
AD-AOM MO  ARMY MILITARY PERSONNEL CENTER ALEXANDRIA VA 
CONCENTRATED FORCE PROBLEMS IN TRANSVERSE ISOTROPY.(U) 
JUN TS • N TONEATTO v»-»»iui 

UNCLASSIFIED 

P/t tO/t 

NL 

|OF2 

»068420 

• !-.' S 

e D HI B - •• BBS [,'••'•::: • • '.'B 



1.0 """ HU 
i i   II« 

m 

• m 
m 
la 
m 
m 

I.I 
— 

1.25 

MICROCOPY   RtSOLUItON   UST   CHAR! 

NAIIUNAt    HUKIAU   01    STANDARD'«   1963 A 



CONCENTRATED FORCE PROBLEMS IN 

TRANSVERSE ISOTROPY 

G.M. TONEATTO 



.UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE fWh»o Data Enter« 

REPORT DOCUMENTATION PAG 
I'     REPORT NUMBER 

•>   TITLE (and Subtitle) 

"Concentrated Force Problems in 
Transverse Isotrop\y" 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

?•   AUTHOR*» 

Giuliano M.  Toneatto 
MAJ, EN 

ALOG NUMBER 

5. TYPE OF REPORT a  PERIOD COVERED 

Final:     16 Jun 78 

6.    PERFORMING ORG.  REPORT NUMBER 

8.    CONTRACT OR GRANT NUMBER«» 

9-   PERFORMING ORGANIZATION NAME AND ADDRESS 

Student,  HQDA,  MILPERCEN   (DAPC-OPP-E) 
200 Stovall Street 
Alexandria,  VA    22332          

10.    PROGRAM ELEMENT. PROJECT. TASK 
AREA « WORK UNIT NUMBERS 

It   CONTROLLING OFFICE NAME AND AODRESS 

HQDA, MILPERCEN ATTN:  DAPC-OPP-E 
200 Stovall Street 
Alexandria, VA 22332 

12.   REPORT DATE 

16 Jun 78 
13-    NUMBER OF PAGES 

31. 
I*   MONITORING AGENCY NAME «  ADDRESSf// dl Iterant from Controlling Olli CO) 15.   SECURITY CLASS, (ol Mm roport) 

UNCLASSIFIED 

'5«.    DECLASSIFIC ATI ON/DOWNGRADING 
SCHEDULE 

16.   DISTRIBUTION STATEMENT (ol thlm Roport) 

Approved for public release; distribution unlimited. 

17.   DISTRIBUTION STATEMENT (ol tho mbotrmet entered In Block 20, It dlHorant trom Roport) 

18.   SUPPLEMENTARY NOTES 

Doctoral thesis  (Ph.D.)  University of Illinois 

D D 
gaprm 

SEP   7   1978 

19.   KEY WORDS (Continue on ravaraa mlda It nacaaaary and identity by block number) 

Anisotropy Elasticity Theory 
Transverse Isotropy  Singularities (Elasticity) 
Isotropy 

IBSTR* 20.   ABSTRACT (Vmitnmia antrararwa atdm tt mteamaary and Identity by block numbor) 

Basic singular solutions for the equations of elasticity in a three- 
dimensional transversely isotropic domain are generated and studied. 

A rational approach is then presented for the generation of the solution 
of various concentrated-load problems in the half-space. In particular, a 
previously unknown solution for a concentrated load in the half-space parallel 
ko  the free surface is derived and discussed. 

A completeness proof for a stress-function approach for problems in three 
dimensional transverse isotropy is also presented. ^ 

DO   ( JAN73    a*m73 EDITION OF  » MOV 6» IS OBSOLET E 
UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered) 

m 
a* 



COVER SHEET 

CONCENTRATED FORCE PROBLEMS IN TRANSVERSE ISOTROPY 

MAJ Giuliano M. Toneatto 
HQDA, MILPERCEN (DAPC-OPP-E) 
200 Stovall Street 
Alexandria, VA 2233L' 

Final Report:  16 JUN 78 

Approved for public release; distribution unlimited. 

A thesis submitted to the University of Illinois, Urbana Illinois, in 
partial fulfillment of the requirements of Doctor of Philosophy. 

78   0 8   28   05 
^ . " . .  *+i 



» 

L 
CONCENTRATED EORCE PROBLEMS IN 
^   TRANSVERSE ISOTROP Y, 

> 

BY 

&IULIANO MARIA JTONEATTO b 
B.S., United States Military Academy, 1967 

M.S., University of Illinois, 1972 

v Fivwul H^pt»^ 

THESIS 

Submitted in partial  fulfillment of the requirements 
for the degree of Doctor of Philosophy in Civil Engineering 

in the Graduate College of the 
University of Illinois at Urbana-Champaign, 1978 

jjjjMg » 
Mil 

m 
•i«ma 
«TlflttTW... 

Ml 5 
a 

•UniMTKH/HIIUIIUTT 

_*L_ *MiL mt/m sHM 

Urbana, Illinois 

R &> M> 



111 

ACKNOWLEDGMENT 

This report was prepared under the supervision of Dr. R. A. Eubanks, 

Professor of Civil Engineering and of Theoretical and Applied Mechanics, 

University of Illinois. 

My most sincere gratitude Is extended to Professor Eubanks, without 

whose boundless patience, genuine interest and energetic leadership, this 

report would never have been presented. 



u 

TABLE OF CONTENTS 

1. INTRODUCTION   1 

1.1 Objective and Scope  1 
1.2 History and Concept of Singularities  1 
1.3 History and Concept of Half-Space Problems  3 
1.4 History and Concept of "Transverse Isotropy"  4 
1.5 Organization of the Study  15 
1.6 Notation  15 

2. A DISPLACEMENT-POTENTIAL REPRESENTATION FOR TRANSVERSE ISOTROPY. . 18 

2.1 General  18 
2.2 Background.  18 
2.3 Displacement-Potential Representation    19 
2.4 Resultant Forces Expressed in Terms of Potential Functions.  . 22 

3. BASIC SINGULARITIES  28 

3.1 General     ..... 28 
3.2 Horizontal Unit-Force in the x-Direction  28 
3.3 Vertical Unit-Force in the z-Direction  32 
3.4 Double Force Without Moment   34 
3.5 Center of Dilatation  36 
3.6 Line of Dilatation  36 
3.7 Double Force With Moment  39 
3.8 Center of Rotation  40 
3.9 Line of Rotation  41 

3.10    Discussion  44 

4. SOLUTIONS OF PREVISOULY-SOLVED TRANSVERSELY-ISOTROPIC 
HALF-SPACE PROBLEMS •  46 

4.1 Concentrated Vertical Unit-Force on a Half-Space  46 
4.2 Concentrated Tangential Unit-Force on a Half-Space  49 
4.3 Concentrated Vertical Unit-Force Beneath the Surface of 

a Half-Space  53 

5. TANGENTIAL UNIT-FORCE BENEATH THE SURFACE OF A TRANSVERSELY 
ISOTROPIC HALF-SPACE   62 

5.1 Explanation and Solution  62 
5.2 Discussion and Plots  70 



V 

6. SUMMARY AMD RECOMMENDATIONS FOR FURTHER STUDY  73 

6.1 Summary  73 
6.2 Recommendations for Further Study   73 

LIST OF REFERENCES  75 

VITA   93 

•4d 



v1 

LIST OF TABLES 

Table Page 

1.1 STRAINS: UNI-AXIAL LOADING   8 

1.2 ELASTIC CONSTANTS   9 

1.3 STRAIN RATIOS  10 

5.1 CONSTANT PARAMETERS FOR SELECTED MATERIALS  71 

•* 



vii 

I 
LIST OF FIGURES 

Figure Page 

3.1 HORIZONTAL UNIT FORCE-INFINITE MEDIUM   78 

3.2 VERTICAL UNIT FOHRE-INFINITE MEDIUM   78 

3.3 DOUBLE FORCES WITHOUT MOMENT 79 

3.4 CENTER OF DILATATION. . . . •  80 

3.5 DOUBLE FORCES WITH MOMENTS ABOUT y-AXIS   81 

3.6 CENTER OF ROTATION ABOUT y-AXIS   82 

4.1 BOUSSINESQ PROBLEM-TRANSVERSE ISOTROPY.'  83 

4.2 CERRUTI PROBLEM-TRANSVERSE ISOTROPY   .   83 

4.3 MINDLIN PROBLEM-TRANSVERSE ISOTROPY   84 

5.1 TANGENTIAL UNIT FORCE BENEATH THE SURFACE OF A TRANSVERSELY 
I         ISOTROPIC HALF-SPACE  84 

5.2 DISPLACEMENTS - z-DIRECTION-ISOTROPY. ......   85 

5.3 DISPLACEMENTS - z-DIRECTION-MAGNESIUM . .   86 

5.4 DISPLACEMENTS - z-DIRECTION-ZINC  87 

5.5 DISPLACEMENTS - z-DIRECTION-CADMIUM ., . .  88 

5.6 a      STRESS-ISOTROPY  89 
yy 

5.7 a  STRESS-MAGNESIUM  90 
yy 

5.8 a  STRESS-ZINC  91 

5.9 a      STRESS-CADMIUM  92 



1.  INTRODUCTION 

1.1 Objective and Scope 

The solution of problems of elastic stress distributions in isotropic 

materials has been considered in great detail in the literature but, 

considering the recognized anisotropy of virtually all materials, relative- 

ly little work has been done on similar problems involving anisotropy. 

Once the assumption of isotropy is discarded, analysis of any three-dimen- 

sional problem becomes significantly more difficult. This is, of course, 

due to the involvement of more than two elastic constants. 

It is of note that a proportionately large number of general solutions 

can be found for materials which are "transversely isotropic" and have a 

hexagonal close-packed crystalline structure. These materials have five 

elastic constants. Although many solutions exist for this special case of 

anisotropy, techniques vary widely and a clear attack has been difficult 

to devise. 

The objective of this study is to develop an efficient and useful 

technique for'solving problems in a "transversely isotropic" medium and, 

more precisely, to present a solution for the problem of a tangential 

force applied beneath the surface of a "transversely isotropic" half-space. 

1.2 History and Concept of Singularities 

In 1872, according to A.E.H. Love (1926)*, E. Betti first applied the 

* An author's name followed by a date of publication refers to entries 1n 
the List of References. 

^ 



method of singularities to the theory of elasticity. Betti was able to 

deduce an average strain formula for forces acting on an isotropic body 

and found that this method was more effective than the method of series 

as a tool for solving force transmission problems. 

Lord Kelvin's solution of the problem of a concentrated force in an 

unbounded isotropic medium when combined with Betti's method of singular- 

ities allowed a family of singular solutions to be generated. In an 

isotropic medium, these singular solutions, generated by synthesis of the 

Kelvin Solution, have been designated by A.E.H. Love (1926) as "nuclei of 

strain". Such nuclei are obtained through superposition and limiting 

processes of differentiation and integration. Therefore, the derivative 

of the Kelvin Solution in the direction of its force, generates what Love 

called a "double force without moment" and is often referred to as a 

force doublet. Moreover, the derivative of the Kelvin Solution perpen- 

dicular to the direction of its force, generates a "double force with 

moment". Superposition of three mutually perpendicular "double forces 

without moment" creates a "center of dilatation" or a "center of com- 

pression", depending on the orientation of the forces, while the super- 

position of two perpendicular "double forces with moment" which share the 

same axis, generate a "center of rotation". Clearly, all these solutions 

are singular at a point. 

Now, it is well to note that the stresses of the Kelvin solution 

become infinite as -i as R, the distance from the observation point to the 
R 1 

point of application, approaches zero. This is denoted 0(-£-). Further 

differentiation will yield solutions which are of yet higher order at the 

point of application. 

r 



In addition to solutions which are singular at a point, line singular- 

ities can also be generated.    For example,  integration of a solution for 

a center of dilatation along, say, the z-axis from the origin to infinity, 

yeilds a solution for a  "line of dilatation".    When this limiting process 

is continued,  "lower order singularities" are obtained. 

1.3    History and Concept of Half-Space Problems 

In the investigation of problems involving a plane boundary on an 

infinite isotropic medium ("half-space"), J.  Boussinesq first presented 

solutions for normal  tractions and tangential  displacements or normal 

displacements and tangential  tractions.    At about the same time, V.  Cerruti 

obtained the same results by another method.    For this reason the problem 

of the half-space is often referred to as the "problem of Boussinesq and 

Cerruti". 

Soon afterwards, J.H. Michel 1  (1900) obtained a solution for this 

problem by yet another method.    Love (1926)  later presented his solutions 

of the Boussinesq (concentrated force acting perpendicular to a plane 

surface of an isotropic half-space) and the Cerruti   (concentrated force 

acting tangential  to the plane surface of an isotropic half-space)  problems 

in which he used a method of solution involving singularities and refined 

by C.  Somigliana and G.  Lauricella before the turn of the century. 

Careful  analysis of MichelTs  (1901) work indicates that he also 

solved the problem of a vertical  force acting at a point within a semi- 

infinite isotropic solid.    More recently, R.D. Mindlin  (1936)  rediscovered 

this solution which now bears his name. 

M 
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1.4   History and Concept of "Transverse Isotropy" 

Materials or bodies which possess an axis of symmetry such that 

perpendicular to any point along an axis the material behaves in the same 

manner regardless of direction, are known as being "transversely isotropic", 

This anisotropic material is sometimes called "hexagonal aeolotropic" or 

"aeolotropic elastic" in the literature, but to avoid confusion, only 

Love's (1926) term, "transversely isotropic" will be used here. 

In order to explain the meaning of a "transversely isotropic" medium, 

let us adopt the notation: 

Tl = Txx • T2 = Tyy » T3 = Tzz  » r4 = Tyz , 

T5 = Tzx • T6 = Txy » el = exx ' e2 " eyy. 

e3 = ezz • e4 - eyz • e5 = ezy ' e6 = exy. (1.4.1) 

where T and e represent the Cartesian components of stress and "infini- 

tesimal strain" respectively.    The strains.are now defined by 

exx = 
3X~ 

t • • • > * 

eyy- 

3U2 

ay" 
». • • t» 

eyz   = 

3U2 3U, 
+   —£ 

ay 
,..., 

where [1,    2,   3] are the Cartesian scalar components of the displacement 

vector.    The general  linear stress-strain law now becomes: 



• 

•     

1 
Ti= cij ej 

5 

(1.4.2) 

I 

where i and j range over the integers one to six. A.E.H. Love (1926) 

noted that for a homogeneous medium the c.^ are constants and he showed 

that: 

cij = cji • ^'4'3) 

is a necessary and sufficient condition for the existence of a strain- 

energy function W(e, ,eg) such that 

Ti " 3ei (1.4.4) 

and that 

W4Cijeiej 0.4.5) 

Love then imposed the condition of transverse isotropy and noted that 

C.j = 0       (i = 1,2,3; j = 4,5,6), (i • 4,5,6; j t i) 

Cll  = C22  * C13 " C23  » C44 = C55  * 2C66 = Cll  " C12 (1.4.6) 

Adopting the notation used by Eubanks and Sternberg (1954), 

Cll ~ d    ' C33 = a ' C44 = u  ' C66 ' v  • 

c12 • a - 2jT , c13 = b, 

• it can be written (letting U,, U2 and U« be the Cartesian components 

of displacement) that: 



3Ü, au, 3U, 
o     = a —-   +    (a - 2u ) —=• + b —- xx        ax v        v ' ay 3z 

au, au, au~ 
°w = (a-2iT) r-!-   + a r-^-   +b^ yy 3x 3y 3z 

3Ü, au, 3U., 

3U1 au3 

axz = p äz"   + u 3x~ 

aU2 aü3 
cyz = v W  + » W 

3U,     -au, 
CTxy ~ w ax ay (1.4.8) 

These relations involve five independent constants.    The physical 

meaning of u and JT is clear. 

Eubanks and Sternberg (1954) also show that for the positive 

definiteness of W, the following necessary and sufficient conditions exist: 

a>0,ä~>0,y>0,ü">0, 

a ä~ - b2- ?JT> 0. (1.4.9) 

or similarly: 

E>0     F> 0     v > 0     ü">0 

-1 < v < 1, 1 - v > ^V~ (1.4.10) 



I 

1 

where 

E   = 

              2            
4u  (aa - b   -ay 

aä- b2 

E   = 
_       2  

aa - b   - a u 

a - y" 

v    = 
aa- b2 -ZTW 

aa - bc 

2bu 
v    =   — , (1.4.11) 

aa - b* 

The respective strain equations reduce to the following: 

o a v        o v 
ex E E E 

a v        <j        a v 
ey E     + E E 

ez    -    - -| E     +   ^ (1.4.12) 

It is interesting to examine the states of strain which result in 

some simple uni-axial loading (see Table 1.1). 

• 



Table 1.1    STRAINS:    UNI-AXIAL LOADING 

°x=1 

ay = az = 0 

'y-1 

°x • \ - ° 

az=l 

ev 
1 
E 

V 

" E 
V 

" E 

ey 
V 

" E 
1 
E 

V 

' E 

ez 
V 

' E 
V 

" E 
1 
E 

It is also of interest to examine values of the constants mentioned 

earlier for some materials which exhibit transversely isotropic behavior. 

Magnesium, zinc and cadmium are three such materials (Elliott (1948) has 

already worked with the properties of magnesium and zinc).    Using data 

from F. Seitz and T.A. Read (1941) and C.S. Barrett (1943) and using the 

notation of Eubanks and Sternberg (1954), the values in Table 1.2 were 

calculated for these materials. 
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Table 1.2 ELASTIC CONSTANTS 

MAGNESIUM ZINC CADMIUM UNITS 

a 5.6493 xlO11 16.3593 xlO11 12.0587 xlO11 dynes/cm2 

a" 5.8734 xlO11 6.2926 xlO11 5.1326 xlO11 ii 

b 1.8103 xlO11 5.1666 xlO11 4.4197 xlO11 ii 

y 1.6807 xlO11 3.7879 XlO11 1.8519 xlO11 II 

V 1.6667 xlO11 6.8493 xlO11 3.6232 xlO11 n 

E 4.4843 xlO11 11.9048 xlO11 8.1301 xlO11 II 

E 5.0505 xlO11 3.4843 xlO11 2.8169 xlO11 H 

V .3453 -.1310 .1220 — 

V .2018 .928« .7561 — 
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Use of Tables 1.1 and 1.2 allows one to calculate the values listed 

in Table 1.3 below: 

Table 1.3 STRAIN RATIOS 

DIRECTION OF UNI-AXIAL LOADING 

X Y z 

MAGNESIUM 

ev -£= -.3453 
ex 

-*• = -.3453 
ey 

ex -*- = -.2273 
ez 

-^- = -.2018 
ex 

-*- = -.2018 
ey 

-*- = -.2273 
ez 

ZINC 

ev 
-*- = +.1310 
ex 

-*- = +.1310 
ey 

— = -.2718 
ez 

ez 
-*- = -.9286 
ex 

-?- = -.9286 
ey 

e 
-^-= -.2718 
ez 

CADMIUM 

ev -£ = -.1220 
ex 

-*- = -.1220 
ey 

-*- = -.2620 
ez 

-*- = -.7561 
ex 

^-,561 -y-= -.2620 

1 e* 
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Observation of the values listed in Table 3 leads one to expect 

Magnesium to be the most nearly isotropic of the three materials. 

Furthermore, the fact that the strain ratios for both zinc and cadmium 

fall outside the commonly encountered range for Poisson's ratio in 

isotropic materials, (in addition to the large numerical differences between 

E and E" and, v and v for these materials) leads one to expect significant- 

ly different behavior for zinc and cadmium than for some isotropic material 

or nearly-isotropic material like magensium. More discussion of these 

materials will be given in Chapter 5. 

The equations of equilibrium in terms of stresses are not modified 

for an anisotropic material. On the other hand, in terms of displacements, 

they have the following form: 

3%        32U,        3^, a'Uo 3fcU 
(a-7)—- + (b+u) rr^-3 0 

3X2            3y2            322              "'dxay 3X3Z 

32U9       _ 32U, 32U, 32U, 32U- 

32U, 32U, 32U, 32U, 32U, 

These equations, of course, assume the standard form in the case of 

isotropy where: 

2(l-v)y 

. 
a=a=2u+x= 

l-2v 

: 

»••i i -" 
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( 

2 MI 
b = X = l-2v 

-_    E  
v ~ 2(l+v) (1.4.14) 

A degeneracy is created for the special case of (b+p) = 0 which 

should be studied separately. 

Transversely isotropic material has received reasonable attention 

since I. Fredholm (1900) treated certain special cases of anisotropy.    He 

gave an implicit expression for Green's function for general ani^otropic 

media and also solved the problem of an infinite transversely isotropic 

material acted upon by a concentrated force at a point in the medium 

perpendicular or parallel to the axis of elastic symnetry.    Fredholm also 

implies the curl-potential solution of the equilibrium equations for 

anisotropy. 

Michel!  (1900), in his somewhat obscurely written paper, presented the 

primary foundation for the formulation for the general solution of the 

problem of the half-space in transverse isotropy for arbitrarily prescribed 

body forces, surface tractions etd surface displacements.    All of the 

singular problems for the half-space including those of Boussinesq, Cerruti, 

Mindlin and the solution presented here, must be considered to be subsumed 

in the formulations presented in Michell's remarkable paper.    A summary of 

Michells work is contained in N1eden.fuhr.0964). 

-*i 
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S.G.  Lekhnitsky (1940)  considered problems of torsionless axisyrrmetry. 

He derived particular solutions by using a generalized form of Love's 

Function and generated equations of equilibrium in terms of displacements 

with a single stress function which satisfied a fourth order partial 

differential equation.    R.A.  Eubanks and E.  Sternberg (1956)  later provided 

the completeness proof of Lekhnitsky's work. 

After Lekhnitsky's presentation, H.A.  Elliott (1948)  solved the 

torsionless rotationally-symmetric three-dimensional  field equations in 

terms of tv/o stress functions, each of which satisfied a second-order 

partial  differential equation.    Both Lekhnitsky's and Elliott's contribu- 

tions are described by J.N. Goodier and P.G.  Hodge (1958).    Although 

Elliott did not apply his method to a non-axisymmetric field, the general 

solution he obtained is of relatively great importance.    Elliott's approach 

was also applied by L.E.  Payne (1954), D.S.  Berry and T.W. Sales  (1961), 

and A.H.  England (1962) to problems with or without axisymmetry.    B.  Sharma 

(1958) and, Z Massakaowska and W. Nowacki   (1958) extended Elliott's approach 

to problems in thermoelasticity. 

Shortly after Elliott presented his results, R.T. Shield (1951) solved 

the problem of an isolated line force uniformly distributed through a 

transversely isotropic plate and acting parallel to the faces of the plate. 

In the same paper, Shield solved the problem of a sub-surface vertical 

force in a transversely isotropic medium, as well as the punch and flat 

elliptical  crack problems for such media.    A treatise by A.E. Green and 

W.  Zerna (1954) outlines both Elliott's and Shield's contributions. 
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A closed form solution of Green's function for transversely isotropic 

materials was obtained by E. Kroner (1953).    This problem had also been 

studied by I.M. Lifshitz and L.N. Rozentsvieg (1947). 

H.-C. Hu (1954,1956) solved the normal and tangential surface load 

problems as well as the rigid stamp problem and the problem of the bending 

of a thin elastic plate lying on a transversely isotropic half-space.    He 

was apparently the first to apply the implied Fredholm curl-potential 

solution for the solving of non-axisymmetric problems in transverse isotropy. 

A.S. Lodge (1955) interestingly, also found the third potential-function 

solution but did not follow it up further. 

The use of Fredholm's work and Kroner's closed form solution, allowed^. 

T.C. Woo and R.T. Shield (1962), (who were actually dealing with the gener- 

al theory of small elastic deformations superimposed on large elastic 

deformations) to also solve the significant problems of a concentrated sur- 

face force acting perpendicular or parallel to the plane boundary of a semi- 

infinite transversely isotropic medium.    These same problems were again 

solved by Y.-C. Pan and T.-W. Chou (1976) except that the results were 

expressed in a slightly different form. 

The last ten years have seen the publication of many works on trans- 

versely isotropic elasticity. A discussion of all of these is not within 

the scope of this study. 

-dj 
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1.5 Organization of the Study 

In Chapter 2 a displacement-potential approach is presented for the 

solution of problems in a transversely isotropic region and its complete- 

ness for the general  three-dimensional  problem is proved.    Some consequences 

of this presentation are then discussed. 

Chapter 3 provides a review of the method of singularities as a basis 

for generating the singularities essential  for the solution of more complex 

problems.    Solutions for some singularities for the case of transversely 

isotropic media are provided. 

Chapter 4 presents solutions of previously-solved half-space problems 

for a transversely isotropic region. 

Chapter 5 discusses the procedure and relationships that permit the 

application of the method of singularities to the solution of the problem of 

a sub-surface tangential  force applied in a transversely isotropic medium.  

Some results are then plotted for materials which exhibit transversely 

isotropic behavior. 

Chapter 6 summarizes the developments of this study and makes 

recommendatiors for further study.    The use of the method of singularities 

to obtain solutions to other problems is also discussed. 

1.6 Notation 

Symbols are defined where they first appear. The symbols most 

frequently used are listed below: 



r 
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a Cuand c22 in the Hookean matrix; elastic constant 

a" c33 in the Hookean matrix; elastic constant 

b c13 and c33 in the Hookean matrix; elastic constant 

C|. elastic constants in the Hookean matrix 

E Young's modulus; first Young's modulus for transverse- 

isotropy 

E second Young's modulus for transverse isotropy 

e^ Cartesian components of "infinitesimal strain"- 

k U=l,2) constant defined by Equation  (2.3.1) 
sv, ' 

1 

:>vi 2 L 

v2 

mi Mi* + 2 
2 2 

2   2 Sw2 L. 
N2* [v2 r   + (2 - —) P 

n SV2 
"2 N2* + 2   -   

Q,*U=1,2,3)        [V*V+ (2-s)2]Js 

q^U-1,2,3) Q£*+z-s 
R                          the distance from the observation point to the point 

of application   

R/U=l,2,3)        [>2r2 + (2+s)2]53 

-2 2   u 
cx + y r 

r^U-1,2.3) R^* + 2 + s 

s a distance 

Uj, U2,U3 displacements in the principal Cartesian coordinate 
directions associated with x,y, and 2 respectively 

W strain energy function 

x,y,2 the principal directions in the Cartesian coordinate 
system 
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ii c^  and c55 in the Hookean matrix; elastic constant 

jT COS in the Hookean matrix; elastic constant 

v Poisson's ratio; first Poisson's ratio for transverse 
isotropy 

v second Poisson's ratio for transverse isotropy 

v U=l,2,3) constant defined by Equation(2.3.1) 

or.. stress 

T Cartesian component of shear stress 

&  («-=1,2) volumetric potential function (irrotational) 

• deviatoric potential function (equivoluminal) 

1* 
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2. A DISPLACEMENT-POTENTIAL REPRESENTATION 
FOR TRANSVERSE ISOTROPY 

2.1 General 

In this chapter, a representation for the displacements of transverse 

isotropy in terms of three potential-functions which satisfy second order 

linear partial differential equations is presented. It is shown that this 

representation is complete for displacement fields in equilibrium. A 

few consequences of this representation are then discussed. 

2.2 Background 

The Helmholtz representation of a vector function as the sum of the 

gradient of a  scalar and the curl of a vector function (Phillips (1933)) 

leads one to represent the elastic displacement field in this form and to 

seek to uncouple the equilibrium equations.    In the isotropic case this 

approach leads to the Love-Galerkin representation and the Boussinesq- 

Papkovich-Neuber representation. 

In a classic paper on anisotropy, Fredholm (1900) implies the existence 

of both gradient-potential and curl-potential solutions of the equilibrium 

equations for anisotropy, but apparently Lekhnitsky (1940) first explicity 

stated a displacement potential approach for transverse isotropy which is 

complete for a class of problems, namely those characterized by torsionless 

axisymmetry for the case in which the axis of elastic symmetry coincides 

with the axis of stress symmetry. 
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Elliott (1948) presented a gradient-potential solution in terms of 

two potential  functions each of which satisfy a second-order partial diff- 

erential equation.    Eubanks and Sternberg (1954) demonstrated the equival- 

ence of the Elliott and Lekhnitsky representations and proved completeness 

for the case of rotational symmetry. 

Although Elliott's approach has been used to solve problems without 

rotational symmetry, Hu (1953) was apparently the first investigator to 

introduce a curl-potential solution to accommodate a non-rotationally- 

symmetric problem.    Subsequently, he and other investigators, presented 

solutions which were based on two gradient-potential functions and a curl- 

potential function but there was no certainty that all solutions of the 

three-dimensional equations of equilibrium for transverse isotropy could 

be represented in that way. 

In the next section, this sufficiency is shown. 

2.3    Displacement-Potential Representation 

Let kjk2 =    1 

k, + k. = aa"~ "2 - (b+v)2 

äki Mb-HO + M 
Vl     =   b+v + ukx = i 

k2(b+p) + y 
V2     3   b+p + uk2 ~        i 
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2   _  JJ 

v 2 = 3i_ + ii. +    .2 i!_    (i = lt2f3) (2.3.D 
1       ax2        ay2 1   3z2 

Then a displacement field (U1,U2,U3) is a solution of the transversely 

isotropic equations of equilibriym in a regular region V of space if and 

only if it admits the following representation in terms of sufficiently 

smooth potential functions <J>i »4>2» and $. 

3*i      3*2      aw, 
1 3x       ?x       ay 

U,   =  —- + — - 2± 2 3y       3y      ax 

3^1 3^7 
U3 " kl T7-+ k2 XT" (2.3.2) 3Z *  3Z 

where 

V-2   ä 
1       1 

2       2 

V3
2  4,    =0 

in the region V. 

The fact that the above representation assures satisfaction of the 

equations of equilibrium is easily verified by direct substitution into 
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the equilibrium equations.    It remains to be shown that every displacement 

field which is in equilibrium will admit this representation. 

Let 

P(x,y,z) and P'(x',y\z') be two boints in V and let 

R = Ipp'l  = [ (x - x*)2 + (y - y')2 + (z - z')2]1* 

Let «•»'(x1 ,y* ,z') be the value of the function <f>(x,y,z) at the point PV 

Given a displacement field (Ui, U2, U3) in equilibrium we define the 

displacement potentials: 

•l *   4T 
1    l-^i5 

v1
2-k1

2v2
2 

8V         3U2'                     3U3'       dV, 
[     +     + ki v,z   J -g- 

v     3x' 3y' 
ts  v2- 

3Z' 

1     W 
4* 2-k   2\>   2 

2      K2   Vl 

»Oi«       3U   ' 3U3'       HV, 

V       3X' 3y' 2     *     3Z1 K 

•  • 4, , 
[IÜ'.ÜJL.]«' 

v     3y'       3x'       .R 
(2.3.3) 

Utilization of the relation: 

*    "    4V 
[ 2hL+ ifl_+ tfil]   dll 

3x'2     3y'2      3Z'2 R 
(2.3.4) 

permits one to verify that these functions do, indeed reproduce Uj , U2, 

and U3, and that the defined functions satisfy the specified differential 

equations as a result of the equilibrium of \i\', U2'> UV. 
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Although these representations formally break down when vx
2 = v2

2, 

the solutions which are obtained for the general case where \>x
2 = v2

2 

assume correct limiting forms. 

2.4   Resultant Forces Expressed in Terms of Potential Functions. 

The determination of the resultant force associated with singular 

solutions can be tedious for complicated stress fields.    This task is great- 

ly simplified if the potentials which generate the stress field are known. 

In this section we demonstrate the procedure for the determination of the 

z-direction and x-direction resultants of the tractions on the interior of 

a hemispherical surface which is centered at the origin and which lies in 

the lower half-space. 

Let If" (x,y,z) be the position vector in space and consider a hemi- 

spherical surface S:    |R|  = o, z < 0, with boundary c:    |R~|  = a, z • 0. 

For the interior surface the normal vector is n = - - .    On the curve C 
a 

we have 

X   3   a cos e 
0 <_ e < 2* 

y   s   o sin 8 

so that the arc distance is given by s = a 9 Stokes Theorem (Phillips, 

1933) states that for a sufficiently smooth vector field F we have 

| n. curl Fds =   l f. jj  ds (2.4.1.) 
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< 

We can use this relationship to reduce the order of the integration required 
4 

to determine a resultant force on S in a given direction provided the 

traction vector in that direction can be expressed as the curl of a vector. ; 

When the prescribed direction is x, y, or z the equilibrium equations ' 

require that the traction vector by solenoidal, hence the existance of a 
• 

formulation as the curl of a vector field is assured. 

z-resultant, gradient solution: 

We have                      „   % 1 
,                                        2 

324>!                               3   <(>2 
T
13     *    ^kl+1>  3X3Z     +    ^(k2+1>  3X3Z I 

32t-                              32<fr2 

•    T
23   

=   w(ki+1) sy3z   +   "(k2+1> 3ysz      "• 
i 

( \ 

32<h            „                  32*9 
T33    =   v!2u(k+l) —i-+v2

2v(k2+l) —=•                                  (2.4.2) 
3Z                                        3ZZ 

• 

and 

(T    , T    , T    ) = curl F                   .                                       (2.4.3) 
13        23        33 

provided that 

3^1                         3$2 
Fi   •   u(M1) är+^(k2+D — 

F2 • ^cil*i)ia.-,(Vi)|r 
i 

F3    =    0                                                                                                 (2.4.4) 

c 

 — *—t • 1 1 1 -^___——                                                                       —. a • 1 1 • • .^i 
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(Note that this determination is not unique.) 

The force resultant in the z-direction is 

Z   • rf •  (T    , T    , T    ) da 
Js 13        23        33 

2ir 

=   o       F '  (- T sin e + J cos e) de (2.4.5) 

0 

where T and J are unit vectors in the x-and y-directions. 

In general cylindrical coordinates we have 

x   • p cos e 

y   = p sin e 

z   • z 

P2 - x2 + y2 (2.4.6) 

so that 

3^ 3$2 
-Fj sin 9 + F2 cos e = -ut^+l) ^ -u(k2+l) ^~ 

and the resultant force can be written 

(2ir 3$, r2ir    3<t>, 
-i-    d9   -p  a(k2+l) 

0    3p J0 
Z =  -u aOcj+l) Jn    j~   d9  -p a(k2+l) jfl      ^-   d8 (2.4.7) 

dtp 3^2 

where a— and s— are evaluated on C, i.e. for p = a, z s 0. 
dp dp 

An important special case arises for rotationally symmetric torsionless 

fields, where ij>1 and <f>   are independent of e. 

in this case we have 
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3*, *h  ., 
(2.4.8) 

z resultant, curl solution 

The stresses are given by 
a2<(> 

T 
13 

u ayaz 

T 
23 

* M  3X3Z 
j 

T 
33 

a 0 (2.4.9) 

and we find that 

(T    , T    , T    ) = curl F 
13       23        33 

(2.4.10) 

if 

F, = F2 = 0, F3 = v ff (2.4.11) 

thus, the z-force is 

2ir 

Z    •    a F • (-i sin 6 + j cos e) de • 0 
Jo 

x resultant - gradient solution: 

32*x 

3Z
J 

3Z*, 
T  • -p(k.+l) —   -v(k2+D  2 
11     *   az2 

27 ( 
3Z 

32*!   32+2 

ay2  ay2 

-/ !_1  3 2) 
Ti2 = 2u 3x3y + 3x3y 

•     i 
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and 

\3   -  V{^+})   ^ + Vik2 + ])   ^ <2-4-12) 

(Tn' T12' Ti3} = CUrl F (2.4.13) 

provided 

F, = 0 
3(f), 3<fu 

F2 •»<k1*i)5iU.»(k,*i>i/- 

F3 --2u  (^+5jl) (2.4.14) 

The force in the x-direction is 

= n •  (T       T       T    ) da 
J 11        12        13 
s2 

f        i-/.       ,i^^l , .   ^2 s    a C  (kl+1) ST"   + ^k
2
+1) äT" ] C0S 9    d6 2.4.15) 

x-resultant -curl solution: 

The stresses are given by 

.     - j"   3 * 
n ~ CM   3xay 

t    . 5- ( ili . lit ) . _v Ift . 2-  afi 
12 3y        3X* 3Z- 3X 

3* 
Ti3 = u ayaz 
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and 

(T-, T    , T    ) = curl F 
11        12       13 

provided that 

c  _     li 

F, = 0 

3tb 
3   " ^  3X 

F,  = 2p 

Thus, the x-force is 

• n~ • (T    , T    , T    ) da 
, s_ 11       12       13 

X 

2ir 

a j     y f£   sin 9 de 

Other required resultants can be computed with similar techniques. 
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3. BASIC SINGULARITIES 

3.1 General 

This chapter considers the various singularities in a transversely 

isotropic medium which are the necessary building-blocks in the method of 

singularities.    As mentioned in Section 1.2, many higher and lower order 

singularities can be generated for isotropic media.    Similar approaches 

hold for transverse isotropy.    This section will present only those 

singularities which are of specific interest to the solution of the 

problems in Chapters 4 and 5. 

The three-dimensional Cartesian coordinate system will be utilized 

with the principal  directions denoted by x, y and z.    The z-direction 

will always be considered the vertical direction, and the medium will 

always have symmetry with respect to the z-axis. 

3.2 Horizontal  Unit-Force in the x-Direction 

i 

Love (1926),  Kroner (1953), Hu (1954), Woo and Shield (1962), and, 

Pan and Chou (1976) have used this solution for the case of transverse 

isotropy in their work.    The form presented here differs slightly from 

their solutions but the stresses and displacements are the same. 

•BBSS» 
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2   2 2 
Letting     R£ =       Vjt r   + z (*» 1,2,3), the potential  functions 

are (see Figure 3.1) 

»   -       7 

1      4^(^-1)      r2      r2 4^(^-1)  '     Ri 

1 X2 XR1 1 ~V1    X 

, -kj2xz      kj2xR2 , k 2v2 x 

4inJ(l4
2-l r2 r2 4iru(k1

2-l)        R2 + z 

i      vz   yR3      i    v32y 
*     = T^    {- *=• + —- }   = sr— {   —— > (3  2   1} 

The displacements and stresses are: 

U   = —!    { — — } + -! { —         +   1    z ] 
47Tp(k1

2-l)    '  R^Rj+z)2      Ri+Z 4mi(k1
2-l)    R2(R2+z)2    R2+z 

1        -3V V 
+ 4nT{-l ^+J—} <3-2'2> 4ir,J     R3(R3+z)       R3+z 

7 V*y 1 "ki v2 x^ U    = J-— { _i     ) + J {      ' } 
4m(k, -1)     RxfRi+z)2        41rU(k1

2-l)     R2(R2+z)2 

% 
1 V3   Xy 

4lTp     R3(R3+z)2 
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1                      Ml**                 l "kiv22x 

U3 = J - { — } + —! r- { —Li— } (3.2.4) 
4^(^-1)      R^Rj+z) 4wW(k1

Z-l)    R2(R2+z) 

2v.Vz v 2z v.Vz 
{ —'       s : + — r~r + —I r—r) 

4*^-1)   '  R^R^-z2)2      R^R^-z2)    R^R^-z2) 

,                2k v2Vz         k,v zz           k-VjVz 
+ —! { + —— i_£ Li j 

4ir(krl)        R2(R2
2-z2)2      R2(R2

2-z2)    R2
3(R2

2-z2) 

, 2v3Vi v3
2Z v3Vz 

+ ^{  " R3(R3
2-z2)    + R3(R3

2-z2) " R3
3(R3

2-z2)} ^^ 

, 2v    xyz v    xyz 
>{—   ,    :     + ~ ^-^r) 

yz ~4T0vTT Ri(Ri2.22)       Ri3(Ri2.z2)" 

2k1v2
uxyz k1v2'*xyz 

+ 4lT(ki-1){~R2(R
2-z2)2 _R3(R2-z2) } 

,        2v    xyz v, xyz 
+ r

L(     ,    ; ; + — —— ) (3.2.6) 
4*      R3(R3

2-z2)2      R3
3(R3

2-z2) 

" • Z77iT7T>  C- -V> • -1—{ J-V > * 0.2.7) 
t^r1)       R,3       '   4*(kr1)   "   R2

3 

* Woo and Shield's (1962) evaluation of a     at z=0 contains a typographical 
error. 

.»,.. • • ••n.i^i. 
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.    1 VjVx* 
XX 

VjUxRi 3v1
6xy2R1 

3/o   2_,2>3 to   2   ^2 ,„   2   ,2\3 «•VO^-U       R^R^-z*)3       (R^-z2)*       (R^-z2) 

5v 6xyV          v.Vxdc.+l) 
+ —: + —:—: 1  

2   _2\3 ^(R^-z2) 2R, 

2/t   2 

{+ "iSV'"    + "|S>2      3k1
2v2

5xy2R2 

3/D   2   ,2^3 ,„   2   ,2,2 2   ,2\3 &»,*(«,•-!)     R2
3(R/-z^)3      (R2

z-z')<       [\*-f) 

5k 2     6....2_2 2     2. , v2°xyV      kjVjSj^xtkj+l) 

R2(R2
2-z2)3 2^" 

,       v3\yV v3
2xR3 3v,VR,      5V,VZ2 

3   '"'^ ~"3   *v   "o        --3 + —^ 1 + —L 
2*  '     "3

3(R3
2-z2)3      (R3

2-z2)2      (R3
2-Z2)3      R3(R3

2-z2)3 

(3.2.8) 

{- 
^VR,      v1

6x3zlt 3v1
6xz2(x2-y2) 

&rv3*(k,M)      (Rx
2-z2)3     R^R^-z2)3     R^R^-z2)2 ^       9„.  2fV 2„|)*      (R]2_,2\3        D3fD2.,2l3        D   ^D  2.,2^3 

2     2 v,*v*x(k1+1)    ,        3k2v2
Gxy2R.  k2v2

6xV 

2RX
3 2irv3

z(k1
z-l)"        (R2

2-z2)J        R2
3.(R2

2-z2): 

2     G.._2/..2   Jt,        ,.       2     2. 3k \ ~xz (x<-yz)      k.v2\3
zx(k1+l) .     3v,"*xy R, 

R,(R,z-zz) 2   _2\3 2R„ 
> +ÖZ-C 2v     (R3

2-z2)3 

I«   3   I» 
v3 X Z 

3/D   2^,2.3 

o     *•     2/2     2» 3v3 xz (x -y ) 
2   ,2\3 R3

3(R3
z-zT     R3(R3

z-zz); 
(3.2.9) 
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_ j         Sv^x'yR,      v1'
,y(R1

2-vI
2x2)    2v1V(2v1

2x2
+R1

2) 

°x* = 21rv3
2(k1

2-l) {" (R^-z2)3  "R^CR^-z2)       '^(R^-Z2)2 } 

1 kxv2
6 x2y       8k1

2v2
Gx2yR2 

21rv3
2(k1

2-l)      R2
3(R2

2-z2)      (R2
2-z2)3 

kI
2v2t|yN22y2-3v2

2x2-2R2
2 

R2(R2
2-z2)2 

i        "32y      v3
2y(2v32x2+5R3

2)      7v3V 
+ JL{ + } (3.2.10) 

4lt       R3
3      R3

3(R3
2-z2) R3(R3

2-z2)2 

3.3   Vertical Unit-Force in the z-Direction 

See Figure 3.2, we have 

Ri+z 
{ ki log ( 0—7 )+ 2k2  log r } 

*      ^(k,2-!)  l  "'   "" ' R*- 

{-kj log ( Rx+z )} 
*m(ki2-l) 

R2+z 
H • t 8;ry 

1 "2T* 
'     2    . {-ki log ( R-T7 ) -2k: log r } 

{-k!  log (R2+z) } 
4*,i(k1

2-l) 

^   =0 
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The displacements and stresses become: 

Ux =  {- } + —! { }   (3.3.2) 
4Trp(k1

2-1)  Ri(Ri2-z2)   4iru(k1
2-l) R2(R2

2-z2) 

1       kivi2yz      ,      k!v2
2yz 

U2 = __! { j + _\ {  }    (3.3.3) 

4*p(k1
2-l)      R^R^-z2)        Wki2-!)    R2(R2

2-z2) 

1                   kl               1 1 
U3 - —!    (r}+ —    { - IT- ) (3.3.4) 

4ini(k1
2-l)      Rl 41r,i(k1

2-l) R2 

i Ml2* , v2
2x 

av, = —!    { } + -!    {  } (3.3.5) 
xz     Mkj-1) Ri3 4Tr(kj -1)    R2

3 

i                 ki^i2y           i                 ^22y 
aV7 = —!    { } + -!    {  } (3.3.6) 
yz      4^(^-1) R3 4ir(k1-1)      R2

3 

1                   kivi z           i                 v22z 
o77 = -1    { } + -!    {  } (3.3.7) 

ZZ      4n(krl) Rx
3 41r(k1-l)      R2

3 

l 

•I ak^^z 2ak1v1
lfyz(x-y)    ak^^yztx-y) 

°xx     41rU(k1
2-l)     MR^-z2)      R^R^-z2)2 Ri3(R!2-z2) 

ak1v1
2z     bkj2z     4jTk1v1

lfxyz     2ü"k1\>1
lfxyz 

R!3 HJ~ " Ri(R!2-z2)2" R^R^-z2) 

,                   akav2
2z        2ak1\>2'*yz(x-y)   ak^^yztx-y) 

+ _!   { +_  
4*u(k1

2-l)       R2(R2
2-z2)    R2(R2

2-z2)2 R2
3(R2

2-z2) 

akiv22z     h?       4jk1v2'txyz       2yk1v2'fxyz 
 +H2—+     +  } (3.3.8) 

R2
3 R2

3      R2(R2
2-z2)2      R2

3(R2
2-z2) 
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, ak^^z       2ak1v1'*yz(x-y)    akjv^yzfx-y) 
0      = _!    {  +  
yy       4^(^2-1)        MRr-Z2)     ^(^2-22)2 Rl3(Rl2.z2) 

akav!2z     bk^z     4yk1v1Vz     SkiViV* 
+ + +  ) 

Ri3 Ri3       Ri(Ri2-z2)2    Ri3(R!2-22) 

•, ak!v2
2z        2ak1v2

l+yz(x-y)    akjv^yztx-y) 
+ _! { +   

4irv(ka2-l)      R2(R2
2-z2)    R2(R2

2-z2)2 R2
3(R2

2-z2) 

akiv22z       bz     4ykIv2
lty2z      2iTk1v2'

ty2z 

R2
3 R2

3      R2(R2
2-z2)2    R2

3(R2
2-z2) 

(3.3.9) 

2k1v1'*xyz         k1v1
l*xy2 

{      + } 
Xy       21rv3

2(k1
2-l) M^-Z2)2        R^R^-Z2) 

, 2k1v2'
txyz         kjv^xyz 

+ —I    { } (3.3.10) 
2•3

2(k1
2-l) R2(R2

2-z2)2      R2
3(R2

2-z2) 

3.4   Double Force Without Moment 

The derivative of the Kelvin solution in the direction of its force 

generates what Love (1926) called a "double force without moment". 

Computing this force doublet from the forcd in the x-direction yields the 

potentials (see Figure 3.3(a)): 

1 x2z2     y Ri        z     2x z 

1     41ry(k1
2-l)      r"Rt       r*       r2       r* 

or, 
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S • -J  { — V > 
47ry(k1

2-l)       RxtRx+z)* 

*9    " 
1 

4iry(k1
2-l) r% 

k,2x2z2     k!2y2R2     k^z     2kx2x2z 
{ + + } 

1 :     :-•---+  kx2v2
2  } 

fivCkx2-!)     R2(R2+z)2 

J-f- SSi. xyR, 
4irp 

+ |xy_z 
r^R, 

{• 
va^xy . J_ 

4TTV       R3(R3+Z)2 
} (3.4.1) 

Similarly (see Figure 3.3(b)) for a force doublet in the z-direction the 

potentials are: 

•i " 
1 

1       4iry(k1
2-l)       Rl 

ki 

41rp(k1
2-l)        R2 

1>   • 0 

This singularity is, of cou.se, axially symmetrical about the z-axis 

and therefore, and as expected, the deviatoric potential \\> is equal to 

zero. 

The double force without moment is not explicitly used in the solution 

of problems in Chapters 4 and 5.    Therefore, the stresses are not presented 
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here. 

3.5 Center of Dilatation 

Superposing three "double forces without moment" which are mutually 

orthogonal, creates a "center of dilatation" or a "center of compression" 

depending on the orientation of the forces. Therefore a "center of 

dilatation" assumes the form (see Figure 3.4): 

•i —7"    {  -R— > 1  ^(k^-l)    Ri 

•, = —" 7— C 2  41Mi(k1
2-l)    H 

i|» = 0 

The center of dilatation is not explicitly used in the solution of 

problems in Chapters 4 and 5 and, therefore the displacements and 

stresses are omitted. 

3.6   Line of Dilatation 

Line singularities can also be generated in addition to those which 

are singular at a point.    One such line may be, say, one which extends 

along the z-axis from the origin to infinity.    Integrating a center of 

dilatation along the z-axis from zero to infinity produces the potential 

functions: 
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•, = 
1  2iry(ki2-l) 

{ (ki-vi2) log (Rx+z)} 

*2 = 
1 

2irp(ki2-l) 
{ (k^v^-kx) log (R2+z) } 

4 = o 

The related displacements and stresses are: 

(3.6.1) 

U, 
1 v^xfkj-Vi2) . k1v2

2x(k1v2
2-l) 

{ } + —i { } 
2Try(ki2-l)      RjtRx+z) 2Tnj(kx2-l)      R2(R2+z)       (3.6.2) 

l       v^yCkx-vj2) 1 kiv2
2y(k1v2

2-1) 
} + 

2Trp(k!2-l)      R^Rx+z) 21ry(kx2-l) R2(R2+z)     (353) 

ki(kx-vx2) 
} + 

2iry(kx2-l) Rl 2iry(k1
2-l) *2 

(kiv2
2-l) 

{  5    > (3-6.4) 

i                   vx2x(kx-vi2)                .               v2
2x(kxv2

2-l) 
axz = ^~T.—"   { TZ > +        — .{ : >  (3-6.5) 

2»(kl-D Ri3 2*(kH) R2
3 

i vx2y(ki-vx2) . v2
2y(kxv2

2-l) 
a      - —I    { } + -!    { } 
*"     2ir(kx-l) Rx3 2^(kx-l) R2

3 (3.6.6) 

°zz • -"—  < 
vi2z(kx-vx2) 

}    + 
v2

2z(kxv2
2-l) 

} 
2n(ki-l) Ri* 2Tr(kx-l) R2

3 (3.6.7) 
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1 
xx 2im(k1

2-l) 
{(ki-v12)( 

2av!2       2avi2(R!-z)    av^zfRj-z) 

Ri(Ri+z)   Ri2(Ri+z)        Ri3(Ri+z) 

b^z     2WJ2         4yviV           2UviVz 
—_ + +  )} 

Ri3      R!(Ri+z)    Ri2(R!+z)2      Ri^Ri+z)2 

_j      (k1v2
2-l), 2akiv22     2ak!v2

2(R2-z)    akIv2
2z(R2-z) 

21rp(k1
2-l) R2(R2+z)    R2

2(R2+z) R2
3(R2+z) 

b_     2uklV2
2       4uklV2V       2uklV2Vz 

R2
3      R2(R2"+z)    R2

2(R2+z)        R2
3(R2+z) 

)i (3.6.8) 

_    1 
yy       2uy(kl

2-l) 

(kl.Vl2)    2avi2 2av1
2(R1-z)    av^z^-z) 

Ri(R!+z)    Ri2(Ri+z)       R!3(R!+z) 
)> 

b^Z 2yVl
2 ^vi^X2 2liv1

,*x2z 
 + + )} 

Ri3     Ri(Ri+z)   Ri2(Ri+z)2       Ri3(R!+z)2 

1 (kiv 2-l)    2akiv22     2ak!v2
2(R2-z)    aklV2

2z(R2-z) 

21ry(k1
2-l) R2(R2+z)    R2

2(R2+z) R2
3(R2+z) 

hr       2pklV2
2     Ivki^x2       2uk1v2'*x2z 

R2
3      R2(R2+z)    R2

2(R2+z)2      R2
3(R2+z)2 

)> (3.6.9) 

3 {(ki-vi2)(_^ 
vi-xyz 

Xy      1rv32(k1
2-l) Ri2(Ri+z)2     R^Rj+z)2 

)> 

_j {(M22-D(. 2klV2,fxy      klV2*xyz    j 
•3

2Ui2-U R2
2(R2+z)2     R2

3(R2+z)2 (3.6.10) 
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3.7 Double Force With Moment 

C 

The derivative of the Kelvin solution perpendicular to the direction 

of its force, yields what Love (1926) referred to as a "double force with 

moment".    Taking the derivative of the x-direction force with respect to 

the z-direction, yields: 

.2, 

$ 
1 { -*--*?-> 1 Vj^X 

{ > 
Wk!2-!)  '   r2      r2!h '      4iry(ki2-l)  l  Mfy+z) 

h = 
kx

2x     ki2xz 

41rU(k1
2-l) '      r2        r2R2 

} = 
1 ki2v2

2x 
{ } 

41r,i(k1
2-l)      R2(R2+z) 

•   = J-{-^+-^-}=^-{ 
v3

2y 
} (3.7.1) 

4• '" r2   ' r^ '  " 47ry *" R3(R3+z)' 

The resultant moment in this case is about the negative y-axis (see 

Figure 3.5(a)). 

Similarly taking the derivative of the z-direction force with respect 

to the x-direction: 

•l " 
1 kix     kjxz 

{ i 1 klV,2x 
{  > 

4im(k1
2-1)"     r2      r2Rj "       4rm(kl

2-l)    R] (Ra+z) 

*2   = 

kiv2
2x 

— { } 
*m(ki2~l)        r2      r2^       4wy(ki2-T)      R2(R2+z) 

1 k.x     k,xz , 
{-—+ }=      ' 
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In this case the resultant moment is generated about the positive 

y-axis  (see Figure 3.5(b)). 

Since neither of the double forces with moment are used explicitly 

in the solution of problems in the later chapters, the displacements and 

stresses will not be presented here. 

In a parallel manner, other double forces with moment can be obtained 

whose resultant moments are about the x- or z- axis.    For the purpose of 

this study the needed double forces with moment are those which create 

moments about the y-axis.    This will be made clear in the solution of 

problems in Chapters 4 and 5.   

3.8   Center of Rotation 

Combining two double forces with moment which share the same axis, 

that is, which create moments about the same axis, results in a center of 

rotation.    If two of these double forces share the y-axis as those which 

were derived in section 3.7, a center of rotation about the y-axis is 

formed (see Figure  3.6). 

1                 x         xz           1                   vi2x 
*   = —! { -*- - —H- } = -i {  > 

1      47rli(k1+l)    r2      r2Ri 4^(1^+1)    MRi+z) 

, kjX     kixz 1 ki^22 x 

2      4mi(k1+l)      r2      r2R2 4irii(k1+l)    R2(R2+Z) 

,      i  {_y_._yj_}     i  { ^_} (3.8.D 
**    r*      r*R3 

4*y      R3(R3+z) 

c 
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The center of rotation is not used explicitly in the solution of 

problems in Chapters 4 and 5.    Therefore the displacements and stresses are 

omitted. 

Centers of rotation about either the x- or z-axis are obtained in a 

parallel manner. 

3.9    Line of Rotation 

Taking a center of rotation about the y-axis as described in the pre- 

ceeding section, and integrating it along the z-axis from the origin to 

infinity will create a line of rotation whose rotation centers generate 

moments about the y-axis: 

1 xRi      xz 1 v!2x 

•i s —J { — } = ~ { 7R7+Z)} 
1      41rp(k1+l)    r2       r2 ftnifa+l)       *    ' 

•• kjxR2      kjxz , kjv2
2x 

•a • —! { > = J {  > 
4^(^+1)       r2 r2 41ry(k1+l)    (R2+z) 

,   = ^{>A   .»,.   1   ,!£», (3.9.,, 

The displacements and stresses are given by: 

, V!2 v^X  2 

Ui  • — { WT7) > 
Wkx+l)    (Rl Z)    Ri(Ri+z)2 

, ki^22       k1v2'*x2 

{ } 
4iry(k1+l)       (R2+z)    R2(R2+z)2 

1          v3
2          v3V 

•ir-trs-r^ > (3.9.2) 
*»        IRT^)     R3(R3+Z)2 



u, = 
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2^-xy 

4^(^+1)    MRi2-z2)    (Rx+z)  (Rj-z) 

k1v2'*xy 2k1v2'*xy 

4m(MD   R2(R22^2)   (R2+Z)2(R2-Z) 

,         v3
ltxy            2v2'*xy 

+ -L. { +  
4*u      R3(R3

2-z2)    (R3+z)2(R2-z) 
} (3.9.3) 

U3 ' 
1 k1v1

2x , 
{ } + -J {. 

v2
2x 

41ru(k1+l)      Rx(Ri+z)       4ir)j(k1+1)      R2(R2+z) 
} (3.9.4) 

°xz = 4T{- 
vj2 2v1'*x2 

 +   
V^Z 

Ri(Ri+z)    Ri(Ri+z)2(R1-z)    R^R^-z2) 
} 

+ 4V^- 
v2

2 2v2'*x2 

+ 
v2"*x2z 

R2(R2+z)   .R2(R2+z)2(R2-z)    Rz^Rz2-?2) 

+ 4V{- 
2v3V v3Vz 

} 

°yz = 4T { 

R3(R3+z)    R3(R3+z)2(R3-z)    R3
3(R3

2-z2) 

2x1'»xy v^xyz 

R!(Ri+z)2(Ri-z)    R^fR^-z2) 
} 

(3.9.5) 

i        2v2-xy 
+ 47< 

\>2'*xyz 
> 

R2(R2+z)2(R2-z)    R2
3(R2

2-z2) 

+ 4T{- 
2v3"xy v^xyz 

R3(R3+zj2(R3-z)    R3
3(R3

2-z2) 
} (3.9.6) 
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'zz ~ 4IT 
1      Vl  x 1 

{ ) + r-{ 
V^X 

R2
: 

(3.9.7) 

xx 4•3
2(k1+l) Rx3 

v1
2v3

2x(k +1)      v^y 
{ -+   

Zv^yRi 4v1
sx2y 

Ri(Ri2-z2)    (Ri2-z2)2     R^R^-z2)2 

v^y       vx6x2y          ^»i'^yRi 
+ +  } 

Ri3     Ri3(Ri2-z2)    (Ri2-z2)3 

v2
2v3

2x(k1+7)     k^-y        2kiv2"yR2 
{ +  

4•3
2(k1+l) R2

3 R2(R2
2-z2)    (R2

2-z2)2 

4k1v2
6x2y kiv^y     kxv2

6x2y 8k1v2
6x2yR2 

R2(R2
2-z2)2 R23        R2

3(R2
2-z2J *    (R2

2-z2)3" 

+ 4T< 

v3
2x 2v3

2xR3        4v3'*xy2 

+ +   
R3(R3

2-z2)    (R3
2-z2)2     R3(R3

2-z2)2 

8v3'*xy2R3       v^xy2 

 + } 
(R3

2-z2)3      R3
3(R3

2-z2) 
(3.9.8) 

v1
2v3

2x(k1+l)      v^x 
{ + 

Zv^xR! 4Vl
6xy2 

yy     47tv3
2(k1+l) Ri3 Rx(Ri2-z2)    (Rx2-z2)2      R^R^-z2)2 

v^x       vj6xy2 8v1
6xy2R1 

+  } 
Ri3      Ri3(Ri2-z2)    (Rx

2-z2)3 

1 

4*v3
2(k1+1) 

v2
2v3

2x(k1+1)      k^x          ZkiVz^xRz 
{ +  

R,3 R2(R2
2-z2)    (R2

2-z2)2 

4kxv2
6xy2          kxvz^x     kjv2

sxy2         8k1v2
6xy2R2 

 + +  } 
R2(R2

2-z2)2 R2
3     R2

3(R2
2-z2)       (R2

2-z2)3 
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+ 4T< 
!  r      v3

2x 2v3
2xR3        4v3'*xy2 8v3'*xy2R3        v^xy2 

R3(R3
2-z2)    (R3

2-z2)2     R3(R3
2-z2)2      (R3

2-z2)3       R3
3(R3

2-z2)' 

(3.9.9) 

} 

1 
{ 

vj6x2y vx
6x2y viuy 

Xy       21rv3
2(k1+l)1      Rl(Rl

2-Z2)2        Rl3(Rl2_z2)     Rl(Rl2.22) 

Swi^yR!        3v^x2y 2v1'*yRi 

(Ra
2-z2)3      MRi2-z2)2      (R^-z2)2 

} 

k1v2
5x2y k1v2

6x2y kjv^y 
{ +   

21Tv3
2(k1+l)"    R2(R2

2-z2)2      R2
3(R2

2-z2)    R2(R2
2-z2) 

8k1v26x
2yR2       3k1v26x

2y       2k1v2
tfyR2 

(R2
2-z2)3       R2(R2

2-z2)2 " (R2
2-z2)2 } 

+ £{ ! r    8v3
l»yR3(x

2-y2)     2v3"x2y v3-y(x2-y2)     6v3V 

(R3
2-z2)3 R3(R3

2-z2)2     R3
3(R3

2-z2)    R3(R3
2-z2) 

4v3
2yR3          4v3

2y 
 +  } 
(R3

2-z2)2 R3(R3
2-z2) 

(3.9.10) 

3.10 Discussion 

The resultant forces in the principal directions for the singularities 

presented here can easily be found by using the equations derived in Chapter 

2. 

Moreover, all of these solutions have been found to be valid for the 

special case of (b + y) • 0 where vj • \>2 etc. (see Equations (2.3.1)). 
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It is important to note that the expressions for displacements and 

stresses throughout this Chapter are written in such a manner that the 

first term in each expression is related to i>l, the second term to $2, 

and the third term,  if any, to $.    This will  be important in Chapters 4 and 

5 when we deal with the solution of sub-surface problems. 

_"_ '. _- '"" •* 
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4.    SOLUTIONS OF PREVIOUSLY-SOLVED TRANSVERSELY-ISOTROPIC 
HALF-SPACE PROBLEMS 

4.1    Concentrated Vertical Unit-Force on a Half-Space 

Usually referred to as the "Boussinesq Problem" (see Figure 4.1), 

this problem for the case of transverse isotropy has been solved by E. 

Kroner (1953), Hu (1954), Woo and Shield (1962), and Pan and Chou (1976), 

by methods other than the singularities approach.    The final solutions are 

all identical  to those which are presented here. 

The solution, using the method of singularities, can be generated 

by the realization that it should have some characteristics of a Kelvin 

force, in that the only singularitity in the lower half-space is at z = 0, 

the resultant force on any hemisphere in the lower half-space with center 

at the origin is of a unit magnitude in the z-direction, and the singular- 

ity at the origin is 0(-j).    Since the Kelvin force alone does not clear 
R 

the boundary z=0 of tractions, one must seek further rotationally symmetric 

singularities in the upper half-space of order lower than 0(—j).    A line 

1 R 

of dilitation has the required symmetry and is O(-x).    Superposing these 

singularities (with the line of dilatation having the proper "magnitude"), 

clears the boundary z=0.    The force resultant was obtained from the 

equations in Chapter 2 and the "lagnitude" of both singularities were 

adjusted so that the total resultant was equal  to a unit-force. 

In retrospect it can be seen that the identical solution could be 

generated by superposing the following: 

-— - 
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a. Iß, portion of a line of dilatation extending from the origin 

to infinity along the z-axis and having a magnitude of 

vi(k -1) 

(ki-vi2)(vi-v2) 

and, 

b. (J), portion of the same line of dilitation having a magnitude 

of       ^(ki-D 

(kivj*-l)(vi-*i) 

The Kelvin force seems to be omitted but it is realized that at the 

origin    the line of dilatation produces the force resultant required to 

solve the problem.    It is also important to note that separation of the 

potential functions provides a shorter and equivalent route to the problem's 

solution.    This fact is very helpful  in solving more complex problems. 

For the Boussinesq problem, the resulting potentials are: 

•x =  1    {log (Rx-z)} 
2wp(kl+l)(v1-v2) 

A    =      {log  (R2-Z)} 
2iru(k1+l)(v1-v2) 

The derived displacements become 

1 
vi3x   kjv2

3x 
U] » —i { > 

2*11(1^+1 )(vi-v2) Ri(Ri-Z) R2(R2-Z) 
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i vx

3y k!V2
3y 

U2 - —• ( } 
2Trp(k1+l)(\»1-v2) Ri(Ri-z)   R2(R2-z) 

i Mi     v2 U   = _! ( } (41>2) 
2^(^+1 )(vl-v2)      Rx        

K2 

The stresses are: 

vx
3x     v2

3x 

XZ      2!!^!^)      Ra3        R23 
(4.1.3) 

vx
3y     v2

3y 
a ! {  +  } (4.1.4) 

yZ      2Tr(v!-v2) R:
3 R2

3 

, \>i3Z       v2
3Z 

o_   = —l { + } (4.1.5) 
"     2w(v1-v2)        Ri3       R2

3 

,                           2bk1v1(vi2-"n     bk^izNj2-!)    2bv2(v2
2-l) 

a      =  ! {.     +  +   
xx     2Tru(k1+l)(v1-v2) R^Ri+z) Ri3 R2(R2+z) 

bv2z(v2
2-l) , 2v1(v1

2-l) 
 }   +  { !  

R23 2TT(VI-V2)      Ri(Ri+z) 

va
3Z       2v2(v2

2-l)    v?3Z 

R13     R2(R2+z)        R2
3 

-,                                          vj3               V!5X2               Vi5X2 

+ —! t +  +   
«Y(k»*1)(?i-*il     Ri(Ri+z)    Ri2(Ri+z)2     Ri3(Ri+z) 

kjv2
3 k!v2

sx2 kxv2
5x2 

+ } (4.1.6) 
R2(R2+z)   R2

2(R2+z)2     R2
3(R2+z) 
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2bk1v1(v1
2-'D    bk^z^2-!)    2bv2(v2

2-l) 
{ +  + 

Rr R2(R2+z) 

bv2z(v2
2-l) 

} + 
2v1(v1

2-l)    vx
3z      2v2(v2

2-l) 
{ +  +   

2TT(V1-V2)      R^RJ+Z) RX3      R2(R2+7) 

v2
3Z 

}  + 1 ^1° 
{ + 

Vl5y   2 

R2
3 ^32(k1+l)(v1-v2)      RxCR^z)    R^^+z)2 

vi 5y2 k!v2
3 k!v2

5y 5 «2 kiv2
5y2 

} 
Ri3(Rx+z)    R2(R2+z)    R2

2(R2+z)2      R2
3(R2+z) 

(4.1.7) 

2vj5 xy vj^xyz 

Xy      irv3
2(k1+l)(v1-v2)      RxtRx+zJCRx-z)2      R^R^-z2) 

2v2
5xy                   v2

5xyz 
 + } 
R2(R2+z)(R2-z)2      R2

3(R2
2-z2) 

(4.1.8) 

4.2    Concentrated Tangential Unit-Force on a Half-Space 

This problem (see Figure 4.2) usually referred to as the "Cerruti Prob- 

blem", was also solved by other methods for the case of a transversely isotro- 

pic halfspace by E. Kroner (1953), Ku (1954), Woo and Shield (1962), and, 

Pan and Chow (1976). 

Using the mehtod of singularities, the solution can be generated by 

realizing that it should contain a Kelvin force in the x-direction, 0( ), 

which is itself odd in x and even in y.    Therefore, a singularity " 

of lower order which has this same symmetry, and which acts only in the 

upper half-space, must be sought.    It was found that a line of rotation 

along the z-axis whose centers of rotation produce moments about the y- 

axis, has these characteristics. 
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It was found that superposing the following yielded the desired 

results: 

a. Unit Kelvin force at the origin, acting in the positive x-direction 

b. (J^ and (|)2 portions of a line of rotation (whose resulting moments 

are about the positive y-axis) from the origin to infinity and having a 

magnitude of 

v^kjvj 

£fcl-l)(vi+v2) 
c. t|> portion of the same line of rotation and having a magnitude of 

d. The force resultant in the x-direction was calculated and adjusted- 

for a unit force. 

In retrospect it was also found that Identical results can be obtain- 

ed by superposing: 

a. <pi portion of a line of rotation (whose resulting moments are about 

the positive y-axis) extending from the origin to infinity along the z-axis 

having a magnitude of   -   7— ». I 

b. §2 portion of the same line of rotation but having a magnitude of 

(vi - v2)  ' 

c. ty portion of the same line of rotation but having a magnitude of 

2. 

The resulting potentials are: 
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Vj2V2X 

2m(k1+l)(v1-v2)     Ri-z 

*2   = 

kiv1v2
2x 

{ } 
2im(ki+l)(vi-v2)       R2-z 

T ^3zy 

The displacements are:    f   s 

(4.2.1) 

U,  = 
vitfv2x2        vi2v2      k1viv2

l*x2 

{ + + 
1      2^(1^+1) (v!-v2)      R^Ri-z)2      (R:-z)    R2(R2-z)2 

k1v1v2
2 , v3V V34 

(R2-z) Z"v     R3(R3-z)2      (R3-z) 

viSjxy       k1v1v2
lfxy 

{ +  } 
&m(kl+l)(vi-v2)     R^Ri-z)2     R2(R2-z)2 

v^xy 

2ltv      R3(R3-z)2 

1 kjVl2V2X VjV2
2X 

 { + } 
2irli(ki+l)(vi-v2)     RxtRx-z)      R2(R2-z) 

(4.2.2) 

The stresses are: 

.1 
xz { 

v1'*v2x2 vj2v2 vi**v2X2 

2TTCVI-V2)    R^jRi-z)2     RjCR^z)    R!3(R!-z) 
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vlv2<*x2 vlv22 VjV^X2 

+ } 
R2

2(R2-z)2     R2(R2-z)   R2
3(R2-z) 

+ ^r( 
v3 V vsV 

2*      R3
2(R3-z)2     R3(R3-z)   R3

3(R3-z) 
(4.2.3) 

v1'*v2xy        viuv2xy        v1v2
l*xy        v1v2'*xy 

yz     2n(v!-v2)   R!2(Ri-z)2     R!3(Ri-z)   R2
2(R2-z)2     R2

3(R2-z) 
V 

i     ^3Hxy 
+ 2T< + 

V^Xjf 

R3
2(R3-z)2      R3

3(R3-z) 
} (4.2.4) 

1 
zz { 

vi'*v2X      v1v2
IfX 

2ir(v!-v2) Rj3 R2
3 

(4.2.5) 

.    1 VJ2V2X  viv2
2x 

XX 
2TT(V1-V2)    RI

3
     R2

3 

v3
2X 1 2v3*xy2 v3^xy2 

*    " R3
2(R3-z)3 " R3

3(R3-z)2 + R3(R3-z)2 
} 

1 2v!6v2xy2       vj6v2xy2        vi**v2x 
{ +  

•v8*(Ml)(vj-v2)     R!2(R!-z)3      R!3(R!-z)2     Rj(Ri-z)2 

2kiV!v2
6xy2      k1v1v2

sxy2     k1v1v2
lfx 

+ + } 

R2
2(R2-z)3      R2

3(R2-z)2     R2(R2-z)2 
(4.2.6) 

1 
yy 

{• 

Vj2v2x      vjv2
2X 

2ir(v!-v2) Rx
3 R2

3 
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"•.YV2 ,       2v3'*xy2          v^xy 
+ -{  +  

v3
2x 

*     R3
2(R3-z)3     R3

3(R3-z)2     R3(R3-z)2 
} 

2vj6v2X3          v1
6v2x3          Sv^VjX 

{ +   
irva^kj+lHvx-vi)        R!2(Ri-z)3      R!3(R!-Z)2      Ri(R!-z)5 

Zkxvjv^x3      k1v1v2
6x3       3kiv1v2'*x 

' R2
2(R2-z)3      R2

3(R2-z)2      R2(R2-z)2 
(4.2.7) 

xy 

v\\2y          2v1
6v2x2y    . v1

6v2x2y 
{ +    +  

irv3
2(k1+1)(v1-v2)     MRx-z)2     Ri2(Ri-z)3     Ri3(Ri-z)2 

Mi«*.**      2k1v1v2
6x2y     k1vlv2

6x2y 

R2(R2-zi2       R2
2(R2-z)3       R2

3(R2-z): 

v3-y(x2-y2) 1      2v3
uy(x2-y2)      2v3

2y 
+ I*     R3

2CR3-z)3    *" R3(R3-z)2     R3
3(R3-z)2 

(4.2.8) 

4.3   Concentrated Vertical Unit-Force Beneath the Surface of a Half-Space 

The solution of this problem (see Figure 4.3), referred to as the 

"Mindlin Problem" in the literature, has been solved for transverse isotropy 

by Shield (1951) by another approach. 

For guidance in the construction of this solution by the singularities 

approach,  it is observed that the only permissible singluarity in the lower 

half-space is the Kelvin force.    Analogy with simpler elliptic fields and 

the desire to clear the boundary of normal  stresses lead to the placement 

of a Kelvin force singularity of opposite sign at the "image point" outside 
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the boundary.    Finally, the realization that the limit solution must 

approach the Boussinesq solution as the point force approaches the boundary, 

leads one to utilize the potentials of a line of dilatation to clear the 

boundary of the remaining tractions» 

A solution was obtained by superposition (letting the force act at a 

point "S" beneath the surface) of the following: 

a. Unit force in the negative z-direction along the z-axis and acting, 

at a point a distance "S" below the surface of the half-space» 

b. Unit force in the positive z-direction along the z-axis and 

acting at a point a distance "S" above the surface of the half-space, 

that is, at the "image point". 

c. fi, portion of a line of dilitation extending from "S" to infinity- 

along the positive z-axis and having a magnitude of      _k , 

Ui- VJ^HVJ- v2) 

d. $2 portion of the same line of dilitation and having a magnitude 

of        -v2 

(k1v2
2-l)(vi-v2) 

Svi 
e.    <Pi portion of a line of dilitation extending from       to 

v2 
infinity along the positive. 

z-axis and having a magnitude of 
vi 

(ki-V!2)(vi-v2) 
Svj 

f.    tyz portion of a Hne of dilitation extending from   -—•  to 

Infinity along the positive z-ax1s and having a magnitude of     k v 

(kiv2
2-l)(v1-v2) 
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Although the force resultant can be calculated by the method and 

formulas outlined in Chapter 2, it clearly retains the unit magnitude 

of the Kelvin force. 

Letting: 

Svl       2   L. 
M * = [v 2r2 + (z f-fi 

Svl 
mi    = Mi* + z  1 l V2 

Sv5 
N2* = [v2

2r2 + (z )*f* 

Sv2 
n2    = M2* + z . __ (4.3.2) 

Vs K2""2 + (z"s)2^      <* s 1.2»3) 

h    = V + z"s    (* = 1,2'3) (4.3.3) 

Rl*" Cv42r2 + (z + s)2]Ji    (* = 1'2'3) 

rA    =  Rt* + Z + S     ^ "  1»2»3^ (4.3.4) 

the derived potential functions are: 

1  8*(M-1) 

Rt* +z+s         Qj* +z-s 
{.fc, log ( ) + fe, log (   ) 

R,* -z-s Qi* -z+s 
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4kjvi 4v! svi 
  log (Qi* +z-s) + :  log (Mj* +z )} (4.3.5) 
(vi-v2) (vi-v2) 

V2 

, R2* +z+s Q2* +z-s 

*2 =  , :  < ki l09 (   ) - ki 1o9 (   ) 
SmfM-l)       R2* -z-s Q2* -z+s 

4kiV2 4kj2v2 sv2 
  log (Q2* +z-s) +   log (N2* +z   )} (4.3.6) 
(\>i-v2) (v!-v2) 

Vl 

f   * 
(4.3.7) 

The displacements become: 

-,                  kxv^xtz-s) kiv2
2x(z-s) 

U, 1 {-—    + 
4mi(k!2-l)     Qi*qi(Qi* -z+s)     Q2*q2(Q2* -z+s) 

k1v1
2x(z+s) kjv2

2x(z+s) 

Ri*n(Ri -z-s)     R2*r2(R2*-z-s) 

i kiV!3x     ki\)2
3x     vj3x       kj2v2

3x 
•  ! {-—i * +—5— +—5 >  (4-3.8) 

ZirV(ki2-1)(v1'V2)      Q,  qi        Q2 q2        Mi  mx      N2 n2 

i klVl
2y(z-s) k!v2

2y(z-s) 
—!——-{-     ! , +     , , • 
4irp(k1

2-1)      Qi  q! (Qi  -z+s)    Q2 q2(Q2 -Z+s) 

kivj2y(z+s) kiv2
2y(z+s) 

Ri ^(R!  -z-s)    R2 r2(R2 -z-s) 
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kivi3y     klV2
3y 

2*u(k1
2-l)(vi-v2)      Qj qi Q2 q2 

>i3y       ki2v2
3y 

* * 
Mj m\       N2 n2 

(4.3.9) 

1 ki2 
1       ki2  ,    1 U3 - { —T - -~ - —w + -T- } 

4Trv(ki2-l)    Qa        Q2        Rj R2 

{• 
ki2vj v2       kjV!       kiV2 

2mi(k1
2-1)(v1-v2)     Qi Q. 

*  +   ^F + — > 
Mi N2 

(4.3.10) 

and the stresses are: 

1 
xz {• 

kivi2x     \>2
2x     kjvi2x     v2

2x 

4»(ki-l)       Qi 3 Q2 
3     Ri 3       P.   3 

*  > 
R^   3 

{ 
kivj3x     v2

3x     v!3x     kiv2
3 x 

2*(k1-l)(v1-v2)      Qi  3        Q2  
3      Ml  3      N2 

3 
* } (4.3.11) 

1 
yz {- 

kivx
2y     v2

2 y   kjv^y     v2
2y 

*r(ki-U      Qi 3      Q2 
3      Ri 3      R2 

} 

{ 
kiv!3y     v2

3y     vi3y     k:v2
3y 

2ir(;1-l)(v1-v2)      Qj*3 Q2*3      Mx*
3      N2"3 

5 } (4.3.12) 

zz {- 
kiv^U-t)   v2

2(z-s)    klVl
2(z+s)   v2

2(z+s) 

*t(ki-U      Qi 3 Q2 
3 Ri R, 3 

} 

1 
{ 

W(Z-S)     V2
3(Z-S)     V13(Z~) 

  +  , , X2. 
2irp(ki-l)(v1-v2) Qi   3 Q2 Ml 
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(4.3.13) 

xx 
Mz-s)    (z-s)    Mz+s)    (z+s) 

{ —* s — + -*-} 
Mkj-l)     Qj 3       Q2-3       Rj 3       R2 

3 

{- 
Mi3      kjv^Jz-s)2      M^r2     k!v2

3 

am(ki*-l)(vl-wa)     Qi <h      Qi 3qi Qi*2qi2    Q2* q2" 

kiv2
3(z-s)2    k1v2

5r2       \>\ 

Svi    2 
3        Vi 3(z-   ) • 2 8 *   v       v2 vj5r* 

Qz 3qz 
#,    *    * * 

Q2 
2q2Z    Mi mi M!  3mi Mj  2m! 

sv2 

kl2V23        k12v23(z-— )2 kl2V25r2 

N2 n2   N2 
3n2 M2 

2n2
2 

} 

SV! 

{ 
kiSU-s) v2(z-s) W*- —) 

2Trp(k12-l)(Vl-v2)   Qj 3 
Q2 Mi 3 

SJ2 

kiv2(z- — U 
 E ) 

N2 
3 

1 
{ 

k1v12(z-s) 2kiVlV(z-s) 

2irv3
2(k!2-l)  Qi [Q, 2-(z-s)2]   Q, [Qz 2-(z-s)

2]2 

kiv2
2(z-s) kiv!V(z-s) 

Qr3[Qr2-(z-s)2] " Q2*[Q2*
2-(2-s)2] 
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k!v2V(z-s) 

Q2"[Q2"
2-(z-s)2]2     Q2~3[Q2"

2-(z-s)2] 

ki^i2(z+s) 2k1v1V(z+s) k^VU+s) 
*_   * Ri"[Rr2-(z+s)2] RrcRr2-(z+s)2]2   Rr^rMz+s)2] 

kiv2
2(z+s) 2k1v2V(z+s) klV2

uy2(z+s) 
*_   * *_    * 

R2"[R2"
2-(z+s)2]     R2~[R2"

2-(z+s)2]2      R2"
3[R2"

2-(z+s)2] 
} 

1 kjvj3      kjvjSy2      klVl
5y2 

 ! i —s s *—=* 
^32(k1

2-1)(v:-v2)      Qx  qr     Ql  3q: Q:  2qi2 

kiv2
3     klV2

5y2     k!v2
5y2       Vl

3       v^y2 

Q2"q2      Q2'
3q2        Q2"

2q2
2      M^nu      fOi^ 

vi5y2       k!2v2
3     k!2v2

5y2     k1
2v2

5y2 

Hi^mj2     N2
wn2 N2

W3n2 N2
W2n2

2 
} (4.3.14) 

0     -     1 i kl(2-s)    (z-s)   M*+s)  ,  (z+s), 
yy      #»(ti-l)      Qj  3        Q2 

3 Rx  
3        R2 

3 

{- 
Ml3      W(z-s)*      k^jSr2      klV2

3 

2Tru(k!2 -1)(v2«v2)      Qi*Qi        Qi*3qi Ql%l2      Q2 92 

kiv2
3(z-s)2      k1v2

5r2 

<feW,<fa Q2 
2q2

2      Mj Rj 

3      vx
3(z )2 

vl v2 
+ - 

Mi*3!!!! 

VX5r2 

SV2 

klZV23       kl2v2
3(z-~)2       ki2v25r2 

a ir 
N2 n2 N2 

3n2 N2 
zn2 
2n  2 
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SV, 

{ 
k^v^Z-s)     V2(Z-S)     klV^Z-^7} 

21ry(k1
2-l)(v1-v2)      Q,  3 Q2 Hi 3 

,        SV2   , 
kiv2(z- — ) 

N, 3 

{ 
WCz-s) 2k1viV(z-s) 

2wv32(kiM)   Q^EQ^-U-s)2]   O/CO/MZ-S)2]2 

kivjV(2-s) kiv22(z-s) 2kiv2V(z-s) 
*_    * 

Q    3[Q   2-(z-s)2]     Q2 [Q2 
2-(z-s)2]     Q2 [Q2 

2-(z-s)2]2 

kiv2V(z-s) 

Q2*
3[Q2*

2-(z-s)2] 

kxv^Cz+s) 2kiV!V(z+s) 
+ 

kiViV(z+s) 

h CRi 2-(z+s)2]   Rj [Rj 2-(z+s>232     R!*3[Ri*2-(z+s)2] 

k1v2
2(z+s) 

*     * 

2kxv2V(z+s) kiv2V(z+s) 
*z   * } 

R2 [R2 
2-(z+s)2]    R2 [R2 

2-(z+s)2]2      R2 
3[R2 

2-(z+s)2] 

{ 
kivi3      kivx

5x2     kjv^x2     kxv2
3 

irv3
2(k1

2-l)(v1-v2)    Qi  qj      Qj  3qi Qx  
2qa

2    Q2 q2 

krv2
5x2      kxv2

5x2 vi3     vz
sx2 Vi5x2       kx

2v2
3 

* ~       8 "       S * * * 
Q2 

3q2       Q2 
2q2

2     Mi    mi    Mi  3mi      Mx 
2mi2     N2 n2 

ki2v25x
2      ki2v2

5x ^.-5w2 

N2 
3n2 N2 

2n2
2 

(4.3.15) 
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xy 
2k1v1'*xy(z-s)      kjv^xyfz-s) 

{ —*—s - + *  * 
«V,*(k,*-1)  Ql [Ql 2-(z-s)2]2   Ql 2[Q, 

2-(z-s)2] 

Zk^xyU-s) kiv2^xy(z-s) 
*_ * 

Q2 CQ2 
2~(z-s)2]2  Q2 

2[Q2 
2-(z-s)2] 

} 

__j   klVl
5xy  klVl

5xy  k1v2sXy  klV2
5xy 

wi'lkl^DNrtJ    Qi%i2 + Qi*3.qi    ' Q2*
2q22 +   Q2*3q2 

vj5xy        v^xy       k^v^xy     k1
2vz

sxy 

M1*2m12     HJ^BH " N2*2n22 N2*3n2 
> (4.3.16.) 
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TANGENTIAL UNIT-FORCE BENEATH THE SURFACE OF A TRANSVERSELY 
ISOTROP IC HALF-SPACE 

5.1    Explanation and Solution 

The usefulness of the singularities approach was demonstrated in the 

solutions presented in Chapter 4. In order to solve the problem of a sub- 

surface horizontal unit force in a transversely isotropic medium, it must 

be observed that the only permissible singularity in the lower half-space 

is the Kelvin force. All other singularities must lie in the upper half- 

space. The realization that the limit solution, as the force approaches the_ 

surface, must approach the Cerruti solution, leads one to the use of the 

potentials of a line of rotation to clear the boundary of normal stresses. 

Letting the force act at a point a distance "s"  beneath the surface, a 

solution was effected as follows (see Figure •5.1); 

a. Place a unit-force acting in the x-direction at a point a distance- 

"s" (along the z-axis) below the surface. 

b. Place a unit force acting in the negative x-direction at a point 

a distance  "s", along the z-axis, above the surface of the half-space. 

Note that this force acts at the "image point." 

c. Superpose a line of rotation extending along the positive z-axis 

from  "s" to infinity, where the $1 portion of the line has a magnitude of 

_v^  , the $2 portion a magnitude of        2kivj and 

(k|-1)(vi-vt) (ki-Wvj-ya) 

the $  portion a magnitude of 2. 

d. Further superpose the $1 portion of a line of rotation extending 

vi 
v2 

along the positive z-axis from a point,       to infinity and having a 

magnitude of   "2klVz 

(ki-Wvx-va) 
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e.    Finally, add the $2 portion of a line of rotation extending along 
Sy2 

the positive z-axis from a point   +       to infinity and having a magnitude 

' (ki-lMva-va) 

This selection of potentials results in the proper stress distributions 

which clear the boundary of the half-space and produce the desired resultant 

unit force in the x-direction applied directly below and at a point "s" 

below the surface of the half-space. 

Adopting the notation introduced in Section 4.3, the potential functions, 

derived as outlined above are: 

, Vx2X      Vl
2X , Vj2v2X 

*   = —! { —- } + 
1      41rw(k1

2-l}     qi ri ZM*i2-D(vi-v2) <\i 

k1v1
2v2X 

n»i 
} 

i k!2v2
2x     kj2v2

2x , 
»2
a        ',     ,      .(  — ~  >+        ' 

41ry(k1
2-l)       r2 q2 2*v{kiz-1)(vi-V2) 

kj2viv2
2x     kiviv2

2x 
{       Ö~z n~2       } 

\ 

,        v3
2y   vv3

2y 

The resulting displacements and stresses are: 

} V!2      vj^X2      ki2v2
2      k^v^x2      vx

2 

Ul  " 41ry(k1
2-l){ ~*   " Ö7q72r      q2      + 07^ * 
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v^x2       ka
2v2

2     ki*vt%x* 

Ri rv R2*r2
2 

} 

vj2v2      ViS2X2       ki2viv2
2       k1

2viv2
lfX2 

1 vl   v2 vl    VZA "*1   w 

+ 21rliCki2-DCvi-v2)    ~       Qi\2 '   "^ Q2 qa: 

k1v1
2v2      k1v1'*v2x2     k1v1v2

2     k1v1v2'*x •*v2 

"h Mj mi: n2 N2 n2
: 

<*3 " n.*A.2 

v3
2     v3V 

4im Qa qs' >"3 R3 *V 
(5.1.2) 

, vj^xy-      k1
2v2'txy     viuxy       k1

2v2
lfxy 

,   =  { j +  j + —j j  
4*u(k1

2-1)     Qi qi2       Q2 q2
2       Ra r^       R2 r2

2 
fc = } 

1 v1'*v2xy     k1
2v1v2

t*xy     k1v1S2xy 
{ X = + —=  

ZTrvCk^-DCvj-vj)       Qj qi
2       Q2 q2

2 Mi nv 

k^v^xy ,       v3
uxy      v^xy 

 :; } •+ — {  —S— + —S— } * 
«2  n2" N, nr

2 4iru      Q3 q3
2      R3 r^2 

(5.1.3) 

. k!Vi2x     kiv2
2x     kjv^x     kjv2

2x 
h 3 —• < *— + —*— + —* *— 

4irp(k1
2-l)      Qj q! Q2 q2       Rx  r2        R2 r2 

} 

kj-)j2v2x k2viv2
2x  k1

2v1
2v2x  vxv2

2x 
5      *   +  *    +  * 

2iry(k1
2-l)(v1-v2)   Qi q!    Q2 q2     Mi l^     N2 n2 

t- } 

(5.1.4) 
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n2      vx
kx2       v^x2      klV2

2 

4 v(ki-l)      Qi qi      Qj 2qi2      Qx  
3qx      Q2 

2q2 

kiv^x2      kivjV V!2     v^x2 

Q2 
2q2

2        Q2  3q2      Rl  ri      Rl  2ri2 

v^x2'      klV2
2     kj 2V      k^Sc «fv2 

Rl 3rj      R2 r2      R2 
2r2

2      R2 
3r2 

1 •  vi2v2     v1
tfv2x2     v1'*v2x2     k1v1v2

2 

2ir(k1-l)(v1-v2)      Qx qx      Qj 2
qi

2      Qi 3
qi        Q2 q2 

kjvjv/x2     kjvjvs^x2     kxVi^     kjv^vax2 

—* + —* + —* —*  
Q2 2<?22 Q2 3(te Mi ""I Mi 2m!2 

k1v1'*v2X
2  Vjv2

2  v1v2^x
2  vjva^x2 

*»      +    * *z  r ~    *^ 
Wj 3m! N2 n2     N2 

2n2
2     N2 

3n2 

+ 4* l     - * 
v3V v3V v3' v3V 

Q3  Q3       Q3  2q32       Q3   393       «3   r3       R3  2^32 

vsV 
+ — 

R3 3r3 

} (5.1.5) 

vjuxy        v^xy       k!v2
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qi
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v1*fv2xy     v1S2xy     k1v1v2'*xy     k1v1v2'*xy 
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5.2    Discussion and Plots 

The behavior on the surface of a transversely isotropic half-space: 

with a horizontal force acting a point below the surface is of particular 

interest to the observer. 

It must be noted that the approach to the surface must be effected 

uniformly through the medium, that is, one first allows x and y to approach 

their value and then, lets z approach zero.    In so doing one eliminates; 

the possibility of taking readings in the upper half-space which contains a 

number of singularities and will yield erroneous results. 

In order to more clearly see the effect of transverse isotropy, the 

normal displacement U3 at the surface z = 0 were first plotted for arr 

isotropic medium with a Poisson ratio, v of .25.    This was done by allowv 

ing Vj to approach v2 and k!=k2 to approach 1 and by realizing that func* 

tions of the elastic constants for transverse isotropy may approach funo 

k-» • tions of isotropic elastic constants.   For example, the factor   * 

approaches 2(l-v) as a limit when k1*k2 approaches unity.    The 

resulting vertical displacement is plotted in Figure 5.2. 

In order to compare the isotropic results with those for meaningful 

transversely isotropic media, the three elements mentioned in Chapter 1 

were scrutinized.    The values for the constants required are tabulated in 

Table 5.1 below. 

k,-l 

V!-v2 
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Table 1.5 CONSTANT PARAMETERS FOR SELECTED MATERIALS 

MAGNESIUM ZINC CADMIUM 

ki 2.7305 .1236 + i.9923 .8236 + .5672 

k2 .3662 .1236 - i.9923 .8236 - i.5672 

^1 1.4088 .6781 + i.4006 .7856 + i.1878 

v2 .7238 .6781 - i.4006 .7856 - i.1878 

v3 1.0042 .7437 .7149 

vi2 1.9848 .2993 + 1.5433 .5819 + 1.2950 

V22 .5238 .2993 - i.5433 .5819 - i.2950 

v3
2 1.0084 .5530 .5111 

Interestingly all the values for magnesium are real while certain 

values for both zinc and cadmium contain both a real and an imaginary 

component. This fact is not disturbing when it is realized that magnesium 

is the most nearly isotropic of the three materials. 

When comparing the vertical displacements experienced by the three 

materials with the isotropic case, not much behavioral difference (see 

Figures 5.3, 5.4, and 5.5 is noted. Therefore, in an attempt to get a better 

physical grasp and to cast some light on the behavior of such transversely 

isotropic materials, it was decided to examine the stress a  ("hoop stress") 

at the surface. Again, the isotropic case (v=.25) was examined first 

(see Figure 5.6) and compared to the other three materials (see Figures 5.7, 

17 and 18). As expected the nearly-isotropic magnesium did not display 

radically different behavior as compared to the isotropic case. However 



72 

both zinc and cadmium behaved differently for the lower   —   cos 9 ratios. 

This again may be due to the behavior noted for these materials in 

Chapter 1. 

As the ratio j   cos e got significantly larger, the "hoop stress" 

approached the asymtotic values listed below: 

ISOTROPY (v=.25) -.1592  r2 

MAGNESIUM • -.3170  r2 • 

ZINC -.4779 r2 

CADMIUM -.4452  r2 

A much more extensive numerical study of this problem solution, as well 

as those of Chapter 4, is justified.    Such in-depth analysis was felt to 

be beyond the scope of the present investigation. 

^ 
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6. SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY 

6.1 Surmary 

In this study the method of singularities has been extended to solve 

the problem of a concentrated tangential unit force applied beneath the 

surface of a transversely isotropic medium. Additionally, the previously- 

solved transversely isotropic analogs of the Boussinesq, Cerruti and 

Mindlin problems were solved by extending the same method of singularities. 

The method of singularities has proven to be a fairly direct and 

useful approach to the solution of the basic problems in a transversely 

isotropic medium. The relative simplicity of generating a series of 

singularities and their superposition to solve substantially more intricate 

problems makes computations a simple matter. Moreover, some physical 

meaning can be attached to each stage of the solution process. 

6.2 Recommendation? for Further Study 

< ~ 

Several possible extensions of the present work immediately present 

themselves. 

1. The literature contains virtually no specific numerical results for 

the previously published singular solutions which are reviewed in Chapter 4. 

Indeed, Chapter 4 contains the only available complete presentation of the 

displacements and stresses for these solutions. Clearly, an extensiv«» 

numerical study of the solutions of Chapter 4, together with the new 

solution presented here, can be of value to engineers who need a more 
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complete understanding of ways in which the behavior of anisotropic 

materials can differ from that of isotropic materials. 

2. Existing singular solutions for a transversely isotropic half-space 

orient the surface to be parallel to the "isotropic planes" (x-y planes) 

in the medium. The presented approach of generating a solution by super- 

position of physically interpretable singularities should permit the direct 

generation of half-space solutions for an arbitrary orientation of the 

surface. Although such solutions will certainly be more complex than those 

presented here, they will apparently be in closed form. 

3. It has been shown by Eubank and Sternberg (1954) that the fundamen- 

tal singularity for a  concentrated force on a curved surface of an isotropic 

medium differs from that of the Boussinesq problem.  Singularities of 

lower order are essential for the satisfaction of the boundary condition 

"in the small". This study can be duplicated for transverse i^otropy; 

the explicit way in which the material behavior affects this phenomenon 

should be of more than passing interest. 

4. Several general problem solutions in isotropic elasticity theory, 

such as "the problem of the spherical cavity" can be interpreted as a 

superposition of singular solutions of the equations of elasticity theory. 

The analogs of these problems for a transversely isotropic medium should 

yield to extensions of the procedures which are used in this report. 

I 
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FIG. 3.1 HORIZONTAL UNIT FORCE-INFINITE MEDIUM" 

r 

FIG. 3.2 VERTICAL UNIT FORCE-INFINITE MEDIUM 
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FIG 3.6 CENTER OF ROTATION ABOUT y-AXIS 
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