx CR,

where xxxx is the starting address of the loaded program.

Time Share Interface

If the time share interface is available (consisting only of a modem &

telephone) the monitor provides communication with it through the .L instruction.

In order to prevent confusion, the monitor will not speak to timeshare
unless in the .L routine. At all other times, the monitor is in a purely

local mode, where commands and prompting are sent only to the system TTY.

Once in the .L routine, all TTY input is sent to the modem,- and all
modem input is sent to the TTY, allowing the use of the microcomputer system
as a straight timesharing terminal. 1In the microcomputer system as a straight
timesharing terminal. 1In the event that the LOADXX program on basic is
executed, the monitor will automatically load the data coming from time share
into RAM. The loaded program can then be executed through a reset and the .J

instruction,

Pl

Program Break Points

Each monitor is arranged so that particular instructions in the
machine code of the particular microprocessor will cause an entry into the
monitor. Normally, such an entry preserves the stock and register integrity.
When a .P is executed, the monitor autamatically returns control to the

calling program at the address of the previous break point.

Interrupts
All interrupts in the modular system jump through the monitor to

a trap cell in RAM. This cell is initialized by the monitor to jump through
the breakpoint. The RAM location should belinitialized to a jump instruction
to the interrupt service routine for special interrupt processing. Note, this
is not an indirect jump. The program counter is loaded with the trap cell
addréis and the processor begins execution at that point, Three bytes are
allotted, so that a jump ins€ruction can be executed.

SPECIAL FEATURES OF THE MODULAR MICRQCOMPUTER

SYSTEMS BASIC MONITOR

INTEL 8080

Program Break Point:

The program break point is established through use of
the RST 1 instruction, Control is transferred to the
routine beginning at 10B in ROM. All processor status

and registers are preserved and printed out, in the
following order:

XXXX XX XX XX XX XX XX XX XX
PC A B Q D E H L PSW

Control is then transferred to the monitor, which
responds with the prompting dot. Execution of .p
will resume program execution.

v '

¢

IR S 10 AN A

|

s =M

MOTOROLA 6800

Program Break Point

The program break point is established through use of the
SWI instruction. Control is transferred to the monitor which
responds with a prompting dot. All processor status is pPreserved,
Execution is continued through use of .P

L]

%1

o il WS SEET

1.

2.

3.

4.

S.

References,

Basili, Vvictor R., Albert J. Turner.

SIMPL-T: A Structured Programming Language. Palladin House Publishers,
Geneva, Ill, 61034, 1976. g

Perry, John G., Jr., CDC 6000 SIMPL-T Compiler Internal Documentation.

Unpublished Masters Thesis, University of Maryland, Cqllege Park,
Md., 1976.

Intel Corporation. ' Intel 8080 Assembly Language Programming Manual.

Intel Corp,, Santa Clara, Ca,, 95051, 1976,

McDonald, Wesley E., UVA Modular Microcomputer Systems Basic Monitor.

Unpublished paper. The University of Virginia Electrical Engineering
Lab., Charlottesville, Va. 22901, 1976.

Bladen, James B., SIMPL-M: A Cross-Compiler for the Intel 8080 Microcomputer.

Unpublished Master's Thesis.
Va. 22901, 1977.

The University of Virginia, Charlottesville,

sl

ains

e

B

T A TR T i,

e ————

79 PRACTICABLE

7 QUALT
’I'PAﬂlsm Q‘ DDG e

\ " yROMOOPYY

Appendix VII.

CODGEN Listing .— cowrect (’,// Sowr Blacdo s

AERTL /D]
;/m AFE Fla
22542

ér /l:/r‘?

SRRSO e S s aam B R B R S e

2 /¢ THIS PROGRAM IS A COCE GENERATOR FOR SIMPLM WRITTEN BY JIM BLADEN ¢/
3 —.— ... /% CF THE CCMPUTER SCIENCE DEPT OF THE UVA SCHOGL OF ENGINEERING. ./
4 /* THE PRCGRAM GENERATES INTEL 8080 MICRCCOMPUTER MACHINE CCOE IN A ./
- (s, M . /% FORMAT ACCEPTABLE TC THE UVA IMPLEMENTATION CF THE INTEL 2080 LOAD-*/.
6 /% ER. FUPTHER UGCUMENTATION OF THIS PRGGRAM IS AVAI! LE THROUGH THE®/
Ve ——../% COMPUTER .SCIENCE DEPARTMENT 404-926-72010___ __ _ ___ L)
e _ENT INT UUPTINS, FGRIR, ECPTR. . il
i 10 EXT INT ARRAY SYFTAB
1 11 ce=. - EXT FILE S20DATA, S$QUAD, COMPAS Sl
12 EXT STRING FUNC NAME(INT,INT)
13 . - EXT PROC WRITEC(FILEsSTRING) SRR R
16 EXT PRCC CLOSESS(FILE)
b 3. S PN A R R e el o A i S Sl ks S
16 INT CONSTBIT = 8'1119'9 INITBIT = Bt1231%, INTBIT « 1,
17 .. o L _... ARYBIT s 3%1213%, _ PARMBIT = Bt1222¢%, REFBIT = Bt1Z25¢, .
19 PRCCSWs=Qy FUNCBIT = 0O*17%, CHKSUM = 0y
19 AT At el - MAXCCNST = 127y MINCONST = =128, bty
<0 MEMPTR = =], MOTEMP = 1, . MOARRAY = 2, 1‘
21 -—.QUEPTR * 39, ______ . DEQPTR & 39, ______ ___ MQIMMED = Bt124%, __ 1
22 . SAVEPIR s <]y HALF = Q*777777%, LHALF = Q77777726 s |
;o RS i BRLEAES ORGACOR = C) DUNMPY, e . AOPTION, e <‘
24 FLUSH s 0y FF = HTFF?t, FFOO0 = HTFFOO?) J
[S Bl el FUNCSW = 0y NUMWDS = 0, FFFEF o HTFFFF?, ‘
25 ECs AFLAGy Ay BFLAGy) By RFLAGy) Ry /OCURRENT QUAD VALUES®/ |
et . NIDsNAFLAGIMNA)NBFLAGIMBINRFLAGINRs /*NEXT CUAD VALUES®, . __ |
. 28 LGPTION, ROPTION, COPTION, QOPTICN /*COMPILER OPTIONS®/ {
{ il AL e i s
l 10 INT ARRAY SAVE(100)y /*FGRWARD ADORESS STACK®/ |
3l LEERTEE QUE(4O)) /*POINTEFS ARE QUEPTR,DEQPTR #; e L

32 NC(100)e(3,7(15)95(3)57(4050,0079755575795%55351519353»

& [' 33 e e 10195935 0(3)95555 00753045 053555T97039390) . .. o
i . 34 %
¢ : 35 wim. -..STRING ARRAY QUADSCOEI(SE) = (: AR
[36 *LINE ty ts t, tO ty) t¢ ty) t<a ty, > *
4 17 e e R, t, te t, t- t, ts t, ¢/ s Tols O5 o
¥ [3‘.‘ t V.. ’D 'a’o 'l ' 'lo " ’nllo ’l '“EG 'l ’cto '.
e 39 z $.NOT., 'v_..!olNO. £0_teCRo_ %) ToRAS. Ty _ToLCSe. %» tQ23 _ %
i &0 1024) t.CONs *» TINT Ty t.ABS. Ty THAX ty tMIN ty
! 41 e el C G g SR *y TELSEIFt, TENOIF ¢, TWHILE *, TWHTEST®,
42 ; TENDWH *, TINITCS?ty PCSTEST?®, tCASE ¢, *CSEND t» TCSELSE?,
43 G A S A TENOCS *» TCALL *» TPARM t, TENOPRM®, TARYLCC®t) TSTART ¢y
a4 tRETURN®, TEXIT ¢, TPROC *t) TENOPRC?, TCONTRL?, tQ53 * ’
4% T0EFPRTE, tPARTOPLs tTRACE_%, tSTANNTL) i
I “‘ |

|
i

