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SUMMARY

iz The development of a tool for solving the near field of a scram-
jet fuel injector was attacked by first developing a numerical technique
for solving the laminar, supersonic near wake flow. It was considered
important to develop a procedure that had a potential for reduced compu-
tation time compared with explicit methods. The implicit numerical

procedure o@—Briiey~and*ﬂnﬁonalg\was extended to mixed subsonic/super-

sonic flow with shocks, expansions, and regions of reverse flow.) Briley

and McDonald had previously applied thé'pfééeaure fo Qubsonic, constant
area duct flow with no recirculationb» In the present case, numerical
results have been obtained for the laminar, supersonic near wake behind
a rectangular base. >  fa .. xy

The numerical method applies a time linearization based on a
Taylor series expansion about the known time level, and the Douglas-Gunn
alternating Direction Implicit (ADI) procedure to the Navier-Stokes
equations. Briley and McDonald obtained the finite difference equations
by using standard three-point central differencing. This generated a
series of block tridiagonal systems which can be quickly solved by a
standard elimination technique. The same approach was followed here,
except that all of the differential equations were written in the conser-
vation form (Briley and McDonald used the non-conservation form of the
energy equation) and the finite difference equations were derived by the

cell integration technique. The cell integration technique considers
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the conservation equations as integral laws over a control volume (cell)
around a grid point and also leads to central differencing for the
interior grid points.

The chief advantage in using the cell integration technique is
the conceptual aid afforded in applying the boundary conditions. Allen
and Cheng used this technique, and their work served as a guide in
selecting one-sided difference forms for the nonzero boundary terms.
Because the present method is implicit, however, several new forms were
required for stable and accurate solutions. It was found, for example,
that second-order forms for the pressure and 3v/3y on the centerline are
needed to prevent y-direction wiggles in the steady state solution. Also,
a new implicit, linear extrapolation scheme using the finite difference
equations was developed for the outflow boundary. This was required to
eliminate wiggles in the x-direction in the steady-state solution. All
the explicit extrapolation schemes at the outflow caused the solution

to diverge for At > At Zero-gradient forms at the outflow boundary,

CFL’
whether explicit or implicit, caused x-direction wiggles in the steady
state solution.

2 Three~dimensional contour plots proved to be an important diag-
nostic tool. It was not discovered that the x-direction wiggles were
caused by the treatment of the outflow boundary conditions until the
3-D plots clearly revealed that as the recompression wave crossed the
downstream boundary, the wiggles formed and propagated upstream to the
back wall and inflow regions. Up to then, the suspected causes were

improper treatment of the back wall boundary conditions, or that the

cell Reynolds numbers were greater than two there. The use of upwind
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differencing, artificial viscosity, or a much smaller Ax were considered
to be undesirable remedies.

The results for the contour plots showed qualitative agreement
with Allen and Cheng and Kronzon, et al., and close quantitative agree-
ment where comparisons were possible. The centerline pressure plot
showed very close quantitative agreement with Allen and Cheng. As a
further check on accuracy, overall mass balances were computed at each
time step. In the (nearly) steady state conditions, net mass inflow
rate differed from net mass outflow rate by about 1.8% or less.

No artificial viscosity was used in obtaining these solutions.

It is interesting that Briley and McDonald required an additional
explicit artificial viscosity in their subsonic duct flow solutions.

The reasons for this difference in behavior are not known. It may be
speculated, however, that the difference arises from the present use of
the conservative form of the conservation equations, the cell integration
technique for generating finite-difference equations, and the correspond-
ing careful treatment of the boundary conditioms.

A time step limitation was expected, although the method is
implicit, because the equations were linearized with respect to time.

For one set of initial conditions, this limitation was found to be around
32 AtCFL' The present method had a computation time per time step per
grid point of approximately five times longer than Allen's explicit
method, but could take time steps over 30 times larger. This represents
a six-fold decrease in computation time. In addition, the ability to

change (increase) the size of the time step during computation to reduce
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computation time was demonstrated. This suggests that a time step
! strategy might be successful wherein smaller At's were used at the
b v beginning, followed by increasing At as the steady state is approached.

This would be appropriate when the assumed initial conditions were very
- far from the steady-state solution. Thus the method appears to offer
significant time savings.
The effect of initial conditions on the steady-state solution

was examined. To do this, a range of initial horizontal velocities were

applied in the region below the expansion corner. All the other initial
conditions were the same: a boundary layer on the upper wall upstream
of the expansion corner and freestream conditions elsewhere. It was

shown that u = 0 led to divergence for At = 16AtC Increasingly

FL
rapid rates of convergence were realized as u was increased from 10% to
100% of the freestream value. The results for all the converged cases
indicated that the final solution was insensitive to the initial condi-
tions, but that the time to convergence was highly dependent on initial
conditions. Also, convergence was shown to occur for a significant
range of initial backwall u.

. Accuracy of the coarse mesh results was shown by comparisons with
the fine mesh solution. Both solutions were in close agreement. Small,

. irregular disturbances in the inflow region and in the shock occurred
for the coarse mesh solution. These can be attributed to the lack of

resolution in the coarse mesh in the inflow boundary layer and in the

shock at the outflow, as they disappeared in the fine mesh solution.




These numerical results served to demonstrate that this numeri-
cal method produced stable, convergent, and accurate solutions when
applied to this complex flow problem. To the author's knowledge, no

e
other implicit scheme has been successfully applied to the multidimen-

sional nonlinear Navier-Stokes equations for the supersonic base flow

problem.
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CHAPTER I
INTRODUCTION

Recent interest in hypersonic flight has motivated an increasing
number of investigations into advanced airbreathing propulsion devices,
including supersonic-combustion ramjets (or scramjets). Many studies
have been related to an airbreathing launch vehicle for NASA's space
shuttles, but found that the technological state-of-the-art of the pro-
pulsion system was not sufficiently developed.l-3 More recently atten-
tion has been given to developing a scramjet engine for a hypersonic
research vehicle.4 A principle requirement of the scramjet is the spéci—
fication of the flow field downstream of the fuel injector. Knowledge
of the combustion flow field and heat release distributions, for example,
would allow for the design of engines requiring a fraction of the fuel
heat sink capacity for cooling. This would allow the airframe designer
more flexibility. Additionally, there is the need for complete combustion
in as short a distance as possible, so that long combustors will not be
required. Hence the need for rapid mixing of the fuel and air streams
makes the near field of the injector a region of great interest.

The injector flow field is quite complex, which greatly hinders
analysis (see Figure 1). Shocks, high transverse pressure gradients,
and region of reverse flow make the near field similar to a base flow,
but with the added complications of fuel injection and subsequent mixing
and combustion. All of the flow features strongly influence the turbu-

lent mixing and combustion.s-g Hence an accurate analytical procedure

a_a
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which describes the fuel injector near field must include all these
features. Previous studieslo-l5 examined the mixing and combustion of
compressible turbulent streams but neglected, and indeed could not com-
pute, the important effects of shocks, recirculation, and regions of
high transverse pressure gradients.

The present analysis seeks to include these effects, but neglects
the turbulence and combustion for two reasons. Uncertainties in the
turbulence and combustion models limit the validity of analysis. Even
relatively advanced turbulence models, such as those where velocity and

length scales are computed from differential equat::i.ons,le-19

may have
difficulty in describing details of this flow. Thus, it would be diffi-
cult to establish whether inaccuracies in a new numerical procedure were
due to the models or to the method itself. Second, experience has shown
the differential equations of turbulence to be troublesome numerically,
which greatly hinders even the development of a new method.zo It is
therefore prudent to prove a new method first by solving a similar
problem where the flow is well-characterized by the governing equations.
Here, the laminar, supersonic base flow problem (Figure 2) was solved.
The flow is specified by the Navier-Stokes equations along with the
conservation equations of mass and energy and the equation of state.
Many previous base flow studies used an integral technique to
determine a base pressure or a base drag, but few other details of the
flow. Mueller,21 for example, used the Chapman-Korst method to determine
a single turbulent base pressure for supersonic axisymmetric flow, which

was assumed to be constant across the base. Mueller pointed out that
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the solutions obtained were asymptotic and valid only for high Reynolds
numbers, and that the important effects of the initial boundary layer
were neglected. Alber and Lees,22 used the Crocco-Lees integral proce-
dure for supersonic turbulent base flows. They showed that the initial
boundary layer can dominate the viscous interaction near the base when
its height is of the order of the base height. They also computed a
constant pressure up to the rear stagnation point, the distance to the
rear stagnation point, the centerline pressure distribution downstream
of this point, and the correct trend of increasing average base pressure
for increasing iqitial boundary layer thickness. Both integral theories
rely heavily on the flow being well-characterized beforehand by another
method or by experimental data. Neither have been shown to compute
details within the recirculation region, variation of pressure within
the recirculation region and along the base, and shocks. Extension of
an integral technique to include these features and subsequent extension
to the case of a fuel injector appears to be unpromising at best. Even
extension of the Crocco-Lees method, for example, to axisymmetric flow
has been accomplished only with great difficulty by Mehta.23

Finite difference procedures appear to be more promising for
computing the base flow field. So far as the author knows, the only
finite difference techniques applied to the full conservation equations
for the supersonic base flow problem were the explicit methods of Allen
and Cheng24 and of Roache and Hueller.25 For the latter case, however,
relatively little information about the solution was provided. The

Allen and Cheng method computed the steady state solution by solving the

unsteady equations for asymptotically large time. However, much




computation time was required because the method, as all explicit methods,
is subject to one or more stability restrictions on the time step size
relative to the spatial grid size. These stability criteria are the

well known Courant-Friedrichs-Lewy (CFL) condition (in one dimension,

At... < Ax/(|u| + ¢)) and, in some methods, a viscous stability limit

CFL
(At j.Ax2/2v). Since the maximum time step size is related to the spa-
tial grid size, when accuracy is desired and a fine mesh is used, the
computation time correspondingly increases.

Implicit methods, on the other hand, tend to be stable for much
larger time steps. Hence they offer the prospect of faster solution
than explicit methods, provided the computation time per time step is
comparable to that of explicit methods. When applied to one-dimensional
equations using central differencing, an implicit method usually gives
a linear system with a tridiagonal coefficient matrix which is easily
and quickly solved. Multidimensional problems, however, give more com-
plicated coefficient matrices which are time consuming to solve. Further
the equations need to be suitably linearized before application of the
implicit technique. Briley and McDonald26 have proposed a procedure which
linearizes the unsteady equations in time by Taylor series expansion about
the known time level. It preserves the efficiency of one-dimensional
systems by applying an Alternating-Direction-Implicit (ADI) procedure,
in which the equations aré considered implicit in one direction at a
time. The particular ADI scheme used here is that of Douglas & Gunn.27
This method is tentative because Briley and McDonald only applied

the method to a subsonic duct flow with no recirculation. This is very

different from the supersonic base flow problem, and the ability to




compute shocks and recirculation, for example, needs to be proven. In
addition, Briley and McDonald never established the accuracy of the
method by comparing with experimental data or an exact solution. At most
they have only shown qualitative agreement with approximate (i.e., one-
dimensional exact) analyses. Nevertheless, the method appears to be
promising in not: being subject to stability limits on the time step
size and in retaining the computational speed of one—dimensional implicit
systems.

In this thesis, the Briley and McDonald26 procedure was applied
to the governing equations, and the cell integration technique was
applied te derive the finite difference equations. In brief, the govern-
ing equations were linearized in time by a Taylor series expansion about
the known (or nth) time level. The finite difference equations were
derived by applying the cell integration technique, which leads to
central differencing for the interior grid points. Application of the
ADI procedure leads to sequences of one-dimensional implicit systems
having block tridiagonal coefficient matrices. Each of these systems
(one sequence of systems for each coordinate direction) is solved by
the standard block elimination technique as outlined in Isaacson and
Kellet.28 No iteration is required to compute the solution for a given
time step.

The method was checked against the previous laminar, supersonic
base flow calculations of Allen and Cheng24 and Kronzon, et al.29 This
allowed a check of the capability of this implicit method to compute a
flow with shocks, reverse flow, high transverse pressure gradients, and

a wide variety of boundary conditions. It also allowed a check on the




ability of the method to compute a solution in less time than by an

explicit method.

Dnad




CHAPTER II
GOVERNING EQUATIONS

The governing equations are the conservation equations for mass,
x-momentum, y-momentum, and energy, and the equation of state for the
two dimensional flow of a perfect gas with constant specific heats.

The differential equations are written in the conservation form. As
Roache30 shows (p. 28), when the conservation form is used, then the
finite difference equations preserve the integral Gauss divergence
property of the continuum equation. His example illustrates the alge-
braic balance of flux quantities and accumulation rates in a small con-
trol volume. This has an intuitive appeal. In addition, Roache points
out that the Rankine-~Hugoniot relations were derived from the conserva-
tion form and hence the jump conditions across a shock are automatically
satisfied. No special treatment is given for the formation of shocks if
they develop. This is called "shock-capturing' or 'shock-smearing."

(In the Russian literature this is called a "through'" method. See
Roache>C p. 227).

The dimensional equations are:

p __23 ‘o Y

T 7% Pw) 3y (ov) (2-1)
3 (pu) Y 2 - _3 ¥ &
3t -~ 35 8 *het ] Frs (puv rxy] (2-2)
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) g2, .2 3 P (u2+v2) 3
ﬁ[pe+2(u +v)]--a—x[pu(e+p+—-2——)-qx]-g[DV(e+
_(.‘Li'Ll) ]+—(u' + vt )+L(ur +vr )
Iy x U'xy’ C 3y xy  lyy
au v v
= [Txx = xy(ay + ax) + Tyy 3y (2-4)
p=(y=1) e (2-5)
. = y(d3u_23v .
where: 4 u(3 o ay) (2-6)
Jdu IV
Txy "(a_y”"ﬁ) (2-7)
4 v 2 3u
Ty = u(—ig -3 3% (2-8)
= - Yk de i
Sl - @-9)
P
- o Xk 38 2-10
a4, e, 9y ( )

Here cp, Y, k, and u are assumed to be constant. (The case of temperature
variation of these quantities is a straightforward extension if done
explicitly.) Bulk viscosity was assumed to be zero.

Great utility is afforded by nondimensionalizing the equationms.
Then, different flow conditions can be characterized easily by a small
set of nondimensional parameters rather than having to change all the

dimensional parameters. The following convention was used:
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where H = base half height and subscript 1 denotes freestream quanti-
ties.

Substituting these quantities into the conservation equations,
eliminating pressure with the state equation, and dropping the overbars

equations (2-1) through (2-4) become

3 3 3
"5 Pw - 3 (pv) (2-11)
dpu _ _ 3 2 ik -1 43u _23vy, 3 -1 du 3v
at 5 LPu + ( Mz) P G385 oY - mGS T
™
(2-12)
dpv _ _ 3 -1 8w  dvy, 9 2 1, _143v_23u
3t R Ll e~ R e (sz)pe Re(3 3y "3 3x))
1
(2-13)
3 Pk, 2 290 a2 K .2 2
3¢ [pe + 2 (™ + v)] = [pu(ye + 7 (W7 +v7)) + vq,]
9 K 2 2 )
- 3y [pv(yve +-§ (W+v)) + yqy] + K{[ax (urxx + vrxy)
9 du du , v v
L - b Ci ) AR & 2-14
+ 3y (urxy + vtyy)] [Txx . + Txy 5y + 3 Tyy ay]} (2-14)
; 1 (43u_23v -
where: =" 5 (3 i ay) (2-15)
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-l Bu_ 3v e
xy = Re (ay + = (2-16)
a1 A3V _23u ¥
v "R G 3y 3 % (2-17)
-1 3¢ T
9 RePr ox (2-18)
1l 23e
qy ~ RePr 3; k2-19)
7
2 2 1
K \r(\r-l)x'i1 My = YG-De;
p,u H H,C
Re = =1 Pro= B
Hy 1

These are the equations solved in the program along with boundary
conditions which are derived for the geometry illustrated in Figﬁre 2.
The finite difference grid for the flow field is shown in Figure 3.

Note that only half of the flow field is computed (the upper half) since
the flow is assumed symmetric about the central plane (DE). The flow

is two-dimensional, planar over the rectangular corner BCD. The incoming
flow is supersonic with a boundary layer on the upper wall. Details of

the boundary and initial conditions are given in Chapter 5.
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CHAPTER III
NUMERICAL PROCEDURE

The unsteady equations are parabolic in time and at each‘time
step the simultaneous solution of the equations for the whole flow
field is required. Numerically, this means the solution of a linear
system (for implicit methods) which, in turn, requires the lineariza-
tion of the non-linear terms at the implicit time level. This is
accomplished by a Taylor series expansion about the solution at the
known time level as outlined in Briley and McDonald.z6 They point
out that this procedure, adapted for the integration of initial-value
problems, permits the computationally efficient solution of coupled,
non-linear equations in one space dimension by a one-step non-iterative
scheme. The efficiency is retained for multidimensional problems by
using alternating-direction implicit (ADI) techniques. As an example of

the linearization, the continuity equation (2-11) becomes:

- S .g.; (pu)n+l = _B__(DV)n+l

ax

G O n 9 au du.n _ 3 n v.n
3l (Pu) + (u 3e TP 3¢ 7P 3 Atl W[(DV) +o 7)) At]

or

n+l n
p -p) ) ntln, n ntl nn n+tl n, n ntl nn
( At '-E[p u +pu -pu]-g—y'[p v +tpv -pv]

(3-1)




15

Equation (3-1) is linear in the unknown (or n+l) variables. The complete
set of linearized equations is given in Appendix A.

To obtain the finite difference form of the equations, the cell
integration technique is used. This technique is best illustrated by
example. Consider the differential equation for conservation of mass,

using Cartesian tensor notation:
p/3t + apui/axi = Q (3-2)

This equation is integrated over a control volume (cv) which is a cell

of dimensions Ax, Ay, Az. Thus

[[] 3p/3t)dv = - If] (3pui/3xi)dv
cv cv
=~ [[ pun da (3-3)
cs

using Gauss' theorem. For two-dimensional flow, the area integral over

the control surface becomes:

/] puinidA = [[ pu dydz + [[ pu(-1)dydz
Ccs x+ X=-

+ [[ ov dxdz + [[ pv(-1) dxdz (3-4)
y+ y=

where x+, x-, y+, y- are the control surface or cell edges (see Figure 4).

Next, the following approximations are made:
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[f] (@p/at)av 2 (3p/at)ij Ax Ayaz
cv

{f pu dydz = (pu).x+ AyAz (3-5)

x+
etc.

Equation (3-4) then becomes
1 1
(3p/3t)ij = - = [(pu) - (pu) ] -A—y[ (o) gy - (ov)y_]
or
3p/at = ~8x(pu) - Sy(pv) (3-6)

when (pu)x+, for example, is taken as the average between (pu)ij and
(pu)i+l,j and similarly for (pu)x_, then 9x(pu) becomes the standard
central difference form. The chief advantage in using this formulation
is the conceptual aid afforded in applying the boundary conditions.

With this technique all spatial derivatives are related to values at the
cell edges. Thus, when boundaries are adjacent to cell edges it becomes
clear which terms must be modified to match the boundary condition.

The complete set of finite difference equations is given in Appendix B.
For interior points, the value of a quaﬁtity on a cell edge is always
taken as the average of the cell points on either side of the edge.

A derivative at the cell edge is always the difference of the two near-

est cell points. Thus, for example

(), = oWy, + Gu)yyy ] (3-7)
e u)], = <2 [(ou) - (ou),,] (3-8)
9x P X+ Ax P i+1,] i ij
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When these are carried out for all the cell edges, the result is central

differencing. For example

(pu) + (pu) (pu) . + (pu), _
sEGw) = = [(pw) = (), ] =b—2H T4 4 1l

1
= Sax [(°“)1+1;| - (°“)1-1j]

then equation (3-1) can be written as:

n n+l n, n+l n n+l n, nt+l n n+l n

B oy TV g TOW g PO TR ey T (3-9)

where an, bn, c® etc. are coefficient matrices containing only n-level
quantities, f® is the finite difference form of the explicit part of
equation (3-1), and ¢ij is the column vector containing the dependent
variables at point ij. If a single row or column of grid points were
being solved by equation (3-9) (as in a one-dimensional problem) the
result would be a block-tridiagonal matrix which could be quickly solved
by a standard elimination technique. Application of equation (3-9) to
a field of many rows or columns of points results in a large cumbersome
matrix which can be solved by Gauss elimination or some iterative tech-
nique. The computation time required for solution by either method
increases rapidly with the size of the grid.

As mentioned previously, the computation time of solution for a
one-dimensional problem is retained by use of ADI techniques. Of the
many ADI schemes (see, for example, Yanenko31), Briley and McDonald use

a form of the general procedure of Douglas and Gunn. This procedure
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generates the ADI scheme as perturbations of the fundamental implicit
scheme. It is a multistep method (one step for each spatial dimension)
where the first step approximates the implicit equation and subsequent
steps add corrections. Yanemko calls this the "method of stabilizing
corrections" and shows that the method has the two important properties
of consistency and stability. Briley and McDonald point out that the
consistency property allows for the use of physical boundary conditioms
for the intermediate step with no loss in accuracy for steady state
solutions.

Each step of the procedure involves the implicit solution in one
of the coordinate directions. This results in a system of one-dimen-
sional, block tridiagonal matrices which are easily solved by standard
block elimination methods. As an example, applying the ADI scheme to

equation (3-1) gives:

* n

- * *
Lapl o -6x[p u+ pnu - pnun] - Gy[pnvn (3-10)
At 15 ij 1
( et n) *n, n* nn *kn_ n *k nn
—p—AEP_ -Gx[pu+pu-pu]1J-5y[p v +p v -pv]ij (3-11)

ij
wherz * indicates the intermediate quantity given by equation (3-10) and
** represents the quantity evaluated by equation (3-11). The complete
set of ADI equations is given in Appendix C. Now, equations (3-10) and
(3-11) can be written as

* n
je_zi_ﬂ_l - Dxn¢* + Dy%%™ + Sn (3-12)
ij

S —————— p— - RRPp—
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k%

- n * n %%
(9-—-——At ) =Dx¢ +Dy¢ + Sn (3-13)
ij
where
Dx" = |- sx{u"} -8x{p"} 0|
Dy" = |~ &y{v"} 0 -sy{p"}|
Sn = sx(p™u™) + sy(e™™) ¢ = |$|
and

{ } implies multiplication with ¢ before the difference opera-
tion is applied.
* *k
Now ¢ 1is computed in the intermediate equation (3-12) and ¢
27 k%
is obtained in (3-13). According to Douglas and Gunn. .¢ is within
e(Atz) of ¢n+1 and so is taken at ¢n+1. The system can be simplified

by subtracting (3-12) from (3-13) to get the new system:

* n

p_=op - T n.n n "
( 7 )ij Dx ¢ij + Dy ¢ij + S (3-14)
Rk * o
J el o B « Po i o,
Equations (3-14) and (3-15) can be written as:
=n * =n * ~n * —n
¢ 4413 + by 413 +a, 1415 = dy (3-16)
= *k = %% &= %% —k
R R HOWRE e

where E;l, E;i etc. are the coefficient matrices of the unknowns
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*

5 Th -n —* =0
¢i—lj’ ¢ij’ etc. e column vectors di ~ Ej , and nj

explicit terms. The order of the coefficient matrices is equal to the

contain the
number of dependent variables. The forms of jf s B_-f 5 fin , etc. come
from the finite difference equations, and, for the interior points, all
have the same form. (See Appendix D.) For points adjacent to a
boundary, the finite differencing must be modified. These modifications
are discussed in Chapter V.
The solution for a single time step, then, proceeds as follows:
1. Equation (3-16) is applied at successive rows (x~direction)
to generate a series of coupled, one-dimensional equations
(there being one set of coefficient matrices -;: 5 iln : _E-:
and a'E;l for each point in the row), which are arranged into
one block-tridiagonal matrix for each row. The matrix is
then solved by a standard block elimination technique (see
Chapter IV) to give the values of ¢*.
2. The second step is similar to the first except that equation
(3-17) is applied to successive columns (y-direction), which
gives the ¢** vector for the flow field.

It should be noted that the "splitting'" of the Douglas-Gunn pro-
cedure can be done in any coordinate direction and does not require
association with coordinate directions. The criteria used is that the
associated matrices are easily solved. The mixed derivatives can be
treated implicitly, therefore, but this increases the number of inter-

mediate steps and greatly complicates the procedure and was not done

here. Thus, as the method was applied, it was not totally implicit.
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Experience has shown that this does not seem to hinder the ability of
the scheme to use larger time steps than those required by the viscous
stability requirement. Briley and McDonald, for example were able to

use At = 20.6 Aty (where Aty = (Ax)2/2v) and At = 1471 AtCF They

L
point out that explicit treatment of a dissipation term and V-u appeared
not to affect the stability of the procedure, even at these large time
steps. Hence, it was deemed not necessary to compute mixed derivatives

implicitly. Subsequent experience with computations for supersonic

base flow confirmed this.

R s - X =t SR v ——— = Lo o iy vty s s i R S
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CHAPTER IV
MATRIX SOLUTION

Equations (3-16) and (3-17) generate a series of coupled, linear,
one-dimensional equations for each row and each column of grid points in
the flow field. Each series of equations represents a complete block-
tridiagonal matrix system which, as previously mentioned, can be solved

by standard techniques. The one used here is the L-U decomposition and

back-substitution (LUBS) method described by Isaacson and K.eller.28
To illustrate the procedure consider the solution along the jth

row of grid points. At each point, Eq. (3-16) gives:

=n * =n * =n %* -1
Cfsagy *Ps tay * 8 by T Y
For the whole row, the system emerges as:
n n * n
T ! 0 T
n n n * n
€ By & 423 d
n n n * = n
WAL R 935 o
3 . n * n
aN-l ¢N-l;j d.x.l

n n * n
° Dby ® Nj 4y

- A




24

where N is the number of grid points in a row. Now each of the coeffi-
cients c; ~ bin , and a: are themselves square matrices of the order
k, the number of dependent variables.

The first step is to convert the coefficient matrix to the

product of the upper and lower triangular matrices (hence the name LU

decomposition).
] ]
b1 I al
] L
<, b2 I a,
' ' = LU
c3 b3 I a3
‘ d 5 *
: : . -1
<, bt—l I

where I = identity matrix.

This is accomplished by using the recursion formulas:

bl-- bl a; = bl a; (4~-1)
b, = by~ W =230 (46-2)
a; = b 7'a, (1 = 2,3,...,81) (4-3)
Hence, the system becomes:
%1 .
¢ ‘2
ULy =d ; ¢ = |. ; d= |, (4-4)
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which is solved as
71
Uy=d; Lp=y; y= |72 (4-5)
7N

Recursions, for y and ¢ are:

-1

. -1 (- = ; - : = -
yp = OGP v, = DTN - ey, ) (=2,3,..08)  (4-6)

and

' -
¢N . YN’ ¢i yi s ai¢i+l = N-1, ‘-\‘2’---’1) (4-7)

This ;ethod is seen to take full advantage of the large number of zeros
in the matrix by performing operations only on the nonzero elements of
the coefficient matrix. It is thus seen as particularly efficient and
suitable for use in a computer program. Further computational efficiency
is gained if equations (4-1), (4-3) and (4-6) are solved, not as written
by inverting the bi matrix, but by solving the linear system with bi on
the left hand side of the equation. Gauss elimination, for example,was
used in this problem, though other techniques could be used. The ques-
tion arises, in the solution of the small linear system with bi on the
left hand side, as to whether a pivoting strategy would aid in the
reduction of any round off error. These round off errors may arise, for
example, from the fact that so many arithmetic operations are being

performed even in the solution of one row of grid points. A check for
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round-off errors was made for this problem by making a single computa-
tion using double precision (single precision on the CDC 6600 of the

Georgia Tech CYBER 74 is 14 decimal places). This computation was run
for 100 time steps and the results were identical to a computation made

using single precision arithmetic. Thus no pivoting appeared necessary.
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CHAPTER V

BOUNDARY AND INITIAL CONDITIONS

The finite difference equations all have the same form when
applied to interior grid points. When a cell is adjacent to a boundary
these equations must be modified. This chapter presents the modified
forms of the finite difference equations for the various boundaries
encountered in the flow field.

While all flows are governed by the same set of equations, the
variety of phenomena (bubbles, shocks, recirculation, etc.) arise due
to differing boundary conditions. It follows that these boundary con-
ditions in a numerical study must be specified carefully, as was indeed
discovered. The cell integration formulation affords great conceptual
aid here, in that it becomes clear which group of terms needs to be
modified. The problem becomes one of choosing emong several plausible
forms. Most of these forms are outlined in Roache.

Complicating the matter is the fact that appropriate forms appear
to vary with solution procedure. Roache cites several instances where
one form gave good results for some methods, but caused numerical diver-

gence in others (see, for example, Roache,30

p. 280). Allen and Cheng
even found that near-wall flux terms needed to be modified within the
same method for a finer mesh to get physically meaningful densities.
This is not to imply that only a single form will work in a given condi-

tion; just that the solution can be very sensitive to form change. The
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solution can also be quite insensitive to different forms. Many forms
for the viscous terms near and on the walls were tired, and gave negli-
gible changes in the solution. It is not surprising then, that a major
effort was required to arrive at appropriate modifications of the finite
difference equations for the edge regioms.

The remainder of this chapter presents the final forms of the
boundary conditions used for solution. A more complete discussion of
other boundary condition forms considered is given in Chapter VI,
Results. Only the conditions for laminar flow are given here. The
extension of this method to turbulent flow and associated boundary con-

ditions is given in Bangert and Roach.

5.1 Upper Wall

The upper wall, labeled BC in Figure 3, is no-slip, impermeable,

and adiabatic. A cell adjacent to BC (see Figure 5) must then have

(u)y- =0 (5-1)
(v) e (5-2)
and,
= 5"3
(ae/By)y_ 0 - (5-3)

Equations (5-1) and (5-2) imply:
(Bulax)y_ =0 (5-4)

@v/3x),_ = 0 (5-5)
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Boundary Cells - Upper Wall, Back Wall and Centerline.
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Similarly, the shear work terms (from the energy equation) on the wall

are zero:

(3 (2u/ay + av/ax)ul _ = 0 (5-6)
B 4 o - ¥
(e G 3v/3y - 5 du/ax)vl =0 (5-7)

The nondimensional pressure at the wall, (pe)y_, was evaluated

by a linear extrapolation through (ij) and (i,j+l) giving,

1
(pe)y_ - -2-[3(pe)1‘1 = (pe)ijﬂl (5-8)

This technique was also used by Allen and Cheng.
When normal derivatives are required at the surface, a second-

order accurate, one-sided difference was used:

1
(3¢/3y)y_ " 38y (-8¢y_ + 9%, ’¢ij+1) (5-9)
thus
du 1
(E)y_ = .TSX}: (9u1j - uij+l) (5-10)
and

v 1 2
Gy~ = TayPay = Vagen) e

5.2 Back Wall

This wall, labeled CD in Figure 3, is also impermeable, no-slip,
and adiabatic. A cell, then, with the wall on the x-edge (see Figure 5)

has:

ke




ST ———— e - - - e

(u)x- =0 (5-12)
w)_ _=0 (5-13)

and,
(e/ax),_ = 0 (5-14)

Equations (5-12) and (5-13) imply that:

(du/3y), _ =0 (5-15)
(3v/3y) _ =0 (5-16)
also:
a4 du _ 2 3v. - »
e % 339" ¢ G110
M (du 3V - ~ =
[Re (3y *isvl 0 (5-18)

using the second-order form for the normal derivatives, similar to

Equation (5-9), gives:

(3u/3x)__ = ) (5-19)

1
Bax 944 = Yy4qy
and

Qv/am),_ = 5= (945 = V4aq) (5-20)

The form used for the pressure on the back wall was not the

extrapolation used as on BC, but rather:

be)y = % Opeyy = Peyyy) el

31
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Note that this form is equivalent to a zero pressure gradient normal to
the wall at x-using the second-order form for normal derivatives. The
reason for the use of this form is given in Chapter VI in the section

on boundary conditioms.

5.3 Centerline

The centerline, labeled DE in Figure 3, is a plane of symmetry
and thus has no mass flux across it. A typical cell (see Figure 5) is

adjacent to DE at its y- edge. So

™), =0 (5-22)
(Bvlax)y_ -0 (5-23)

and
(3¢/3y) = 0 (¢ # V) (5-24)

The second order form for the derivatives, eq. (5-9) is used

for the normal derivative of v:

1
(BV/By)y_ = Tay (9Vij - vij+l) (5-25)

and also gives a consistent form for the nonzero variables at y-:

. P =3 00y, - 0y5,0) (5-26)

Equations (5-22) through (5-24) imply that the shear work terms

adjacent to DE are also zero:

[§c (du/ay + av/3x)u] _ = 0 (5-27)
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[%é (% av/dy - % Bu/BX)v]y_ =0 (5-28)

5.4 Outflow Boundary

The outflow boundary, EF in Figure 3, is adjacent to the outflow
cells at their x+ edges. Little can be assumed about the flow here
regarding specification of gradients or variables because the flow is
not known a priori. For explicit schemes, Roache30 suggests various
extrapolation methods. He notes tha;, in most cases, linear extrapola-
tion is satisfactory, except perhaps when a shock crosses the boundary.
Thus, an implicit, linear extrapolation procedure was used to specify
conditions at the x+ edge of the outflow cell. The schemes which com-
puted the conditions at the outflow cell points by explicit extrapola-

tion all caused divergence for At > At Zero gradient forms for the

CFL®
outflow cell points, both explicit and implicit, resulted in wiggles in
the steady state solution. Details are described in the section on bound-
ary conditions in Chapter VI.

The values of all the dependent variables at x+ are obtained by

a linear extrapolation from ij and i-1,j:
o, =7 (Go,, = b, 1 ) (5-29)
x+ 2 ij i-1,]

Thus normal derivatives at x+ are equal to the normal derivative at x-:

(36/3%) , = (26/3x),_ = 3= (044 = ¢, ) (5-30)

5.5 Upper Boundary

For the upper boundary, labeled AF in Figure 3, the properties

were determined explicitly (i.e., after the rest of the flow field has

P—— S—— . - A = - ———— e e e .
Y F
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been computed) by the simple wave procedure used by Allen and Cheng
and outlined by Roache (Reference 30, pp. 282-283). Briefly, it was
assumed that properties are constant along the straight, left-running
characteristic line passing through an upper boundary point ij. This
line is determined by the angle (um + 0), where M, = arc sin(1/M) is
the local Mach angle (M > 1) and 6 = arc tan(v/u) is the local flow
direction. The properties on the characteristic line are determined by
linear interpolation between (i-1, j-1) and (i,j-1) or (i-1,j-1) and
(i-1,3j) depending on the local (um + 6) and the ratio Ay/Ax. Figure 6,
shows the two cases.

For tan (um + 0) > Ay/Ax, the characteristic line runms

i-1,j-1
between (i-1,j-1) and (i,j-1), and the properties at P are determined

by:

2
Ll TR LWl TR, 1 (5-31)

Then ¢ij = ¢p is used to solve for the upper boundary points. The value

of ¢ and thus the location of P are determined as follows. Consider the

quantity .
w = tan [90° - (um +9)]
AX=2
H W —— 5‘32
By geometry wy - ( )

But from (5-40)

2 ot
wy = 0y g1 * G0y goq = Wgog,5-1) (s
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Equating (5-41) to (5-42) and solving for gives.

(AX/AY = wi"’l,j-l)

1 1
T Yy a1 T Yaa) T

L=

(5-34)

For the case of tan (um + 9) < %i » the characteristic line rums

between (i-1,j-1) and (i-1,j). The properties at p are determined by

L

b= Y1t By T B ) [5=a5)

and then ¢.. = ¢ as before. Here the quantity w = tan (u_ + 6) is used
ij P m

and

o) = A2zt (5-36)
is equated with
L
“ = U1-1,5-1 * oy ©a-1g T Ue-1,5-0) s
to get
B (Ay/8x - w; ;3 5_1) (5-38)

L

1
Ay (“1-1,1 7 “1-1,j-1)

+ —
Ax

5.6 Inflow Boundary

The flow properties on the inflow boundary (AB in Figure 3)
were held fixed during the computation. Their values were chosen

starting with the assumed velocity profile used by Allen and Cheng.

u --% @) -m*+4m) 0<n<1

(5-39)
us=1 n>1

A - . - e e —
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where n = y/$

§ = nondimensional boundary layer height
The internal energy profile was determined fram the Busemaun integral
of the compressible laminar boundary-layer energy equation for an adia-

: batic wall:

e +% G 1)1~412 Q- ) (5-40)

with the assumption of constant pressure through the inflow boundary

layer, the density is determined from the equation of state. Here

(5-41)

|~

With these values fixed the vertical velocity component is determined
from the boundary layer equations. As in Allen and Cheng, an ordinary
differential equation for v can be derived by combining the x-momentum
and continuity equations and using the energy integral. Integrating

both sides gives:

n 2
vim = -2 [ L e 2-onl an®1 S an 0 <nct
» ou dn
(5-42)
v(n) = v(1) n>1

where n = y/é § =.41

5.7 Initial Conditions

The unsteady equations require that initial conditions be speci-

fied everywhere before computation can begin. This specification is
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arbitrary but some care must be taken. Initial conditions with very
steep gradients near the expansion corner, for example, were found to
cause divergence. An examination of the effect of a few different
initial conditions is discussed in Section 6.3-4. For the development
of the procedure and for most of the computations the same initial con-
ditions were used. The boundary laver and freestream conditions were
imposed along the upper wall to cormer point C. Beyond this corner and
above it, the freestream conditions were applied but with v = 0. Below
the expansion corner v was zero also and u was 30%Z of the freestream
value. The parameters of the flow were set to correspond to Allen and
Cheng's Case Bl, where the freestream Mach number was 3, the Reynolds
number was 550, the nondimensional boundary layer height was 0.41, and
the walls were adiabatic. This also corresponds to Allen's cases Cl

and CS.
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CHAPTER VI

RESULTS

This chapter is divided into three parts. The first part discusses
the various finite difference schemes tried for the boundary conditions
and the reasons for the final choices. The second part gives the
results of the flow field computations and the comparison with the
results obtained by Allen and Cheng. The last part discusses the
results of some numerical tests on the method, especially the use of a

finer grid, larger time steps, and different initial conditioms.

6.1 Boundary Conditions

Like the finite difference schemes, the boundary conditions can
be either explicit or implicit. For an overall implicit procedure, it
is desirable to have implicit boundary conditions to prevent problems
associated with time lagging of the boundary conditions behind the flow
field. For time steps much larger than the explicit stability limit,
the use of explicit forms on some boundaries may not be possible. Addi-
tionally, the use-of implicit boundary conditions may accelerate conver-
gence, a very desirable feature. When the term "implicit" is applied to
any‘of the forms to be described below, it means that the form was
incorporated into the block tridiagonal matrix and the variables at the
boundary solved along with those on the interior. "Explicit" refers to
those schemes which compute the boundary variables after those at inter-

ior points have been computed.
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As stated in the previous chapter, boundary conditions can not
be treated haphazardly. Care must be taken in the selection, from the
many forms possible, to prevent 'wiggles" or even divergence. Several
of these forms are discussed in the following sections but some prelimi-
nary comments about wiggles are appropriate.

Wiggles are nonphysical spatial oscillations occurring in the
solution. Roache points out that wiggles are not usually caused by
iterative instability, nonlinearities, or spatially varying coefficients,
but are actually the solution of the finite difference equationms.
Moretti gives several examples where the appearance of wiggles was
caused by poor modeling of the physical behavior (or, in some cases, no
modeling at all), particularly poor treatment of the boundary conditioms.

Standard techniques for treating procedures which produce wiggles
are the use of artificial viscosity or switching from central differ-
encing to upwind differencing. Roache, however, shows that the two are
roughly equivalent, the truncation error of upwind differencing corre-
sponding to an artificial viscosity. Use of upwind differencing can
become complicated in regions where the flow direction is not known
beforehand, as in a recirculation region. Further, artificial viscosity
may tend to smooth important flow features over too large an area or
even change the flow problem. Morectiﬁzfor example, shows that artifi-
cial viscosity completely wipes out a shock in a Laval nozzle and causes
the procedure to be significantly in error for the critical throat con-
ditions.

Because of the foregoing, the assumption was made that appropriate
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forms for the boundary conditions could be found without having to
abandon central differencing or having to apply artificial viscosity.
This proved to be the case. Indeed, all nonphysical behavior of pre-
liminary solutions came from ill treatment of one or more of the bound-
ary conditions. (Many times a programming error connected with the
boundaries was responsible. A considerable amount of time was required
to completely "debug" the program, due largely to the complexity of the
equations).

As mentioned before, a great advantage in the cell integration
technique is the conceptual aid afforded in specifying boundary condi-
tions. When fluxes are required to be zero, for example, it is clear
which terms should be eliminated from the finite difference equations
so that enforcement is automatic. Ambiguity arises when a dependent
variable or its derivatives are not specified on the boundary by physi-
cal conditions (such as wall pressure). Then, one of the many extrapo-
lation or one-sided forms must be chosen. As stated in Chapter V, much
effort was required to determine which forms were stable, consistent,
and accurate. This section summarizes that effort.

6.1-1 Wall Boundaries

Surprisingly, the solution was insensitive to many of the differ-
ing forms for conditions at the walls. Whenever a problem occurred, it
was either a programming error or a problem on some other boundary. This
was perhaps a result of no slip and impermeability being strictly
enfroced. These are the dominant conditions that characterize the wall.

Most of the forms used on the wall were those used by Allen and
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Cheng,24 although many other forms were tried attempting to get rid of
wiggles in the solution near the back wall. It was discovered, however,
that these wiggles were a result of poor downstream boundary treatment
(see Section 6.1-3) and the Allen and Cheng forms appeared to work best.
The different forms used seemed to have little eifect on the solution
although second-order forms gave more physically correct answers than
first order forms, as is explained next.

Since the walls are impermeable, there is no mass, momentum, or
energy flux across-a cell boundary coinciding with a wall. Hence, the
contribution to the convection term from the cell edge is zero, leaving
a first order, one-sided difference for the flux derivative. For exam-

ple, consider the finite difference form for a flux term of a cell ij

1| mass
1 uj X-mom.
(3DU¢/3!)ij = o (us,  -pup ) 5= (6-1)
v| y-mom.
e| energy

For a wall at x-, (i.e., ij is next to the back wall) (ou¢)x_ = 0 and

(3pud/ox) = i% (pu¢x+ -0) = i%; [(oui)iu’ + (pu¢)iw+l,j] (6-2)

3
When this form was used the zero streanline extended from the
rear stagnation point forward to another point on the centerline. The
expected behavior, and that obtained by Allen, Allen and Cheng, and
Kronzon, et al., was for the zero streamline to extend forward from the

rear stagnation point to a point on the back wall just below the expansion
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corner. The reason for the unexpected streamline behavior can be seen

in the velocity vector plot in Figure 7. As will be explained again in
Section 6.2, the plot shows total velocity magnitudes and directions

(with the arrow heads a constant size) for each point in the coarse mesh
field. The zero streamline intersects the centerline near point D

instead of on the wall near C because all the velocities in the column
nearest the back wall are positive, when most, starting at the point near-
est D should have been negative. That equation (6-2) was the problem can

be seen by considering a typical flux term for a cell adjacent to the

back wall.
2 (pup),, == [(ous) , - (ous)__]
ax ij AX Y T x+ ek
1
= & Gu) u =
ax Ut ¢ = (6-3)
y
e
since
(pug) = (pud) ., =0
Using equation (6-2) for (pu¢)x+ assumes a linear variation in the
flux across the cell. Thus
u = ex = (oup, ., +ous, )X (6-4)
¢ 1* 72 P44 13
where x = distance from the wall.
This means that
2 (oup) = c; = 3 (ous, .o, +pus,.) (6-5)
ax P 1 2 Y9441 7 094y
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for the whole cell from the wall to x+. From the steady-state contin-

uity equation, evaluated at the wall

9pu 20Vy
E—=) + ¢ ayzw 0

but

pVy
(ay )w 0

since pv = 0 all along the wall. So
puy
25 =0

Now

W1 .y 28, 20

3%

Evaluating equation (6-8) at the wall gives

dpus,
@ty - g

since (u)w = 0 and (%%E) = 0. But this implies that
w

1
G =7 P T AW, =0

and

PUsegg = = PU9yy

(6-6)

(6-7)

(6-8)

(6-9)

(6-10)

(6-11)

Since velocities are small near the lower part of the back wall, the
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dominant flux terms are those for ¢ = 1 and ¢ = e, the mass and energy
fluxes. Therefore, since p, 1, and e are all positive, u is required
to change sign between (i,j) and (i+l,j). Thus u was positive for the
column nearest the wall and negative in the next for the cells in the
recirculation region. Negative u was expected in both. Further, the
fact that pu¢ changes sign between (i,j) and (i+l,j), having been zero
at the x-edge of (i,j), implies at least quadratic behavior in violation
of the linear assumption of equation (6-2).

Allen and Cheng encountered negative densities on the upper part
of the back wall near the expansion corner when they used equation (6-2)
and fine grid spacing. Equation (6-11) may explain this behavior. In

this region, u is not small so that for ¢=u, equation (6-11l) implies
2 2
(pu )ij = -(pu ):H-lj

which may explain why negative densities were encountered. It has
already been shown that the assumption of a linear variation in pu¢ leads
to a violation of that assumption and some physically unrealistic results.
Equation (6-9) and the fact that pu¢ = 0 at the wall imply at least a
quadratic variation in the flux across the cell. Allen and Cheng sug-
gested a second-degree polynomial through the two cell centers nearest
the wall, and used the known value of u = 0 at the wall to get an expres;

sion for the flux at x+:

(0ud)y = 5 [(ouddy g 4 + 3ub)y, ] (6-12)

This gives
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(a"“"/ax)m,j S [ (pud)

T + 3(pu¢) ] (6-13)

iwtl, j iw, ]

This form gave the correct behavior for the cells adjacent to the back
wall in the present calculations.
The pressure at the wall is unknown. Allen and Cheng suggested

a linear extrapolation from the two nearest cells:

(c>e)m -12'- [3(pe) (6-14)

tu, " P 1, 4]

This form was used initially on the back wall and its equivalent form
was used on the upper wall.

Two other forms were tried. Allen and Cheng's results showed
that the pressure gradient normal to the back wall is\very small. Thus,
the other two forms tried for the wall pressure involved a zero pressure

gradient. The first form is the simple
CORERCO M (6-15)

The second form makes use of the second-order, one-sided form (equation

(5-21))

(pe)w -% ['9(°e)m,j - (pe)m,,_l,j] (6-16)

Experience with calculations on all the boundaries indicates that a sec-
ond-order form is superior to a first-order form in that the results are
usually more physically realistic and more consistent with the basic
finite difference method. Indeed, when equation (6-2) was used for the

flux terms, equation (6—16)ltended to bring the zero streamline off the




48

centerline and back to the back wall. Equations (6~-14) and (6-15), on
the other hand, resulted in little change. Waen zquation (6-12) was
used for the flux terms, there was little differeace in the solution with
any of the wall pressure forms. Thus, for some conditions equation
(6-16) gave better physical results and was the fora used for the back
wall pressure.

Four forms were tried for the viscous terms involving cross-deriva-
tives. None of these forms appeared to be preferrad. Most, in fact,
gave identical answers to several decimal places. There are two types

of cross-derivatives. Considering the upper wall, the first form is

u +/Re momentun eqns.
where ¢ ={ 1}, & ‘{ (6-17)
X (u/Re)b energy eqn.

2 28
5 E a0y,

Applying cell integration this becones

1 3%y _ ¢y 22 -t 32 Gl
Ay[(z ax) & ] m==f{x ==y ] (6-18)

ax)
since

B8y o @2y o
(ax)y_ ax)w -

Two forms for equation (6-18) are:

3 +£ EPPRRET R, -¢ =
WP R | YYD NPUAS 9 U5 N & IPLE Lo 12 s &0 U9 B b 99 . Bl 0
R LR e e T 2)

(6-19)

e e e - N v - - -
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¢ -¢
(E _g) § i+1,§+1 ~ %i-1, 441

) -0, .
1 i+14 i-1j 7
S ay 2[Eij+1( 28% ( )] (6-20)

)+ & "

ij

o into (E)y+(3%)y+ or to

evaluate it as a single quantity. Naturally, the use of either (6-19)

The question here is whether to split (& %ﬁb

or (6-20) depends on the form used for the interior points, to be con-
sistent. Both forms were tried and the results were identical. Equa-
tion (6-20) was the final form used because the non-cross-derivative
viscous terms (i.e., ay (€3 —i) and —29) were not split. Thus
equation (6-20) is more consistent with the present method than equa-
tion (6-19).

The same question about splitting arises with the sec;nd cross-

derivative type
g 22 (6-21)
Applying the cell integration, equation (6-21) becomes ‘ 1

bt R (6-22)

Neither term is zero here (except for the cell nearest corner point D

where ¢ = v and when £ = %: v), but whether they are split or not, they

need to be evaluated. Since the velocity.on the wall is zero, the ques-
tion arises (as in the flux terms) whether a simple form like equation
(6-2) is sufficient. Here the answer is yes. Both equations (6-2) and
(6~13) were tried on the back wall for these viscous cross derivatives

with no detectable difference. As an example of the simple form, the
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first term of equation (6-22) becomes
€2 a2t gl )= )-01/8y}
S ayiet” Bt T oy e AT TS ERAT T LA VAC R PR L FPNE AL PR I Y
(6-23)

The last modification which was tried before the actual cause of
the wiggles was discovered, was to make the back wall a slip wall. This
was done by making Cg%)w nonzero. The value of v on the wall was given
by an extrapolation through the nearest two grid points. This slip wall
tended to lower the v-component of velocity in the back wall cells near
corner point C by up to 10% (though one point changed 367), and it also
increased the pressure in these cells by about SZ.- Nearer the center-
line and out into the rest of the flow field the effect was negligible.

All of these modifications had little effect on the wiggles, and
seemed to point out the relative insensitivity of the solution to various
one-sided forms at some boundaries. The greatest effect on the solution
in the cells along the back wall was the difference between the flux
derivatives (equations (6-12) and (6~13)). For the upper wall, the
inflow conditions were important (see Section 6.1.5).

For some finite difference schemes, a point like the one nearest
corner point C, where the two walls intersect, can be difficult to
formulate. No real problem was encountered here as the cell-integration
method made clear which terms needed to be modified. For this cell (whose
indices are iw,jw), the x- edge was considered normal to the upper wall

and the y- edge normal to the back wall.

|
{
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6.1.2 Centerline

Initially, all of the finite difference forms used for the
centerline were derived in a similar manner as those on the wall bound-
aries. Oscillations of period 2Ay (better known as wiggles) appeared
in the solution for demsity (and pressure) normal to the centerline and
extended some distance into the flow field. Kothari and Anderson,33
solved the Navier-Stokes equations for the nonreacting case of the near
field of a chemical laser. Their solutions of the supersonic flow
between the centerlines of two adjacent nozzles had wiggles normal to
the centerlines. They cited central differencing as the cause of the
wiggles. Central differencing was definitely not the problem here, but

rather treatment of the normal derivative. Consider

2y - @Y, - "
e g =0 e (6-24)

1
F 39 - e = s t
or (ay)ij Ay (¢y+ d.. ) ¢y- is zero for all the flux terms because

v = 0 on the centerline. But for ¢ = pe = p, an expression is needed.

Initially, the simple first-order expression
= (pe (6-25)
(pe)y_ (o )ij

was used. This resulted in the wiggles. When equation (6-25) was

replaced by the second-order expression
1
(be),_ =5 [B(pe) = (0e)y ] (6-26)

similar to equation (6-16), the solution became smooth. The nonzero nor-

mal derivative, (avlay)y_, was based on the second order form from
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equation (5-9):

1
(Bv/ay)y_ bl 7 [9(V)ij - (v) ] (6-27)

1j+1

6.1.3 Downstream Boundary

The conditions at the downstream boundary, ¢ii,j’ are not known
before hand, hence some sort of extrapolation is normally employed. The
extrapolation can either be explicit or implicit. Several schemes of
each were tried.

Explicit forms are applied after the interior points have been

computed and are lagging the solution. The linear form

LT Bl TR R T (5=26)

where ii = downstream column cell index, caused no problems for the

time step At = At but the quadratic form

CFL’

B0 e " Mgrea g ¥ Yieasy (=29

resulted in diverging spatial oscillations.
When At was increased, equation (6-28) resulted in divergence at
the downstream boundary, apparently due to lagging. An explicit zero

gradient expression

1

39,9 =3 [40g49,5 = 04424 (6-30)

was tried with At = 4 At Equation (6-30) was obtained by fitting a

FL*
quadratic through (ii-2,j), (i1i-1,j), and requiring that C%%)

11,3 = 0.

a5

ciie. comm e I cnie
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Convergent solutions were obtained but it was later discovered that
wiggles in p, e, and p were created at the downstream boundary as soon
as the shock began to cross it. These wiggles then proceeded to travel
upstream and increase in amplitude near the back wall, and then decrease
to small amplitude at the downstream boundary. This rather unusual
sequence is shown clearly in the 3-dimensional plots in Figure 8. This
figure shows the pressure as a surface at six different time steps. The
initial pressure was constant everywhere, as shown in Figure 8(a). (The
wall is represented by the zero values in each plot.) At first (Figure
8(b)) the pressure quickly dropped in the back wall region while the
downstream pressure remained near its initial value. This resulted in

a recompression wave that travelled doynstream to become the shock.
While the wave intersects the upper boundary (Figures 8(b) and 8(c)),
the pressure appears relatively smooth except for the inflow region (see
Section 6.1.5). As the wave moves to the downstream boundary (Figure
8(d)), the wiggles form normal to the downstream boundary. As previously
mentioned, the wiggles then travel upstream to the back wall and inflow
regions and reduce in amplitude near the downstream boundary. Notice
the inflow pattern change (Figures 8(e) and 8(f)).

The fact that the wiggles occurred normal to the boundary is typi-
| cal. Morett132 points out that wiggles form in the direction along
which there is an inconsistency. Indeed, treatment of any boundary
involves modification of terms normal to it. Hence poor treatment there
can cause wiggles which are normal to the boundary. This also occurred

on the centerline.
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When this was discovered, two implicit schemes were tried.

The first used the simple first-order algebraic form

*14,3 7 %11-1,3 a2 l)

This form resulted in wiggles also.
The second implicit scheme specified the value at the x+ edge of

a downstream boundary cell by the linear extrapolation form
@), =35G8, . -0 ) (6-32)
x+  2°7%44,3 ii-1,j

This also requires that

5 3
(3%)x+ T Gﬁ%

= (6-33)

with equations (6-32) and (6-33), the finite difference conservation
equations can be applied for the dependent variables at (ii,j). A

derivative for a downstream cell becomes, for example

3054 4= ¢ ¥i Py
3wk oy yedpoostd taten gy Sitg Puel
Gl G e e - ) - (el )]

1

Bx Pas.3 ~ Ve y Ke=3a)

Note that equation (6-34) corresponds to upwind differencing, so that
the outflow column of points has upwind differencing. This form
resulted in a smooth density and pressure variation and eliminated the
wiggles. It should be noted that a higher order extrapolation could be
used instead of equations (6-31) and (6~32). This would result, however,

in the block coefficient matrix no longer being tridiagonal. While this
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is not too difficult a task to overcome by Gaugs elimination, the extra
programming effort was not done here since the linear form was satisfac-
tory.

6.1.4 Upper Boundary

The conditions at the upper boundary are not known beforehand
either. However, the boundary does lie outside the regions of major
viscous transport and is assumed to be nearly inviscid. Tpus a simple
wave condition, as described in Section 5.5, appeared to be a logical
choice. Allen and Cheng24 obtained stable and realistic results using
this scheme.

While the simple wave condition as applied is an explicit proce-
dure, it produced stable and realistic results here even for At = 32 At .
The tim; lagging appeared not to hinder convergence. Here, the explicit
boundary condition is desirable since it is easier to apply in a computer
program than an implicit form.

One other scheme was tried for the upper boundary in an invéstiga-
tion of the spurious compressions in the inflow region. This alternate
form was similar to the implicit extrapolation scheme which worked so

well for the downstream boundary (see Section 6.1.3). In this case the

values at the y+ edge were specified as

1 -

This results in a derivative for the upper boundary point as

3¢ » - ”
Gy'1,33 " % 7t G
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This form did not work well. The pressure, internal energy, and density
of the upper boundary became very small near the downstream end and the
vertical velocity component became absurdly large positive. The probable
cause can be seen from the form of equation (6-36). When ¢ is positive
this expression is the first-order upwind difference. For ¢ negative,
equation (6~36) is the downwind difference form, which has been shown to
be unstable (see for example, Roache, p. 69). Near the inflow region all
the dependent variables are positive. But the corner expansion causes
the vertical velocity component, v, to become negative on the rest of the
upper boundary. This means that equation (6-35) is stable for the short
distance that v is positive and unstable for the remainder of the upper
boundary. It also did not eliminate the inflow compressions.

Since the explicit simple wave procedure appeared not to cause any
problem, even for large At, it was retained as the method for computing
the row of points along the upper boundary.

6.1.5 Inflow Boundary

Initially, as discussed in Section 5.6, the inflow boundary was
specified and held fixed. The conditions were derived by first assuming
a u-profile and solving for internal energy by the Busemann energy
integral of the compressible boundary-layer equations and density by the
equation of state, assuming 3p/dy = 0. The normal velocity component was
then solved by combining the continuity and the momentum boundary-layer
equations and using the energy integral.

Two u-profiles were used, corresponding to those used by Allen

2

and Cheng. i The first was a linear u-profile up to the boundary layer

edge (which was one third the base half height). When Allen and Cheng
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used this profile they had v = 0 as required by the formula for v. The

second u-profile was the polynomial
1
u(n) =3 (Lén - 7n4 + 2n7) (6-37)

where n = y/8 and 6§ = .41. Here, v was not zero.

When the ‘linear u-profile was used with v = 0, a series of com-
pressions in the inflow region caused-a pressure rise of as much as 227
of the freestream value near the upper wall. By requiring the normal
pressure gradient on the upper wall to be zero by using equation (6-26),
this was reduced to a rise of 6%. The zero pressure gradient is unreal-
istic near the expansion corner, however, where v becomes 50% of u.

Allen34 also encountered pressure rises with v = 0. The next
modification, then, was an attempt to compute v at each time step. Two
schemes were tried. The first used the explicit, backward, linear

extrapolation scheme

v = 2v2 (6-38)

1,3 »J 3,3

This form caused diverging oscillations in v which fed into the other

variables. The second scheme used the implicit form

v = v (6-39)

1,] 2,3

This resulted in stable computat. ons and reduced the pressure increase
in the compressions to 2% of freestream. The zero pressure gradient
was still applied and v continued to increase outside of the boundary

layer along the inflow boundary. Because these results were non-physical,
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and because the linear u-profile has an abrupt change in slope at the
boundary layer edge, it was decided to use equation (6-37), which has
continuous first and second derivatives at the boundary-layer edge.
Then v was computed by the quadrature of equation (5-51) and

held fixed. For the inflow cells outside the boundary layer, v was
equal to the value computed by equation (5-51) for n = 1. When this
was applied and the normal pressure gradient condition removed, the
compressions were still there and resulted in a maximum pressure rise

of about 3%. Allen34

pointed out that too few grid points in the bound-
ary layer could result in an inaccurate representation of the large gra-
dients in density and internmal emergy (and hence pressure) near the
boundary~layer edge. If this were true, then a finer mesh would reduce
the magnitude of the compressions. This was tried (see Section 6.2) and
indeed the compressions disappeared. A single wave originating from the
top of the boundary layer does exist in the fine mesh solution, but it
does not have the same character as the other irregularities. It
appears to be an expansion wave, since the pressure drops immediately
downstream of it. As discussed ‘ection 6.2, this wave may be a

result of the use of 3P/3y = 0 along the inflow bouadary, when, in fact,

the corner expansion is being felt this far upstream of the corner.

6.2 Computational Results

In this section the results of the computational method are given
and compared to those obtained by Allen and Chengza and Allen.34 The
computations were made for a laminar, supersonic two-dimensional flow

past a corner (see Figure 2) at Ml = 3 and Re = 550 with a boundary-layer

e B
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height of 41% of the base half height. The inflow profiles were those
given by Allen and Cheng and the initial conditions were those described
in Section 5.7. The mesh size was Ax = 1/6 and Ay = 1/12. This was
coarser than the Allen and Cheng mesh (Ax = 1/9.75 and Ay = 1/19.5) and
was chosen to increase computational speed since fewer grid points were
needed to retain reasonable accuracy. The check of the coarse mesh
accuracy was done by using a finer mesh for comparison (see Section 6.3).
The ratio Ax/Ay = 2 was maintained. The time step size used in this test
was four times the maximum time step for stability in explicit methods,
known as the Courant-Freidrichs-Lewy (CFL) time step. Stable and conver-
gent solutions were obtained, demonstrating potentia}ly large savings in
computer time. This is discussed in more detail in Section 6.3.

Figures 9-20 give the results of the computations using the above
conditions. Figure 9 shows the velocity vectors, giving both magnitude
and direction. The arrowheads are all the same size so that direction
can still be seen for very small velocities. The main features of the
flow field can be seen, including the upper wall boundary layer along AB,
the expansion and turning at corner point C, the weak shock and turning
downstream, the retarded flow near the centerline DE, and the recirculat~
ing region near the back wall CD. A rear stagnation point on the center-
line and the separation point below the corner are also evident. That
the flow separates below the corner has been shown in experiments by
Hama35 and by Donaldson.36 By linear interpolation to find where v = 0
in the column of points nearest the wall, the flow appears to separate
20-25% of the base half height, H, below the corner. The separation

point obtained by Allen and Cheng was roughly 20% of H below the corner.
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The rear stagnation point here was 2% closer to the wall than the one
computed by Allen and Cheng.

Some of these features are more clearly shown in the streamline
plot of Figure 10. Expansion and compression are shown by the spreading
and converging of the streamlines. Flow direction is indicated by
streamline slope (this also illustrates the inflow through AF). The
recirculation region is characterized by the closed loops near the
back wall and the dividing streamline (denoted by the "+'" symbols) is
shown extending from the back wall to the centerline.

The value of the stream function was computed at each point in
the flow field by summing the mass flows vertically starting from the

zero streamline BCDE. For example,

+ (ay/2)[(pu) 1 (6-40)

¥eg =% + (pu)

1j 1j-1

Maximum and minimum § were found to determine the range. The range was
then divided into a number of incremental values. Between the minimum
value of y and y = 0, two equally spaced values were determined. Between
¥ = 0 and the maximum value of y, the increments were evenly spaced along
the inflow boundary. With the array of incremental values, the plotting
routine searched row by row and column by column to find where these
incremental values occurred between grid points. Linear interpolation
was used here to determine the variation between grid points. The loca-
tion of the separation point given by the dividing streamline is not
accurate for two reasons. The first is that the back wall region has
been shown to be sensitive to the boundary condition treatment, thus the

variables themselves are suspect. Summing over several cells adds all
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the errors. Thus determination of the separation point by interpola-
tion between velocity vectors is thought to be more accurate. Second,
the location of the dividing streamline is not given at the wall but
half a cell away. Since the wall is also a ¢ = 0 line, the angle of
approach is not known exactly.

The contour plots (Figures 11 through 13) were made in a similar way

as the streamline plot, except that there were equal increments between
maximum and minimum values. The maximum, minimum, and incremental
values of the variable are pointed out above each plot with the corre-
sponding symbols.

Figure 11 clearly shows the effect of the expansion and compression
on the pressure. As expected, the pressure drops rapidly as the flow
expands around the corner. Note that the expansion begins upstream of
the corner. The single wiggle in the "Y" line upstream of the corner
and the wiggles in the " © " line at the downstream boundary appear to

be caused by the coarseness of the mesh. In the fine mesh solution,

these two wiggles are nearly gone. A growing region of dp/dy = 0 near g
the centerline indicates the region where use of the boundary-layer equa-
tions would be a valid representation of the viscous wake. The pressure
distribution across ;he base was relatively constant except for a sharp
50% drop near the separation point. Hama35 made measurements of the

base pressure variation for Ml = 4,54 and 22 x 105 < Re < 2.03 x 106
while studying the lip shock. His results show the same behavior. He
found that the 1lip shock strength increases with Mach number and

Reynolds number, but decreases with boundary layer height. This proba-
bly explains why no lip shock was observed in these calculations. The

Reynolds number was only 550, the boundary-layer relatively thick, and
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the Mach number not particularly high.

The density contours in Figure 12 and the corresponding internal
energies in Figure 13 also show the effect of expansion and compression.
Near the adiabatic wall the temperature (e/cv) is higher than the free-
stream and the density shows a steep gradient in the upper part of the
boundary layer. The linear nature of the contour lines for pressure
(Figure 11), density, and internal energy near the upper boundary show
the validity of the simple wave condition. The maximum density was
within 1.5% of Allen and Cheng, the minimum within 17.0%. The maximum
internal energy was within 1.0% and the minimum 1.47%.

Figure 14 compares the results for the pressure along the center-
line with the results of Allen and Cheng. The agreement is very close.
The Allen and Cheng line was taken directly from their ;esults. The
present results line is not actually on the centerline but Ay/2 above
it. That this should be an accurate representation of the pressure on
the centerline can be argued by the fact that dp/dy = 0 on the center-
line. Hence the error is of the order of (Ay)2 by Taylor series expan-
sion. Also, the pressure contours show that there is little variation
between the pressure on the centerline and at points nearby.

Further close agreement with the pressure computations of Allen
is shown in pressure profiles in Figure 15. Here, the vertical pressure
variations at several x/H locations are plotted. Once again 3p/dy
approximately zero near the centerline is indicated. The pressure drop
due to expansion is shown by the decrease in pressure fram the upper
part of the plot down to about y/H = 1.0. Then the pressure rises, more

sharply as X/H increases, due to the flow turning and the formation of
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Internal Energy Contours.
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of the shock.

This behavior can be seen more clearly in the three-dimensional
pressure plot of Figure 16. This shows the pressure in the entire flow
field as a surface. The height in the three-dimensional plot is the
pressure. The "floor" of the box around the contour is the plane
defined by ABCDEF of the two dimensional flow field (see Figure 3).

The values inside the wall are arbitrary, of course, since they are never
used and have been set equal to zero. The inflow region is at the upper
left and the outflow at the lower right (EF). The centerline DE is

also shown. The points A and C are hidden. The plot is easy to gener-
ate, being a simple FORTRAN CALL in the CALCOMP plotting p;ckage.

The expansion around the corner is very clear as the contour
shows a steep drop from the inflow value. The downstream development
of the recompression shock as shown as the growing difference in height
between the pressure near the center of the field and the region above
the centerline. The extent of this difference can be seen on the verti-
cal plane through EF.

As demonstrated in Figure 8, this type of plot can be extremely
useful in visualization, not only of flow features, but of the propa-
gation of disturbances. In Figure 16 there are a series of pressure
fluctuations near the inflow and at the "crest" of the recompression
wave. Those at the inflow are present from the beginning of the compu-
tation (see Figure 8), while those in the shock appear only after the
shock has settled to its final position. Both appear to be caused by
the coarseness of the mesh, however, since these irregularities are

absent in the fine mesh solution.




P

Figure 16.

Pressure Surface - Coarse Mesh.

72




73

The centerline Mach number distribution is given in Figure 17.
The extent of the recirculation region and the downstream acceleration
are indicated. Slightly further downstream of the computation region
the centerline Mach number will exceed one. The flow is already super-
sonic a short distance above the centerline. No singularities asso-
ciated with the Mach one (sonic) condition, such as the Crocco-Lees
singularity, were encountered.

The values computed here were somewhat higher than Allen's. At
x/H = 4,75 the difference was about 6%. The reason for the higher Mac.
numbers on the centerline were due to the lower:speeds of sound, since
the temperature was lower. These lower temperatures are indicated by
the lower internal energies as indicated in Figure 18. The present
results for the internal energy on the centerline were typically 12-157%
lower than those computed by Allen. The reason for the difference is not
known, although it is presumed to be a result of the difference in the
way the centerline was treated as a boundary. Allen uses the "reflec-
tion principle" rather than one-sided differemnce forms. He passes the
centerline through the center of a cell rather than its y- edge. The
centerline conditions are then enforced in a row of cells below those on
the centerline by setting the dependent variables there equal to the
values in the row 6f cells above the centerline cells. - As previously
stated, the centerline conditions were enforced in the present method by
using appropriate one-sided forms at the cell edges adjacent to the cen-
terline.

Away from the centerline, the internal energy comparison with
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Allen improves. This is seen in the internal energy profiles of
Figure 19. Thus the variation in the centerline values appears to

have been caused by the difference in boundary condition treatment.

6.3 Computational Experiments

This section discusses the numerical considerations and the
results of some experiments concerning grid size, time step size, and
initial conditions.

All computations were done on the CDC 6600 of the Georgia Tech
Cyber-74 computer system. The storage capacity of this machine permits
over 5000 computational grid points, though that many were never used.
The solution of the four conservation equations using 1056 grid point in
the flow field (coarse mesh) required 10 CfU minutes to 1 CPU hour, depend-
ing on the convergence criteria (see Section 6.3-2), the size of the
time step (Section 6.3-3), and on the initial conditions (Section 6.3-4).

The basic grid configuration used 48 points in the x-direction and
24 points in the y-direction. The length of the upper wall was 4/3 the
back wall height. This was 237 longer than used by Allen and Cheng. The
downstream boundary was also further from the back wall than in Allen
and Cheng, being 6 2/3 step heights away compared with 5.13. For the
finer mesh experiments, the number of grid points in each direction was
doubled with all distances remaining the same. Thus the coarse mesh
solutions used 1056 grid points in the flow field, and the fine mesh had
4224,

6.3-1 Fine Mesh Comparisons

To test the accuracy of the coarse mesh it is desirable to make
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the same computations with a much finer grid. Since the finite-differ-
ence equations are consistent with the differential equations (see
Chapter III), greater accuracy should be expected as Ax and Ay get
smaller. In addition, the scale of variation of some quantities is not
large compared with the size of the coarse mesh. A smaller mesh would
thus increase resolution.

The mesh was made finer by dividing each coarse mesh cell into
four equal cells (see Figure 20). Thus no fine mesh point coincides with
a coarse mesh point, and to compare the two solutions, values at the
four fine mesh points located in a coarse mesh cell were averaged. The
basic results of the fine mesh computations are given in Appendix D.

fwo comparisons between fine and coarse grid computations were

made. The first uses the form

¢coarse ¥ ¢fine (6-41)

¢fine

This form is useful for ¢ near or greater than 1 and represents a per-
centage change. For ¢ small (i.e., near zero), equation (6-41) can
give a large number, even for a small change in ¢. In this case a more

appropriate comparison may be the simple form

I¢fine = q’c:oarsel WBeae

Tables 1 and 2 show the results of using both equation (6-41) and
(6-42). For equation (6~41),¢ is also given. Table 1 gives the maximum
difference in the flow field between the coarse and fine meshes. Most

of these maximum differences occur near the back wall.
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Table 1. Coarse-fine !fesh Cc=parisons - Flow Field Maximums
|A¢/¢flmax- % i ¢f IAMma.x i ]
.227 9 10 .050 .048 47 12
26.713 9 6 -.J002 .098 9 12
8.733 9 9 .0032 .045 9 13
.070 9 13 1.898 133 9 13
.231 9 10 .117 .086 8 16
ehe c"fine i <>c:oarsxe = ¢f =i
Y(B, 16)
i 9,13)
T —(9,12)
:_R-G,lo) (47,12)
FET~—(9,9)
[~—(9,6)
D
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Table 2. Coarse-fine Mesh Comparisons - Selected Points
Point ¢ |26/5 | o [as]
(9,13) p .027 .167 .004
near C u .112 540 .060
v .193 -.231 .045
e .070 1.898 .133
P .095 .318 .030
9,1 P .029 .084 .002
near D u .323 ~-.007 .002
v .201 .004 .001
e .003 2.385 .007
P .032 .199 .006
(48,1) o .044 316 - .014
near. E u .018 .492 .009
v .038 ~.00% .0001
e .008 . 2.140 .018
P .053 .676 .036
(37,17) p .021 374 .008
u .003 1.062 .003
v .038 ~.236 .009
e .007 .678 .005
P .028 .254" .007
8% = 9¢4ne = Pconrse ™ 7 " %c
(37,17)
B -
C (9,13)

o (9’ 1) (48:1)_\L
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Table 2 gives the result for some selected points in the flow
field. Included are the cells nearest to corner point C, corner point
D, corner point E, and a point about 4.8 step heights downstream and in
the recompression. Again, the largest differences are near the back
wall. This serves to point out the sensitivity of this region.

One important result of the fine mesh study was to show that the
coarse mesh was responsible for the irregularities near the inflow and
those in the shock near the downstream boundary. Apparently, the finer
mesh allowed greater resolution. Figure 21 is a three-dimensional plot
of the pressure using the fine mesh.

A single wave remains at the inflow, but its character is differ-
ent from those in the coarse mesh. This wave has an angle of about 21°,
relatively close to the inflow Mach angle (19.5°) and appears to be
related to the choice of inflow boundary conditions. As mentioned pre-
viously, 3p/dy was assumed to be zero along the inflow, but it can be
seen that the expansion corner is being felt even this far upstream
(4/3 H) to reduce the pressure near the wall. The wave, originating at
the top of the boundary layer, may be a flow adjustment because of the
inconsistency. The wave may also be caused by the change from the
boundary layer u-profile to the freestream u = const. ptofiie.

6.3.2 Convergence Criteria

As the rate of change with time of the dependent variables in
the flow field decreases, the solution is said to be converging. When
this rate is zero, the steady state has been reached. It is usually

not necessary or practical to continue the calculation until the rate

-



=g

Figure 21. Pressure Surface - Fine Mesh.
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is zero, however. Allen, for example, uses a convergence criteria of
ntl n
Tt & DU (6-43)
where 2 x 10-6 < g < 2x10-5.
In the present work, the form normally used was
le™! - o%|max _ 3
pn 1 (6-44)

with pn known, the range of (pnel) can be compared directly with the range

of Allen's €:

2 x10°° < o, < 5.3x10™° (6-45)

As in Allen and Cheng,25 a check on density was normally sufficient to
determine convergence. Equation (6-44) was applied also to u, v and e
as an additiomal check.

The rate of convergence varied over the whole flow field. The
most rapid convergence was in the supersonic regions, especially upstream
of the corner. The slowest rate of convergence was in the region near
the back wall. It may be possible, therefore, to shorten the calculation
for cases where the near wall region is not a region of primary interest.

6.3.3 Time Step Studies

As mentioned before, the chief advantage in using an implicit
procedure is the ability t¢ use larger time steps than allowable in
explicit methods, and hence reduce computation time. Here, the CFL

stability condition in two dimensions is
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1 1.1 1.1/2.-1
< [= + —(C=+—") ]
CFL Ax m, sz Ayz

At (6-46)

In the present work, a time step size of At = 4AtCFL was used while
developing the method. This was chosen because it is large enough to

be appreciably larger than At but small enough to avoid possible

CFL

problems with the initial conditions. Results for At = 4 At were given

CFL
in Section 6.2.

To examine the ability of the procedure to use larger time steps,
At = 8, 16, 32 and 40 AtCFL were also attempted. A time step limitation
was expected because the finite-difference equations are linearized with
respect to time about the known time level. This allows a simpler and
more rapid solution of the finite-difference equations than if they were
left nonlinear. Still, the allowable At is much larger than AtCFL’
which more than compensates for the larger computation time per time step
relative to explicit methods.

For At = 40 At the solution did not converge, but diverged in

CFL
less than 10 time steps. Whether this would happen with different ini-
tial conditions has not been determined. The rest of the discussion con-
cerns the convergent solutions for At = 4, 8, 16, 32 AtCFL' The differ-
ence in the solutions at convergence for each of these time steps was
very slight. The difference in p between the two solutions for At-AAtCFL
and At = 16 AtCFL’ for example was typically around 1%.

For At = 4, 8, 16 AtCFL’ the solution at equal elapsed times

appeared quite similar, that is, the solution in time appeared to be rel-

atively insensitive to the size of At. Table 3 presents the solution at




Table 3.

Solutions at Equal Elapsed Times for
Different Time Steps

86

Ac/AtCFL (T = 15.279) AC/AECFL,(T- 76.393)
Pt é 4 8 16 4 8 16
C p .19 .19 .21 .17 .17 .16
u .50 .51 .49 .56 .58 .58
v -.189 -.191 -.180 -.255 -.260 -.267
e 1.98 1.97 1.89 1.85 1.83 1.81
P .38 .38 .40 31 .31 .30
D o .37 .35 .33 .12 .15 .13
u ~.01 -.01 -.01 -.01 -.01 -.01
v .004 .004 .005 .005 .005 .005
e 1.08 1.14 1.24 2.07 2.05 2.02
P .40 .40 41 .25 .26 27
E p .96 .97 .94 - 32 .32 .32
u .24 .24 .24 .35 .34 32
v ~.001 -.002 -.001 -.003 -.003 -.003
e 1.00 1.00 1.00 2.20 2.21 z2.21
P .97 .97 .94 .70 =71 N ;)
37,17 o .74 .79 .79 .39 .40 .40
u 1.02 1.01 1.01 1.06 1.06 1.06
v -.041 -.046 -.037 -.232 -.232 -.233
e .91 .94 .95 .69 .70 .70
P .68 .75 .76 .27 .28 .28
T/At 40 20 10 200 100 50
— B BRI CAR DT N A
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selected points in the flow field for elapsed times of T = 15.279 and

T = 76.393 (where T = H/Ul) for At = 4, 8, and 16 Atop - It appears,
then, that up to 16 AtCFL’ for these initial conditions, doubling the
time step allows the same point in time to be reached about twice as
fast and thus doubles the rate of convergence. This can be seen in
Figure 22 which gives the maximum time rate of change of density of the
flow field versus the number of time steps. Since computation time is
directly related to the number of time steps taken, this is shown as the
lower abcissa. This figure clearly shows the substantial computation
time savings from the ability to use larger time steps. The "humps' on
each curve are caused by a shift in location of the maximum change in
Ap/p from a point near the outflow boundary to a ﬁoint near the back
wall.

The rate of convergence for At = 32 At is also given. Initial

CFL
oscillations which damped out prevented the run at this time-step size

from following the same temporal path as the other time-step sizes. This
is reflected in Figure 22 as the convergence was not smooth. When the
computation did smooth out, the solution still converged faster than

16 Atop s though not twice as fast.

The curve for At = 8AtcFL shows a sudden drop at t/At = 150. As
indicated, this corresponded to continuing the computation with At= 32AtCFU
This demonstrates that convergence can be speeded even after computation
has begun by increasing the time step size. While no attempt was made

to develop a scheme for relating time step size to rate of convergence,

such procedures can be very useful to obtain very fast convergence.
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The maximum time step also seems to be related to the grid size.

For the fine mesh case, use of At = 32 At resulted in diverging oscil-

CFL
lations related to the recompression (see Figure 23). However, the fine
mesh solution was stopped at t/At = 85 and At was changed to 16 AthL’
The oscillations decreased and the solution was stopped at t/At = 300.
Figure 17 is the 3-D pressure plot. Convergence was greatly slowed by
the presence of the initial oscillations. No other time step studies
were accomplished with the fine mesh because of increased run time asso-~
ciated with the increased number of grid points.

As mentioned before, the computation time depends on the size of
the time step and this was shown dramatically in Figure 22. The number
of time steps required for the same degree of convergence was reduced

nearly sixfold as At was increased from four to 32 At In comparing

CFL®
the computation time with Allen's method, it was helpful that he had also
made some calculations on a CDC-6600 machine. He required about 1.5
msec per time step per grid point and typically required between 1000 and
2000 time steps for convergence. The present procedure required 7.7

msec per time step per grid point. Since the present method was able

to use a time step 30 times larger, this represents a sixfold decrease

in overall computation time for these conditions.

6.3.4 Initial Conditions

To insure that the given initial conditions were not unique for a
given set of boundary conditions, and to examine the effect of initial
conditions on the ability to take large time steps, it is desirable tc
examine several different initial conditions. Computer time and cost,

however, placed restrictions on the number of choices.




Base

xg

Figure 23. Pressure Surface -~ Fine Mesh with
At = 32 At:cFL after -85 time Steps.
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Since the region near the back wall (below the corner) seemed to
be the most sensitive to other changes, a wide range of initial hori-
zontal velocity components (0 < u < 1.0) below the corner was examined.
The time step for this study was held fixed at At = 16 AtCFL'

For u = 0, the computation diverged. For 0.1 < u < 1.0, the compu-
tations converged. As in the case of different time step sizes, the
final solutions for the different initial conditions were nearly iden-
tical. The rates of convergence, however, were much different. Figure
24 shows that for u = 1.0, the rate of convergence was several times
faster than when u = 0.1. Note also that the convergence paths are not
similar. The curve for u = 0.3, for example, has a rise at t/At = 30
corresponding to a shift of the maximum Ap/p in the flow field from the
downstream boundary to the back wall region. The shift of maximum Ap/p
to the back wall for u = 1.0 occurred at t/At = 62 but was not attended
by a rise in the curve. The recirculation region appeared to already be
near its final solution in this case.

6.3.5 Net Mass Flux

The net mass flux through the flow field was computed at each time
step. In the steady state, the net mass flux shoculd be zero. The compu-
tation was accomplished by summing -pudy across the inflow boundary cells
along AB, pvAx across the upper boundary cells along AF, and puldy across
the downstream boundary cells along EF. For coarse mesh solutions, the
net inflow differed from the net outflow by 1.6 to 1.8%. For the fine

mesh computations the difference was 12.
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CHAPTER VII
CONCLUSIONS

1. The results in Section 6.2 show that the method successfully
computed all the main features of the flow, including the corner expan-
sion, the recompression shock, the recirculation region, the viscous
wake near the centerline, and the simple wave nature of the flow near
the upper boundary.

2. Great care must be taken in the formulation of the boundary
conditions to achieve physically realistic results, convergence, and to
avoid wiggles in the steady-state solution. First-order forms for pres-
sure and 3v/3y on the centerline, for example, gave a converged solution
but had y-direction wiggles in the steady state. Second-order, one-
sided forms removed the wiggles. For the outflow boundary, all explicit

extrapolation schemes caused divergence for At > At Zero-gradient

CFL®
forms, both explicit and implicit, gave x-direction wiggles for the
converged, steady state solution. A new implicit, linear extrapolation
scheme which uses the finite difference equations was developed for the
downstream boundary and gave a smooth, converged solution.

3. No artificial viscosity was required for stability and con-
vergence. Briley and McDonald, however, required additional explicit
artificial viscosity in their subsonic duct flow solutions. The reasons

for this difference are not known. It may be speculated, however, that

the difference arises from the present use of the conservative form of
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the conservation equations (Briley and McDonald use the nonconservation

form of the energy equation), the cell integration technique for gener-

e

ating finite-difference equations, and the corresponding careful treat-

ment of the boundary conditionms.

4. Three-dimensional contour plots were an important diagnostic
tool. It was not discovered‘that the x-direction wiggles were cauged
by the treatment of the downstream boundary until the 3-D plots were
made. The plots clearly revealed that as the recompression wave crossed
the downstream boundary, the wiggles formed and propagated upstream to
the back wall and inflow regions. Up to then, the wiggles were thought
to have been caused by ill-treatment of the back wall boundary conditions
or by the cell Reynolds numbers greater than two. The use of upwind
differencing, artificial viscosity, or a much smaller Ax were avoided
as they were considered to be undesirable remedies.

5. The results for the contour plots showed qualitative agreement
with Allen and Cheng and with Kronzon, et al., and close quantitative
agreement where comparisons were possible. The centerline pressure plot
showed very close quantitative agreement with Allen and Cheng. As a
further check on accuracy, overall mass balances were computed at each
time step. For the coarse mesh solutions, the net mass inflow rate

. differed from the net mass outflow rate by 1.6 to 1.8%Z. For the fine
mesh solutions the difference was about 1.0%.
6. For one set of initial conditions a time step limitation was

established at about 32 At The limitation was expected because the

CFL®
equations are linearized with time, even though the method is implicit.
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Compared with Allen's procedure, this method had a computation time per
time step per gria point approximately five times longer, but could take
five steps over 30 times larger. This represents a six~fold decrease
in computation time. In addition, the ability to change (increase) the
size of the time step during computation to reduce the computation time
was demonstrated. Thus a time step strategy might be successful wherein
smaller At's were used at the beginning, followed by increasing At as
the steady state is approached. This would be appropriate, for example,
when the assumed initial conditions were very far from the steady state
solution. Hence, the method appears to offer significant time savings.
7. The steady state solution was quite insensitive to the choice
of initial conditions, but the time to convergence appeared to be highly
dependent on them. A range of initial horizontal velocities were applied
in the region below the expansion cormer, while the boundary layer on
the upper wall ahead of the corner and the freestream conditions for the
rest of the flow were the same for these tests. It was shown that an

initial u = 0 below the corner led to divergence for At = 16 At As

CFL"
u was increased from 10% to 100% of the freestream value, increasingly
faster times to convergence were realized. In addition, convergence was
shown for a significant range of initial backwall u.

8. Accuracy of the coarse mesh results was shown by comparisons
with the fine mesh solution. Both solutions were in close agreement.
Small, irregular disturbances in the inflow region and in the shock near

the outflow boundary occurred in the coarse mesh solutions. Thaese are

attributable to the lack of the resolution in the coarse mesh in the inflow
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boundary layer and in the shock at the outflow, as they disappeared in
the fine mesh solutionm.

9. These numerical results served to demonstrate that this pro-~
cedure produced stable, convergent, and accurate solutionsg, without the
use of artificial viscosity, when applied to this complex problem. To
the author's knowledge, no other implicit scheme has been successfully
applied to the multidimensional, non-linear Navier-Stokes equations for

the supersonic base flow problem.
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APPENDIX A
THE LINEARIZED CONSERVATION EQUATIONS
Conservation of Mass
Also given as equation (3-1)
ol n
p =p _9 (otln, antl nn, 3  nntl n+ln_ nn
=l s e =l 0 40 pul ay["" +p v =pv'] (A1) i
Conservation of x-Momentum
Application of the linearization to equation (2-12) gives:
ntl n, n n+l nn 2 2
A +pu "~-20u ) - - Q_[Dn+1un +2pnunun+1_29nun 41 (pmlen
At 9x 2
e
nntl nn 1
+pe "=-pe )_Re sn+1] " B_[On-l-lunvn+pnutr+1vn+pnunvm-l
xx dy
nn n+l
-2puv - = sxy ] (A-2)

s adu, v
xy 9dy 3x

Conservation of y-Momentum

Application of the linearization to equation (2-13) gives:
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n+1vn4_ nvn+l_ 2 nvn ) ntlnn, nn+ln n n o+l nnn
& pAt 2 )--a—[o uv +pu v +puv =-20uv
X
__l_sn+1]_a_[n-l-lvn2+2nnn'+1_2nn2+a ( n+l n, n n+l
. Re xy oy P e g YMi P = il
nn 1l .o+l
=) a8 (A-3)
s -.l.‘.a_v_gau
yy 303y 3 3&x
Conservation of Energy
Equation (2-14) becomes:
2
ZIT{ n+1e_n+p en-!-l_zpnen_‘_pn-l-l%(un P )+ nK[un+1n n+1vn
- % (024'V2)]} = - %; {Y(Dn+lunen4-onun+ien4-pnunen+l-anunen)
2 2 2 2
+_12$ [pn+1un(un +0 ) + 3p nun+1 n +pnun+1vn +2°nunvnvn+1
_3nn(n2+ nz)] Y _a_n+1} 3_{(n+1nn+ nvn+1n
pu (u v PrRe 3% © - 3y y(p ve +p e
n n ntl nnn K, ntl n n2 n2 n n+l nz n n n n+l
+pve 29ve)+§[p v(u +v )+pu v +2pvuu
. n n2 n+l nn nz n2 Yo 8. n+1 n n
+3pv v -3 v(u +v )] - RePT ay } + K[ i
n ) n n
+vrT +— (ut vT A-4
) + 55 (i + vl )] (a-4)

Tooy To.s 80d Tyy are given in Chapter I1I.




APPENDIX B

FINITE DIFFERENCE FORMS OF THE CONSERVATION EQUATIONS

Conservation of Mass

Also given as equation (3-6)

3p/3t = - §x(pu) - 8y(pv)

Conservation of x-Momentum

2 1
dpu/at = - Sx[pu” + (Y )pe - Txx] - Sy[puv - Txy]

Conservation of y-Momentum

2 1
a at M 6 - - 6 -+ t— -
v/ x[puv T ] ylov (Y Jpe - t__]
1

Congervation of Energy

2 loe + 5 (P +vD)] = - xlpulye + ¥ @i4vD)] + D) o

- G (wr g + vt )} - bylovive + 5 (49D + G

yy
- )+ ))
Re’ UTxy ¥ Viyy

T ’ qx, and qy are given in Chapter I1I.

xx’ Txy* Tyy

(B-1)

(B-2)

(B-3)

(B-4)
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APPENDIX C

ALTERNATING DIRECTION IMPLICIT FORMS OF

THE CONSERVATION EQUATIONS

Conservation of Mass

*
— * *
(Q—A?l) = - sx[p u+pu -pu] - sylpv]

*
p =P
(

At

* * *k *k
) = -~ &x[p u+pu -pu] - Sylp v+ v -opov]

Subtracting (C-1) from (C-2) a simplified system is:

%* é
Lo =0) o _gxp*ut u*- pu] - Sylov]

k% %*
(-L—;;L) = -Gy[o**v + pv** - 2pv]

100

(c-1)

(c-2)

(C-3)

(Cc-4)

Here a quantity with no superscript is considered as being an n-level

quantity. All the remaining equations are written in the simplified

form.

Conservation of x-Momentum

% *
- * *
(ﬂ‘.’%‘: Zpu) = -&[p u2+2mu - Zpuz
y

1 ,4 * 2
~q G &u -3y v)] - éylouv-Txy]

£ ] k% * *

*
- - ko k% *k *k
LA PU= Yy w- 6ylp uv+pu v+puv -3puv--;': §y(u =-u)]

At

————— - ——— -

%* *
+ (—l—)(pe+ pe - pe)

(C-5)

(C-6)
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Conservation of y-Momentum

* *
@ v+pv - 2oV

P T A P
= ) = - 8x[p uv + pu v + puv - puv--ﬁ—é-(ﬁyu x v )]

- sylov? + (E5)pe - Tl (c-7)
YM]_

by s e *% 2 w21 kk
¢ = ) == 8ylp vi+2vww =3pv +(—5)(p e
Y
1

*% *%
+pe™ - 20e) - = by(v' - W] (c-8)

Conservation of Energy

* * * * *
ﬁ {p e+ pe - 2pe+p %(u2+v2)+pK[u u+v v - -32- (u2+v2)]}=

* * * * * *
-8x{y(p ue+pu e+pue - 2pue) +§ [p u(u2+v2) + 3pu2u + pu v2

*
+ 2puvw - 3pu(u‘+v2)] S - Gxe*} - 6y{pv[ye+5(u2+v2)]
PrRe 2 B

) + %};(u-rx + vt )1} (C-9)

. 8 3
5rRe 8y e} + K[ ax(mxx + vt y vy

Xy
L i = p*)[e+§(u2 T e L R
+ D(e**- e")} = - 8yl (o**- r:)\rlve""éls (“2+V2)1 + a(v**-V)[Ye

+ %(u2+v2)] + pl((u**- u)uv - FrJR_e Gy(e“ - e)} (C-10)

T__and t__ are given in Chapter II.
xy vy
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APPENDIX D
COEFFICIENT MATRICES
The coefficient matrices for the x-sweep equations are:
- B
| Zax 28% @ 0
;];_(un2+en ) "Dnvn o 4 0 "Dn
= _|2= e Ax  3pesx’ 2vy2 Ax
: n n n n n n
“uv - Vv & . 1 0
2Ax 2Ax 24x Re Ax2
n, n,K,6 2 n,..n.K,. 2 S
-u (ye +§(u +v2)) -p (ye +§(3u +v2)) :Epnunvn _anun- =
2Ax 2Ax 25x 28x PrRe sz
1
At 0 0 0
n n
u B 8
= + 0 0
i At 3ReAx2
n = n n
e L 0 8. 42 0
t At Resz
n, K 2 2
e +2(u +v) Ko™ nn p_ri 5 2
e B g 3 |
ij
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i el 0 0
240x 2Ax
2 o nn n
1 (un + 8 pu_ 8 0 p
2= Yﬁi Gx 3ReA:<2 ZYMiAx
=0
e " nn nn nn
u v [ S T | 0
24x 248x 24Ax Re sz
un(Yen-iE(uzwz)) n( en-!-l-<-(3un2+ nz) nnn n
2 g Ny 2 g Kouv Yo u _ Y
24x 2Ax 2Ax 2Ax PrRe Ax2
i+l, ]
The coefficient matrices for the y-sweep equations are:
_vn 0 "pn 0
24y 27y
nn nn nn
-u v =pw 1 -5 u 0
2Ay 24y Re Ayz 28y
2
" ol 4 _pnvn £ 4 _pn
= 24y 2 Ay 2 ‘ 2
n
¥y 2Ay'7H1 3Redy 28y¥My
K
l-vn(yen+§(u2+v2)) oK R -pn(Yen+§(u2+3v2)) ~ypRy®
28y 2Ay 24y 24y
™ —I—f
PrReAy
i,j-1




had
B
u

al=

[ a
E 0 0 i 0
n n
u <) 2
= £+ 0 0
L & ReAyz
n n
s ¢ = 2 2 0
3Redy
n.K,2 2
+3(uHv
GO g B Ko'v" o ooy
A *
t At At a PtReAyZ
ij
v° Ln
A 0
20y 0 28y
nn nn nn
uv gaves il 0 u 0
2y 28y ReAyz 20y
n2 n nn n
M 0 P v __ 4 p
2A A 2
. 2AyyMi ¥ 3Redy 2A77M§
n n, K, 2 o, n.-K.2
v (ye +—2-(u +v2)) o%knUy? o (ye +2(u +3V2)) yoly2
27y 27y 2Av 24y
- Y
\ PrReAyZ

ij+1
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The right hand side column vector for the x-sweep equations is:

n
%c + 8x(p™u™) - Sy(ov™)

3%4' Gx[anunz +¥- gT GYVn] = 6y[pnunvn - -RL(:')' u® + &x vn)]
YMI e e

nn 2 nn
2%+ ox[20%N P+ syu®] ~sy[p™? +2 8- Ldsyv? -2 ™)

Re YMi Re '3° 3
| o,..0. 3.0 n2
‘ p (2e +—2- (e e ) nn n,6 3K n2 n2
: o + 8x[p u (2vye +T(u +v ))] -

. 2 2
-Gy[pnvn(yen+%(un +v2 ) —;;YE; Gyen] + K{Gx(utxx+vtxy)

+ 8y(u + vt )}
y( T yy)

The two right hand side matrices for the y-sweep equatioas are:

o ™

* K * %* %*
p (en+~5(u2+v2)) + p"R(u v v +o %
At

e — o D N Np— i, * T T R X TR AR AT N L L e et e s e oyt =

- e ——————————————t———————————sseeestestestell
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8y[3p o,

" Re

1 Gyun]

n n2 oM™
Sy[3p v + 2(——2—
1

4 n
)-3Resyv]

cSy[;'.~nvn(3yu.=.n + 2K(u®

2
+ v )) -—Lsy en]

PrRe
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APPENDIX E
FINE MESH RESULTS

The following figures are the results for the fine mesh compu-
tations. There were 4224 grid points in the flow field. The ratio of
Ax/Ay was 2.0 with Ax = 1/12. The inflow Mach number was 3.0 and the
Reynolds number was 550. The time step size used to reach convergence

was 16 AtCFL'

A s ‘_{‘FT .
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Velocity Vectors ~ Fine Mesh.

Figure E-1.
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