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The feature extraction process plays a fundamental role in
many theoretical treatments of auditory pattern recognition. At
some early stage in the recognition process, the perceptual
representation of a stimulus 1is broken down into a set of
elementary properties or characteristics. The central role of

this stage can be seen in Figure 1.

In this characterization of the pattern recognition process, the
preliminary analysis stage produces a relatively unprocessed
representation of an incoming stimulus. At this point the
representation is thought to contain considerable noise and
redundancy. The output of this stage is then transformed by the
feature extraction stage into a relatively small set of
distinctive features--the basic building blocks of the
recognition process. As Anderson, Silverstein, Ritz, and Jones
(1977) have noted, "Distinctive features are usually viewed as a
system for efficient preprocessing, whereby a noisy stimulus is
reduced to its essential characteristics and a decision is made
6n these" (p. 429).

Quite clearly, feature extraction involves information
reduction. Some information in a pattern is retained while other
information is discarded. Ideally, the set of distinctive
features should uniquely specify the stimulus, preserving or
enhancing perceptually-important differences among stimuli, and

reducing or eliminating perceptually-nnimpbrtant differences.
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Figure 1. Flow diagram of a four stage pattern recognition model.
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The significance of feature extraction in auditory recognition
should be obvious. Since the feature representation is efficient
both in terms of dimensionality and redundancy, the subsequent
decision process can be undertaken with minimal effort and
optimal reliability. On the other hand, an ineffective set of
distinctive features not only can increase the amount of
subsequent processing required, but, by definition, will also
make satisfactory performance impossible.

Despite its central importance as a theoretical construct,
the feature extraction process has not been well-specified in the
literature. No true psychological theory of feature extraction
exists. When we say that a stimulus is reduced to its "essential
elements," what do we mean? How are these crucial elementary
units determined? Implicit in the above discussion 1is the
assumption that a feature tuning process exists whereby a set of
distinctive features 1is defined. 1In this presentation we focus
on possible mechanisms that underlie the feature tuning or
feature selection process in human auditory recognition.

Feature Selection Processes

As outlined above, the feature selection problem involves
picking a set of distinctive features from the vast set of all
possible features. The problem seems clear in the case of a
statistician who is constructing an algorithm to classify a set
of acoustic patterns. What acoustic cues or combinations of
acoustic cues should be considered? 1Indeed, the ideal features
may be some complex function of a number of more primitive

spectral measurements. Given a set of preliminary measurements

e e
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and the desired categorization of the stimuli, the statistician 1

e,

must select a set of distinctive features bearing in mind both
performance and economic (i.e., "how much will the feature
; extraction process cost?") considerations (cf. Meisel, 1972).
The feature selection problem for the psychologist has much
in common with that of the statistician. However, instead of

actually determining a set of "efficient" distinctive features

for human auditory recognition (although this may be of interest
in some applied contexts), it is our task to identify the |

features or the feature selection process that human listeners

actually use.

Although a number of specific "natural" auditory feature
selection processes can be proposed, two contrasting views are
implicit in the literature. The first possibility is that Nature
has selected an optimal set of distinctive features through
natural selection and built specific mechanisms, finely tuned to
detect these features, 1into our auditory systems. The second
view affords more flexibility. Perhaps Nature has built the

feature selection process into our auditory systems. In other

words, we may have internalized a set of rules and processes that
enable us to establish what the distinctive features should be in

any particular stimulus context. Both views are considered in

more detail below.

The property-list approach. The first view argues that man

is equipped with a set of specific feature detecting mechanisms.
In terms of auditory pattern recognition, this app;oach places an

emphasis on the feature detectors themselves. An auditory
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feature extractor is, from this perspective, a filter-like device
that monitors the incoming stream of sensory information for
particular stimulus properties. In short, each detector is tuned
to "look for" a particular stimulus property, and a set of
feature detectors determine a property list for the stimulus. In
the extreme, this seems consistent with previous
neurophysiological investigations of single unit respondiag in
sensory systems. The first relevant evidence emerged many years
ago from the seminal work of Lettvin, Maturana, McCulloch, &
Pitts (1959) with the frog's visual system. Their pioneering
research revealed the presence of highly selective neurons in the
visual periphery tuned to select stimuli of particular relevance
for the animal's survival. Moving eage, overall illumination,
and the highly-popularized "bug" detectors were among those
discovered. It seems that Nature equipped the frog with special
detectors for wvirtually everything it needs to know about its
visual world. Similar work soon followed, investigating feature
detectors in both the visual (Hubel & Wiesel, 1962) and auditory
systems (Whitfield & Evans, 1965). This research stimulated
considerable speculation about hierarchical decision mechanisms
where feature information is combined and re-combined, ultimately
leading to classification (cf. Weisstein, 1973). When extended,
this line of reasoning leads us to Sherrington's (1941) notion of
a supreme, "pontifical" cell whose response signals the presence
of a particular complex pattern. Although he opted for a more
democratic system of "cardinal" cells in place of the all-knowing

pontiff, Barlow (1972) succinctly summarized this approach in his




Feature Selection Page 6

specification of a "neuron doctrine for perceptual psychology."

A good example of this sort of system in human audition is
the set of distinctive features and feature detectors
hypothesized to underlie human speech perception (Fant, 1973).

Here a relatively small number of distinctive features have been

described that may be used to uniquely characterize individual
; phonemes. A voicing detector, for example, would monitor the
speech stream for cues that distinguish between voiced and
unvoiced stop consonants. In an initial study, Eimas & Corbit
(1973) used a psychophysical procedure to obtain evidence for the §
existence of voicing detectors, finely tuned to a relatively
narrow range of voice onset times (i.e., formant onset
asynchronies in the speech signal). More recent work has
generalized their findings to include the psychophysical

investigation of a variety of linguistic as well as

non-linguistic feature detectors in the human auditory system
' (Cooper, 1975).

3
r The process-oriented approach. The second alternative ‘

assumes that man has internalized the feature selection process
itself. 1In contrast to the property-list approach, the important

"features" 1in a complex sound reflect whatever structure exists

LG

in the output of the preliminary analysis stage. 1In this sense,

Nature has endowed us with a set of rules and criteria for

feature selection rather than with highly-tuned detection
mechanisms.
In arguing that the feature selection process is built in,

we necessarily assume that certain general principles exist that 4
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can characterize feature selection across a variety of stimulus
and task conditions. These invariants include both the selection
criteria employed and a mechanism® for applying them. In the
present discussion, we assume that the feature selection process
attempts to reduce the dimensionality of the stimulus
representation while preserving as much of the stimulus structure
as possible. An example of this approach may be seen in
Wightman's (1973) pattern transformation model of periodicity
pitch perception. The model assumes that the auditory system
performs two successive Fourier transforms (equivalent to an
autocorrelation in the time domain) to extract periodicity
information from a complex tone. Since signal periodicity
reflects the frequency relations among individual spectral
components, the proposed transformation analyzes the relational
structure of the stimulus. Uttal (1975) has outlined a similar
autocorfelational model for visual pattern detection.

Implications for éuditorx perception. The intention of this

discussion is not to suggest that one or the other of these views
is necessarily correct--at this point, the most nearly correct
view would seem to include elements of both perspectives.
Rather, we consider these particular approaches because they
occupy opposite ends on a continuum of feature selection
flexibility. This difference has a number of implications for
auditory recognition theory, and in particular, for recognition
processes in the perception of the timbre of complex sounds. As
Plomp (1976) has poted, timbre 1is generally defined as "that

attribute of auditory sensation in terms of which a listener can

o vt A G
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judge that two steady-state complex tones having the same
loudness and pitch, are dissimilar" (Pp. 85-86) . In other
words, timbre is everything left over after we take away loudness
and pitch. Quite clearly, timbre does not describe a single
perceptual attribute of sound, but rather, it represents a family
of perceptual attributes. One would be entirely at ease 1in
reporting that a complax sound has a high pitch or is very loud,
but to attempt a simple description of this sort for timbre would
seem ridiculous. If asked to discuss the timbre of a sound, the
listener would likely resort to a number of adjectives, "it is
coarse, Dpleasant, bright, etc." (von Bismarck, 1974). But even
given this wverbal flexibility, the 1listener would find it
difficult to adequately describe the timbre of a complex tone.

" If one were to adopt a property-list approach to the feature
extraction stage for timbre perception, it would be necessary to
specify a list of important timbre attributes. -However, it
should be clear that any list of possible timbre properties or
features would be very long indeed. In this case, the more

flexible process-oriented approach to feature extraction would

seem most appropriate. Rather than searching for the set of
distinctive features that would enable the 1listener to
distinguish all possible timbres, in this approach we attempt to
specify a process that can characterize the relations among
individual components in the amplitude and phase spectra of
complex sounds.

In the remainder of this paper we examine three experiments

whose findings suggest that considerable flexibility exists in
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the feature extraction process. 1In all three experiments, the
features ' that 1listeners use in perceiving the timbre of complex
sounds were investigated. The results of the .first two

experiments serve to emphasize the importance of the stimulus

population in determining the timbre attributes that listeners
use in comparing complex sounds. The findings of the third
experiment illustrate the role of task factors in the feature
extraction process.

Stimulus Effects in Feature Extraction

In the above discussion we argued that the feature
extraction process in timbre perception may be more appropriately
viewed as a structure analyzing process than as a feature
detection process. In order to evaluate this hypothesis
empirically it is necessary to examine the output of the feature
extraction stage, and to relate this feature representation to
the known properties of its input. Although the feature
representation is obviously not directly observable, it may be
inferred using a variety of psychophysical procedures. In
particular, multidimensional scaling has emerged as a useful
method for identifying the underlying psychological structure of
complex sounds (Plomp, 1976). Typically, listeners are asked to
provide pairwise or triadic dissimilarity judgments on the set of
signals of interest. A specific multidimensional scaling
algorithm is then applied to decompose the resulting subjective
proximity matrix into an n-dimensional metric space in which each

stimulus is represented as a single point or wvector. Providing

that an interpretable solution with satisfactory stress exists,
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it is generally assumed that the dimensions in the psychological
stimulus space reflect those features that the listeners employed
in comparing the stimuli. In other words, it 1is at least
implicitly assumed that the scaling mechods provide an
approximate inverse to the 1later stages of the recognition
process (cf. Figure 1). If we are willing to make certain
assumptions about the information available after the preliminary
analysis stage, then we have the input/output information
necessary to speculate about the feature extraction proces;.

In the first systematic application of theée methods to
audition, Plomp and his associates (Plomp, 1970) compared the
timbre properties of nine musical instrument sounds to their
correspondiﬁg spectral structure. A three-dimensional stimulus
space was revealed in a multidimensional scaling analysis of the
subjective similarity data for these stimuli. The configuration
of interstimulus distances in this perceptual space correlated
highly with the corresponding distances in a three-dimensional
physical space obtained in a physical analysis of these sounds.
Although Plomp was primarily interested in determining whether a
correlation existed, for our present purposes, the specific
methods used to obtain the physical space are of particular
interest.

Specifically, the physical analysis was based on information
that could be reasonably thought to approximate that available to
the auditory feature extraction process. Recognizing the limited
spectral analyzing ability of the human auditory system (2Zwicker,

Flottorp, & Stevens, 1957), Plomp obtained 1/3-octave band-level
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measurements for each of his complex sounds. A
principal-components analysis was then performed on these
spectra. The results of this analysis revealed that each of the
nine stimuli could be characterized in terms of three spectral
attributes with very 1little 1loss of information. If we are
willing to assume that the 1l/3-octave spectrum approximates the
output of the preliminary analysis stage depicted in Figure 1,
then these findings suggest that the listener's feature
extraction process may be somewhat similar to a
principal-components analysis.

This conclusion is entirely consistent with our hypothesis
that “he feature extraction stage in timbre perception involves a
structural analysis of the stimuli. More specifically, the
principal-components analysis may be thought of as a structure
preserving transformation that maps stimuli from one space into
anotherb of 1lower dimensionality. The first principal component
is simply a new axis in the original space (in this case the
measurement space spanned by the 1l/3-octave band-levels) that
accounts for most of tne variability in the data. In other
words, the set of projections of stimuli in the measurement space
onto the first principal component has maximum variance. The
second principal component is an axis orthogonal to the first
that accounts for most of the residual variance and so on. [In
practice, the oprincipal components are determined by selecting
the eigenvectors of the covariance matrix for the stimulus set
that correspond to the largest eigenvalues (Harris, 1975)].

In this view, then, the feature extraction process selects a
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subspace of the original space that preserves as much of the
variability among stimuli as possible. It is clear that these
features- (i.e., the principal components) reflect the structure
of the stimulus set, and therefore we would expect the important
perceptual features to vary dramatically depending on the
stimulus context.

Tﬁis finding is given some generality by a similar result
obtained in our 1laboratory. In our experiment listeners were
asked to rate the pairwise similarity of eight passive sonar
recordings. Two perceptual dimensions were extracted from these
data using a metric multidimensional scaling procedure (Howard,
1977). The results were then compared with the outcome of a
physical analysis of the stimuli that paralleled the analysis
described above. The 1/3-octave spectrum was obtained for each
of the eight sounds. These data were then submitted to a
principal-components analysis. Since most of the variability
could be accounted for by the first principal component, it was
concluded that the steady-state characteristics of these sounds
could be adequately summarized by a single measurement. This
derived physical attribute closely approximated one of the
perceptual dimensions obtained in the scaling analysis. (The
other perceptual dimension revealed in the scaling analysis
reflected a temporal property of the sounds and is not directly
relevant to this discussion.) A closer examination of the
specific signal values on ﬁhis extracted dimension suggested that
it summarized the overall shape of the spectra, and in

particular, the degree of bimodality of the spectra. When asked

ot
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to describe stimulus differences along this dimension, listeners
used such terms as "this one is more uniform" or "in this one
there seems to be more than one sound present."

In this experiment, as in Plomp's, it appears that a
structure preserving transformation reasonably approximates the

1 Similar

analysis performed by the feature extraction stage.
findings have also been reported for the analysis of steady-state
vowel spectra (Klein, Plomp, & Pols, 1970). Although these
experiments were conducted for another purposé, the findings are
generally consistent with the present hypothesis that the feature
extraction stage for timbre perception 1is best viewed as a
structure analyzing process. Since the principal components are
simply weighted linear combinations of the more basic
measurements (in this case the 1/3-octave band-levels), it is
clear that we could also develop a weighted property-list scheme
to account for these findings. In such a system, the listener
would adjust the measurement weights to develop "features" that
maximally discriminate among the stimuli. Nonetheless, the
objectives of this system are more naturally discussed in terms
of the structure analyzing approach.

The major emphasis of the above discussion is that feature
extraction is both efficient, in a dimensionality reducing sense,
and flexible, in that it readily adapts to the stimulus context.
We have argued that a principal-components analysis shares these
characteristics and is therefore a possible model for the feature
extraction process in timbre perception. We would 1like to

emphasize, however, that a variety of other structure preserving
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transformations are also adequate. For example, we could select
a multidimensional scaling algorithm that would reduce the
dimensionality while preserving the configuration of
inter-stimulus distances in the measurement space.

Task Effects in Feature Extraction

In the experiments outlined above, listeners were simply
required to evaluate relative stimulus similarity. In this
situation there are no correct or incorrect judgments. It
therefore seems reasonable that listeners would employ a feature
extraction transformation that preserves as much of the spectral
information in the stimuli as possible. It is obvious, however,
that in a classification task where performance is evaluated in
terms of external criteria, the requirements of the feature
extraction process would be quite different. As Figueiredo
(1976) has pointed out, the performance of the entire system must
be considered when selecting the optimum features in this
situation. We have already seen in Getty's paper (Getty, Swets,
Swets, & Green, in press) that observers emphasized different
features in a wvisual classification task than they did in a
visual comparison task. The experiment described below (Howard,
Ballas, & Burgy, 1978) demonstrates a similar effect in an aural
classification situation, and illustrates the role of task
factors in feature extraction.

The stimuli investigated in this study consisted of sixteen
broadband noise signals amplitude modulated by sawtooth waves of
varying frequency and attack. Four levels of modulation

frequency (4, 5, 6, and 7 Hz) and four combinations of
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attack/decay (20 and 40 msec) were used. Eight listeners learned
to classify the sixteen signals on the basis of one of two
eight-category partitions. The two partitions were selected to
emphasize one or the other dimension by requiring listeners to
discriminate among all four levels of this dimension and only two
levels of the other dimension. The two partitions are presented
schematically in Figure 2. Here we have labeled the perceptual
dimension corresponding to attack "Quality, " and the perceptual

dimension corresponding to modulation. frequency "Tempo."

Clearly, the features are not of equal importance in the two
partitions. Listeners in the Quality group were regquired to
discriminate relatively small differences 1in attack, whereas
listeners in the Tempo group were required to discriminate
relatively small differences in modulation frequency. The
confusion data from this experiment were analyzed in terms of a
probabilistic model of the classification process.

Our model assumes that the decision stage operates on the
output of the feature extraction process and classifies stimuli
so as to maximize the probability correct (cf. Howard et al,
1978). An important assumption of the model is that, with
feedback, listeners perform a selective tuning of their feature
extraction processes. Theoretically, the tuning process
determines a weighting factor for each of the two features.?

Selective tuning occurs when the weighting factor for one
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Figure 2. Schematic representation of two partitions of the
sixteen signals into eight categories.
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dimension increases relative to the other.

Weighting parameters for each feature were estimated for
individual 1listeners by fitting the model to the observed
confusion matrices using a standard gradient technigue. The
weights obtained for each practiced listener are displayed in

Figure 3.

It is evident that our listeners responded to the demands of
their «classification task. Listeners in the Tempo group had
greater weights for signal Tempo than signal Quality, whereas the
opposite was true for the Quality group. It may also be noted
that no individual, with the possible exception of 1listener PH,
maximized the weights for both features simultaneously. We
interpreted this finding to suggest that, at least in the context
of this experiment, the total amount of feature tuning that can
occur at any point is limited. Since we assumed that feature
tuning reflects the operation of a selective attentional
mechanism, this interpretation is consistent with recent 1limited
capacity views of human attention (e.g., Kahneman, 1973).

Given an overall limit on the amount of feature tuning that
can occur, we wondered what strategy the 1listeners used to
determine how much emphasis to place on each feature. In our
decision model we assumed that listeners attempt to maximize the
probability correct. Therefore, we investigated the possibility

that the feature weights were also determined on this basis by
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estimating the theoretically optimal weights for each practiced
listener. 1In computing these values, the sum of the two observed
weights was taken to reflect the overall "attentional effort
expended by each 1listener. This overall value was then
apportioned between the two features so as to maximize the
average probability correct. The normalized obtained and optimal
weights reflecting the relative importance of signal Tempo for

each listener are displayed in Figure 4.

Although in general the obtained weights are reasonably well
approximated by the optimal wvalues (the overall Pearson
product-moment correlation, r(15) = .98), a small but consistent
discrepancy 1is evident. Six of our eight listeners showed a
tendency to overemphasize the more important of the two features.

Nonetheless, it is clear from these findings that 1listeners
show considerable flexibility in the emphasis they place on
individual perceptual features in an aural classification task.
With practice, feature tuning processes increase the importance
of both features. More importantly, for experienced 1listeners
the tuning process appears to operate selectively with relative
feature emphasis determined by a strategy that attempts to
maximize the overall probability correct. Of further interest is
a comparison of these findings with the results of two

multidimensional scaling studies involving the stimuli described

above. In the first, an independent group of 30 listeners rated
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the pairwise similarity of all sixteen signals. A

multidimensional scaling analysis of these data revealed that 22

of the 30 participants placed a greater emphasis on signal
Quality than Tempo. In the second experiment, the observers from
the above classification experiment rated the pairwise similarity
of the eight stimulus categories they had learned. 1In this case,
only the category labels were provided, no signals were actually
presented. The data were decomposed into a "conceptual" space
where the dimensions corresponded to modulation frequency (i.e.,
Tempo) and attack (i.e., Quality). Although we had expected the
subjective importance of these dimensions to be strongly
influenced by the prior classification training (i.e., Tempo more

important for the Tempo group and Quality more important for the

Quality group), listeners in both groups placed a greater
relative emphasis on signal Quality. This finding is more in
line with the results of the first scaling study than with the
results of the classification study. It appears, therefore, that
in the similarity rating task, 1listeners tended to emphasize

Quality more than Tempo, whereas in the classification task they

: emphasized the dimension that would lead to optimal performance.

E This result further illustrates the importance of task factors in

; determining the relative subjective importance of stimulus
features. i
Conclusion

As indicated in the introduction, the feature extraction
process plays a central role in most theoretical approaches to

auditory pattern recognition. Incoming stimuli are analyzed in




Feature Selection Page 22

terms of a set of distinctive or characteristic features that
form the basis for all subsequent perceptual processing.
Nevertheless, relatively 1little research has focused on the
selection and tuning processes whereby these essential perceptual
properties of stimuli are defined. In this paper we have
considered two contrasting views of the feature selection
process. On the one hand, it 1is possible that finely-tuned
stimulus property analyzers exist in the human auditory system.
As Fant (1973) has pointed out, this property-list or
detector-oriented approach is by definition context free. Some
property analyzers will respond to a specific stimulus whereas
others will not. In contrast, it 1is also possible that the
feature extraction process is highly context-sensitive. 1In this
latter process-oriented approach, feature selection is viewed as
a continuous on-going process. The distinctive features used to
characterize a particular sound emerge from a structural analysis
of the more basic psychophysical measurements obtained by the
auditory system.

Overall, the findings outlined above appear consistent with
the more flexible, process-oriented approach to feature
selection. In the comparative 3judgment task listeners are
required to evaluate stimulus similarity. Since no specific
comparison criteria are typically indicated, listeners need only
know something of the structure of the stimulus set in order to
make their judgments. The features identified in the similarity
rating experiments outlined above generally reflect the spectral

characteristics of the stimuli. We argued that in these studies,
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the feature extraction process is most naturally viewed as an
on-going structural analysis of the 1low-resolution spectra
extracted from the stimuli by peripheral auditory mechanisms.
However, in the case of a classification task, a simple
structural analysis of the stimulus set is not sufficient. In
this situation, the assignment of stimuli to categories
effectively changes the important structural properties of the
stimulus set. Particular partitions of the stimuli serve to
emphasize some stimulus relations while de-emphasizing others.
We have argued that in this sort of task an additional feature
tuning process occurs that adjusts the relative emphasis placed
on the important structural features to accommodate the external
task constraints. Furthermore, the results of our classification
study suggested that the feature tuning process operates on a
limited-capacity basis, and that the fine-grained adjustment of
feature emphasis is based on a strategy that attempts to optimize
the probability correct. These findings emphasize the importance
of overall performance considerations in the feature extraction
process. In this sense, distinctive auditory features are tuned
not only to the stimuli, but also to the decision rule employed
by the listener (Figueiredo, 1976).

Before closing we would like to offer a few caveats. First,
although our conclusions were derived from tﬁe findings
summarized above, these experiments were not designed to
explicitly test the issues addressed in this paper. For this
reason our conclusions must be regarded as tentative and

speculative. No single experiment, for example, has enabled us
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to simultaneously examine the effects of both stimulus structure
and task demands. Similarly, we have not addressed the detailed
problem of how the feature selection process may operate on a
trial by trial basis. How might the proposed structural analysis
proceed in an incremental fashion? We have argued that in many
cases auditory distinctive features are determined largely by the
stimulus context. What external and subjective factors determine
the relevant context in any particular situation? Quite clearly
the answers to these and other gquestions must await further
investigation. Experiments designed to address some of these
issues are presently underway in our laboratory.

Finally, it is important to remember that we are not
proposing that either of the two approaches we have considered is
necessarily "correct." As we have indicated, these approaches
represent extremes on a continuum of possible feature selection
mechanisms. Although one may challenge the extreme property-list
position on 1logical grounds (e.g., Weisstein, 1973; Uttal,
1978), a weighted property-list approach begins to resemble the
process-oriented view discussed above. Furthermore, we suspect
that it 1is impossible to distinguish between a modified
property-list model and the process-oriented model using only
psychophysical techniques. The distinction we have considered is
significant because of its impact on theory and, hence, on the
empirical questions that are appropriate to ask. A strict
property-list model would direct us to search for evidence
regarding invariant auditory feature detectors, whereas a

process-oriented model would have us look for common principles
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underlying feature extraction across a wide range of different
stimuli and tasks. Regardless of the specific view that
ultimately emerges as a primary solution to the feature selection
problem, it 1is clear that future psychological research in
auditory pattern recognition must address the fundamental
question of how distinctive auditory features are determined.
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Footnotes
11t should be emphasized that Plomp and his associates
(personal communication, 1978) did not refer to the dimensions
extracted in their perceptual analysis as "features." Rather, as
indicated earlier, they were primarily interested in determining
the degree of correlation between the configuration of stimuli in
the perceptual space and the steady-state spectra of the sounds.
2In our original presentation we actually represent the
tuning process as an adjustment in the variability of stimulus
likelihood functions. The weighting factors discussed here are
inversely related to the estimated standard deviations along each

dimension.
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