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palrwise similarity ratings. Two groups of listeners in Experiment 2
learned to classify each of the sixteen si gnals into one of eight
categories (two sounds per category). The two groups learned eight-
category partitions that emphasized different features of the stimuli.
Confusion matrices were analyzed in terms of both the stimulus space
obtained in Experiment 1 and a probabilisti c model of the listener ’s
decision process. The model provided a reasonable fit to the observed
data. Experiments 3 and 4 further tested the assumptions of the decision
model. In Experiment 3, listeners were required to classify each
member of a large set of amplit ude modulated signals that formed a
“grid” over the perceptual feature space. Subjective probability
density functions for the eight categories estimated from listener
responses using potential function or Parzen estimator techniques were
consistent with those assumed by the model. In Experiment 4, MDS
techniques were used to investigate the “conceptual space” underlying
the listeners ’ memory for each of the eight categories in both groups.
Category coordinates obtained from the MDS analysis corresponded wel l to

—-
~ ~th category centroids computed from the perceptual space of Experiment

Overall , results of the four experiments indicated that listeners
employed an optimum-processor strategy to determine the relative
importance of each feature in the decision process. The findings
indicate that any theoretical treatment of auditory pattern recognition
must address the interaction of the feature extraction and decision
processes.
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INTRODUCTI ON

Recent years have witnessed ma jor theoret ical ad vances in

our und~rstandirg of the perceptual processes involved in the

detecticn e~ind discr imination of simple acous tic st imul i . In

contrast , rela tively little is known about the ps ychological

processes that underlie the classification and recognition of

com plex acoustic patterns. A popular approach to the analysis of’

thi s pro b lem assumes that human audi tory recogn it ion involves

several distinct information—processing stages. A possible

four—sta ge model of the auditory recognition process is

diagrammed in Figure 1.

Insert Figure 1 here

According to this model , an unknown stimulus under goes several

transformations before it is recognized . First , an initial

sensory re presen tat ion of the signal is forme d , and a preliminary

analysis of the signal is completed . These processes are

• typically assumed to occur in the auditory periphery and have

been reasonably well—specified in recent psychoacoustic research

(e.g., Siebert , 1968; Dallos , 1973). Second , this prelim inar y

“rece ptor ” representation is further transformed or reorganized

into a set of distinctive auditory features. This stage is

referred to as feature extraction and is generally thought to

involve the reduction of a stimulus to its essential

characteristics (e.g., Anderson , Silverstein , Ritz & Jones ,

1977). Third , this highly processed feature representation is

- - _ _ _ _ _-
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Aud itory feature extraction Page 3

compared with information stored in memory to determine its

classification and/or identify its structure (i.e., the relations

amon g features). The processes involved in this stage may be

ex tremel y com p lex , and in the present model they are collectively

referred to as the decision stage. Finally, an over t res ponse

may be initiated depending on the listener ’s tas k.

As suggeste d above , muc h psyc hoacoust ic researc h has

emphasized the basic psychophysical processes involved in pitch

perce pt ion or the d etection of pur e tones , and their relation to

underlying physiological functions (e.g., Evans & Wilson , 1977).

As a result , a firm basis exists on which to speculate about the

transduction and “preliminary analysis ” sta ge of audi tor y pattern

recogn ition. Unfortunately, in the case of com p lex acoustic

patterns , no sim ilar extensive empirical foundation exists on

wh ich to build a detailed model of the secon d (feature

extraction) and third (decision) processing stages. The present

paper focuses on the feature extraction stage and its relation to

the dec ision process in an attempt to esta b lish a f irmer basis

for a theoretical treatment of the auditory recognition problem .

Althou gh no single theoretical statement of the feature

extraction process exists , recent research has stressed its

importance in auditory perception . As Anderson et al. (1977)

have noted , “Distinctive features are usually viewed as a system

for effic ient preprocessing , whereby a noisy stimulus is reduced

to its essential characteristics and decisions are made on these”

(p. ‘$29 ). In other words , the feature extraction process is

“tuned” to select perceptually important information from the

____________________ _________________________ .4-_ _ _ _ _-~~~~ - -- _ _ _ _ _ _
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Auditory feature extraction Page L~

out put of the prel iminary analysis sta ge , an d di scar d informat ion

that is likely to be unimportant (Howard & Ballas , 1978). Since

pat tern reco gnition performance ultimatel y d epend s on the feature

extract ion pro cess , a number of invest ig ators have sought to

specify those acoustic cues that are of primary psychological

import ance in the perce ption of com p lex acoust ic patterns unde r

various listening conditions.

The object of their investigation , the feature

re presenta tion or out put of the fe ature ex tract ion sta ge , is

obv iousl y not di re ctly observa b le and therefore must be inferre d

using indirect methods. Although a variety of techniques are

ava i lab le , mult idimens ional scal ing has emerged as a useful

method for identifying the underlyin g psychophysical structure of

complex sounds (P].omp, 1976). Typically, listeners are aske d to

provide pairwise dissimilarity judgments on the set of signals of

interes t . A spec if ic multidimens ional scal ing algor ithm is then

applied to decompose the resulting subjective proximity matrix

into an n— dimensional metric space in which each signal is

represented as a single point or vector. Although individual

scalin g methods vary widely in their underlying assumptions ,

Shepard (1972a) has noted that most are similar in that (1) they

assume that the distances between stimuli in the underlying

feature space are a monotonic function of the corresponding

similarity judgments in the observed data , and (2) they employ an

iterative procedure to obtain the perceptual space which best

fits the observed data. A measure (e.g., “stress ” in Kruskal ,

196’$) is frequently provided which reflects the degree of
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discordance between the interstimulus distances in the

n— dimensional stimulus space and the observed dissimilarity

judgments.

Prov iding that a scaling solution with satisfactory stress

ex ists , it is gener all y assume d that d imens ions of the

psychological st imulus space reflect those fea tures that the

listeners used to compare the stimuli. In interpreting the

scal ing solut ion , the invest igator examines the relat ion between

the perce ptual space and the known phy s ical structure of the

stimuli. The outcome of this comparison can reveal the specific

psychophys ical transformat ions involved in the feature extra ction

process. These techniques have been used successfully to

invest igate the underly ing psychological features involved in the

perception of speech (Klein , Plomp & Pols , 1970; Shepard ,

1972b), mus ic—like sounds (Plomp & Stenneken , 1969; Miller &

Cartere tte , 1975; Grey, 1977), and other complex non—speech

sounds (Cermak & Cornillon , 1976; Howard & Silverman , 1976;

Mor gan , Wood head & Webster , 1976; Howard , 1977).

Once the feature extraction process has transformed the

stimulus into its essential characteristics , the dec is ion process

operates to classify or recognize the pattern . In the ideal

case , the feature representation would unambiguously determine

the true classification of’ a stimulus. In this case the task of

the decision stage would be relatively straightforward . It need

only partition the feature space into regions corresponding to

the discr iminable stimulus categories. Unfortunately, it is more

likely the case that the output of the feature extraction process 

- —--~~~~



Auditory feature extraction Page 6

is quite noisy and a considerably more complex decision process

is called for . In particular , since the decision stage must

opera te in the presence of uncerta int y , it can only evaluate the

relat ive likel ihood that a part icular feature re presentation

belongs to each category. Given this information , the decision

processor may select the most likely source (i.e., categor y) for

an unknown stimulus.

To this po int , we have only cons id ere d the role of sensory

information (i.e., the output of the feature extra ct ion sta ge) in

the decision process. As Green and Swets (1966) have pointed out

in their elegaait application of statistical decision theory to

auditory detection , other utility or response—bias factors will

also influence the decision process. These factors include the

listener ’s estima te of the overall likelihood or a priori

probability of specific categories as well as his consideration

of the consequences of the decision. Although the decision

process has been extensively investigated in the auditory

d ete ction situa tion , its role in the classification of complex

auditory patterns has been neglected .

The overall question addressed in the present paper concerns

the relation between the perce ptual features identif ied in a

multidimensional scalin g analysis and the decision stage of the

aud itory classification process. In a classification task the

listener is required to distinguish among a specified set of

acoustic patterns. Consequently, one would expect the decision

process to selectively emphasize one or another distinctive

feature , dependin g on the configuration of’ st imul i in the
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perceptual pattern space. For example , gi ven a set of st imul i

which differ in both pitch and loudness , listeners would likely

use both fea tures to ev aluate pai rw ise similarity. On the ot her

hand , if the same s ignals were then grouped into two cate gor ies

based on only a single dimension (e.g., high and low pitch) , then

listeners learning this partition need only consider a single

feature (i.e., pitch) to achieve optimal classification

performance.

The p resen t study invest iga tes listener class if icat ion

performance on a set of sixteen complex acoustic patterns. The

signals cons ist of a b roa dba nd whi te no ise carr ier , amplitude

modulated by sawtooth waves of varying frequency and attack.

These signals were selected for investigation because of their

similarity to a broad class of’ sound s fre quently encountere d in

passive sonar environments (i.e., propeller cavitation). In

Ex periment 1 a multidimensional scaling analysis was performed on

listeners ’ pa irw ise sim ilarity ra tings of the entire set of

sixteen sounds. The primary purpose of this experiment was to

obtain a psychological feature representation of the stimuli for

use in the subsequent analyses. In Experiment 2, two groups of

listeners learned to classify each of the sixteen signals into

one of eight categories (two sounds per category). Each group

learned a different category partition. The two eight—category

partitions were selected to require the listeners to focus

primarily on one of the two features (i.e., either modulat ion

frequency or attack). The confusion matrices obtained in this

ex periment will be discussed in terms of both the perceptual

S
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stimulus space identified in Experiment 1 , and a probabilistic

model of the listener ’s decision process. In Experiment 3, the

same listeners were re quired to class i f y eac h mem ber of a larg e

set of am plitude modulated signals generated by factorially

comb ining eleven values of attac k and f if teen values of

modulation frequency. A probability density function for each of

the eight categories was estimated from listener responses using

potential function or Parzen estimator techniques (e.g.. , Me isel ,

1972). The results of this analysis will be compared with the

findings of Experiment 2. Finally, in Experiment ~4,

multi dim ensional scaling techniques were used to investigate the

“conce ptua l space ” underlying the listeners ’ memor y for eac h of

the eight categories in both groups.

I. EXPERIMENT 1

The presen t experiment was designed to determine a precise ,

quant itat ive psycholo gical fe ature re presenta tion of the six teen

amplitude modulated noise signals. Each listener was required to

rate the pairwise similarity of all 120 possible pairs of the

sixteen sounds. The INDSCAL multidimensional scaling program

(Carroll & Chang, 1970) was used to determine a perceptual space

for the signals. The INDSCAL model assumes that stimulus

similarity is a decreasing linear function of the interstiinulus

distance in an underlying stimulus space. Unlike many metric

scal ing programs , the INDSCAL analysis produces both an overall

normal ized group stimulus space , arid a vector of saliency weights

for each listener reflecting the relative importance or salience

of each dimension for that person. The group space reflects

_ _ _ _  - - -—-- ~~—~~~ -- -.~~~~-- ,~~— -— - ---- - - -
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those common featur es use d by all or most listeners , and the

saliency weights may be thought of as scaling factors to expand

or contract each of the common dimensions for each observer. The

INDSCAL model was use d to eva lua te fea ture cons istency across

individual listeners.

A. METHOD

1. Participants

Thirty student volunteers (twenty males , ten females) were

paid $9.00 to participate in the experiment. None of the

listeners reported any history of hearing disorders.

2. Apparatus

All experimental events were controlled by a laboratory

digital computer. The sawtooth modulation waveforms were

synthesized by the computer and output on a 12 bit

digital— to—a nalog converter (5 kHz sampling rate). This

modulation signal was low—pass filtered (Krohn—Kite Model 3550, 2

kHz cutoff) arid applied to the modulation input of a

laboratory—constructed transconductar ice operational amplifier

c ircu it (RCA CA 3 O8~4). The carrier input to the operational

amplifier was a 20 Hz — 20 kHz noise with a —3 dB/octave spectrum

(B & K Type 11402 Random Noise Generator). The output gain of the

transconductance operational amplifier circuit was directly

proportional to the amplitude of the modulation signal. Hence ,

the circuit output consisted of amplitude modulated noise with an

envelope detern~ined by the modulation waveform character istics

(to be described below). This output signal was delivered to

listeners over matched Telephonics TDH—~$9 headphones with

- -— - .
- .
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MX— 141/AR cushions. The observers were isolated in a

sound—attenuated booth throughout the experiment.

3. Stimuli

A set of sixteen amplitude modulated (100% modulation ) white

noise signals was constructed . In each case the signal envelopes

were sawtooth functions vary ing in fre quenc y and asymmetry. The

modulation fre quenc ies includ ed U , 5, 6, and 7 Hz , and the

modulation waveform asymmetries included either 20 or ‘$0 msec

attack with gradual decay, or ‘$0 or 20 msec decay with gradual

attack. For example , a U Hz signal could have its maximum

amplitude at 20, ~40 , 210 , or 230 m-ec after the start of each

period . An oscilloscope trace of two typical signals is

displayed in Figure 2.

Insert Figure 2 here

Subjectively, the rapid attack signals have a “h ammering ”

quality,  whereas the gradual attack signals have a “sandpapering ”

quality. The signals were presented to the listeners at a

comfortable listening level (6’$ dB SPL).

U. Procedure

Partici pants were seated individually in the

sound—attenuated booth and heard instructions explaining their

task. They were told that very dissimilar stimuli should be

assigned a rating of “1” , whereas very sim ilar stimuli should

receive a ratin g of “5”. The remainin g scale values were to be

used for stimuli of intermediate similarity or dissimilarity.

--

~
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Figure 2. Oscilloscope trace of’ two typical amplitude

modulated noise signals. The upper trace portrays a 14 Hz/20 msec

attack signal , the lower a 7 Hz/20 msec decay signal.
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Auditory feature extraction Page 12

The listeners were told to assign a similarity rating on the

basis of’ their overall assessment of’ the stimulus similarity ; no

specific instructions were provided regarding the signal

characteristics. Before beginning the experiment each listener

heard a 3—secon d sample of each sound in order to become familiar

with the entire stimulus set. This preliminary presentation was

repeated as requested by the listeners.

Every trial began with a visual warning stimulus. After a

short delay , a stimulus pair was presented successively in 3—sec

segments with a 1— sec interstirnulus interval .’ After the st imuli

were p resen ted , the listener indicated the rated similarity by

p ress ing one of f ive labeled res ponse keys . Two secon d s

follow ing the listener ’s res ponse the v isual warn ing occurred for

the next stimulus pair. This procedure was repeated until each

of the 120 possible pairs was presented twice , counter balanced

for order of presentation within trials. Signal pairs were

presented in a random order. The above procedure was repeated on

three successive days for each of the thirty listeners. In all ,

180 similarity judgments were obtained for each of the possible

stimulus pairs.

B. RESULTS AND DISCUSSION

A 16 by 16 off—diagonal asymmetric proximity matrix was

determ ined for each listener and session by collapsing across the

two sim ilarity ratings for each signal pair within each session.

The data from each of the three sessions for all thirty listeners

were analyzed using the INDSCAL multidimensional scaling program ,

The resulting two dimensional scaling solution accounted for

-~
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approximately 69% of the overall variability. The normalized

stimulus space for this solution is presented graphically in

Figure 3.

Insert Figure 3 here

It is obvious from the geometric configuration of the stimuli

that the two psycholo g ical dimens ions or features corres pond to

the attack and modulation frequency parameters. In the following

discussion the perceptual feature corresponding to attacle will be

referred to as signal Qual it y , and the feature corres pondi ng to

modulation frequency will be referred to as signal Tempo .2

A closer exam ination of Figure 3 suggests that Tempo bears a

di rect relat ion to modulat ion fre quency, at least within the

range of frequencies investigated . Further analysis

substantiated this conclusion with 97.6% of the variability along

this dimension being attributable to a linear function of

modulation frequency (T = .216M — 1.180 , where T des ignates

Tem po , and M designates modulation frequency). In contrast ,

stimulus Quality appears to depend on both attack and modulation

fre quency since the st imuli tend to become somewhat closer

together along this dimension as modulation frequency increases.

Since the absolute duration of the attack/decay was held constant

across modulation frequency, the proportion of each period spent

in attack covaried with modulation frequency——percent attack

increased with frequency for the rapid attack/gradual decay

signals , and decreased with frequency for the gradual

. - •—
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Au ditory feature extraction Page 15

attack/rapid decay signals. It appears , therefore , t hat the

relat ive amoun t of eac h per iod spent in attack , ra ther than the

absolute duration of the attack is of primary psychological

importance. This observation was confirmed statistically since

signal Quality correlated more highly with the percent attack

than it did with absolute attack duration (r(15) = .994 and

r(15) .935 , respectively). Overall , 98.9% of the var iance

along the Quality dimension can be attributed to a linear

function of percent attack (Q = .007A — .364, where Q refers to

stimulus quality and A refers to percent attack).

As di scusse d above , a second outcome of the INDSCAL analysis

is a weight vector for each individual listener that indicates

the rela ti ve impor tance or sal ience of the two perce ptual

features. In the pres ent d ata , 22 of the 30 listeners had larger

sal ienc y we ights for the st imulus Qual ity dimens ion than for the

st imulus Tem po di mens ion. Thi s indi cates that s ignal Qual ity was

more important for these listeners than was signal Tempo .

Overall , the Quality dimension accounted for considerably more of

the variability in the inner—product matrix estimated from the

judgment data (approximately 46%) than did the Tempo dimension

(approximately 23%). This suggests that the “hammer ing ” and

“shndpapering ” qualities of the stimuli were considerably more

important in evaluating pairwise similarity than was the

repetition rate.

II. EXPERIMENT 2

A. INTRODUCTION

The results of Ex periment 1 have enabled us to characterize
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precisely the perceptual feature representation of the sixteen

stimuli. However , as ind icated in the introduction , a question

of primary interest concerns the relation between these features

and subsequent processing stages in auditory pattern recognition.

Specifically, we ask how the decision sta ge makes use of this

information in determining a classification for the signal. In

Exper iment 2 we investigated this question by requiring two

groups of listeners to learn different eight—category

classif ications of the sixteen stimuli. One of the two groups

was required to distinguish two levels of Quality and four levels

of Tempo in making their classification , whereas the other group

discriminated two levels of Tempo and four levels of Quality.

The specific question of interest concerns the possible relation

between the classification partition learned and the feature

information used by the decision process ,

Clearly, the above empirical quest ion ma y only be add resse d

in cases where a specific decision process has been specified .

The following section outlines a simple probabilistic model of

the decision stage. The model represents a generalization of

previously proposed decision models for auditory signal detection

(Green & Swets , 1966), pitch perception (Goldstein , 1973; Gerson

& Goldste in , 1978), and visual recognition processes (Getty, - .

Swets , Swets , & Green , in press).

As d iscussed in the general introduction , any theoretical

treatment of the decision process must consider both sensory

factors——resulting from sensory mechanisms——and utility or bias

factors determ ined by nonsensory subjective task variables.
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Althou gh the following theory considers both factors , the primar y

focus of the present development is on the role of sensory

factors in auditory recognition . In Experiment 2, variables

traditionally thought to influence response bias (e.g., a priori

category probability and response payoff) were held constant to

minimize the importance of decision bias.

As indicated above , we assume that an init ial prel iminary

analys is is performe d on the incom ing acous tic waveform to

produce a vector of receptor measurements. This high—dimensional

measurement ve ctor , rn , is then transforme d by an unspec if ied

feature extrac tion processor , F , into a two—dimensional feature

vector , f, F(rn) = f 
~~T’ 

fQ). In the present context , we

assume that the fea ture vector cons ists of two elements , Tem po

and Quality. We assume further that moment—to—moment

fluctuat ions or noise occurs in the outcome of the fea ture

extra ction proc ess so that any spec if ic presentat ion of a

part icular signal can result in any of a range of values for both

Tempo and Quality. We assume that the feature values extracted

for a particular sound are random variables sampled from Gaussian

d istributions with means equal to the “true” feature value , and

standard deviations of cr.~. and for the Tem po and Qual ity

dimensions , respectively.

After the stimulus has been analyzed into its feature

vector , another transformation is applied by the decision

processor to determine its classification . That is , D(f) = cW,

where c~~ indicates that the signal has been assigned to category

i. We assume that the decision processor operates by comparing
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the fea ture re presentation of the unknown s ignal , f, to a

proto type or “ideal” representation for each of the eight

categories. The listener ’s d ec ision is then base d on the

likel ihood that the signal occurre d g iven eac h of the eigh t

categories.3 This , in turn , depends on the unkn own signal’ s

proximity to the prototype (i.e., the centro id) of each cate gor y

in the perceptual feature space. In other words , the decision

processor est imates the pro babil ity tha t the unknown s ignal

occurre d giv en each cate gor y , Pr(f 
I c~

1
~), i 1 ,2,...,8.

Since uncertainty exists in the feature extraction process ,

the decision processor must estimate the precise location of eac h

ca tegor y prototy pe in the feature space.  Furt her , s ince the

features ex tracted for a particular sound are assume d to be

orthogonal Gaussian random variables , the likelihood function for

each category over the feature space is bivariate Gaussian with

zero covar iance. The likelihood function will have an identical

shape for each of the categories , and will be cen tere d at the

category prototype . Therefore , the likelihood that a particular

signal occurred given category c~
’
~ is determined by

Pr (f  ~~~ 
1 

1/2 ~~~ IH1/2 (i~ ~(I) ) y•
~
1 ( f — ~U) ~

‘ 
~ 

[11
- 2 ir (V I

where is the prototy pe vector for cate gory ~~~ obtained by

averaging the feature values across the two members of the

category, = (f~~ + f’~~ )/2 , ~~~ , E c~~~, and V is

the covar iance matrix. Since in the present context the two

features are assumed to be orthogonal , this matrix consists of

variances for the Tempo and Quality features on the main diagonal

_ _ _ _ _ _ _ _ _  - -.. -~~~~~~ ---— . —~- --~~ ——-—— —~~--——~ —
--- — —  

.-~~~~~
.. -. -
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and zero elements elsewhere. I!I
hhl2denotes the square root of

the determin ant of V , in this case cr.~. O~~~, and V~~ indicates the

inverse of V.

An important assum pt ion of the present model is that the

listener ’s un certainty regarding the two perceptual features- can

be reduced with experience in the classification task. In

other wor ds , listeners can “fine—tune ” their feature extraction

process to reduce the uncertainty or var iabil ity associate d with

a particular feature. Obviously this decrease occurs with a

lower bound being determined by the absolute discriminabi lity of

each feature. More importantly, we assume that thi s reduct ion in

var iability with experience is under listener control , and that

the listener can selectively adjust his or her variability on the

two dimensions independently. In learning to classify a set of

st imul i , observers can choose to focus the ir attention on one or

another dimension and thereby reduce their uncertainty with

respect to that dimension .

It should be clear that differences in the variance

parameters influence the relative importance of the two features

in the decision process , and hence determine classification

performance. The lower the relative variance along a particular

dimension in the feature space , the greater the effec t of that

feature in determining signal likelihood .4 Therefore , one would

expect the standard deviation parameters determined by the

listener ’s selective attentional mechanisms to be based on the

classification requirements of the task. Specifically, in the

present experiment one would expect listeners in the two groups
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to differentially emphasize signal Tempo and Quality depending on

the category partition they are required to learn.

The results of the present classification experiment are

exam ined in terms of the above model. In part icular , the model

is fit to individual listener confusion matrices by estimating

the two variance parameters in Equation 1. The confusion

matrices provide an estimate of the subjective a posteriori

probabilities , i.e., the probability of cate gory cW given a

part icular st imulus , Pr(c~~ f). These estimated a posteriori

probabilities can be compared to theoretical a posteriori

probabilities derived using Bayes ’ rule

Pr (f C)~~~ Pr( c (1))
Pr ( c(~)I f ) [21

~~ Pr (f t c ’~~) 
Pr ( c U ) )

I~ 1

where , Pr(cW) denotes the a priori probability of category ~~~

which in the present case is assumed to be constant across

cate gor ies (Pr(c~~ ) = 1/8 for all 1) and Pr(f I c (’)) is obtained

from Equation 1.~ The two standard deviations in Equation 1 , aT

and are then estimated by minimizing the sum of squared

dev iat ions between the theoret ical and est imated probabil ities

using a standard gradient technique .

B. METHOD

1. Participants

Eight experimentally naive student volunteers were paid to

participate in the experiment. Four (2 males , 2 females ) serve d

in the Tem po group , and four (2 males , 2 females) served in the

Quality group . None of the listeners reported any history of

-_~~. -: - -- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~-~~~~~~~~~~~~~ - . - 
- - --

-
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hearing disorders.

2. Apparatus

Same as Experiment 1.

3. Stimuli

Two eight—category partitions of the sixteen signals used in

Ex periment 1 were formed . One partition , pre sented to the Tem po

group , emphasized stimulus Tempo by requiring listeners to

discriminate four levels of Tempo and two of Quality. The second

partition was presented to the Quality group and required four

levels of Quality discrimination , and two of Tempo

discrimination. Table 1 indicates the assignment of the sixteen

signals to the eight categories for both groups.

Insert Table 1 here

4. Procedure

Listeners were tested individually in a sound—attenuated

booth. They were told that their task was to learn to classify

two sound s into each of eigh t cate gor ies , and that every sound

they heard would correctly belong in only one category. No

specific instructions were provided regarding how signal Tempo

and Quality were to be used . Each trial began with a visual

warn ing followed by a 3—sec presentation of one of the sixteen

sounds. After the signal terminated , the listener d epresse d one

of eight response keys (labeled 1— 8 ) to indicate the category

decision . Feedback was provided after each trial.

All listener s rece ive d 80 tr ials in eac h of nine sess ions



Table 1. Perceptual signal coordinates and category assignments for both
groups, Experiment 2.

COORDI NATES CATEGORY

SIGNAL TEMPO QUALITY TEMPO GROUP QUALITY GROUP

1 -.338 -.286 1 1

2 -.366 - .243 1 2

3 -.336 .271 2 3

4 -.325 .282 2 4

5 -.087 -.277 3 1

6 -.109 -.249 3 2
7 -.144 .257 4 3

8 -.145 .263 4 4

9 .190 -.285 5 5

10 .192 -.216 5 6

11 .127 .229 6 7

12 .142 .250 6 8

13 .315 -.259 7 5

14 .328 - .170 7 6
15 .274 .206 8 7

16 .284 .227 8 8

_ _ _ _  - -- . ~~~~~~~~~~~~~~~~~

S -
~~
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over three consecutive days for a total of 720 trials. Each of

the sixteen signals was presented equally often in a random

order.

C. RESULTS

1 . Over all ~erformance analysis

Overall performance was assessed by computing mean percent

correct on each of the sixteen stimuli for each listener ,

collapsed across the three sessions within each day . The results

of this analysis , further collapsed across stimuli , are presented

in Figure 14 for the two groups. Several aspects of these data

are of interest.

- 

Insert Figure 14 here

First , in terms o f over all res pondi ng , both groups are well above

the chance level of 12.5%. By day 3, the ver y wors t listener , ML

in the Quality group, was responding at approximately four times

the rate expected by chance alone.

Second , both the Tempo and Quality groups tended to show

higher per formance on d ays 2 and 3 than on day 1. Mean percent

correct colla psed across the four listeners was 55, 75 and 75% on

days 1 , 2, and 3, respectively for the Tempo group, and 33, 47

and 51% on days 1 , 2, and 3, respectively for the Quality group.

This finding was confirmed statistically by a significant main

effect of Day in a two—way (Group by Day) analysis of variance

with re peate d me asures on the Day fac tor , F(2,12) = 35.94,

2 < .001.

____  ______  - - .—- - . — — — 5— ——- ——
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Figure 4. Mean percent correct overall by day and listener ,

Experiment 2.
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Third , the Tem po group performe d at a cons id erably hig her

level than did the Quality group (mean performance was 68 and 414 %

for the two groups , res pec tively). Thi s obser vat ion was a lso

supported statistically in the above analysis , F(1 ,6) 1 .55,

.2 < .01. This finding indicates that the category partition

learned by the Quality group was considerably more difficult than

that learned by the Tempo group.

Another as pect of the performan ce d ata of potent ial interest

is the percent correct observed f~~r each of the sixteen stimuli.

Table 2 displays mean day 3 performance data for each signal and

listener in the experiment.

Insert Table 2 here

Exam ina tion of thi s tab le reveals that by d ay 3, all of the

listeners in the Tempo group , and two of the listeners in the

Quality group were classifying all stimuli at an above—chance

level. The two exceptions to this , listeners PH and TK in the

Quality group , classified three and two of the sixteen stimuli ,

respectively, at a chance or below—chance !.evel. The only

consistent trend observed across all listeners is an “anchoring”

effect noted for signals occupying corner positions in the

stimulus space. For the Tempo group, the four signals hav ing

extreme values on both features (i.e., signals 1 , 4, 13 and 16)

were more fre quently correct than were the four signals having

extreme values on neither feature (i.e., s ignals 6 , 7, 10 and

11). Performance on the “corner” signals was 82%, whereas

- . _ _.-- - - .  — --  - —
‘ ~~~~~~~~~~~~~~~

- -..
. - . 

- -, - - - . -. - -.- .~v-—~
.: 

~~~~~~~
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performance on the “inner ” signals was 70% , t(15) = 3.68,

.2 < .005. A similar , but statistically nonsign if icant , trend was

observed for the Quality group (54 and 143% for the corner and

inner st imul i , res pect ively), t(15) 1.52 , ~ > .05. This

finding is consistent with an end—anchoring effect noted in a

var iety of learning contexts .

2. Confusion matrix analysis

Although the overall performance data re porte d above are

clearly important , a deta i led anal ysis of the kind s of error s

that listeners make is of primar y importance in the present

paper. A 16 by 8 (signal by category) confusion matrix was

determ ined for each listener on each d ay by col laps ing across the

three sessions within each day. These 24 matrices (eight

listeners by three days) forme d the bas is of all subse quent

analyses.

Equat ions 1 and 2 were use d to estimate a theoret ical

confusion matrix for each of the observed matrices. The

theoret ical matr ices were determ ined by select ing standar d

deviation parameters and 
~~ 

, Equation 1) that minimized the

discrepancy between the theoretical and observed matrices in a

least squares sense . A standard , quasi—Newton gradient algorithm

was used to perform the fits (subroutine ZXMIN in the IMSL

statistical library) . Fits were obtained from several starting

points in the (&~T , G
0 
) parameter space for randomly selected

matrices as a precaution against unstable solutions resulting

from local minima. Several outcomes of this analysis are

discussed in detail below.
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First , the model provided a reasonable fit to the observed

confusion matrices under most conditions. Pearson product—moment

correla tion coefficients were computed between the theoretical

and observed data for each of the matrices as a measure of

goodness—of—fit. The results of this analysis are displayed in

Table 3.

Insert Table 3 here

The theoretical matrix accounted for between 61 and 96% of the

variance in the ob serve d data in all but one case (listener ML ,

day 1 , r 2 = 140%). On the average , the model accounted for 82% of

the var iability for the Tempo group and 69% of the variability

for the Qual ity group (72% if ML , day 1 is excluded). It should

be noted that although many confusions never occur (i.e., some

cells of the matrix are almost always zero), the present fits

were obtained with only two free parameters arid 128 estimated

points. Sample theoretical and observed confusion matrices are

presented for four representative day 3 cases in Table 4.

Insert Table 14 here

These data represent the best and worst fitting conditions for

the Tempo (listeners MG and PC , respectively) and Quality

(listeners MC and PH , respectively) groups.

Second , the standard deviation parameters estimated from the

present data , 
~~~~~

. and 
~~ 

, are consistent with the assumption

- ~~~~~~~~~~ -~
— - ,. -



Table 3. Pearson product-moment correlation coefficients computed be-
tween observed confusion matrices and the best-fitting
theoretical matrices.

TEMPO GROUP day 1 day 2 day 3

MM .87 .97 .96

MG .83 .98 .98

PC .80 .92 .83

MK .87 .88 .93

QUALITY GROUP

PH .78 .80 .84

TK .81 .86 .88

ML .63 .79 .89

MC .78 .93 .95
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that , w ith ex perience , listeners can selectively and

independently adjust the ir uncer ta inty on the two perce ptual

features. The estimated parameters are displayed in Table 5 for

all condit ions.

Insert Table 5 here -

It is ev id ent from thi s ta b le that , in general , uncer taint y

decreases over days in the experiment. Since the parameters are

estimated by fitting distributions to observed confusion

matr ices , it is not sur prising that uncerta inty d ecreases as

performance improves. What is more significant is the

observation that the two parameters are dramatical ly different

for the two groups. In particular , for all listeners in the

Tempo group , was substantially smaller than (overall

means of .101 and .227, res pect ively). In contras t , the Qual ity

group showed less Quality uncertainty than Tempo uncertainty

(overall means of .110 and .290 , respectively) , and by day 3 all

listeners in the Qual ity group had a lowe r than . Since

the magnitude of these parameters is inversely related to the

relative importance of’ their correspor~uing features in the

dec ision process , this finding indicates that signal Tempo was

given a greater emphasis by the Tempo group , whereas signal

Quality was given greater emphasis by the Quality group .

Of further interest is the finding that on day 1 all

listeners in the Tempo group were emphasizing Tempo relative to

Quality , while on ., two of’ the listeners in the Quality group (PH

—4



Table 5. Estimated standard deviation parameters for both features and
all conditions , Experiment 2.

TEMPO GROUP day 1 day 2 day 3

A A A A A A

°T ~
.
Q °T ~ Q ~ T ~ Q

MM .108 .283 .073 .178 .076 .208

MG .107 .446 .064 .179 .066 .192

PC .130 .649 .112 .276 .137 .324

MK .134 .275 .155 .217 .063 .248

MEAN .120 .413 .101 .213 .083 .243

QUALITY GROUP

PH .373 .208 .246 .070 .061 .054

1K .244 .208 .220 .033 .205 .034

ML .276 .424 .221 .262 .217 .074

MC .235 .299 .208 .044 .220 .062

MEAN .282 .285 .224 .012 .176 .056
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and TK) revealed an analogous emphasis on signal Quality. The

other listeners in this group (ML and MC) emphasized Tempo early

in the experiment , and for one of these listeners , ML , this trend

did not reverse until the last day of the experiment.

D. DISCUSSION

It is clear from these results that the decision model

outlined above provides a reasonable description of’ how feature

information is used by the decision processor in an auditory

classification task. The findings are also clear in supporting

the specific assumption that listeners can selectively and

independently adjust the relative importance of the two

perceptual features. However , despite this consistency, two

ma jor questions remain unanswered . First , at present it is

unclear how the uncer tainty parameters es tima ted from the data

relate to the listener ’s sensitivity to the attack and modulation

frequency cues. What do the values obtained for these parameters

mean in terms of listener sens it iv ity? Secon d , although it is

intuitively reasonable to argue that listeners in the Tempo group

should stress Tem po relative to Qual ity , and that listeners in

the Qual ity group should stress Quality relative to Tem po , it is

not clear why they select the specific values observed . What

criterion does the listener use to determ ine the import ance of

one feature relat ive to ano ther? Both issues are cons ide re d

further below.

Consider the relation between the specific value of each

standard deviation parameter and listener sensitivity to the

corresponding feature. By determining the separation between

— 
~~~~~~~~~-~--C’fJ••--

_ _  
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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individual category prototypes (i.e., centroids ) along each of

the two dimensions separately, we may examine the relation

between the and parameters and pe -formance for the two

grou ps. In other wor d s , the standard deviation parameters give

us an idea of the extent of overlap between adjacent likelihood

functions in the perceptual space.

Figure 5 displays a hypothetical perceptual space for the

Tempo and Quality features showing representative (i.e., median)

intercategory distances and mean day 3 one— standard — deviati on

contours for the two groups.

Inser t Figure 5 he re

First , it should be noted that the typical intercategory

separation along the Tempo dimension is considerably smaller for

the Tempo group than for the Quality group (.220 ~vs .U57 ). In

con tras t , the median separation along the Quality dim ension is

substantially greater for the Tempo group than for the Quality

group (.506 vs .058). Second , it is also obvious from the figure

that the standard deviation parameters for the two groups

parallel the median separations. The smallest mean standard

deviations correspond to the smallest intercategory distances.

Although it appears that listeners in the Tempo group were able
-
• to adjust their standard deviations along the two dimensions to

produce relatively little overlap in the likelihood functions ,

considerable overlap exists along the Quality dimension for the

Qual ity group. It seems tha t the listeners were not ab le to



TEMPO GROUP

.506

.220

QUALITY GROUP TEMPO

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~.Q5Ø

- .457
TEMPO

Figure 5. Hypothetical perceptual space for the Tempo and

Quality features showing median inter—category distances. The

elli pses represent approximate mean one—standard—deviation

contours.
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adequately discriminate the relatively small differences in

percent attack required to achieve a high level of classification

performance on this partition. Furthermore , s ince our earl ier

consideration of these parameters (cf. Table 5) revealed that

had largely stabilized by day 2 for the Quality group , these

listeners may have approached their limit of discrimin ability

along this dimension. In physical units (percent attack) , the

day 3 for these listeners was appr ..~x imately 8%.

When the corresponding data are considered for the Tempo

grou p , we no te that seems to level of f at a pp rox ima tely .39

Hz. Other findings obtained in our laboratory suggest that this

value may approach the jnd for amplitude modulation in this

frequency range. Although the other study investigated

modulation frequency sensitivity with a 1400 Hz sawtooth carrier

rather than no ise , the results rev ealed that listeners could

reliably discriminate .140 Hz differences (80% correct) in the 14 —

7 Hz modulat~.on rang e (Burgy, 1975). These findings suggest that

in the course of the present experiment listeners optimized their

sensitivity to the more important of the two features. Whether

or not they could maximize their sensitivity to both features

with additional practice is an issue for further research.

A secon d ma jor question of interes t concerns the specific

strategy that listeners employ to determine the relative emphasis

to place on the two features. In the above analysis we saw that

listeners in the two groups appear to focus on the feature

emphasized by the category partition that they were required to

learn. At first , one may wonder why the listeners don ’t simply 

~~~~~~~~~~
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perform a similar “fine tuning ” on both features. While this

strate gy woul d obv iousl y lea d to optimal performan ce , the

observa tion that listeners don ’t do this , at least over the f irst

three d ays in the tas k, suggests that it may be impossible for

them to do so. In short , we have ignore d any “cost” factors

associated with the feature tuning process. The selective

attentional processes hypothesized to underlie the tuning process

may involve considerable effort , extensive practice or both . In

other wor d s , it appears that the listeners are constrained in the

total amount of “fine tuning ” that they can accomplish at any

point in the task. As their familiarity with the stimuli and

task increases , this overall constraint is reduced . This

interpretation is consistent with recent limited—capacity views

of human attentional processes (e.g., Ka hneman , 1973).

W ith the above cons id erations in mind , our question becomes

slightly different. Given that the listeners are constrained in

the total amount of feature tuning that they can perform , how do

they divide these resources between the two features? Although

the decision model outlined above does not propose a specific

decision criterion , other probabilistic decision model s (e.g.,

Gerson & Gold ste in , 1978) have suggested that listeners attempt

to maxim ize the overall probability correct. Since no biasing

factors were man ipulated in the present study, it is possible

that our listeners adopted a similar strategy to adjust the

and c7~ parameters. To investigate this possibility , an emphasis

measure was determined for each feature in each condition . Since

the estimated standard deviations are inversely related to

_ _  - - -- —~~ -. - 
- _ _ _
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relative emphasis , emphas is measures , ey and CQ , were ob tained

from I / aT and 1/~~ , respectively. The theoretically optimal

part ition of overall emphasis across the two features was then

determined for each condition in the experiment. In computing

these values , the overall emphasis was es tima ted from the sum of

CT and e0. This value was taken to reflect the overall

attentional effort ex pended by the listener at a particular point

in the ex periment. This overall value was then apportioned

between the two features so as to maximize the average

probability correct. In other words , the theoret ically o pt imal

partition of the overall emphasis on the Tempo and Quality

components was determined . Table 6 displays the normalized

observed and optimal emphasis parameters.

Insert Ta b le 6 here

A comparison of the optimal and obtained values reveals a

relat ively close corres pond ence for the Tempo group , and a

relatively poor overall correspondence for the Quality group .

Pearson product—moment correlations between the optimal and

obtained data confirm this observation , r(23) = .93, r(23) = .52

for the Tempo and Quality groups , respectively. Nonetheless , by

day 3 the obtained emphasis parameters are well approximated by

the optimal values for both groups , r(7) = .98, r(7) = .96 for

the Tempo and Quality groups , respectively. This suggests that

with experience , listeners learning the more difficult category

partition (Quality group) became more likely to adopt an

______________ - - — - —_ , ~~~~~~~~~~~~~~~~~~_
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Table 6. Normalized relative emphasis parameters for the two features
by listener and day. Theoretically optima l values are pre-
sented in parentheses adjacent to the corresponding obtained
val ues.

TEMPO GROUP

DAY 1 DAY 2 DAY 3

TEMPO QUALITY TEMPO QUAL ITY TEMPO QUALITY

MM .72 (.64) .28 (.36) .71 (.70) .29 (.30) .73 (.69) .27 (.31 )

MG .81 (.62) .19 (.38) .74 (.71 ) .26 (.29) .74 (.71 ) .26 (.29)

PC .83 (.58) .17 (.42) .71 (.64) .29 (.36) .70 (.60) .30 (.40)

MK .67 ( .61 ) .33 (.39) .58 (.61) .42 (.39) .80 (.71) .20 (.29)

QUALITY GROUP

DAY 1 DAY 2 DAY 3

TEMPO QUALITY TEMPO QUAL ITY TEMPO QUALITY

PH .36 (.49) .64 (.51) .22 (.50) .78 (.50) .47 (.45) .53 (.55)

TK .46 (.49) .54 (.51) .13 (.43) .87 (.57) .14 (.22) .86 (.78)

ML .61 (.50) .39 (.50) .54 (.27) .46 (.73) .25 (.22) .75 (.78)

MC .56 (.22) .44 (.78) .18 (.44) .82 (.56) .22 (.37) .78 (.63)
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optimum—processor s t ra tegy.

These findings suggest a specific decision rule for the

probabilist ic dec is ion model outlined above. Since listeners

appear to allocate their fine tuning processes across the two

features to m aximize their overall probability correct , we assume

that the d eci s ion processor p laces an unknown stimulus into the

category having the highest a posteriori probability. Formally,

D(f) ~~~ if Pr(c(9 f) > Pr( cU)I f) for all i ~ j.

This interpretation is consistent with Goldstein ’s conclus ion

tha t listeners res pond as optimum pro cessors in d eterm ining the

per iodi c ity pi tch of com p lex tones (Gol dstein , 1973), and with a

similar classification model and findings reported by Getty

(Ge tty ,  Swets , Swe ts , & Green , in press).

III. EXPERIMENTS 3 and ‘4

A. INTRODUCTION

The results of Experiment 2 are consistent with the simple

dec ision model outlined above. However , the decision model is

base d on a number of assum ptions that re quire fur ther empirical

val id at ion. Ex per iments 3 an d 14 are des igned to ob tain further

information relevant to these assumptions. Specifically, three

assum ptions of the model are considered : (1) that covariance is

zero , i.e., it is assumed that the Tempo and Quality features are

orthogonal , (2) that the category likel ihood func tions are

Gauss ian , and (3) that categories are represented psychologically

by prototypes derived from the central tendency (centroids) of

their members.

In Experiment 3 listeners were asked to classify each of 165

_______ ________________________ ________ 
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amplitude modulated no ise pat terns into one of the eight

categories learned in Experiment 2. The test signals were

syn thes i ze d to form a fine “grid” over the perce ptua l feature

space (f i fteen levels of modulat ion fre quency and eleven levels

of percent attack were combined factorially). Since the test

signals had minimal overlap with the sixteen training signals

(only two signals occurred in both sets), fee db ac k was not

provided . The outcome of this procedure was a set of labeled

samples for each of the eight categories. Potential function

techn iques were applied to construct a probability density

function from the labeled samples for each category (e.g.,

Murthy , 1965).

The method estimates likelihood functions by averaging a set

of potential or possible functions across the labeled samples for

each category. Given some point in the feature space , x , the

l ikel ihoo d tha t it belon gs to category c~
1
~ , P r ( x  c~

1
~), is

estimated by

M
Pr(x I cW ) = (1/M)

i~ 1

where { s (~~, ~~~ . . . , s(
~~} are the test signals that belong

to category c~
1
~ (i.e., that the listeners classified into this

category), and ~Y (x ,s) is a potential function.6 In the present

experiment , Gaussian potential functions were used to estimate

the likelihood function for each category. While it is obvious

that the selection of a particular potential function will

influence the shape of the estimated likelihood function when the

•_ _-  • -._____  ---- 
• -
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number of labeled samples is relatively small , it should be noted

that when certain conditions are met (cf. Meisel , 1972), the

estima tion procedure may be used to approximate any density

func t ion , given a sufficiently large number of samples. In

part icu la r , Gaussian potential functions will not always lead to

Gauss ian l ikel ihoo d func t ions.  For exam p le , the likelihood

func tions coul d be mu l t imodal or , if the labeled samples for a

particular category are broadly distributed in the feature space ,

the resulting function may be flatter than a Gaussian. The

paramete rs of the likel ihoo d func t ions est ima ted in th is manner

will be examined in terms of the three assumptions described

above.

In Ex periment 14 , listeners were aske d to ra te  the pa irw ise

similarity of all possible pairs of the eight category labels

learned in Experiment 2——no sounds were presented . These

subjective proximity data were decomposed into a two—dimensional

“conceptual” feature space for the eight categories. The

locat ion of each cate gory in th is  space will be com pare d with the

category cen troids to evaluate the third theoretical assumption .

B METHOD

1. Participants

The eight listeners who participated in the Experiment 2

served successively in Ex periments 3 and ~4.

2. Apparatus

Same as Exper iments  1 and 2 wi th  the addi t ion of a video

monitor for presenting the category labels in Experiment II. 
j 

. ~~~~~~~~~~~~~ 
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3. Stimul i

A set of 165 amplitude modulated noise signals was gener ate d

by com bi n in g fac tor ia l l y  f i f teen le vels of am pl itu d e mo dula tion

(3.5 , 4.0, 14.25, 14.50, 4.75, ..., 6.75, 7.0, 7.5 Hz), and eleven

levels of atta ck (0, 10 , 20, ..., 80, 90, 100%). The noise

carr ier was as descri bed in Ex per iment 1 , and the modulation

signals were sawtooth waveforms with the above characteristics.

For Ex periment Z4 , the stimul i were pairs of visually presented

digits corres pond ing to the cate gory labels learned in Ex per iment

2.

4. Proce dure

Ex periment 3 was conducted on two successive days

immediately following the completion of Experiment 2. Each day

consisted of two sessions. The first session was simply an

extension of Experiment 2 where listeners classified sixteen

sounds into eight categories with feedback. This session was

inc luded to insure  that the l isteners remem ber ed the categor y

partition they had learned in Experiment 2. In the second

session , the listeners were told that they woul d hear sam p les of

a large set of new soun d s sim ilar to those they had class ified

before , and that the ir task was to select the best cate gory for

each of these new sounds. Each of the 165 sounds was presented

for 3—sec in a random order , and listeners ind icated the ir

response as in Experiment 2.

Experiment 4 was conducted on the last day of testing (i.e.,

the fifth day). Listeners were told that we wanted to know what

they remembered about the eight categories they had learned .

_ _-  • - .• -  - -• - -• - —• •— - - - - -
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They were asked to rate the similarity of each pair of signal

categories. No specific instructions were provided regarding the

criteria they should use in making their judgments; however , it

was emphasized that their similarity ratings should be based on

the sound of the categories.

C. RESULTS AND DISCUSSION

Since ever y listener class i f ied each of the 165 sound s onl y

twice , the data were analyzed by group to increase the number of

category judgments for each signal. Group data were analyzed to

determine if a modal category existed for each sound (i.e., a

category give r-i in at least three of the eight judgments). A

single mode existed for 137 and 13~4 of the sound s for listeners

in the Tempo and Quality groups , respectively. Column 2 of Table

7 indicates the number of signals included in each of the eight

categories by this analysis.

Insert Table 7 here

A likelihood function was then estimated from these labeled

samples for each category using the potential function technique

outlined above. A covariance term was computed for each category

to evaluate the orthogonality assumption of the decision model.

These data are presented in column 3 of Table 7. The results are

clear in indicating that for the stimuli investigated in the

present study, the assumption of feature independence is

reasonable. The mean covariance was — .003 and — .006 for the

Tempo and Quality groups , respectively, at least an order of



Table 7. SuniBary of data from ExperIment 3 (columns 1-7) and 4 (columns
8, 9) by stimulus category and group. No. Indicates the num-
ber of modal ~timulL,in each category; Coy. the estimatedcovar iance ; r~ and the proportion of variance in the esti-
mated likelihood functions that can be accounted for by a
Gaussian for the Tempo and Quality dimensions , respectively;
MT and MQ represent the coordinates for the category centrolds
in a normalized space estimated from Experiment 3; C~ an d CQ
are the normalized category centroids estimated in Experiment
4.

TEMPO GROUP

CATEGORY No. Coy. r~ 4 MT MQ CT CQ

1 8 .022 .982 .958 2.95 -.25 -.545 - .379
2 10 -.001 .996 .714 2.93 3.07 -.428 .347
3 12 -.002 .960 .988 3.79 .42 -.231 -.397
4 34 -.031 .970 .992 4.06 2.19 -.114 .345
5 17 .081 .947 .996 5.03 .38 .264 - .367
6 16 .000 .994 .990 5.24 1.98 .275 .348
7 21 .026 .966 .986 6.07 .02 .442 -.263
8 19 -..082 .988 .992 6.34 3.21 .336 .367

~IJALITY GROUP

CATEGORY No. Coy. 4 M.1. M
Q ~1

1 6 -.029 .982 .990 2.77 -.39 -.145 - .484
2 16 -.005 .980 .945 3.70 .51 .012 -.422
3 9 .008 .976 .945 3.52 2.46 -.541 .192
4 22 .004 .968 .978 3.54 2.64 -.482 .216
5 19 -.003 .889 .998 5.39 .20 .384 -.249

6 13 -.010 .992 .902 5.99 .40 .524 -.164
7 33 .032 .986 .994 5.08 2.05 .134 .439
8 16 -.047 .990 .980 6.20 3.00 .115 .472

- -.-
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magnitude smaller than the variance on either dimension.

A second question of some interest concerns the shape of the

estimated likelihood functions. The Gaussian assumption of the

decision model was examined by determining the proportion of

variance in the likelihood function for each category that can be

accounted for by a Gaussian distribution. Gaussian functions

were fit to the estimated likelihood functions for each category

and feature us ing a gra di ent techn ique with a least squares

cr iterion . Pearson product—moment correlations were then

computed between the empirically estimated and best— fitting

Gauss ian functions. The estimated proportion of’ total variance

accoun ted for by the Gaussian (i.e., r2 is indicated in columns

4 and 5 of Table 7. It is clear from these data that the

estimated likelihood functions for each category are

approximately bivariate Gaussian . Although this finding is

consistent with the assumptions of the present model , it must be

inter preted with caution. Since a relatively small number of

labeled sam p les were used to est imate the likel ihood funct ions ,

the Parzen estimation procedure may not have converged to the

true density function . Nonetheless , the findi ngs are not

inconsistent with our theoretical assumptions , and the potential

function method may prove useful in future research.

Finally, the third assumption of our decision model—— that

each category is represented psychologically as the central

tendency of its two members in the perceptual space——may be

evaluated in terms of two findings. First , the means of the

Gaussian likelihood functions obtained in the potential function
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analysis provide an estimate of the locaticn of each category in

the perceptual space. Second , the coordinates revealed for each

category in the conceptual space determined for the sim ilarity

data of Experiment 14 provide a second , independent estimate of

these locations.

Consider the first estimate. Category coordinates (in a

normalized space) obtained from the potential function analysis

are presented for the Tempo and Quality features in columns 6 and

7 of Table 7. These coordinates correspond closely to the

centroids computed from the perceptual soace of Experiment 1 ,

r (15) .96 for both dimensions.

The second estimate was obtained from a multidimensional

scaling analysis of the subjective proximity data of Experiment

4. The S by S off—diagonal similarity matrix for each listener

was submitted to an INDSCAL metric scaling analysis. Separate

analyse s were performed for the two groups. In both cases ,

listener rat ings were well approximated by inter— stimulus

distances in a two—dimensional conceptual space (the

two— dimensional solution accounted for approximately 82 and 90%

of the variance for the Tempo and Quality groups , res pec tively).

Furthermore , the categor y coor di nates reveale d in thi s anal ysis

(columns 8 and 9 of Table 7) correspon d reasona b ly well to the

category centroids , r(15) .92 and r (15) = .96 for Tempo and

Quality, respectively. These data clearly indicate that the

prototype assumption is reasonable in the present experiment.

Additional research would obviously be necessary to evaluate the

assumption for the general case .
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IV. GENERAL DISCJSSION

The primary purpose of the present study was to examine the

relation between the feature extraction and deci sion stages in

the classification of complex acoustic patterns. Several

conclusions were indicated by our findings. First , the

multidimensional scaling analysis of sixteen amplitude modulated

noise signals presented in Experiment 1 revealed two perceptual

features: Tempo——corresponding to the signal modulation

fre quency , 3nd Qual ity——corresponding to signal attack. The

results suggested that perceptual differences in signal Quality

were more closely related to the percent attack (i.e., the

proportion of each period spent in attack) than to the absolute

duration of the attack. In other words , constant physical

differences in attack become smaller perceptually as the

modulation rate increases. This interpretation parallels Warren

and Ac k roff ’ s (1976) finding that listeners are limited in their

ability to resolve brief—duration (less than 200 msec) individual

components of repeating auditory patterns. Although overall , the

resul ts of Experiment 1 were not surprising , considering the

highly struc tured test st imul i , the analysis did provide a

precise quantitative characterization of the underlying feature

space.

Second , the decision model outlined above was shown to

provide a reasonable fit to the classification data of Experiment

2. The model assumes that the decision process operates on the

output of the feature extraction stage. Since the feature

extraction process is assumed to be noisy, the decision processor
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must operate in the presence of uncertainty. In the model , this

uncertainty is represented by bivariate — Gaussian likelihood

functions centered at the centroid for each category in the

perceptual space. The decision processor simply compares the

probability of each category given a particular stimulus

(Equation 2) to determine its classification. An important

assum ption of the model is that listeners can perform a

fine—tuning of the feature extraction stage to selectively

increase the importan ce of par ticular features in the d eci sIon

process. In the model , the effect of the tuning process is

represented by a decrease in the variability of the likelihood

funct ions. Selective tuning involves the reduction of’

variability along one dimension relative to another.

Bot h ov erall and selec tive fea ture tuning were observe d in

the present experiment. As listeners gained experience in the

tas k, var iability on both features decreased . In the model , this

overal l tuning accom pan ies the learn ing process where listeners

reduce their overall uncertainty about the two signa ’~. parameters.

As learning progresses , the listener observes that the two

features are not equally important in discrimin ating among the

eight categories. At this point selective tuning occurs to

reduce the variability of the more important feature relative to

the less important one.

These results are consistent with a similar attentional

phenomenon observed by Watson and his associates (Watson , Kelly,

& Wroton , 1976) in the discrimination of word—length tonal

patterns. Each pattern consisted of a sequence of ten individual

—-, —.-~—-----— -~ -
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40—msec tones. Watson et al. (1976) noted that the listeners ’

ability to resolve fre quency d iff erences in ind iv idual components

is g rea tly improve d when they know wh ich com ponent is likel y to

differ. In fact , under con di tions of minimal uncerta int y , their

listeners could discriminate frequency differences in individual

components of tonal sequences almost as well as they could in

isolated tones. They discuss these findings in terms of a

“spectral and temporal focus ing of attention” , and suggest that

listening to compl ex auditor y patterns ma y be analogous to

looking at a complex picture. In the same way that viewers may

focus on various aspects of a picture , listeners may attend to

var ious aspects of a complex acoustic pattern. In both cases ,

knowin g where to “look” for likely differences can lead to

improved performance.

In the present study, listeners learned to selectively focus

the ir attent ion on the more important of the two auditor y

dimensions. The data further suggest that selective feature

tunin g is not an all— or—none process since listeners did not

immediately and exclusively minimize variability on the more

important feature. Rather , it appears that the total amount of

fine tuning that can occur is limited at any point in time. One

factor that influences this limit is the amount of listener

experience in the task——as listeners gain additional experience ,

an increased amount of fine tuning can occur. Of particular

interest is the strategy that listeners use to allocate their

limited attention across the two dimensions. Our data suggest

that listeners employ an optimum processor strategy to determine
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the extent of fine tuning to apply to the two features. In other

words , they select a distribution of emphasis across the two

dimensions that nearly optimizes their probability correct , given

the overall limit on the amount of focusing that can occur . This

conclusion is similar to that reported by Goldstein (Goldstein ,

1973; Gerson & Goldstein , 1979) in his work on periodicity pitch

perce pt ion.

The above results indicate that listeners have considerable

flex ibility in their feature extraction processes. A flexible

fea ture ex trac tion process of thi s sort can rea dily ad apt to

changing task demands. In the present study, for exam pl e , a

clear di fferen ce in rela ti v e fea ture importance or sal ience was

observed in the similarity judgment and classification tasks . In

Experiment 1 where the data were obtained in a pairwise

com par ison proce dure , listeners tended to emphasize signal

Quality relative to Tempo (46 and 23% of the variance ,

respectively). Quite a different picture emerged in Experiment 2

where the listeners were trained to classify the sounds into

eight categories. In this case the relative subjective

importance of the two features reflected the cr iter ia used by the

experimenter to determine the eight categories. In Experiment 14

when listeners rated category similarity from memory immediately

following their classification training, one might have ex pected

the relative feature salience to parallel that observed in the

classification task. However , somewhat surprisingly, the

findings more closely paralleled those of Experiment 1.

Listeners in both groups strongly emphasized Quality in comparing

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
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categories from memory (28 and 55% for the Tempo group, 21 and

69% for the Quality group). It appears , then , that when

com par ing st imuli in a similarity judgment task , listeners tend

to emphasize signal Quality relative to signal Tempo regardless

of whether the signals are actually present or not. These

f indi ngs clearly stress the role of tas k fac tors in d eterm ining

feature saliency.

Overall , the above f ind ings suggest that the fea ture

ex traction and decision stages interact—— the decision outcome

influences the fea ture ex tract ion process through the

hypothesized feature tuning process. Although a precise

specification of the feature tuning process is not possible at

this time , it is clear tha t any future theore tical trea tment of

auditor y c lassif icat ion mus t ad opt a more dynamic v iew of the

feature extract ion pro cess than has been the case tra di t ionally

(cf. Howard & Ballas , 1978).
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F OOTNOTES
1Listeners hear d the st imulus  pa irs un der ea ch of three

conditions blocked on successive days: left—ear monaural ,

right—ear monaural , an d bin a u r a l .  Thi s fac tor was inclu ded for

other purposes , and since a preliminary analysis revealed that

dat a from the three presen tat ion con di t ions were id en ti ca l , the

distinction will not be considered further.

2For pur poses of com par ison , these d ata were al so a n a l y z e d

with the ALSCA L nonmetric individual differences multidimensional

scaling program (Takane , Youn g & de Leeuw , 1977). The resulting

twc—~ i~~ -isional stimulus space was alnost identical to that

obtained in the INDSCAL analysis (Pearson product—moment

correlation was r (15) = .999 for both the Tempo and Quality

dimensions).

3In the present experiment each category was made up of only

two adjacent stimuli in the feature space. Consequently it is

virtually impossible to distinguish the proposed prototype model

from any of a num ber of reasonable alternatives (cf. Reed ,

1972).

4A formally equivalent perspective would be to assume fixed

signal uncertainty (i.e., the likelihood distribution for each

category would have a fixed , identical standard deviation , a , on

each dimension) , and a variable normalized weight vector

WQ ) , U WU  = 1.0) that determines the relative

importance of the two features. For this case the exponent term

in Equation 1 becomes

—1/2(f — 

~~~~ 
WV 1

~(f’ —
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where W = wI , and V 01. Here , the listener is assumed to

adjust the we igh ts for the two fea tures by some selec ti ve

attentional process. As the attentional weight for one feature

increases rela ti ve to the other , that feature p lays an

increasingly important role in the decision process. From this

point of view , an increase in a saliency weight corresponds to a

decrease in the standard deviation parameters (i.e., °i c
~a ~

di scusse d in the tex t .
5When the a priori probabilities are equal as in this case ,

a decision process based on the a posteriori probabilities is

equivalent to a decision process based on the likelihoods. The

former approach is used here for generality.

61n our case the follow ing poten tial funct ion was use d

) = exp(— II! — 
!~PII 2

where 11111 designates the Euclidean norm .

_ _ _ _ _ _  _ _  _ _ _ _ _  _ _ _  — ~~~~~~~~~~~~~~~~~~~
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