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Abstract

A model of computation based on random access machines

operating in parallel and sharing a common memory is presented.

The computational power of this model is related to that of

traditional models. In particular , deterministic parallel

RAM ’s can accept in polynomial time exactly the sets accepted

by polynomial tape bounded Turing machines; nondeterministic

RAM~ can accept in polynomial time exactly the sets accepted

by nondeterministic exponential time bounded Turing machines .

Similar results hold for other classes. The effect of limiting

• the size of the common memory is also considered.

*Research supported in part by the Office of Naval Research

ux~der ;grantf number N OOO l4~~16rC-OOlB.
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1. Introduction

The speed of serial computers has increased enormously

over the past few decades. Unfortunately , due to ultimate

physical limitations , these increases cannot continue forever.

An alternative strategy for increasing speed is to perform as

much of the desired computation as possible in parallel.

Considerable current research in semantics and programming

languages is directed at the interaction of parallel processes.

However , there seems to have been less study made of the

computational power of parallel machines. We present a model

for parallel computation and relate its power to that of more

familiar models. We believe this model captures the spirit

of the parallel computers that are likely to be built in coming

years without being constrained by the engineering considerations

• that have led to existing machines such as ILLIAC .IV [11. We

note that the model , or something very similar to it, has been

used implicitly by authors who have developed parallel algorithms

for a variety of problems [4], [5], [7].

Our main results are the following . We show that deter-

ministic parallel processors can accept in polynomial time

• exactly the class of sets accepted by polynomial tape-bounded

Turing machines; thus parallelism can give more than a poly—

nomial increase in computing speed if and only if ?TIME�PSPACE.

Nondeterm4 nistic para~.lel processors can accept in • polynornial

tiae exactly the sets accepted by nondetermipistic exponential

time-bounde4 Turing machines; her~ce 4fl~e~.ism does in fact
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give an exponential speedup in this case. We have similar

results for other time classes.

2. The Model

A parallel random access machine (P-RAM ) consists of an

unbounded set of processors P0, P11..., an unbounded global

memory , a set of input registers, and a finite program. Each

processor has an accumulator, an unbounded local memory , a

program counter , and a flag indicating whether the processor

is running or not. All memory locations and accumulators are

capable of holding arbitrary nonnegative integers. The program

consists of a sequence of possibly labelled instructions chosen

from the list below . A program is nondeterministic if some

label occurs more than once, deterministic otherwise.

Instruction Function

LOAD operand Perform the indicated op-
STORE operand eration using the accümu-
ADD operand lator of the processor
SUB operand executing the instruction .

JUMP label Change program
JZERO label counter to label.

READ operand See text.

• FORK label See text.
HALT See text.

Each operand may be a l i teral , an address , or an indirect

address . Each processor may access either global memory or its

local memory , but not the local memory of any other processor.

Indirect addressing may be through one memory to access another . .



Initially the input to the P-RAM is placed in the input

registers, one bit per register , al l memory is cleared , the

length of the input is placed in the accumulator of P0, and

P0 is started. At each step in the computation each running

processor simultaneously executes the instruction given by

its program counter in one unit of time, then advances its

counter by one unless the instruction causes a jump .

A READ instruction uses the value of the operand to

specify one of the input registers; the contents of the

selected register is placed in the accumulator . A FORK

label instruction executed by processor P~ selects the first

inactive processor ~~ clears P~ ’s local memory , copies Pt ’s

accumulator Into P
a
’s accumulator , and starts P~ running at

label. A HALT instruction causes a processor to stop running.

Simultaneous reads of a location in global memory are

allowed , but if two processors try to write into the same

memory location simultaneously , the P-RAM immediately halts

and rejects. Several processors ~tay read a loc~ition while

one processor writes into it; all reads are performed before

• the value of the location is changed.

Execu tion con tinues un til P0 executes a HALT instruction

(or two processors attempt to write into the same location

simultaneously). The input is accepted only if there is some

computation in which P0 halts with a one in its accumulator;

the time required to accept the input is the minimum over all

such computations of the number of instructions executed by P0.

• ~~~~~~~~~~~~~~~~ —. ~~~~~~~~~~~~~~~~~
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A language L is in the class deterministic (nondeterministic)

T(n)—time—P..-B.AM if there is a deterministic (nondeterministlc)

P-RAM M such that for all words x of length n , x is in L if and

only if x is accepted by N and requires time at most T(n).

Several details of the model deserve further comment.

We choose to use special registers to hold the input in order

to be able to discuss sublinear running times. If, say , the

input were encoded in binary and placed in the accumulator

of P
~
, then it would take at least linear time (in the length

of the input) to unpack the input. Also, we could restrict

the local memory of each processor to only a constant number

of locations by mapping the local memory of each processor

into global memory . However , we will be interested in what

happens when the size of global memory is restricted , hence

we allow each processor unbounded local memory .

3. Main Theorems

In the following , resource bounds unqualified by “P-RAM ”

refer to Turing machine computations.

Theorem 1 (deterministic P_RAIvI’s) For T(n) > log n

k k• u T(n) —time—P-RAM = u T(n) -space
k=l k=l

In particular , u logkn_time_P_RAN = u iogkn_space and polynomial-
k k

time-P-RAM = PSPACE.

- 

• - ~~••~1.#, ,



Theorem 2 (nondeterministic P-R M’s) For T(n) > log n

U nondet—cT (n)-time-P-RAM = u nondet_ 2CT~~~_time
c>0 c>0

In par ticular , nondeterministic c.log n-time-P-RAM = NP and

nondeterministic-polynomial-time-P-RAM nondeterministic

exponential time .

These theorems follow from four simulations given in

the lemmas below. Before giving the proofs, we mention a

few programming details.

One processor can initiate two other processors in con-

stant time using the FORK instruction . By iterating this , a

“tree” of m processors can be initiated in time O(log m).

If processor i initiates processor j to perform a subtask ,

it can pass via its accumulator the address in global memory of

a block containing parameters. Among these parameters can be

the address of a location in global memory where processor j

is store its result. Processor i can then repeatedly test

the location to determine when processor j terminates.

Memory interference between processors in global memory

can be circumvented by interleaving the locations assigned

to each processor. Suppose a processor has free storage con-

sisting of every k locations starting at address m . If the

processor then initiates two new processors, it can assign

one every 2k locations starting at in and the other every 2k

locations starting at m+k.

Lemma la Let L be accepted by a deterministic T(n) space-

bounded TM M, for T(n) > log n. Then L is accepted by a
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deterministic cT (n) time bounded P-RAMI P, for some constant c.

Proof We will first present a simulation of M by P which

assumes that the value of T(n) is available, then show how

to remove this assumption. Given T(n), P will construct a

directed graph where each node represents a configuration of M.

• dT(n)The number of configurations of M is bounded by 2 for

some d depending on M, hence so is the number of nodes.

Leaving each node will be a single edge to the node of its

successor configuration. Accepting configurations of M are

their own successors. Thus there is a path from the initial

configuration node to an accepting configuration node if and only

if M accepts its input within T(n) space. To build the graph ,

P first initiates 2dT(n) processors in O(T(n)) steps , each

holding a different integer , representing each poss ’ble con-

figuration of M. Each processor then, in O~T(n)) time,

unpacks its configuration integer into local memory , computes

the successor configuration , and packs the result into a

single integer. The graph is then stored in global memory ,

the address of a configuration node being the integer representing

the configuration . To find the endpoint of the path from the

initial configuration, the following is executed iteratively .

Each processor f inds the successor of the successor of its

configuration node, then stores that as its successor in

global memory . Af ter i iterations , each node has its descendant

at distance 21 stored as its successor . Since the terminal

configuration is at distance at most 2dT (ui) from the initial

configuration, only dT (n) iterations are needed . As each
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iteration takes constant time, and the rest of the simulation

O(T(n)), the total time is cT(n), for some c.

To avoid the constructibility assumption about T(n),

modify the above simulation as follows : P0 will start processors

one at a time which will execute the procedure above assuming

T(n) = 1,2 When any of these simulations succeed , P0

will be notified and will accept. The order of the running

time is unchanged , since it requires only O(T(n)) time to

start the simulation which uses the correct guess for T(n).

The individual simulations must also be modified so that

they each use disjoint locations in global storage to store

their configuration graphs. This can be accomplished by

increasing each address by the assumed value of 2T(n) Details

are left to the reader. I

Lemma lb Let L be accepted by a deterministic T(n) time-bounded

P-RAM. Then L is accepted by a T(n)2 space-bounded TM.

Proof We will first construct a nondeterministic T(n)2 space-

bounded TM accepting L. We will then show how to make the

TM deterministic without increasing the space bound .

In order to determine whether the P-RAM accepts its

input, the TM needs to know the contents of P0 ’s accumulator

when it halts and to verify that no two writes occur simul-

taneously into the same global memory location . The simulation

is based on a recursive procedure ACC which checks the contents

of a processor ’s accumula tor at a particular time. By applying

the procedure to P0, we can determine if the P-RAM accepts .

ACC is similar to the p: re FIND in [5). 

- 

ft
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ACC will check that at time t , processor P~ executed the

instruction of its program, leaving c in its accumulator.

In order to check this, ACC needs to know

i) the instruction executed by P. at time t—l
and the ensuing contents of i~ s accumulator , and

ii) the contents of the memory location(s)
referenced by instruction i.

ACC can nondeterministically guess (i) and recursively verify

it. To determine (ii), for each memory location m referenced ,

ACC guesses that m was last written by some processor 
~k 

at

time t’ < t. ACC can recursively verify that did a STORE

of the proper contents into m at time t’. ACC must also check

that no other processor writes into m at any time between t’

and t. It can do this by guessing the instructions executed

by each processor at each such time , recursively verifying

them , and verifying that none of the instructions changes m.

Checking that two writes do not occur into the same memory

location simultaneously can be done in a similar fashion.

For each time step and each pair of processors , ACC nondeter—

ministically guesses the instructions executed , recursively

verifies them , and checks that the two instructions were not

writes into the same location.

- The correctness of the simulation follows from the

determinism of the P-RAN. In general, each instruction

executed by the P-RAM will be guessed and verified many times

by ACC. However, since the P-RAM is deterministic , at any

step for each running processor there is exactly one instruction
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which can be executed ; thus all verified guesses of that

instruction must be identical.

To analyze the space requirements , note that there can

be at most 2T~~~ processors running after T(n) steps , so

writing down a processor number takes T(n) space. Since

addition and subtraction are the only arithmetic operators ,

- numbers can increase in length by at most one at each step.

Thus, writing down the contents of an accumulator takes at most

T(n) + log n = O(T(n)) space. Writing down a time step

takes log T(n) space and the program counter requires only

constant space. Hence the arguments to a recursive call

of ACC can be written down in T(n) space. Cycling through

time steps and processor numbers to verify that a memory

location was not overwritten also takes only T(n) space,

hence the total space requirement at each level is T(n).

As the total depth of recursion is T(n), the total space

required is T(n)2.

Note that the simulation can be performed directly by

a deterministic Turing machine . At each step in the simulation

outlined above where a nondeterministic guess was made , the

Turing machine can deterministically cycle through all possible

- 
outcomes, until the correct one is found . This requires no

more space. a

Lemma 2a Let L be accepted by a nondeterministic T(n)

time—bounded TM. Then L can be accepted by a nondeterministic

c’log T(n) time-bounded P—RAM , for some constant c.

— — --- -- - - -  ~~~~~~ -. 
—

- — -~~~--- -—--—
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Proof For an input of size n accepted by the TM, the length

of an accepting sequence of configurations is at most T(n)
2.

In d•log T(n) steps, for some d, enough processors can be

activated so that each can guess one symbol of the computation.

The first n processors check that the initial configuration

corresponds to the initial configuration of the TM on the

- 

input; each of the remaining processors verifies that its

symbol follows from the corresponding symbol and the ones on

either side of it in the preceding configuration. The pro-

cessors for the last configuration must also check that it

is an accepting configuration . In another d’ •log T(n) steps ,

for some d’ , the information that the computation is correct

can be bubbled up to P0, and P0 can accept.

We note that T(n) need not be constructible , as the

length of the accepting computation can he guessed nondeter-

i~ini~ tiCally.

Lemma 2b Let L be accepted by a nondeterministic T(n)

time-bounded P-RAN , T(n) � log n. Then L is accepted by a

nondeterministic 2cT~~~ time-bounded TM, for some constant c.

Proof The brute force simulation of the P—RAM suffices.

There can be at most 2T(n) processors, each of which can

access at most T(n) memory locations. The contents and

address of each memory location can be of size at most

T(n) + log n = O(T(n)), since numbers at most double at each

step and P0
1s accumulator originally contains n . Hence the

-- -— - - —
. --— _______  . . - -~~~~~~~~
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total tape required is 2T( •T(n)2. The TN can simulate one

step of one processor in one scan of its tape; 2T(n) pro-

cessors with T(n) steps each takes time 22T(T~~.T(n)
3 < 2CT(fl)

for some c.

4. Memory Limited Computations

Theorems 1 and 2 seem to depend on the ability to com-

municate exponential amounts of information through global

storage. Thus it seems natural to ask what happens when

global storage is restricted to a polynomial in the

running time. We can characterize the power of nondeter-

ministic P-RAN ’s with restricted storage and can partially

characterize the power of similarly contrained , but deter-

ministic , P-RAM ’s. The theorems below are stated for the

familiar cla~ses NP and PSPACE , but as with the earlier

theorems, similar results hold for higher and lower com-

plexity classes. For the remainder of this section , all

P—RAM ’s are assumed to possess only a polynomial number of

global storage locations .

Theorem 3 The class of sets accepted by nondeterministic

polynomial time-bounded , polynomial global storage-bounded

P—RAM ’s is identically PSPACE.

Proof The key to the P-RAM ’s simulation of a PSPACE bounded

Turing machine M is a recursive subroutine TEST(i,j,t) which

verifies that M’s configuration j follows from configuration i

--—----- -~~~~~~~~ ——----- ~-- - — 
~
- —  ,—•——-—- -—--- —

• —-——------——-----~~~~~~ - ______ _ _ _______~~~~~~~~ -1.~~~~_
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within dt steps , for some constant d depending on M. TEST

works by guessing the configuration k midway between i and j,

then forking to execute TEST (i ,k,t-l) and TEST(k ,j,t-l) in

parallel. The middle configuration k can be guessed using

a processor ’s local storage, and parameters can be packed

into the accumulator prior to the fork , so no global storage

is required to perform all of the parallel subroutine calls.

There is not sufficient global storage for each call of TEST

to bubble its result back to its father as in lemma 2a, so

an alternate strategy must be employed. When a processor

determines that TEST(i,j,t) is false, it causes the P-RAM

to reject by creating two sons, each of which does a store

into global memory location 0. If TEST(i,j,t) is found to

be true , the processor merely halts. The root processor P0

computes D ( n ) ,  an upper bound on the depth of recursion

and calls TEST(ini t ial  configuration , final configuration , D(n)).

It then waits long enough for D(n) levels of recursive calls

to TEST to complete , and accepts. If P0 accepts , then no

processor found a mistake or attempted a recursive call deeper

than D ( n ) ,  so M must have accepted its input.  D ( n )  may be

taken to be a polynomial since M is PSPACE bounded. The pro-

cessing at each call to TEST, exclusive of recursive calls ,

is proportional to the length of a configuration, a polynomial,

so the P—RAM runs for time at most some polynomial in the length

of the input.

To simulate a global memory limited, NP-time-P-RAM within

NPSPACE (hence PSPACE), first observe that although exponentially

_ _  . --_ _ _ _ _  

- — —-—— - —
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many processors may be active at once, only polynomially

many of them may write into global memory on any step of

the computation. Thus, a nondeterministic Turing machine

may guess and write down within polynomial space the entire

contents of global memory after each step of the computation ,

along with documentation of .~,hich processors modified which

storage locations at each step. The Turing machine can then

traverse the tree of activated processors imp lied by FORK

instructions, and verif y that all instructions executed are

consistent with the guessed global memory contents and con-

versely. If this implied tree is traversed so that only the

local memories of the processors directly on the path back

up to P0 are stored at any time, 
the simulation can be carried

out within polynomial space.

Theorem 4 The class of sets accepted by deterministic poly-

nomial time—bounded , polynomial global storage-bounded P-RAM ’s

contains the, class co-NP.

Proof It is sufficient to show how to accept the complement

of some NP-complete set deterministically on a P-RAM . We

show how to accept the set of Boolean formulas which are not

satisfiable. In c1n time, 2~ processors can be activated ,

each holding a different integer in the range 0 to ~~~~

In an additional c2n time each processor can unpack its 3
integer into its local memory and determine if the assignc~erit

of truth values represented by the bits of its integer cause

- . - - — —.--- - --—- - -~~~~~~~~~~ . -••-•—----- — -----
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the input formula to be satisfied. Processors finding a

satisfying assignment force the P—RAM to reject as in Theorem 3.

If no processor has forced rejection after (c1+c2)n time, 
P0

accepts the input.

Notice that we cannot accept the set of satisfiable I3oolean

formulas by trying all truth assignments in parallel and

setting a flag in global memory if any satisfying assignment

is foun d, because there may be more than one such satisfying

assignment, resulting in several processors trying to set

the global flag simultaneously . If an NP-comp lete set cou ld

be found such that each member of the set had exactly one

“certificate” , then memory limited deterministic polynomial

time P-RAN ’s could accept at least NP U co-NP.

5. Discussion

We can compare our results to others that have been obtained

for nontraditional machines modeling some aspects of parallelism.

Several authors have constructed models for which deterministic

and nondeterministic polynomial time are equivalent and are

equal to PSPACE on a Turing machine. These include Hartmanis

and Simon [5] and Pratt and Stockmeyer [9] using RAM ’s augmented

by instructions that can manipulate exponentially large numbers

at unit cost; Kozen [8] and Chandra and Stockmeyer (2], using

alternating Turing machines (nondeterminism is subsumed by

alternation, hence adds no power); and Savitch and Stimson Eli],

using parallel RAM’s without global memory . While we do not
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know that nondeterminism is more powerful  than determinism

on our model, settling the question would decide PSPACE = nondeter-

ministic exponential time . Savitch 112] has also proven a

result similar to our Theorem 2 for nondeterministic parallel

RAM ’s without global memory augmented by list processing

instructions that can manipulate exponential amounts of in-

formation in unit time. The power of the. deterministic

version of his machines is still open.

It is appropriate to note at this point that although

we have used the uniform cost criterion [3] throughout this

paper , our results still hold (at most squaring the simulation

cost) if the logaritl-~nic cost criterion is used. This is in

contrast to the results mentioned above for RAr~’s which depend

on unit time manipulation of large numbers . Similarly, we

could charge memory accesses at a cost proportional to the

logarithm of the size of the global memory , wi th only a poly-

nomial increase in computing time .

Finally , we observe that other open problems in compu-

tational complexity can be rephrased in terms of parallel

RAM ’s. For example, we have shown that any problem in NP

can be sped up exponentially using nondeterministic parallelism.

A proof that such exponential speedups are not obtainable by

applying deterministic parallelism to problems in P would

settle the question

u LOGkSPACE = P
k

in the negative. 

--
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