
___  - -

‘-~k~ - - __________

-
~~

9

1EVE~
• FEATURE SELECTION IN AUDITORY PERCEPTION

Q
C~)

w James H Howard , Jr and James A Ballas
U

ONR CONTRACT NUMBER N00014—75—C—0308 ~
C-,

H~~~~c~
D DC

Technical Report ONR-78-5 7 i~~ 
i•

• Human Performance Laboratory - 

‘

~~

— F
Department of Psychology

The Catholic University of America

July, 1978

-d

Approved for public release; distribution unlimited .
• Reproduction in whole or in part is permitted for any

purpose of the United States Government.

78 08 31 O4~______ -- —- 
— 

- t -

~~~ 

—

— ~~~~~~~~~ ______ ~~~~ ____



F ~~~~-.-,.- -~~~~~•~~ ‘—.

Unclassified (~)~7~~~~~ :g,/
SECURITY CLASSI FICATION OF TIllS PAGE (IPli si, Dot. £n1 s.d) 

__________________________________

READ !NSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETiNG FORM

I. RE~~ORT NUMSER

ONR—18. 5 
12. 

GOVT ACCESSION NO 3. RECIPIENT S CATALOG NUMSER

T ‘~~~~~~~~~ 
-

~~~~~~~ COVERED4. TITLE (mid SubtItI.)

“~V FEATURE SELECTION IN AUDITORY PERCEPT
_ _ _  

c~ ~nica1,~e~~ t )
4. PERFORMING ORG. REPöWI NUMSER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMSIR(I)

~ ~~~~mes H~,~4ioward, Jr. ~~~ James A ./BallasJ 

~1 ~~~~~~~~~~~~~~~~
4. PERFORMING O RGANIZA T ION NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJE CT . TASK

AREA A WORK UNIT NUMBERS
The Catholic University of America
Washington , D. C. 20064 NR 197—027

REPORT DATEII. CONTROLLING OFFICE NAME AND ADDRESS ______________

Engineering Psychology Programs , Code 455 ~ __________________________

13. NUMKI’~ 6r PAGOff ice of Naval Research 
~~~~~~

._.

II. MONITORING AGENCY NAME S ADDRESS(if diff .,.nt from Controll ing OffI cs) IS. SECURITY

Unclass if led
IS.. DECL ASSI FICAT IOP4/ DOWNGRAO ING

SCHEDULE

I4. DISTRIBUTION STATEMENT (of this R.port) 
-

Approved for public release; distribution unlimited.

17. DIsT RIB UT ION STATEMENT (of A. .b.traCt .nt.rod in Block 20. if dIff.esn l from Rspovi)

IS. SUPPL EMENTA RY NOTES

• IS. KEY WORDS (Conthw. on ,s..r.. aid. if n.c... y mid ldsntit~ 5). block masb.t)

Auditory perception 

I
Feature selection
Feature extraction
Auditory pattern recognition

A BSTRACT (CanUnu. mi r•vaio aid. If aic... v aid Idont S& 5 blaik nu b.r)

~QFeature extraction plays a fundamental role in most theories of pattern
• recognition, but despite its importance, the extraction process is not

well defined. Two contrasting .views of feature extraction can be
identified, one which emphasizes Invariant feature detection and one

approach assumes that the auditory syst~n is equipped with finelytuned feature detectors that respond to specific stimulus propertles._—~~~ 
7which emphasizes flexible feature selection. The invariant detector

~~~~ FORM

~ 1473 £oitiO~ OF I NOV 4$ I$ OBSOLETE 
Unclassified

S/N 0lO2~O I4 U0 I I _____

08 31 046
SECURITY CLAISIPICATION OF THIS PA

— .

~~ 
.~



______- - —~ _ _ _ _ _ _ _ _ _ _ _ _ _

Unclassified
..L.. RITY CLASSIFICATION OF THIS PAGE(WIl ai Oat. EnI.rod)

n this view, stimuli are described in terms of property lists of specific
features. In contrast, the more flexible, process—oriented approach
assumes that the auditory system is equipped with a set of rules and A
criteria for feature selection. In this view, the important perceptual
features reflect the underlying structure of the stimuli. Research on
tintre and pitch perception has supported a flexible , process-oriented
approach. The flexibility 0f this approach offers particular advantages
in that it can explain the effects of stimulus and task context on
performance. Both types of context influence the perception of complex
sounds. Stimulus context affects the structure of the stimulus space
and consequently. the features that would be extracted by a structure
preserving transformation. Task context affects the relative importance
of features in making similarity judgments and classification decisions.
The two approaches to feature extraction have important implications for
the development of auditory pattern recognition theory

ACCESSION for

NTIS W~~e Sec’ion ~~
DI)C B S’ ion o
tJ NAMNO~ ‘ I  o
IU ST I }C~ 1

BY
I~ RlC T’~ 

.
~~~~~ 

..

A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

L Unclassified
SECURITY CLASSIPICA1ION OP THIS PAOI(WIlmi Dot. 1ntiai~~ ~i

- 
- . 

~~~~~~~~~ 
- — -  

~~~

•

. 

.- 

—

•~~~~ - -~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- .-



_______ — ---- -~~~~~~~
- —— •

~~~,-.-_- -~~ .~,._..:-—
-
~ 

-.---- ‘ — - 

~~~

-..‘—— -
~~~~~~~~

•
~

•—-.

The feature extraction process plays a fundamental role in

many theoretical treatments of auditory pattern recognition . At

some early stage in the recognition process , the perceptual

representation of a stimulus is broken down into a set of

elementary properties or characteristics. The central role of

this stage can be seen in Figure 1.

Insert Figure 1 here

In this characterization of the pattern recognition process, the

preliminary analysis stage produces a relatively unprocessed

representation of an incoming stimulus. At this point the

representation is thought to contain considerable noise and

redundancy. The output of this stage is then transformed by the

feature extraction stage into a relatively small set of

distinctive features——the basic building blocks of the

recognition process. As Anderson, Silverstein , Ritz , and Jones

(1977) have noted , “Distinctive features are usually viewed as a

system for efficient preprocessing , whereby a noisy stimulus is

reduced to its essential characteristics and a decision is made

on these” (p. 429).

Quite clearly, feature extraction involves information

reduction . Some information in a pattern is retained while other

information is discarded . Ideally, the set of distinctive

features should uniquely specify the stimulus , preserv ing or

enhancing perceptually—important differences among stimuli, and

reducing or eliminating perceptually—unimportant differences.
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The significance of feature extraction in auditory recognition

should be obvious. Since the feature representation is efficient

• both in terms of dimensionality and redundancy, the subsequent

decision process can be undertaken with minimal effort and

optimal reliability . On the other hand , an ineffective set of

distinctive features not only can increase the amount of

subsequent processing required , but, by definition , will also

make satisfactory performance impossible.

Despite its central importance as a theoretical construct,

the feature extraction process has not been well—specified in the

literature. No true psychological theory of feature extraction

exists. When we say that a stimulus is reduced to its “essential

elements,” what do we mean? How are these crucial elementary

units determined? Implicit in the above discussion is the

assumption that a feature tuning process exists whereby a set of

distinctive features is defined . In this presentation we focus

on possible mechanisms that underlie the feature tuning or

feature selection process in human auditory, recognition .

Feature Selection Processes

As outlined above, the feature selection problem involves

picking a set of distinctive features from the vast set of all , 
-

possible features. The problem seems clear in the case of a

statistician who is constructing an algorithm to classify a set

of acoustic patterns. What acoustic cues or combinations of

acoustic cues should be considered? Indeed , the ideal features

may be some complex function of a number of more primitive

spectral measurements. Given a set of preliminary measurements
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and the desired categorization of the stimuli, the statistician

must select a set of distinctive features bearing in mind both

performance and economic (i.e., “how much will the feature

extraction process cost?”) considerations (cf. r4eisel, 1972).

The feature selection problem for the psychologist has much

in common with that of the statistician. However, instead of

actually determining a set of “efficient” distinctive features

for human auditory recognition (although this may be of interest

in some applied contexts), it is our task to identify the

features or the feature selection process that human listeners

actually use.

Although a number of specific “natural” auditory feature

selection processes can be proposed , two contrasting views are

implicit in the literature. The first possibility is that Nature

has selected an optimal Set of distinctive features through

natural selection and built specific mechanisms , finely tuned to

detect these features, into our auditory systems. The second

view affords more flexibility. Perhaps Nature has built the

feature selection process into our auditory systems. In other

words, we may have internalized a set of rules and processes that

enable us to establish what the distinctive features should be in

any particular stimulus context. Both views are considered in

more detail below.

The property—list ~~~roach. The first view argues that man

is equipped with a set of specific feature detecting mechanisms.

In terms of auditory pattern recognition , this approach places an

emphasis on the feature detectors themselves. An auditory

• . -‘
,
• ... . . . f ‘~ . -

_ _ _ _ _ _  ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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feature extractor is, from this perspective , a filter—like device

that monitors the incoming stream of sensory information for

particular stimulus properties. In short , each detector is tuned

to “look for ” a particular stimulus prope rty , and a set of

feature detectors determine a property list for the stimulus. In

the extreme , this seems consistent with previous

neurophysiological investigations of single unit respondiflg in

sensory systems. The first relevant evidence emerged many years

ago from the seminal work of Lettvin, Maturana, McCulloch , &

Pitts (1959) with the frog ’s visual system . Their pioneering

research revealed the presence of highly selective neurons in the

visual periphery tuned to select stimuli of particular relevance

for the animal ’s survival. Moving edge, overall illumination ,

and the highly—popularized “bug ” detectors were among those

discovered . It seems that Nature equipped the frog with special

detectors for virtually everything it needs to know about its

visual world. Similar work soon followed , investigating feature

detectors in both the visual (Hubel & Wiesel, 1962) and auditory

systems (Whitfield & Evans, 1965). This research stimulated

considerable speculation about hierarchical decision mechanisms

where feature information is combined and re—combined , ultimately

leading to classification (cf. Weisstein , 1973). When extended ,

this line of reasoning leads us to Sherrington ’s (1941) notion of

a supreme , “pontifical” cell whose response signals the presence

of a particular complex pattern. Although he opted for a more

democratic system of “cardinal” cells in place of the all—knowing

pontiff , Barlow (1972) succinctly summarized this approach in his

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~



- -~ 
, , — r~~~~~—

-
~-•-~~ —~~~

--- ~-~~- r  - ‘

Feature Selection Page 6

specification of a “neuron doctrine for perceptual psychology.”

A good example of this sort of system in human audition is

the set of distinctive features and feature detectors

hypothesized to underlie human speech perception (Fant, 1973).

Here a relatively small number of distinctive features have been 
-
.

described that may be used to uniquely characterize individual

phonemes. A voicing detector, for example, would monitor the

speech stream for cues that distinguish between voiced and

unvoiced stop consonants. In an initial study, Eimas & Corbit

(1973) used a psychophysical procedure to obtain evidence for the

existence of voicing detectors, finely tuned to a relatively

narrow range of voice onset times (i.e., formant onset

asynchronies in the speech signal). More recent work has

generalized their findings to include the psychophysical

investigation of a variety of linguistic as well as

non—linguistic feature detectors in the human auditory system

(Cooper, 1975).

The orocess—oriented ~~~roach. The second alternative

assumes that man has internalized the feature selection process

itself. In contrast to the property—list approach, the important

“features ” in a complex sound reflect whatever structure exists

in the output of the preliminary analysis stage. In this sense,

Nature has endowed us with a set of rules and criteria for

feature selection rather than with highly—tuned detection

mechanisms.

In arguing that the feature selection process is built in,

we necessarily assume that certain general principles exist that

• —- •-- - - - — - _—-—— -
~~~~
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can characterize feature selection across a variety of stimulus

and task conditions. These invariants include both the selection

criteria employed and a mechanism S for applying them. In the

present discussion , we assume that the feature selection process

attempts to reduce the dimensionality of the stimulus

representation while preserving as much of the stimulus structure

as possible. An example of this approach may be seen in

Wightman ’s (1973) pattern transformation model of periodicity

pitch perception. The model assumes that the auditory system

performs two successive Fourier transforms (equivalent to an

autocorrelation in the time domain) to extract periodicity

information from a complex tone. Since signal periodicity

reflects the frequency relations among individual soectral

components , the proposed transformation analyzes the relational

structure of the stimulus. Uttal (1975) has outlined a similar

autocorrelational model for visual pattern detection.

Implications for auditory percept ion.  The in ten t ion  of this

discussion is not to suggest that one or the other of these views

is necessarily correct——at this point, the most nearly correct

view would seem to include elements of both perspectives.

Rather, we consider these particular approaches because they

occupy opposite ends on a continuum of feature selection

flexibility. This difference has a number of implications for

auditory recognition theory, and in particular , for recognition

processes in the perception of the timbre . of complex sounds. As

Plomp (1976) has noted , timbre is generally defined as “that

attribute of auditory sensation in terms of which a listener can

0~ 
-
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judge that two steady—state complex tones having the same

loudness and pitch, are dissimilar ” (Pp. 85—86). In other

words, timbre is everything left over after we take away loudness

and pitch. Quite clearly, timbre does not describe a single

perceptual attribute of sound , but rather, it represents a family

of perceptual attributes. One would be entirely at ease in

repor ting that a comr~lax sound has a high pitch or is very loud ,

but to attempt a simple description of this sort for timbre would

seem ridiculous. If asked to discuss the timbre of a sound , the

listener would likely resort to a number of adjectives , “it is

coarse, pleasant, bright, etc .” (von Bismarck, 1974). But even

given this verbal flexibility , the listener would find it

difficult to adequately describe the timbre of a complex tone.

If one were to adopt a property—list approach to the feature

extraction stage for timbre perception, it would be necessary to

specify a list of important timbre attributes. However, it

should be clear that any list of possible timbre properties or

features would be very long indeed . In this case, the more

flexible process—oriented approach to feature extraction would

seem most appropriate. Rather than searching for the set of

distinctive features that would enable the listener to

distinguish all possible timbres, in this approach we attempt to

specify a process that can characterize the relations among

individual components in the amplitude and phase spectra of

complex sounds.

In the remainder of this paper we examine three experiments

whose findings suggest that considerable flexibility exists in

____________ • - - .“ p
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the feature extraction process. In all three experiments, the

features that listeners use in perceiving the timbre of complex

sounds were investigated . The results of the first two

experimen ts serve to emphasize the importance of the stimulus

population in determining the timbre attributes that listeners

use in comparing complex sounds. The finding s of the third

experiment illustrate the role of task factors in the feature

ex traction process.

S t i m u l u s  E f f e c t s  in Fea tu re  Ex trac tion

In the above d iscussion we ar gued that the fea ture

extraction process in timbre perception may be more appropriately

viewe d as a struc ture analyzing process than as a fea ture

detection process. In order to evaluate this hypothesis

empir ically it is necessary to examine the output of the feature

ex trac tion stage , and to relate th is fea ture represen tation to

the known properties of its input. Although the feature

represen tation is obviously not d irec tly observable, it may be

inferred using a variety of psychophysical procedures. In

particular, multidimensional scaling has emerged as a useful

method for identifying the underlying psychological structure of

complex sounds (Plomp , 1976). Typically, listeners are asked to

provide pairwise or triadic dissimilarity judgments on the set of

signals of interest. A specific multidimensional scaling

algorithm is then applied to decompose the resulting subjective

proximity matrix into an n—dimensional metric space in which each

stimulus is represented as a single point or vector. Providing

that an interpretable solution with satisfactory stress exists ,

~ 

:‘~~~~~~~



__________________  — - -- -~~~•— - - - . - - - - ---~~ -

Feature Selection Page 10

it is generally assumed that the dimensions in the psychological

stimulus soace reflect those features that the listeners employed

in comparing the stimuli. In other words, it is at least

implici tly assumed that the scaling methods provide an

approxima te inverse to the later stages of the recognition

process (cf. Figure 1). If we are willing to make certain

assumptions about the information available after the preliminary

analysis stage , then we have the input/output information

necessary to speculate about the feature extraction process.

In the first systematic application of these methods to

audi tion,  Plomp and his associates (Plomp , 1970) compared the

timbre properties of nine musical instrument sounds to their

corresponding spectral structure. A three—dimensional stimulus

space was revealed in a multidimensional scaling analysis of the

subjective similarity data for these stimuli. The configuration

of interstimulus distances in this perceptual space correlated I

highly wi th the corresponding distances in a three—dimensional

physical space obtained in a physical analysis of these sounds.

Although Plomp was primarily interested in determining whether a

correlation existed , for our present purposes, the specific

methods used to obtain the physical space are of particular

interest.

Specifically, the physical analysis was based on information

that could be reasonably thought to approximate that available to

• the auditory feature extraction process. Recognizing the limited

spectral analyzing ability of the human auditory system (Zwicker,

Flottorp, & Stevens , 1957), Plomp obtained 1/3—octave band—level

~~ -pjj~~aw~ ~------ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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measurements for each of his complex sounds. A

principal—components analysis was then performed on these

spectra. The results of this analysis revealed that each of the

nine stin:uli could be characterized in terms of three spectral

attributes with very little loss of information. If we are

willing to assume that the 1/3—octave spectrum approximates the

output of the preliminary analysis stage depicted in Figure 1,

then these find ings suggest that the listener ’s feature

extraction process may be somewha t s imilar to a

principal—components analysis.

This conclusion is entirely consistent with our hypothesis

that ‘he feature extraction stage in timbre perception involves a

structural analysis of the stimuli. More specifically, the

principal—components analysis may be thought of as a structure

preserving transformation that maps stimuli from one space into

another of lower dimensionality . The first principal component

is simply a new axis in the original space (in this case the

measurement space spanned by the 1/3—octave band—levels) that

accounts for most of tne variability in the data. In other

words, the set of projections of stimuli in the measurement space

onto the first principa l component has maximum variance . The

second principal component is an axis orthogonal to the first

that accounts for most of the residual variance and so on. [In

practice, the principa l components are determined by selecting

the eigenvectors of the covarlance matrix for the stimulus set

that correspond to the largest elgenvalues (Harris, 1975)1.

In this view , then, the feature extraction process selects a

~~~1T __________  ~~~ ~~~~~~ 
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subspace of the original space that preserves as much of the

variability among stimuli as possible. It is clear that these

features (i.e., the principal components) reflect the structure

of the stimulus set, and therefore we would expect the important

perceptual features to vary dramatically depending on the

stimulus context.

This finding is given some generality by a similar resul t

obtained in our laboratory. In our experiment listeners were

asked to rate the pairwise similarity of eight passive sonar

recordings. Two perceptual dimensions were extracted from these

data using a metric multidimensional scaling procedure (Howard, I
1977). The results were then compared with the outcome of a

physical analysis of the stimuli that paralleled the analysis

described above. The 1/3—octave spectrum was obtained for each

of the eight sounds. These data were then submitted to a

principal—components analysis. Since most of the variability

could be accounted for by the first principal component , it was

concluded that the steady—state characteristics of these sounds

could be adequately summarized by a single measurement. This

derived physical attribute closely approximated one of the

perceptual dimensions obtained in the scaling analysis. (The

other perceptual dimension revealed in the scaling analysis

reflected a temporal property of the sounds and is not directly

relevant to this discussion.) A closer examination of the

specific signal ~alues on this extracted dimension suggested that

it summarized the overall shape of the spectra, and in

particular, the degree of bimodality of the spectra. When asked

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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to describe stimulus differences along this dimension , listeners

used such terms as “this one is more uniform ” or “in this one

there seems to be more than one sound present.”

In this experiment, as in Plomp ’s, it appears that a

structure preserving transformation reasonably approximates the

analysis performed by the feature extraction stage.1 Similar

finding s have also been reported ‘for the analysis of steady—state

vowel spectra (Klein, Plomp, & Pols, 1970). Although these

experiments were conducted for another purpose , the finding s are

generally consistent with the present hypothesis that the feature

extraction stage for timbre perception is best viewed as a

structure analyzing process. Since the principal components are

simply weighted linear combinations of the more basic

measurements (in this case the 1/3—octave band—levels) , it is

clear that we could also develop a weighted property—list scheme

to account for these findings. In such a system, the listener

would adjust the measurement weights to develop “features ” that

maximally discriminate among the stimuli. Nonetheless, the

objectives of this system are more naturally discussed in terms

of the structure analyzing approach.

The major emphasis of the above discu.ssion is that feature

extraction is both efficient , in a dimensionality reducing sense,

and flexible, in that it readily adapts to the stimulus context.

We have argued that  a principal—components analysis  shares these
‘ character is t ics  and is therefore  a possible model for the feature

extraction process in timbre perception. We would like to

emphas ize, however, that a variety of other structure preserving

I

_ _ _ _ _ _  
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transformations are also adequate. For example, we could select

a multidimensional scaling algorithm that would reduce the

dimensionality while preserving the configuration of

inter—stimulus distances in the measurement s~ace.

Task Effects in Feature Extraction

In the experiments outlined above, listeners were simply

required to evaluate relative stimulus similarity . In this

situation there are no correct or incorrect judgments. It

therefore seems reasonable that listeners would employ a feature

extraction transformation that preserves as much of the spectral

information in the stimuli as possible. It is obvious, however,

that in a classification task where performance is evaluated in

terms of external criteria, the requirements of the feature

extraction process would be quite different. As Figueiredo

(1976) has pointed out, the performance of the entire system must

be considered when selecting the optimum features in this

situation . We have already seen in Getty ’s paper (Getty, Swets,

Swets, & Green , in press) that observers emphasized different

features in a visual classification task than they did in a

visual comparison task. The experiment described below (Howard ,

Ballas, & Burgy, 1978) demonstrates a similar effect in an aural

classification situation , and illustrates the role of task

factors in feature extraction .

The stimuli investigated in this study consisted of sixteen

broadband noise signals amplitude modulated by sawtooth waves of

varying frequency and attack . Four levels of modulation

frequency (4, 5, 6, and 7 Hz) and four combinations of

_ _ _ _
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attack/decay (20 and 40 msec) were used . Eight listeners learned

to classify the sixteen signals on the basis of one of two

eight—category partitions. The two partitions were selected to

emphasize one or the other dimension by requiring listeners to

discriminate among all four levels of this dimension and only two

levels of the other dimension. The two partitions are presented

• schematically in Figure 2. Here we have labeled the perceptual

dimension corresponding to attack “Quality, “ and the perceptual

dimension corresponding to modulation . frequency “Tempo.”

Insert Figure 2 here

Clearly, the features are not of equal importance in the two

partitions. Listeners in the Quality group were required to

discriminate relatively small differences in attack, whereas

listeners in the Tempo group were required to discriminate

relatively small differences in modulation frequency . The

confusion data from this experiment were analyzed in terms of a

probabilistic model of the classification process.

Our model assumes that the decision stage operates on the

output of the feature extraction process and classifies stimuli

so as to maximize the probability correct (cf. Howard et al,

1978). An important assumption of the model is that, with

feedback , listeners perform a selective tuning of their feature

extraction processes. Theoretically, the tuning process

determines a weighting factor for each of the two features.2

~~ Selective tuning occurs when the weighting factor for one

• - •-•—
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Figure 2. Schematic representation of two partitions of the

sixteen signals into eight categories.

I
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dimension increases relative to the other.

Weighting parameters for each feature were estimated for

individual listeners by fitting the model to the observed

confusion matrices using a standard gradient technique. The

• weights obtained for each practiced listener are displayed in

Figure 3.

Insert Figure 3 here

It is evident that our listeners responded to the demands of

their classification task. Listeners in the Tempo group had

greater weights for signal Tempo than signal Quality, whereas the

opposite was true for the Quality group. It may also be noted

that no individual, with the possible exception of listener PH,

maximized the weights for both features simultaneously. We

interpreted this finding to suggest that, at least in the context

of this experiment , the total amount of feature tuning that can

occur at any point is limited . Since we assumed that feature

• tuning reflects the operation of a selective attentional

mechanism , this interpretation is consistent with recent limited

capacity views of human attention (e.a., Kahneman, 1973).

Given an overall limit on the amount of feature tuning that

can occur, we wondered what strategy the listeners used to

determine how much emphasis to place on each feature. In our

decision model we assumed that listeners attempt to maximize the

probability correct. Therefore , we investigated the possibility

that the feature weights were also determined on this basis by
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estimating the theoretically optimal weights for each practiced

listener. In computing these values, the sum of the two observed

weights was taken to reflect the overall attentional effort

expended by each listener. This overall value was then

apportioned between the two features so as to maximize the

average probability correct. The normalized obtained and optimal

weights reflecting the relative importance of signal Tempo for

each listener are displayed in Figure 4.

Insert Figure 4 here

Although in general the obtained weights are reasonably well

approximated by the optimal values (the overall Pearson

product—moment correlation , r (l5) .98), a small but consistent

discrepancy is evident. Six of our eight listeners showed a

tendency to overemphasize the more important of the two features.

Nonetheless, it is clear from these findings that listeners

show considerable flexibility in the emphasis they place on

individual perceptual features in an aural classification task.

With practice , feature tuning processes increase ~he importance

of both features. More importantly, for experienced listeners

the tuning process appears to operate selectively with relative

feature emphasis determined by a strategy that attempts to

maximize the overall probability correct. Of further interest is

a comparison of these findings with the results of two

multidimensional scaling studies involving the stimuli described

above. In the first, an independent group of 30 listeners rated
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the pairwise similarity of all sixteen signals. A

mul tidimensional scaling analysis of these data revealed that 22

of the 30 participants placed a greater emphasis on signal

Quality than Tempo. In the second experiment , the observers from

the above classification experiment rated the pairwise similarity

of the eight stimulus categories they had learned . In this case,

only the category labels were provided , no signals were actually

presented . The data were decomposed into a “conceptual” space

where the dimensions corresponded to modulation frequency (i.e.,

rempo) and attack (i.e., Quality). Although we had expected the

subjective importance of these dimensions to be strongly

influenced by the prior classification training (i.e., Tempo more

important for the Tempo group and Quality more important for the

Quality group), listeners in both groups placed a greater

relative emphasis on signal Quality. This finding is more in

line with the results of the first scaling study than with the

results of the classification study. It appears , therefore, that

in the similarity rating task , listeners tended to emphasize

Quality more than Tempo, whereas in the classification task they

emphasized the dimension that would lead to optimal performance.

This result further illustrates the importance of task factors in

determining the relative subjective importance of stimulus

features.

Conclusion

As indicated in the introduction, the feature extraction

process plays a central role in most theoretical approaches to

auditory pattern recognition. Incoming stimuli are analyzed in

L -



_ _ _ _  ‘~~~~~~~

Feature Selection Page 22

terms of a set of distinctive or characteristic features that

form the basis for all subsequent perceptual processing .

Nevertheless, relatively little research has focused on the

selection and tuning processes whereby these essential perceptual

properties of stimuli are defined . In this paper we have

considered two contrasting views of the feature selection

process. On the one hand , it is possible that finely—tuned

stimulus property analyzers exist in the human auditory system .

As Fant (1973) has pointed out , this property—list or

detector—oriented approach is by definition context free . Some

property analyzers will respond to a specific stimulus whereas

others will not. In contrast, it is also possible that the

feature extraction process is highly context—sensitive . In this

latter process—oriented approach , feature selection is viewed as

a continuous on—going process. The distinctive features used to

charac terize a particular sound emerge from a structural analysis

of the more basic psychophysical measurements obtained by the

auditory system.

Overall, the findings outlined above appear consistent with

the more flexible, process—oriented approach to feature

selection. In the comparative judgment task listeners are

required to evaluate stimulus similarity . Since no specific

comparison criteria are typically indicated , listeners need only

• know something of the structure of the stimulus set in order to

make their judgments. The features identified in the similarity

rating experiments outlined above generally reflect the spectral

characteristics of the stimuli. We argued that in these studies ,

• 
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the feature extraction process is most naturally viewed as an

on—going structural analysis of the low—resolution spectra

extracted from the stimuli by peripheral auditory mechanisms.

However, in the case of a classification task, a simple

structural analysis of the stimulus set is not sufficient. In

this situation , the assignment of stimuli to categories

effectively changes the important structural properties of the

stimulus set. Particular partitions of the stimuli serve to

emphasize some stimulus relations while de—emphasizing others.

We have argued that in this sort of task an additional feature

tuning process occurs that adjusts the relative emphasis placed

on the important structural features to accommodate the external

task constraints. Furthermore, the results of our classification

study suggested that the feature tuning process operates on a

limited—capacity basis, and that the fine—grained adjustment of

feature emphasis is based on a strategy that attempts to optimize

the probability correct. These findings emphasize the importance

of overall performance considerations in the feature extraction

process. In this sense, distinctive auditory features are tuned

not only to the stimuli, but also to the decision rule employed

• by the listener (Figueiredo , 1976).

Before closing we would like to offer a few caveats. First,

although our conclusions were derived from the find ings

summarized above, these experiments were not designed to

explicitly test the issues addressed in this paper. For this

reason our conclusions must be regarded as tentative and

speculative. No single experiment, for example, has enabled us

______ 
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to simultaneously examine the effects of both stimulus structure

and task demands. Similarly, we have not addressed the detailed

problem of how the feature selection process may operate on a

trial by trial basis. How might the proposed structural analysis

proceed in an incremental fashion? We have argued that in many

cases audi tory distinctive features are determined largely by the

stimulus context. What external and subjective factors determine

the relevant context in any particular situation? Quite clearly

the answers to these and other questions must await further

investigation. Experiments designed to address some of these

issues are presently underway in our laboratory.

Finally, it is important to remember that we are not

proposing that either of the two approaches we have considered is

necessarily “correct.” As we have indicated , these approaches

represent extremes on a continuum of possible feature selection

mechanisms . Although one may challenge the extreme property—list

position on logical grounds (e.1., Weisstein , 1973 ; Uttal ,

1978), a weighted property—list approach begins to resemble the

process—oriented view discussed above. Furthermore, we suspect

that it is impossible to distinguish between a modified

proper ty—list model and the pr.ocess—oriented model using only

psychophysical techniques. The distinction we have considered is

significant because of its impact on theory and , hence, on the

empirical questions that are appropriate to ask. A strict

property—list model would direct us to search for evidence

regarding invariant *uditory feature detectors, whereas a

process—or iented model would have us look for common principles

L ~~~~~ ‘
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- underlying feature extraction ~.cross a wide range of different

stimuli and tasks. Regardless of the specific view that

ultimately emerges as a primary solution to the feature selection

• 

problem , it is clear that future psychological research in

aud itory pattern recognition must address the fundamental

question of how distinctive auditory features are determined .
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Footnotes

11t should be emphasized that Plomp and his associates

• (personal communication , 1978) did not refer to the dimensions

extracted in their perceptual analysis as “features.” Rather, as

indicated earlier, they were primarily interested in determining

the degree of correlation between the configuration of stimuli in

the perceptual space and the steady—state spectra of the sounds.

our original presentation we actually represent the

tuning process as an adjustment in the variability of stimulus

likelihood functions. The weighting factors discussed here are

inversely related to the estimated standard deviations along each

dimension.
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