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SUMMARY

The development of a tool for solving the near field of a scram—

jet fuel injector was attacked by first developing a numerical technique

for solving the laminar , supersonic near wake flow. It was considered

important to develop a procedure that had a potential for reduced compu-

tation time compared with explicit methods. The implicit numerical

procedure — *iey—autltcDonalj was extended to mixed subsonic/super-

sonic flow with shocks, expansions, and regions of reverse flow.~ Briley 
-

and McDonald had previously applied the procedure to subsonic, constant

area duct flow with no recirculation~~ In the present case, numerical

results have been obtained for the laminar, supersonic near wake behind

a rectangular base.~~~ ,6-’ .

The numerical method applies a time linearization based on a

Taylor series expansion about the known time level, and the Douglas—Gunn

alternating Direction Implicit (MU ) procedure to the Navier—Stokes

equations. Briley and McDonald obtained the finite difference equations

• by using standard three-point central differencing. This generated a

series of block tridiagonal systems which can be quickly solved by a

standard elimination technique. The same approach was followed here,

except that all of the differential equations were written in the conser-

vation form (Briley and McDonald used the non—conservation form of the

energy equation) and the finite difference equations were derived by the

cell integration technique. The cell integration technique considers

- S _ _ _ _ _  —- - -  -
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the conservation equations as integral law8 over a control volume (cell)

around a grid point and also leads to central differencing for the

interior grid points.

The chief advantage in using the cell integration technique is

the conceptual aid afforded in applying the boundary conditions. Allen

and Chei,.g used this technique , and their work served as a guide in

selecting one—sided difference forms for the nonzero boundary terms .

Because the present method is implicit , however ,- several new forms were

required for stable and accurate solutions . It was found , for example,

that second—order forms for the pressure and av/ay on the centerline are

needed to prevent y—direction wiggles in the steady state solution. Also,

a new implicit , linear extrapolation scheme using the finite difference

equations was developed - for the outflow boundary . This was required to

eliminate wiggles in the x—d irection in the steady—state solution. All

the explicit extrapolation schemes at the outflow caused the solution

to diverge for At > At C~~
. Zero—gradient forms at the outflow boundary ,

whether explicit or implicit, caused x—direction wiggles in the steady

state solution.

Three-dimensional contour plots proved to be an important diag-

nostic tool. It was not discovered that the x—direction wiggles were

caused by the treatment of the outflow boundary conditions until the

3—D plots clearly revealed that as the recanpress ion wave crossed the

downstream boundary, the wiggles formed and propagated upstream to the

back wall and inflow regions. Up to then, the suspected causes were

improper treatment of the back wall boundary conditions, or that the

cell Reynolds numbers were greater than two there. The use of upwind
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differencing, artificial viscosity, or a much smaller Ax were considered

to be undesirable remedies.

The results for the contour plots showed qualitative agreement

with Allen and Cheng and Kronzon, et al., and close quantitative agree—

ment where comparisons were possible. The centerline pressure plot

showed very close quantitative agreement with Allen and Cheng. As a

further check on accuracy, overall mass balances were computed at each

time step. In the (nearly) steady state conditions, net mass inflow

rate differed from net mass outflow rate by about 1.8% or less.

No artificial viscosity was used in obtaining these solutions.

It is interesting that Briley and McDonald required an additional

explicit artificial viscosity in their subsonic duct flow solutions.

The reasons for this difference in behavior are not known. It may be

speculated, however, that the difference arises from the present use of

the conservative form of the conservation equations, the cell integration

technique for generating finite—difference equations, and the correspond-

ing careful treatment of the boundary conditions.

A time step limitation was expected, although the method is

• implicit, because the equations were linearized with respect to time.

For one set of initial conditions, this limitation was found to be around

32 Atm. The present method had a computation time per time step per

grid point of approximately five times longer than Allen’s explicit

method, but could take time steps over 30 times larger. This represents

a six—fold decrease in computation time. In addition, the ability to

change (increase) the size of the time step during computation to reduce
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computation time was demonstrated. This suggests that a time step

strategy might be successful wherein smaller At ’s were used at the

beginning, followed by increasing ~~t as the steady state is approached.

This would be appropriate when the assumed initial conditions were very

• 
far from the steady—state solution. Thus the method appears to offer

significant time savings.

The effect of initial conditions on the steady—state solution

was examined. To do this, a range of initial horizontal velocities were

applied in the region below the expansion corner. All the other initial

conditions were the same: a boundary layer on the upper wall upstream

of the expansion corner and freestream conditions elsewhere. It was

shown that u — 0 led to divergence for At — l6At c~~
. Increasingly

rapid rates of convergence were realized as u was increased from 10% to

100% of the freestream value. The results for all the converged cases

indicated that the final solution was insensitive to the initial condi-

tions, but that the time to convergence was highly dependent on initial

conditions. Also, convergence was shown to occur for a significant

range of initial backwall u.

Accuracy of the coarse mesh results was shown by comparisons with

the fine mesh solution. Both solutions were in close agreement. Small,

irregular disturbances in the inflow region and in the shock occurred

for the coarse mesh solution. These can be attributed to the lack of

resolution in the coarse mesh in the inflow boundary layer and in the

shock at the outflow, as they disappeared in the fine mesh solution.
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These numerical result s served to demonstrate that this numeri-

cal method produced stable, convergent, and accurate solutions when

applied to this complex flow problem. To the author’s knowledge, no

other implicit scheme has been successfully applied to the multidimen—

siona]. nonlinear Navier-.Stokes equations for the supersonic base flow

problem.

_____________________________________ - 

~~~~~~~~~~~~~~~~~~~~~~~~~
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CHA7rER I

INTRODUCTION

d Recent interest in hypersonic flight has motivated an increasing

number of investigations into advanced airbreathing propulsion devices,

including supersonic—combustion ramjets (or scramjets). Many studies

have been related to an airbreathing launch vehicle for NASA’s space

shuttles, but found that the technological state—of—the-art of the pro-

pulsion system was not sufficiently developed)3 More recently atten-

tion has been given to developing a scramj et engine for a hypersonic

research vehicle.4 A principle requirement of the scramjet is the speci-

fication of the flow field downstream of the fuel injector. Knowledge

of the combustion flow field and heat release distributions, for example,

would allow for the design of engines requir ing a fraction of the fuel S

heat sink capacity for cooling. This would allow the airframe designer

more flexibility. Additionally, there is the need for complete combustion

in as short a distance as possible, so that long combustors will not be

required. Hence the need for rapid mixing of the fuel and air streams

‘I makes the near field of the injector a region of great interest.

The injector flow field is quite complex, which greatly hinders

analysis (see Figure 1). Shocks, high transverse pressure gradients,

S and region of reverse flow make the near field similar to a base flow,

but with the added complications of fuel injection and subsequent mixing

and combustion. All of the flow features strongly influence the turbu-

lent mixing and combustion.5 9  Hence an accurate analytical procedure

_ _ _ _ _ _ _ _ _ _-- - 5- -- .~~~~ --—--
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3

which describes the fuel injector near field must include all these
10—15features. Previous studies examined the mixing and combustion of

compressible turbulent streams but neglected, and indeed could not com-

pute, the important effects of shocks, recirculation, and regions of

high transverse pressure gradients.

The present analysis seeks to include these effects, but neglects

the turbulence and combustion for two reasons. Uncertainties in the

turbulence and combustion models limit the validity of analysis. Even

relatively advanced turbulence models, such as those where velocity and

length scales are computed from differential equations,
16
~~
9 may have

difficulty in describing details of this flow. Thus, it would be diff i—

cult to establish whether inaccuracies in a new numerical procedure were

due to the models or to the method itself. Second, experience has shown

the differential equations of turbulence to be troublesome numerically,

which greatly hinders even the development of a new method.2° It is

therefore prudent to prove a new method first by solving a similar

problem where the flow is well—characterized by the governing equations.

Here, the laminar, supersonic base flow problem (Figure 2) was solved.

The flow is specified by the Navier—Stokes equations along with the

conservation equations of mass and energy and the equation of state.

Many previous base flow studies used an integral technique to

determine a base pressure or a base drag, but few other details of the

flow. Mueller ,21 for example, used the Chapman—Korst method to determine

a single turbulent base pressure for supersonic axisymmetric flow, which

was assumed to be constant across the base. Mueller pointed out that

- .-- S- - S -~~~
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5

the solutions obtained were asymptotic and valid only for high Reynolds

numbers, and that the important effects of the initial boundary layer

were neglected. Alber and Lees,
22 

used the Crocco—Lees integral proce-

dure for supersonic turbulent base flows. They showed that the initial

boundary layer can dominate the viscous interaction near the base when

its height is of the order of the base height. They also computed a

constant pressure up to the rear stagnation point, the distance to the

rear stagnation point, the centerline pressure distribution downstream

of this point, and the correct trend of increasing average base pressure

for increasing initial boundary layer thickness. Both integral theories

rely heavily on the flow being well—characterized beforehand by another

method or by experimental data. Neither have been shown to compute

details within the recirculation region, variation of pressure within

the recirculation region and along the base, and shocks. Extension of

an integral technique to include these features and subsequent extension

to the case of a fuel injector appears to be unpromising at best. Even

extension of the Crocco—Lees method, for example, to axisymmetric flow

has been accomplished only with great difficulty by Mehta.
23

• Finite difference procedures appear to be more promising for

computing the base flow field. So far as the author knows, the only

finite difference techniques applied to the full conservation equations

for the supersonic base flow problem were the explicit methods of Allen

and Cheng24 and of Roache and Mueller.25 For the latter case, however ,

relatively little information about the solution was provided. The

Allen and Cheng method computed the steady state solution by solving the

unsteady equations for asymptotically large time. However, much

- -~~~~- ---- -- - - -—-5 - —-— S_ ~~~~ _ S _~~~ _ 5  - -----_____

• - S -~~~
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computation time was required because the method, as all explicit methods, 
S

is subject to one or more stability restrictions on the time step size

• relative to the spatial grid size. These stability criteria are the

well known Courant—Friedrichs-Lewy (CFL) condition (in one dimension,

• At CFL < A x / ( I u I  + c)) and , in some methods , a viscous stability limit

(At < Ax2/2v). Since the maximum time step size is related to the spa-

tial grid size, when accuracy is desired and a fine mesh is used, the

computation time correspondingly increases.

Implicit methods, on the other hand, tend to be stable for much

larger time steps. Hence they offer the prospect of faster solution

than explicit methods, provided the computation time per time step is

comparable to that of explicit methods. When applied to one—dimensional

equations using central differencing, an implicit method usually gives

a linear system with a tridiagonal coefficient matrix which is easily

and quickly solved. Multidimensional problems, however, give more com-

plicated coefficient matrices which are time consuming to solve. Further

the equations need to be suitably linearized before application of the

implicit technique. Briley and McDonald
26 have proposed a procedure which

linearizes the unsteady equations in time by Taylor series expansion about

the known time level. It preserves the efficiency of one—dimensional

• systems by applying an Alternating—Direction—Implicit (ADI) procedure,

in which the equations are considered implicit in one direction at a

time. The particular ADI scheme used here is that of Douglas & Gunn.
27

This method is tentative because Briley and McDonald only applied

the method to a subsonic duct flow with no recirculation. This is very

different from the supersonic base flow problem, and the ability to

— - S -— - - -- - --—— - - -
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compute shocks and recirculation, for example, needs to be proven. In

addition, Briley and McDonald never established the accuracy of the

method by comparing with experimental data or an exact solution. At most

they have only shown qualitative agreement with approximate (i .e. ,  one—

dimensional exact) analyses. Nevertheless, the method appears to be

promising in not being subject to stability limits on the time step

size and in retaining the computational. speed of one-dimensional implicit

systems.

In this thesis, the Briley and McDonald 26 procedure was applied

to the governing equations, and the cell integration technique was

applied to derive the finite difference equations. In brief, the govern-

ing equations were linearized in time by a Taylor series expans ion about

the known (or nth) time level. The finite difference equations were

derived by applying the cell integration technique, which leads to

central differencing for the interior grid points. Appiication of the

ADI procedure leads to sequences of one—dimensional implicit systems

having block tridiagonal coefficient matrices. Each of these systems

(one sequence of systems for each coordinate direction) is solved by

S the standard block elimination technique as outlined in Isaacson and

Keller.
28 

No iteration is required to compute the solution f or a given

time step.

The method was checked against the previous laminar, supersonic

base flow calculations of Allen and Cheng24 and Kronzon,et al.29 This

allowed a check of the capability of this implicit method to compute a

flow with shocks, reverse flow, high transverse pressure gradients, and

a w ide variety of boundary conditions. It also allowed a check on the

S S -
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ability of the method to compute a solution in less time than by an

explicit method .
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CHAPTER II

GOVERNING EQUATIONS

The governing equations are the conservation equations for mass ,

x—momentum , y—momentum, and energy, and the equation of state for the

two dimensional flow of a perfect gas with constant specific heats .

The differential equations are written in the conservation form . As

Roache30 shows (p. 28) , when the conservation form is used , then the

finite difference equations preserve the integral Gauss divergence

property of the continuum equation. His example illustrates the alge-

braic balance of flux quantities and accumulation rates in a small con-

trol volume. This has an intuitive appeal. In addition, Roache points

out that the Rankine—Hugoniot relations were derived fran the conserva-

tion form and hence the j ump conditions across a shock are automatically

satisfied. No special treatment is given for the formation of shocks if

they develop. This is called “shock—capturing” or “shock—smearing.”

(In the Russian literature this is called a “through” method . See

Roache3° p. 227).

The dimensional equations are:

— (pu) — (pv) (2—1)

a (pu) 2 • 3
~~ 

_ i- [pu + p _ r xx
J _

~~~~~
[ P u v — r ry

] (2—2)

-_ _ _ _ _ _ _ _ _  - - - — S - ~~~~S__ - - _ _

-
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3 (pv) 
— 

~~~~~ (~uv — t
ry
] — }— (pv~ + p — t ]  (2—3)

• [pe + ~~ (u2+v 2)] - - f- [pu (e + + (u
2+v2)) - - f-tpv(e +

2 2
~ (u +v ) 3 3
+ )-~~~]+—(u~ +vt )+—(ur +vt )

p 2 7 3x ~~ xy 3y xy yy

3u 3v— It — + t (— + .—) + t —] (2—4)
~~~3x x y 3 y 3x yy 3y

p — ( y —  1) e (2— 5)

4 3 u  2 3 vwhere: — u(3 ~~ — ~ i—) (2—6)

— j (~~~~ 
+ 

~~~
) (2—7 )

43v 23u
— I.’ (~ ~~

- — 
~~ ~

— )  (2—8)

(2—9)
c 3xp

q~ 
— (2— 10)

Here c , y, k, and ~i are assumed to be constant . (The case of temperature

variation of these quantities is a straightforward extension if done

explicitly.) Bulk viscosity was assumed to be zero.

• Great utility is afforded by nondimensionalizing the equations.

Then, different flow conditions can be characterized easily by a small

set of nondiniensional parameters rather than having to change all the

dimensional parameters. The following convention was used :

- ~~~~~~~~~~~~ - -

- S 
• — -.

~~
,••—•

~‘ -
,- •,

~ 5
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;:-~ ~~~~~~~~~~~~~ 

..

• — — U — v — ep U —  v — —  e — —p 1 u1 u1

• ~~~.L. jr-~ -— - l  iZ-~~--l-P1

where H — base half height and subscript 1 denotes freestream quanti-

ties.

Substituting these quantities into the conservation equations,

eliminat ing pressure with the state equation, and dropping the overbars

equations (2— 1) through (2—4) become

— }— (pu) — (pv) (2—11)

3pu 3 2 1 1 4 3u 2 av 3 1 3u 3v
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -r- (puv ~~~~+~~~

.)]

(2—12)

3pv 3 1 3u 3v 3 2 1 1 4 3v 2 3u— — — — — — (— + —~i — — r,.,, + ‘—‘i e — —~— — — —  —Re ‘3y 3x’~ 3y ‘ 

M~ 
Re 3 9y 3 3x•Y 1

• (2—13)

fr (pe + ~~ (u
2 + v2)] — — f [pu(ye + ~ (u2 + v2)) + ~q~]

- f [pv(ye + ~ (u2 + v2))  + + K{ (-~~ (ut~~ + Vtxy)

+ ~~ — (Ut + vt )]  — (t + t (!~ + ~!~) + r ~~
] } (2—14)

xy yy xx 3x xy 3y ~x yy 3y

where: — j~
- 4 ~~ 

— 4 ~~
) (2—15)

- 
~~

-: - - - --S -~~~~~~ - - - _ _ _ _-

- ~~~~~~~~~~



12

— 
~~ (-}~ + i.!) (2— 16)

t ~~~1~ 
~~~~~~~~~~~~~ (2—17)yy Re 3 3y 33x

q — —  
1 (2—18)

x RePr 3x

— RePr (2—19)

K — y(y—l)N~ N
1 

—

Re— Pr—
U1

These are the equations solved in the program along with boundary

conditions which are derived for the geometry illustrated in Figure 2.

The finite difference grid for the flow field is shown in Figure 3.

Note that only half of the flow field is computed (the upper half) since

the flow is assumed symmetric about the central plane (DE) . The flow

is two—dimensiopal, planar over the rectangular corner BCD . The incoming

• flow is supersonic with a boundary layer on the upper wall. Details of

the boundary and initial conditions are given in Chapter 5.

- 
S
_

~~~~~

_ 
— S -- - - — .  S

- _ _ S * S _ . ~~~.•
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CHAPTER III

NUMERICAL PROCEDURE

• The unsteady equations are parabolic in time and at each time

step the simultaneous solution of the equations for the whole flow

field is required. Numerically, this means the solution of a linear

system (for implicit methods) which, in turn, requires the lineariza-

tion of the non—linear terms at the implicit time level. This is

accomplished by a Taylor series expansion about the solution at the

known time level as outlined in Briley and McDonald.26 They point

out that this procedure, adapted for the integration of initial—value

problems , permits the computationally eff icient solution of coupled,

non—linear equations in one space dimension by a one—step non—iterative

scheme. The efficiency is retained for multidimensional problems by

using alternating—direction implicit (ADI) techniques. As an example of

the linearization, the continuity equation (2—11) becomes:

(p]
~~~ 

~~~ 
— - F (pu)~~~ -

- — 
F

(pu)n+ (u 
~~ -+ p 

~~~
+ p ~~~~~~~~~ - ~~~[ (pv)~

l
+p 

3v
)
n
A~ ]

or

(p
fl+1_ ~fl

) — - 
~~ + 

n n+l 
- 

nn
1 - 

j~~ n+l~ n + ~
n
~
n+1 

-

(3—1)

- - - -  - - -~~~— -~~~ - - - _ _ _ _ _

- S -
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Equation (3—1) is linear in the unknown (or n+l) variables. The complete

set of linearized equations is given in Appendix A.

To obtain the finite difference form of the equations, the cell

integration technique is used. This technique is best illustrated by

example. Consider the differential equation for conservation of mass,

using Cartesian tensor notation:

3p/3t + 3pu
~
/3x

1 
— 0 (3— 2)

This equation is integrated over a control volume (cv) which is a cell

of dimensions &, t~y, t~z. Thus

fff (~p/ 3t)dv — — 

~ 
(9Pu

i
/3x

1
)dv

— — ff pu~n1dA (3—3 )

using Gauss’ theorem. For two—dimensional flow, the area integral over

the control surface becomes:

ff Pu1n~dA — ff pu dydz + ff pu(—1)dydz
cs x+

+ ff pv dxdz + if pv(—l) dxdz (3—4)
S 3’.$•

where x+, x— , y+, y— are the control surface or cell edges (see Figure 4).

Nex t , the following approximations are made:

-_ _   ~~~_ S~~~~~~~~ S~~ _ _ _ _ --— --.--•-- — --~~~~~~~ —
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fff (3p/3t)dv (3 p /3t ) ij  ~x Ay~ z
cv

pu dydz (pu)~~ Ay~z (3—5)

x+
etc.

Equation (3—4) then becomes

(3p/3t)ij — — 
~~

- [(
~u)~.,.— (pu) ] — -~ -((pv)~~~— (~v)~~ ]

or

3p/3t — — 6x(pu) — 5y(pv) (3—6)

when (pu)~~ , for example, is taken as the average between (Pu)ij and

and similarly for (PU )
x~~ 

then 3x(pu) becomes the standard

central difference form. The chief advantage in using this formulation

is the conceptual aid afforded in applying the boundary conditions.

With this technique all spatial derivatives are related to values at the

cell edges . Thus, when boundaries are adj acent to cell edges it becomes

clear which terms must be modified to mat ch the boundary condition .

The complete set of ‘~inite difference equations is given in Appendix B.

For interior points, the value of a quantity on a cell edge is always

taken as the average of the cell points on either side of the edge.

• A derivative at the cell edge is always the difference of the two near-

est cell points. Thus, for example

(pu)
÷ 

— ~.(4u)~~ + (Pu)i+l j
]

[f— (pu) ]~~ — ~~ - [ (P U) j~~1,j
_ (P U)

jj
] (3—8)

-~
_ - _- --S 55 

- -
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When these are carried out for all the cell edges, the result is central

differencing. For example

(pu) 
~ 
+ (pu) 

~ 
(pu) 

~ 
+ (pu)

óx (pu)  — ~~ ( (pu)~~~— (pu)
~ j  — 

2 — 2

1
— 

~~~ 
((
~
u)
~~1~ 

— (Pu)i_lj]

then equation (3—1) can be written as:

n n+l n n+l n n+l n n+l n n+l xia • + b • ij+l+c • + d • i_lj+e ~ ~~~~ 
— f (3—9 )

where an, b~, c~ etc. are coefficient matrices containing only n—level

quantities, f
fl is the finite difference form of the explicit part of

equation (3—1), and is the column vector containing the dependent - •

variables at point ij. If a single row or column of grid points were

being solved by equation (3—9) (as in a one—dimensional problem) the

result would be a block—tridiagonal matrix which could be quickly solved

by a standard elimination technique. Application of equation (3—9) to

a field of many rows or columns of points results in a large cumbersome

matrix which can be solved by Gauss elimination or some iterative tech-

nique. The computation time required for solution by either method

increases rapidly with the size of the grid.

As mentioned previously, the computation time of solution for a

one—dimensional problem is retained by use of ADI techniques. Of the

many ADI schemes (see, for example, Yanenko31), Briley and McDonald use

a form of the general procedure of Douglas and Gunn . This procedure

S - -- S 55 5 5 -  --- - - - --- S

55 

5 - 5  - 
55 -~
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generates the ADI scheme as perturbations of the fundamental implicit

scheme. It is a multistep method (one step for each spatial dimension)

where the first step approximates the implicit equation and subsequent

steps add corrections. Yanenko calls this the “method of stabilizing

corrections” and shows that the method has the two important properties

of consistency and stability. Briley and McDonald point out that the

consistency property allows for the use of physical boundary conditions

for the intermediate step with no loss in accuracy for steady state

solutions.

Each step of the procedure involves the implicit solution in one

of the coordinate directions. This results in a system of one—dimen-

sional, block tridiagonal matrices which are easily solved by standard

block elimination methods. As an example, applying the ADI scheme to

equation (3—1) gives:

(P
*

L;~t
P
n) 

— x[p*un+p%*_ p nufh ij 
— 6y [p~ v~ ] (3—10)

(p**
;t

pn) 

~~ 
— ~~~~~~~~~~ ~%xi] — ~Y [P **Vn +P nV** _ P

xivf ] jj (3—11)

where * indicates the intermediate quantity given by equation (3—10) and

** represents the quantity evaluated by equation (3—11). The complete

set of Aft equations is given in Appendix C. Now, equations (3—10) and

(3—11) can be written as

(p * ; pxi) 
- ~~n~* + Dy~$~ + Sn (3-12)

ii 

- 
-— — -  — - . 5 5 — - __S_~~~~~~• S _  55 - S S — ~~~~~~~~~~~~~~~~ —5—~SS——’— .—— -

S 
- S  -~~
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** xi— P 
~ = Dx”~ + Dyhi

$** + Sn (3—13)
ii

where

6x{u”l —6xCp }  0

• 
Dy” — 

~
— t5y{v”} 0

nn~ ,nn  CSn— 6x( p u)+óy ~p v )  = I~ I v

and

{ } implies multiplication with $ before the dif ference opera-

tion is applied.

* **Now $ is computed in the intermediate equation (3—12) and •
**is obtained in (3—13). According to Douglas and Gunn.

27 
•~~ is within

8(~t
2) of n+l

$ and so is taken at $ . The system can be simplified

by subtracting (3— 12) from (3—13) to get the new system:

* n
(ft P ) -Dx’s 

n f l  n
+ Dy $~~ + S (3—14)

** *
(° ° ) — “ ** ‘i

~t ij Dy ~~~ — ~~~ (3—15)

Equations (3—14) and (3—15) can be written as:

=n *ci si-li 
+ •~j  + ~ E~

1 
i+lj - ~~ ‘ (3-16)

=n ** ** n ** —* —~1j  ij—l + 8j $jj + 1
j +ij+~ 

— + (3—17)

where Z1~, ~~
“, etc. are the coefficient matrices of the unknowns

- - -- --S - S - -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - S .- , ~~~~~~~~~~~ 5 5 - -  —---- --5 5 - -  - 5 - .S. .- - S

- . - 
55 -S 55 — —
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* * —n —n5~—~~’ $~~, etc. The column vectors d~ , , and contain the

explicit terms. The order of the coefficient matrices is equal to the

S number of dependent variables. The forms of ~~~~‘
, EJ’~’ , c~~~ , etc. come

from the finite difference equations, and, for the interior points, all

have the same form. (See Appendix D.) For points adjacen t to a

boundary, the finite differencing must be modified. These modifications

are discussed in Chapter V.

The solution for a single time step, then, proceeds as follows:

1. Equation (3—16) is applied at successive rows (x—direction)

to generate a series of coupled, one—dimensional equations

(there being one set of coefficient matrices , ,

and a for each point in the row) , which are arranged into

one block—tridiagonal matrix for each row . The matr ix is

then solved by a standard block elimination technique (see

*Chapter IV) to give the values of $

2. The second step is similar to the first except that equation

(3— 17) is applied to successive columns (y—direction), which

**gives the 5 vector for the flow field.

• It should be noted that the “splitting” of the Douglas—Gunn pro-

cedure can be done in any coordinate direction and does not require

association with coordinate directions. The criteria used is that the

associated matrices are easily solved. The mixed derivatives can be

treated Implicitly, therefore, but this increases the number of inter-

mediate steps and greatly complicates the procedure ari was not done

here. Thus, as the method was applied, it was not totally implicit.

S - - - - - 
55 55 -
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Experience has shown that this does not seem to hinder the ability of ‘ 

S

the scheme to use larger time steps than those required by the viscous

stability requirement. Briley and McDonald, for example were able to

use i~t — 20.6 ~t~i (where ~~~ = (~x)2/2v) and ~t — 1471 
~~~~~ 

They

point out that explicit treatment of a dissipation term and V~u appeared

not to affect the stability of the procedure, even at these large time

steps. Hence, it was deemed not necessary to compute mixed derivatives

implicitly. Subsequent exper ience with computations for supersonic

base flow confirmed this.

- - - - - - - - - -- --- - -55-- — 55 55 -
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CHAPTER IV

MATRIX SOLUTION

Equations (3—16) and (3—17) generate a series of coupled , linear ,

one—dimensional equations for each row and each column of grid points in

the fb i, field. Each series of equations represents a complete block—

tridiagonal. matrix system which, as previously mentioned , can be solved

by standard techniques. The one used here is the L-U decomposition and

back—substitution (LUBS) method described by Isaacson. and Keller .28

To ill ustrate the procedure consider the solution along the jth

row of grid points. At each point, Eq. (3—16) gives:

=n * =n * =11 * _fl
C~ ~~~~~ 

+ b~ 4
~ij 

+ a~ 5i+lj 
d~

For the whole row , the system emerges as:

xi xi * xib
1 

a
1 d

1

n xi U * Uc2 b2 a2 2j

xi xi xi *c3 b3 
a
3 •3j 

d
3

c~’ b

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ j i~~~~--r 5 5 5 ~~~~~5~~~~~~•5 5 5~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

- 5,. . 
- - - - -55 , - -
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where N is the number of grid points in a row. Nov each of the coeff i—

cients c~~, b~~ , and a
1
r
~ are themselves square matrices of the order

k, the number of dependent variables.

The first step is to convert the coefficient matrix to the

product of the upper and lover triangular matrices (hence the name LU

decomposition) .

I a ~

c2 b~ I a

—LUc
3 

b
3 I a

3

• ~~ b~ I

where I — identity matrix. 
S

This is accomplished by using the recursion formulas :

b~ -— b1 aj = b~~~a1 (4—1)

b — b~ — c~a 1 
(i — 2,3,...,N) (4—2)

55 

a~ — ( b )
~~
a
i (i — 2,3,...,N—l) (4—3)

Hence, the system becomes:

$1 d
1

d2
UL$ — d ; • — . ; d — . (4—4)

- .--~~~~_-- ---- -
5 

55 

55 
55 
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which is solved as

Yb

Uy d ;  L5 y ;  y —  ~2 (4—5)

Recursions, for y and $ are:

y1 
— (b~)’d1; y~ — (b~)~~ (d~ — cjyi_1) (i— 2 ,3,...,N) (4—6)

and

— 7N’ •~. 
— 

~~ — a$j+1 Ci — N—i, N—2,...,1) (4—7)

This method is seen to take full advantage of the large number of zeros

in the matrix by performing operations only on the nonzero elements of

the coefficient matrix. It is thus seen as particularly efficient and

suitable for use in a computer program. Further computational efficiency

is gained if equations (4—1), (4—3) and (4—6) are solved, not as written

by inverting the b~ matrix, but by solving the linear system with b~ on

the left hand side of the equation. Gauss elimination, for example,was

used in this problem, though other techniques could be used. The ques-

tion arises, in the solution of the amall linear system with b~ on the

lef t hand side, as to whether a pivoting strategy would aid in the

reduction of any round off error. These round off errors may arise, for

example, from the fact that so many arithmetic operations are being

performed even in the solution of one row of grid points. A check for
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round—off errors was made for this problem by making a single computa-

tion using double precision (single precision on the CDC 6600 of the

- Georgia Tech CYBER 74 is 14 decimal places). This computation was run

f or 100 time steps and the results were identical to a computat ion made

• using single precision arithmetic. Thus no pivoting appeared necessary .

- - -S - -

-

-~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~ -
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CHAPTER V

BOUNDARY ~ND INITIAL CONDITION S

The finite difference equa tions all, have the same form when

applied to interior grid points. When a cell is adjacent to a boundary

these equations must be modified. This chapter presents the modified

forms of the finite difference equations for the various boundaries

encountered in the flow field.

While all flows are governed by the same set of equations , the

variety of phenomena (bubbles, shocks, recirculation, etc.) arise due

to differing bounda ry conditions. it follows that these boundary con—

ditions in a numerical study must be specified carefully, as was indeed

discovered. The cell integration formulation affords great conceptual

aid here, in that it becomes clear which group of terms needs to be

modified. The problem becomes one of choosing among several plausible

forms. Most of these forms are outlined in Roache.

Complicating the matter is the fact that appropriate forms appear

to vary with solution procedure. Roache cites several instances where

one form gave good results for some methods, but caused numerical diver-

gence in others (see, for example, Roache,3° p. 280). Allen and Cheng

even found that near—wall flux terms needed to be modified within the

same method for a finer mesh to get physically meaningful densities.

This is not to imply that only a single form will work in a given condi-

tion; just that the solution can be very sensitive to form change. The
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solution can also be quite insensitive to different forms. Many forms

for the viscous terms near and on the wails were tired, and gave negli—

gible changes in the solution. It is not surprising then, that a major

effort was required to arrive at appropriate modifications of the finite

difference equations for the edge regions.

The remainder of this chapter presents the final forms of the

boundary conditions used for solution. A more complete discussion of

other boundary condition forms considered is given in Chapter VI,

Results. Only the conditions for laminar flow are given here. The

extension of this method to turbulent flow and associated boundary con-

ditions is given in Bangert and Roach.

5.1 Upper Wall

The upper wall , labeled BC in Figure 3, is no—slip, impermeable,

and adiabatic. A cell adjacent to BC (see Figure 5) must then have

(u) — 0 (5—1)

(v) = 0 (5—2)

and,

(3e/~y) — 0 (5—3)

Equations (5—1) and (5—2) imply:

(au/~x)~ — 0 (5—4)

(~v/~x)
7 

— 0 (5—5)

- 5 5  —-S--- - - - - - - -- —-—-  - - - - — 
55 5 _ _
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Similarly, the shear work terms (from the energy equation) on the wall

are zero :

(~~
— (au/ay + ~v/ax)u]y_ — 0 (5—6)

(
~~ 4 av/ay — ‘

~~~ ~u/3x)v] — 0 (5—7)

The nondimensional pressure at the wall, (pe)7_ , was evaluated

by a linear extrapolation through (ij) and (i,j+l) giving,

(~e)y_ — 
~

[3(Pe)
ij 

— (Pe)jj~ 1l (5—8)

This technique was also used by Allen and Cheng.

When normal derivatives are required. at the surface, a second—

order accurate, one—sided difference was used:

(~S1’3Y)y.. — 
~ z (—8+~~_ + 95ij “

~ij+l~ 
(5—9)

thus

• 
(‘~~ )~ _ — 3Fi (9u~~ — u

ij+l
) (5—10)

and

( . )  — -~~~(9v~~ — v
ij+l) 

(5—il)

5.2 Back Wall

This wall, labeled CD in Figure 3, is also impermeable, no—slip,

and adiabatic. A cell, then, with the wall on the x—edge (see Figure 5)

has:

- --—5 — ________ — — - -—- S~~~~55 _ 5_ — - -  •55S_~55•~~ 
- —

55 

5 5 5 5
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(u)
~ _ — 0 (5—12) 

5

(v) — 0 (5—13)

and,

— 0 (5—14)

Equations (5—12) and (5—13) imply that :

(au/ ~y)~ — 0 (5—15)

(av/ay)~_ — 0 (5—16)

also:

[5
~~~

— (4?—4P)u] = 0 (5—17)

[.
~~

— (~~~ + ‘~~~ v] — 0 - (5—18)

using the second—order form for the normal derivatives, similar to

Equation (5—9), gives:

(
~u/~

x)
~ _ — 

~~~~~~~~ 
(9u~~ — uj~jj

) (5—19)

and

— — v
i+ij
) (5—20)

The form used for the pressure on the back wall was not the

ext rapolat ion used as on BC, but rather:

1
— 

~~ 
(9pe~~ — Pei+ij ) (5—21)

55- - - - 5 5  - - -  ~— 55 
5 - -~~~~~~~~~~ 45-__ 
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Note that this form is equivalent to a zero pressure gradient normal to

the wall at x—using the second—order form for normal derivatives. The

reason for the use of this form is given in Chapter VI in the section

on boundary conditions.

5,3 Centerline

The centerline, labeled DE in Figure 3, is a plane of syametry

and thus has no mass fl*.nc across it. A typical cell (see Figure 5) is

adjacent to DE at its y— edge. So

(v) y... — 0 (5—22)

(3vhx)7_ — 0 (5—23)

and

(3$/~y) — 0 ($ ~ v) (5—24)

The second order form for the derivatives, eq. (5—9) is used

for the normal derivative of v:

(~V/aY)y_ — 
~~~~~ 

(9v
1~ 

— V
jj~~1

) (5—25)

and also gives a consistent form f or the nonzero variables at y—:

($)~ _ — 

~~~~ 
— 

ij+l~ 
(5—26)

Equations (5—22) through (5—24) imply that the shear work terms

adjacent to DE are also zero:

[
~~ (~u/ay + av/ax)u]r 

— 0 (5—27)

- —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - 55- - - - - 5 - - 5 5 - S •5555~55
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[~~
-. 4 9v/~y — 4 9u/ ax)v] — 0 (5—28)

5.4 Outflow Boundary

The outflow boundary , EF in Figure 3, is adjacent to the outflow

cells at their x+ edges . Little can be assumed about the flow here

regarding specification of gradients or variables because the flow is

not known a priori. For explicit schemes, Roache3° suggests various

extrapolation methods . He notes that , in most cases , linear extrapola-

tion is satisfactory, except perhaps when a shock crosses the boundary .

Thus, an implicit, linear extrapolation procedure was used to specify

conditions at the x+ edge of the outflow cell. The schemes which com-

puted the conditions at the outflow cell points by explicit extrapola-

tion all caused divergence for t~t > ~~~~~ Zero gradient forms for the

outflow cell points, both explicit and implicit, resulted in wiggles in

the steady state solution. Details are described in the section on bound-

ary conditions in Chapter VI.

The values of all the dependent variables at x+ are obtained by

a linear extrapolation from ij and i—l,J: -

— .
~~ (3$~~ — ~~~~~ (5—29)

Thus normal derivatives at x+ are equal to the normal derivative at x—:

— (a,/
~

x)
~_ — (•~~ 

— (5—30)

5.5 Upper Boundary

For the upper boundary, labeled Al in Figure 3, the properties

were determined explicitly (i.e., after the rest of the flow field has

— - - - - — S - - --— - -  S

55 -
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been computed) by the simple wave procedure used by Allen and Cheng

and outlined by Roache (Reference 30, pp. 282—283). Briefly, it was

• assumed that properties are constant along the straight, left—running

characteristic line passing through an upper boundary point ij. This

line is determined by the angle (u + 8), where u — arc sin(l/M ) is

the local Mach angle (M > 1) and 0 — arc tan (v/u) is the local flow

direction . The properties on the characteristic line are determined by

linear interpolation between (i—i , j—l) and (i ,j— l) or (i—l ,j— l) and

(i— l,j )  depending on the local (iim + 8) and the ratio ~y/~x . Figure 6 ,

shows the two cases.

For tan 
~~m + 

~~~~~~~~~~~~~~ 
> ~y/a~x , the characteristic line runs

between (i— l,j—l )  and (i ,j— l), and the properties at P are determined

by:

‘~i—l ,j— l + (-
~~~~~‘X+

j~~~~~~_1 
— 

~i—l , j— l~ 
(5—31)

Then — 

~ 
is used to solve for the upper boundary points. The value

of ~ and thus the location of P are determined as follows . Consider the

quantity S

— tan (900 — 
~~m + 0 ) ]

By geometry: — 

~}‘ 
5— 32)

But from (5—40)

— Wj_1,~~~ 1 
+ (~~ )(wj j—1 

- w
j_1, j_ 1

) ( 5—3 3)
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S i—l ,j

- 

V 
tan(u + 6) > ~y/~x

i—i ,j — i. 

~~ ~~~~~ 
e)~

~~~~~~~~~~~~~~~x j

i—1,.j i,j

I ~~ 

— 

~~~~~~~~~~~~~~~~~~~~

+

~~~~~
r 

tan(u~~+8)1_1,~~~1
< ayf~x

I 
_____________________

4
-

55 i—].,j—l i,j— l

Figure 6. Boundary Cells — Upper Boundary.

‘55

-_ 5 - -  -- 5 - -  -- —-— _ _ ~~~~~ _ 55_ ~~ -5 — — —------ _ - — -

55 5 
- 

55 55 ~~~ - 55- 55 
- -- 5 -



36

Equating (5—41) to (5—42) and solving for gives.

— . 
— ‘k” (5..34)

~~~~
‘ ~~~~~~~ — W j_1,j...1

) + 
55

For the case of tan (u + e) < , the characteristic line runs

between (i— l,J—i ) and (i—l j ) .  The properties at p are det ermined by

- 
~i-l,j- l + 

~~ ~~i-i ,j  - ~i-l ,j-1~ 
(5-35)

and then — as before. Here the quantity w — tan (u~ + 8) is used

and

— ~y —  £ (5—36)

is equated with

S 

W~ — Wj_ 1, j 1  + ~~~ (w~~~1~ — u i l , jl )

to get

(tty/t~x — w~, 1  4~~~,)
2. — ‘~~ (5—38)

~~~~~ (w
1,,1~~ — wi...1,j...l) +

5.6 Inflow Boundary

The flow properties on the inflow boundary (AB in Figure 3)

were held fixed during the computation. Their values were chosen

starting with the assumed velocity profile used by Allen and Cheng.

u - 
~~ 

(2~
7 

- 7~
4 + l4~ ) 0 < < 1

(5—39)

u l

~~~~
—

~~~~~‘-? ~~~~~ 
- - 55 -~ - - - - - 55
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where r~ — y/ iS

nondimensional boundary layer height

The internal energy profile was determined frau the Busemaun integral

of the compressible laminar boundary—layer energy equat ion for an adia-

batic wail:

e i. + 4 (y — l)M ~~~ (1 — u2 ) (5—40)

with the assumption of constant pressure through the inflow boundary

layer , the density is determined from the equation of state. Here

p = -
~~~ (5—41)

With these values fixed the vertical velocity component is determined

from the boundary layer equations . As in Allen and Cheng , an ordinary

differential equat ion for v can be derived by combining the x—motn entum

and continuity equations and using the energy integral . Integrating

both sides gives:

2
v (f l )  — — 

~~~ 
f -~

. [1 + 4(y_l)M,~ (1+u
2)] ~-j dn 0 <n~~ 1

d~ (5— 42)

v(i~) v(l)

where n — y/6 a — .41

5.7 Initial Conditions

The unsteady equations require that initial conditions be speci—

fled everywhere before computation can begin . This specification is

- - - - -~~~~~ - 5 - - _ - - - -~~~~~~ _ -~~~~~~--__
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arbitrary but some care must be t aken . Initial conditions with very

steep gradients near the expansion corner , for example, were found to

cause divergence. An examination of the effect of a few different

initial conditions is discussed in Section 6.3—4. For the development

of the procedure and f or most of the computations the same initial con-

ditions were used. The boundary layer and freestream conditions were

imposed along the upper wall to corner ~oint C. Beyond this corner and

above it , the freestream conditions were applied but with v — 0. Below

the expansion corner v was zero also and u was 30¼ of the freestream

value. The parameters of the flow were set to correspond to Allen and

Cheng ’s Case Bl, where the freestream Mach number was 3, the Reynolds

number was 550, the non.dimensional boundary layer height was 0.41, and

the walls were adiabatic. This also corresponds to Allen’s cases Cl

and C5.

- - - 5 -  - - — 55 5 --—5
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CHAPTER VI

RESULTS

- This chapter is divided into three parts . The first part discusses

the various finite difference schemes tried for the boundary conditions

and the reasons for the final choices. The second part gives the

results of the flow field computations and the comparison with the

results obtained by Allen and Cheng . The last part dis cusses the

results of some numerical tests on the method , especially the use of a

finer grid , larger time steps, and different initial conditions.

6.1 Boundary Conditions

Like the f inite difference schemes, the boundary conditions can

be either explicit or implicit. For an overall implicit procedure , it

Is des irable to have implicit boundary conditions to prevent problems

associated with time lagging of the boundary conditions behind the flow

field. For time steps much larger than the explicit st ability limit ,

S the use of explicit forms on some boundaries may not be possible. Addi-

tionally, the use - of implicit boundary conditions may accelerat e conver—

5 
gence, a very desirable feature. When the term “implicit” is applied to

any of the forms to be described below , it means that the form was

incorporated int o the block tridiagonal matrix and the var iables at the

boundary solved along with those on the interior . “Explicit ” refers to

those schemes which compute the boundary variables after those at inter-

ior points have been computed.
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As stat ed-in  the previous chapter , boundary conditions can not

be treated haphazardly. Care must be taken in the selection, from the

many f orms possible , to prevent “wiggles” or even divergence. Several

of these forms are discussed in the following sections but some prelimi-

nary caimnents about wiggles are appropriate.

Wiggles are nonphysical spatial oscillations occurring in the

solut ion. Roache points out that wiggles are not usually caused by

iterative Instability, nonlinearities, or spatially varying coefficients,

but are actually the solution of the finite difference equations.

Moretti gives several examples where the appearance of wiggles was

caused by poor modeling of the physical behavior (or, in some cases, no

modeling at all), particularly poor treatment of the boundary conditions.

Standard techniques for treating procedures which produce wiggles

are the use of artificial viscosity or switching from central differ—

encing to upwind differencing . Roache , however , shows that the two are

roughly equivalent , the truncation error of upwind differencing corr e-

sponding to an artificial viscosity. Use of upwind differencing can

become complicated in regions where the flow direction is not known

beforehand , as in a recirculation region. Further , artificial viscosity

may tend to smooth important flow features over too large an area or
32even change the flow problem. Moret d , for example, shows that artif i—

cial viscos ity completel y wipes out a shock in a Laval nozzle and causes

the procedure to be significantly in error for the critical throat con—

ditions.

Because of the foregoing, the assumption was made that appropriate

- --_______ 55- - - - - ~~- .  - - -----——--—- - —-5
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forms for the boundary conditions could be found without having to

abandon central differencing or having to apply artificial viscosity.

This proved to be the case. Indeed, all nonphysical behavior of pre-

liminary solutions came from ill treatment of one or more of the bound-

ary conditions . (Many times a programming error connected with the

boundaries was responsible. A considerable amount of time was required

to completely “debug” the program , due largely to the complexity of the

equations).

As mentioned before , a great advantage in the cell integration

technique is the conceptual aid afforded in specifying boundary condi-

tions. When fluxes are required to be zero , for example , it is clear

which terms should be eliminated from the finite difference equations

so that enforcement is automatic. Ambiguity arises when a dependent

variable or its derivatives are not specified on the boundary by physi-

cal conditions (such as wall pressure). Then, one of the many extrapo-

lation or one—sided forms must be chosen. As stated in Chapter V, much

effort was required to determine which forms were stable, consistent,

and accurate. This section summarizes that effort.

• 6.1—1 Wall Boundaries

Surprisingly, the solution was insensitive to many of the differ—

ing forms for conditions at the walls . Whenever a problem occu rred , it

was either a programming error or a problem on some other boundary . This

was perhaps a result of no slip and impermeability being strictly

enfroced . These are the dominant conditions that characterize the wall . 
5

Most of the forms used on the wall were those used by Allen and
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Cheng,24 although many other forms were tried attempting to get rid of

wiggles in the solution near the back wall . i~ ~as discovered, however,

that these wiggles were a result of poor dovnstre~~i boundary treatment

(see Section 6.1—3) and the Allen and Cheng forms appeared to work best.

The different forms used seemed to have little effect on the solution

although second—order forms gave more physically correct answers than

first order forms , as is explained next .

Since the walls are impermeable, there is no mass, momentum, or

energy flux across 5a cell boundary coinciding with a wall. Hence , the

contribution to the convection term from the cell edge is zer o , leaving

a first order , one—sided difference for the fl~m derivative. For exam-

ple, consider the finite difference form for a flux term of a cell ii

1 mass

- 

~. 
u x—iu om.

(
~
PuI 3x)i~ 

= ~~~ (pu$~~ — pu~~~) 3 — (6—1)
y y-mcm.

e energy

For a wall at x— , (i.e. , -ij is next to the back wall) (Pu~
)
~ 

— 0 and

(3pu~I3x) — 
~~~~ (Pu*~., 

— 0) — 
~~~~ 

( (Pu3)
i~~,j 

+ (Pu
~~
)
~~,,+l j

] (6—2)

When this form was used the zero strean line extended f rom the

rear stagnation point forward to another point on the centerline. The

expected behavior , and that obtained by Allen, Allen and Cheng , and

Xronzon, et al., was for the zero streamline to extend forward from the

rear stagnat ion point to a point on the back wall just below the expansion

_ _ _ _ _ _ _ _  
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corner. The reason for the unexpected streamline behavior can be seen

in the velocity vector plot in Figure 7. As will be explained again in

Section 6.2 , the plot shows total velocity magnitudes and directions

(with the arrow heads a constant size) for each point in the coarse mesh

field . The zero streamline intersects the centerline near point D

instead of on the wail near C because all the velocities in the column

nearest the back wail are positive, when most , starting at the point near—

est D should have been negative. That equation (6—2) was the problem can

be seen by considering a typical. flux term for a cell adjacent to the

back wail.

~~ 
u4i )~~ — ~~— [ (ou~ )~~ — (3u~ ),~~]

~~— (pu~)~~ (6 3)

since

(put ) (PU+)~~~~~ — 0

Using equation (6—2) for (pu4)~~ assumes a linear variation in the

5 flux across the cell . Thus

pu$ — c1x — 
~~ 
(
~
u4
~i+ij 

+ 
~
u
~ij

)x (6—4)

where x — distance from the wall.

This means that

~~ (pu$) — C
1 ~ (2u~j~1j + Pu*jj ) (6—5)

-y —- - - - - - - _ _ _ _ _ _ _ _-
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for the whole cell from the wall to x+. From the steady—state contin—

uity equation, evaluated at the wall

+ (.a~!) — 0 (6—6)
w ~Y w

but

(.~2.!~) ~~~~ay V

since pv — 0 all along the wall. So

(
301.1) — 0 (6—7)

Now

— pu ~~~+ ~~~~~ (6 8)

Evaluating equation (6—8) at the wall gives

— 0 (6—9)

since (u) — 0 and (.
~~~

) 0. But this implies thatV 3X w

— 
~ (ou$~~ l~ + PU+ jj ) — 0 (6—10)

and

PU$ i+lj 
— — PU$jj  (6—11)

Since velocities are small near the lower part of the back wall, the

- - - - - —-_ 55 5 -— 55-
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dominant flux terms are those for .~ — 1 and ~ — e, the mass and energy

fluxes. Therefore, since p, 1, and e are all positive, u is required

to change sign between (i,j) and (i+1,j). Thus u was positive for the

column nearest the wall and negative in the next for the cells in the

recirculation region . Negative u was expected in both. Further , the

fact that pu$ changes sign between (i,j) and (i+l,j) , having been zero

at the x—edge of (i ,j ), implies at least quadratic behavior in violation

of the linear assumption of equation (6—2).

Allen and Cheng encountered negative densities on the upper part

of the back wall near the expansion corner when they used equation (6—2)

and fine grid spacing. Equation (6—il) may explain this behavior. In

this region, u is not small so that for ~~~u , equation (6—11) implies

2 2(pu )~~ — (pu 
~i+lj

which may explain why negative densities were encountered. It has

already been shown that the assumption of a linear variation in pu$ leads

to a violation of that assumption and some physically unrealistic results.

Equation (6—9) and the fact that pu$ — 0 at the wall imply at least a

quadratic variation in the flux across the cell. Allen and Cheng sug-

gested a second—degree polynomial through the two cell centers nearest

S the wall, and used the known value of u — 0 at the wall to get an expres-

sion for the flux at x+:

(pu$)~~ — 4 ( (Pu+) j~~~1,j 
+ 3(Pu$ )i~~j

] (6— 12)

This gives

- - - ~~- - - 5- -

• -
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(3Pu
~

/ax) j~,~ 
— 

~~~~ 
[ (Pu+) i~~ i,~~+3 (P u + )

i~~ j
] (6—13)

This form gave the correct behavior for the cells adjacent to the back

wall in the present calculations.

The pressure at the wall is unknown. Allen and Cheng suggested

a linear extrapolation from the two nearest cells:

(pe)
~ — 4  (3(Pe)j~,j

_ 
(Pe)~~~1,j

] (6—14)

This form was used initially on the back wall and its equivalent form

was used on the upper wall.

Two other forms were tried. Allen and Cheng ’s results showed

that the pressure gradietit normal to the back wall is very small. Thus,

the other two forms tried for the wall pressure involved a zero pressure

gradient. The first form is the simple

(pe) — (Pe)~~~,j  (6—15)

The second form makes use of the second—order, one—sided form (equation

(5—21))

- 

(pe) — 4 E9(Pe) j~ ,j — (Pe) j~~.1j] (6— 16)

Experience with calculations on all the boundaries indicates that a sec-

ond—order form is superior to a first—order form in that the results are

usually more physically realistic and more consistent with the basic

finite difference method . Indeed , when equation (6—2) was used for the

flux terms, equation (6—16) tended to bring the zero streamline off the

- -  S S 55 - 55 
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centerline and back to the back wall. Equations (6—14) and (6—15), on

the other hand, resulted in little change. When ~quacion (6—12) was

used for the flux terms , there was little difference in the solution with

any of the wall pressure forms . Thus, for sune conditions equation

(6—16) gave better physical. results and was the forn used for the back

wall pressure.

Four forms were tried for the viscous terrns involving cross—der iva-

t ives. None of these forms appeared to be preferred. Most, in fact,

gave identical answers to several decimal places . There are two types

of cross—derivatives. Considering the upper wall, the first form is

r ./Re  momentum eqns.
(~ ~~) where $ { )- , ~ .-~~ (6—17 )

ay ax (~ /Re)~ energy eqn. - -

Applying cell integration this becomes

.1. 
~~~~ ~~~~~ 

— (~ ~~~ ] — -b-f C: ~~) ] (6—18)
Ay 3x~~~. 3X~~~_ ~y 3x y+

since

(i~.) ~~~~ — oax~~_ aX W

Two forms for equation (6—18) are:

.1. I&) ....L(~) (1$.)
~~y 3x i~y y+ 3x 

~~~
. 

~ y 2 4Ax

(6— 19)

55 - - - — - -  --- - -- - - S —  S -~~~ -_______
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1 (~ .~±.) — 
1 .1(~ (i+l~i+l i—l~i+l)~~~ (i+l•j 

— 
~i—l~)1 (6—20)

~y 3x y+ ~y 2 ij+l 2& ij 2Ax

The question here is whether to split (F ~±)~~ into 
~~~~~~~~~~~~~~~~~ 

or to

evaluate it as a single quantity. Naturally, the use of either (6—19)

or (6—20) depends on the form used for the interior points, to be con-

sistent. Both forms were tried and the results were identical. Equa-

tion (6—20) was the final form used because the non—cross—derivative

viscous terms (i.e., }— (~ ~~) and (~ ~~)) were not split. Thus

equation (6—20) is more consistent with the present method than equa-

tion (6—19).

The same question about splitting arises with the second cross—

deriyative type 
S

(~ 
.~i) ( 6—2 1 )3x

Applying the cell integration, equation (6—21) becomes -

( (~ 
.~±) — (~ 

.
~~

.) 1 (6— 2 2 )3y x +  3y x—

Neither term is zero here (except for the cell nearest corner point D

where $ — v and when ~ — .j~
— v),  but whether they are split or not , they

need to be evaluated. Since the velocity on the wall is zero , the ques-

tion arises (as in the flux terms) whether a simple form like equation

(6—2) is sufficient. Here the answer is yes. Both equations (6—2) and

(6— 1.3) were tried on the back wall for these viscous cross derivatives

with no detectable difference. As an example of the simple form , the

— -- ----- - - - — 5 5 - - _ _ _ _ _ _ _
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first term of equation (6—22) becomes

~~ 
•
~~~~~ +

— 
~~x+~ Ay 

Y )~~] — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(6—23)

The last modification which was tried before the actual cause of

the wiggles was discovered, was to make the back wall a slip wall. This

was done by making (-p) nonzero. The value of v on the wall was given

by an extrapolation through the nearest two grid points. This slip wall

tended to lower the v—component of velocity in the back wall cells near

corner point C by up to 10% (though one point changed 36%), and it also

increased the pressure in these cells by abou t 5%. Nearer the center-

line and out into the rest of the flow field the effect  was negligible.

All of these modif ications had little effect on the wiggles, and

seemed to point out the relative insensitivity of the solution to various

one-sided forms at some boundaries. The greatest effect on the solution

in the cells along the back wall was the difference between the flux

derivatives (equations (6—12) and (6—13)). For the upper wall , the

inflow conditions were important (see Section 6.1.5).

For some finite difference schemes, a point like the one nearest

corner point C, where the two walls intersect , can be difficult to

formulate. No real problem was encountered here as the cell—integration

method made clear which terms needed to be modified. For this cell (whose

indices are ita~,jw), the x— edge was considered normal to the upper wall

and the y— edge normal to the back wall.

- -55—- --- 5 - - - ‘— - 55 - -  - - 55 - - 5 - - -- —-55 -
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6 .1. 2  Centerline

Initially, all of the finite difference forms used for the

centerline were derived in a similar manner as those on the wall bound-

aries. Oscillations of period 2Ay (better known as wiggles) appeared

in the solution for density (and pressure) normal to the centerline and

extended some distance into the flow field. Kothari and Anderson,
33

solved the Navier—Stokes equations for the nonreacting case of the near

field of a chemical laser . Their solutions of the supersonic flow

between the centerlines of two adjacent nozzles had wiggles normal to

the centerlines. They cited central differencing as the cause of the

wiggles. Central differencing was definitely not the problem here, but

rather treatment of the normal derivative. Cons ider S

(~~ )
y_ = (~~~

)
~~ 

— 0 v (6—24)

For 
~~~~~ 

— 
~~~ ~~~~ 

— 
~~~~~ $~~ is zero for all the flux terms because

v 0 on the centerline. But for 
~ 

pe — p, an expression is needed.

Initially, the simple first—order expression

(pe) — (Pe)jj 
(6—25)

was used. This resulted in the wiggles. When equation (6—25) was

replaced by the second—order expression

(pe) — 4 (8(~e)~~ — (Pe)jj~1] (6—26)

similar to equation (6—16), the solution became smooth. The nonzero nor—

mal derivative, (3v/3y)y_ , was based on the second order form from

- S -~~~
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equation (5—9):

(9v/3~ )y... — ~~~~~ [9(v)~~ — (V)
jj

~~~~] ( 6— 2 7 )

6 . 1.3 Downstream Boundary

The conditions at the downstream boundary, •ilj’ are not known

before hand, hence some sort of extrapolation is normally employed . The

extrapolation can either be explicit or implicit. Several schemes of

each were tried.

Explicit forms are applied after the interior points have been

computed and are lagging the solution. The linear form

A — 2A  —~~~ (6—28)‘
~‘ii,j “ii— l,j ~

‘ii—21j

where ii = downstream column cell index, caused no problems for the

time step At a At
~~L, but the quadratic form

ii,j 
— 3 ii—l,j 

— 3
~ii— 2,j 

+ $ jj_3 ,j  (6—29)

resulted in diverging spatial oscillations.

When A t was increased, equation (6—28) resulted in divergence at

the downstream boundary, apparently due to lagging. An explicit zero

gradient expression

— 4 ~~~ii—l,j — 
ii—2,j1 (6—30)

was tried with At — 4 At~~ L . Equation (6—30) was obtained by fitting a

quadratic through (ii—2,j), (ii—l ,j ) ,  and requiring that (~~)flJ 
— 0.

S - 5- - — .  S - 5 --
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Convergent solutions were obtained but it was later discovered that

wiggles in p , e, and p were created at the downstream boundary as soon

s as the shock began to cross it. These wiggles then proceeded to travel

upstream and increase in amplitude near the back wall, and then decrease

to small amplitude at the downstream boundary . This rather unusual

sequence is shown clearly in the 3—dimensional plots in Figure 8. This

figure shows the pressure as a surface at six different time steps . The

initial pressure was constant everywhere, as shown in Figure 8(a) . (The

wall is represented by the zero values in each plot.) At f irst  (Figure

8(b)) the pressure quickly dropped in the back wall region while the

downstream pressure r emained near its initial value. This resulted in

a recompression wave that travelled downstream to become the shock.

While the wave intersects the upper boundary (Figures 8(b) and 8(c)),

the pressure appears relatively smooth except for the inflow region (see

Section 6.1.5). As the wave moves to the downstream boundary (Figure

8(d)), the wiggles form normal to the downstream boundary. As previously

mentioned , the wiggles then travel upstream to the back ‘wall and inflow

regions and reduce in amplitude near the downstream boundary . Notice

the inflow pattern change (Figures 8(e) and 8(f)).

The fact that the wiggles occurred normal to the boundary is typi—

cal. Moretti 32 points out that wiggles form in the direction along

which there is an inconsistency. Indeed, treatment of any boundary

involves modification of terms normal to it. Hence poor treatment there

can cause wiggles which are normal to the boundary . This also occurred

on the centerline.
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When this was discovered , two implicit schemes were tried.

The first used the simple first—order algebraic form

$ A A (6—31)“ii,j ‘t’ii— l,j

This form resulted in wiggles also .

The second implicit scheme specified the value at the x+ edge of

a downstream boundary cell by the linear extrapolation form

— 

~~~~~~~~~ 
— 

~~~~~~~~~~~~ 
(6 32)

This also requires that

- (.
~~

.) — (~~) (6—33)
ax x+ 3x x—

with equations (6—32) and (6—33), the finite difference conservation

equations can be applied for the dependent variables at (ii,j). A

derivative for a downstream cell becomes, for example

(i~) — .i. (~ • ).. J~.{( ii,J iil~i)_ (ii~J i i ~l)J ) ]
ax ii,j Ax x+ x— Ax 2 2

1
— 

~~~~~~ ~•iij 
— 

~~~~~~~~~ 
(6—34)

Note that equation (6—34) corresponds to upwind differencing, so that

* the outflow column of points has upwind differencing. This form

resulted in a smooth density and pressure variation and eliminated the

wiggles. It should be noted that a higher order extrapolation could be

used instead of equations (6—3 1) and (6—32). This would result, however ,

in the block coefficient matrix no longer being tridiagonal. While this

- _____-— 
- ~~~~r r n - a ’ — 5~~~~~~~~ 5 ________________ ‘ - _________________
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is not too difficult a task to overcome by Gauss eliminat ion , the extra

programming effort was not done here since the linear form was satisfac—

$ 
tory .

6.1.4 Upper Boundary

The conditions at the upper boundary are not known beforehand

either. However, the boundary does lie outside the regions of major

‘viscous transport and is assumed to be nearly inviscid. Thus a simple

wave condition, as described in Section 5.5, appeared to be a logical

choice. Allen and Cheng 24 
obtained stable and realistic results using

this scheme.

While the simple wave condition as applied is an explicit proce-

dure, it produced stable and realistic results here even for t~t — 32

The time lagging appeared not to hinder convergence. Here, the explicit

boundary condition is desirable since it is easier to apply in a computer

program than an implicit form.

One other scheme was tried for the upper boundary in an invest iga—

tion of the spurious compressions in the inf low region. This alternate

form was similar to the implicit extrapolation scheme which worked so

well for the downstream boundary (see Section 6.1.3) . In this case the

values at the y+ edge were specified as

S 

+7+ — 4 ~~+i,~j — 
i,j j— l ~~ 

(6—3 5 )

This results in a derivative for the upper boundary point as

— i(~ — ) (6—36)
~~y

’
i ,j j  Ay “i ,j j  ‘~i , jj— l 

5
- - - - - — -55-- - -  - _ _ _ _ _5  - -- -
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This form did not work well. The pressure, internal energy , and density

of the upper boundary became very small near the downstream end and the

vertical velocity component became absurdly large positive. The probable

cause can be seen from the form of equation (6—36). When • is positive

this expression is the first—order upwind difference. For • negative,

equation (6—36) is the downwind difference form, which has been shown to

be unstable (see for example, Roache , p. 69) . Near the inf low region all

the dependent variables are positive. But the corner expansion causes

the vertical velocity component, v, to become negative on the rest of the

upper boundary. This means that equation (6—35) is stable f or the short

distance that v is positive and unstable for the remainder of the upper

boundary. It also d~id not eliminate the inflow compressions.

Since the explicit simple wave procedure appeared not to cause any

problem, even for large At , it was retained as the method for computing

the row of points along the upper boundary .

6.1.5 Inflow Boundary

Initially , as discussed in Section 5.6, the inf low boundary was

specified and held fixed. The conditions were derived by first assuming

a u—profile and solving for internal energy by the Busemann energy

integral of the compressible boundary—layer equations and density by the

equation of state, assuming ~p/ay — 0. The normal velocity component was

then solved by combining the continuity and the momentum boundary—layer

equations and using the energy integral.

Two u—profiles were used, corresponding to those used by Allen

and Cheng.24 
The first was a linear u—profile up to the boundary layer

edge (which was one third the base half height) . When Allen and Cheng

— - - S - - - _ _ _ _ _

—S
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used this prof ile they had v — 0 as required by the formula for v. The

second u—profile was the polynomial

u(~) 
a 4 (l4n — 7~

4 + 2~
7) (6—37)

where r~ — y/tS and ó — .41. Here, v was not zero.

When the -linear u—profile was used with v — 0, a series of com-

pressions in the inflow region caused-a pressure rise of as much as 22%

of the freestream value near the upper wall. By requiring the normal

pressure gradient on the upper wall to be zero by using equation (6—26),

this was reduced to a rise of 6%. The zero pressure gradient is unreal-

istic near the expansion corner, however, where v becomes 50% of u.

Allen34 also encountered pressure rises with v — 0. The next

modificat ion , then, was an attempt to compute v at each time step. Two

schemes were tried . The first used the explicit , backward , linear

extrapolation scheme

V1 j  — 2v2~~ — V
3 j  

(6—38)

This form caused diverging oscillations in v which fed into the other

var iables . The second scheme used the implicit form

v1j 
— v

2j 
(6—39)

This r~sulted in stable computat ’cns and reduced the pressure increase

in the compressions to 2% of freestream. The zero pressure gradient

was still applied and v continued to increase outside of the boundary

layer along the lid low boundary. Because these results were non—physical,

_ _ _ _  -_ _.  - _ _ _ _
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and because the linear u—profile has an abrupt change in slope at the

boundary layer edge , it was decided to use equation (6—37), which has

continuous first and second derivatives at the boundary—layer edge.

Then v was computed by the quadrature of equation (5—51) and

held fixed. For the inflow cells outside the boundary layer , v was

equal to the value computed by equat ion (5—51) for r~ = 1. When this

was applied and the norma]. pressure gradient condition removed, the

compressions were still there and resulted in a maximum pressure rise

of about 3%. Allen34 pointed out that too few grid points in the bound-

ary layer could result in an inaccurate representation of the large gra-

dients in density and internal energy (and hence pressure) near the

boundary— layer edge. If this were true, then a finer mesh would reduce

the magnitude of the compressions. This was tried (see Section 6.2) and

indeed the compressions disappeared. A single wave originating from the

top of the boundary layer does exist in the f ine mesh solution, but it

does not have the same character as the other irregularities. It

appears to be an expansion wave, since the pressure drops immed iately

downstream of it. As discussed ection 6.2, this wave may be a

result of the use of ~P/~y — 0 along the inflow bou.idary, when, in fact,

the corner expansion is being felt this far upstream of the corner .

6.2 Computational Rssults

In this section the results of the computational method are given

24 34
and compared to those obtained by Allen and Cheng and Allen . The

computations were made for a laminar , supersonic two—dimensional flow

past a corner (see Figure 2) at — 3 and Re — 550 with a boundary—layer

- S - --

~
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- - — - S ~~~~~~ -- - “---5- - -
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height of 41% of the base half height. The inflow profiles were those

given by Allen and Cheng and the initial conditions were those described

in Section 5.7. The mesh size was Ax — 1/6 and Ay 1/12. This was

coarser than the Allen and Cheng mesh (Ax — 1/9.75 and Ay = 1/19.5) and

was chosen to increase computational speed since fewer grid points were

needed to retain reasonable accuracy. The check of the coarse mesh

accuracy was done by using a finer mesh for comparison (see Section 6.3).

The ratio Ax/Ay a 2 was maintained. The time step size used in this test

was four times the maximum time step for stability in explicit methods,

known as the Courant—Freidrichs—Lewy (CFL) time step. Stable and conver-

gent solutions were obtained, demonstrating potentially large savings in

computer time. This is discussed in more detail in Section 6.3.

Figures 9—20 give the results of the computations using the above

conditions. Figure 9 shows the velocity vectors, giving both magnitude

and direction. The arrowheads are all the same size so that direction 
S

can still be seen for very small velocities. The main features of the

flow field can be seen, including the upper wall boundary layer along AB,

the expansion and turning at corner point C, the weak shock and turning

downstream, the retarded flow near the centerline DE, and the recirculat-

ing region near the back wall CD. A rear stagnation point on the center-

line and the separation point below the corner are also evident . That

the flow separates below the corner has been shown in experiments by

Rama35 and by Donaldson.36 By linear interpolation to find where v — 0

in the column of points nearest the wall, the flow appears to separate

20—25% of the base half height, H, below the corner. The separation

point obtained by Allen and Cheng was roughly 20% of H below the corner.

S - - 5 - -  - - — S - 5- - -- - - S
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The rear stagnation point here was 2% closer to the wall than the one

computed by Allen and Cheng .

- Some of these features are more clearly shown in the streamline

plot of Figure 10. Expansion and compression are shown by the spreading

and converging of the streamlines. Flow direction is indicated by

streamline slope (this also illustrates the inflow through AP) . The

recirculation region is characterized by the closed loops near the

back wall and the dividing streamline (denoted by the “+“ symbols) is

shown extending from the back wall to the centerline.

The value of the stream function was computed at each point in
the flow field by summing the mass flows vertically starting from the

zero streamline BCDE. For example,

— 4’ij—l + (L t YI 2 ) ( (P u)~~ + (Pu)jj_1] (6—40)

Maximum and minimum ~, were found to determine the range. The range was

then divided into a number of incremental values. Between the minimum

value of ~, and ~, = 0, two equally spaced values were determined. Between

— 0 and the maximum value of p , the increments were evenly spaced along

S the inflow boundary. With the array of incremental values, the plotting

routine searched row by row and column by column to find where these

incremental values occurred between grid points. Linear int erpolat ion

was used here to determine the variation between grid points. The loca—

don of the separation point given by the dividing streamline is not

accurate for two reasons. The first is that the back wall region has

been shown to be sensitive to the boundary condition treatment, thus the

variables themselves are suspect. Summing over several cells adds all

_ _ _ _ _ _ _ _ _- - - - - ~--— . S - - -
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the errors. Thus determination of the separation point by interpola-

tion between velocity vectors is thought to be more accurate. Second,

the location of the dividing streamline is not given at the wall but

half a cell away. Since the wall is also a ‘~ = 0 line, the angle of

approach is not known exactly.

The contour plots (Figures U through 13) were made in a similar way

as the streamline plot , except that there were equal increments between

maximum and minimum values. The maximum, minimum, and incremental

values of the variable are pointed out above each plot with the corre-

sponding symbols.

Figure 1]. clearly shows the effect of the expansion and compression

on the pressure. As expected, the pressure drops rapidly as the flow

expands around the corner. Note that the expansion begins upstream of

the corner. The single wiggle in the “Y” line upstream of the corner

and the wiggles in the “ G ”  line at the downstream boundary appear to

be caused by the coarseness of the mesh. In the fine mesh solution,

these two wiggles are nearly gone . A growing region of 3p/~y — 0 near

the centerline indicates the region where use of the boundary—layer equa-

tions would be a valid representation of the viscous wake. The pressure

distribution across the base was relatively constant except for a sharpp 
50Z drop near the separation point. Hama

35 made measurements of the

base pressure variation for N1 4.54 and 22 x l0~ < Re < 2.03 x 106

while studying the lip shock. His results show the same behavior. He

found that the lip shock strength increases with Mach number and

Reynolds number, but decreases with boundary layer height. This proba-

bly explains why no lip shock was observed in these calculations. The

Reynolds number was only 550, the boundary—layer relatively thick, and
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the Mach number not particularly high.

The density contours in Figure 12 and the correspond ing internal

energies in Figure 13 also show the effect of expansion and compression .

Near the adiabatic wall the temperature (e/c ) is higher than the free—

stream and the density shows a steep gradient in the upper part of the

boundary layer. The linear nature of the contot~r lines for pressure

(Figure 11), density, and internal energy nea r the upper boundary show

the validity of the simple wave condition. The maximum density was

within 1.5% of Allen and Cheng, the minimum within 17.0%. The maximum

internal energy was within 1.0% and the minimum 1.4%.

Figure 14 compares the results for the pressure along the center-

line with the results of Allen and Cheng. The agreement is very close.

The Allen and Cheng line was taken directly from their results. The

present results line is not actually on the centerline but ày/2 above

it. That this should be an accurate representation of the pressure on

the centerline can be argued by the fact that dp/dy — 0 on the center-

line. Hence the error is of the order of (~y) 2 by Taylor series expan— —

sion. Also, the pressure contours show that there is little variation

between the pressure on the centerline and at points nearby .

Further close agreement with the pressure computations of Allen

is shown in pressure profiles in Figure 15. Here, the vertical pressure

variations at several x/H locations are plotted. Once again ap/ay

approximately zero near the centerline is indicated. The pressure drop

due to expansion is shown by the decrease in pressure from the upper

part of the plot down to about y/H — 1.0. Then the pressure rises, more

sharply as X/H increases, due to the flow turning and the formation of
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of the shock.

This behavior can be seen more clearly in the three—dimensional

pressure plot of Figure 16. This shows the pressure in the entire flow

field as a surface. The height in the three—dimensional plot is the

pressure. The “floor” of the box around the contour is the plane

defined by ABCDEF of the two dimensional flow field (see Figure 3)

The values inside the wa.U are arbitrary, of course , since they are never

used and have been set equal to zero. The inflow region is at the upper

left and the outflow at the lower right (EF). The centerline DE is

also shown. The points A and C are hidden. The plot is easy to gener-

ate, being a simple FORTRAN CALL in the CALCOMP plotting package.

The expansion around the corner is very clear as the contour

shows a steep drop from the inflow value. The downstream development

of the recompression shock as shown as the growing difference in height

between the pressure near the center of the field and the region above

the centerlins. The extent of this difference can be seen on the verti-

cal plane through EF.

As demonstrated in Figure 8, this type of plot can be extremely

• useful in visualization, not only of flow features, but of the propa—

gat ion of disturbances. In Figure 16 there are a series of pressure

fluctuations near the inflow and at the “crest” of the recompression

wave. Those at the inflow are present from the beginning of the compu-

tation (see Figure 8), while those in the shock appear only after the

shock has settled to its final position. Both appear to be caused by

the coarseness of the mesh, however, since these irregularities are

absent in the fine mesh solution.

- - -
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The centerline Mach number distribution is given in Figure 17.

The extent of the recirculation region and the downstream acceleration

are indicated. Slightly further downstream of the computation region

the centerline Mach number will exceed one. The flow is already super-

sonic a short distance above the centerline. No singularities asso-

ciated with the Mach one (sonic) condition, such as the Crocco—Lees

singularity, were encountered.

The values computed here were somewhat higher than Allen’s. At

x/H — 4.75 the difference was about 6%. The reason for the higher Mac.

numbers on the centerline were due to the lower speeds of sound, since

the temperature was lower. These lower temperatures are indicated by

the lower internal energies as indicated in Figure 18. The present S

results for the internal energy on the centerline were typically 12—15%

lower than those computed by Allen. The reason for the difference is not

known, although it is presumed to be a result of the difference in the

way the centerline was treated as a boundary . Allen uses the “ref lec—

t ion principle” rather than one—sided difference forms . He passes the

centerline through the center of a cell rather than its y— edge. The

centerline conditions are then enforced in a row of cells below those on

the centerline by setting the dependent variables there equal to the

values in the row of cells above the centerline cells. - As previously

stated, the centerline conditions were enforced in the present method by

using appropriate one—sided forms at the cell edges adjacent to the cen-

terline.

Away from the centerline, the internal energy comparison with
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Allen improves . - This is seen in the internal energy profiles of - 

S

Figure 19. Thus the variation in the centerline values appears to

have been caused by the difference in boundary condition treatment.

6.3 Coinputationa.l Experiments

a This section discusses the numerical considerations and the

S results of some experiments concerning grid size, time step size, and

initial conditions.

All computations were done on the CDC 6600 of the Georgia Tech

Cyber—74 computer system. The storage capacity of this machine permits

over 5000 computational grid points, though that many were never used.

The solution of the four conservation equations using 1056 grid point in

the flow field (coarse mesh) required 10 CPU minutes to 1 CPU hour , depend-

ing on the convergence criteria (see Section 6.3—2), the size of the

time step (Section 6.3—3), and on the initial conditions (Section 6.3—4).

The basic grid configuration used 48 points in the x—direction and

24 points in the y—direction. The length of the upper wall was 4/3 the

back wall height. This was 23% longer than used by Allen and Cheng. The

downstream boundary was also further from the back wall than in Allen

and Cheng, being 6 2/3 step heights away compared with 5.13. For the

finer mesh experiments, the number of grid points in each direction was

doubled with all distances remaining the same. Thus the coarse mesh

solut ions used 1056 grid points in the flow field , and the fine mesh had

4224.

6.3—1 Fine Mesh Comparisons

To test the accuracy of the coarse mesh it is desirable to make

55 S.5~~~~~~~~ 5 5 55
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the same computations with a much finer grid . Since the finite—differ-

ence equations are consistent with the differential equations (see

Chapter III), greater accuracy should be expected as Lix and L~y get

smaller. In addition, the scale of variation of some quantities is not

large compared with the size of the coarse mesh. A mualler mesh would

thus increase resolution.

The mesh was made finer by dividing each coarse mesh cell into

four equal cells (see Figure 20). Thus no fine mesh point coincides with

a coarse mesh point , and to compare the two solut ions , values at the

four fine mesh points located in a coarse mesh cell were averaged. The

basic results of the fine mesh computations are given in Appendix D.

Two comparisons between fine and coarse grid computations were

made. The first uses the form

1
~ coarse — 

~fine
1 

(6—41)
+f ine

This f orm is useful for • near or greater than 1 and represents a per-

centage change. For $ small (i.e., near zero),  equation (6—41) can

give a large number , even for a small change in cb . In this case a more

appropriate comparison may be the simple form

1+ — I (6—42)
fine coarse

Tables 1. and 2 show the results of using both equation (6—41) and

(6—42). For equation (6—4l) ,~ is also given. Table 1 gives the maximum

difference in the flow field between the coarse and fine meshes. Most

of these maximum differences occur near the back wall.



‘u; A D AO 5O lilt AIR FORCE INST OF TECH WRI HT—PAT?ERSON we osro us ion. 
— 

N
AN I~~LICIT FINITE DIFFERENCE PROCEDURE FOR THE LAMINAR. SUPERS——ETcCtnt97~ R I. ROACH

UNCLASSI FIED AFI T CIe7Se7t

I c 

_

u auur iinci
END

DAT E
FILMED

10—78



79

Fine Mesh Cell. Center

I \ I .  _
I I.

• 
....— Coarse Mesh

—~~~ + — — ~~~~~~~~~~~~ — — —  ~~~~~~~~~~~~ Cell Center

• I • • I
— I

• I • • I

- - - - --f----  - --- -+- ----  - —

( — I
• I • • I •

-

• I • S S

— I I

Figure 20. Coarse and Pine Mesh Cell Centers.

(. I
I



80

Table 1. Coarse—fine lesh Co~~arison.s — Plow Field Mazi~ j~s

‘~~~~f ’inax . j  *f

.227 9 10 .050 .048 47 12

u 26. 713 9 6 — ..)002 .098 9 12

8.733 9 9 .0032 .045 9 13

e .070 9 13 1.898 .133 9 13

.231 9 10 .117 .086 8 16

— fine — 

~coarse ~f 
—

B 

(47,12)—.~~ 

~~ E
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Table 2. Coarse-fine Mesh Comparisons — Selected Points

Point $ I IA,!

(9,13) p .027 .167 .004
near C u .112 .540 .060

v .193 — .231 .045
e .070 1.898 .133
p .095 .318 .030

(9,1) 0 .029 .084 .002
near B u .323 — .007 .002

v .201 .004 .001
e .003 2.385 .007
p .032 .199 .006

(48,1) p .044 .316 .014
near E u .018 .492 .009

v .038 — .004 .000]
e .008 

- 
2.140 .018

p .053 .676 .036

(37,17) p .021 .374 .008
u .003 1.062 .003
v .038 — .236 .009
e .007 .678 .005
p .028 .254 .007

~fine 
— — —

• A ________________________ _ _ _ _ _ _ _  
P

F I (37,17)

• 
~~~~~ t

D 
(48,1)__...j 

E

____________ - - _ _ _ _ _ _ _ _
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Table 2 gives the result for some selected points in the flow

field. Included are the cells nearest to corner point C, corner point

D, corner point E, and a point about 4.8 step heights downstream and in

the recompression . Again, the lArgest differences are near the back

wall. This serves to point out the sensitivity of this region.

One important result of the fine mesh study was to show that the

coarse mesh was responsible for the irregularities near the inflow and

those in the shock near the downstream boundary . Apparently, the finer

mesh allowed greater resolution. Figure 21 is a three—dimens ional plot

of the pressure using the t ine mesh .

A single wave remains at the inflow , but its character is differ-

ent from those in the coarse mesh. This wave has an angle of about 21° ,

relatively close to the inflow Mach angle (19.5°) and appears to be

related to the choice of inflow boundary conditions. As mentioned pre-

viously , ap/ay was assumed to be zero along the inflow, but it can be

seen that the expansion corner is be ing felt even this far upstream

(4/3 H) to reduce the pressure near the wall. The wave , originating at

the top of the boundary layer, may be a flow adjustment because of the

inconsistency . The wave may also be caused by the change from the

boundary layer u—profile to the freestreani u — conet. profile.

6.3.2 Convergence Criteria

As ths rate of change with time of the dependent variables in

the flow field decreases , the solution is said to be converging. When

this rate is zero, the steady state has been reached . It is usually

not necessary or practical to continue the calculation unt il the rat e

— .- — — — — —  —.— .— -- __________
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is zero , however. Allen, for example, uses a convergence criteria of

n+l a
‘max < c (6—43)

where 2 x io 6 < £ < 2 x lO~~~.

In the present work, the form normally used was

nl~l n— p  ~max
a (6—44)

with ~~ known, the range of (p~ c1
) can be compared directly with the range

of Allen’s e:

2 x lO
_6 

< < 5.3xl0 5 (6—45)

As in Allen and Cheng, 25 a check on density was normally sufficient to

determine convergence. Equation (6—44) was applied also to u, v and e

as an additional check.

The rate of convergence varied over the whole flow field. The

most rapid convergence was in the supersonic regions, especially upstream

of the corner. The slowest rate of convergence was in the region near

the back wall. It may be possible, therefore, to shorten the calculation

for cases where the near wall region is not a region of primary interest.

6.3.3 Time Step Studies

As mentioned before , the chief advantage in using an implicit

procedure is the ability t .  use larger time steps than allowable in

explicit methods , and hence reduce computation time. Here , the CFI.

stability condition in two dimensions is

- — .  - - — — . —  —— - — -—- - ‘—— -.-..-- — —--- -— —.~~~ ---—-—
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< (
~ + _1 (_ .+_ ~~) 1./’2 )~~ (6 46)

In the present work, a time step size of At — 4Atc~~ 
was used while

develop ing the method. This was chosen because it is large enough to

be appreciably larger than At C~~ 
but small enough to avoid possible

problems with the initial conditions. Results for At — 4 At CPL were given

in Section 6.2.

To examine the ability of the procedure to use larger time steps,

At — 8, 16, 32 and 40 At Cft were also attempted. A time step limitation

was expected because the finite—difference equations are linearized with

respect to t ime about the known time level. This allows a simpler and

more rapid solution of the finite—difference equations than if they were

left nonlinear. Still, the allowable At is much larger than

which more than compensates for the larger computation time per time step

relative to explicit methods .

For At — 40 At C~~ 
the solution did not converge , but diverged in

less than 10 time steps. Whether this would happen with different ini-

tial conditions has not been determined. The rest of the discussion con—

cerns the convergent solutions for At — 4 , 8, 16, 32 At C~~
. The differ-

ence in the solutions at convergence for each of these time steps was

very slight . The difference in p between the t~~ solutions for At 4Atc~~
and At — 16 Atc~~

, for example was typically around 1%.

For At — 4, 8, 16 At
~~L, the solution at equal elapsed times

appeared quite similar , that is , the solution in t ime appeared to be rel-

atively insensitive to the size of At. Table 3 presents the solution at 

- - -— -- . - ~~~~- -~~—~~~~~~ - - - - . -~~--__-—- -—-

- -~~~
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Table 3. Solutions at Equal Elapsed Tines for
Different Time Steps

At/AtCPL (T — 15.279) At/
~
tCp.L (T 76.393)

Pt 4 8 16 4 8 16

C p .19 .19 .21 .17 .17 .16
u .50 .51 .49 .56 .58 .58
v — .189 — .191 — .180 — .255 — .260 — .267
e 1.98 1.97 1.89 1.85 1.83 1.81.
p .38 .38 .40 .31 .31 .30

D p .37 .35 .33 .12 .1.5 .1.3
u — 0 1  — 0 1  — .01 — .01 — .01 — .01
v .004 .004 .005 .005 .005 .005
e 1.08 1.14 1.24 2.07 2.03 2.02
p .40 .40 .41 .25 .26 .27

E p .96 .97 .94 - .32 .32 .32
u .24 .24 .24 .35 .34 .,32
v — .001 — .002 — .001 — .003 — .003 — .003
e 1.00 1.00 1.00 2.20 2.2]. 2.21
p .97 .97 .94 .70 .71. .71

37,17 p .74 .79 .79 .39 .40 .40
u 1.02 1.01 1.01 1.06 1.06 1.06
v — .041 — .046 — .037 — .232 — .232 — .233
e .91 .94 .95 .69 .70 .70
p .68 .75 .76 .27 .28 .28

T/A t 40 20 10 200 100 50

_______________________________________ - -.——---. — .  . — .- ----- . ..-—---—— - — ~~~~~~~~~~~~~~~~~~ ~ •:._~
—-: , ‘—S.--
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selected points in the flow field for elapsed times of T — 15.279 and

T 76.393 (where T — H/U
1
) for At — 4, 8, and 16 AtC~~

. It appears,

then, that up to 16 At(~.L, 
for these initial conditions, doubling the

time step allows the same point in time to be reached about twice as

fast and thus doubles the rate of convergence. This can be seen in

Figure 22 which gives the maximum time rate of change of density of the

flow field versus the number of time steps. Since computation time is

directly related to the number of time steps taken, this is shown as the

lower abcissa. This figure clearly shows the substantial computation

time savings f rom the ability to use larger time steps . The “humps” on

each curve are caused by a shift  in location of the maximum change in

Ap/p from a point near the outflow boundary to a point near the back

wall.

The rate of convergence for At — 32 AtC~~ 
is also given. Initial

oscillations which damped out prevented the run at this time—step size

from following the same temporal path as the other time—step sizes. This

is reflected in Figure 22 as the convergence was not smooth. When the

computation did smooth out, the solution still converged faster than

16 ~~~~~ though not twice as fast.

The curve for At — 8At~~~ shows a sudden drop at t /At  — 150. As

indicated , this corresponded to continuing the computation with At — 32AtC~~
.

This demonstrates that convergence can be speeded even after computation

has begun by increasing the time step size. While no attampt was made

to develop a scheme for relating time step size to rate of convergence,

such procedures can be very useful to obtain very fast convergence.

-
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The maximum time step also seemo to be related to the grid size.

For the fine mesh case, use of At — 32 At
~~~ 

resulted in diverging oscil-

lations related to the recompression (see Figure 23). However, the fine

mesh solution was stopped at t/At — 85 and At was changed to 16 AtCFL.

The oscillations decreased and the solution was stopped at C/At = 300.

Figure 17 is the 3—D pressure plot. Convergence was greatly slowed by

the presence of the initial oscillations. No other time step studies

were accomplished with the fine mesh because of increased run time asso-

ciated with the increased number of grid points.

As mentioned before, the computation time depends on the size of

the time step and this was shown dramatically in Figure 22. The number

of time steps required for the same degree of convergence was reduced

nearly sixfold as At was increased from four to 32 Atcn. In comparing

the computation time with Allen ’s method , it was helpful that he had also

made some calculations on a CDC—6600 machine. He required about 1.5

msec per time step per grid point and typically required between 1000 and

2000 time steps for convergence. The present procedure required 7.7

msec per time step per grid point. Since the present method was able

to use a time step 30 times larger , this represents a sixfold decrease

in overall computation time for these conditions .

6.3.4 Initial Conditions

To insure that the given initial conditions were not unique for a

given set of boundary conditions, and to examine the effect of initial

conditions on the ability to take large time steps, it is desirable to

examine several, different initial conditions . Computer time and cost ,

however , placed restrictions on the number of choices.
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Since the region near the back wall (below the corner) seemed to

be the most sensitive to other changes , a wide range of initial hori-

zontal velocity components (0 < u c 1.0) below the corner was examined .

The time step for this study was held fixed at At — 16 AtC~~
.

For u — 0, the computation diverged. For 0.1 < u < 1.0, the compu-

tations converged. As in the case of different time step sizes, the

final solutions for the different initial conditions were nearly iden-

tical. The rates of convergence, however, were much different. Figure

24 shows that for u — 1.0 , the rate of convergence was several times

faster than when u — 0.1. Note also that the convergence paths are not

similar. The curve for u — 0.3, for example, has a rise at C/At — 30

corresponding to a shift of the maximum Ap/p in the flow field from the

downstream boundary to the back wall region. The shift of maximum Ap/p

to the back wall for u — 1.0 occurred at t/At 62 but was not attended

by a rise in the curve. The recirculation region appeared to already be

near its final solution in this case.

6.3.5 Net Mass Flux

The net mass flux through the flow field was computed at each time

step. In the steady state, the net mass flux should be zero. The compu—

tation was accomplished by suaming —puAy across the inflow boundary cells

along AZ, pvAx across the upper boundary cells along AF , and puAy across

the downstream boundary cells along EP. For coarse mesh solutions, the

net inflow differed from the net outflow by 1.6 to 1.8%. For the fine

mesh computations the difference was 1%.

L -- 
~~~~~~~~~~~~ 

-

~~~~~
- .

~~~~~
- —~~

- - 
- 

~~~~~~~~~ -

. —~~~~~~~ 
-:__________________ -



92

-tz = r -
E.~~xJ

00
< 04~~~~~~4‘ U Q U
4.,

- - In
N

‘.4

.~~C)

~100
IJ
0o 0 4 1 .

In N
______ ______________ - 41 g~.

~4 U
‘W I. ,

‘-I
14

. 0 1 *
‘44

4)

U
- In  O s

00~ 1.4
$4 4)

‘.4 0 - W ’ rI.0
0 ~.4 0 0

0 ’-4
U 41

S
“4

~00
0 Q1 i.~• ‘.4

S

~~~~~ -4 41 41

-t
I N
L 

~~o I In 4*. 1 *4
‘.1

1 ’  00

~~ /

— — — -

I I I I 0 . 0
In C-I CM 0

0~ 0~ •

• - - - - - --•~-- -
~ 

—~~~~~: ~~~~~~-- -.~ - -- - :flt_ - - - -



93

C1~APTER VII

CONCLUSIONS

1. The results in Section 6.2 show that the method successfully

computed all the main featur es of the flow, including the corner expan-

sion, the recompression shock, the recirculation region , the viscous

wake near the centerline, and the simple wave nature of the flow near

the upper boundary.

2. Great care must be taken in the formulation of the boundary

conditions to achieve physically realistic results, convergence, and to

avoid wiggles in the steady—state solution. First—order form s for pres-

sure and av/ay on the centerline, for example, gave a converged solution

but had y—directioa wiggles in the steady state. Second—order, one—

sided forms removed the wiggles. For the outflow boundary, all explicit

extrapolation schemes caused divergence for At > Atc~~
. Zero—gradient

forms , both explici t and implicit , gave x—d irection wiggles for the

converged , steady state solution. A new implicit, linear extrapolation

scheme which uses the finite difference equations was developed for the

downstream boundary and gave a smooth , converged solution.

3. No artificial viscosity was required for stability and con-

vergence. Briley- and McDonald , however , required additional explicit

artificial viscosity in their subsonic duct flow solutions . The reasons

for this difference are not known. It may be speculated , however , that

the difference arises from the present use of the conservative form of

_ _ _ _ _ _ _ _ _ _  - - — - - - - -
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the conservation equations (Briley and McDonald use the nonconservation

form of the energy equation) , the cell integration technique f or gener-

ating finite—difference equations, and the corresponding careful treat-

ment of the boundary conditions.

4. Three—dimensional contour plots wer e an important diagnostic

tool. It was not discovered that the x—direction wiggles were caused

by the treatment of the downstream boundary until the 3—D plots were

made. The plots clearly revealed that as the recompression wave crossed

the downstream boundary , the wiggles formed and propagated upstream to

the back wall and inflow regions. Up to then , the wiggles were thought

to have been caused by ill—treatment of the back wall boundary condit ions

or by the cell Reynolds numbers great er than two. The use of upwind

differencing, artificial viscosity , or a much smaller Ax were avoided

as they were considered to be undesirable remedies.

5. The results for the contour plots showed qualitative agreement

with Allen and Cheng and with Kronzon , et al., and close quantitative

agreement where comparisons were possible. The centerline pressure plot

showed very close quantitative agreement with Allen and Cheng . As a

further check on accuracy , overall mass balances were computed at each

time step . For the coarse mesh solutions, the net mass inflow rat e

differed from the net mass outflow rate by 1.6 to 1.8%. For the fine

mesh solutions the difference was about 1.0% .

6. For one set of initial conditions a time step limitation was

established at about 32 At
~~L . The limitation was expected because the

equations are linearized with t ime , even though the method is implicit .
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Compared with Allen’s procedure , this method had a computation time per

t ime step per gria point approximately f ive times longer , but could take

five steps over 30 times larger . This represents a six—fold decrease

in computation time. In addition , the ability to change (increase) the

size of the time step during computation to reduce the computation time

was demonstrated. Thus a time step strategy might be successful wherein

smaller At ’s were used at the beginning , followed by increasing At as

the steady state is approached . This would be appropriat e , for example,

when the assumed initial conditions were very far from the steady state

solution. Hence, the method appears to offer significant time savings.

7. The steady state solution was quite insensitive to the choice

of initial conditions, but the time to convergence appeared to be highly

dependent on them. A range of initial horizontal velocities were applied

in the region below the expansion corner , while the boundary layer on

the upper wall ahead of the corner and the freestreain conditions for the

rest of the flow were the same for these tests. It was shown that an

initial u — 0 below the corner led to divergence for t~t — 16 At C~~~
. As

u was increased from 10% to 100% of the freestream value, increasingly

faster times to convergence were realized. In addition, convergence was

shown for a significant range of initial backwall u .

8. Accuracy of the coarse mesh results was shown by comparisons

with the fine mesh solution . Both solutions were in close agreement.

Small, irregular disturbances in the inflow region and in the shock near

the outflow boundary occurred in the coarse mesh solutions. These are

attributable to the lack of the resolution in the coarse mesh in the inflow
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boundary layer and in the shock at the outflow, as they disappeared in

the fine mesh solution.

9. These numerical results served to demonstrate that this pro-

cedure produced stable , convergent , and accurate solutions, without the

use of artificial viscosity, when applied to this complex problem. To

the author ’s knowledge, no other implicit scheme has been successfully

applied to the multidimensional, non—linear Navier—Stokes equations for

the supersonic base flow problem.

_ _ _ _ _ _ _ _ _-- - - - -—  ~~~~ - - .- -~~~~~~~~~~~~~ _ _
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APPENDIX A

THE LINEARIZED CONSERVATION EQUATIONS

Conservation of Mass

Also given as equation (3—1)

(P P)~~ - - f (p~~~u~ + p ~~~~~ - p n~nj - f- p~v’~~~ + p ~~~~~ - p ~v~ J (A-i)

Conservation of x—Momentun*

Application of the linearization to equation (2-12) gives:

(P U +  — 2P~ ut
~, — !_(p n+lun + 2~n~n~n+l 

- 2p~u~

+ p ~~~~~ - p 
‘1e~) - 

~~~~~ s 1] - ~~(p u lv~ + 0
n

~~+l~n + ~ 
n n n + 1 .

n n n  1 n+l
— 2p u v  —j- S I (A—2 )

43u 2 a vSxx 3 3x  3 a y

au 3vS - — + —
zy ay ax

Conservation of y—Mo~entum

Application of the linearization to equation (2—13) gives:

_ _ _  - _ _ _ _ _ _ _ _ _ _  ~~~~~ — -

- - 
-
~ 

— 
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n+l n n n+l n n
~ v + p v  -2p v ~ n + l n n  n n+l n n n n +] .  n a n

At ~~~~~~~~~~~ u v + p u  v + p u v  — 2 p u v

1 n+l ~ n+l a2 a a n+l n a2 
~ 1. n+l a a n+lv + 2 p v v  -2p v + — ~~~~(p e + p e

n n  1 n+1— p  e )  —j - S I (A—3 )

~~ 
~~~~~~~~~~~~~~ 

2 au
yy 3 a y 3 a x

Conservation of Energy

Equation (2—14) becomes:

n+l a n n+l a a n+l K a2 n
2 

a. n+1 n n+le +p e -2p e +p (u +v )+p icju u +v v

3 2 2 n+l n ri a n+l n nnn+l n a n
u e + p u  e + p u e  — 2 p u e )

2 2 2 2K n+l n a n n n+l n n n+l n n n n n + lu(u +v )+3p u u + p u  v + 2 p u v v

a n ~2 ~
2 

~ a n+l a n+l a a n n+i. a
— 3p u (u +v )] - Pr1~e ~~ 

e } — p v e +p  v e

nn n + l  a n n  K n+l a a2 a2 n n+l n2 n ann+l+ p v e  - 2 p v e ) +~~~(p v(u +v )+ p u  v + 2 p v u u

+ 3~
n

~
n2

~n+l 
- 

~~ (~~~+
‘
~~)] - It Pr ~~ e”~~ } + K(f~ (unt~~

+ yar
n 

) + ~~ (U
n.~
a 

+ vr~ )]  (A—4)xy ay zy yy

and ~~~ are given in Chapter II.

- - - ~~~~~~~~~~ . --
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APPENDIX B

FINITE DIFFERENCE FORMS OF THE CONSERVATION EQUATIONS

Conservation of Mass

Also given as equation (3—6)

a0/at  — — 6x(pu) — *5y(pv) (B—i)

Conservation of x—Momentum

apu/ at  — — 6x[pu 2 + (_
~
ç

)~ e — t ]  — tSy [puv — T
ry

] (B—2 )

Conservation of y-Momentum

apv/at  — — Sx( puv — t
ry

] — .Sy[pv2 + (—~~)pe — t n,] (B-3)

Conservation of Energy

(pe + 
~~ 

(u2 +v 2)] — — 6x{pu [ye + ~~
. (u2 +v2)] + ()~~~~~~~~~~~~~ ~~~~~

- (
~~

) (ur xx + Vt yy )} - 6y(pv(ye + ~ (u2 +v 2)] + (~~~~ )qy

- (~~ ) (ur
ry + vt~~ )} (3—4)

and 
45, 

are given in Chapter II.

_ _ _ _ _ _ _ _  - --~~~~~~~~~ _ _ _ _ _ _ _ _ _

- ~~~~~~~~~~~~~~~~~~~~~ —



100

- 
APPENDDC C

S

ALTERNATING DIRECTION IMPLICIT FORMS OF

THE CONSERVATION EQUATIONS

Conservation of Mas s

*

* *
(~~ ~~~~~~~~~ — — ~x[p u + pu — pu] — Sy [pv] (C—i)

At

** * ** **— ~Sx[p*u+ pu — Pu] — ~Sy[p v+ v — pvJ (C—2)
At

Subtracting (C—l) from (C—2) a simplified system is:

(p*_ 
~~ — _ 6x(p *u+ ~~~ pu] — ~y[pv1 (C—3)

At

** * ** **( I’ — P 
~ v + pv — 2pv] (C—4)

At

Here a quantity with no superscript is considered as being an n—level

quantity . All the remainiag equations are written in the simplified

form.

Conservation of x-Mcemntum

* *
(
p u + pu — 2~~1) (~~[ *2~~~ pu * 

— 2pu 2 + (...!~) ( p *e + pe*_ pe)
At

1 4  * 2
— 

~ 
(. 6x u — 

~ 
ó y v)]  — óy(puv — t ] (C— 5)

zy

** ** * *
(P U+ pu — p u— u ** ** ** 1 **

) - - ây[ p uv + pu v + Puv - 3puv - ~y (u -u)]
(C— 6)

_________________________________________ - -—~~~~~~ - - —~~~~~~~~~~~~~

‘I ~~~ £ •~~~ _ —
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Conservation of y—Momentum

* * * * *(P V + PV  - 2ffiv) 
- - 5x( p uv + pu v + puv - 2puv - ~~ (6yu + 6x v*)]At

— *Sy(pv 2 + (—1~)pe — t ] (C—i)

yM1

** ** * *
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

* *2  ** 2
(P V + ~ V — 

~~ 
V — pv 

~~ 
— — 6y[p v + 2pvv — 3pv + (—i-- **

At yM~ 

e

****+ pe — 2pe) — 5y(v — v)] (C 8)

Conservation of Energy

* * 3 2 2* * *K 2+v 2)+pK (uu+vv-~~~(u +v )]}—(p e+ pe — 2 p e +p

* * * K * 2 2 2* *2—6x{y(p ue+pu e+pue - 2pue)+—(p u(u +v)+3p u u +pu v

*+ 2puvv — 3pu(u~ +v 2)]  — 

PrRe Sxe *) — 6y{pv[ye +~~(u2 +v 2 )]

— 

~~~~~~ 
iSy e} + K(L~(uT + Vt ) + -~—(ut + vt ) ] )  (C-9)3x xx xy a7 zy yy

** * ** *** *-
~~~~ 

((p — p )(e+~~(u
2 

+ p2)] + pK ((u — u )u + (v — v  )v]

**** * **+ p(e — e  ) }  — — 6y{ (p —p)vh’ e +~~ (u2 +v 2)] + p(v —v)[ye

**+~~ (u2 +v 2)] + PK (u
es _ u)uv - 6y(e - e)} (C-1O)

and t are given in Chapter It.xy >7

_ _ _ _ _ _ _ _ _

- - ~~~ - . .— ~. -
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APPENDIX D

COEFFICIENT MATRICES

The coefficient matrices for the x—sweep equations are:

n it
o 02Ax 2óx

2 n n n  a

~~~~~

- _ _ _ _ _ _ _ _ _ _ _ _ _  

~~ 
3ReAx~ 

._~n~
n 

~
2L~x 2Ax 2Ax ReAx2

-u~(ye~+~~(u
2+v2)) _pfl(yefl +K(3u24~,

2)) p~u’v~ -yp~ u 
_____

2Ax 2Ax 2Ax 2Ax PrRei~c2

i— 1 ,j

0 0 0

a a 8 o oAt At 3ReAx2

b -  V 2
-i. 0 2 0

ReAx

n K 2 2e +
1

(u + v )  ~~n n  ~~n n  
+At At At At RePrAx2 j

ii

- -
‘- - - ______- - - - -

, ~~~~~~~~ 
- 

- ~~~~~ — —
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a n
I ~~~_._ 

p 0 0
I 2Ax 2Ax

2 a a n  fl

- k::: 
+i~~ 

P
A

~

pn;n

3R:Ax2 

____ 
. 

2yN~Ax 

—

2Ax 2Ax 2Ax ReAx2

u
ul
(1eh14(u

2+v2)) pfl
(yeu14(3u1~ + v~~) ~~n a n  n i t

2Ax 2Ax 2Et~ 2Ax 
— 

PrReAx2j
i+1, .j

The coefficient matrices for the y—sweep equations are:

n a
0 2_ 0

2Ay 2Ay

a n  n a  a n
-uV -p v  1 — p u  02Ay 2Ay ReAy2 2Ay

U U f l - it it—v e — p v  4 —p~
— 

2Ay — 

2AyyN~ 
— 

3ReAy 2 2~yyN2

3

(‘ye’~ + ~ (u2+v2)) ~~n~~n n  ~pfl (yea + ~ (u2+3v2)) 
~~~~~~

2Ay 2Ay 2Ay 2Ay

I _ _

I PrReAy2

V

i ,j — l

,,-, - ~~~~~ - 
— — - -~~ -
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‘

~~~~~ ~~~ + 2
2 : :

&eAy

a - a
a 8

At At 23ReAy

a K 2 2e +—(u +v ) a n  n n  a2 kpu I(pv 
~~~~ 

2~At At - At ~t 2PrRe~y

- 
1]

n U
0 .2_ ... o2Ay 2AY

n n  a n  a n
u v  p v  1 P U  o2Ay 2Ay 

- 

ReAy2 2Ay

a a a n  a
— v e P v  4 _ _ _ _

a - ~~~~~ 
+ V A 

-

a
3 2AyyM1 

3ReAy 2ArrMj

i v~ (ye~~+-~ (u2+v2)) 
~~~~~~~~~~~ 

p’~(re~~+~~(u 2+3v2)) yonvu

2Ay 2Ay 2Ay 2Ay

PrReAy

\ ij+l

--

~ 

- ---- 
____

--Th_- - - _ _ _ _



105

The right hand aide column vector for the x—sweep equat ions is:

/ 

- 
. + 6x(p~~u~~) - 6y (p~v~)

2 P U
+ 6z[2 pulun2

+ 
~~~~~~~~~~~ ~~~~~~~ 

— 6Y[2
n

U
a

V
a _~~~~(5Y U

n 
+

1141
— it -d~ —

2~
n1

~
a

~~ 6XE2 n n n + J. 6YU ~ ] 6~~~ n a ~~. ~~~~~~~ ~~~~~~~~~~
.Y~4l

2 2
it it 3K a ap (2e +~~~~~u +v ))  2 22 

At + ~~~~E ( 2e fl+ 3K(ufl +vU ~~ 
-

\_ 7t~
n
v i e n +~~~u

n +vn
~~~ — 

P
’

~e 
tSye~ ] + K{~5X (Ut~~~ +Vt

ry
)

+ ~y(utry + vt
77
)} 

- -

The two right hand side matrices for the y—sweep equations are:

*

I At

*n  n *Pu  + p u
At

— U~~~ p~y*

*(n K (2 2 )) + p~K(u u~+v v ~)+0%I At /

- - - :_ _  - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

---.
~~

- . ‘ -‘--.- - -— —
~~~

-.- 
~~~~—‘-~

-—--~~
—

- 
- —-
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I 26y(p~ v~)

45yE 3pnunv° - ~~~~~~ 6 Y U ’]

3 

o ( 3~~~~n 
+ 2e~~~~) - 6y v~ )

.YM
1

.5y(p~’v
’1(3ye~ + 2K(u~ + v’s )) — PrRe 6y

£7.. ~~~ - ~~~~~~~~~~~~~~ - . - - - — - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 
-.

~4- - ,-, - 
-. ~- 

- 
~~~~~~~~~~~~~~~~ -
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APPENDIX E

FINE MESH RESULTS

• The following figures are the results for the fine mesh compu-

tations. There were 4224 grid points in the flow field. The ratio of

was 2.0 with Ax — 1/12. The inflow Mach number was 3.0 and the

Reynolds number was 550. The time step size used to reach convergence

was 16

V

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — —— — - “- --—- — -— - —— .—--—.. -— - -——--—---- —-----—~~~~~ - - —— - - 

- - - - - - -~~~~~~
— 
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