: =
AD-A0SS 424  CATHOLIC UNIV OF AMERICA WASHINGTON D C HUMAN PERFOR==ETC F/6 8710 -

FEATURE EXTRACTION AND DECISION PROCESSES IN THE CLASSIFICATION==ETC(U)

UL 78 J H HOWARD: J A BALLAS: D C BURGY N00014=75=C~0308
UNCLASSIFIED TR=78=4=0NR NL




FEATURE EXTRACTION AND DECISION PROCESSES IN THE CLASSIFICATION

OF AMPLITUDE MODULATED NOISE PATTERNS

ADA(0 58424

.
4

James H. Howard, Jr., James A. Ballas, and Donald C. Burgy

ONR CONTRACT NUMBER N00014-75-C-0308 b

AD No.——
DOC FiLE -copy

Technical Report 0NR-78-4'/

Human Performance Laboratoty'/

Department of Psychology

The Catholic University of America

July, 1978

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for any
purpose of the United States Government.

-~ 0 N 91 N 4 'Z
/ { J <%

{
[ ——




/_4.{ TITLE (and Subtitle) S. D COVERED
é /" _FEATURE EXTRACTION AND,DECISION PROCESSES IN 127echn1ca1 Ref@t, , )

v

ied // 57r7‘$?L‘17Qf2"74;—¢£t;;;3;%:ii:}

SECURITY CLASSIFICATION OF THIS PAGE en Data Entered)

REPORT DOCUMENTATION PAGE pErCAD INSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

ONR-78-4

6. PERFORMING ORG. REPORT NUMBER

THEQLLASSIFICATION OF AMPLITUDE _MODULATED
SNOISE PATTERNS = =

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

/01 James H/Howard, Jr., James A./Ballas @?& prﬁ’l4-75-c-93‘ﬂ_8j

Donald C./Burgy o —
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::ggH.A=°ERLKEhJSINYT.NZF:‘OBJ=€E:, TASK
The Catholic University of America
Washington, D. C. 20064 % NR 197-027

11. CONTROLLING OFFICE NAME AND ADDRESS

Engineering Psychology Programs, Code 455 6
Office of Naval Research

TS SECUR :
Unclassified

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftfice)

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if ditferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

auditory perception decision processes
auditory pattern recognition multidimensional scaling
auditory classification
\\ feature extraction

|

20\ RBSTRACT (Continue on reverse eide If y and Identify by block number)

he relation between the perceptual features identified in a multidimensional
scaling (MDS) analysis and the decision stage of the auditory classification
process was investigated in four experiments based upon a set of sixteen
complex acoustic patterns. The sounds consisted of broad-band white

noise, amplitude modulated by sawtooth waves of varying frequency and
attack. psychological feature representation of the stimuli was

obtained In Experiment 1 using a MDS analysis (INDSCAL) of the listiggrs'

EDITION OF 1 NOV 68 1S OBSOLET,

DD, on'ys 1473 Unclassified

$/N 0102-014- 6601 | LA - M i
SECURITY CLARSIFICATION GF THIS FAGE (Whon Data Eniored) 3
/{ - f s . b

o T R TN, e e w—— -




Unclassified
<eLURITY CLASSIFICATION OF THIS PAGE(When Data Bnund)

pairwise similarity ratings. Two groups of listeners in Experiment 2
learned to classify each of the sixteen signals into one of eight
categories (two sounds per category). The two groups learned eight-
category partitions that emphasized different features of the stimuli.
‘ Confusion matrices were analyzed in terms of both the stimulus space
’ obtained in Experiment 1 and a probabilistic model of the listener's
decision process. The model provided a reasonable fit to the observed
P data. Experiments 3 and 4 further tested the assumptions of the decision
model. In Experiment 3, listeners were required to classify each
member of a large set of amplitude modulated signals that formed a
"grid" over the perceptual feature space. Subjective probability
density functions for the eight categories estimated from listener
responses using potential function or Parzen estimator techniques were
consistent with those assumed by the model. In Experiment 4, MDS
techniques were used to investigate the "conceptual space" underlying
the listeners' memory for each of the eight categories in both groups.
B Category coordinates obtained from the MDS analysis corresponded well to
\\_thg category centroids computed from the perceptual space of Experiment
1~ Overall, results of the four experiments indicated that listeners
employed an optimum-processor strategy to determine the relative
importance of each feature in the decision process. The findings
indicate that any theoretical treatment of auditory pattern recognition
must address the interaction of the feature extraction and decision
processes.
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INTRODUCTION

Recent years have witnessed major theoretical advances in
our understandirg of the perceptual processes involved in the
detecticn and discrimination of simple acoustic stimuli. In
contrast, relatively 1little 1is known about the psychological
processes that underlie the <classification and recognition of
complex acoustic patterns. A popular approach to the analysis of
this problem assumes that human auditory recognition involves
several distinet information-processing stages. A possible
four-stage model of the auditory recognition process is

diagrammed in Figure 1.

According to this model, an unknown stimulus undergoes several
transformations before it 1is recognized. First, an initial
sensory representation of the signal is formed, and a preliminary
analysis of the signal 1is completed. These processes are
typically assumed to occur in the auditory periphery and have
been reasonably well-specified in recent psychoacoustic research
(e.g., Siebert, 1968; Dallos, 1973). Second, this preliminary
"receptor" representation 1is further transformed or reorganized
into a set of distinctive auditory features. This stage 1is
referred to as feature extraction and is generally thought to
involve the reduction of a stimulus to its essential
characteristics (e.g., Anderson, Silverstein, Ritz & Jones,

1977). Third, this highly processed feature representation is
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Figure 1. Flow diagram of a four stage pattern recognition

model.




Auditory feature extraction Page 3

compared with information stored in memory to determine its
classification and/or identify its structure (i.e., the relations
among features). The processes involved in this stage may be
extremely complex, and in the present model they are collectively
referred to as the decision stage. Finally, an overt response
may be initiated depending on the listener's task.

As suggested above, much psychoacoustic research has
emphasized the Dbasic psychophysical processes involved in pitch
perception or the detection of pure tones, and their relation to
underlying physiological functions (e.g., Evans & Wilson, 1977).
As a result, a firm basis exists on which to speculate about the
transduction and "preliminary analysis" stage of auditory pattern
recognition. Unfortunately, in the case of complex acoustic
patterns, no similar extensive -empirical foundation exists on
which to build a detailed model of the second (feature
extraction) and third (decision) processing stages. The present
paper focuses on the feature extraction stage and its relation to
the decision process in an attempt to establish a firmer basis
for a theoretical treatment of the auditory recognition problem.

Although no single theoretical statement of the feature
extraction process exists, }ecent research has stressed its
importance in auditory perception. As Anderson et al. (1977)
have noted, "Distinctive features are usually viewed as a system
for efficient preprocessing, whereby a noisy stimulus is reduced
to its essential characteristics and decisions are made on these"
(p. 429). In other words, the feature extraction process is

"tuned" to select perceptually important information from the

Bttt
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output of the preliminary analysis stage, and discard information
that 1is likely to be unimportant (Howard & Ballas, 1978). Since
pattern recognition performance ultimately depends on the feature
extraction process, a number of investigators have sought to
specify those acoustic cues that are of primary psychological
importance in the perception of complex acoustic patterns under
various listening conditions.

The object of their investigation, the feature
representation or output of the feature extraction stage, is
obviously not directly observable and therefore must be inferred
using indirect methods. Although a variety of techniques are
available, multidimensional scaling has emerged as a wuseful
method for identifying the underlying psychophysical structure of
complex sounds (Plomp, 1975). Typically, listeners are asked to
provide pairwise dissimilarity judgments on the set of signals of
interest. A specific multidimensional scaling algorithm is then
applied to decompose the resulting subjective proximity matrix
into an n-dimensional metric space in which each signal is
represented as a single point or vector. Although individual
scaling methods vary widely 1in their wunderlying assumptions,
Shepard (1972a) has noted that most are similar in that (1) they
assume that the distances between stimuli in the underlying
feature space are a monotonic function of the corresponding
similarity judgments in the observed data, and (2) they employ an
iterative procedure to obtain the perceptual space which best
fits the observed data. A measure (e.g., "stress"™ in Kruskal,

1964) 1is frequently provided which reflects the degree of
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discordance between the interstimulus distances in the
n-dimensional stimulus space and the observed dissimilarity
judgments.

Providing that a scaling solution with satisfactory stress
exists, it is generally assumed that dimensions of the

psychological stimulus space reflect those features that the

listeners used to compare the stimuli. In interpreting the z

scaling solution, the investigator examines the relation between
the perceptual space and the known physical structure of the
stimuli. The outcome of this comparison can reveal the specific
psychophysical transformations involved in the feature extraction
process. These techniques have been used successfully to
investigate the underlying psychological features involved in the
perception of speech (Klein, Plomp & Pols, 1970; Shepard,
1972b), music-like sounds (Plomp & Stenneken, 1969; Miller &
Carterette, 1975; Grey, 1977), and other complex non-speech
sounds (Cermak & Cornillon, 1976; Howard & Silverman, 1976;
Morgan, Woodhead & Webster, 1976; Howard, 1977).

Once the feature extraction process has transformed the
stimulus into its essential characteristics, the decision process
operates to classify or recognize the pattern. In the ideal
case, the feature representation would unambiguously determine
the true classification of a stimulus. 1In this case the task of
the decision stage would be relatively straightforward. It need
only partition the feature space into regions corresponding to
the discriminable stimulus categories. Unfortunately, it is more

likely the case that the output of the feature extraction process
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is quite noisy and a considerably more complex decision process
is called for. In particular, since the decision stage must
operate in the presence of uncertainty, it can only evaluate the
relative likelihood that a particular feature representation
belongs to each category. Given this information, the decision
processor may select the most likely source (i.e., category) for
an unknown stimulus.

To this point, we have only considered the role of sensory
information (i.e., the output of the feature extraction stage) in
the decision process. As Green and Swets (1966) have pointed out
in their elegant application of statistical decision theory to
auditory detection, other utility or response-bias factors will
also influence the decision process. These factors include the
listener's estimate of the overall 1likelihood or a priori
probability of specific categories as well as his consideration
of the consequences of the decision. Although the decision
process has been extensively investigated in the auditory
detection situation, its role in the <classification of complex
auditory patterns has been neglected.

The overall question addressed in the present paper concerns
the relation between the perceptual features identified in a
multidimensional scaling analysis and the decision stage of the
auditory classification process. In a classification task the
listener is required to distinguish among a specified set of
acoustic patterns. Consequently, one would expect the decision
process to selectively emphasize one or another distinctive

feature, depending on the configuration of stimuli in the

I
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perceptual pattern space. For example, given a set of stimuli
which differ in both pitch and loudness, listeners would likely
use both features to evaluate pairwise similarity. On the other
hand, if the same signals were then grouped into two categories
based on only a single dimension (e.g., high and low pitch), then
listeners 1learning this partition need only consider a single
feature (i.e., pitch) to achieve optimal classification
performance.

The present study 1investigates 1listener classification
performance on a set of sixteen complex acoustic patterns. The
signals consist of a broadband white noise carrier, amplitude
modulated by sawtooth waves of varying frequency and attack.
These signals were selected for investigation because of their
similarity to a broad class of sounds frequently encountered in
passive sonar environments (i.e., propeller -cavitation). In
Experiment 1 a multidimensional scaling analysis was performed on
listeners' pairwise similarity ratings of the entire set of
sixteen sounds. The primary purpose of this experiment was to
obtain a psychological feature representation of the stimuli for
use in the subsequent analyses. In Experiment 2, two groups of
listeners learned to classify each of the sixteen signals into
one of eight categories (two sounds per category). Each group
learned a different category partition. The two eight-category
partitions were selected to require the 1listeners to focus
primarily on one of the two features (i.e., either modulation
frequency or attack). The confusion matrices obtained in this

experiment will be discussed in terms of both the perceptual
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stimulus space identified in Experiment 1, and a probabilistic
model of the listener's decision process. In Experiment 3, the
same listeners were required to classify each member of a large
set of amplitude modulated signals generated by factorially
combining eleven values of attack and fifteen values of
modulation frequency. A probability density function for each of

the eight categories was estimated from listener responses using

potential function or Parzen estimator techniques (e.g., Meisel,
1972). The results of this analysis will be compared with the
findings of Experiment 2. Finally, in Experiment 4,

multidimensional scaling techniques were used to investigate the
"conceptual space" underlying the listeners' memory for each of
the eight categories in both groups.
I. EXPERIMENT 1

The present experiment was designed to determine a precise,
quantitative psychological feature representation of the sixteen
amplitude modulated noise signals. Each listener was required to
rate the pairwise similarity of all 120 possible pairs of the
sixteen sounds. The INDSCAL multidimensional scaling program
(Carroll & Chang, 1970) was used to determine a perceptual space
for the signals. The INDSCAL model assumes that stimulus
similarity is a decreasing linear function of the interstimulus
distance in an underlying stimulus space. Unlike many metric
scaling programs, the INDSCAL analysis produces both an overall
normalized group stimulus space, and a vector of saliency weights
for each listener reflecting the relative importance or salience

of each dimension for that person. The group space reflects
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those common features used by all or most listeners, and the
saliency weights may be thought of as scaling factors to expand
or contract each of the common dimensions for each observer. The
INDSCAL model was used to evaluate feature consistency across
individual listeners.

A. METHOD

1. Participants

Thirty student volunteers (twenty males, ten females) were
paid $9.00 to participate in the experiment. None of the
listeners reported any history of hearing disorders.

2. Apparatus

All experimental events were controlled by a 1laboratory
digitai computer. The sawtooth modulation waveforms were
synthesized by the computer and output on a 12 bit
digital-to-analog converter @5 kHz sampling rate). This
modulation signal was low-pass filtered (Krohn-Hite Model 3550, 2
kHz cutoff) and applied to the modulation input of a
laboratory-constructed transconductance operational amplifier
circuit (RCA CA3084). The carrier input to the operational
amplifier was a 20 Hz - 20 kHz noise with a -3 dB/octave spectrum
(B & K Type 1402 Random Noise Generator). The output gain of the
transconductance operational amplifier circuit was directly
proportional to the amplitude of the modulation signal. Hence,
the circuit output consisted of amplitude modulated noise with an
envelope determined by the modulation waveform characteristics
(to be described below). This output signal was delivered to

listeners over matched Telephonics TDH-49 headphones with
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MX-41/AR cushions. The observers were isolated in a
sound-attenuated booth throughout the experiment.
3. Stimuli

A set of sixteen amplitude modulated (100% modulation) white
noise signals was constructed. 1In each case the signal envelopes
were sawtooth functions varying in frequency and asymmetry. The
modulation frequencies included 4, 5, 6, and 7 Hz, and the
modulation waveform asymmetries included either 20 or 40 msec
attack with gradual decay, or 40 or 20 msec decay with gradual
attack. For example, a 4 Hz signal could have its maximum
amplitude at 20, 40, 210, or 230 m=ec after the start of each
period. An oscilloscope trace of two typical signals is
displayed in Figure 2.

Subjectively, the rapid attack signals have a "hammering"
quality, whereas the gradual attack signals have a "sandpapering"
quality. The signals were presented to the 1listeners at a
comfortable listening level (64 dB SPL).
4, Procedure

Participants were seated individually in the
sound-attenuated booth and heard instructions explaining their
task. They were told that very dissimilar stimuli should be
assigned a rating of "1", whereas very similar stimuli should
receive a rating of "S5". The remaining scale values were to be

used for stimuli of intermediate similarity or dissimilarity.




Figure 2. Oscilloscope trace of two typical amplitude
modulated noise signals. The upper trace portrays a 4 Hz/20 msec

attack signal, the lower a 7 Hz/20 msec decay signal.
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The listeners were told to assign a similarity rating on the
basis of their overall assessment of the stimulus similarity; no
specific instructions were provided regarding the signal
characteristics. Before beginning the experiment each listener
heard a 3-second sample of each sound in order to become familiar
with the entire stimulus set. This preliminary presentation was
repeated as requested by the listeners.

Every trial began with a visual warning stimulus. After a
short delay, a stimulus pair was presented successively in 3-sec
segments with a 1-sec interstimulus interval.l After the stimuli
were presented, the 1listener indicated the rated similarity by
pressing one of five 1labeled response keys. Two seconds
following the listener's response the visual warning occurred for
the next stimulus pair. This procedure was repeated until each
of the 120 possible pairs was presented twice, counterbalanced
for order of presentation within trials. Signal pairs were
presented in a random order. The above procedure was repeated on
three successive days for each of the thirty listeners. In all,
180 similarity judgments were obtained for each of the possible
stimulus pairs.

B. RESULTS AND DISCUSSION

A 16 by 16 off-diagonal asymmetric proximity matrix was
determined for each liséener and session by collapsing across the
two similarity ratings for each signal pair within each session.
The data from each of the three sessions for all thirty listeners
were analyzed using the INDSCAL multidimensional scaling program.

The resulting two dimensional scaling solution accounted for

e ——— . T T
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approximately 69% of the overall variability. The normalized
stimulus space for this solution 1is presented graphically in
Figure 3.

It is obvious from the geometric configuration of the stimuli
that the two psychological dimensions or features correspond to
the attack and modulation frequency parameters. In the following
discussion the perceptual feature corresponding to attacle will be
referred to as signal Quality, and the feature corresponding to
modulation frequency will be referred to as signal Tempo.2

A closer examination of Figure 3 suggests that Tempo bears a
direct relation to modulation frequency, at least within the
range of frequencies investigated. Further analysis
substantiated this conclusion with 97.6% of the variability along
this dimension being attributable to a 1linear function of
modulation frequency (T = .216M - 1.180, where T designates
Tempo, and M designates modulation frequency). In contrast,
stimulus Quality appears to depend on both attack and modulation
frequency since the stimuli tend to become somewhat closer
together along this dimension as modulation frequency increases.
Since the absolute duration of the attack/decay was held constant
across modulation frequency, the proportion of each period spent
in attack covaried with modulation frequency--percent attack
increased with frequency for the rapid attack/gradual decay

signals, and decreased with frequency for the gradual
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attack/rapid decay signals. It appears, therefore, that the
relative amount of each period spent in attack, rather than the
absolute duration of the attack is of primary psychological
importance. This observation was confirmed statistically since
signal Quality correlated more highly with the percent attack
than it did with absolute attack duration (r(15) = .994 and
r(15) = .935, respectively). Overall, 98.9% of the variance
along the Quality dimension can be attributed to a 1linear
function of percent attack (Q = .007A - .364, where Q refers to
stimulus quality and A refers to percent attack).

As discussed above, a second outcome of the INDSCAL analysis
is a weight vector for each individual listener that indicates
the relative importance or salience of the two perceptual
features. 1In the present data, 22 of the 30 listeners had larger
saliency weights for the stimulus Quality dimension than for the
stimulus Tempo dimension. This indicates that signal Quality was
more important for these 1listeners than was signal Tempo.
Overall, the Quality dimension accounted for considerably more of
the variability in the inner-product matrix estimated from the
judgment data (approximately U46%) than did the Tempo dimension
(approximately 23%). This suggests that the "hammering" and
"sandpapering" qualities of the stimuli were considerably more
important 1in evaluating pairwise similarity than was the
repetition rate.

II. EXPERIMENT 2
A. INTRODUCTION

The results of Experiment 1 have enabled us to characterize
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precisely the perceptual feature representation of the sixteen
stimuli. However, as indicated in the introduction, a question
of primary interest concerns the relation between these features
and subsequent processing stages in auditory pattern recognition.
Specifically, we ask how the decision stage makes use of this
information in determining a classification for the sighal. In
Experiment 2 we 1investigated this question by requiring two
groups of listeners to learn different eight-category
classifications of the sixteen stimuli. One of the two groups
was required to distinguish two levels of Quality and four levels
of Tempo in making their classification, whereas the other group
discriminated two levels of Tempo and four 1levels of Quality.
The specific question of interest concerns the possible relation
between the classification partition 1learned and the feature
information used by the decision process.

Clearly, the above empirical question may only be addressed
in cases where a specific decision process has been specified.
The following section outlines a simple probabilistic model of
the decision stage. The model represents a generalization of
previously proposed decision models for auditory signal detection
(Green & Swets, 1966), pitch perception (Goldstein, 1973; Gerson
% Goldstein, 1978), and visual recognition processes (Getty,
Swets, Swets, & Green, in press).

As discussed in the general introduction, any theoretical
treatment of the decision process must consider both sensory
factors--resulting from sensory mechanisms--and utility or bias

factors determined by nonsensory subjective task variables.
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Although the following theory considers both factors, the primary
focus of the present development is on the role of sensory
factors in auditory recognition. In Experiment 2, variables
traditionally thought to influence response bias (e.g., a priori
category probability and response payoff) were held constant to
minimize the importance of decision bias.

As indicated above, we assume that an initial preliminary
analysis 1is performed on the incoming acoustic waveform to
produce a vector of receptor measurements. This high-dimensional
measurement vector, m, 1is then transformed by an unspecified
feature extraction processor, F, into a two-dimensional feature
vector, f, F(m) = f = (fy, fg). In the present context, we
assume that the feature vector consists of two elements, Tempo
and Quality. We assume further that moment-to-moment
fluctuations or noise occurs in the outcome of the feature
extraction process so that any specific presentation of a
particular signal can result in any of a range of values for both
Tempo and Quality. We assume that the feature values extracted
for a particular sound are random variables sampled from Gaussian
distributions with means equal to the "true" feature value, and
standard deviations of oy and og for the Tempo and Quality
dimensions, respectively.

After the Stimulus has been analyzed into 1its feature
vector, another transformation 1is applied by the decision
processor to determine its classification. That is, D(f) = c(”,
where c(” indicates that the signal has been assigned to category

i. We assume that the decision processor operates by comparing




Auditory feature extraction Page 18

the feature representation of the unknown signal, f, to a
prototype or "ideal" representation for each of the eight
categories. The 1listener's decision is then based on the
likelihood that the signal occurred given each of the eight

3

categories. This, in turn, depends on the unknown signal's

proximity to the prototype (i.e., the centroid) of each category
in the perceptual feature space. In other words, the decision
processor estimates the probability that the unknown signpl
occurred given each category, Pr(f Ic“)), ST [ e R e

Since uncertainty exists in the feature extraction process,
the decision processor must estimate the precise location of each
category prototype in the feature space. Further, since the
features extracted for a particular sound are assumed to be
orthogonal Gaussian random variables, the likelihood function for
each category over the feature space is bivariate Gaussian with
zero covariance. The likelihood function will have an identical
shape for each of the categories, and will be centered at the
category prototype. Therefore, the likelihood that a particular

signal occurred given category c“) is determined by

1

Pr(t]|cl))s ————
r(t| 21r|\_l|1/2

where E“) is the prototype vector for category c“) obtained by
averaging the feature values across the two members of the

category, g(” = (zq) + g(;))/Z . g(:), g};) € c(”, and V is

the covariance matrix. Since 1in the present context the two

features are assumed to be orthogonal, this matrix consists of

variances for the Tempo and Quality features on the main diagonal
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and zero elements elsewhere. |!|szdenotes the square root of
the determinant of V, in this case oy 0g, and !'l indicates the
inverse of V.

An important assumption of the present model 1is that the
listener's uncertainty regarding the two perceptual features can
be reduced with experience in the classification task. In
other words, 1listeners can "fine-tune" their feature extraction
process to reduce the uncertainty or variability associated with
a particular feature. Obviously this decrease occurs with a
lower bound being determined by the absolute discriminability of
each feature. More importantly, we assume that this reduction in
variability with experience is under listener control, and that
the listener can selectively adjust his or her variability on the
two dimensions independently. 1In learning to classify a set of
stimuli, observers can choose to focus their attention on one or
another dimension and thereby reduce their wuncertainty with
respect to that dimension.

It should be clear that differences in the variance
parameters influence the relative importance of the two features
in the decision process, and hence determine classification
performance. The lower the relative variance along a particular
dimension in the feature space, the greater the effect of that
feature 1in determining signal likelihooa.4 Theéefoée, oﬁe would
expect the standard deviation parameters determined by the
listener's selective attentional mechanisms to be based on the
classification requirements of the task. Specifically, in the

present experiment one would expect listeners in the two groups
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to differentially emphasize signal Tempo and Quality depending on
the category partition they are required to learn.

The results of the present <classification experiment are
examined in terms of the above model. 1In particular, the model
is fit to individual listener confusion matrices by estimating
the two variance parameters 1in Equation 1. The confusion
matrices provide an estimate of the subjective a posteriori
probabilities, i.e., the probability of category () given a
particular stimulus, Pr(c“)l f). These estimated a posteriori
probabilities can be compared to theoretical a posteriori

probabilities derived using Bayes' rule

3 Pr(t| ¢y pr(eli))
Pr(cli) 1)- ; ;
fﬁ Pr(t | <)) Pe(eli))
j=1

(2]

where, Pr(c(”) denotes the a priori probability of category c(”,
which in the present case is assumed to be constant across
categories (Pr(cfD) = 1/8 for all i) and Pelf le®) is obtained
from Equation 1.5 The two standard deviations in Equation 1, oy
and 0q are then estimated by minimizing the sum of squared
deviations between the theoretical and estimated probabilities
using a standard gradient technique.

B. METHOD

1. Participants

Eight experimentally naive student volunteers were paid to
participate in the experiment. Four (2 males, 2 females) served
in the Tempo group, and four (2 males, 2 females) served in the

Quality group. None of the listeners reported any history of
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hearing disorders.
2. Apparatus

Same as Experiment 1.
3. Stimuli

Two eight-category partitions of the sixteen signals used in
Experiment 1 were formed. One partition, presented to the Tempo
group, emphasized stimulus Tempo by requiring 1listeners to
discriminate four levels of Tempo and two of Quality. The second
partition was presented to the Quality group and required four
levels of Quality diserimination, and two of Tempo
discrimination. Table 1 indicates the assignment of the sixteen

signals to the eight categories for both groups.

4., Procedure

Listeners were tested 1individually in a sound-attenuated
booth. They were told that their task was to learn to classify
two sounds into each of eight categories, and that every sound
they heard would correctly belong in only one category. VWNo
specific instructions were provided regarding how signal Tempo
and Quality were to be wused. Each trial began with a visual
warning followed by a 3-sec presentation of one of the sixteen
sounds. After the signal terminated, the listener depressed one
of eight response keys (labeled 1-8) to indicate the category
decision. Feedback was provided after each trial.

All listeners received 80 trials in each of nine sessions

el



Table 1.

Perceptual signal coordinates and category assignments for both
groups, Experiment 2.

SIGNAL

i

W 00 N O o & W N

A el ey Sl e b
O O P W N = O

COORDINATES CATEGORY
TEMPO QUALITY TEMPO GROUP QUALITY GROUP
-.338 -.286 1 1
-.366 -.243 1 2
-.336 +271 2 3
=. 325 .282 2 4
-.087 -.277 3 1
-.109 -.249 3 2
-.144 «257 4 3
-.145 .263 4 4

.190 -.285 5 5
192 -.216 5 6
127 .229 6 7
.142 .250 6 8
+318 -.259 7 5
.328 -.170 7 6
.274 .206 8 7
.284 .227 8 8
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over three consecutive days for a total of 720 trials. Each of
the sixteen signals was presented -equally often in a random
order.

€. RESULTS

1. Overall performance analysis

Overall performance was assessed by computing mean percent
correct on each of the sixteen stimuli for each listener,
collapsed across the three sessions within each day. The results
of this analysis, further collapsed across stimuli, are presented
in Figure 4 for the two groups. Several aspects of these data
are of interest.

Insert Figure 4 here
First, in terms of overall responding, both groups are well above
the chance level of 12.5%. By day 3, the very worst listener, ML
in the Quality group, was responding at approximately four times
the rate expected by chance alone.

Second, both the Tempo and Quality groups tended ¢to show
higher performance on days 2 and 3 than on day 1. Mean percent
correct collapsed across the four listeners was 55, 75 and 75% on
days 1, 2, and 3, respectively for the Tempo group, and 33, 47
and 51% on days 1, 2, and 3, respectively for the Quality group.
This finding was confirmed statistically by a significant main
effect of Day in a two-way (Group by Day) analysis of variance

with repeated measures on the Day factor, F(2,12)

35.94,
p < .001.
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Figure 4, Mean percent correct overall by day and listener,

Experiment 2.
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Third, the Tempo group performed at a considerably higher
level than did the Quality group (mean performance was 68 and 44%
for the two groups, respectively). This observation was also
supported statistically in the above analysis, F(1,6) = 15.55,
p < .01. This finding indicates that the category partition
learned by the Quality group was considerably more difficult than
that learned by the Tempo group.

Another aspect of the performance data of potential interest
is ﬁhe percent correct observed for each of the sixteen stimuli.
Table 2 displays mean day 3 performance data for each signal and

listener in the experiment.

Examination of this table reveals that by day 3, all of the
listeners in the Tempo group, and two of the listeners in the
Quality group were classifying all stimuli at an above=-chance
level. The two exceptions to this, listeners PH and TK in the
Quality group, classified three and two of the sixteen stimuli,
respectively, at a chance or below-chance level. The only
consistent trend observed across all listeners is an "anchoring"
effect noted for signals occupying corner positions in the
stimulus space. For the Tempo group, the four signals having
extreme values on both features (i.e., signals 1, 4, 13 and 16)
were more frequently correct than were the four signals having
extreme values on neither feature (i.e., signals §, T, 10 and

11). Performance on the "corner" signals was 82%, whereas

e —
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performance on the "inner" signals was 70%, t(15) = 3.68,
p < .005. A similar, but statistically nonsignificant, trend was
observed for the Quality group (54 and 43% for the corner and
inner stimuli, respectively), ¢£(15) = 1.52, p > .05. This
finding 1is consistent with an end-anchoring effect noted in a
variety of learning contexts.

2. Confusion matrix analysis

Although the overall performance data reported above are
clearly 1important, a detailed analysis of the kinds of errors
that listeners make is of primary importance in the present
paper. A 16 by 8 (signal by category) confusion matrix was
determined for each listener on each day by collapsing across the
three sessions within each day. These 24 matrices (eight
listeners by three days) formed the basis of all subsequent
analyses.

Equations 1 and 2 were used to estimate a theoretical
confusion matrix for each of the observed matrices. The
theoretical matrices were determined by selecting standard
deviation parameters (31 and 30 , Equation 1) that minimized the
discrepancy between the theoretical and observed matrices 1in a
least squares sense. A standard, quasi-Newton gradient algorithm
was used to perform the fits (subroutine ZXMIN in the IMSL
statistical 1library). Fits were obtained from several starting
points in the (37 ,30 ) parameter space for randomly selected
matrices as a precaution against unstable solutions resulting
from 1local minima. Several outcomes of this analysis are

discussed in detail below.
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First, the model provided a reasonable fit to the observed
confusion matrices under most conditions. Pearson product-moment
correlation coefficients were computed between the theoretical
and observed data for each of the matrices as a measure of
goodness-of-fit. The results of this analysis are displayed in

Table 3.

R

The theoretical matrix accounted for between 61 and 96% of the
variance 1in the observed data in all but one case (listener ML,
day 1, 52 = 40%). On the average, the model accounted for 82% of
the wvariability for the Tempo group and 69% of the variability
for the Quality group (72% if ML, day 1 is excluded). It should
be noted that although many confusions never occur (i.e., some
cells of the matrix are almost always zero), the present fits
were obtained with only two free parameters and 128 estimated
points. Sample theoretical and observed confusion matrices are

presented for four representative day 3 cases in Table 4.

These data represent the best and worst fitting conditions for
the Tempo (listeners MG and PC, respectively) and Quality
(listeners MC and PH, respectively) groups.

Second, the standard deviation parameters estimated from the

present data, 97 and 30 , are consistent with the assumption




‘ Table 3. Pearson product-moment correlation coefficients computed be-
r tween observed confusion matrices and the best-fitting
theoretical matrices.

TEMPO GROUP day 1 day 2 day 3
MM .87 .97 .96
MG .83 .98 .98
PC .80 .92 283
MK .87 .88 .93

QUALITY GROUP

PH .78 .80 .84
TK .81 .86 .88
ML .63 <19 .89

MC .78 93 .95
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that, with experience, listeners can selectively and
independently adjust their wuncertainty on the two perceptual
features. The estimated parameters are displayed in Table 5 for
all conditions.

It is evident from this table that, in general, uncertainty
decreases over days in the experiment. Since the parameters are
estimated by fitting distributions to observed confusion
matrices, it 1is not surprising that uncertainty decreases as
performance improves. What is more significant is the
observation that the two parameters are dramatically different
for the two groups. In particular, for all 1listeners in the
Tempo group, 37 was substantially smaller than 30 (overall
means of .101 and .227, respectively). In contrast, the Quality
group showed 1less Quality wuncertainty than Tempo uncertainty
(overall means of .110 and .290, respectively), and by day 3 all
listeners in the Quality group had a lower 30 than GT . Since
the magnitude of these parameters is inversely related to the
relative importance of their corresponding features in the
decision process, this finding indicates that signal Tempo was
given a greater emphasis by the Tempo group, whereas signal
Quality was given greater emphasis by the Quality group.

Of further interest is the finding ¢that on day 1 all
listeners in the Tempo group were emphasizing Tempo relative to

Quality, while oni, two of the listeners in the Quality group (PH




Table 5. Estimated standard deviation parameters for both features and
all conditions, Experiment 2.

TEMPO GROUP day 1 day 2 day 3

A A A A A A

oT 09 oT 09 oT 0Q
MM .108 .283 .073 .178 .076 .208
MG .107 .446 .064 .179 .066 .192
PC .130 .649 112 .276 137 .324
MK 134 275 .155 .217 .063 .248
MEAN .120 .413 101 .213 .083 .243

QUALITY GROUP

PH 373 .208 .246 .070 .061 .054
TK .244 208 .220 .033 .205 .034
ML 276 .424 221 .262 217 .074
MC 235 299 .208 .044 .220 .062

MEAN .282 .285 .224 .012 .176 .056
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and TK) revealed an analogous emphasis on signal Quality. The
other listeners in this group (ML and MC) emphasized Tempo early
in the experiment, and for one of these listeners, ML, this trend
did not reverse until the last day of the experiment.
D. DISCUSSION

It is clear from these results that the decision model
outlined above provides a reasonable description of how feature
information is used by the decision processor in an auditory
classification task. The findings are also clear in supporting
the specific assumption that 1listeners can selectively and
independently ad just the relative importance of the two
perceptual features. However, despite this consistency, two
major 'questions remain wunanswered. First, at present it is
unclear how the uncertainty parameters estimated from the data
relate to the listener's sensitivity to the attack and modulation
frequency cues. What do the values obtained for these parameters
mean in terms of listener sensitivity? Second, although it is
intuitively reasonable to argue that listeners in the Tempo group
should stress Tempo relative to Quality, and that listeners in
the Quality group should stress Quality relative to Tempo, it is
not clear why they select the specific values observed. What
criterion does the listener use to determine the importance of
one feature relative to another? Both issues are considered
further below.

Consider the relation between the specific value of each
standard deviation parameter and 1listener sensitivity to the

corresponding feature. By determining the separation between

PN S——" ——
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individual category prototypes (i.e., centroids) along each of
the two dimensions separately, we may examine the relation
between the 37 and 30 parameters and performance for the two
groups. In other words, the standard deviation parameters give
us an 1idea of the extent of overlap between adjacent likelihood
functions in the perceptual space.

Figure 5 displays a hypothetical perceptual space for the
Tempo and Quality features showing representative (i.e., median)
intercategory distances and mean day 3 one-standard-deviation

contours for the two groups.

First, it should be noted that the typical intercategory
separation along the Tempo dimension is considerably smaller for
the Tempo group than for the Quality group (.220 -vs .457). In
contrast, the median separation along the Quality dimension is
substantially greater for the Tempo group than for the Quality
group (.506 vs .058). Second, it is also obvious from the figure
that the standard deviation parameters for the two groups
parallel the median separations. The smallest mean standard
deviations correspond to the smallest intercategory distances.
Although it appears that listeners in the Tempo group were able
to adjust their standard deviations along the two dimensions to
produce relatively 1little overlap in the likelihood functions,
considerable overlap exists along the Quality dimension for the

Quality group. It seems that the listeners were not able to




TEMPO GROUP
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QUALITY
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Figure 5. Hypothetical perceptual space for the Tempo and
Quality features showing median inter-category distances. The
ellipses represent approximate mean one-standard-deviation

contours.
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adequately discriminate the relatively small differences in
percent attack required to achieve a high level of classification
performance on this partition. Furthermore, since our earlier
consideration of these parameters (cf. Table 5) revealed that 36
had largely stabilized by day 2 for the Quality group, these
listeners may have approached their limit of discriminability
along this dimension. 1In physical units (percent attack), the
day 3 30 for these listeners was approuximately 8%.

When the corresponding data are considered for the Tempo
group, we note that GT seems to level off at approximately .39
Hz. Other findings obtained in our laboratory suggest that this
value may approach the jnd for amplitude modulation in this
frequency range. Although the other study investigated
modulation frequency sensitivity with a 400 Hz sawtooth carrier
rather than noise, the results revealed that listeners could
reliably discriminate .40 Hz differences (80% correct) in the 4 -
7 Hz modulation range (Burgy, 1978). These findings suggest that
in the course of the present experiment listeners optimized their
sensitivity to the more important of the two features. Whether
or not they could maximize their sensitivity to both features
with additional practice is an issue for further research.

A second major question of interest concerns the specific
strategy that listeners employ to determine the relative emphasis
to place on the two features. 1In the above analysis we saw that
listeners in the two groups appear to focus on the feature
emphasized by the category partition that they were required to

learn. At first, one may wonder why the listeners don't simply
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perform a similar "fine tuning" on both features. While this
strategy would obviously 1lead to optimal performance, the
observation that listeners don't do this, at least over the first
three days in the task, suggests that it may be impossible for
them to do so. In short, we have ignored any "cost" factors
associated with the feature tuning process. The selective
attentional processes hypothesized to underlie the tuning process
may 1involve considerable effort, extensive practice or both. 1In
other words, it appears that the listeners are constrained in the
total amount of "fine tuning" that they can accomplish at any
point in the task. As their familiarity with the stimuli and
task increases, this overall constraint 1is reduced. This
interpretation is consistent with recent 1limited-capacity views
of human attentional processes (e.g., Kahneman, 1973).

With the above considerations in mind, our question becomes
slightly different. Given that the listeners are constrained in
the total amount of feature tuning that they can perform, how do
they divide these resources between the two features? Although
the decision model outlined above does not propose a specific
decision criterion, other probabilistic decision models (e.g.,
Gerson % Goldstein, 1978) have suggested that 1listeners attempt
to maximize the overall probability correct. Since no biasing
factors were manipulated in the present study, it is possible
that our 1listeners adopted a similar strategy to adjust the or
and o0q parameters. To investigate this possibility, an emphasis
measure was determined for each feature in each condition. Since

the estimated standard deviations are inversely related to
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relative emphasis, emphasis measures, ey and eq » were obtained
from 1/37 and 1/90, respectively. The theoretically optimal
partition of overall emphasis across the two features was then
determined for each condition in the experiment. In computing
these values, the overall emphasis was estimated from the sum of
er and eq. This value was taken to reflect the overall
attentional effort expended by the listener at a particular point
in the experiment. This overall value was then apportioned
between the two features so as to maximize the average
probability correct. In other words, the theoretically optimal
partition of the overall emphasis on the Tempo and Quality
components was determined. Table 6 displays the normalized

observed and optimal emphasis parameters.

A comparison of the optimal and obtained values reveals a
relatively close correspondence for the Tempo group, and a
relatively poor overall correspondence for the Quality group.
Pearson product-moment correlations between the optimal and
obtained data confirm this observation, r(23) = .93, r(23) = .52
for the Tempo and Quality groups, respectively. Nonetheless, by
day 3 the obtained emphasis parameters are well approximated by
the optimal values for both groups, r(7) = .98, r(7) = .96 for
the Tempo and Quality groups, respectively. This suggests that
with experience, 1listeners learning the more difficult category

partition (Quality group) became more 1likely to adopt an




Table 6. Normalized relative emphasis parameters for the two features
by listener and day. Theoretically optimal values are pre-
sented in parentheses adjacent to the corresponding obtained
values.

TEMPQ GROUP
DAY 1 DAY 2 DAY 3
TEMPO QUALITY TEMPO QUALITY TEMPO QUALITY
MM 2 [64) <28 (.36) - 7% (.70} ~.294.30) .73 (.69) .27-(.31)
MG .81 (.62) .19 (.38) .74 (.71) .26 (.29) .74 (.71) .26 (.29)
PC .83.(.58) .7 (.42) .7V (.64) .29 {.36) - 70 (.60) .30 (.40)
MK 67 (.61) -.33 (.39) .68 (.61) .42 (.39) .80 (.71) .207%(.29)

QUALITY GROUP
DAY 1 DAY 2 DAY 3
TEMPO QUALITY TEMPO QUALITY TEMPO QUALITY

PH .36 (.49) .64 (.51) .22 (.50) .78 (.50) .47 (.45) .53 (.55)
TK .46 (.49) .54 (.51) .13 (.43) .87 (.57) .14 (.22) .86 (.78)
ML .61 (.50) .39 (.50) .54 (.27) .46 (.73) .25 (.22) .75 (.78)
MC .56 (.22) .44 (.78) .18 (.44) .82 (.56) .22 (.37) .78 (.63)
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optimum-processor strategy.

These findings suggest a specific decision rule for the
probabilistic decision model outlined above. Since listeners
appear to allocate their fine tuning processes across the two
features to maximize their overall probability correct, we assume
that the decision processor places an unknown stimulus into the
category having the highest a posteriori probability. Formally,

D(f) = ¢ if pr(e@ £) > pPr(eW)|f) for all i # j.
This interpretation is consistent with Goldstein's conclusion
that 1listeners respond as optimum processors in determining the
periodicity pitch of complex tones (Goldstein, 1973), and wiﬁh a
similar <classification model and findings reported by Getty
(Getty, Swets, Swets, % Green, in press).
IITI. EXPERIMENTS 3 and 4
A. INTRODUCTION

The results of Experiment 2 are consistent with the simple
decision model outlined above. However, the decision model is
based on a number of assumptions that require further empirical
validation. Experiments 3 and 4 are designed to obtain further
information relevant to these assumptions. Specifically, three
assumptions of the model are considered: (1) that covariance is
zero, i.e., it is assumed that the Tempo and Quality features are
orthogonal, (2) that the category 1likelihood functions are
Gaussian, and (3) that categories are represented psychologically
by prototypes derived from the central tendency (centroids) of
their members.

In Experiment 3 listeners were asked to classify each of 165
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amplitude modulated noise patterns into one of the eight
categories learned 1in Experiment 2. The test signals were
synthesized to form a fine "grid" over the perceptual feature
space (fifteen levels of modulation frequency and eleven levels
of percent attack were combined factorially). Since the test
signals had minimal overlap with the sixteen training signals
(only two signals occurred in both sets), feedback was not
provided. The outcome of this procedure was a set of 1labeled
samples for each of the eight categories. Potential function
techniques were applied to conStruct a probability density
function from the 1labeled samples for each category (e.g.,
Murthy, 1965).

The method estimates likelihood functions by averaging a set
of potential or possible functions across the labeled samples for
each category. Given some point in the feature space, X, the
likelihood that it belongs to category c“), Pr(x |c“)), is

estimated by

Prix | ey = (1m) ‘2‘,7(5,5‘})),
§

where {3(1'), g(;), o b g("‘)} are the test signals that belong
to category c")(i.e., that the listeners classified into this
category), and 7v(x,s) is a potential f‘unction.6 In the present
experiment, Gaussian potential functions were used to estimate
the likelihood function for each category. While it is obvious
that the selection of a particular potential function will

influence the shape of the estimated likelihood function when the
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number of labeled samples is relatively small, it should be noted
that when certain conditions are met (ef. Meisel, 1972), the
estimation procedure may be wused to approximate any density
function, given a sufficiently 1large number of samples. In
particular, Gaussian potential functions will not always lead to
Gaussian 1likelihood functions. For example, the 1likelihood
functions could be multimodal or, if the labeled samples for a
particular category are broadly distributed in the feature space,
the resulting function may be flatter than a Gaussian. The
parameters of the likelihood functions estimated in this manner
will be examined in terms of the three assumptions descfibed
above.

In Experiment 4, listeners were asked to rate the pairwise
similarity of all possible pairs of the eight category labels
learned in Experiment 2--no sounds were presented. These
subjective proximity data were decomposed into a two-dimensional
"conceptual" feature space for the eight categories. The
location of each category in this space will be compared with the
category centroids to evaluate the third theoretical assumption.
B METHOD

1. Participants

The eight listeners who participated in the Experiment 2
served successively in Experiments 3 and 4.
2. Apparatus

Same as Experiments 1 and 2 with the addition of a video

monitor for presenting the category labels in Experiment 4.




Auditory feature extraction Page 46

3. Stimuli

A set of 165 amplitude modulated noise signals was generated
by combining factorially fifteen levels of amplitude modulation
(305, 0, 4,25, 4050, BoT5, S, 6,75, 7.0, T.5 Hz)., ‘and ‘eleven
levels of 'attack (0, 10, 20, .., 80, 90, 100%). The noise
carrier was as described in Experiment 1, and the modulation
signals were sawtooth waveforms with the above characteristics.
For Experiment U4, the stimuli were pairs of visually presented
digits corresponding to the category labels learned in Experiment
2.
4. Procedure

Experiment 3 was conducted on two successive days
immediately following the completion of Experiment 2. Each day
consisted of two sessions. The first session was simply an
extension of Experiment 2 where 1listeners classified sixteen
sounds into eight categories with feedback. This session was
included ¢to insure that the listeners remembered the category
partition they had 1learned in Experiment 2. In the second
session, the listeners were told that they would hear samples of
a large set of new sounds similar to those they had classified
before, and that their task was to select the best category for
each of these new sounds. Each of the 165 sounds was presented
for 3-sec in a random order, and 1listeners indicated their
response as in Experiment 2.

Experiment 4 was conducted on the last day of testing (i.e.,
the fifth day). Listeners were told that we wanted to know what
they remembered about the eight categories they had learned.

o — -
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They were asked to rate the similarity of each pair of signal
categories. No specific instructions were provided regarding the
criteria they should use in making their judgments; however, it
was emphasized that their similarity ratings should be based on
the sound of the categories.
C. RESULTS AND DISCUSSION

Since every listener classified each of the 165 sounds only
twice, the data were analyzed by group to increase the number of
category judgments for each signal. Group data were analyzed to
determine if a modal category existed for each sound (i.e., a
category given in at least three of the eight judgments). A
single mode existed for 137 and 134 of the sounds for listeners
in the Tempo and Quality groups, respectively. Column 2 of Table
7 1indicates the number of signals included in each of the eight

categoriass by this analysis.

B

A likelihood function was then estimated from these 1labeled
samples for each category using the potential function technique
outlined above. A covariance term was computed for each category
to evaluate the orthogonality assumption of the decision model.
These data are presented in column 3 of Table 7. The results are
clear in indicating that for the stimuli investigated in the
present study, the assumption of éeature independence is
reasonable. The mean covariance was -,003 and -.006 for the

Tempo and Quality groups, respectively, at 1least an order of
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Table 7.

Summary of data from Experiment 3 (columns 1-7) and 4 (columns
indicates the num-

8, 9) by stimulus category and group.

ber of modal §t1mu11 in each category; Cov. the estimated

and r the proportion of variance in the esti-
ma ted 11ke11hood functions that can be accounted for by a
Gaussian for the Tempo and Quality dimensions, respectively;
Mt and Mgy represent the coordinates for the category centroids
in a normalized space estimated from Experiment 3; Cy and C
are the normalized category centroids estimated in Experiment

covariance;

4.

No.

TEMPO GROUP

CATEGORY

0 NOVO & W N —~

No.

8
10
12
34
17
16
21
19

QUALITY GROUP

CATEGORY

0 N OO & W N —

No.

6
16

9
22
19
13
33
16

Cov. £$
.022  .982
-.001 .996
-.002 .960
-.037 .970
.081  .947
.000 .994
.026 .966
-.082 .988
Cov. g$
-.029 .982
-.005 .980
.008 .976
.004 .968
-.003 .889
-.010 .992
.032 .986

-.047 .990

.958
714
.988
.992
.996
.990
.986
.992

-3

&

.990
.945
.945
.978
.998
.902
.99
.980

.95
.93
79
.06
.03
.24
.07
.34

A OV OV OV AW NN

.07
3.70
3.52
3.54
5.39
5.99
5.08
6.20

3.07
.42

.38

.02

-.39
«51
2.46
2.64
.20
.40
2.05
3.00

.545
.428
.231
.114
.264
.275
.442
.336

.145
.012
.541
.482
.384
.524
134
115

.379
.347
.397
.345
.367
.348
.263
. 367

<
P )

.422
. 192
.216
.249
.164
.439
.472
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magnitude smaller than the variance on either dimension.

A second question of some interest concerns the shape of the
estimated 1likelihood functions. The Gaussian assumption of the
decision model was examined by determining the proportion of
variance in the likelihood function for each category that can be
accounted for by a Gaussian distribution. Gaussian functions
were fit to the estimated likelihood functions for each category
and feature using a gradient technique with a 1least squares
criterion. Pearson product-moment correlations were then
computed between the empirically estimated 'and best-fitting
Gaussian functions. The estimated proportion of total variance
accounted for by the Gaussian (i.e., 52) is indicated in columns
4 and 5 of Table 7. It is clear from these data that the
estimated likelihood functions for each category are
approximately bivariate Gaussian. Although this finding 1is
consistent with the assumptions of the present model, it must be
interpreted with caution. Since a relatively small number of
labeled samples were used to estimate the 1likelihood functions,
the Parzen estimation procedure may not have converged to the
true density function. Nonetheless, the findings are not
inconsistent with our theoretical assumptions, and the potential
function method may prove useful in future research.

Finally, the third assumption of our decision model--that
each category 1is represented psychologically as the central
tendency of its two members in the perceptual space--may be
evaluated in terms of ¢two findings. First, the means of the

Gaussian likelihood functions obtained in the potential function
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analysis provide an estimate of the location of each category in
the perceptual space. Second, the coordinates revealed for each
category in the conceptual space determined for the similarity
data of Experiment 4 provide a second, independent estimate of
these locations.

Consider the first estimate. Category coordinates (in a
normalized space) obtained from the potential function analysis
are presented for the Tempo and Quality features in columns 5 and
7 of Table 7. These coordinates correspond closely to the
centroids computed from the perceptual space of Experiment 1,
r(15) = .96 for both dimensions.

The second estimate was obtained from 3 multidimensional
scaling analysis of the subjective proximity data of Experiment
4. The 8 by 8 off-diagonal similarity matrix for each listener
was submitted ¢to an INDSCAL metric scaling analysis. Separate
analyses were performed for the ¢two groups. In both cases,
listener ratings were well approximated by inter-stimulus
distances in a two-dimensional conceptual space (the
two-dimensional solution accounted for approximately 82 and 90%
of the variance for the Tempo and Quality groups, respectively).
Furthermore, the category coordinates revealed in this analysis
(columns 8 and 9 of Table 7) correspond reasonably well to the
category centroids, r(15) = .92 and r(15) = .96 for Tempo and
Quality, respectively. These data clearly indicate that the
prototype assumption is reasonable in the present experiment.
Additional research would obviously be necessary to evaluate the

assumption for the general case.
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IV. GENERAL DISCUSSION

The primary purpose of the present study was to examine the
relation between the feature extraction and decision stages in
the classification of complex acoustic patterns. Several
conclusions were indicated by our -findings. First, the
multidimensional scaling analysis of sixteen amplitude modulated
noise signals presented in Experiment 1 revealed two perceptual
features: Tempo--corresponding to the signal modulation
frequency, and Quality--corresponding to signal attack. The
results suggested that perceptual differences in signal Quality
were more closely related to the percent attack (i.e., the
proportion of each period spent in attack) than to the absolute
duration of the attack. In other words, constant physical
differences in attack become smaller perceptually as the
modulation rate increases. This interpretation parallels Warren
and Ackroff's (1976) finding that listeners are limited in their
ability to resolve brief-duration (less than 200 msec) individual
components of repeating auditory patterns. Although overall, the
results of Experiment 1 were not surprising, considering the
highly structured test stimuli, the analysis did provide a
precise quantitative characterization of the underlying feature
space.

Second, the decision model outlined above was shown to
provide a reasonable fit to the classification data of Experiment
2. The model assumes that the decision process operates on the
output of the feature extraction stage. Since the feature

extraction process is assumed to be noisy, the decision processor
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must operate in the presence of uncertainty. In the model, this
uncertainty is represented by bivariate-Gaussian likelihood
functions centered at the centroid for each category in the
perceptual space. The decision processor simply compares the
probability of each category given a particular stimulus
(Equation 2) to determine its <classification. An important
assumption of the model 1is that 1listeners can perform a
fine-tuning of the feature extraction stage to selectively
increase the 1importance of particular features in the decision
process. In the model, the effect of the tuning process is
represented by a decrease in the variability of the likelihood
functions. Selective tuning involves the reduction of
variability along one dimension relative to another.

Both overall and selective feature tuning were observed in
the present experiment. As listeners gained experience in the
task, variability on both features decreased. In the model, this
overall tuning accompanies the learning process where listeners
reduce their overall uncertainty about the two signal parameters.
As learning progresses, the 1listener observes that the two
features are not equally important in discriminating among the
eight categories. At this point selective tuning occurs to
reduce the variability of the more important feature relative to
the less important one.

These results are consistent with a similar attentional
phenomenon observed by Watson and his associates (Watson, Kelly,
& Wroton, 1976) 1in the discrimination of word-length tonal

patterns. Each pattern consisted of a sequence of ten individual
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40-msec tones. Watson et al. (1976) noted that the 1listeners'
ability to resolve frequency differences in individual components
is greatly improved when they know which component is 1likely to
differ. In fact, under conditions of minimal uncertainty, their
listeners could discriminate frequency differences in individual
components of tonal sequences almost as well as they could in
isolated tones. They discuss these findings in terms of a
"spectral and temporal focusing of attention", and suggest that
listening to complex auditory patterns may be analogous to
looking at a complex picture. In the same way that viewers may
focus on various aspedts of a picture, listeners may attend to
various aspects of a complex acoustic pattern. In both cases,
knowing where to "look" for 1likely differences can lead to
improved performance.

In the present study, listeners learned to selectively focus
their attention on the more important of the ¢two auditory
dimensions. The data further suggest that selective feature
tuning is not an all-or-none process since listeners did not
immediately and exclusively minimize variability on the more
important feature. Rather, it appears that the total amount of
fine tuning that can occur is limited at any point in time. One
factor that influences this 1imit is the amount of listener
experience in the task--as listeners gain additional experience,
an increased amount of fine tuning can occur. Of particular
interest is the strategy that listeners wuse to allocate their
limited attention across the two dimensions. Our data suggest

that listeners employ an optimum processor strategy to determine
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the extent of fine tuning to apply to the two features. In other
words, they select a distribution of emphasis across the two
dimensions that nearly optimizes their probability correct, given
the overall limit on the amount of focusing that can occur. This
conclusion 1is similar to that reported by Goldstein (Goldstein,
1973; Gerson & Goldstein, 1978) in his work on periodicity pitch
perception.

The above results indicate that listeners have considerable
flexibility 1in their feature extraction processes. A flexible
feature extraction process of this sort can readily adapt to
changing task demands. In the present study, for example, a
clear difference in relative feature importance or salience was
observed in the similarity judgment and classification tasks. In
Experiment 1 where the data were obtained in a pairwise
comparison procedure, listeners tended to emphasize signal
Quality relative to Tempo (46 and 23% of the variance,
respectively). Quite a different picture emerged in Experiment 2
where the listeners were trained ¢to classify the sounds into
eight categories. In this case the relative subjective
importance of the two features reflected the criteria used by the
experimenter to determine the eight categories. 1In Experiment 4
when listeners rated category similarity from memory immediately
following their classification training, one might have expected
the relative feature salience to parallel that observed 1in the
classification task. However, somewhat surprisingly, the
findings more <closely paralleled those of Experiment 1s

Listeners in both groups strongly emphasized Quality in comparing
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categories from memory (28 and 55% for the Tempo group, 21 and
69% for the Quality group). It appears, then, that when
comparing stimuli in a similarity judgment task, 1listeners tend
to emphasize signal Quality relative to signal Tempo regardless
of whether the signals are actually present or not. These
findings clearly stress the role of task factors in determining
feature saliency.

Overall, the above findings suggest that the feature
extraction and decision stages interact--the decision outcome
influences the feature extraction process through the
nypothesized feature tuning process. Although a precise
specification of the feature tuning process is not possible at
this time, it is clear that any future theoretical treatment of
auditory classification must adopt a more dynamic view of the
feature extraction process than has been the case traditionally

(ef. Howard % Ballas, 1978).
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