
F
“AD—A058 1406 COMMAND AND CONTROL TECHNICAL CENTER WASHINGTON D C FIG 15/7

THE CCTC QUICK—REACTING GENERAL WAR GAMING SYSTEM (QUICK). VOLU——ETC (U)
APR 78 0 J SANDERS, P F MAYKRANTZ , J M HERRON

UNCLASSIFIED CCTC—CS M—MM—9—7 7—VQ L—4—P T SBIE—AO— E100 085 NL

I
__

_ I.
p 1

r

~ /~O ~eP,f A

(J AI l J~OE1[TERSY$1tM M WAL

L,L
~
V C$M $M 9-77

1ALUL~~.
18 APRI I$71

~~~ [EVEk
~~ T ~~~~~~

COMMAND D D C

TECHNICAL 
_ _ _ _ _

CENTER _ _  u ~sLJ

F THE CCTC QUICK-REACTING
WAR GAMING SYSTEM (QUICK)

•

VOUJMEIV
SORTIE GENERATION SUBSYSTEM. PARt u

~~ r~~ •~~~:

••
.~ ~~~~~~~ 

-

L__

b~m1sE —•

fcOMMUNICA11ONS p~~p~~ M~~~twic~~AtiUAL
AGENCY

;: CUMENT WAS SUN

1 t D  I
___ 11.r ~r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I
I

COMMM~D AND CONThOL it ICA L CENTER

(i~~ 15 AprQ.

( A THE CCTC QUICK-REACTING $ENE RA L WAR GAMING SYSTEM (QUICK) . 
~~~~~~ 

.
~~~- ~:- ~~~~~

—

Volume , 
~Sortie$eneration Subsystem , /—

~ Part .~~~~~ ~

Program )(ain tenance )(anual. / (~~~ 1
j ô ) ~~~~~~~~~~~~~~~~ J2~eI ~_ 

~~~~~~~~~~~~~~~

“

I

~~~ ~ ,~/fr1a~kvaiiti D D C

UU i~~~wu~ U
SUBMITTED BY: ,~ ~~~~~~~~~~~~ 

APPROVED BY:

11 
~~~~~~~~~~~ ~~~~~

A
~~~ R1JR~%Project Off ice~ Captain, U. S. Navy

Deputy Director , NMCS ADP

Copies of thi, document may be obtained from the Defense Documentation
Center , Cameron Station , Alexandria , Virginia 22314.

Approved for public release ; distribution unlimited .

- .- ——---— - . - . ~~~~ -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

--

~

.- ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~



~ 
--- -.

~~

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - - —

~~
- —

~~
--.

I

ACKNOWLEDGMEN T

This document was prepared under the direction of the Chief for Mi l i ta ry
Studies and Analyses, CCTC , in response to a requirement of the Studies ,Anal ysis , and Gaming Agency, Organization of the Joint Chiefs of Staff.
Technical suppoç~ was provi~~tby System Sciences , Incorporated under
Contract Number Ii~AtOO.-~~,6—OOI9.

- —.i.. . ,- ~~~~~~~ _ 
• ~~ 0

ODC

ju rWIGNW~ ..

- -‘ 
. -

AVAfl~ ind/~

ii

_________________ __________ 
4.



~ ,. . 
—

CONTENTS

- Part l

Section Page

ACKN(WILEDGMENT ii

ABSTRACT viii

1. GENERAL i

2. FOOTPRNT MODULE 5

3. POSTALOC MODULE 111

Part II

4. PLANOUT MODULE 261

4.1 General Purpose 261
4.1.1 Sortie Completion 261
4.1.2 Sortie Change 261
4.1.3 External Interface 261
4.1.4 Modes of Execution 262

4.2 Input 262
4.2.1 RECALC Mode Input 262
4.2.2 NonRECALC Mode Input 262

4.3 Output 263
4.3.1 Sortie Completion Output 263
4.3.2 Sortie Change Output 263
4.3.3 External Interface Output 263

4.4 Concept of Operation 267
4.5 Identification of Subroutine Functions 267
4.5.1 Sortie Completion Punction 267
4.5.2 Sortie Change Function 267
4.5.3 External Interface Function 271

4.6 Common Blocks 271
4.7 Subroutine ENTMOD 294
4.7.1 Subroutine CLINDATA 308
4.7.2 Subroutine CONVLL 310
4.7.3 Subroutine GEOCET 312
4.7.4 Subroutine SNAPCON 319
4.7.5 Subroutine WEPDATA 324
4.7.6 Function XLL 332

4.8 Subroutine PLNTPLAN 335
4.8.1 Subrout~ue ALTPLAN 343
4.8.2 Subroutine ADJUST 377
4.8.3 Subroutine CHGTIM 393

iii

- - - - - .~~~~~~~-— - -~~~—~~~ -- - ~~ - •—  
.

-~ 



P ~~~~

--

~~~~
•..-— • - -- , - -

~
-—• - - • -

~~~~~~

—

~

— ——--•--.---

~~~~~~ ~~~~~~~~~

— -

~~~~~~~~~

. - .
~~~~~

-----.-

~~~

-

Section Page

4 .8 .4 Subroutine DECOYADD 396
4 .8.5 Subroutine DISTIME 406
4 .8.6 Subroutine FINDME 410
4 .8 .7  Subroutine FLTSORT 416
4.8.8 Subroutine FLYPOINT 424
4 .8.9 Subroutine INITA}IX 426
4.8.10 Subrout ine KERPLUNK 428
4.8.11 Subroutine LAUNCH 432
4 .8.12 Subroutine LNCHDATA 439
4.8.13 Subroutine PLAN 449
4.8.14 Subroutine PLANBOMB 487
4.8.15 Subroutine PLANTMIS 499
4.8.16 Subroutine POST 504

• 4.8.17 Subroutine POSTLAUN 506
4.8.18 Subroutine SNAPIT 508
4.8.19 Subroutine SNAPOUT 510
4.8.20 Subroutine SORBOMB 513
4.8.21 Subroutine SWTCUALT 516

4.9 Subroutine PLANTANK 518
4.9.1 Subroutine PRNTAB 525
4.9.2 Subroutine VAM 527

4.10 Subroutine INTR.FACE 539
4.10.1 Subroutine ABOUT 545
4.10.2 Subroutine FINDTIME 550
4.10.3 Function IAZIM 552
4.10.4 Subroutine IFSET 554
4.10.5 Function IFUNCT 559
4.10.6 Subroutine INFORM 561
4.10.7 Function NOP 564
4.10.8 Subroutine PRNTOFFS 566
4.10.9 Subroutine RDCLAUSE 568
4.10.10 Subroutine STOUT 574
4.10.11 Subroutine TYPFIND 578
4.10.12 Subroutine XSET 580

REItRENCES 5N9

A PPEND IXES

A. Sortie Generation Algorithms and Conoept 591

B. An Algorithm for th~ Traveling Salesman Problem 641

DISTRIBUTION 657

DD Form 1473 659

iv

• ~~~ - - ~~. •~~~~~~ • - - ,- ~~~~~~~~~ •~~~~~~~~~
_4._• ~~~ 

--



- -
~~~~

-•- --
~~
-— • . ,.-

~~~~~
-- - - - - - - - - — - -

ILLUSTRATIONS (PART II)

Number Page

59 STRIKE Tape Format 266
60 STRIKE Format (A and B Cards) 268
61 PLANOUT Module Macro Flow 270
62 Subroutine ENTMOD 295
63 Subroutine CLINDATA 309
64 Subroutine CONVLL 311
65 Subroutine GEOGET 313
66 Subroutine SNAPCON 321
67 Subroutine WEPDATA 325
68 Function XLL 333
69 Subroutine PLNTPLAN 336
70 Subroutine ALTPLAN 347
71 High—Altitude Adjustment 380
72 Low—Altitude Adjustment 380
73 Increase In Low—Altitude Flight 381
74 Subroutine ADJUST 384
75 Subroutine CHCTIM 394
76 Subroutine DECOYADD 399
77 Subroutine DISTIME 407
78 Subroutine FINDME 412
79 Subroutine FLTSORT 417
80 Subroutine FLYPOINT 425
81 Subroutine INITANI( 427
82 Subroutine KERPLUNK 429
83 Determination of ASM Aim Point 433
84 LAUNCH Procedure Outline 435
85 Computation of Flight Path Aim Point 436
86 Subroutine LAUNCH 438
87 Subroutine LNCHDATA 440
88 Subroutine PLAN (Macro Flowchart) 450
89 Subroutine PLAN —— Block 20: Determine Type of Plan  452
90 Subroutine PLAN — -- Block 24: Initialize Plan 454
91 Subroutine PLAN —— Block 25: Post Launch Event 455
92 Subroutine PLAN —— Block 26: Post Refuel Events 457

• 93 Acceptable Locations for Refuel Area (Shaded Section) 462
94 Subroutine PLAN —- Block 27: Initialize Plan With

Respect to COLOW Range 464
95 Subroutine PLAN —- Block 30: Process Precorridor Legs

and Apply GOLOW1 465
96 Example of Precorridor Legs 468
97 Subroutine PLAN —— Block 31: Post Corridor Events 470
98 Subroutine PLAN —— Block 40: Adjust /OUTSRT/ for ASM

— Events 474
99 Illustration of ASM Event Adjustment 479

V

~

-— •~~~ ~~~ —~~~~~~~~~~ --~~~~~ - ~~~- • —- .~~~~~—~~ —• ~.,——~~~~~~~~~ •• ~~~~~~~~~~~~ ~~~~~~~



Number Page

100 Subroutine PLAN —— Block 50: Apply COLOW2 Before First
Target 480

101 Subroutine PLAN —— Block 60: Post Depenetration Events 486
102 Path of Typical Bomber Sortie 488
103 Subroutine PLANBOMB 490
104 Subroutine PLANTMIS 501
105 Subroutine POST 505
106 Subroutine POSTLAUN 507
107 Subroutine NAPIT 509
108 Subroutine SNAPOUT 511
109 Subroutine SORBOMB 514
110 Subroutine SWTCHALT 517
111 Subroutine PLANTANK 521
112 Subroutine PRNTAB 526
113 Base/Refuel Area Sample Matrix 528
114 Subroutine VAN 531
115 Subroutine INTRFACE 540
116 Subroutine ABOUT 546
117 Subroutine FINDTIME 551
118 Function IAZ IM 553
119 Subroutine IFSET 555
120 Function IFUNCT 560
121 Subroutine INFORM 562
122 Function NOP 565
123 Subroutine PRI4TOFFS 567
124 Subroutine EDCLAUSE 569
125 Subroutine STOUT 575
126 Subroutine TYPFIND 579
127 Subroutine XSET 581
128 Illustrative Curvilinear Functions 595
129 Exemplar Configuration of Missiles in a Group 607
130 Typical Bomber Flight Route 615
131 High-Altitude and Adjustment 619
132 Increase in Low—Altitude Flight 621
133 Illustration of ASH Launch Point Calculation 622
134 Assigning a Refuel Area (Automatic) 626
135 Formulation of a Tanker Allocation Problem 633
136 Coordinate System for Missile Timing Calculations 636
137 Relation of Rjj to Great Circle Plane 637
138 Diagram of T Vector 639
139 Cost Matrix for a 6—City Problem 645
140 Cost Matrix after Reducing Rows and Colunma 646
141 Start of Tree 646
142 Flow Chart of the Algorithm 648
143 Matrix After Deletion of Rowl and Column 4, and First

Branching 650
144 Final Tree 652

vi

_____________________________________________  ~~~~~~~~~~~~~~~~ -•- —-~-— - -



TABLES (PART II)

Number Page

4 Attributes in Sortie Event Records 264
S Bomber Events Recognized by PLNTPLAN 265
6 STRIKE and ABTAPE Fields in Block /DEFVAR/ 272
7 PLANOUT Module Internal Common Blocks 274
8 Possible Values of a and b 320
9 Launch Priority 397
10 List of Admissible Input Events by Type and Information

Relevant to Each 456
11 Tanker Plan 520
12 List of Information Required by PLANOUT 613
13 Launch Priority 617
14 Scaled Height of Burst Selection 630
15 Mean and Standard Deviation of T for Random Distance

Matrices 656

vii

- — — • - - •-- ——--•---~~—-~~ —- ---.—-- .— - -- - - -  ~-~~— _.---- m~ _•__ •i~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~—~- rn



- - - — — ~~~~~~~~~~ — - -~~ - —- — . - - -~~~ ~~~~~~~~~~~ -~~~~~~- ----~~~~~~ -

ABSTRACT

The computerized Quick-Reacting General War Gaming System (QUICK) will
accept input data, automatically generate global strategic nuclear war
plans, provide output summaries, and produce input tapes to simulator
subsystemc external to QUICK. QUICK has been programmed in FORTRAN for
use on the CCTC HIS 6000 computer system.

The QUICK Program Maintenance Manual consists of four volumes: Volume
I, Data Management Subsystem; Volume II, Weapon/Target Identification
Subsystem; Volume III, Weapon Allocation Subsystem; Volume IV , Sortie
Generation Subsystem. The Program Maintenance Manual complements the
other QUICK Computer System Manuals to facilitate maintenance of the
war gaming system. This volume, Volume IV, is in two parts providing

• the programmer/analyst with a technical description of the purpose,
functions, general procedures, and programming techniques applicable
to the modules and subroutines of the Sortie Generation subsystem.
Companion documents are:

a. USERS MANUAL
Users Manual CSM UM 9—77, Volume I
Users Manual CSM UM 9—77, Volume II
Users Manual CSM UM 9—77, Volume III
Users Manual CSM UM 9—77 , Volume IV
Provides detailed instructions for applications of the system.

b. TRCHNICAL MEMORANDUM
Technical Memorandum TN 153—77
Provides a nontechnical description of the system for senior
management personnel.

vii i



~~
----- :-J•-•~~~---~~~ 

•

SECTION 4. PLANOUT MODULE

4.1 General Purpose

PLANOUT accepts skeletal bomber sorties from module POSTALOC and adds
serial bomber events (i.e., doglegs) to each sortie. PLANOUT, also,
accepts missile sorties developed by module FOOTPRNT. For both type
systems, PLANOUT ultimately generates output tapes as input to systems
external to the QUICK system.

In addition to the normal development of output tapes, PLANOUT permits
user intervention in altering sortie development in two fashions. First,
the user has commands that permit changes to the data base stored sorties
withoLc requiring a new allocation. Second , capability is provided to
postprocess the output tapes record (s); not data base contents. The
postprocessing commands are completely generalized whereby any item
within a record may be altered.

Accordingly the functions of the PLANOUT Module fall into three cate-
gories: Sortie Completion, Sortie Change and External Interface.

4.1.1 Sortie Completion. Bomber and missile sorties are processed and
tanker sorties are created. Among t!~~ processing functions performed
are :

o Assigning refuel areas to bombers and allocating tankers to
service them.

o Calculating ASM launch points

o Determining where change altitude and launch decoy events
should occur

o Coordinating bomber and missile launch times according to user
paramete rs

o Calculating distances and time between all events of each plan.

4.1.2 Sortie Change. This function allows the user to make minor
changes to sorties which do not require a new allocation . The user is
given control, through sortie change clauses, over targets assigned to
a specific sortie, the weapon offsets, time of delivery, and height of
burst. The user may also create complete non—MIRV missile sorties.
These requests alter items stored within the data base.

4.1.3 External Interface. This function allows the user to specify the
• production of two output tapes: a STRIKE tape which is subsequently

used as input to the external damage assessment system SIDAC, and Sor-
tie Specifications tape (ABTAPE) which provides an interface with the
NUb and ESP simulators. The STRIKE tape contains a set of data for

L
261

- —--•••--•—--- ——— —i -— ~ --~~ • • _ ••~~~~~~~~
—

~
--—.--—— —--• •—



_

each weapon delivery reflected in the generated sorties. The ABTAPE
contains two types of information for each missile or bomber mission:
the first is general descriptive data for the mission; and the second
is data reflecting the ordered sequence of flight route legs for the
mission.

The user also has the option of altering the data on these files by
specifying the data to be altered (SETTING clause) and the conditions
under which this alteration is to occur (IF clause).

The logical output unit number for these tapes is preset within the
module as follows: STRIKE tape LTN4, ABTAPE LTN16.

4.1.4 Modes of Execution. Traditionally PLANOUT initially performs
the Sortie Completion function and upon user examination of this out-
put separate executions follow whereby the user alters the initial
allocation; either data base items or record(s) on tapes for use as
input to systems external to QUICK. The user controls the mode of
execution.

4.2 Input

Data base definition to the PLANOUT module depends upon two modes of op-
eration available to the user. These modes, identified by adverbs, are:
RE CALC and nonRECALC.

4.2.1 RECALC Mode Input. This is the mode in which the user exercises
the Sortie Completion function, though it is not restricted to this
function. The normal circumstance under which this mode would be used
would be immediately after execution of the POSTALOC and FOOTPRNT
modules. The user may wish to use the RECALC mode at a later date
(that is, execute the Sortie Completion function more than once during
he same study), but it must be used at least once before either the

~ortie Change or External Interface functions are exercised . The text
Eng lish input required for proper execution under this mode —— chiefly
cha racterized by the presence of the RECALC adverb —— is fully described
in User’s Manual UM 9—77 , Volume IV.

4.2.2 NonRECALC Mode Input. In this mode the user may exercise either
the sortie change or external interfac~ function or both. The major
precondition of the data base is that the PLANOUT module has to have been
executed at least once previously in the RECAL C mode . The text English
Input required —— characterized by the absense of the RECALC adverb --
Is fully described in User’s Manual UM 9—77 , Volume IV.

262

______ -



4.3 Output

4.3.1 Sortie Completion Output. The sortie completion function is
basically designed to acc.~pt sorties prepared by the POSTALOC and
FOOTPRNT modules. In the case of missile sorties (from FOOTPRNT), the
output consists of updating the sortie table (SRTYTB, record type 33)
with the launch time (attribute SLOW1 Is used). In the ease of bomber
sorties (f row POSTALOC) the output consists of updates to existing sor-
tie events tecords (SRTEVA , record type 50 and SRTEVB, record type 53),
and additional SRTEVB records to complete the sortie. The attributes
contained in these record types (the SRTEVA record is distinct from the
SRTEVB record in that it represents a weapon assignment and , as such, Is
linked to an ASSIGN record—record type 70) appear in table 4. Two of

• the values, “type of event” and “place index” are further explained in
table 5. The event types which are added as a part of the sortie com-
pletion function are:

o Launch

., Refueling

o ASM launches

o Flight altitude changes

After all missile and bomber sorties have been processed and completed ,
tanker sorties are created including sortie table (SRTYTB) and sortie
events (SRTEVB) .

4.3.2 Sortie Change Output. The sortie change function makes altera-
tions to existing sortie events. It is principally designed to effect
those events produced by POSTALOC or FOOTPRNT. After all changes to a
particular sortie have been made, the processing is much the same as
that for the sortie completion function (i.e., the “changed” sorties
are now “completed”), and as such so is the output . Certain sortie
changes may cause the addition, deletion and/or modification of sortie
table (SRTYTB) , sortie events (SRTEVA or SRTEVB) or weapon assignments
(ASSIGN) . The ACARD clause (see TJM 9—77, Volume IV) will create one
each of: a sortie table, a sortie event (SRTEVA) and a weapon assign-
ment.

4.3.3 External Interface Output. This function produces , at user di rec-
tion , two types of tapes of differing formats for use in external pro-
cessors.

a. The STRIKE tape is produced on logical tape number (LTN) 4 for
use with the single Integrated Damage Analysis Capability Sys-
tem (SIDAC). It contains a “strike” card for each weapon
assignment from either missile or bomber systems. The format
appears in figure 59.

b. The sortie specifications tape (ABTAPE), is produced on LTN 16
for use in the Event Sequential Program (ESP) and the Nuclear

263

- _ - • - •

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —•• ~~ - - •— ~~~~~- - -_ - - -• - --- -


- Table 4. Attributes In Sortie Event Records

Attributes Description

LAT Latitude of event

LONG LongItude of event

*SLOCATTR Local attrition

SCUNSURV Cumulative survival probability

SDELTINE Time since previous event
*• SDANEXP Expected damage achieved

**SEVCODE Type of event

**SPLACE Place index

SCHANGE Blank unless event was inserted or altered by the
sortie change function in which case its 7alue is
“Cmm/dd/” where “mm” Is the month and “dd” is the
day on which the change was made

* Applies only to weapon assignment event (SRTEVA)

** See table 5.

264

—

Table 5. Bomber Events Recognized by PLNTPLAN

Event Event Names Used In
Type of Event Type Place Index / EVENTS/ OUTPUT PRINT

Launch 2 Base Index LAUNB LAUNCH B

• REFUEL Re f uel Index LRE FUEL REFUEL

Local Att ri t ion 8 Target Index LOCLATTR DROPEOMB
• or Drop Bomb

Launch ASM 14 ASH Type LAUNASM LAUN ASM

ASM Target —— Target Index -— ASH TGT

Launch Decoy 15 * LAUNDCOY LAUNDCOY

Change Altitude 17 1. for Go High, LOHI CHANGALT
0 for Go Low

Recover 16 Recovery Base LANDHO RECOVER
Index

Abort 13 * LABORT ABORT

• Enter Refuel 11 Refuel Area LENTERE F ENTERREF
Index

Leave Refu el 12 * LEAVEREF LEAVERED

Go Hi gh 18 * IGOHI CO HIGH

Go Low 19 * ICOL(V.J CO LOW

Dogleg 20 Penetration LEGDOG DOGLEG
Corridor Index

* Place index not applicable.

265

_ _ _ _ _ _ __ _ _ _ _ ~~- _•-

I

CARD

~~~~ CO1J1C~S __________

1 1 $ STRI~~ Card indicator
2 2 0 Constant
3 3 1-9 Co a.’d / functton cod.
4 4-8 $555 1-99999 Sortie •equ.nce n~~~er

5 9-10 SDTh 01-12 Month
11—12 01—31 Day
13-14 00-23 flour Of weapon detonatio n
15— 16 00-59 Minutes

6 17— 18 00-59 Second.

7 19—24 SLAT DLSO~ S ihar. DD — degrees 
~~~~~~~~~~~~~ of desired

~ : :~:~:
ground zero (DGZ)

25 N or S North or South

8 26-32 SLaG DDaIe S where DDD • degree.

151 - winute a Longitude of DCZ
SS — second.

33 E o r W East or West
9 34-38 SDES 2 Alp ha , 3 N~mer ic Target designator cods
10 39-40 SF1.5 -1-99 PLS_Probability* of pr s-launch sur-

viva l
*11 41-42 SPTI ’ -1-99 PTP-Pit.t ra tion probability
*12 43-44 SWS~ -1-99 WSR -W spon syston reliability

13 43 SRRC 1-9 Region cod.
14. 46-4 8 SPYR 000-999 Fis.ion/yi.ld ratio
15 49 Stank
16 50-54 SYLD 00001-99999 Yield
17 55—5 7 SIlOS 000-999 h eight of burst (hundred , of feet)
18
19 58-60 5CR 000-999 CI? in 100. of feet
20 61-62 STSK 2 Alpha Th.k /sub taa k code
21 63-64 $CLO 2 Alpha Country cod e for target location
22 65-66 SC(7.I 2 Alpha Country cods for target ~.ner23 67-68 RAT 00-99 Attrition pr obab ility* (i . e . , per-

cent chang, of attritio n)
24 69 SSEQ 0-9 S.quenti.1 Warhead Nunb.r when op-

eration code La 7 , 10 , or 11.
Otherwise , blank

25 70-71 SFT C 01-99 Plane type code
26 72-73 SWTC 01-99 Weapon type coda
27 74-71 SUllY 0001-9999 Unit nonber (INDIXKO of launch baa.)
28 78-79 00-99 Sortie n~~~sr
29 80 h ank

* A prin t.d pr obabili ty of -l i.plia. a value of 100 (necessary since only two digit.
ar e reserved for probability repr esentation).

Figure 59. STRIKE Tape Format

266

I

Exchange Model (NEMO). This tape contains a set of BCD card
images for each missile, bomber, and tanker sortie. A card set
consists of one “A” card which contains general descriptive
information and a variable number of “B” cards which define
the individual events of the sortie. The card formats are de-
scrIbed in figure 60.

Afte r an initial execution of the external interface function, the user
may desire to alter the fields output on these two tapes. This is done
via the IF and SETTING clauses detailed in UM 9—77 , Volume IV. The
data base sorties themselves are not changed by these clauses only the
fields in the output tapes. Any of the fields of any subset of the re-
cord types for either output tape may be altered as the tape is being
created via these clauses.

4.4 Concept of Operation

The main subroutine (ENTMOD) scans the input clauses setting values in
the /ADVRB/ common block. Through the switches RECSW, STREW , ABSW and
C}INCSW, the remainder of the module flow Is controlled . Referring to
figure 61, first the RE CALC mode switch (RECSW) is checked and if the
mode was selected, PLNTPLAN is executed to perform the sortie comple-
tion function (except tanker sortie creation). Next, the CHNCSW switch
(set if any ACARD, CCARD or ICARD clauses are input) is checked and if
true, ALTPLAN is called to perform the sortie change function . Then,
if RECALC mode was selected , PLANTANI(is called for tanker sorties.
Finally, if either ABSW or STRSW are true (indicating the presence of
the ABTAPE or STRIKE adverb respectively), INTRFACE Is called to perform
the external interface function.

4.5 Identification of Subroutine Functions

4.5.1 SortIe Completion Function. The driving subroutine of this
function Is PLNTPLAN. This subroutine reads in the missile and bomber
sorties as they exist in the integrated data base as created by FOOTPRNT
and POSTALOC and, perhaps, as modified by previous executions of PLANOUT.
These sorties are finalized one at a time. For bomber sorties, the
PLANBOMB subroutine is called which controls the addition of sortie
events to the bomber plan. Among the processing functions performed on
the Input phases are : assigning refuel areas ; calculating ASH launch
points; determining where altitude changes and decoy launch points
should occur; and coordinating launch times according to user parameters.

Missile sortie processing takes place in subroutine PLANTMIS which
• assigns launch times based on user supplied coordination parameters.

In an overlay separate from PLNTPLAN , PLANTANK generates t anker plans
such that all bombers will be serviced as required .

4.5.2 Sortie Change Function. The driving subroutine of this function
•

. is ALTPLAN. This subroutine scans user request clauses to accumulate

267

•
•
~~~~~~~~~ ~~~~

••  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


- •-• • - ----
~~~~

----•,.-—-• -

SORTIE SPECIFICATION: “A” CARD FORMAT

CARD

~~~~ 
COUSINS

~~~~ 
DISCP.IPTI(SI

1 1 A A-card indicator
2 2-4 AlUM 001-999 A-card ni~~~er
3 5-8 AUNT 0001-9999 Unit n,aber
4 9-10 ASNO 01-99 Sortie n~~~er5 13-14 *rrc 01-99 Plane ty~

,. cods
6 15 0
7 16—17 Blank
8 18 0

9 19 22 ARE? 0000-9999 Reference t iU~ (launch t ine in
hours and winutes)

10 23 1 Tian reference (I — launch)
11 24-30 0000000
12 31 Blank
13 32-34 AFFA N/A Plane t ype a1pha- nt ~~ r ic code
14 35 Blank
15 36-37 ALCC N/A Country code of launch base
16 38 Blank
17 39-40 AP1JN 1—9 SAGA Vehicle—Function code

1 — ICRM
2 - lUll
3-51BM
5 — SSB/SSBN
6 — SSGN
7 —

0 , 4 , 8 , 9 not ussd

18 41-80 Blank

19 N/A Card identification nu~~er (added
to print of card inage not con-
tained on tape)

SORTIE SPECIFICATION: “B” CARD FORMAT

CARD

~~~~ COWPQ~S __________

1 1 1 S-card indicator
2 2-4 SHUN 001-999 B-card m~~~er
3 5—8 BUNT 0001-9999 Unit ni~~bsr
4 9-10 ISNO 01-99 Sorti a nt~~er• 5 11-12 SF1.5 01-99 Plight leg nunber
6 13—14 BElT 01-14 Event or operation type indicator

1 Takeoff
2 Aerial refueling

3-4 Dogleg
6 *314 launch

Figure 60. STRIKE Format (A and B Cards)
(Part 1 of 2)

268

~~~~~~~~~~~~~ — -—



-• --- - - - -~~~~~~ -

CARD
FIELD COLUMNS ~~~~ DESCRIPTICSI

7 AIM on target
8 Decoy release
9 Decoy impact
10 llts.ile or bomb on target
11 1~ RV or target

• 13 Recovery if bomber; splash if air
breathing missile

14 Splash (ballistic missiles)

7 15-19 BLOC Location identifier for given operation
I • Ba.e index
2 — Area number

7 - Target DESIG code
• 8 or 9 — “1”

10—11 — Target DISIG code
13 — Recovery base INDEXNO if bomber

8 20-25 -BLAT DD~O~ S Latitude at end of leg is degrees ,
minutes , and seconds

9 26-33 51.05 DDD~5GSX Longitude at end of leg is degrees ,
minutes , and s.conds; Eaat or West

10 34 BMOD Mode of operation
1 High altitud e
4 Low altitude

11 35 0 Tim. of event in hour., minutes, and
12 36-41 BTIN WB1~ S s.condp

13 42 S Southern latitude indicator (if lati-
tude i. North , columu 42 is blank)

14 43-44 BSEQ 01-90 Sequential index within unit n,~~~er
15 45-46 Blank
16 47-49 BAlI 0-360 Launch/Back azimuth in degrees

17 50 ItcH 101 status
0 Off

• 1 On
18 51 0

• 19 52-53 BWAR 00-99 Warhead type
20 54 BCRA Height of burst

0 - g r ound
I — air

21 55-56 0
22 57-58 srrc 01-90 Plan, typ. code
23 59-60 11CC 2 Alpha Cod e for country of target location
24 61 IRFC 1-9 Region code
25 62 Blank
26 63-64 BTSK 2 Alpha Target task code
27 65-67 1501 000-999 Height of burst (hundreds of feet)
28 68-72 BYLD 00001-99999 Yield (NT)
29 73-75 BCE? 000-999 CI? (100’. feet)
30 76-77 2 Alph a Code for country target owner
31 N/A SCOW Card m~~~er for ,,bole SCITIE SPICIFI-

CATIOIIS tap e (contained only in a
print of the tape )

Figure 60. (Part 2 of 2)

269

_  ________
-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~



_ _ _ _  —- - - —- —- — — - —

I

START

Analyze
ser Supplied

Input

PLNTPLAN
RECALC Yes Compute
Mode? Bomber And

Missile
ortie Event PLANBOMB For

No Bomber Sorties;
PLANTMIS For

LAN Missile Sorties
Sortie 

Yes Translate
Update User Sortie
Clauses? Update

No

RECALC Yes Compute
Mode? Tanker

Sorties ABOUT For
ABTAPE;

STOUT For
STRIKE

INTRFACE
External Generate
Interface? ABTAPE And

STRIKE Tapes
No XWHERE And

XSET For
Post—

R ETURN processing

Figure 61. PLANOUT Module Macro Flow

270

_ _ _ _ _ _ _ _

—~ - • —- -- ~~~~~~~~~~~~~~~~



r

all changes pertaining to a sortie. Then each change request is carried
out and the appropriate plan processor (PLANBOMB or PLANTMIS) is called
to recomplete the sortie. Any new sorties (resulting from ACARD clauses)
are inserted before the first tanker sortie and the numbers of the tanker
sorties changed to reflect the additions.

4.5.3 External Interface Function. INTRFACE is the driver of this func-
tion . Sorties are read one at a time and the two tapes produced. Sub—
routine ABOUT is called for A or B cards for the ABTAPE and subroutine
STOUT [s called to produce STRIKE tape records. Both of these routines

• have the same procedural design . First the appropriate information is
ext racted from the sortie data and stored in conunon block /DEFVAR/ in
array positions which correspond with the output tape fields , as shown
in figures 59 and 60. The precise correspondences of the /DEFVAR/ block
to these fields appears in table 6. After the data is stored in /DEFVAR/,
any postprocessing desired for the tape in question is performed. The
IF and SETTING clause pairs pertaining to the output tape being pro—
duced are executed in the input order. For each pair, the IF clause is
f i r s t  executed using the XWHERE utility subroutine. This subroutine
will return a switch stating whether the current state of the data
base (/DEFVAR/ in particular) satisfies the conditions stated in the IF
clause. If the conditions are satisfied the corresponding SETTING clause
is carried out by subroutine XSET . When all postprocessing has been corn—

• pleted , the data items are converted to BCD format via the INFORM sub-
routines and wri t ten onto tape .

4.6 Common Blocks

The common blocks internal to the PLANOUT module are shown in table 7.

271

- - -- -----~~~~~~ --~~~~~~~~~ • —~~~~ - - - -• - -~~~~~~ ~~~~~~~~~~ ••.~~~~~~~~~ •-— ~~~~~~~~~ •— rn~~~~ - -- - -•



-— _
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -- ~
- • • • -  ____ ___ __ _•—_ _••_-;_~-_- ,-•_ •_

Table 6. STRIKE and ABTAPE Fields In Block /DEFVAR /
(Part 1 of 2)

Tape Name Field Name /DEFVAR/ Index

STRIKE SSSN 1
STRIKE SDTM 2
STRIKE SLAT 3
STRIKE SLON 4
STRIKE SDES 5
STRIKE SPLS 6
STRIKE SPTP 7
STROKE SWSR 8
STRIKE SREG 9
STRIKE SFYR 10
STRIKE SYLD 11
STRIKE SHOB 12
STRIKE SCEP 13
STRIKE STSK 14
STRIKE SCLO 15
STRIKE SCOW 16
STRIKE SPAT 17
STRIKE SSEQ 18
STRIKE SPTC 19
STRIKE SWTC 20
STRIKE SUNT 21
ABTAPE(A) ANUM 22
ABTAPE(A) AUNT 23
ABTAPE(A) ASNO 24
ABTAPE(A) APTC 25
ABTAPE(A) AREF 26
ABTAPE(A) APTA 27
ABTAPE(A) ALCC 28
ABTAPE(A) AFUN 29
ABTAPE(B) BNUM 30
ABTAPF.(B) BUNT 31
ABT APE (B) BSNO 32
ABTAPE (B) BFLN 33
ABTAPE(B) BEUT 34
ABTAPE(B) BLOC 35
ABTAPE(B) BLAT 36
ABTAPE(B) BLON 37
ABTAPE(B) BMOD 38
ABTAPE(B) BTIM 39
ABTAPE(B) BSEQ 40
ABTAPE(B) BAZ I 41

272 

. —----—- ------ .- —~~ -- —-~ •--~~ -----•-i-• ~~~~~~~~~~~~~~~~~~~ --—



- 
—•

~~~~~

--.- - —

~

----- —

~~~~~

- • -

~

-- —

~~~~~

-- ‘
~~~~~~~~~~

-

~~~

---.-

~

-- • --
~~~~~~

Table 6. (Part 2 of 2)

Tape Name Field Name /DEFVAR/Index

ABTAPE(B) BECM 42
ABTAPE(B) BWAR 43
ABTAPE (B) BCRA 44
ABTAPE(B) BPTC 45
ABTAPE (B) BTCC 46
AZTAPE(B) BRPC 47
ABTAPE(B) BTSK 48
ABTAPE(B) BROB 49
ABTAPE(B) BYLD 50
ABTAPE(B) BCEP 51
ABTAPE(B) BCOW 52

273



_____

Table 7. PLANOUT Module Internal Common Blocks
(Part 1 of 20)

Block Array or Variable Description

ADVRB The contents of this block are an
input clause summary. The variables
are either switches which indicate
the presence of certain clauses, the
“index” or ordinal of the adverb in
the “verb adverb array” in the input
tables (see MM 9—77, Volume I), a
count of a certain type of adverb, or
the “pointer” to the beginning of the
clause in the input.

STRSW True if STRIKE tape is desired

ABSW True if ABTAPE is desired

CHNGSW True if Sor tie Change function is to
be used

ISTRA Index of first STRIKE SETTING clause

LSTRA Index of last STRIKE IF clause

IABA Index of first ABTAPE F ’TTING clause

LABA Index of last ABTAPE IF clause

IFCHNG index of first sortie change clause

LCHNG Index of last sortie change clause

IMIST Index of first MISTME clause

NMTST Number of MISTME clauses

IMCOR Index of first  MSLCOR clause

• NMCOR Number of MSLCOR clause

IGTIME Pointer to GANETIME clause

IFUNCO Pointer to FUNCOM clause

IONPR Pointer to ONPRINT S clause

274

— _ r_~_ - _ Ss ... ¼ ’~~~’



-- —----—- ~~~~~ - ~~~~
‘- -—- -~~- - ---,---- ‘

Table 7. (Part 2 of 20)

Block Array or Variable Description

ARTIME ARTIME(50) Earliest bomber arrival time at re-
fuel area I

NBUDRE F Number of “buddy ” refuelings required

NBOMBREF(50) Number of bombers assigned to refuel
area I

NTANKREF(50) Number of tankers assigned to refuel
area I

IARVLS/ARVLS(2 ,l000) ARVLS(l ,I) = time of the Ith bomber
• refuel processed by PLNTPLAN ;

IARVLS(2 ,I) = the refuel area for
that bomber refuel

ASNARRAY ALAT(1O) Aim point lat i tude

ALON( 1O) Aim point longitude

IFLY(lO) Fly point flag

IDIS(1O) Distance from fly point to ASM tar—
get

IORD(lO) Sor t index

JAY Index communicated to PREFL1 , PREFL2

DIST Distance communicated to PREFL1,
PREFL2, POSTFLY

CALLSW Each switch in this block is set to
( true after the indicated subroutine

is executed, Its purpose is to
prevent subsequent executions

WDSW Switch for WEPDATA

~ORSW Switch for GEOGET

LNDSW Switch for LNCHDATA

275

p -

— - •- -•------•~------ - -------—-— — • •-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __4



• - . - - -- - -

Table 7. (Part 3 of 20)

Block Array or Variable Description

CONTROL LSIDE Side whose sorties are being used
(1 = BLUE , 2 = RED)

CORCOUNT IR Points to line of / RAPPEN / where
current corridor begins

KC Number of lines in /HAPPEN / describ-
ing current corridor

JR Points to line of / HAPPEN / where cur-
rent depenetration corridor begins

LC Number of lines in /HAPPEN/ describ-
ing depenetration corridor

CORRC1 MCORCHI Maximum number of penetration corn-
dor

IDEFDST (30) Total precorridor defended distance

IMP RTD(30 ,3) Order of importance of a t t r i t i o n  per
nautical mile

ATPDST ( 30 , 3) Average a t t r i t ion  per distance in
the Jth corridor, Ith leg

CORRCHAR Penetration corridor characteris t ics

PCLAT(30) Orientation point la t i tude

PCLONG(30) Orientation - point longitude

RPLAT(30) Ori gin la t i tude

RPLONC(30) Origin longitude

ENTLAT(30) Entry la t i tude

ENT LONG(3 0) Entry longitude

CRLENGTH (30) Distance from entry to origin

KORSTYLE(30) Parameter to adjust mode of corridor
penetration

276



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - • - - — • -~~ — — — -- --- . - - -~~~--~~ --. - - - - - - - - -

Table 7. (Part 4 of 20)

Block Array or Variable Description

CORRCHAR ATTRCORR (30) Hi gh—al t i tude a t t r i t i on per nautical
(con t .) mile , unsupressed

ATTRSUPF(3 0) Hi gh—alti tude at tr i t ion per nautical
mile , suppressed

HILOATTR(30) Rat io low— to h igh—al t i tude attri-
tion (less than one)

DEFRANGE (30) Characterist ic range of corridor
defense (nautical miles)

NPRCRDEX(3 0) Number of a t t r i t ion sections

DEFDISTX(30 , 3) Length of a t t r i t ion section

ATTRPREX (30 , 3) At t r i t ion per nautical mile of
at t r i t ion section

NDATA Number of corridors

DECA DELDIS(6) Decoy coverage dis tance

LPRIORITY(20) Possible decoy launch priority

LMHT(90) Possible decoy launch event number

NDCYRQ(20) Pointer to array DELDIS

NPSLN Number of possible decoy launches

NUMDCOYS Number of decoys available

DINDATA HDT(90) Time —— for detailed history —— of
event I

KPL(90) Place of event I

• JTP(90) Event type of event I

HLA(90) Latitude of event I

HLO(90) Longitude of event I

TZT(90) Weapon of fst~t lat It tidi’ of event I

277

--- -

~

—

~

-- - -- -- --— - -~~~~~~~~~ - -—-~~~---- - •-~ •~~ - -- • ---~~~~-~~~~~
- -~~~~~~~~~~

Table 7. (Part 5 of 20)

Block Array or Variable Description

DINDATA TZN(90) Weapon offset longitude of event I
(can t .)

PA(90) Probability of arrival at target of
event I

MHT Total number of lines in detailed
plan

NPL Number of planned events

DINDT2 CMT(90) Cumulative time of event I

IWH(90) Warhead type index of event I

DISTC DISTC(20) Distances between target events

DPENREF DPLAT(50) Depenetration latitude

DPLONG(5 0) Depenetration longitude

QFLAT/RFLAT(20) Refue l point latitude

QFLONG/RFLONG(20) Refuel point longitude

EVCOM TELAPSE Elapsed time to current event

ICEV Event count to current event

EVLAT Latitude of event

EVLONG Longitude of event

EVENTS LAUNM Missile launch code

LAUNB Bomber launch code

LEREFUEL Re fuel code

LOCLATTR Local a t t r i t ion or drop bomb event
code

LAUNASN Launch ASM event code

LAUNDCOY Launch Decoy event code

278

- - f — -
~~~~~~~~

--- - - -
~~~~~~~

- - —
~~~

-------- -
~~~~

-’,.-- - - •
~

Table 7. (Paet 6 of 20)

Block Array or Variable Description

EVENTS LANDRO Recovery event code
(cant .)

LOHI Ct~~ ge Altitude event code

MISSATTR Missile attrition event code

LEGDOG Dogleg event code

LABORT Abort event code

LENTEREF Enter refuel area event code

LEAVEREF Leave refuel area event code

IGOHI Co to high altitude event code

IGOLOW Go to low altitude event code

GAMET IME KDAY Day of game

KNON Month of game

KYEAR Year of game

HRR H-Hour

CRPSTF IPAY (250) Weapon group pay load index

ITYPEX(250) Weapon group type index

IRECON(2 50) Weapon group region

GSBLX (250) Weapon group prelaunch survival pro—
• bability

GPKNAV(250) Single shot kill probability against
naval targets for weapon group I

IGCLS (250) Weapons group class index

IGLERT(250) Weapon group alert status

279

- - - -- ~~~-•- - • - -~~~- -

— --------- —- — -- - - ------ — - - ~~----

Table 7. (Part 7 of 20)

Block Array or Variable Description

HAPPEN KOUNT(30) Number of /HAPPEN/ lines for pene—
tration corridor

IHAP(30) Pointer to first line entry for pene-
tration corridor

MOUNT(50) Number of /HAPPEN/ lines for depene-
tration corridor

JHAP(50) Pointer to first line entry for de—
penetration corridor

JAPTYPE(250) Attrition section indicates (1,2,3
enter section; 4,5,6 leave section)

HAPLAT(250) Latitude of corridor point

HAPLONG(250) Longitude of corridor point

HAPDIST(250) Distance from previous point

HILO ISTOREHI Number of events in /OUTSRT/ after
which GO HIGH occurs

ISTORELO Number of event in /OUTSRTI zI,fter
which GO LOW occurs

ICOLEFT Set to 1 if GO LOW range is avail-
able after depenetration

FACHI Distance after event ISTOREHI at
which CO HIGH is located

FACtO Distance after event ISTORELO at
which GO LOW is located

GOLO Amount of GOLOW range remaining for
depenetration

ICLASS IBOMBER Bomber class index

ITANKER Tanker class index

— — — .•— --— -- ---—--•-_-—-— —•—--- - — - - _
_~~~~~~~~~~~~~ -~~~ . _ ~

— • - •—
~~~~

-- -•-- .- - - — - - -
•-~~-“.-—- - -,---~..--- • --.•- •



rr=

~ ~~~~~~~~~~~~~~ 

—--- - — - —

~~~

-- - • - - - - - - - -- - - -- --•-—- —---- .--—-- --- —---•--- .- -- - — - - — - —----— - - - — .

~~~

• — - -

Table 7. (Part 8 of 20)

Block Array or Variable Description

IDP IDP( 2) Depenetration corridor index number
as reassigned when last target is
an ASM target

IFSCOM ISTPAR Number of SETTING/IF clause pairs
for STRIKE tape

JSIF(l0O) Pointers to IF clauses for STRIKE
tape

JSSET(lO0) Pointers to SETTING clause for STRIKE
tape

IABPAR Number of SETTING/IF clause pairs
for ABTAPE

JABIF(lOO) Pointers to IF clauses for ABTAPE

JABSET(l0O) Pointers to SETTING clauses for
ABTAP E

• IFUNC JFUNC(20) Function codes input (alphabetic)

INDFUNC(20) Numeric function codes

IGO 1G0800 Set to 1 for degenerate target area

INDATA INDATA Side ( 1—Blue , 2—Red)

INBASE Launch base index

INDV Vehicle index

ILAST Number of MIRV a per missile

ITYPE Weapon type index

ICLZSS Weapon class index

IRZG Weapon group region

IZLERT Weapon group alert status

281 

-• — - — —-- —--- -- —-a - - •
~

_
~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ — h~~ --



Table 7. (Part 9 of 20)

Block Ar ray or Var iable Description

[OUT LPAYLOAD Index of current payload

LREF Index of current refuel area

LDPEN Index of current depenetration point

KOKO Index of current ASM type

JFCTNO Function code of current vehicle

IRF IRF Assigned refuel area index

NRF Number of refuel areas

I RFFK IRFTK Refuel area index

KEYLENC LOS Length of /OUTSRT /

tIN Length of /INDATA/

LDN Length of DINDATA/

LINC Length of /INDATA/ except for last
array

KEYS KEYDPEN Key for packing depenetration point

KEYBMX Key for packing recovery point

LASH Ui Latitude of beginning point of bomber
path

Vi Longitude of beginning point of
bomber path

U2 Latitude of end point of bomber path

V2 Longitude of end point of bomber
path

UAT Latitude of ASM target

VAT Longitude of ASM target

282

-- - - - -  ~~~~~~~ -- • -- - - - - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -



- .---.--------.—--

—

Table 7. (Part 10 of 20)

Block Array or Variable Description

LASM RASM Range of ASM
(cont.)

RLAT Latitude of ASM aim point

RLONG Longitude of ASM aim point

LASREF LASREF Reference Code (IDS) of last non—
tanker sortie

LAUNSNAP INRANGE Set to zero if ASM target is in
range of flight path; otherwise to
one

FRACPATH Fraction of total path at which ASH
is launched

MR MHMINA( 1O) Line in common /DINDATA/ where tar-
get area begins

MHMAXA(1O) Line in common /DINDATA/ where tar—
- get area ends

MHMN Lower plot marker for sortie

MH~~( Upper plot marker for sortie

MH2 MHMIN (2) Lower plot markers for sortie

MHMAX(2) Upper plot markers for sortie

MISCT MISCT Missile booster count

NTARGCT Missile target count

MODE MODE 1 for high altitude , 4 for low alti-
tude

MRVFLG MRVYLG Set to 1 if plan contains MIRVa

NOFSYS NOFSYS (100) Offensive system type index

OUTSRA DISTE(l0) Effective distance between target

1105(10) Height of burst information

283

p

_____  _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _



Table 7. (Part 11 of 20)

• Block Array or Variable Description

OUTSRA DLTA(lO) Change in time information
(cont . )

INDR(i0) Change indicator for targets

IOHOB Hei ght of burst flag

ICTIME Change time flag

OUTSRT ISORTN Sortie Number

IOUTSRT Sortie Number

MYGROUP Weapon group index

MYCORR Penetration corridor index

INDVEH Vehicle index

IRE F Refuel index

IDPEN Depenetration corridor index

IPAYLOAD Payload table index

LNCHBASE Launch base index number

[TY P Weapon group type Index

BLAT Launch base latitude

BLONG Launch base longitude

NUAP Number of sortie events

IBTYPE( l 4) Event type

• OBLAT( 14) La t i tude  of event

OBLONC(l4) Longitude of event

• DLAT( 14) Target o f f se t  — in degrees latitude

DLONG(l4) Targe t offset  — In degrees longitude

j 
_  

- 

284

__________________________ 
• --- — — -_--— - -~ -- __ •_ -•i 

- - - - —
-
~~~~ -—- —-- —~~~~

,
_ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_____________________ -

Table 7. (Part 12 of 20)

Block Array or Variable Description

OUTSRT IBJEC(14) Event place code
(cont.)

IBDES(l4) Target DESIG

IBTSK(l4) Task code of target

IBCTY(l4) Country code of target

IBFLG(l4) Target FLAG

ATTROUT(14) Local attrition

SURVOUT(14) Cumulative survival probability

LXMYHOB(l) Height of burst indicator

GOLOW1 Low altitude range available for use
in corridor

GOLOW2 Low altitude range available for use
before first target

GOLOW 3 Low altitude range available for use
after first target

SPDLQ Speed at low altitude

SPDHI Speed at high altitude

RANGX Range of vehicle

RANGRE F Refueled range of vehicle

DELAY Delay of vehicle launch

[ftC Vehicle launch region

ILRT Vehicle alert status

IDSOMBER Vehicle identification

AVAILOW Available low altitude range

285

_ _ _ _ _ _ --- -~~~~~~~-

Table 7. (Part 13 of 20)

Block Array or Variable Description

OUTSRT RNGDEC Range decrement at low altitude
(cont .)

DRECOVER Distance to recovery

DISTLEGO Distance to ori gin

PAYSTF NOBOMB1 (40) Number of bombs of type 1 (number of
RVs for missiles)

IWHD1(40) Warhead index of bomb type 1

NOEOMB2 (40) Number of bombs of type 2

IWHD2(40) Warhead index of bomb type 2

NASM(40) Number of ASMs

IASM(40) Warhead index of ASH

NPGM(40) Number of counter measures

NPDCY(4 0) Number of decoys

NAPDCY(40) Number of area decoys

IMIRV(40) MIRV system identifier

PYALT(40) Weapon release altitude (bombers)

PLTY P IPLANTYP Weapon plane type index

PLANAME Weapon type name (6 characters)

SHORNAME Weapon type name (3 characters)

POLITE Sl Latitude of beginning interpolation
point

Ti Longitude of beginning interpolation
point

S2 Latitude of interpolation end point

T2 Longitude of interpolation end point

286
-•

•

~~~~~~~~ -~~~• -—~~~~~~~~~~~~~~~~~~~~ ~~~~~ - iI~~~~~~~~~~ . • : L ~~

__ 



- --- - - -
~~~

-- -- -
~~~~~~~~~

——-—----• -• --- —- -- - -  -•- - - — -- -
~~~~~~

-— - • — -—

Table 7. (Part 14 of 20)

Block Array or Variable Description

POLITE FACTOR Interpolation factor or fraction
(con t.)

SR Latitude of interpolated point

TR Longitude of interpolated point

PPINFO NDUMCORR Tactical aircraft corridor index

GOLOX1 Saved low altitude range available
for use in corridor

COLOX2 Saved low altitude range available
for use before f i rs t target

GOLOX3 Saved low altitude range available
for use af ter first target

INDEX Bomber plan index equals group num-
ber plus 100 t imes corridor index
plus 10000 times sortie number

NSORTIES Total number of bomber plans pro-
cessed

INDXX Group weapon type index

GOGO Saved low altitude range available
for use in corridor

MHIST Maximum number of entries into his-
tory table

DUST Distance bomber traveled during
first history event

LXIDPCHI(Logical area indicating if depenetra—
tion corridor is used .

PPXX ILAUNDEX (90) Number of decoys launched

TIMELAUN(90) Time of decoy launch

DISTORE (90 ,6) Distance traveled by decoy

RDTX(90) Temporary line array

287

L ~~~~ ~~~~~~
.•_z___ .___

- -

Table 7. (Part 15 of 20)

Block Array and Variable Description

PPXX KPLX(90) Temporary place arr ay
(cont.)

JTPX(90) Temporary event number array

HLAX(90) Temporary latitude array

HLOX(90 Temporary longitude array

TZTX(90) Temporary offset latitude array

TZNX(90) Temporary offset longitude array

IWHX (90) Temporary warhead index array

PAY (90) Temporary probability of arrival
array

GMTX(90) Temporary cumulative time array

PRNCON IMDEXPR(15) Prin t request number

JAGROUP(l5) First group for request

JACORR(l5) First corridor for request

JSSORT(l5) First sortie for request

LAGROUP(15) Last group for request

LACORR(l 5) Last corridor for request

LASORT(l 5) Last sortie for request

KFREQ(15) Frequency fo r request

NREQ Number of requests

PSW STPRIN True if STRIKE tape print requested

ABPRIN True if ABTAPE print requested

ABUNIT Report code for ABTAPE print

288

-

~

-- ---- •

-- _— - ,• • .- — ~~~~ •~~~~~~~~
_ -

~~~~~ ~~~~ -

Table 7. (Part 16 of 20)

Block Array or Variable Description

RECBAS RCBLAT(50,4) Recovery base latitude*

RCBLON(50,4) Recovery base longitude*

INDBAS (50 ,4) Re covery base name*

[ND CAP(50 ,4) Recovery base capacfty

DISTR(50 ,4) Distance to recovery

TOF(50 ,4) Time of f l ight to recovery*

RECLAT(50) Tanker recovery latitude

RECLONC (50) Tanker recovery longitude

RECOVERY NANECAP(200 ,3) J 1 , Recovery base name
J=2 , Recovery base capacity
J 3 , Number of aircraft that launched

at recovery base

NU SED(200) Working array that defines the number
of aircraft arriving at each base for
a given group

IREC Logical unit containing recovery base
data

NREC Number of unique recovery bases

NBOMGP Number of bomber groups

NMSGRP Number of missile groups

RL RL Decoy low—altitude range

RH Decoy high—alti tude range

SNAPON NAP(l5) Set to three for active print I;
set to one for inactive print I

* Indexed for each of four bases assigned to each depenetration point .

289

I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • .  ~~~~~~~•~~ • •~~• • • •


Table 7. (Part 17 of 20)
-

Block Array or Variable Description

TANKA IINDEXTK(60) Tanker base index

TKRLAT(60) Latitude of tanker base

TKRLONG(60) Longitude of tanker base

IIREFTX(60) Refuel area for tankers where N> 0
implies must refuel at area n

NTKPSQN(60) Number of tankers in squadron at
base

NALRTNX(60) Number of alert tankers at base

TANKSPP(60) Speed of tankers at base

TXDLYALT(60) Delay for alert tankers at base

TKDLYLN(60) Delay for non—alert tankers at base

TKTTOS(60) Total time on station

IITYPTK(60) Tanker type index

TRANGX(6 0) Tanker range

TANKB COST (60 ,50) Distance between tanker base I and
refue l area J

SOURCE(60) Number of tankers at base I to be
automatically assigned

ISOL(11O) The Ith nonzero element in the final
VAN solution

RBASLOC (110) Tanker base corresponding to the Ith
solution element

CBASLOC (110) Refue l area corresponding to the Ith
solution element

NSOL Number of nonzero elements in VAN •

solution

290

• .•-
•

- - —

F- • • ~~
- - - - - -

Table 7. (Part 18 of 20)

Block Array or Variable Description

TANKB RMAX Number of rows (tanker bases) in
(cont.) VAN problem

LXIRCIIX(2) Logical array true if base not auto-
matically allocated

IRCDIF Number of bases for which LXIRCHX is
• t rue

DISTREF(5 0) Distances from current t anker base to
refuel area I

TAN KER INDEXTK Tanker index

TKLAT Tanker latitude

TKLONG Tanker longitude

IRE FUl Tanker refuel area index

NPSQNTK Number of tankers per squadron

NALRTK Number of alert tankers

SPEEDTK Tanker speed

DLYALTK Delay for alert tankers

DLYNLTK Delay for nonalert tankers

TTQS Total time on station

ITYPETK Tanker type index

TANKRNG E Tanker range

TEMPO DT (50) Distance on time temporary storage

JT (50) Event type temporary storage

TLT(50) Latitude temporary storage

TLN(50) Longitude temporary storage

LP 1,(’iO) Plat e Index t emporary storage

29].

_
_

T I
— _- -- __— —_--_— ~ —c - — — ~~~ — —-a __ ._-_ —

I— ~~~~~~~~~~~~~~~ - - — .- •- - - - • . -

Table 7. (Part 19 of 20)

Block Array or Variable Description

TIMELINE LXITIM(2) Packed logical array: True if type
of CORMSL is “line”

CORMSLX(40) Percent flight complete or time on
line

ZLAT(50,2) Latitude of timing end points

ZLONC(50,2) Longitude of timing end points

XC(50) X—coordinate of cross product vector
of lining line

YC(50) Y—coordinate of cross product of
timing line

ZC(50) Z—coordinate of cross product of
timing line

DL(50) Length of timing line

NLINES Number of timing lines

TYPSTF Weapon type data

TRANGE(lOO) Weapon range

TCEP(lOO) Weapon CEP

TTOFMIN (100) Weapon minimum time of flight

TCMISS (100) Weapon missile constant

TRNGNN(100) Weapon minimum range

TREL(lOO) Weapon reliability

TNANE(100) Weapon name

TFU N CT(100) Weapon function code

TLINT(lOO) Weapon launch interval

•

~ ISMLUN(lOO) Number of weapons which may be
launched simultaneously

292

~~—~~~--~~ • ~~

-

~~

- --

~~~~~ 

I

Table 7. (Part 20 of 20)

Block Array or Variable Description

VICINITY VHB Bomber cannot go high within VHS
miles befo re target

‘lilA Bomber cannot go high within VHA
miles af ter  target

VLB Bomber cannot go low within VLB miles
before target

VLA Bomber cannot go los’ within VLA miles
after target

GOMIN Bomber cannot fly low for less than
GOMIN minutes

WHDSTF WHDYLD(50) Warhead yield

WHDFRC(50) Warhead fission/fusion fraction

WHDRNG(50) Warhead range*

WHD REL(5O) Warhead reliability*

WHDCEP (50) Warhead CEP

WHDSPD(50) Wa rhead speed*

I —

_ _ _ _ _ _ _ _ _

* ASM warhead only

293

- p

- — 

~~~~

—— • - - ——-— —

~~

— • — - - — — — — - - - .
_ _ ~~~~_ _

.
~~~~~~~~~~~~ -—-—-—. - -~- --- --- --



r-_ —- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -- •- - —•------—- •— -- --- — —----- —-, ,•-—
~~~

-
~
- -- - --—,----—--- —- ——-——-—-—--——------- -

4.7 Subroutine F.NTMOD

PURPOSE: Driver subroutine for PLANOUT Module

ENTRY POINTS: ENThOD (first subroutine called when overlay
PLANOUT is executed)

FORMAL PARAMETERS: None

COMMON BLOCKS: ADVRB , C15 , C30 , CALLSW , LASREF , PRNCON , ZEES

SUBROUTINES CALLED: ABORT, ALTPLAN, HDFND , INITANK , INSGET , INTRFACE ,
PLANTANK , PLNTPLAN , RETRV

CALLED BY: MODGET

Method:

First the switches in the /CALLSb~/ block are set to false . These
switches prevent the routines CEOGET, LNCHDATA and WEPDATA from being
called more than once. Next the NUMTBL record is retrieved. The
reference code of the last nontanker sortie (LASREF) is obtained from
the reference code of the last bomber sortie (LBMBREF) or from the
reference code of the last missile sortie (LMSLREF) if LBMSREF is zero.

Now all adverbs are read and switches and pointers in block /ADVRB/ are
• set accordingly. The ONPRINTS clause is now processed to set values in

the /PRNCON/ block.

Finally, the appropriate overlays are read in and executed according
to switches set by adverbs. If RECALC was input , INITANK, PLNTPLAN
and PLANTANK are called. IF ACARD, CCARD or ICARD clauses were in-
cluded , ALTPLAN is called. And , if STRIKE or ABTAPE were input ,
INTRFACE is called.

Subroutine ENTHOD is illustrated in figure 62.

294



_ _ _ _ _  — - - — --- -~~~- --• ----- ~~~~ - --- • - - - - • -•-,-
~~~~~~~~~~.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -  -

---~~-----
- - - - — ~~-

C
!TART i

Set Switches
in /CALLSW/
to “False”

4
Call RDFND &

RETRV for
NUNTBL

Set Reference
Code of Last

Nontanker

Call INSCET
for Number
of Adverbs

Any Yes
Adverbs?

No

Write Error
Message for
No Adverbs

RETURN

Figure 62. Subroutine ENTMOD (Part 1 of 13)

• 295

—
~ - - -~ -—- ~~~~

—------ ---— - ----— --
~~

Set Adverb
Switches to

False

I

Zero Out
Adverb

Pointers

Do for All

Call INSGET
for Next
Adverb

RECALC? No
6

Yes

Set RECSW
to True

— 1
Figure 62. (Part 2 of 13)

296

—

_
~~1-*
-_ ---- .

.
.

•- -
-

• ~~~~~~~~~ -— - .- —— ~~~~~~ -~~~~~~ •
-~~~~~— -~~~~~ -— - - -~~~~~~~~— -

••L_ -- - - - ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
- -

~~~-



_ _ _  —- —--•- ---- —- -• -.— ~~—~~~~~--~~~-- -— --—----- - -~~~~ 
--.——- 

~~~~~~~~~~~~~~~~~~ --~~-~~
-
~~~

/

‘

STRIKE ?~~~~~~

’

~~~~~~.!! ~~~~

j ies

_ _ _ _ _ _ _ _

/ Previous
~ _______

[irite Error
/

Adverb’
7

Li 7AB~IWEAd~~J

P0
_ _ _ _ _ _ _ _

~

;t SThSW

]

(
iuiu~~)

• I _ _ _

/~Processing
~
‘\ Yes T Set LABA 1(ABTAPE ~~ to Show End

\

Clauses? of C1auses~~~
J

Set Firet
1 4

STRIKE Clause ~~~~~~~

and ISW~2]

Figure 62. (Part 3 of 13)

297

_ - .

- - — - — ~~~ ~~ _s_ •

-‘

- -

ABTAPE ?~~~~~

\) No

~Yes

(

Pmvious

)

~~es

~Q~No

SET ABSW

L to True

I _________________

(

1~~ProceaeLn~ ‘)Yes~~~ Set LSTRA to

Clauses? / [of Clauses

$No

Set First
A BTAPE Clause

and ISW—3

H

Figure 62. (Part 4 of 13)

- — -- -•------ — --- -- -- ----— —------—-— --— —- -,---‘•----,- — - -—-----.-——

10

A~ARD
ICARD or

No -12
CCARD?

Yes

Previous No Set CHNGSW
Change to True.
Card? Save First

Yes

Set Last
Change, LCHNG

to Current
Clause Index

3

Set Last STRIKEProcessing Yes Clause Pointer ______

R and ISW— l
Clauses?

Procea~ ing Yes

Figure 62. (Part 5 of 13)

299

p -

- c _ -
-

- -- --~~~~~ —~~—~~ -~~~~--- -----—-- - - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•

~1

(

~~~~STME ?~~)Ye
s

f

Increment Co

uj
~~

No

MSLCOR? ~~~s~Yes
~~4

~n rement c u t

\ / t
U4COR

~~~~~~~~~~~~~~~~~~~~~ “-[_ . ~::~_.I-•---•
~
”

( 
FUNCct4? Yes Save Index 

____

_ _ _  _ _

Figure 62. (Part 6 of 13)

300



_______________________________ 
~~~~~~~~~~~~~~ —

_
Set LSTRA and
LAM if Not
Set Already

_ _ _ _ _ I

Set all Print
Option
Defaults

N0
4)

Set ISW~l:
Expecting

Option
Number

-

Ca ll INSGET
21 for Next .

22

Yes

End of Yes IS~~1, No Write Error
Clause? 2 or 4? for ~ 4PRINTS

No

B RETURN

Figure 62. (Part 7 of 13)

301

- _____

__ ________________ ~~ ~~~~
•

~~~~~~~ _~~~~
—------—---.—- ~4



0 C;)
I -

NUmerLC No ISW.2? No ISW—4?

es Yes• Yes

Branch
on rsw 23 No Minus

Operation?

Yes I -

~~~~~~~~~~~~~
o ro

Lim~~

21

I
Figure 62. (Part 8 of 13)

302

_______ __________ ____________________ ~~~~_________________

- - -— - -_ . - - - - .-__-.-,---- ‘- —--- - - - —•
------- - -—-- -- —--• ~~ •I~ -

I Set IBR Based Upon 1
I Input Operator: 1 forI

Couna , 2 for Asterisk,l
I 3 for Ampersand and 4

I
for Slash

Set ISW— 3.
Expec ting
First Limit

-

i

j Figure 62. (Part 9 of 13)

303 .4
• p -

~

- _ -• -
— - •-

-
—

~~~
——- - L t - ~~~ • - -~~~—~ 

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -~~ - . ~------ ~~~~ -~~~~~~~ - -


r -- - - •
-

~~~~~

_- —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , . n~~~~.v -- --

I

26 1 -

Set IPRW~
on Print

Option

IPRNT ~ 16? 
Yes 

22

0

Set JPRNT
Request
Number

Set 1SW 2.
Expecting
Operator

— I
Figure 62. (Part 10 of 13)

304

I 
____________________

——~~~~~~~~~~ __________ _____ __________ 

— — — —



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -~~~~~~~ 

31

Set ISTPR
From Input

ISTOR 
~ 

0? Yes 
36

0

32 Set ISW=2.
Expecting an

Operator

Branch
on IBR

Store ISTOR
—1 

~~ as Las t
Group

~~~~~~~~~~~~~~~~
fR

.3 Store ISTOR

Figure 62. (Part 11 of 13)

305

- :~~~ -
‘

~~~ -

- - •  - - •  - - — - — ----- --—.—— 



— ----——.-- -----.-- ~~~
----—- - - - - - - •- -

~~~~~
—

~~~
------•—

~~——— - - - — - --—--—- ---

~ 1

Set ISW~4.
Expecting an

Hyphen

/“ Branc~~~~~~\
on lBR

f
~~~~

eIS

~~R F

Store ISTO R
~~ as First

Corridor

Set ISW—2 .
Expecting an 21

Operator

Figure 62. (Part 12 of 13)

306

-—-- — ---- -•--- - •--- ---- — ------ — - — -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--
.---- — --.—-



- —--• - ---•- -- - — --- — ------ ——------ —--~~ —— —-—— — --- --- -—--—-- - •-----—-- .- ----•,-- -•-——-- ---—-—---—~ ---—--• --- ---—-‘-—-•- —c.--—- -—---‘—- —•- —-~- — —----

P _
RECSW o~~~~

’
\ 

~
, Call u.ir~ic( CHNGSW—True~ 

~ ea
11 for PLNT

___________/ 

Overlay

•No 

I ______________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I~No / S TRSW or 
~
1J”

~ _____________

‘ç SwaTr::?

_ ./
K

~
cH

~~

W.True
?)

Yes 11 ALTPIAN

Call LLINK
for INTR
Overlay

~~~~~~~~~~~~~~~~~~~~~~~~~ 
C*Ii ~~1NK

I IL 0ver~1
Call No

TNTR FACE

___________ 

Call

I

~~ RETURN

Figure 62. (Part 13 of 13)

307

_ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



--— —---- -
~~~~

--~~~~ ----- --
~~
------- -- ------- - —.- -•---- ----- ---- -- - --

4.7.1 Subroutine CLINDATA

PURPOSE: To initialize common /DINDATA/ .
-

ENTRY POINTS : CLINDATA

FORMAL PARAMETERS: None

COMMON BLOCKS : DINDATA

SUBROUTINES CALLED: None

CALLED BY: PLAN , PLANTANK

Method:

Each word in common /DINDATA/ is set to zero.

Subroutine CLINDATA is illustrated in figure 63.

p

308

r~~~
- —

- - —-------— -- ---- _ z •_ _ • _ -- --
~

--
~~~~ - - -—--- -- - --—— - - -- — -—- ____.&_ __ ——---- —--~~-.~~~~~~~-~ -—-- - -- -- ---- —

~~~~~ 
— - -~

El START)~~~~~~~~~~~~

I

Zero Conunon
IDINDATA~

J

C RETURN3

Figure 63. Subroutine CLINDATA

— .--
- _____

- ---~~~~~~~~~~~~~~~ -~~ - --~~~~~~~~~ -~~~~~~~~
-

•~~~ -- ~~~~ -~~~~--~~ -~~~

- • ~~~~- ~~~~~~~~~~~~ - -- -~ fl
- - - -

4 .7 .2 Subroutine CONVLL

PURPOSE : Conver t latitude and longitude to degrees ,
minutes , seconds (1)15) format

ENTRY POINTS : CONVLL

— FORMAL PARAMETERS : XIAT : Input latitude
XLONG : Input longitude
CHLAT: Output latitude (character *7)
CHLONG: Output longitude (character *8)

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: ABOUT, SNAPOUT , STOUT

Method:

The process is similar for both latitude and longitude . The latitude
is converted first . The letter (CNN) is set to N and if the latitude
is negative it is set to positive and CNN is set to S. The degrees ,
minutes and seconds are then broken out and ENCODEd into CHLA T.
Longitude is now processed , CNN is set to W. If longitude is greater
than 180 it is subtracted from 360 and CNN is set to E . Longitude is
then broken down and ENC ODED into CRLONG.

Subroutine CONVLL is illustrated in f igure 64.

310

- - - ~~~~~-—- - - -“-- - -~~~~~~~ - —~~~~~~
- - - - - ----~• • - - ~ .-

p - — - - -———— ——--
~— -• •—,—‘--—.-- ---•.-.——-- — - ———•—-——-- -— - • —---—-- — — - - -—--—--——--—— ‘-—•—,-,—-— •———----—..-————- — ~~-—.-——

Set IBR to 1.
Set Latitude

Letter , Adjus t
Southern Latitudel

I t
Calculate
Degrees ,

Min utes and
Second s

$ 3
I Use ENCODE

/ IBR 1? ____________ to Create
/ Charac ter

Longitude

EYes

2 1 _ _ _

Use ENCODE
to Create RETURN

j

Character ‘-.-_

Latitude

- 1 .

Set IBR to 2.
Set Longitude
Letter, Adjust
East Longitude

I
~

Figure 64. Subroutine C0~VLL

311

- _ _ _ _ _ _ _ _ _

4.7.3 Subroutine GEOGET

PURPOSE: Collect geography data and store it in appropriate
common blocks

ENTRY POINTS: GEOGET

FORMAL PARAMETERS: None

COMMON BLOCKS: ClO , Cl5 , C30 , CALLSW , CORRCHAR , DPENREF , HAPPEN ,
RECBAS

SUBROUTINES CALLED: DISTF , HDFND , HEAD , NEXIIT , RETRV

CALLED BY: ALTPLAN , PLNTPLAN

Method:

After checking for a previous call , this subroutine retrieves the pene-
tration corridor header. Then it retrieves each penetration corridor.
For each corridor it stores information in the /CORRCHAR/ block. Fur-
ther, it retrieves the doglegs of each corridor which provide data for
both the /CORRCRAR/ and /HAPPEN/ blocks (see section 4.8.13, subroutine
PLAN).

Next the header for depenetrat ion corridors is retrieved. Each depene—
tration corridor is retrieved along with its doglegs and the data stored
in blocks /DPENREF/ and /HAPPEN/ . Recovery bases linked to the corridors
are also retrieved and the associated data store in block /RECBAS/.

The header for recovery bases is now retrieved and the la t i tude and
longitude of each base is saved in block /RECBAS/. Finally all refuel
points are stored in block /DPENREF/.

Subroutine GEOGET is illustrated in figure 65.

L
312

. ~~~~~~~~~~~~~~~~~~~ ________________________

START

Called Yes
Previously? RETURN

No

all HDFND &
RETRy forPenetration
Corridor
Hea er

Call NEXTTT
for Next
Corridor

End of Yes
Chain?

No

Store Corri-
dor Data

Store Defense
Zone Data

Set Starting
Pointers For

Block
/ HAPPEN /

3

Figure 65. Subrou t ine GEOGET (Part 1 of 6)

313

—

-

-

(.- - -

—
~

- - — - - — -
~

--
~

- --
~~~~~~~~~~~~~~~~~~~~~~~~~

~
- -—

~
----

~ 
— --

~~~ 

- - -

IlCall NEXrr~~]
fl for Nex t

Dogleg

_ _ _ _ _

6
/ Fiave Las t Se~ J/ End of \ Yes lof Coordina-

~~ Chain? “~~~ors as Entry\~ / ~sve Leg Coun

$No

Store Coordi-
nators in

Block
/ RAPPEN /

_________ _________
330

I
I hndicate Out-/ Defended ~ N / Inside \ Yes I side Zone.(Leg?)— °

~~
“-(Defense).— ~~~~~ JAPTYPE to-• \~ J \~~Zone ? / __

of Zone

$Yes 1No

/r~
n;ide
\

Yes

\ Zone? /
J NO

310
Indicate itt

Set JAPTYPE
et JAPTYPE tc4 to
Show Start Zero

of Zone

j Figure 65. (Part 2 of 6)• L
_ _ _ _ _ _ _ - -

314 —

- -~~~~~
.
~~

---~-•-•— -
.

_i .
- -

_ _ _ _ _ _ _ . • — ~~~~~

- - - ---- —---
~
-- - - -- - - - - - -- - —-----.- ---—--- -- -—— — -—~~

.-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— - -- -•--
~~~

----- - •—,- ---.- - - -- —--~~~~~~~~~ - —--n
-

\ Save Pointer ,
/First Leg? \~ es

_
rigtn Coordi

\ [nates and Set

_________/
ength to Zer

$NO

Call DISTP
and Add
to Length

wave Distance
~nd Set Xl andYl to Save

Coordinates

Figure 65. (Part 3 of 6)

315

L~. _______________
___~~~~~~~~~ _~~L. _ ___________________________ _____

- -- -—
~

- —--- ---- - -- -- ----- - ~~~
- --

~~~~~
- - -

~~
-- - -•-— - ---.

I

7

Call HDFND
RV for De

penetration
Corridor

de

all NEXTTT
8 for Next

Corridor

End of Yes
Chain? 16

Call NEXTTT
9 for Next

Dogleg

12

End of Yes Save Leg
Chain? Count 13

10
tore Corr ido

First Yes Coordinates
Leg? Set Distance

to Zero

Call DIST?
for Save 

9
Distance Coordinates

Figure 65. (Part 4 of 6)

316 

— -~~ ----- ----  - —

________ 
___________________________________________ ~~ -~ -~~

-—--_— - -  
~~~~~~—— -——

~~~~



F -~ —“r—-—~-—--’- - - - —- -------—— - - -~~~~““~~~~~
- -

13

all NEXTTT
For Next
Recovery
Distance

14
Yes Zero Capacity

End of for Any
Chain? Unused 8

Bases
No

Store
Recovery
Distance

aIII4MD PD?
Recovery

Base
Record

Store
Capacity
of Base

Ca11 HZAD
fo~~TARGET -

RepresenU
Base - 1

Store t -

tude , Longi-
tude and

Index Number

Figure 65. (Part 5 of 6)
317

- - —-- --- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -~~--- - ---- -- - - - -. - - - -------- - -~~~ ---- - - -~~-----~~~~~~~~~~~~~~~~~ -- -- - - - — -— - - - - — -
~~
---- —---

~~ 
- - - -  - --------- ---- -------- --- -

F

16

all IWFND &
RETR V for
Recovery

Base Header

Call NEXTTT
for Next 17
Recovery

Base

Yes 
Latitude

Longitude

No
18
all HDFND &
RETRV for

Refuel Point
Header

Call NEXT~T
for Next 19

efue l Point

End of Save
Chain? 

Yea Latitude
and

Longitude

RETURN

Figure 65. (Part 6 of 6)

318

c



4 . 7 . 4  Subroutine SNAPCON

PURPOSE: To control the activation of optional prints.

ENTRY POINTS: SNAPCON

FORMAL PARAMETERS: None

COMMON BLOCKS: lF1~PRNT , OUTSRT , PRNCON , SNAPON

SUBROUTINES CALLED: None

CALLED BY: ALTPLAN , PLNTPLAN , PLANTAN K

Method:

This subroutine with SNAPIT and SNAPOUT provides the capability for op-
tional printing. SNAPCON uses the ONPRINTS clause information to con—
trol the activation of prints during processing. SNAPIT is called
wherever an optional print is to be issued; SNAPIT , in turn , calls
SNAPOUT to do the actual printing.

For each inpu t sor tie , SNAPCON checks the print request list with a par-
ticular value of a print control parameter, say group , to de termine
which prints are to be activated. Let x be the value of the print con-
trol parameter; e.g., the group number on the current input record.
Suppose that a = the starting group and b = the finishing group as spe-
cified on the print request card . Then x is checked to determine
whether it is in the interval a to b. Either a or b , or both , may be
blank or zero on the control card . Table 8 lists the possible values
of a and b , and the value that x should assume if the print is to be
active in each of these cases. Let am be the minimum value x can have
and bm be its maximum value. Then the following single text of x suf-
fices to determine if x is such that the print is active:

a’ + a L(a ’) � x ~ b’ + a’L(b ’) + b L(a ’)

where L(x) 1 if x 0 and is 0 otherwise.

For each print number (1 to 15) which is to be active for the current
plan , SNARCON sets the corresponding element(s) in the NAP array to 3.

Subroutine SNAPCON is illustrated in figure 66.

319



- - -  ~~~~~~~~~ —-~~~~~~~~~ -- - - - - - - — - -
~~~~~~~

Table 8. Possible Values of a and b

a 1, VALUE OF x FOR ACTIVE PRINT

0 0 any value

a’ 0 x a ’

0 b’ any value

a’ b ’ a’ x b’

320

It ç - ~~

- — — ——- — - - - ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ —~~~~~~~~~~~~~~ - — - -— -.~~~~~~~~~ -

pr
- -

I
I

START

Clear NAP
Array To

Ones

Clear
IFTPRNT

Array To
Zeros

ISHO T—O?

(ISHOT 20In it ially
Is l)

No

r ite Out He re To Set
Print Print Flags

Message As Each
Sortie Is
Processed

RETURN

Figure 66. Subroutine SNAPCON (Part 1 of 3)

321

_________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -
~~~~~

- -
~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


I

20

Do 30 For Done ISCROUP -
Each Request Group

(NREQ) Number

IPRINT-
Print

Number

Is This Group
Number Same Yes

As Last?

23 No

set xcown
For This

Request To 0

24

Calc ulate Upper And
Lower Group Bounds For

This Prtnt Request

No Does This
Group Fall Within

low,ds?

25 Yes

Calcu late Upp er And
Lower Corri dor
Bounds For This
Print Request

Does Thu
Corridor Pall
Within Bounds?

Yes

31

Figure 66. (Part 2 of 3)

- j
-

322

r ~~~~~~~~~~~~~~~~~

- - - —--—---- - -

~~~~~~

- - 

~~~~~~~~~~

--- - ---

~~

-

31

31
Calculate Upper

And Lower Sortie
Bounds For This
Print Request

Does This
Sortie Fall

Within Bounds?

26 Yes

IPRNT ~100?

No
27 -

LEG—IPRNT
Module 100

• IFTPRNT (LEG)
lnput Frequency

For Print
Request

28

Add One To
ICOUNT For

This Request

Is l~0UNT > NO
Frequency ?

Yes

Turn On NAP
mdi cator For 20

Figure 66. (Part 3 of 3)

323

~

- - -‘--

—

4.7.5 Subroutine WEPDATA

PURPOSE: To collect weapon associated data and store it in
appropriate common blocks

ENTRY POINTS: WEP DATA

FORMAL PARAMETERS: None

COMMON BLOCKS: ClO , Cl5 , C30, CALLSW , GRPSTF , PAYSTF , TYPSTF ,
WHDSTF

SUBROUTINES CALLED: ABORT , HDFND, HEAD , NEXTTT , RETRV

CALLED BY: ALTPLAN, INTRFACE , PLNTPLAN

Method:

After checking for a previous call, this subroutine retrieves each of
the warhead headers (CLASS BOMB, ASM , RV , MRV and MIRV) and all en-
tries beneath each header. As each entry is retrieved its data , (YIELD
and FFRAC) are stored in block /WHDSTF/, additional data is stored when
CLASS = ASM. The reference code is also saved in array LREFWHD.

Next the pay load table header is retrieved and each payload table is re-
trieved and their data stored in block /PAYSTF/. LREFWHD is used to de-
termine the Class of the item. Items which have no match for LREFWHD
are assumed to be of class “FACTOR”. The reference code of the pay load
table is stored in LREFPAY.

The headers for missile weapons and the bomber weapons are now retrieved
and each type entry beneath them accessed. The data from each type entry
is stored in block /TYPSTF/ and its reference code saved in LREFTYP.

F inal l y, the weapon group header is obtained and each weapon group re—
cord is retrieved. Group data is saved in block /GRPSTF/. In addition ,
the LREFTYP and LREFPAY arrays are used to set type and payload indexes
respectively.

Subroutine WEPDATA is illustrated in figure 67.

• 324

L

~~—~~ — ----——---~~~~~-
-
~~
,

- - ~----- - - -
~~~~~~ 

— - - - - - A



Set WCLASS
=

Call HDFND &

1 RETRV For
Warhead With

CLASS = WCLASS

all NEXTTT Fo
2 Next Warhead

Record

End of No
Chain?

Yes
Reset WCLASS So
That It Is Equal WCLASSIn Succession To 

— I
~~ A C M ~~I ?

~~~~~~~~~~~~~~~ ~~~~~ ,
“MRV” , “MIRV” And

Finally “ASM” Yes

4

Fi gure 67. Subroutine WEPDATA (Part 1 of 7)

325

— .----- - - ---------- - --- — ----~~~~ - -—--— ~~~ - -- -• - -- - ---~~~---—-—•—- - • - -•~~-- .~~~~~~~- - —•——— -.- --- -- -—

3

Save Yield , Fission!
Fusion Fraction And
Class Name . Also ,

Save Reference Code Of

WCLASS No 2

Yes

ave nge ,
eliability, CEP

And Speed Of
ASM

2

Figure 67. (Part 2 of 7)

326

Il,lII_ _ - ----- — - — - - - — f l - - —~~~~~ . — ----. •---—-—------ --•-.---- -•--—---—--_— -~--- - ----~~- - --~~~~~‘ ~~ --- ----.---------- --

— •—-•--•— --- —.---.--—-.- - .•—.
~

~

--
~
—--— ---.-.------—.---...1

I

4

Call HDFN D &
RETRV For

Payload
Tables

all NEXTTT For
Next Payload

Table

End of Yes
Chain? 13

No

Save Payload
Table Refe rence

Code . Ze ro
NOBOMB1 And

NASM

Call N EXTTT
For Next

Table Entry

Yes End of
Chain?

No

A

FI K I ,r (~ 67. (Pi~rt I t i E 7)

327

—--

~

~-_ __ _

_
_ _ _ _ _ - — - - --~~~ --—~~ A

r -

~~

- -- - - - - -

A

Call HEAD For
Warhead
Re cord

Is Reference ,,
Save FACTORCode In Warhead 6

List? Parameters

Yes

9

Store Warhead
Is Warhead Yes NOBOMBI No As NOBOMB2

Class = “BOMB”? = 0? And IWHD2

No Yes

Store Warhead As
NOBOMB1 And

IWHD1

Warhead Y a tore Warhead As
Class = “ASM”? NASM And lASH

No

Store NWHDS As

lass “M RV” NOBOMB1 Set
IMIRV

12 No

Store Warhead As
NOBOMB1 And

IWHD 1

Figure 67. (Part 4 of 7)

328

p -

~~~~~~~~~~~~~~~~~~~~~~~~



Call HDFND For
Mi ssile Weapon

Header

14

Call RETRV For
Weapon Header

(
~~~~~~~~~

Ca11

_

NEXTTT For

[

~~h1
B2’)~

1m

]

_ _ _ _ _ _ _ _ 4~Yes

End of _______ Processing
Chain? \

\
Missiles?

~~No

have Weapon Typ J
Data Including 18
Re ference Code

~~~ No/
’ 

Procesai~~
”
\

Missiles?

~~Yes

Save Additional
Missile Data

Figure 67. (Part 5 of 7)
329

~



r — _ -— _—-----.- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-- - - - —-- - -S — —S. —

18

Call HDFND &
RETRV For

Weapon
Group Header

19 Call NEXTTT
For Next

Group

End of Yes RETURN
Chain?

No

Yes Group
— 0?

No

Store Group
Parameters

Weapon Type No
Refe rence Code Call

In Table? ABORT

Yes

21 - -

•

Figure 67. (Part 6 of 7)

- -
~~~~~~~~~~~~~~~~ ~~~~~~~~

- - _ 

- -
~~~~~:~ :~-~

; - -
-

__

~~
-

- - - -

——

~

- - -S _____ ~~~~~~ - - - — -

_

~~~~~~~
-
~~~~~~~~~~~~~~~~~~~~~~ .--~

_
.

- -~~
-—- - --

—---s--n--- —5---- - ~ - .-—~-~ ,- . ~
••

~
__•____ - ._-_.•._.-_--______ __

— _ _~ ~•5 5—.— —— ~~s •s-••-S~

I

p

H

Save Type Index
And Set Group

Class Index

Call HEAD For
Payload Table

Reference

(
~
:

d

~n
O

~a~~~~

oad N Call

Yes

[Save Payload

L
Index

Figure 67. (Part 7 of 7)

331

__________ - ~
j

p

5

— — ___._ . _ s- s — .4C. -.J ._$~ ..k— -_.. ’.L t

5- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -s - W ’~~~~
5-
~~

- - -

4.7.6 Function XLL

PURPOSE: To convert latitude or longitude from DDMMSS for—
mat to decimal degrees.

ENTRY POINTS: XLL

FORMAL PARAMETERS: CHRIN — Input character string

COMMON BLOCKS: None

SUBROUTINES CALLED: ABORT

CALLED BY: IFSET , LNCHDATA

Method:

The input string —— CHRIN —— is scanned one character at a time until
one of the characters “N” , “S” , “E” or “W” is found . Each t ime a niim—
ber is found it is added to ten times the previous total. When the
directional letter is found, the calculated total is converted to decimal
degrees and signed based on the directional letter.

Function XLL is illustrated in f igure 68.

4

332

______ - - . - . .

- -- - -r~~ ’.
—

~~~~~~~~~~~~~~~ 
-S —• _ - ~~~~~~~~~ --- -— — -,a~~s-.’~~~~~~-~~~~ ’s- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - - - __ •__ 5_ ’~

___ 7 --

START

Set to Begin
Ext raction
From CHRIN

Extract Next
Character
Using FLD

Numeric No 
haracter

Characters? N , S , E , 4
Or ‘W ’?

Yes No

Update Reset

Total Character
To Zero

Reset
Character
Pointers

Figure 68. Function XLL (Part 1 of 2)

333 

- - 
- — ----~~ - - - A



— 
•-5•~ ~~•-s• • • -S~~~~~~~~ 55-• ••-S~~ -s--S~~~~~-— s - S - - - —  —~—5- -- ____

4

Break Tot al
nto Degrees,
Minu tes And
Seconds

Recombine
As Decimal

Degrees

Last
Character Y Make Result

— ‘s’? Negative

No

Last
Character 0

=

Yes

Make Result
= 360 — RETURN
Result

Figure 68. (Part 2 of 2) 1 

-

334



-- --5— — -  - - -

Ii

_ _ _ _ _ _ _ _ _ _ _ _

*
4.8 Subroutine PLNTPLAN

PURPOSE: Driver subroutine for overlay which performs the
sortie completion function

ENTRY POINTS: PLNTPLAN

FORMAL PARAMETERS: None

COMMON BLOCKS: ARTIME, d O , C15, C30, CONTROL , CRPSTF , IRF,
LASREF, MISCT, OUTSRT , PAYSTF, PPINFO, RECBAS,
RECOVERY , TANKA

SUBROUTINES CALLED: DIRECT, GEOGET , RDFND , HEAD, ITLE , KERPLUNK ,
LNCHDATA, NEXTTT , PLANBOMB, PLANTMIS , RETRy ,
SLOG , SNAPCON , SNAPIT , SORBOMB , WEPDATA

CALLED BY: ENTMOD (PLANOUT)

Method:

After some initialization , WEPDATA and GEOGET are called for basic data
retrieval. The refuel area and recovery base arrays are now setup.
LNCHDATA is called and the tanker data is printed. The sortie header
is retrieved to begin the main process. Each sortie is read in and then
processed. PLANTMIS is called to process missile sorties and PLANBOMB
is called to process bomber sorties. Prior to calling PLANBOMB, the
bomber sortie is checked to see if it is a “one—way” sortie or a sortie
in which the bomber is not fully loaded. After the call to PLANBOMB,
SORBOMB creates the completed sortie in the integrated data base.

When all sorties have been processed , the lists of “one—way” and “not
fully utilized” sorties are displayed along with a table of recovery
base utilization.

Subroutine PLNTPLAN is illustrated in figure 69.

* First subroutine of overlay PLNT —— this overlay performs both sortie
completion and sortie change functions. PLNTPLAN is the sortie com-
pletion function driver.

335 

.s-- - .•:~~~~~~~~~~~~~~~~~ —.~~~--~~~~~ -s~~~~~ •5-~~



.-_----- -5- . - 5————-- , .—- - — - - - -------5- -- ---- - --.-— - -——--5- --
—’

- — —  - 

I

C START~~)

Set Basic
Parameters

—

Zero Recovery
Base U se And

Capacity

c*ll WEPDATA
And GEOCET

For Basic Data

Store Recove ry
Base Capacity

A nd Index
Numbers

—

Ini t ia l ize
Bomber Refu el

Arrays

Call SNAPCON
And LNCHDATA

:~~~~~~~~~~~~~~~~~~~~

Figure 69. Subroutine PLNTPLAN (Part 1 of 7)

336

.~~~- p 
5

r 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—-, --

_ _ _ _ _ _ _ _ _ _ _ _ _ _ —-—- -- ------- - ----—---

/Wr ite Out /
/ Tanker

/
Tables

Set LS IDE

Call SNAPIT
For Basic

Data

Call HDFND
A nd RETRV

For Sortie
Header

®-H Ca ll NEx:TT

H.

Figure 69. (Part 2 of 7)

337

- ______- —— -----—
~~~~

—-—----
~~ 

- . :
~~- 5

-.-
- 

- - —U-

________ -5—~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~~~ -

-

~~~— - -s - -- - ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  - A


— - - - - - -
~

- . - . - s _ - . -
~

. - - ---—- - —---5- —---.-5-—
~~~~~

- - - -— - -— - -
~~~~

(

j

)

Save Old~~1LASREF And Set
To

New Sortie

Call HEAD
I And DIRECT

For Group
L Data

Save Sortie
Table Data

Call NEXTTT
8 For Next

Event

End Of Yes
12Chain?

No

I 11
Cal l HEA D

Store Event [N o Event Yea A nd DIRECT
Data j—--—- Type A For Assignment

Figure 69. (Part 3 of 7)

338

— ~~~~~
5-

r
L - - -- ~~~~~~~5- - ’-— _______ - - -

—--s--- --—-‘--5— — _______________

12

M issile Yes Call
Sortie? PLANTMIS

No

Bomber No Reset
3Sor tie? LASREF

Yes

Call SNAPCON
And SNAPIT For

Preliminary
Prints

Calculate
Max imum

Load

CallBomber
Yea KERPLUN KUnder-

7 For Lighta 1 located?
Load

No

Call
PIANBO?~ No

Bo~~:r
~~~~~~~ 

Call

Recovered? For One-Way

Figure 69. (Part 4 of 7)

339 

— —5 -  ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,~ —~~~~~--— 



— - -5--- --—-5-—-- ‘— 5-,— -- - - ------ - --s--------- — —-- - - - -

Call
KERPLUNK To
Terminate

R4sts Of Sorties

/ Write
/ Header
/ For One—

f Way Sorti

Set 1=0

‘
—5-.
’ 

Call
( 17) KERPLUNK
\. .J For Nex t

Item

End Of Yes
List?

No

Add Item
To Output

Array

No Array Yes
Fu l l? 18

Figure 69. (Part 5 of 7)

340 

‘ - 5 -

- _ ‘ - _‘- - _ . _ l S J S X M S L a J~&4,t~~ 
, - - - -

~~~
- -—

-

— —- - ~~~~~~~~~~~~~~~~~ - - - -- - - --

I

/ Write 7
/ Output Arr

~!/

End Of No
List? 16

Yes

Processing
One Way Yes Wr ite Light

Sorties? Load Header

No
20

Wri te Out
Fina l NU SED

Array

End File On
Unit 21

Do For All
24 Recovery RETU RN

Bases

C

I
Figure 69. (Part 6 of 7)

341

_ _ _ _ _ _ _ _
-

-
- - - -

~~~~~~~ ~~~~ 
_ _



-- -———-- ~~~--5--- —-S

_______
-- — -- S  —5— ‘

~ 1 ’

C

Ze ro Output
Arrays And
Save Totals

Rewind
Unit  21

Do For All
Reco vered Done
Groups

Do

Store Data Read Data
In Output F rom Uni t
Arrays Unit 21

Determine
Number Of

Print Loops

Do For All Done
Print Loops 24

Do

— Write Data
From Outp ut

A rrays

Figure 69. (Part 7 of 7) I -

342 j

-‘- - .- :-~
-
~-::

- 
• — - -

- 

~~~~~~ - 
— -5-- -

-

— -5- - -5——-——— - -- -- - ,~~~~~~~~~ a s..a.k ~~ _-
~~~~~~~

- -
_~~~~~~~~~~~‘ ~~~~~~~~~~~~~~~~~~ ~~~~—~~--



r

*4.8.1 Subroutine ALTPLAN

PURPOSE: Driver for sortie change function.

ENTRY POINTS : ALTPLAN

FORMAL PARAMETERS: None

COMMON BLOCKS : ADVRB, ClO , C30, CORRC1, CORRCHAR , ERCOM , GRPSTF , —

LASREF, OOPS, OUTSRT

SUBROUTINES CALLED: DATIM, DIRECT , DISTF , DLETE , FINDME , GEOGET , HEAD, -

INSGET , INSPUT , LNCHDATA, MODFY, NEXTTT, ORDER ,
PLANBOMB , PLANTMIS , RET Ry , SLOG, SNAPCON, SORBOM ,
STORE , TOFM, WEPDATA

CALLED BY: ENTNOD (PLANOUT)

Method :

User Inputs

The user may alter any sortie developed within the QUICK system. Sub-
routine ALTPLAN, reads these sortie change requests and updates the
data base accordingly. Three adverbs are recognized and are:

‘CCARD ’ —— indicates change strike
‘ICARD ’ —— indicates insert strike
‘ACARD ’ —— indicates add sortie

The CCARD Clause. The general form of the CCARD (see UM 9—77, Vo 1 t4e IV
for comp lete discussion) is:

CCARD sortie number, desigl, desig2, ~~ hob , dec , rac , tchange

* caloff, diatoff, dlongoff

The first three parameters specify the action to be performed and must
be entered for each adverb. The “sortie number” indicates whic~h sortie
is to be changed. Various modes of entries for the target DESIC’s are:

o “desigl” will be dropped when “desig2” is blank (that is , a
cousna appears in lieu of a ta rget DESIG)

o Strikes are replaced when both “desigl” and “desi~2” are non—
blank and not equal . “desigi” will be replaced by “desig2”
(and if a complex , it must be the representative target)

• * 
SecOnd sub routine of overlay PT.NT . This ovc~rlay performs both sort1i~
Ct)flIplit ton and sortie change funct ions .  The sortie change luncLion
drive r is ALTPLAN .

343 

- — “ - - -- — - - - --- - --5-— --5- -- --~~~~~~ ~~~~~~-~~~~--~~~~~ ~~~
. - --

~~~~~~~~~


~
5-5- ” ‘ ‘ “ ‘~~~~~~~~~ 5- 5 - - - ~~~~~~~~~~ .“5-~~~~~~~~~~~~~~~~~ ’- ~~~’

o When “desigl” equals “desig2” , elements of the strike are
changed. This allows a change in down time, height of burst,
of f set characteristics or depenet ration corridor.

Following “desig2” parameters that may be changed are optional. These
options come in two collections. In each collection the individual
parameters may be omitted but their preceding commas must still appear.
The f i rst collection contains the options of changing the height—of—
burst , specifying a new depenetration corridor , suppressing recalcula-
tion of attrition , and altering the flight time. The second collection
permits the definition of target offset. This collection must be intro-
duced by the asterisk (*) operator. Also , if no options are used from
the first collection, default commas are not required. Similar logic
applies if the fou rth , or third and fourth , or second , third or fourth
options are not employed .

The ICARD Clause. The general form of the clause is

ICARD sortie number~~ [
desi~l] ~~desig2

tchan~eJ

caloff ~ dlatoff ~ dlon~off]

“desig2” will be inserted af ter “desigl”. If “desigl ” Is omitted (two
commas after the sortie number), “desig2” will become the first target
of the sortie. The discussion of optional information for the CCARD
clause on new targets applies to “desig2”.

The ACARD Clause. This clause is used to add nonMIRV missile sorties.
This clause has the general fo rm :

ACARD desig, hob , group , siteind , isai , tlaun

* caloff, dlatoff, dlongoff

Generally, all comments concerning the CCARD clause apply to the ACARD
-lause . Note , that no sequence number is supplied; PLANOUT will supply
the correct value. “group” is the weapon group number containing the
launch base. “siteind” is the IND~ CNO of the site from the weapon group .
If no launch time (tlaun) is given , the program sets this time according
to salvo number and launch interval. If simultaneous launches are de-
sired , salvo numbers (“isal”) must be repeated for each round which is
to be salvoed ; i.e., if SIMLAUNCH is i, the missile salvo number j would
be repeated i times in order to have i weapons launch at (j_i)*(launch
interval). In the case of nonsalvoed missiles and bombers, launch will
occur at the earliest feasible time as determined by alert status, CORMSL ,
etc. If a launch time is specified , that value is added to the delay
times discussed above.

Processing within ALTPLAN closely follows user requests and is described -

below.

344

&

— — — - - — — — - ----5—

r - - — — - - ‘-- ---- - ——----

~~~

—-——---‘- -5- - --— - - -5 -
~~~~

1-
General

This subroutine is best followed by reference to figure 70 as much of
the logic is involved in data checking of input clauses. After prelim-
inary calls to obtain the necessary data for execution and to FINDME
which retrieves desired group , sortie and target record s, the subrou-
tine begins to process the input clauses one at a time.

ACARD Processing

If the clause encountered is an ACARD clause, the subroutine checks the
clause for errors. In the process of this check the desired target and
group records are retrieved by FINDME. The last nontanker sortie is
now retrieved . The range to the target is checked for system limits
and the time of flight, salvo , and launch time calculated . The values
for the new ASSIGN (record type 70) record are stored in /C30/ and STORE
is called . Finally, the values for the SRTEVA (record type 50) record
are stored in /C30/ and STORE is called . When all record storage is
complete , PLANTMIS is called to complete the sortie. Then all sorties
which occur after the new sortie (i.e., tanker sorties) are retrieved
and modified with their sortie numbers incremented .

CCARD and ICARD Processing

If the clause encountered In processing is a CCARD or ICARD clause , all
remaining clauses are checked to see if they involve the same sortie.
All such clauses (all those with the same sortie number) are then
processed before any clauses involving other sorties are processed.

When the first set of change clauses (CCARD and/or ICARD) for any
sortie are processed , the contents of common block /CORRC1/ are calcu—
lated . This block contains information on defended areas of penetra-
tion corridors for subroutine FLTSORT.

Each applicable clause is error checked in turn. In the process FINDME
retrieves the appropriate sortie table (SRTYTB). Furthermore , unless
the first input DESIC value is blank, the TARCDE record corresponding
to the target iden tified by the first input DESIG value is retrieved and
the first attendent weapon assignment (ASSIGN) from the proper group
found . The remainder of the process depends upon whether the clause
was a CCARD or ICARD clause and the values of the two DESIGs input
(DES1 and DES2).

In the case of a CCARD the second DESIG(DES2) is checked. If DES2 is
blank , the ASSIGN record retrieval above is deleted . If DES1 equals
DES2 , the subroutine checks on which data items have been modified and - -

then the ASSIGN, SRTEVA and SRTYTB records are modified as required .
If DES1 is not equal DES2 and DES2 is a legal target DESIG, the old

• ASSIGN record is deleted and the process procedes as in an ICARD below.

345

— - - — — ‘ -- - — -- - — - - - - - - --- ------ —

-5 -

For an ICARD (or from a CCARD above), the process is to crea te a new
ASSIGN and SRTEVA record in the proper chain order. This order is es-
tablished by the value of DES1. If DES1 is blank, the new assignment
appears as the first assignment event. In any case the target list re— -

cord for DES2 is retrieved and the new ASSIGN and SRTEVA records stored
as per the input clause.

When all clauses pertaining to a particular sortie have been processed,
the subroutine carries out the completion process for that sortie as
follows: If the sortie is a missile sortie PLANTMIS is called. In
the case of a bomber sortie the process is more complex. The sortie is
completely read into the /OUTSRT/ block. Then, unless specified other-
wise by the user, the FLTSORT subroutine is called to recalculate flight
time parameters. The PLANBOMB is called to complete the sorties and
SORBOMB to update the integrated data base.

Subroutine ALTPI.AN is illustrated In figure 70.

~1%

346

- —-~~~~~ -— - - -- - - - - - - -- - - -

CSTART D

Set IDS] -
Erro r Check
For Missing

DESIG

Call DATIM
And Set
CH Flag

_ _

Ca ll FWDME ii
To Set Up II

B reak Tables11

Call SNAPCON
To

Set Prints

Call WEPDATA1I
& GEOGET ~IFor Basic f~Data 11

Call I
LNCHMTA To
Read Timing

Data

Figu re 70. Sub routine ALTPLAN (Part I of 30)

-

-

- L~~~~~~~ _

-

- _ (_ -
-

- 5— -5— - -- -- -5- ~~~~ _ _ -5 - -— ----5— - - ---—--

¶1=- — - _____

AD—A058 UOb COMMAND AND CONTROL TECHNICAL CENTER WASHINGTON D C F/G 15/7

THE CCTC QUICK—REACTING GENERAL WAR GAMING SYSTEM (QUICK). VOLU——ETC (IJ)

APR 78 0 .J SANDERS . P F MAYKRANTZ . J M HERRON

UNCLASSIFIED CCTC—CS M—MM 9 77 V0L ’ PT SBIE—AD— E100 085 NL

068406
__ ___

U

-~~~~~~~~ ‘1

H

Set NEXT

F~~~t Clause CIID
No

Yes
Clauses?

Call INSCET
For Clause Increment i2 Index Clause

I~
1I
~ ~~_)Pointer

~Yes

Yea

/ Set Switch
ACARD? es

An
c~
i
1a:s

E
~
cT 13

No

6

CCARD Set Count Tol
Or Yes 1. Save Indexj

ICARD? And Type
Of Clause

No

3 A

Figure 70. (Part 2 of 30)

348

L -~~~~

- —-~—~~~~~~~
,——

~ —-~~~~~~~~~~~~
---— . -~~~ —.‘

~

.,-——“

~

-,--- —----
~
.-I
~’j

I

A

Call INSGET
For First
Item Of
Clause

!~Q
~

{ Type ISW

Save Value
As Sortie

Number

Wr te
Set To Searc / Syntax
Remaining I Error
Clauses / Message

Increment
10 Clause RETURN

Count

End Of Yes
Charge 32

Clauses?

No

B

Figure 70. (Part 3 of 30)

349

~~~~0

~



B

Call INSCET
For Clause

In dex

Processed?

~~

CA 

________________
Call INSPUT

CCARD No To Reset indexes
Or 10 To ShowAlre.dy

ICARD? 
— 

Processed

Yes

Call INSGET
For First

Item

Numeric Yes Desired Yes Save Index
Value? Sortie? And Type

No No

8 11

Figure 70. (Part 4 of 30)

350

UN-

_ _  

_ 
-~~~~ - -  - - -



— - —, -~~~~~~~~~---—-— ~~r

I
—— —— --—— ~~~~— — —  - 

13

Set Index
For ACARD

Call INSGET
For Next
Input Item

8 
No Alphabetic

Value?

Yes

Call R~’tRV
For TARGET
With Value
Or DESIG

16 Error~~~~ 

15

Wr ite Error
Message For
Wrong DES IC

RETURN

Ftgur. 70. (Part 5 of 30)

351

- -1

— ~
____ 

~~



_ _ _  -~~~~~~~~~~~ - -~~~~ __ _

_ _ _ _

YAR 

_ _ _

Call FINDME
For TARCDE
Record 15

Call INSCET

U For Next
L Item

<
~

Comea? 

>~
O

Yes

Set Default
For

ASGHOB

18

Figure 70. (Part 6 of 30)

I
— - — - - - - -

~ 

- ----- - - --  ~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _  - -~~~~

18

Call INSCET
For Next

Item

Coimna? Yes Call INSGET
For Next
Item

No

Special No 8 No Numeric
Word? Value?

Yes Yes

Reset ASGHOB Call FINDME

From Special For Weapon
Word Group Using

Value As GROUP

18

Figure 70. (Part 7 of 30)

353 

- -- - - - -~~~--—-- —~ — - ~~~~~~~~~~~~~~



- —~~—-- -- —-
~~~~~~~

-

~

--

~
—

~

- —-

~~~~

—-

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~

--- -

—

C

Call INSGET
For Next

Item

NoConina? 8

Yes

Call INSGET
For Nex t
Item

Numeric
Value? No

8

Yes

Save As Base
Index

• Number

Set ACARD
Optiona l
Input

Defaults

D

Figure 70. (Part 8 of 30)

I ~~

“ —- —

~~~

——

~

———

~~

----,.--- ——-—-.. — — 

~~~~

— — — — ————----

Call INSGET
For Next
Item

End Of Yes
Clause?

No

NoOperator? 8

Yes

Yes 22Asterisk?

No

Call INSPUT

20 For Next
It em

End Of Yes
Clause? 25

No

I E

Figure 70. (Part 9 of 30)

I

9. -— . -

L _

___________________________ ___________________
~~~~~~~~~~~~~~~~



- 
—:—-— -- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—-

~~
— -----‘ . —.- ---- —

~~~~~~

—

~ 
terisk?) 

Yes

______  
21

/ __\ 
Call INSGET

( Conina? \ Y For Next
I tern

Numeric No No Numeric
Value? / 8 Value?

Yes Yes

Save Value Save Value
As Salvo As Launch

Number Time

Figure 70. (Part 10 of 30)

356

- ...-
~~
‘
: ~~~~~~~~~~ 

— .

— ~~—~--~~~~~~~~~~~~~~ -— -- . ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~-~~~~~~~



r 
- - - . ‘.- -

~~

— -.---- - -—. - - - -

~~~~~~~~~~~~~~~~~

-

Call INSGET1 ~~ . - -

For Next
Item]

Set Defaultal
As Offsets:

[
ICOFF=2

J

(
~Comea

9)~~~~~~~~O

tijo

(_
sP:cia1)

N0

~

.r

~~~~
~Yes 

_ _ _ _ _ _ _ _

/ I Reset

11Ct1 ) Yes ~‘...j 
Defa;

~
l
~
ts As

\_________ 

ICOFF~3

J;~o2230

Call INSGETL
For Next[

Figure 70. (Part 11 of 30)

357

- --- --—-. --—.-- - - — — - - - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.~ -~.----- — .



~ _ _ -~ .-~ c

I

No
Coma? 8

Yes

Call INSGET
2260 For Next

Item

Coma?

N0

Numeric No
Value?

Yes

Save Value
As DLAT

Call INSCET
For Next

Item

J

Figure 70. (Part 12 of 30) 

-- - - — - --

~

---- -

~ 

— —~~~~~ —,. —~~~~~~ - ~~~~~~~
—. —-.~~~~~~- --.—~~~~~~~~~~ ——



- • -—---~ -~ .-—•.-- .. -—~~~~~~~-.~~~~~ -~~~~• - . - -  -

J

Yes End Of
Clause?

No

Comma?

Yes
23

Cal l  INSGET
For Next

Item

Numeric No
Value?

Yes

Save Value
As DLONG

Set OFFLAT
2350 And OFFLONG

Based On ICOFF

K

Figure 70 . (Part 13 of 30)

359

I

. - 
_



.—--~~
——.-

~ 
- - - --. -- —. .- —~~~~ —--.

-

H

No
Processing 59

ACA RD?

H
Set Sortie

Number And DCZ
Coordinates

[Call DISTF
For Range

Check
-

t 

_ _

_ _

Write

• 

<Prope~~~~r 
No 

~~/ M.seage
J

t
Yes 

_ _ _ _ _

~~~~Ca U TOF if ~~~~~
ThRND

Figure 70. (Part 14 of 30)

360I
- : ~:

-

,— ~~~— •-——--—• -—-.-••---------—---—
- -— -—--— -- ---- .-~. ~~~ —..

-- — —- — - .—— —-~~~~~~~ ~~~ - — - —- .- - - -- ~~~~~~~~~~~~~~~~~~~~
—

—--

~
- —- —.- -

~~
- - - — -

I

—— -. -~~ - ———-- — — - — - —.-- - -

(I Salvo~~~\ No

\ Weapon? /
~Yes

/ Salv~~~\ N I Calculate• (Number)-.L..~ Salvo From
Input? Launch Time

Calculate
29 Launch Time

• From Salvo
Number

S~~re V
ej

~~~~~~~~~

>

~~~~~~~~~

Call STORE
For ASSIGN

Record

Store Values
For SRTYTB
Record

Figure 70. (Part l5~~f 30)

361

-

~~~~~~~~~~~~~~ ~~~~~~~ .

- -~~~~ •~~~~~~~~~ -- - - --•~~~---~~~~~~~~~~~~~~ - ~~•--~~~~~~~ -~~~~~~~~ •~~~~~~ ----- ~~~~~~~~~- - - -  —••- —-• --• -- ~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..—~~~~ 
m-.-- -



-• 
_

,

Call STORE
For SRTYTB

Record
_ _ _  _ _

Store Values
For SRTEVA
Record In
/C30?

________$_______

ft Call STORE
For SRTEVA

Record

Call NEXTT~~~ JJ
~ 

To Return To
SRTY Th

Call PLANTMIS
To Process
Sortie

• •.

Figure 70. (Part 16 of 30)

362

_ _  
_ _ _ _  

_ _ _ _  

I
IL~~ 

-- 
~
- 
~~~~~~~

—
-

-
-

•
•., ;

•
~

~~~~~~~~~~~~~ 

- 
- --

~

-----—-_____________

-~~~~ —• • •m~~~~~~~~~ —----- -~~~-• —-- - - - •.--~~~~~~~~~~~-—- ~~• •.—~~~~• -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

31

Call NEXTTT
On SORTIE
Chain

End Of Yes
Chain?

~ No

Increment

1
~ortie Number

H

Figure 70. (Part 17 of 30)

363

• .• . ~~~~~ ~ 
-

• “ _ • • f .  - •

- -~ — -~~~~ -~—- —. —--
~~~~~~~~~~~~~~~

---- — — — - —

_
— -.--- - • - -~

-----• ,----—.----—---- -- - - •
~~•1

I—”32

Calculations Yes 42

\ Done? /
No

Do For All
41 Corridors

Zero TotalDefen-
ded Distance ,
Order Of Diffi—

• culty. Save
Attrition Rate

Set Rate And
One IDistance. Set

~~~ 
Order as

LF~~
t Only

II Call ORDER
More II To Set Save Order ,

Order Of Rates And
~~~~~~~~~ 

~~~ifficu1ty Distance

Figure 70. (Part 18 of 30)

364

1 -  

_ _________  

__________
_ _ _ _ _ _ _ _ _ _  

- 
.. : .  - i - .~:. -• 

• -- —

• -~~ -- •- -~~~-
-.

~
.-—

~
— -- .- .-‘--- 

•• .-
~~~-—~~~~ 

--—----—
~~
--- -

~~~~
-. 

~~~~~~~~~~~~~~~~~ ~~
-——-

—• -— _ .
~
.-, - • —-—- — —T • • - - - •-. .— -~~~~

•
•

42

Call FINDME
-

. •
~

For Sortie .
•

-
-

-

Table
•

Valid N 8Sortie?

-
Yes

Ca11 HEAD & -
DIRECT For

Weapon Da ta
And Set

Class (IBR)

*
Set FLTSORT

Call Switch To
True And Start
Clause Count

*Increment Call
PLANTMIS

/ Clau.e Yes ,. f~omber \
• \Processed?/ \ 50r~~~e~~

/
Table

No Yes

50 44

Figure 70. (Part 19 of 30)

365

- 9. •

• - -

1 •

44

Call HEAD
For EVENT
C ha in

Save Sortie
Table Data

C

~~~~~
FT 

J.<
_

Chain?
)

~~~~~~~~~~~
J

*

No

(
TYPe
)

Yes
~~~~~~~~~rF~~ H

• 

No

Store Event
Data In EvenI4~~Arrays

A~~~~~~~t Type “A’\
I Or First Or \ Yei Increment
S. Last ) ~~ Event
\~~__

Event?
__/ 

Count

No

• 4 5-~~

Figure 70. (Part 20 of 30)
366

_ _ _ _ _  -- - r . .
9.

L .  - _~~~~~_••.. —- • - - ---— •-------•--~~~~~~ -— ---- -- - •  - -  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



• -- ~ ~~~~~~~~~~ - — •  - • • - ~~~~ 

- -~~~~~~~

49 -

~~~~

FLTSORT
•

To Be Yes Call
Called? FLTSORT

•

-:

No

Call
PLANBOM~

Call
SORBOMB

5

•
•

- Figure 70. (Part 21 of 30)

367

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - - - -—-——-—
• - 

- 
‘.4” —

~~~~~~~~~~~~~~~~~ -

___________________ ~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~

— __ - - __ -_ .—.—— ..-_.,......._- —..- —.——-—————,—, ——— .‘~~r~~r- — -———— — —-—-—— -,.-——.---—,.
~~~~~~~~~~~~~~~~~~~ •

~1

- H

___*__ ‘
I

Set index And
ISW . Set

Default Input
Value

Call INSGET
(~ 

For Next

ft item

(

Comma?

*

Yes

Call INSGET
For Next
I tern

________  
51

(joma? )~~~
B
~flIJ~~~c

~No

Figure 70. (Part 22 of 30)

368

- - - -----~ - - - -—-- 
~~~~~~~~~~~~~~~~~~~~~ 

. -•

-•- . _ • - - _. - - . - . - _ . - -

52

Call INSGET
For Next

Item

Preset Secon
DESIG To

Blank

End Of Yes
Clause? 59

No

No
Coma?

ci

Call INSGET
For Next

Item

8
Al phabetic Yes Set Value As

Value?

COUnt: ISEL

?igu re 70. (Part 23 of 30)

369

- ~~-

- - - — - ~~~~~~~~~~- -— - - - - - • • - • —
~~~~~~~~~

.-_
~~~~~~

• - - — ~~~~~~~~~~~~~~~~~~~ --
~~~~ 

— ,— -
~~~~~~~ •


_ — — —~~~~r . . _. - - - - - ..- .-~~~~~--.- ,,

.

_

,i

54

Call INSCET
For Next

Item

End Of Yes
Clause?

No

Operator?

Asterisk? 22

No

Incremen t
ISEL

ISEL

G

Figure 70. (Part 24 of 30)

370

- -
~~~~

--.•-- — -~~~~~
-
~~~~~ 

_ _ _
~ -~~~~~~~~~~~~~

~~

_ - r~~~~~~~~~ ---.~~--- ~~~~~~~~~~~~~~~~~~~~~~ ~~-r~~~~~~~~- - -“fl •-

I . G

Call INSGET
For Next

Item

Yes
Comma? 55

— 0

Branch
On

ISEL?

= i Yes
Word? —~~~~

-1 Burst From
- Special Word

No

8 54

58 No

Special Yes Set FLTSORT

Word? Switch From
- Special Word

Figure 70. (Part 25 of 30)

371

• - ~~, - • ::
• - % , ~~~ •

_____________ — - ----- - - - —•— —---“~--------

—
—v”’ -- —— ,

~~~
. • 

~~~~~~~~~~~~~ 

-• - -

- Depenetrat ion 1 ~~~~~~~~~~~
Set Time

Corridor From 54 Change From

Value Value

•
~~~ Figure 70. (Part 26 of 30)

372

_t— -j ri-~— --~~- • - . - ______

- V P 
• 

- 
- 

-—________
V •

-~~~~~~~-- ~~~ -. -.. .-.-~~~~ • - ------ - --,~_-



_____  - ---~•- --- —~~~~- -—.- • -,--- - - .  - ,—-•~,--“~~~~~ 
-----

~
-.--w__

~_- .--- --~~~~~~~~~~~ -~~~~
.- - -- .—.-_- -~~ —.- ~~~~~~~~~~ .- --,_.,-——-- ----“-.-—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_
~1

DESIG

Yes
Error? 15

No

Cal l FINDME
For TARCDE

Record

Valid

Target?

Yes

61

Figure 70. (Part 27 of 30)

373

— -. ._ .
~~~~~~ •—V - -- - - -“



— —  — —  . 

_ 
H

Call NEXTTT
For Next

Assignment

_ _ _ _
)

•No

No Desired
Group?

~Yes

Call NEXTTT
For Event

Record

( CCARD? ) N / ~~
’
~

3
~ies 

_____________

Second Call DLETE
( DESIG 

~ 
ci 

—
~ For ASSIGN

Blank? / Record

I
Figure 70. (Part 28 of 30)

•
ij 374

I -

~~ 

_________

~ 

- 

- 

-

~ 

- 

-

á&•____ .~~~~~ _ ~~~~~~~~~ -— “•“~~•— ~-~ •__-~
_ _

~~~ 
. . - _~~~~~~[~~~~~~~~~~~~ — - ~~~~~~~~~~~~~~~~~~~ _ — _ _ ~~~~~~~~~~~~~~~

.4— .-— ----—•---.
-—---~—--.---—— ~~

K1~ > E - ~~~~~
69

-.

66 1

Call MODFY
For ASSIGN
Record

Reset
SDELTI?tE If S
Necessary

_ _ _ _

Call MODFY
For Event
Record

fDepenetra~. H
/ tion \yes_ _ _ Reset II Call HODFY

Corridor 1 —
~ Corridor For Sortie

_ Change?_/
_____________ II Table

Figure 70. (Part 29 of 30)

375

-. :._

“—rn — — -- ~~~~~~~~ — - __~- “- -~~~ ~~~sS — ._ ~ — -_.-— -- ——---

-- - - - - -
~~

- -

,

0
Call RETRV
For TARGET
Using Second

DESIG

Yes
Error? 15

No

Call FINDME
For TARCDE

Record

Valid No
Target?

Yes

Set DGZ And Call STORE
Offse t For Event
Record Record

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

sav
~a~

:en t

Figure 70. (Part 30 of 30)

376



4.8.2 Subroutine ADJUST

PURPOSE: To examine the target section of the plan to
determine where GO HIGH and GO LOW events are
to be placed with respect to the target events,
and to adjust these as appropriate.

ENTRY POINTS : ADJUST

FORMA L PARAMETERS : LOWFLAG - Low-altitude flight indicator
PAYALT - Bomber Release altitude indicator

COMMON BLOCKS: ASMARRAY, DINDATA , DISTC, EVENTS, HILO, IGO,
OUTSRT, POLITE, VICINITY

SUBROUTINES CALLED: DISTF, INTERP, SNAPIT

CALLED BY: PLAN

Method:

•,ubroutine ADJUST allocates the GO LOW ranges of C
2 (low-al titude range

before the first target) and C3 (low-altitude range after the first tar-

get) beginning at the corridor origin and covering the entire target

area. The values for C1, C2, and C3 are input from POSTALOC ;

the G1 is allocated by blocks 27 and 30 of PLAN. ADJUST is

called by PLAN just before the target list is processed. ADJUST

begins by calculating the distance from event I to event 1+1 in /ASMARRAY/

and storing it in DISTC(l). The initial GO LOW point is then determined

from the value of G2. If G2>O , the GO LOW will occur C
2 

mi les before

the first target. Here, the first target is defined to mean the first

bomb target or the first ASM launch point after the corridor origin. If

G2 is such that the GO LOW point is within iS minutes (GaMIN) of the

*However , G2 
may be modified if PAYALT is LOW, as described later.

377

-— —, —- -- ---- .—  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- 



IF— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— — _• —_--- - --- ---- - —----—- -•- -•- --_ •- ---- -- ---•-- -.--- . ---_ —•-- •-

~

.--_---- -------——-----—-— 

corr idor origin, it is extended so that the go low occurs at the origin. V

If it is to go low at the origin according to G2, any go high event

posted at the end of PLAN’s block 30 is cancelled and the go low

event for C2 
is omitted . If an ASM Launch had been scheduled at the

origin , and a go low is also to occur there , the ASM Launch point is

recalculated to occur 5 minutes after the origin along the original

flight path .

For plans in which C2 = 0, the bomber will go low at the first target,

provided that the range to be flown at low altitude after the first

target (G3
)>O . If C3 also equals 0, 

it will fly the entire mission at

high altitude . If G2
<O , it will fly - C2 miles beyond the first target

before going low . The total low-altitude range in this case is C3 
-

(-G~) miles.

Once the go low point has been found, the number of the event preceding

the altitude change is stored in ISTORELO and the distance from that

event to the go low is stored in FACLO . The point at which the go high

event will occur then is determined by subtracting the distances in

arr ay DISTC from the available go low range. When the range becomes

negative or zero, the index to the array will be set to the number of

the event preceding the altitude change . This number is stored in

ISTOREHI and the distance from that event to the go high event is stored

in FACHI .

378

• 

- - 
_

IL ~~• .~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L~~~~~~~~~~~~~~~~~ -~~~~~ - - - - - ” - --- - -- - - - -



These preliminary locations must now be checked to ensure that the

bomber does not change altitude within a critical distance of a target

or ASM Launch . These distances are described by the variables VHB, VHA,

VLB , and VLA , contained in common IVICINITY/ . These variables represent

the mileages which correspond to the constant time parameters ThB, mA,

TLB , and TLA . The setting s in PLNTPLAN for these parameters are shown
in figures 71 and 72. If a change does occur within a critical distance,

the values of ISTORELO (ISTORENI) and FACLO (FAC}II) are adjusted so that

the altitude change is moved to a point which is the required distance

away from the target.

The distance flown at low altitude never is decreased by the move . For

example , if the bomber originally were to go low less than VIA miles

after the target , the altitude change is moved to a distance VLB miles

before the target. If the critical distances to two (or more) targets

overlap, the altitude change is moved, either forward or backward as

the situation requires, past the entire cluster of targets.

In making these adjustments the amount of low altitude flight may be

increased . This is illustrated by the example shown in figure 73. It

shows two targets T1 and 12 with their associated neighborhoods drawn

taking account of the parameters in figures 71 and 72 and a section of

bomber path shown by a dotted line . In this case , a GO HIGH found, say

at point p, would be moved f irst to point q, and finally to point r.

The time of low-altitude flight would be increased, in this case , to at

most twice the sum of ThB + ThA. For this to occur , targets would have

379

_ _ _ _ _



* ~~~~~~~~~~~~~~~ ~~~~~~~~ 
- — — - -  — 

I

Low 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Altit~dc

Altitude
TARGET Or ASM La~nch

ThB >t.c THA -
~’j

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Low 

V 

-

Altitude
TARGET Or ASH Launch

f.II—TLB wfui TLA -.~mJ

Figure 71. High-Altitude Adjustment

PARAMETE R TIME (MINUTES) DESCRIPTION

ThR 15 Time before a target during which
the bomber may not go highThA 2 Time after a target during which
the bomber may not go high

TLB 10 Time before a target during which
the bomber may not go low

TLA 3 Time after a target during which
the bomber may not go low

(Var iab les S/MB, VIM , VLB , and S/LA in common /VICINITY/ represent the
V mileages which correspond to the time parameter TI-IS, Ti-IA , 11.8, and TLA)

Figure 72. Low-Altitude Adjustment

380

_ _ _ _ _ _  

_ _ _  
I-

-
- —- -

- r -  -

- - -— ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 



- --- —*---—- — - - -  -‘~ -,—--- - -——- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~ -—----- -

~~~~~~~~~~~~~~~~~~~

-

_
_

f r _ _

Figure 73. Increase In Low-Altitude Flight

381

— ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -~~~~~~~~~

I
to be within ThB + ThA minutes of flying time to each other.

Coninunjcatjon between subroutine ADJUST and subroutine PLAN is established

through common /HILO/. The final values of ISTOREHI, ISTORELO, FACHI,

and FACLO are used by the main program to insert the CHANGALT events as

the target list is being processed. Later, the CHANGALT events will be

interpreted as GO HIGH or GO LOW events by subroutine SWTCHALT.

Slight modifications are made to the processing in ADJUST, as described

previously, if the bomber weapon release altitude indicator PAYALT is not

HIVAL. If PAYALT is LOW, ADJUST first checks that G3
is greater than the

intertarget distance DISTAR. If C3 is less than DISTAR , 5 is increased
to DISTAR and G2

is reduced an equivalent amount. Module POSTALOC had

generated 5 so that it was at least as large as the intertarget distance
computed in POSTALOC. However, when the ASM launch points are recomputed

in the PLNT overlay of PLANOUT the intertarget distance (i.e.,

the interweapon release point distance) may be increased. Itt this case,

ADJUST increases the intertarget low-altitude range allocation (C3) to

cover the required distance. If the sum of C2 and G3 is less than DISTAR,

then C3 is set to DISTAR and C2
is set to zero. After modifying C2

and 5
if necessary for PAYALT equal LOW, the processing of the sortie by ADJUST
is the same as for PAYALT equal HIS/AL. Because ADJUST only increases low-

altitude flight to cover the targets, the RIVAL processing will not move

the low-altitude flight path so that a weapon release would be at high

altitude.

If PAYALT is HIGH, ADJUST does not use the normal processing to determine

the GO HIGH point. If G2 is greater than zero,
the bomber goes low and

then high just prior to the first target. Therefore, if PAYALT is high,

[STOREBI is set to ISTORELO (which is equal to one). The distance FACH1

is set so that the bomber goes high just prior to the first target. If

the total low flight in this segment (FACR1-FACLO) is less than the

minimum low flight distance GOMIN , this segment is ignored by setting

382

- — ~~ - ..

_ _ _ _ _ _ _ _
_ _ _

both ISTORE LO and ISTOREHI to zero. For PAYALT equal HIGH, 5 has a
special meaning. If 5 is zero, the bomber does not go low after the
last target. If C3 is greater than zero, then the bomber goes low after

V -
the last target and flies to recovery at low altitude. (5 is set this
way by module POSTALOC) . Therefore, if PAYALT is HIGH and C3 is greater
than zero, variable IGOLEFT in block I RILO/ is set to one to signal
PLAN to post a GO LOW after the last target.

Figure 74 illustrates subroutine ADJUS-T.

- 383

-

— —--- - --‘--- - — —:‘. -------~
--- --—- ----——-

~
--

~~
- — -,--—----

- - , -— - ~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~

START

In i tial i zation ;
V

Set~~lIAP To V

Number Of
Events -1; Clear
DISTC Array To 0

Do 5300 For Done
RETURN (p339 ‘flAP Events A

tI 602 1 5300 Do

Fi l l DISTC With
e

T I FIVC Minutes J Distance From
I ° I Aftcr Orig in I Th is Event To (5399)

Next Event

fi~i~t Error 1 600 Yes 5 9

g’ Message I Does Bomber Are ~~~
Store Pointer

L I Go Low At Yes Launched To First Event

5310 f Done Or 3gin? At Origin? er Origin

Do 5310 For No No
—~ -1 gvent After ___________________

Corridor Ori gin 5301 [Md Minimum Go Low

Do
601 Distance To Go Low

Reset G?~~
ow 2 Yes Is ~~ Low 12 ; Store In c.2 (Will

Subtract Distance 0
v
°
~

1 iV ~ 2 <0? i•1 Be Used To Insure
b Next Event

a ue

~
1That Bomber Does Not

From Remaining
No Go Low Within 15

Go Low 2 Range Mthutes Of Origin)
Is Go Low
2 -0? No

Is Result ~ 0 Yes Store L vcnt
No (Should Bomber 5302 Number

Go Low A f t e r Yes Is There Any Before Corridor
This Even t) ? Co Low 3? Or igin In

Yes
ISTORLLO

5311 5320 Ne 321
Store Lv ent Nuinh ~-r Store Lvent 5321
In J SWRE LO ; F i n d Number Set IS IflRLLO Is G2
!Jistaflce Before Before Corridor Set ISTO RLIU < Distance From

Go Low (I)I STA) An,! Ori gin In I STORELO To 0 Origin To Next
l)j s t~ince From Go Store I)istance To To Suppress Event ? (I f Not

l.ow To Next Event O r i g i n In VISTA ; Any Go Low Mest Extend
(DI SIB) Set D I S I B To 0 To Origin)

S330
‘
~
‘
~~~ 5331

RETU RN Set DISTR To Go
Low 2 . VISTA To

5350 
Distance From
Ori gin To Go

Low Point

Figure 74. Subroutine ADJUST (Part I of 9)

384

- ~~~~~~~~~~ --- - -  
— 

- ---
~~

-

- — -&- *--_ -~~~*--- &-_-—-—-.—-— ~~~~ S~~ *_~~~ ______



--- ——— -——-,-- --- -

_ _ _

[ Set

L 

Tol

[Print
/ Error

A 
/ Message

5490 J Done
Is r~~9~ f l

PAYALT No

Yes ¶
jNo

Only Set Minimum
Distances hot This Event\ V

Target? Nonzero?

No
530 Yes

Compute
intertarget
j~j~stance 399

Is Low
Range Yes

Adequate?

0

Reset Range To
Cover Targets.

Reset Penetrati
Low Range.

Figure 74. (Part 2 of 9)

385

- -___________ - --- h . 
-

,.. 
- .



~ —-~ —-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—- -—

Set ISTORELO And I

FACLO To Go Low I
At Corridor Ori gi~j

3 5601

[High A t End Of \~ej Cancel The

\ Precorridor ~ S
~~~~ 

Legs? j i
vent

5350

Set ACDIST To
DISTB To Test
If Bomber Goes 5350
Low Too Soon

Before Target

Figure 74. (Part 3 of 9)

~86

~~
.- -- .. -—.

~~~~~~~
---------.—

~~~~~~~~~~~~~

- -

~~~~~~~~~~
---

~~~ ~~~~~~~~~~~
- - . -

---- -~~-- -~~~-~~~~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. V 

- . -~~~ -- —

Reset ACDIST To
— Minimum Co Low

Distance Befo re
A Target

5369 t’Yes 
________ _________ 

5366
r~~ \ r I f Set ISTORE LO To

/ Is The Event \ I Do 5365 For I Done I Point To Event
( A Drop Bomb No miel Events Before I-i--- 04 After Which

\
~Ir Launch~~~ / [ Go :: J [ Bomber Can Go

5367 I W o  y ____________

/~~ 
Corridor\ Set Index J To Store In VISTA

Loop !lackwards

~~No 3
[Is Distance\ Subtract Dis- 5370

Yes 0? (i.e., \ tance To Previous
Can Bomber Go )-.ui- Event From Dis-
Low After The / tance Of Go Low

Evcnt ?)~~/ 
To Target (ACDIST)

Figure 74. (Part 4 of 9)

387 

- — —— - - - 
.

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



--; - -- -—-
~~~~ 

- - -- --- --
~~

- -- —- -
~~~
--- -

~~ -~~~~~~~~~r 
- -~~~~~~

Reset ISTORELO Reset ISTORELO
To Poi nt To To 1, VISTA To 0

Event Preceding (Bomber Should
The Target Go Low At

Event Corridor Ori g in)

5370

Set ACDIST To Set ACDIST To

Minimum Go Low Di stan ce From

Dista nce Before (5370J—ø Event Preceding
A Target ‘-....~~~ Go Low (Deter-

5371 Yes 

mined 

Done

Is This Event A
Target (DROPB OMB 

Increi~eflt ACDIST Do 5375 For

Or Launch ASM No By Distance To Event Preceding
Even t )?  P receding Event~ Go Low

IDo

5379 Yes +
Is The Dis-

tance From The Is Th .
Event (ACDI ST) No Event ~~e 

Set Index J To
Less Than The Corridor Process “Do”

Mi nimum I~istance On ~~ 
Loop Backwards

To Go Low After 
g

A Target
Yes

No

5400

Store Distance
From Preceding

Event To Adjusted
Go Low In FACLO

5390

Figure 74. (Part 5 of 9)

388

L - ,



~ ‘-~ ----—-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

•

b i n d  The Total Set ACDIST To Dis-
Co Low Time Over lance To Be Flown
The Target Area low On Fir st Leg

— At l.ow Al t i tude
(Distance From Go
Low To Ncxt Event)

Set I To Poi nt

[ To Next Evcnt~~
j  

________________

540D 4 5410 Set Flag JGOLE FT
Increment  ACDI ST Do 5410 For Al l  Done Set ISTOREI1I To To Show That Low

By l) i st anc c  To Events Fol lowing Point To Ne xt Altitude Range
Next Lvcnt The Go Low To I.ast Event Depen eti-ation

4Db (IGOLEFT - 1)
5390 No
I Subtract Distance
/ bi as Go Low F l own Thus Far At

Ou t?  (ACDIST) Fro: Total 5460

_______________ Go Low Dis t a n c e

I Y e s
5405 + __________________ ________________

V 

Set IST OI1LIJI To I I~ 
Set Flat  1GOLL !~~ j  ~~ 

V

Poin t  To Event I I To Show That Low I Store Distance
After  Which Go L.~..J A l t i t u d e  Range L.~..J 

From Go Low To

Low Range I ~] 
Remains For 

~~
] Next Event In

P. Ou I Depenetration I DISTB
tinS t ] (IGOLE FT = 0) [ 

______________

In i t i a l i z e  ACDIST
To VI STA For Check Store Distance

lii gh T:o Soon Af ter ~~~ 
Go Low Tn I)ISTA

A Target Ev ent

Figure 74. (Part 6 of 9)

389

_ _ _ _  - - , - --- ---



___ _ _ _  
~~—...•~~~, - -~ -_ ----~~~~~~~ — - - - _ _ _

5424 Yes
Is Pointer At

Another t)ROI’IIOMB 5421
Or Launch ASM ResetEvent? Accumulated 5421No Distance

54 22 (ACOI ST) To VIIA
Add Distan ce From

Pointer Event To 
5429Next Event To The

Accumulat ed Distance Reset Go High
Poi nter To

Target Even t
YesDo 5425 For Done 

5428Al l  Events 5430
Is Next Event Do 4 -orPreceding Co 111gb 
A I)ROPBOMB Or No All Events Done

1)0 Launch After
ASM ~:veiit? Co l I i gl~

Is Accumulated Do
Distance Lcss Than Yes

Mi nimum l) istance Before Is Resulting Subtract
Goi ng h i gh Afte r No Distance DistanceA Ta rget? (VIIA) Positive? To Next Event

Yes No From ACDIST
5420

Reset Go PUg h 
5427Poi nter To Event Set Go h i gh

l’rcceding Pointer (ISTOI1E III)
The Target To Next-To -

Last Event

4
Store Distance
To l.ast Event

In FAQII~~J

C)~~~~~

• Figure 74. (Part 7 of 9)

- - 
- 390

_ _ _ _  

_ _ _ _L -~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _



Set Tentative
I ISTOREIII To Event At

Which A~TIST We n t

L Negative

4
I Set l)ISTA To Distance

To Be Flown At Low
I Altitude Between Event
[ISTOREHI And ISTOREIII .1

Set L)ISTII To Distance
To Be Flown At Low
Altitude Between

V These Even ts -

5430
Set ACI)IST To DlST~~

Set J To Ev en t
5430 Fo l lowi ng

Tentative ISTOREIII

At The 

- 

Yes

5432 5471

Add Distance Do 5435 For Events Done
To Next Event Following 5450
To ACDIST Tentative ISTOREHI

Do
5431 5450

Is Fven t Is The Store V ISTA
No A h)I4OP BOMR Or Yes ni sta nce ACoisi No As Go Hi gh

Laun ch ASM Less Than Factor
Event? ‘11111? (FAaPI)

Yes 5460
5433 - 5460
Reset Go h i gh RETURN

5421 Pointer (K) To
Target Even t

Figure 74. (Part 8 of 9)

391

_ _ _  ~~~~~~~~~~~~~~~~ - - ~~~~~~~~—.- _ _ _ _ _ ~~_ _ _ ~~~~~~~ , i~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ -



—•_ ---—-—- —--_-r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -—,- .-_ -—•------ •- - --, -— -—-- --—-- —•----—•‘-——-- -.-— -_ —- — --

F- - —
~

-
~~ 

— — — —

/ PAYALT
HIGH? / 4

Yes

— Set ISTOREHI
To ISTORELO ;

Set FACHI

Yes

f~~~~~~st/ Bomber \N~~~ / Low Segment\ ~~~ ~~~~~
\ Recover f~~\ 

Long /~~~~1~32y
Enough?

Yes

Set IGOLEFT 
- 

- =
Flag For Second

Low Segment

Figure 74. (Part 9 of 9)

392

_____________ - 
-_ _______ -

~~~~~~~ 
—- ------ - - . ~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~

-
~~~~~~~~~~~~~~~~~~~~~~



4.8.3 Subroutine CHGTIM

PURPOSE: Alter finalized history table by increasing or
decreasing times among desired events.

ENTRY POINTS : CHCT D4

FORNAL PARAIIETERS: None -

COMMON BLOCKS: CONTR1, DINDATA , OUTSRA

SUBROUTINES CALLED: None

CALLED BY: DISTIME

~1ethod:

After subroutine DISTIME converts distances into time increments, CHGTDI
is called to process all time changes specified on sortie change cards
for this plan. Sortie cards permit time alterations to any DROPBOMB or
ADI ASH weapon event. Interceding events will have these times adjusted
by an amount proportional to their weight in the st~ of the t ime between
events as calculated by DISTIME. In other words , the requested time
change for a given weapon event is prorated starting with the last DROPBOMB
or ADI ASH event.

Array cirrn contains time changes for all weapon events (DROPBOME or ATh1
ASH). Array HDT contains time increments for all events in the sortie.
These events consist of the weapon events plus additional events such as
LAUNCH, REFUEL, DOGLEG, GO LOW, GO HIGH, and RECOVER. Also there is an
ASH TGT event that defines an ASH flight time. The two arrays are similar
in that the first weapon event in array CHTD~ and the first weapon event
in array HDT are identical as are the second, third, etc. CHGT~~1 prorates
time changes among weapon events. The t ime increment for event ASH TGT
is never changed since this is the ASM flight time; only launch times are
changed.

Figure 75 illustrates CHGTIM.

393

- -



F- 
~

••-,

~ 

~~~~ — 
~~‘ r — - - ~’

-
I

-

.

START

Any Time Change No RETURNRe quests?

Yes

nitialize event Array Pointer,
NOW , And Change Time Array

40 Pointer, IPOINT

No

Event A Drop Yes
30Bomb Or Aim ASM?

pdate Change Time Array
Set Last Event, Pointer And Return If
LASTE, To NOW Greater Than Maximum

Update Event Array No Is There A Time
Pointer, NOW, And 40 Change For This
Return If Greater kvent?

Than Maximum Yes

50

No Update Event Array
Even t A Drop Pointer , NOW , And

Bomb Or Aim ASM? Return If Greater
Than Maximum I -Yes

55

V Figure 75. Subroutine CHCTIM
(Part 1 of 2)

394

I
_

~~ -~~~. -
- ..

Sum Up Time Intervali]
Starting From LASTE.

Ignore ASM Flight
Time

(Tot al Time\y

\ Zero? /
jNo

Prorate Time
Change Over

Preceding Events

Figure 75. (Part 2 of 2)

395
V

_ _ _ _ _ _ _ _ _ _ _ _

_ _

- i

-~~~~~~~~
-

~~ L - ~~ - -
- -

- - —S -~~~ — — -— ~~

4.8.4 Subroutine DECOYADD

PURPOSE: To allocate the decoys carried by a bomber.

ENTRY POINTS: DECOYADD

FORMAL PARAMETERS: None

V COMMON BLOCKS : DECA , DINDATA , DISTC , EVENTS, TOUT , OUTSRT , PPXX,
RL

SUBROUTINES CALLED: ORDER , REORDER

CALLED BY: PLANBOMB

- Method :

As each bomber plan is processed by PLNTPLAN , any fl igh t situation which
could use a decoy launch (see table 9) is flagged by storing the event
number (MET) of the event following the launch in array LMHT in common
/DECA/. An associated launch priority is stored in the corresponding
word of array LPRIORITY, and, for situations resulting in decoy coverage
over a variable distance, the index to the array DELDIS, which contains
the distance to be covered, is stored in the corresponding word of array
NDCYRQ. Subroutine DECOYADD orders these arrays according to priority
and allocates the available decoys in the order of this priority. The
subroutine will determine only the location of decoy launches (except
for launches of priority 1 or 6, for which the location must be deter-
mined as the events are processed for termination). Terminations are
calculated in the main program as the decoy events are inserted into
the detailed History table.

Three arrays in common /PPXX/ are used to communicate decoy launch in—
formation to the main program. Array ILAUNDEC contains the number of
decoys launched ; array TIMELAUN contains the time interval between the
decoy launch and the event preceding it; array DISTORE contains the dis-
tance to be covered by each decoy launch event. If this distance is
greater than the range of one decoy, DECOYADD allocates sufficient de—
coys to cover the entire distance. It is assumed that another decoy is
launched as soon as the previous decoy terminates. However, only one
launch event is posted for the entire coverage distance.

Since the bomber must launch all decoys, more than one decoy may be
launched at a time if the priority list has been satisfied before all
decoys have been allocated. In the case of area coverage, there may
not be sufficient decoys remaining to cover the distance of the first
allocation. Hence, an entry is made in array DISTORE each time a decoy
launch event occurs over the same area. If the last decoy does not —

cover the same distance as the previous decoy(s), two decoy termination
events must be posted for the one launch event.

396

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 



—--- ----- —~~~~~~~~~~—~~- ----~ 

- ——5-

Table 9. Launch Priority

LAUNCH PRIORITY CIRCUMSTANCE OF LAUNCH

i R * miles before first low-
a’titude gravity bomb attack
on a SAN-defended target

2 Immediately before changing
from high to low altitude

3 Immediately before penetrating
defended airspace if flying at
high altitude

4 Ru** mi les before first high
aTtitude gravity bomb attack
on a SAN-defended target

S Coverage when f lying at high
altitude over defended airspace
before priority 4 launch

6 R 1 miles before subsequent low-
aTtitude gravity bomb attacks
on SAN-defended targets

7~8*** Coverage when flying at high
altitude over defended airspace
after priority 4 launch

*RL 
range of decoy at low altitude (data set to 200 naut ical miles)

**RH~ 
range of decoy at high altitude (data set to 400 nautical 

miles)

***priorj ty 8 is used if the coverage is to begin at the point where the
priority 4 decoy terminates. Priority 7 is used if the bomber has
changed altitude between the priority 4 and the priority 7 launch.

397

—- —--~~~ - 
55 - — — - - -  ~~~~~~~~~~~~~~~~~~~~~~~ -



- ‘ — - — — 555 - —----- ,....-- .—s- -.—. ,. ~~~- _-, ~~~~~~~~~~~~~ — — - -

I~ach time a decoy is allocated , the index to the detailed History table
(?41T) is incremented to reserve a line for each event generated by the

V launch. Since a decoy launched at low alt itude (priorities 1 and 6) w i l l
always terminate at its target, no termination event is necessary. Hence
space is reserved bnly for the launch event. (This situation is communi-
cated to the termination section by storing the number of decoys launched
as a negative number.) For high-altitude launches, either one or two
termination events are required in addition to the launch event.

The decoys are allocated by process ing each entry in the priority array
in order. Since the calculation of timing and distance information differs
according to the launch situation, branches are made to various sec tions
of the program according to priority . It should be noted that since the
priority 3 launch information is sent to the subroutine as the first in-
stance of a priority 5 launch, the priority 4 launch wi ll be encountered
before the priority 3 decoy has, in fact, been allocated . Thus, before
the section for priority 4 is processed, a check is made to insure that
more than one decoy remains to be allocated. If only one remains , the
priority 4 section is skipped, reserving that decoy for the first priority
5 launch (i.e., priority 3).

Since the priority 8 situation calls for the decoy(s) to be launched
immediately after the priority 4 decoys to cover the high altitude
flight until a go low or a depenetration , the launch event is omitted from
the detailed History table and the distance to be covered by the decoys is
added onto the distance to be covered by the priority 4 decoys. This merely
moves the priority 4 termination event(s) to include the distance that
would be covered by the priority 8 decoy(s).

If decoys remain after every entry in the priority array has been processed
for the first time , the array w i ll  be reprocessed , in order, to provide
double coverage. Since many of the values calculated on the first pass
need not be recalcula ted, a different set of branches is taken, according,
again , to priority. Up to six allocation passes will be made, as long as
decoys remain . If more than six are required to allocate all the decoys,
the error message

NUMBER OF DECOY LAUNCHES EXCEEDS CAPACITY OF DECOY
ALLOCATI ON

is generated . Whenever this occurs, or whenever no more decoys remain to
be alloca ted , control returns to the main program. Subroutine DECOYADD is
illustrated by figure 76.

398

_ _ _ _ _ _ _-S 
- - -- -S  ~~~~~~~~~~~~~~~~~~~~~~~ _5 5~~~~~~~



- - ~~~~~ - - -- - --- - - - S - - - - S -~~~~~~ --~~~~~~~ -~~~~~~~ — - 55 -—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- - -~~~ - S- - - - - -~~--- 

C
START
D .

( Number ~~~
}

~es 
~(J~~TURN)

Call 0~~ER ~~ j 
caii REo

~
wER To orderT

Order Priority i— And DELDIS Index ToArray 
] I Correspond

Calculate Decoy Fli ght
Time At Hi gh Al t i tude;

Set F lag To Process
In i t ia l  Allocation

On ly Once

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~
.- -.

~ / Are There ~ No r ~150 Decoys To 200
Be Launched ’

Yes
Retrieve Index To 10

Event In Detailed Do 300 For Done
History Table For All Possible A
Which Launch Has Launches

-

Flagged

300
No Ha s In i t i a l

611 A l l ocat i on
Occurred?

Yes

630

Figure 76. Subroutine DECOYADD
(Part lo f l)

399

- - C -

- — -- —--5 -- 5— -.-- 5--— 5— - -5-.-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- _5______ — -- -- — _4i4

- 5 555~ 5-5 _~~ _~_S- - -

610

___________________ 612
1Decrement Number Of Store Minus Number 610

j Decoys Remaining Decoys Launched Yes Is Launch Of
By One

A t u ch)
Priority l O r 6?

__________________ 615
Set Flag And Store Store Range Of Decoy
Number Of Decoys In Distance Array
Launched For Later *— (DISTORE) According To

Yes Is Launch Of
Test For Dual Number Of I)ccoys Priori ty 4?
Termination Launched No

614

Store Number Of Yes Is Launch Of
Decoys Launched P r io r i t y 2?

No

Decrement Number Of 5Decoys Remaining By
One

100

Figure 76. (Part 2 of 7)

400

i F- -— -- -, -5 - ~~

-

-

—5—--- -— —- .-- - - _ _ _~~~~~~~-.~_. ~~~~~~~~4

_~ 55S~ -55555S55S —55 -5-—— -~-- - -5-

611

1. 11

— Store Minus NumberLYes/ is Launch~~i\Of Decoys Launched1
N~

riority 1 Or

I INO 2
7 7 Store Number Of

Dec rement Number Ofi I Is Launch ~~T\ yes Decoys Launc hed ,
Decoys Remai n ing Byl S.~ P r i o r i t y 2? / ~ Time Launched ,

One i ~ _______
And Range Of

No Decoys

Allocate One
Additional Line Enter Time Until
To Detailed Next Event (0)
History Table In Temporary

Time Table

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

21~~~~~~~~~~~~~~~~~

Array DELDIS 
100

Store Event Index
In Detailed

History Table

Initialize Line
Counter And

Decoy Pli ght
lime Variable

Figure 76. (Part 3 of 7)

401

-- —--5-—.—-- 5 ~~~~~~~~~~~~~~ -~~5---5~--5- — --5---— - —- ~~~~~~~• _ ~-5-_5 -5~~~ 5- ~~~~~~~~~~~~~~~~~~~~~~~~~~



-

~~~~~~~~~~~~~~~~~~~ 
_ _

41

:
~~~~~~~~~~i~~~~~~

t ]_ .< Flight Time >~
zø4 D:co

~~
F
~
om fl1

~
tance

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Event Time For Subsequent

43
Decrement Number Of
Decoys Remai n ing By

Set Decoy Coverage Yes Is This Event One; Store Counter For
Distance To 0 GO HIGH? Decoy Coverage; A llocat I

Two Lines To Detailed
No History Table

Set F l i ght Time So
That Decoy Js

Launched As Soon 100
As Bomber Goes Hi gh

Is This Event
Dog leg ~~~~

Yes
orridor Ori gin)

46 410
-

No I Do 411 For Events Set Decoy F l i ght
47 I Between Dogleg And Done Time So That

No Is This Event L 1 Target Except ASH Decoy Launch W i l l

An ASH Target? I ~~~~ Targe ts Dogleg

I - IDo
Yes I 411

Increment Counter To Subtract Distance
— Ignore ASH Target Decrement NUT I Between~Event AndWhen Calc u la ting Ski p Over Event Next Event From

Coverage Distance Decoy Coverage
Distance

Figure 76. (Part 4 of 7)

402

- -
55 - ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - - - -- - .~~ a.— - - —~~~

-5-— --— - — .5—--- .-

—“
5-

Calculate Number Of Decrement Remaining

Decoys Required To Number Of Decoys By

Cover Distance (NOCY) Required Number

Yes 52

Is There Any Are There Sufficient No Reset N DCY To
Distance To No Decoys To Lau nch Launch All The

Be Covered By 100 Number Required? Remaining Decoys
This Prority Yes

Launch? 53
Is This Priority

No Launch To Occur At S~t Number Of
Retrieve Index To 55 Fl’st Target Remaining Decoys

Decoy Dis tance Encounterod At To 0

Coverage Array Hi gh Al t i tude?
(DELDI S) Yes

54
Add Distance To Be

5
Covered To Dis tance
To Be Flown 0). Decoy

Launched Rh Miles
Before Target

(Prio r i ty 4)

Store Number Of
100

Event Immediately
Follow ing The

l aunch

30 Yes Are There Any No
0 Decoys Remaining ?

200

Figure 76. (Pa rt 5 of 7)

4O~

- —5-— ——-
5 5— —

~~~~~~~~ 
_J-_5- _ __~~~~~~ _ _ _ ~~~~ 5-



- - ——  —5-

55

55 3
Store Number Launched
And Time Launched For
Subsequent Termination

3
Set Time Interval To
Next Event To 0 (In
Temporary Time Table)

56 3
Calcula te Dis tance To

Be Flown Before
100 Termination; ‘Store In

DISTORE

601

Allocate Two More No Was More Than
Lines To Detailed One Decoy
History Table Launched? Yes

2 
Yes 6 

Set Index To
Allocate One More No Will This Decoy Retrieve Flying
Line To Detailed And Last Decoy Distance For
History Table Previous Decoy

Figure 76. (Part 6 of 7)

404

- 

— 
- 

_.-.~~~~~~~~~ _ _ _



- ---- -5- - 5 - -  ~--- —------5.” -- 55 —---’--— --5-----.-- -- ----- - — -—-— --“- --.---- -,---- -- 5--- 5-- --.-

Sot Counters I~or
Line Allocation

To Det3i3cd llistory

Increment Counter
iSO For Number Of Decoys

Launched By One

631 630

No 
Dc ys o fle un ed 

Yes 
Error Message RETURN

622 200
Set Index To Retrieve Yes ~as More Than OneDistance Covered By Priority Four 200

Previous Decoy Decoy Launched?
No

bin This Decoy And\
/ Previous Decoy \Yes

\ Terminate At Same /
Time? J
jso

620 7

Allocate One More
Line To Detailed

h istory Table

401 621 
-

I R~~~~~~~~s~~In f~ 
~~~~~~was This Entry\~~~ D~~ 

Arr~~~ (UD1Y) I
J .

Figure 76. (Part 7 of 7)

405

-- - - - - -—~~~~~~~~ ~~~ - - ‘—

F-
- -,

~ Sub rou tine DISTJME I -

PURPOSE: To compute distances between events and convert - -

these distances into time increments.

ENTRY POINTS : DISTIME -
-

-

FORMAL PARAMETERS : None

COMMON BLOCKS : DINDATA , DINDT2 , EVENTS, lOUT , OUTSRT, PAYSTF,
SPASM

SUBROUTINES CALLED: CUCTIM , DISTF

CALLED BY: PLANBOMB

Method:

DISTIME uses the latitudes contained in array HLA and the longitudes
contained in the array HLO, and records the resulting time increments
in array HDT . For computing distances, the function DISTF is used .
This computes great circle distances assuming a Mercator projection .
To convert distances to time , the speed SPDHI or SPDLQ is used , depend—
ing on whether the bomber is at high or low altitude. Por ASMs, the —

value in SPASM is used .

Af te r processing is completed , subroutine CHGTIM is called to include
any time changes that may have been given on sortie change cards.

Subroutine DISTIME is illustrated in figure 77.

406

— -5--— — — ---- 5- — -5-- -- ---5---- -- -------.- -----

- -5- - 5 —5----------,- ---.--- - 55 -5- _ _ _ _ 5 -_ _~~-5- 5__- 5_ 5 5- 5 - _ _~~5-_ .___,____ -5-—-

C
START

I

Retrieve
Payload And
Warhead

[Indices

In—i

[
MIN.INPL+2

Do 705 For HDT(I)’Dis—
Events MIN Do Itance Between

Through MET Ith And I ts
Preceding

______________ Event

~~~~~ne

Figure 77. Subroutine DISTIME (Part 1 of 3)

407

_ _ _

-- _ _ _ _  _ _ _  
—

~~
---

~~~~~~~


5-- -5- - --~~~~~~~~~~~~~ 5-- -~~~~~~-- - 5 - —- ~~~~~~~~ _-55~55 ~~~

I

A

Do 820 For
Even ts MIN CHGTIM RETURN
To MIT

Do
8

Yes Speed=Low
IFY—O? Altitude

Speed

850 No

Speed High
Altitude

Speed

852

Re trieve -
CMT (1—1)7HDT(I) And

JTP (I)

812 816
Is This Are There Reduce NBSA Local Yes Any Bomb s Yes

At trition (NBS) Of
IWH(I)=IwAR1Event? Type 1?

No No

815

IWH (I)
-IWAR2

Figure 77. (Part 2 of 3)

408

I
5-5-i-- — - --5—. ~~— ____ —. “~~~~~~

5-
~~ --

5— 55-55 5--5~~-~~~~~ - - - 5 —.-— —--.--. -----.- -- - — - -~~ -~— 5 - — 5-~~•—5--

801

805
JFY—2

* Yes
JFY—1? Distance!

ASM S eed H
809 No

JFY=o Calcu-
late Distance

d Cumulative
Time

Is This A Is This A

808 Launch ASM
No Change

Aim Event?
Altitude
Event?

814 Yes 804 Yes

IWH(I)—IWARA
IF~
;
~

1
~~ FY

Indicator)

JFY—l Store
Location

Of Ith Event

810
Set HDT(I)
Distance! ~~

Speed

8
Add Time To
Cumulative —

~

Time

A

Figure 77. (Part 3 of 3)
409

- -5 - - ----5 55—- -
------------ ----—

~

5- —— .~~~~------~ -~~~~~~~~~~~~~ _ . .

— -5— — — — ~~ -5 - 5 - 5 -- -5~~~
-5

~~~~~ 

4.8.6 Subroutine FINDME

PURPOSE: To find TARCDE, SRTYTB and WEPNGP records during
the sortie change process

ENTRY POINTS: FINDME

FORMAL PARAMETERS: INDX — Index for use in search :
TGTNUMB f or TARCDE record s
SORTNO for SRTYTB records
GROUP for WEPNGP records

ISV — selects record searched for:
1 - TARCDE
2 - SRTYTB
3 - WEPNGP
4 — Indicates initializing call to subroutine

COMEON BLOCKS: d O , Cl5, C30, LASREF

SUBROUTINES CALLED: DIRECT, HDFND, NEXTTT , RETRV

CALLED BY: ALTPLAN

Method:

Subroutine FINDME is called by ALTPLAN to retrieve various types of re-
cords which the user has identified in sortie change clauses. Each of
the three record types (TARCDE, SRTYTB , and WEPNGP) reside on a chain
(LISTXX , SORTIE , and WEPGRP , respectively) in ascending order of their
iden tifier (TGTNIJMB, SORTNO , and GROUP, respectively). However , there
is no direct way of retrieving an individual record built into the IDS
system other than starting at the chain header and cycling the chain un-
til the desired record is found. FINDME is designed to reduce processing
time in cases where a number of such retrievals are called for. It does
this by establishing reference points along each chain. These reference
points are the IDS reference codes of records on the chains spaced at

-‘r~n intervals. Then, when a record is called for, FINDME can begin the
search at a poin t on the chain closer to the desired record than the
h eader and thus reduce search time. FINDME is desi gned to reserve up to
100 reference points for each chain.

For example , let us say that a sortie change clause referred to sortie
number 173 out of 300 sorties. Since the total number of sorties is

- 
300, a reference would be established at every third SRTYiB record on
the SORTIE chain starting with SORTNO—l. There would , therefore, be a
reference for SORTN~~172. This SRTYTB record (SORTNO—172) would be re-
trieved and the SORTIE chain cycled until the SORTNO—l73 record was
found. This would reduce the number of calls to NEXTTT from 173 to 1.

410

-5 - 5- — — — 5- - — — - 5~~~~~~~~~~



-- - - 5----—- - — — -5—  ~~~~~~~~~~~5••-5~_ •5555-5_~~~~ fl~~~~~ - - -—-w-—’-- 5- -— r.5-

The f i r s t  step in the FINDME process is the initialization call (15W 4).
This call determines the proper interval between reference records (IBK)
by determining the number of records on the chain and dividing by 100.
An ancillary effect is the resetting of LASREF (reference code of the
last nontanker sortie) for any missile sorties added by ACARD clauses.
Af ter this interval is established , the first record of each of the
chains is retrieved and saved as the first reference record.

Then for each call, the closest potential reference record is determined.
If it has already been found FINDME retrieves it immediately. If not,
the closest reference record previously found is retrieved (on the first
call for any chain this would be the first reference record) and the
chain is cycled until the potential reference record is found . During
this cycling process, any intervening reference records have their IDS
reference codes saved. Once the desired reference record is obtained ,
the chain is cycled until the record desired in the subroutine call is
found.

Subroutine FINDME is illustrated in figure 78.

411

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



5- ---- - -5 --—--- 5- -5 --5
~~~~~~~~~---------r--s— r-~~~~~~~~~~

START

In tia i-
zation No
Call

(ISW~4)?

Yes

Call DIRECT
For “Last”

Sortie

Call NEXTTT
For Next
Sortie

End Of Yes
Chain? 2

~No

Yes

Reset “Last”
Sortie Reference
Code - LASREF

Figure 78. Subroutine FINDME (Part 1 of 4)

412

- -~~~~ —~~~~~~- - -5 - - - — - - -——55 ~~~

-— - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Set Break-Points
For Sor tie , Target

A nd Group Tables

Zero Break-Point
Table Reference

Codes

1[Call NEXTTT For
Firs t Sortie

And Save
Reference Code

HDFND , RETRy
fl & NEXTTT For First

~
TARCDE And Save
Reference Code

Call RDFND , RETRV
& NEXTTF For First

Group And Save
Reference Code

(~~ RETUR N _)
~~

Figure 78. (Part 2 of 4)

413

4 I

L
-

- - — - - 5- ’ ——— - -

_ _

H -

Calculate
Position Of
Nearest

Break-Point

Break-Point No
Reference Code 9

=0?

Yes

Find Last
Established

Point And Call
DIRECT

Call NEXTTT

8 For Nex t
Record On
Chain

Item Not
End Of Y!~~~

®
~~~~~~~~:d Set

Figure 78. (Part 3 of 4)

L 

414

----

~ 

5- - -  -- —-5 --5-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5—5--5-—-~~~~ -~~~~~



-— 
- -—- .--,. ..--..-—

~
—--——-— -

A

Break No
Poin t? 8

Yes

Store Break
Point 9

• Reference
Code

Call DIRECT
Desired No For Closest

Break-Point? 8 Break-Point

Yes

Get Compare
10 Parame ter

For INDEX

Yes Desired
RETURN Record?

No

Call NEXTTT
On Chain

End Of No
12 Chain?

Figure 78. (P art 4 of 4)

415

I__S - - -  ~~~~ -5--- — - - - 5 —5---—— -5---- 5— - —5- 
-

- 

~~~~~~ _,
_

- _‘fl-~
____ -_ _ - —4--— —‘-.5-—- —-.5

- - - -

4 .8 .7 Subroutine FLTSORT

PURPOSE: Recalculate bomber attrition and avai1.able low
altitude range.

ENTRY POINTS: FLTSORT

FORMAL PARAMETERS: None

COMMON BLOCKS: CONTR1, CORRCBAR , CORRC1, DINDATA , DPENREF ,
GRPSTF , OUTSRA , OUTSRT , PAYSTF , TYPSTF , WHDSTF

SUBROUTINES CALLED: DISTF

CALLED BY: ALTPLAN

Method:

FLTSORT recalculates bomber ’s survival probability, a t t r i t ion, and
available low-altitude range, if necessary. Certain changes on sortie
change cards, such as addition or deletion of targets from the original
sortie, require the altered plan be reevaluated. For minor changes ,
time or offset , the user selects whether recalculation is desired.

The basic logic of subroutine FLTPLAN of module POSTALOC is used for
the recalculation. FLTSORT must initialize target values and distances
from origin , between targets, and to recovery. If the total dh’~ance
to be flown exceeds maximum, an error message is printed and processing
of this sortie stops. If any time change between targets has been
requested , an effec tive dis tance is calcula ted along with a corresponding
effective velocity. The effective velocity is checked to ensure it does
not change from the base value by more than a given percent. If limits
are exceeded , a maximum time change is computed and stored as the value
for use. After initialization the logic and mathematical technique is
similar to FLTPLAN (entry FINFLT is not used).

Figure 79 illustrates FLTSORT.

416

-5 -
-

_ _ _ _ _ _ _ -— — --5— --- —- — - -~~
_ ——.5- .—-—-—-- -~~~

Calculate Distance.
Pros Origin . Between

Targ.ts And To
Recove ry

6002

— Ini t ia lise
Att r ~~~ion And -

J For Each Time Change
Request Co pute
Effective Distanc e I S.t su*v (IoRlc)Between Targets

tespor arily
- I To 1. 0/ S

I~
(First Target)

Calcu late Surplus RangeTot al Distance ~es Print (INCSURP—RANGE.DISTANcE)Gr eater Than Erro r And Corresponding Low- 6
Max ? Message A ltitude Range (AVAILOW)

No

Peierve Sons Law-Al t itude
Do S Backwa rd . Range As Needed For

Pro. Recove ry To ne
P r .cor r tdo r Legs W ith

Origin Att rition And Son. to
Reach Fi rst Ta r get (RSVI.OW)

Do

Decre ssni AVA I La,I___
~ By RsVLai

Increeent DISTANCE By
Dista nce Ta Nut 70

Target . Recove ry I If AVAIL~~ Now Negative,Or Ditch Set To 0 And
ii, I Decrn..nt Reserve By

L_ Dif ferenceAS suming Entire F l i g h t

A t t t tu ~ie Spec t(ts~d A:~
t tr ibute PATALT , Calcul at Calc ulate Init ial Att rit ion

Attrit ion And Surviv al Rates For Allocation Of
On Lan to Meat tarfat Low Alt it ude Range--In

i. Pr.corridor Leg. . To First
4$ Y Ta et Or Later Tar et,

Aaau.ing Survival To This
Target . Calculate

Value Of Sortie Pro.
Thia Target On (VALON (J))

Figure 79. Subroutine FLTSORT
(Part I of 7)

417

--5- - - 5 - ” 5

-5-5 .5—
_ _ _ _ _ _ _ _ _ _ _ -.5- -—- .5 —-- ___ _ __ _ _

A

-

V A L O O nE (l O R l G) . O
20 1

100 go
• •

~~Tf~
• •

~~~
•’ 

115 J~
,

Calc ulate

i_.. 0’
~~

-1!...j Targe t To Ditch 
~~~~~~~~~~~~~

Do

ASH
Bomb Or ASH’ Bomb After

First Tsrget
First Targe t

~~
In Pligh t Rout.

Cal Cu 1 ate
VOR IG

0
120 130

‘(CS DlsTLEG(J).o’ No
AVAILOW.0 ! No

155 Yes
140 YeS 150

No Must
J • WITCH ? Bomber Be

High?No
160

NoOISTLOW(J) . Ye, AVAI LOW
200

~~~~~~~~~~~ DlSTl.E G~ J ) ?

170
Calculat e At trition D!sT~~~(J).DlsTLFc.(J) ;And Survival AVA I LOW .AVA I LOW-Probab i l i t y For Leg D1STL~~ (J)Precedin g J

180 175

Calc ulate Survival  Calculat e Attrition 175For Leg For Leg

180

Figu re 79. (Part 2 of 7)

418

_  
_  JL ~~~~~~~~~~

-— —  
-- 

- -  -~~~~~~~
-5 -5



200
Calculate A ttrit i on

For Current Leg Dec rement RSV LOW

( RATCIEG)

. 0 1  330

201 P-lake Inure
Calc ulate V a lue Of Rest Leg Low Alt i tude

205 Of Sortie- -From Precorridor
Legs (VALTOrI), From Firs t
Tsrget (VALIT), And From 

No
Current Leg (VALONT) Yes

Is Available

First 
205 Is No Range Less

Leg Where Is Att rition Later Legs PAYALT ‘ri.
260 “Value On ’ Highest? 

an Leg
Length?

340
Precorridor Legs Apply A l l Remaining es

RSVLOW To Leg

222 250

DISTDEF(L)’ Yes 
Apply A ll

RSV LOW ? RSVLOW To 
n~ :g RSVLOW-O

~so 
No

Increment DIST IOW Increment 01511,0W CIIRV AL .VA L ONT

(IORIG ) (IQItIG) CORAII R

All Defended Yes
Precorrido~ legs RSVLOW—0 

Calculate

Low Alti tude? 
A ttrition For Leg

No
242

Set L • Next Leg CURVAL-VAI.TO1’T 180 Recycle

And Reset Attrition PRATRATE To

Rate (PUTRATE)

241

Set Attri tion
R a te  (P RATRA TI )  100 Re cyc le

. 0  S To

Figure 79. (Part 3 of 7)

419

-_ _ _
- - ---5- - ___________________

—-- --5

~

- -- - —

~ 

- ~~~~ - 5 - - - -- - — . 5 -  - - -—- --~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~



-5- - - - - 5  - -- --- 5- --- -— - - - - - -5 -- -—-5-5— —- - ------5-—--—-—-—-5—-~~~~-—— —- -  - - -- ‘5 —-- ,

_ _
260
Set Critical A ttrition

(CRITATT) Besed On
Higher Value Att r i t ion
Of Other Two Options

1 290
270 

____________I I CRITATI S ~ I Calculate Amount Of low

Set MJDI.OW To I Yes/ Suppressed \No I Altitude (ADOLOW) Needed To

DISTLE G-DISTL OW 1” —\ Corridor f —~~~ 
Make Value A ttr iti on For

\A ttrition ? I I First Target .Higher Of
_________________ I [Other Two Veluea A ttritions

/ ADDLOWr \No Nof
RSVLOW? 

J 
RSVLOW ?

280 + ‘~
‘es 310 298

Decrement Apply All Remaining I RSVLOW.
RSVLOW RSVLOW To Leg [ RSVLOW-ADDL OW

Sec I Apply Calcu lated
DISTLOW.DISTLEC I RSVLOW.0 Amount Of Low
For First Target Altitude To

First Leg

Set First Leg Recalcu~~~] _______________

Attritio n FSTATTR / First Leg \Yes
(FSTAIIR).o All Low Now?

I~~
tL.FSTATTRl 300 ~ 

No

Recycle To 205 

Recycle To 

T 

F3OS

~~~~

A

~

T

~~

:O

los Recycle To

Figure 79. (Part 4 of 7)

420

~~~~~~~ __‘~~ - ‘ ‘~~~ -~ ~~“ ~~~~~~ ~~~~~~~~~~ —~~~~~ ~~~~~~~~~~~~~



- -~~~~~~ —--  - - ---— -- - - -- -—- 
~~

-
~~~~~~~

--
~

- -_

350[Calculate Actual
I Survival(8) For Leg

To First Target

360

[Calculate Attrition
In Precorridor Legs ,[And Survival To Origin

370

Recalcula te Cumulat ive
Survival (SURV) To Each

Targe t Based On New
Values of S For Origin

And First Targe t

375
Recalcu late VALDOWE

For Each Target

H
Figure 79. (Part 5 of 7)

421

--5-—-—-- -5-— ~~
-
~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


382

382

�

Yes

De termine
Last Target
Within Range

.

385-387

Set S and SURV For
I

All Subsequent

L Targets = 0

388-390

Set Attrition And
Low Altitude

Dis tances

I
Figure 79. (Part 6 of 7)

422

- ~~~‘ C

-
.

____ -
-
~~~~~~~~~~~~~~~ —- : _ ~ -_ ~~ - ~~~~

-
--

~~~~~~~~~ 
-

~~~~~
--

~~~~~~~~~~~~~~~~~~~
-—-—

~ — S -~~~~~~~~~~~~~~~~~~

-5.5----- .5- -5 -——- -- . 5 . 5
- -

I

~~~~~~~~~~~~~~ 62 

_

~~~~~
e>N0

~~h
L
~~~~~~~~~~~ K~~~

)
YesYes

/3 Is .\ 
~~ 

/ Is Available \.No
PAYALT 

~ ~ -( Low Range Sufficient )~~‘
\_  LOW?/ \~~o_Cover Targets?_/

4 
No ~~Yes

Compute Available r btract Intertarget
Low Altitude Distance From

Range [ Available Range

t 1000

64 Set Available
Low Range To Zero

80 Recompute Range

Figure 79. (Part 7 of 7)

423

I

L ____ -____ ________________________________________________________



r~~~~~~~~~~~~~~~~~~~~~~~~~ — - - - -

4.8.8 Subroutine FLYPOINT

PURPOSE: FLYPOINT is an Integral part of block 40 in PLAN
which adjusts events for ASM launches.

- ENTRY POINTS: FLYPOINT , PREFL1, PREFL2 , POSTFLY

- FORMAL PARAMETERS : None

COMMON BLOCKS: ASMARBAY, LASM, OUTSRT

SUBROUTINES CALLED: DISTF , LAUNCH

CALLED BY: PLAN

Method: 
—

PREFL1 determines the distance between the ASH target and the previous
- flypoint which was not an AIM ASH event.

- PREFL2 calculates the distance between the ASM target and the previous
flypoint.

- POSTFLY finds the next flypoint, and calls subroutine LAUNCH to compute
- the ASH launch point.

Subroutine FLYPOINT is illustrated in figure 80.

•

I 
_ _ _ _ _ _ _ _  

424

L 

- -
~~ ~~~~~~~ 

-

1.5. _ -“~~
—-

~~ ~~~~~~~~~~~~~~ ~~~_,,_ —~~ 5.__~-___ - ,,_  ~~~~~~~~~~~~~~~~~~~~~~~~ 
_ ‘_ ‘ s - .~ 5 - ~~ ~~~~~~~~~~~~~~~~~ --5—



-~ - - ‘~~~~~~ 5 
~~-- --~ — - -~~---- - “ ~“ -—-5- -- ---.

C~~STARTD
5.

Figure 80. Subroutine FLYPOINT

425 

_ — — — — —— - -~~~~— -————-~~~~~ -5--~~~~—— - — — — - -5 - -— —  ~~~~~~~~~~~~ , — - S — —



_ _ _ _ _ _  - - - _ — - 5-- - - --5 -- —5-— 
~~~~~~~~~~~~~ - -

_ _ _ _
4.8.9 Subroutine INITANK

PURPOSE: To initialize tanker arrays (connon block TANKA)

ENTRY POINTS: INITANK

FORMAL PARAMETERS: None

COMMON BLOCKS: ClO, C15 , C30 , TANKA

SUBROUTINES CALLED: HDFND, HEAD, NEXTrT, RETRV

CALLED BY: ENTMOD (PLANOUT)

Method:

The tanker weapon header is retrieved and every type (WEAPON), subtype
(WEPSUB) and base (MSBMTG) is retrieved in the chain order and their
attendant data stored in conm~ n block /TANKA/ .

Subroutine INITANK is illustrated in figure 81.

426

alp - ~~~~~ -
- -

. ;“~~~~~~~~‘
- -- ,

.~~~~~
- -

-

- -~~~~5-S-5- - _~~ ~~~~~~~~~~~~~~~~~ 5_____5.~~~~
_ _ 5

~~~~~~~



r~ - —---------- - ’ 5  ~~~~~~‘ - 5 -~~~~~~~~~~ 5-_’ - -~~~~~

LSTARTD

Call RDFND
And RETR,V For

Tanker
Header

1

Call NEXTTT
For Next

Tanker Type

Yes ~~~~~~~~~~~~~~~~~~~~~~~End Of \, .~ ..4 RETU RN

\ Chain? /
No

Call NEXTTT
For Next
Subtype

Yes

Yes End Of No Call NEXTTT 
______ 

End Of
Chain? ~~~~

“
~~ For Next J1~~~

\ Chain?
[ Tanker Base

No

Save Tanker
Data In Block _____________

/TANKA/

Figure 81. Subroutine INITANK

427

~

- -- -—-—- —_ -~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~.—-



~ — -  —--- - -5 .- -- -— - 5 - --—-- ~~-— ---- ---. ’- --— —.5-

4.8.10 Subroutine KERPLU NK

PURPOSE: To store the lists of sortie numbers of oneway
bomber missions and lite—load missions.

ENTRY POINTS: KERPLUNK

FORMAL PARAMETERS: DATA — Sortie number input or output
IPG — 1 - Sortie number is input

2 — Sortie number is output
3 — Pointers reset to zero (equivalent to

rewinding a file)
ITYP - 1 — oneway mission

2 — lite—load mission

COMMON BLOCKS: C40

SUBROUTINES CALLED: RETRy, STORE

CALLED BY: PLNTPLAN

Method:

The utility tables (TABLEZ record type 48) are used if the 100 words
allowed per type are used. As each sortie number is added a pointer
(COUNT) keeps track of how many have been added . When a buffer (BUFF)
is full it is added to the TABLEZs. A call with IPC = 3 resets to the
beginning of the list. Then calls with IPG=2 retrieve the elements of
the list in the order input .

Subroutine KERPLUNK is illustrated in figure 82.

428

- --5 —-  —— - -5 -5 -  - - - 5  .5— 5-5-- - - - _ _ _ _ .~~~~ _~~~~~~~~~~
__

~~~~~~~
__ S

‘ ‘ ‘~ ___5• _ _ _
~
_ --

START

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~No

Calculate Buffer

Current y 
~ 

Calculate
Buffer e 

3 Index In
Desired? Buffer

No

S tore Buffe r
In TABLEZ Store Value

Table In Buffer

Call STORE
For TABLEZ

Save TAB LEZ
Reference

Code

Figure 82 . Subroutine KERPLUNK (Part 1 of 3)

429

- - —5- - - 

—

~~~~~~


-5. -—- ‘- 5 --~~~~~~ -5- ----~~~~~~~~~~~~~~~ 5- —-5.5-5 - fl~~~~~~~~~~~~~~~~ 5- ——-~~-- - - • - -

-

~~~~~~~~~~~~~~~~~~~~~~~

increment
Count For

Type

Exceeded?

Retrieve
Data From
Buffer

RETURN

Figure 82. (Par t 2 of 3)

430

----5 — --5 
- - -—— -_ -- 5



V.- -- -

~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ - --5.---,-~~~ --5. - ---,‘•-—--5--,—.—--- - --~~~~~~~~~~~~~~~ - ‘- ----•-,--- --—--—-— ----,~~~~~~~ -—~~~- -•S-—— 5___.~~~

_ 
_ _ _ _ _ _-

- ® h ~~~~~~~~~~~C~~TURN

- I 

~ Do

Set Type Count
And Buffer

I 
Count To
Zero—I--

Save Current
Buffer In

TABLEZ Table

Call STORE
II For

[J 
TABLEZ

I _ _ _

- Call RE TRV
For First
Buffer

• Figure 82. (Part 3 of 3)

431

- 
.5 

- - S . 
-

• c -

5- — -55-5_ — ---5-5------ — -- ~~~~~~~~~~~~ —



- - S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4.8.11 Subroutine LAUN CH

PURPOSE: To determine the aim point, or launch point ,
at which an ASM is to be fired.

ENTRY POINTS: LAUNCH

FORMAL PARAMETERS: None

COMMON BLOCKS: LASM, LAUNS NAP

SUBROUTINES CALLED: DIFFLONG, SNAPIT

CALLED BY: FLYPOINT (entry POSTFLY)

Method:

This subroutine is called by the subroutine FLYPOINT whenever the aim point
for an ASM is required . The inputs and outputs to this subroutine are all
contained in /LASM/ whose variables are the following: lii , Vi , U 2 , V2 , UAT ,
VAT , RASM, RLAT , and RLONG. The sub routine is given that a bomber is flying
from the point (Ut, Vl) to the point (112, V2) and that it is to fire an
ASM of range R at the target (UAT, VAT) during this flight, at maximum
range if possible. It determines the point (RLAT, RLONG) at which the ASM
is to be fired . The value for R is stored in RASM.

This description refers to figure 83. Here again the bomber is assumed
to fl y from point (U i , Vi) to point (U2, V2) and the point (RLAT, RLONG)
at wh ich the ASM is to be fired from maximum range R to a target located
at (UAT, VAT) is to be determined. Two cases occur. In the first and
simp ler of the two , the range of the ASM is sufficient so that it may be
launched w h i l e  the bother is proceeding in a straight line path from
(UI , Vi )  to (112, V2). This would be the case if the range of the ASM were
R ’ shown in figure 83. The ASM target is said to be • in range”. The
ASM could be launched at maximum range from either point p or point p ’ S

shown in the figure. Of course , point p would be chosen. Since point p
is a point en route, it is not considered to be a FLYPOINT. The second and
more interesting case occurs when the range of the ASM is equal to R as
-hown . Here the bomber must deviate from its course and fly to the point
p” to fire the ASM . The ASM target is said to be “out of range”, and the
poin t p” is now a fly point . A solu tion in this case is to divide the angle
o = o

~ 
+ 0

2 
into its components parts in the same proportion as Dl and D2

shown in the figure , that is:

432

_ __ _ _ _  ______ -—--~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - J



~ ~~- - ----- --~~~~~~~~~~~~~
5
~ 

- -  - -

(U2 ,V2)

02

/ /  I

I

~~ N ~~93
(RLAT ,RLONG)

,///
// ( 

~~~~~~~~~~- (UAT , VAT )

-
_--

~~~~~

- - - 

- 

/
(Ui , Vl) ~~~~~~~~~~~~~~~~~~~~~ 

R

U
Latitude

- 

Figure 83. Determination of ASM Afsa Point

433

- -5--
- - ---5 -5- -S ~5S 55-~~~5 -55•S5• ~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ —S-.---.--—- ~.5S~~_-5~_5S~~~~~ .55 —

-5 -~~~~~~~~~~ - 5 5~~~



5- 5 .  - - --5  --- -5 - 5 -  - 

1

= 6D1
/(D1+D2) = 0D

2
/ (D

1
+D
2
)

This was found to give a good solution in most cases.. However, a better
solution is obtained by using a circle with radius .75 x R instead of R ,
and is des cribed below .

The procedure carried out by the LAUNCH subroutine is outlined with the
help of figure 84. The or igin of the coordinate system is taken at (Ui,
Vi) , and a Merca tor projection is used with the longitude corrected to the
ASM target located at the point (Bi, Al) , by multiplying it by cx=cos Bl .
The distance Ri to the ASM target from this origin is first checked against
the range R of the ASM. If it is less the ASM is fired from the ori gin.
This occurs if the ASM target is in the circular region about the origin.
Otherwise the distance P1 is computed as

P1 = Bi * cos cx - Al * sin cx = (Bl * A - A l  *B) /P

and compared against R. If P1 < R then the ASM target is in range of the
(possibly projected) fligh t path. Then, provided it is also in the half
circular region about the point (U2, V2) , the aim point is on the line
from the origin to this point. The distance F is obtained by first obtaining

P2 = A1*cos cx + B i * sin cx = (Al *A+ Bl*B)/P

and subtracting from it the distance x which is obtained by quadratic
solution .

If the ASM target is not in range of the flight path , the aim point is
computed as follows (see figure 85). First , the point (BT, AT) is com-
puted by:

BT = B*D 1/ (Dl  + D2)

AT • A*Dl /(Dl + D2) .

Then DIST is computed by:

DIST2 (AT - Al) 2 + (BT - Si) 2

This yie lds the des ired point (SF , AF) relative to (Ui, V i) as is:

SF = Bl + r(BT - B 1) /DIST

AF = Al + R(AT - A l /DIST

from which are obtained RLAT = Ui + BF and RLONG = Vi + AF/cx.

434

L.. 
- - 

- —  - _____________________



- ---S--,-—-- - -----5—-5 —-,-—---_ - - - 

—I’

V-

I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

:

/
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 2~~~~~~~~~~~~~~~ 1 I

A

IA1~~~~

-H- B 
—~~~

/ - 
- Latitude

5—

~~~~~~~

Figure 84. LAUNCH Procedure Outline

435

— - - — -5-5 — - -5 - -— - - 5 -- 55-5- -—- ____

- 5 — ~~~
- -5--’

- -.

4

-

(U2 V2)
-

-

-

~

(BT~~~ç
~
,_

_ _ — - - - - --/ A

‘
~ <CBF,AF)

/ I ~~~
N/

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~B1 

(UA I ,VA T)

(Ul ,V1) B 
—-________ 

_____

FIgure 85. Computation of Flight Path Aim Point

436

- 

.~~~~~~ .‘:; • 
~~~
,-- -

- - - -5- -

________ - - - ~~~~~~~~~~~~~~~~~~~~ ~~
_

~
_

-5 -~~~~~
- - - -

— —-- 5-- - -

-
The flowchart for LAUNCH is given in figure 86, In comparing it with
the above description, it is useful to note that, in the program,

quantities are squared for comparison purposes. Thus (Ri)2 = R1SQ,

(R2)2 = R2SQ , p2= PATHSQ, and (P1) 2 = B1SQ.

S

—

437

— 5~~~~~~~ --— — -- - — —. 5
L_ _ _

~~~~~~~~~~~



5- —--- —5- 
-

- -  - -

STAkI

_ _ _  
S

/ Set I.- 5-
~~.(Is AS~I Range No kim Point I— eL( RETURN

>0? Over The Targets ‘—

6

INPJ ,NG~-Ttue
czt ong Correction

C-Range ASM In Degrees
C-O.756

Ai (vA T~v1)*ALF ~~~R1
.I
~J~~)

BL UAT -UJ
— RIS Q= (AI ) 2 +(81) 2 

80

C 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

B=U2 -t il
PATHSQs.A2+B7

(rATlISQ~. 0000ooiJ—
2 ~~W~~~~~~~~~~A1*B)

. 2 6
_ _ _ _ _ _ _ _ _

I F1~’~
cPA5

~1I=1- —p— A2=A-A1

I B2=N-B1
R2SQ=A22+R22

(5IPS~~G2 ~~~~~~~~~~~~~~~~~~~~~~ I70

r~7~~~ :r~~~t ’4~~ I ((TE~~1P2. RAThSQ~~ ?

_ _ _ _ _ f 40~~~
- L -

~
(R2SQ :~~~~)

I

.RLONG 360~

-

Figu re 86. Subroutine LAUNCH

438

L

-5— —S-=.---- ---- --5 —----- ~~ -5 _ _ 5 _ 5 - 5 _ _ 5_ __.S_~~~~______ _ _ _ _ _ _ ~~___ _5_ ~ 55•~~~-5- -~~~~~~~ “------S- --
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4.8.12 Subroutine LNCHDATA

PURPOSE: Read in missile timing data.

ENTRY POINTS: LNCHDATA

FORMAL PARAMETERS: None

COMMON BLOCKS: ADVRB, CALLSW, OOPS, TIMELINE, TYPSTF , ZEES

SUBROUTINES CALLED: ABORT , DISTF , INSCET, SLOG, XLL

— 
CALLED BY: ALTPLAN, PLNTPLAN

Method :

This subroutine is best understood by reference to figure 87 as most
of it is taken up with error analysis of the MISTME and MSLCOR clauses.
For each MISTME clause , the endpoints are converted to decimal degrees
by XLL and the length and crossproduct. coefficients are stored in common
/TIMELINE/ . The data from the MSLCOR clauses is also stored in
/TIMELINE/ .

439

___________________________



— - — — S  - 

~~ 

-- - ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ — - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~ S ’ ’

~~~~~TART)~~~~

( 8 U
O:~~

)
~~~~EI~~~URN

~No

<C~~uses?}~~~~~~0

Set NUMB O , Count Of
Values , NUMB , Count

Of Commas and ICOUNT ,
Count of Clauses

Call I.NSGET
For Index Of
First Clause

Call INSGET

:IIiII::~
.m

t~ ;~ t~~~~:m 2

<

~~~

es>
Tat

~~~~~~
1Te

Figure 87. Subroutine LNCHDATA (Part 1 of 9)

440

— — -—- ------- - --.— ~~~
-

~ — - 5- 5—-—- -—-~~ -- - - --,--------- -s5--- - --------.-~-- ----sr-- ~~~
-5-5--5 -5 ‘5- - r ~~~~~~ -~~~

3 4

NUMB No
2 No A lphabetic

\ =NUMBO? / ~ \ Value? /
Yes Yes

- [e n ~~1 / Write Error / LI NUMB I I
Message For / j,~~~ / =r~uMBo’

L

~~~~~

i / MISTME Clause1

_ _ _ _ _ _ _ _ _ _  

No

1 RETURN 
I) 

-

Branch Set

On NUMB

~~~ 
~~~~

g
eX :~~iF

Figure 87. (Part 2 of 9)

441

— --- - —— —5S
~
5.--5-—-

~~

-s— -—-
~

-—
~
.--. 

~~~~ 
S5S_~

__
~5,_~ ~~~~~~~~~~~~~~~~~ ~_~~-5— _~s — ~~~~~~~~ — — ~~ -— ~~~~~~~~~~~~~ —- -~-5.S——.S——s-— ~~~~~~~~~~~~~~~~~ -.Ls.~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --5— -

~~~~~~~~~~ 
~~~~~~~~


-- 5 -—- --5 - 5-:~~~~~~~~~~~~~~~~~

I

H
_

Increment Cal XLL And
Number Of Store Second

Lines
j Longitude

r L _
N Too T Reset NUMB
° Many And NUMBO

Lines? For Next Line

Yes

Call Call DISTF
ABORT For Line

L Length

1 _~Call XLL And Compu te
Store First Perpendicular

Latitude To Plane
Of Line

Figure 87. (Part 3 of 9)

442

c - - -

..
~~ - .5 -5.5-55-

.— --.-- ---—--r n
- — -5-5--5- 5--5-55- ~~~ -5 - -

9

f T h i
/ MISTME

Clauses
Done?

No - L
10

Set To Look
At Next

5 Clause

Call INSGET
For Next
Clause

No MISTME
Clause?

Yes

Increment
ICOUNT And
Se t Index

1

Figure 87. (Part 4 of 9)

443

-
~~~~~~~

— , S 

_  _- - - - - 5- — — -5 -- -  —-- - -.5- -  _ ___ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _



AD—A058 1406 COMMAND AND CONTROL TECHNICAL. CENTER WASHINGTON 0 C FIG 15/7
THE CCTC QUICK—REACTING GENERAL WAR GAMING SYSTEM (QUICK). VOLU——EtC (U)
APR 78 D 4 SANDERS. P F MAYKRANTZ , 4 M HERRON

UNCLASSIFIED ~~~~~~~~~~~~~~~~~~~~~~~~~~~ SBIE—AD— E100 085 NL 
I

~~i~5
058406 

__________________________________ ______________________ _______________________________________________________________ ________________
U

HI



- —~~~

_ _

Set Array Of
CORI4S L To 10~~~

And Set Switches
To Indicate “FL !GHT”

_

~~
c
~~

u
~J>~~~~~

EIIID
~Yes

Set ISW.4 For
Weapon Name .
Set ICOUNT= 1

_ _ _(I Call. INSGE~~]

~ 
For Ind ex

Iiof First Clause

Call INSGET
13 For Next

Input Item

Figure 87. (Part 5 of 9)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  --



-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

I
A

Yes

/Write Error /
~~ 19 L For MSLC~ R

J

=3 
(J~ RETURN )

p 

—4

—5

Figure 87. (Part 6 of 9)

445



-~ - -

16

Set
ISW— 2 19

Is Value
In List Of No 

15 
No 

Conm~a?Weapon Names?

Yes Yea

Set IDENT—
Index Of Set ISW

Weapon Type =3

13

Figure 87. (Part 7 of 9)

446

- q

—

~

- -—-— --—— ------- —--

~ 

~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~

. - -—-.---
~ ~~~

-
~---~- --- --~—~— --- —.~

- - — — — -~~- ~— —-- ---—-- -v —
~ ~~~~~~ —- -— -~,-- - -. ‘ -,-~- -— - ---— __—__-~--_---—- ,---_‘__ _ _ _-,-- =-, r;-,~-’- ----~~~~--.

H
-. (IILINE ~I?)~

Y
eLj ~~~

0 I
_ H

15 No Co~ na?

~ Yea Yes

Sey IBR= 2 1
ISW=4 J 13 I~~~5

Figure 87. (Part 8 of 9)

447

~~~~~—~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~ —b 
~~~~~~~~~~~~~~~~~~


_ _ _

CRETURN <CHUm

)
IYes jNo

~28~~~~
I Call INSGET

Set ISW 1 For Next
Clause

_ _
_ _ _

(IBR=1,
)

No

~
LMake Sure

1 No

J~vea I IYes
25 Y
Set Switch To
Indicate Line J Store Flight I Increment
Store Line

CORMSL ICOUNT And
CORMSL L [~~ve Index

Figure 87. (Part 9 of 9)

t

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~

- - - - -

~

--

~ 



— -- -

4.8. 13 Subroutine PLAN

PURPOSE: Subroutine PLAN develops detailed bomber sorties.

ENTRY POINT S: PLAN
-a

FORMAL PARANETERS: None

COMMON BLOCKS: ARTIME , ASMARRAY , C30 , CONTROL , CONTR1, CORCOUNT,
CORRCHAR , DECA, DINDATA , DISTC , DPENREF , EVENTS,
GRPSTF , HAPPEN , HILO , ICLASS , IDP , IGO , lOUT , IRF,
LASM, MH2 , OUTSRA, OUTSRT, PAYSTF, POLITE, PPINFO,
PPXX, RECBAS, RECOVERY, SPASM, TANKA, TEMPO,
TYPSTF , VICINITY , WHDSTF

SUBROUTINES CALLED: ADJUST, CLINDATA, DISTF, CLOG, INTERP, IPUT , ITLE ,
LEREORDER , ORDER , POSTFLY , POSTLAUN , POST1 7 , POST4 ,
POST8 , PREFL1, PREFL2 , REORDER , SLOG , SNAPIT

CALLED BY: PLANBOMB

Metho d:

Figure 88 illustrates the overall macro flowchart for subroutine PLAN.
To simplif y discussion , PLAN is divided into “blocks” of coding as
noted in the macro flowchart. The subroutine description as well as
detailed flowcharts are organized around these blocks, which are:

BLOCK 20 — Determine type of plan
24 — Initialize plan
25 — Post Launch event
26 — Post Refuel events
27 — Initialize plan with respect to GOLOW range
30 — Process precorridor legs and apply GOLOW—l
31 — Post corridor events
40 — Adjust /OUTSRT/ for ASM events
50 — Apply GOLOW—2 before first target
60 — Post depenetration events

and are described in the following.

Block 20: Determine Type of Plan (figure 89).

SNAPIT is called to output Print 7 and the low altitude variable Gi is
set.

449

— - — — -  ---——-— . —--



r

START

24 *

Initialize
- 

- Plan

Post Launch I -

Event

6

Post Refuel
Event

Initialize
Plan With
Respect To

GOLOW Range

Process
Precorridor
Legs And
Apply Gi

3

Post
Corridor
Events

HAdjust
/OUTSRT/

• ~

- For ASM A
Events

* Circled numbers refer to start of coding blocks rather than to state—
ment numbers.

Figure 88. Subroutine PLAN (Macro Flowchart)
(Part l o f 2)

450

— ~ — 
_____._ _ _s 2aSZ.&•~~~ •- ~~~ ‘- -—- 

—



__________________________________________________ ________

Call ADJUST I
To Assign I

Change Alti— I
tude Event~ J

Insert Alti tude
Changes , Post Target
Area Events, Find

Possible Decoy Launches

/ What Is The \
,tast Input Event\
\ In Target /
\~~~ Section?~~~J

DE~EN 
L4f~ DIVEMISL ~~~HER

Post Post Abort Post Abort
Depenetration l Event At Fuel Event At

Events [ Exhaustion Last Target

C RETURND

Figure 88. (Part 2 of 2)

451 

- -,-—-v--
~ ~~~~~~~~~~~~~~~~~~~~

~~~~~~— - - - •  -—~~~~
-
---- —_---- - ---- ------ —• --- - -~~~~-—• ~- ---— ~~ ~~~~- — — -•-~~~~~~~~~~~~~~~~~ -~~~~~~-~~ --~~~~~~ ---- -- -•~~~--

- --—- •

•~ —- - - - -•- -- .- - -- - - - -~~~.-—--~~-- - - —-—“~— —_—-_--- •- _ • -
~~~~~~~~

. _  - -

LSTART )

210 
__________

S tore Type Index

201 
________ 

______________

Is This A 
~
‘\tyes I Store

ç Tactical Or Naval ) ~ J Corridor
\ Ai rcraft ? / Information

No
402 

___________ 

232 
_________________

Ini tia l ize  Plan Increment I

For Sortie _____

Corr idor Count I

L[ Call  SNAPIT
(7 ,1) To

Output Print 7

230
I n i t i a l iz e

g 1 Variab les

Figure 89. Subroutine PLAN
Block 20: Determine Type of Plan

452

- p

- ——- - -_-_--— —s- •—- •— ~~~~~~~~~~~~~~~~~~ •~ -~~-~- ~ 1~~~
_ —~’--— —--—- ,~

__ - •-- -
~~

------- — .
-~



__ - -

SNAPIT is called to output Print 7 and the low altitude variable Gi is
set.

Block 24: Initialize Plan (figure 90)

The plan initialization at block 24 consists of setting pointers and
indices for the appropriate depenetration corridor and ‘writing other
information into the final plan. Indices for the Payload table and
AS)! table are set at this point , as are parameters which are dependent
on bomber speed. These parameters are associated with the minimum
length of time a bomber flies low, and where a bomber is to change
altitude in the neighborhood of a target.

Block 25: Poet Launch Event (figure~~1)

After initialization, the posting of events in the output arrays of
coamon /DINDATA/ begins with the posting of the Launch event. It is
posted by location (latitude and longitude) as well as by type and
“place” index. Table 10. lists the types of events admissible for
posting, as well as their names. Note that the GO HIGH, GO L~~, andDOGLEG events are not admissible in the final plan .

Block 26: Post Refuel Events (figure 92i)’

If there is a Refue l event , it is posted next. Refueling is accomplished
in one of three ways: (1) at preassigned refuel areas (refuel index �0),
(2) buddy refueling by another bomber or tanker launched from the same
base (refuel index — -1. or -2),  or (3) automatically by PLAN (refuel
index — -4 for single refuel, -5 for two refuels). In the first case
the data preparer assigns refuel areas for both bombers and tankers .
In buddy refueling, tankers are ignored. Bombers are refueled by the
buddy system at maxim~mi range (a great-circle distance from the base
equal to refueled range m inus range) or just prior to the corridor
origin, whichever is sooner.

When a bomber is to be assigned a refuel area by PLNTPLAN the buddy
refuel point , X, is first computed a distance AR from the base on a
great circle between it and the corridor entry, as for buddy refueling.
See figure 93. AR is the difference between refueled range and range.
If there already exist refuel areas which are within AR of the base
and within some specified distance, D, of the point X, the area neares t
X is assigned as the refuel point. Otherwise the point X is assigned
and is added to the list of refuel areas.

453

L 

• 

- . ~~-~~~~~~• , - ,
- -



fl 
- — ---~ -~~~- - -~~~~~~~~~~~~~ -~~~~~ “ ~~~~- -- -~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~ --~.—-~~~~ - r “

240

240—2253
Ini tialize

/INDATA/ And
Var iables For

Plan

Call SNAPIT
(8 ,1) To
Output
Print 8

I

Figure 90. Subroutine PLAN
Block 24: Initialize Plan

454

., -.

____ — - ~~~~~---— •~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~
- -—

~~~~
-

~~~~~~~~ - ~~~~~~----•-


- —~~----

_[Pos t Bomber
LAUNCH Event

_ _ _ _

DUST = Distance
From Launch Base

To Corridor Entry

Block~~~~~

Figure 91. Subroutine PI.AN
Block 25: Post Launch Event

• 455

-~~~~ - - ~~~~~~~~~~~~~~~~~~ --— • -_- --~ -, ~~~~~~~~~~~~~ ~~- -• -~~ •- - - ~~~ - -~~~- - —- .
~~ - ._

‘~~~~~~~~~ -~~~~~~~ ——~~~~~~~~~~~~~ ~~~~~-~~~~~-- ~~~~~—-— -~~~~~~~~ -—~~- -•-

~~~~~~~

Table 10. List of Admissible Input Events by Type
and Information Relevant to Each

TYPE OF WEAPON OFFSET
HAPPENING (EVENT CODE ) TAT., LONG PLACE TAT., LONG.

DOGLEG (20) Y N N

DROPBOMB ( 8) Y Target Index Y

AIM ASM (14) Y Target Index Y

DEPEN (16) N Depenetration N
Corridor Index

LAND (13) N N N

DIVEMISL (16) N N N

Y = relevent

N = not relevant

456

_____ _______ -4



~ • .  •- - -- — - - - -_ - ‘~~——--—-- —~--——.-——,---- - - --•---------- --•- ----—----•---~ - • • . -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — -

• BLOCK® 

~
[ 

~~~~~ 1280 299—2269

I ~~~~~~~
~~~~~~~~~~~~~~~~~~~~~ (No Ref uel)*’J 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

254o DIS = DUST
RE FO I F —

284 Refueled Range
Less Range

251 3 255
fIs Distance (D~~J\ ,,. I FACTOR

251 ~
(Over Wh ich Refuel)_

05 ø’-I DIS-S
~ DIS

256
FACTOR =

REFDIF
DIS

257 3
Call IN TERP
To Find Buddy

Refuel Point

IRF = ~ 1
287

f IR S - 4
~~~~ I Add I To S~t( (Automatic )NO~~,1 Bombers For (S1,T1) . Launch

\~~ Refuel)? / 
~~ 

Refuel Area (SR ,TR )s  1st Refue l- lYes (S2,T2) — 2nd Refuel
258 y 3
I Assign 259 fl Call POST4 1
L To LOCAT 

j  ft Refuel Event 
[

IRF . IRFP 1
~~~~

EF
~>

LA55
~~1

I

Figure 92. Subroutine PLAN
Block 26. Post Refuel Events
(Part l of 5)

457

- —— — _-_— - —------- ——.- —-~~--- - ---- - -—-~~ -- ~~

-
—-~~~~~~~~~~~ - - ~~~~~~ - - _--- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

_____j
1

~~

Do 2585 \ Done
For Each
Tanker Base

Do

2583 2586

_ _  

ITKB = 
_

_ _

FACTOR =

No’ 
Is This The \ /Tanker Range

~ ( 
Closest Tanker ) (Distance To
\ Base So Far? / \Buddy Point

1 For Closest
I Yes Tanker —

2582 V
~~ I Save Tanker

I Data Call INTERP
_ _ _ _ _ _ _ _ _ _ _ _ _  For New

Refuel Point

Print
NEW REFUEL

- POINT
Message

270

Figure 92. (Part 2 of 5)

458

_ _ _ _ _ _ _ _  - .- _•
~~~~~~c _~~~~~~~ -

_
~ ~~~~

__________________________ __________________ -

-.

259 284

268
284

(
~~?

ther Refuel No orig~~~1~~
m
~~~uire No 

CL = 0
? Two Refuels?

Yes Yes 2812530 269
Save Refuel CL = Distance CR = 0Index In From Launch To

IRFP First Refuel

252
Call POST4 

[__

Assign 282

L Refuel Event

Add One To Bombe
Counter For This

Refuel Area

4)
Replace Launch
Location With

Location Of First
Refuel

I
Reset

I R = ~~ 4

DIS = Distance
From First Refuel
Point To Corridor

Entry

H

Figure 92. (Part 3 of 5)

459

L -~~~~~~~~~- - 

-
•  

_ _ _ _ _ _  -



— 

270

_______________ 
271

Locate 
f Current ~\4~~55 DPREV —Refuel -—0. ( C Refuel Areas ‘~—oI 6

Area ~ maximu~~~/ I 10
INo

272 V
DPREV -
Size Of
Refuel

Neighborhood

273 3
RFDF 

-

_ _____

REFDIF • 1

276 ~~
(

~~c~
Th

Re
F
f~~I 

>
l

< d N _) 
Yes

X — Distance. 
278

- 

(S
~;~~ i

T
~rea I ~~~~~~~~~~~~~~ 

No

3 2270 3Yes 2278

~ Nc~
/’ X ~ RFDP Increase RFDF P4ake Buddy

/ ~~1 REFDIF Point A New

Yes 
~~~‘ ~~ Refuel Area

Z — Distance ,
Buddy Point

(SR ,TR) To
Refue l Area3, (LOCAT Will Be

Z < DPR~~~~~~~

275 3Yes

DPREV — Z,
Save Refuel I

-

Area Index

Figure 92. (Part 4 of 5)

460

L L~~~TT~ ~~~~~~~~~~• _ _ _

— -~~~--~~---—--
~~
-—— - ---- --- •- - ---- — -

~~~~~ 
-- --

~~
-- -—---

~~~~~ 
-

~~~
—- -

~~
-
~~~~~~~

~~~~

—-----— - -- -- - --

=

~ 

— - -— —- .-

I .  

_ _

Compute I CP =
Refuel Area —— ~ Distance From
Arrival Time (S1,T1) To (SR ,TR)

294
Is It No D = Arrival

A First Time Relative
Strike? To Time 0

Yes
293
D = Arrival Time,
Coordinated With

CORBOMB Parameter

Store Refue l
Time For Later

Tanker Scheduling

Update ARTIME
Array If This

Is Earliest Refuel

A
IARTIME

(IART IME May Be~~~~~~ or )

Figure 92. (Part 5 of 5)

461

_ _ _ _ _  ___ ____ —- •- - -~~ ~ -- .— ~~~~~ • ——— -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— -—-- .-~



— - —~~~~~—~~~ 

Corr idor
Entry

~FAL—fl
Buddy 

~of u e 1  Po1~~ , X
~~~~~

-
~~~--

-- vq~;y~///Jj~~~ J
+~~J~ j~/:roi1. ~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~ J “
~~Exi st3fl g Refuel

Area As~ igfled

Figure 93. Acceptable Locations for
• Refuel Area (Shaded Section)

462

~~~~•



The list of tanker bases is then scanned to see whether the buddy
refue l point is within range of any of them. If not , the closest
t ank -r base is chosen and a new refuel point is computed by interpola-
t ion . This point will lie on the line drawn between the tanker base
and the original refuel point in such a way that it will be within range
of the tanker base.

rhe ac t u a l  time of arri val at the refue l area is computed , using the
CORBO~tB parameter  if  the plan is for a f i rs t  s tr ike . The earl iest
j r r j 1 a 1  t i m e  in each refuel area is saved for later use when generating
t a n k er  p l a n s  (array ART I ME) . Also saved for tanker scheduling is the
a r r i v a l  t i m e  and refue l area for each boi~~er (array ARVLS) .

R~ ock 27: In i t i a l i z e  Plan with Respect to GOLOW Range ( f i gure 94)

The low-altitude range available to the bomber in f ly ing  the sortie is
sp e c i f i e d  to PLAN in three separate amounts: the amount during the
prcc ori - idor  l egs (G 1) ,  the amount immediately prior to the fi rst -
targ~t (G2), and finally, the amount immediately following the first
target ( G - ~) .

In  b lock  27 , these amount s are examined to make certain that the bomber does
not fly low for less than 15 minutes. If G1 

< 15 * SP DI I I , then G 1 is added
to G - ~. if  G~ -* G3 ~ l~~ * SPE) 1I1 , then C2 and C3 are set to zero.

If  t h e  bomber is a tac t ica l  or naval aircraft  (denoted by the use of
corridor 1 or 2), coding blocks 30 and 31 are skipped .

Block 30: Process Precorridor Legs and Apply GOLOW-l (figure 95)

The main sortie processing begins then at block 30 with the processing
of the precorridor legs. They must be processed in the opposite
direction from the bomber flight beginning at the origin and proceeding
backward toward the entry . This is becaus e the available low-altitude
range (Ci) is measured backward from the corridor origin. Corridor
at t r i t ion may be associated with the precorridor legs , and low-
alt i tude range is applied against only those corridor sections where
the bomber would experience attrition . Any C1 remaining is added to C2 .

The processing for this block of coding is perhaps best described by
referring first to figure 96 which gives an example of precorridor
legs in the most complex configuration allowed . It also shows how this
this corridor is described to the mod ule in /HAPPEN/ . The corridor
consists of eight separate doglegs or nine points, and so is described
in nine lines in /HAPPEN/ . Those doglegs where the bomber would ex-
perience listing the location (latitude and longitude) of each dog-
leg point En order beginning at the corridor ori gin and proceeding
backward toward the corridor entry , as shown in the fi tu re . With
each point the distance fr om the previous point is also noted . If
at t rition begins at a point , this is noted by entering a 1, 2, or 3
Iii array JAPTYPE, depending upon whether this is the first , second ,

463

-- ---- - -  - -- • - - _ - • •~~~~~~ -~~ • -



• — — -~~~- - . r—~~~~~~~

B 1ock~~~~~

Set g1, g2, And

g3 Variables- 4
IFLG OLO 1=0
NPSLN =0
KDST=1

TIIIIIIIIIIIIII B 1 ock
/ Is lhis A \Yes / ~~\Tactical Or 40

Figure 94. Subroutine PLAN
• 

I Block 27: Initialize Plan With
Respec t to GOLOW Range

464

- —,- •

rn—

~ 

_
~~—- - - —•--_-~~~ - ._—_ - _ --- -~~~----- ~— - --~~-~~ -- .~~~~~~~ ---‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ~~~-~~~
----— - -•- •- -— -

~~~ 
—-

300

Call SNAPIT(7 ,l)
To Output
Print 7

.,01
Set Flag

To Ind icate No l e

303

rs There Set Flag To Retrieve
Attrit ion On No Indicate There Attrition FlagLas t Leg Befo re Is Go Low 1 (JAPTYPE)Corridor

On in? (I N F = 0) For Event

333
Yes

304
l

-
Set Flag To Store Go Insert Event Type,

Indicat e This Low 1 Dogleg, and Place
For Subsequent Range In “0” Into List Of
Decoy Coverage Parameter GOLO Events And Places
(IFLGOL O1 = 1)

Initialize Find Pointer To
Counters And Precornidor

Flags In Dat a For This
Do Loop Event (JO)

Do 310 For f Find Current
310 Precorridor DO

~ j Event Being
Events

I
Processed (JI)

Done

B LOCK 31

Figure 95. Subroutine PLAN
Block 30: Process Precorridor Legs and Apply COLOW I
(Part I of 3)

465

• - p

-•---• .---——- ,-- -- - •-- - -- — —-~~~~ •- ~-—: ~~~~~— - -- - -~~~~~~—*~~~~—- --. -~- -_

- - - - ~~~~~ --—-—- - - ~~ - — - - — -— - — - -- ------ - -------- -~~- —- ------~~~ -

______________ 354
fis There Co\ Rep lace I)ogli’t~

~~~~ ~/ 
Low I Range \~es I~vent W i t h  

-

\ Remaining ? / ~~ Change Altitude
\ (INF = 0) / Event

jNo
353 7 _________________

Store Event Store Event
Number (JI) Number (JI)
For Possible For Possible

309 Decoy Launch Decoy Launch

307 No 4 355 +

,~~~~yes Jboes Attr i t io~s,. Increment Index Is IDEL \No
(3o8 )’~~-( Begin With ) To Array DE LDIS 

~~
(

\~_~~ \T h is  Event? / (KDST = KDST+l) \ <

£ jYes
I N o  315 7

,
,—

~~~~ 
/bid Last Lej\ increment

~~J~.ç~ave Attrition2 IDE L By One

I Yes
312 316

Set Flag (JA)
/ Is There Go To Indicat e, Low 1 Ran ge \ No That Last Leg 0—\ Remaining ? / Had N o Att ri t i on
\(INF = 0) / (JA = 0)

351

Retri:::

350

.Accu~~1a~e
~~~~rt Latit~d~~~~~

°

Distance Distance Since And Longitude Of I ,~~~~~
Since Last Last Event In — Event In ~ø’{ 310)

Event (ELI’IS) For Decoy Coverage Event List j
___________ 

313 

- 

352 No

K~~~~~~~~~~~~~~~
v

~~~~~~~~~~~~~~~~ H_ _

1 Ran ge Which
Does~~~:~~~~ on

352

~~~~es Yes

Figure 95. (Part 2 of 3)

466

- — _ — --- ——••— -- -•- _ _  - —---•--• —-- .-_ --- _—- —••-- -- •-•-----.-----—-•—~~~~~ — -~~~--- ~~~~~~~~~~~~~~~~~~~~~~ 
— ---—--~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -•----~--~—-_-_-———.-——



- - - - — 
— ‘•=--.• •

• _
Set Flag (INF)

To Indicate That
N o Go Low 1

Range Remains
(I N F = 1)

320 
______________

Set Parameters J ii l  Ran ge ’\To In t e rpolate ~~~Noj Run Out
Location Of [ \ Exa ctl y At

Al t i t ud e Change_J Event?

+ Yes
___________________ 

317
Call I NTE RP Replace Dogleg
Find Location Event With
Of Altitude Change Altitude 

(3o8~L change Event

4 308
Set Fla g (JA )Store Event Store Event To IndicateNumber For Number 
That Las t LegPossible For Possible 
Had AttritionI)ecoy Launch Decoy Launch (JA = 1)

No 
<a 

Lo
S
wTTe

- f 391 4
Yes

Insert Change I I Replace Dog leg
Al titude Event , J Event With

Latitude And I Change AltitudeLongitude Into I EventEvent List

Increment Add Distance To

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
—

~~<~~)

Figure 95. (Part 3 of 3)

467

_ _ _ _ A

~~
—--- - - •.—.--

~
• - - - ---- • -----,---•- ---•.•--

~
---• - •

~~~~
--—--—- .-----------— ----.--- -

~~~
---------•--- —

~~
—--•.—---.-•• -

~~—— - • --- - - -.-•,-—-- -•
~~~~

-—--—-•------,—•-- -
~~~

-• --.
- - - --,-,- • -‘--.•—•- •*-•-• --.- -

200
- ••~~~~~~~~~~~

9

~ Corridor
/ 8 I~iitr y20.-

100 /
•

38/
’

Corridor
Orig in

(a) Corridor Exam p le

POINT
N(NBER JA PTYPE HAPLAT IIAPLO NG hIAPDIST

I I lat 1 long
1 0

2 0 lat
2 long 2 112

3 4 . 38
4 0 . 50
5 2 . 65
() S . . 60
7 0 100
8 3 . . 20
9 . . 200

(1,) Content of Common /HAPPEN/

Figure 96. Example of Precorridor Legs

468

r

- \

‘

-
.

~~
r _1 1TT - ~~~~~~~~~~ - • - - •j~~~~~~~~

-_-~ ~~

_ _ _ _ _ _ _ _ _ _ _

or third section. Similarly, if attrition ends at the point, the number
4, 5, or 6 is entered . Thus point 1 is labeled with a 1, and point 3
with a 4, to indicate the beginning and end of the first attrition sec—

• tion. This example, of course, describes an extreme situation where
attrition occurs In three separate sections. Usually, there will be
attrition in at most one section . The program must know which doglegs
have attrition In order to know where to apply the low altitude range
C1. [n the figure example , suppose C1 = 180 miles, then 112 miles would
be applied against the first dogleg back of the corridor origin, 38
miIes applied to the second dogleg. The balance of 30 miles would be
applied to the 5th dogleg beginning with point 5 and ending midway
between points 5 and 6. As a result, GO LOW and GO HIGH even ts would
be posted as indicated in the fiture . The posting of a GO HIGH at the
corridor origin depends on the value of G2.

This section also sets up arrays which contain the event numbers of all
those precorridor events which might possibly call for the launching
of a decoy. These arrays are called LOHIMHT and LDMHT. The event num-
ber is stored in LOHIMHT for events of priority 2. (Sec subroutine
DECOYAD D for table of priorities.) The event number is stored in
LDMHT for a launch of priori ty 3 (or , after the first such event, pri-
ority 5). For the priority 5 launches, the distance to be covered by
the decoy is accumulated In a corresponding word of array DELDIS.

The flag JA is set to 1 when the beginning of an attrition section is
encountered , and back to 0 at the end. IDEL is the Indicator to be
compared against JAPTYPE in order to determine the beginning and end of
at t r i t i o n events. The counter JDO is advanced each time an addi tional
Change Altitude event is added .

Block 31: Post Corridor Events (figure 97)

C1 is measured out and the necessary change altitude events determined .
The possible Decoy Launches then are posted by filling array LMHT with
the event number (from array LDMHT or LOHIMHT) and by filling array
LPRIORITY with the associated priority (5 if the event number if from
array LPRIORITY with the associated priority (5 if the event number is
from array LDMHT, 2 if the event number is from array LOBIMHT). For
the pr iority 5 launch, the index to the associated dis tance in array
DELDIS is the same as the index to the event number in array LDMIIT;
hence , this index is stored in array NDCYRQ. The priority 2 launch
does not require a coverage distance . Whenever this is the case, a 1
is stored in array NDCYRQ. The actual filling of these arrays is done
by subroutine POSTLAUN .

Block 40: Adjust /OUTSRT/ for ASN Events (figure 98)

The list of input events in the /OUTSRT/ arrays is next examined for ASM
events. If there are any, the aim or 1au t~ h poin ts for them are now
t’aicu [ated . If necessary , the ASM events are reordered within the list
of other events at this time. This Is because ASM target events are

469

_______ — - - ~~~

BLOCK~~~~~~~~~~~~~

Find Total
Number Of Events
Processed Above

Post Type, -Lati-
tude , Longitude ,Increment Index And Place Of

To Flagging
~~

‘ Fi rst Evetn ;
Array (LOI-III’IIIT) Initialize

CQunters And Flags

Do 329Re~~~~~~~~~~~ ;us H Processed

Don
Cl

Event Number Above

361 Yes Increment Counter
as vent To Reflect

Increment Index Flagged For No Additions To List;
To Flagging Possible Decoy Retrieve Latitude,
Event (LD1I-IT) •Laimch ? And LongitudePriority 2).

Of Event

360
if No

Was Event
Replace Previous Flagged For
Event Number Yes Possible Decoy
With Current Launch
Event Number (Priorities

_ _ _ _ _ _ _ _ _ _ _ _
3 o r 5)?

332
Post Type, Lat i-
tude, Longitude,

- And Place Of ‘0
Event Being
Processed

Figure 97. Subrou t ine PLAN
Block 31: Post Corridor Events
(Par t 1 of 4)

470

• •
•

-~~~~~~

— ~
—.--- —

~~~~~~~ 
- -

- • ——

Set Pointer
IDL As Last

Array LDt4-IT

_ _ _ _ _ _  ~ T
Set Ind:x J To 

____ 

~~~~~ 
Do
~~ I

K D L M L
~~1Loop Backwards Times

[Array LOHIPI -IT

I +No

~

~~~
<Is 

Jth Entry\
_ _ _ _ _ _ _  Of Array >Ies

Fil led? /

Figure 97. (Part 2 of 4)

471

—v T
--- --—- -~~~.-‘~~-

- - -•--—--•-•----- -.-•---- —  -‘-• •--. • —
~~ -- ---•- ---•---~~~ — —— - -- -•—---~-•---- -•~~-••--- - -—- - - - -•--~~~~~~——.——-—•-—.----• ~~~~~~~~~~~~~~ ~~~~~~~~~~ -- . - ~~~~~~~~~~~~~~



____ _____

P _ H
Set Index K To
Process “Do”

Done Do 342 For Do Loop Backwards ;
342 All Events —~~ ‘ Set Index L To

In List Next Available
Entry In Detailed
History Table

I I  
_ _ _ _ _ _ _ _  

370
/ls Entry In\ Replace LDP’IJT I/ LDM-IT Equa l 

‘Yes Entry With Index
( To Event )— ~~ Number Of Next I
\ Number Being / Entry In Detailed
\ 1~rocesse~~J’ History Tab le ]

INo
373 

_________ 
371 Y ___________

Post Event Type 1 /Is EfltrY~I~\ /Was Ent~T\Latitude , Longi-~ No/LCIll~IIT Equal \ yes /The First One
—~~~ tude , And Place f’ø—( To Event )“O ( In LD~1ITIn Detailed \ Number Being/ \(i.e., IDL=1)?

History Table I \ Processed?/ 
________

A IVes J ‘~o
TYes 372 7 374 7

I lnt \~ 
Replace WHIPIIT

/The Firs t One Entry With Index Decrement

\ti.e., KDL 1)/

0 
Entry In Detailed 

— IDL By One
History Table

No
375

Decrement
KDL By One

Figure 97. (Part 3 of 4)

j 
_ _ _ _ _ _ _  

472

_____________________ • • 
T~’ ’  - 

~~~~~~~~~~~~~~~~~~~~~~~


r • -- - .-- — - ----- - •--- --- •-- - • -~~~~~~~~ - • --~~~ -- — — - •-—~~~~~~~~~ - - - -~~~~

342

342
Reset Index Mlii

- To Include
Those Even ts
Just Posted

• Store Current
Value Of MIT

In MI ININ (IALX)

• e
•

________________ ~~Done

Call POSTLAUN 1 Do 380
For Priori ty

2] a-1

A jOb
383 ‘I’ 382 No

_____________Retrieve Its I —
. ,~~~~

• •Value To Use yes!
Is This \ No ! Is This

As Parameter o~~~(
Entry)-‘0 —(Entry Of

For Subroutine \~~ ~~~~~ 7 \LDMIT Filled?

A lYes
II’ 381 7

Retrieve Its
Call POSTLAUN Val ue To Use
For Priority 5 As Parameter

For Subrout ine

POSTLAUN

Figure 97. (Part 4 of 4)

473

- - — - • - - • - -
~~~~ 

• -

IASMF LAG

Write Depenetration
Corridor As Last

Point

/ i 5  This A \ Ye( T*ctical Or )—
1 Ai rcraft /’

No
402

Write Penetration
Corridor As Fir5t

Point 000

5000
406 

___________ Call ADJUST

_______  
Do 405 For 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~I wrYPE U ) 

~) 
_ _ _ _  

ç

~~e n e e : ~~~

Q
401 00 ~ Yes (liJock 50)

IASMFI.AG= 1 (
__

R~~ j~l
• 

______________ 411
Is RASM \yes I Print I i( Or SPASM )_

~~~~~~~ f 
NO ASMS /—~~.j IDP(ALX) = I L) X I

/ / Message J I _ i
404 7
I ______________________________[

Figure 98. Subroutine PLAN (Fart 1 of 4)
Block 40: Adjust /OUTSRT/ for ASM Events

474

• • c _ -

L - - — — — ~~~~~~~~~~~~~

_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -__ —~

_ _---- ~~~~~~~~~ 
- - — -——---— -----



Pass 2:
“1’ - Calculate ASM
$ Aia Points

Pass 1: I
lest All ASMI—— .Ø. IFLY(1).1
Fly Points I _____________________ 

420 $

~~2T~~~HAP ~~~~~~~~~~~~~~~~~~~~~~

F IFLY(I) .~1 N I BTYPE(I)
I _I .AIMASM?

413 
Yes

• 
NoJ IBTYPE (I) JAY~I-1

.AIMASM’ / UAT .ALAT( 1)
[Yes VAT.ALON(I)

403
JAY— I- i 1

UAT-ALAT(I) I CaI 1 PRZFL2
VAT-ALON(I) J o Get Distance

rom Previous
Fly Point

Call PREFL1 418
To Get Distance II

From Previous DIST(RASM? 
No JAY-I.1

non-ASM Fly Point -

1 Yes
___________________ 

417

~ ~ 2 DIST<RASM?
__~__) 

IFLY(1).0 Call POSTFLY

IYes ASM Launch Poin
407

~ 
IFLY(I)u0 

J A1.AT(I)—RLAT
ALCN(I)-RLONG

No JAY~NHAP?

Yes

419

Figure 98. (Part 2 of 4)

475 

—— -- - -
~~ V.-

-- 
~~~~ ~~~~~~~~~~~~ - - • • --


r ~~~~~

- -

~~~~~~~~~~~~~~~~~~~

HDIST=10
6

IDP(IALX)=0

_____ 
Do 243 For Done IDP( IALX)

KA=l To NDP EN =IDX

Set

_
~~~To Poi~~~~~~~~~~~~~~~~~~~~~ o:

Ye
~~a

Cal culate LC=MOUNT(IDX)
DODO JH=JUAP(IDX)

Distance

Set

0 No (~~~~~~~~~I5T9

> _______________

I Yes
242 7

HDIST DODO Call POSTFLY To

‘0 IDX KA Recompute Launch
Point

ALAT(I)=RLAT
ALON(I) =RLONG

Figure 98. (Part 3 of 4)

476

—
- • - - - -

“•------•- - -•--- -- - • • • • ~ - - - - •- --••---- ~~~~~~~~~~~~~ - ‘ ‘ - - : ~_~~~~~~~~~~ _ _

_ _ _ _ _ _ _ _ _ _ ~~~~ -~~ - - -~~~~~ -- - - - — - - ----—,--- ---•-- . ~~~---- -— -— -- -. -~~~~~~ --

_ P
r e Sort I.—.ei” ~~)—° IIndices And Sor~J _________________

430 ~ I Done II Call ORDER I I Call REORDER

112 To NHAP L ~1j IDIS Array r~~i
(ASMARRAY)

421 I +Do

I DIS(I) . I Yes Call SNAPIT
l0~ 000 I 1-4 IFLY(I)’.T? (6,1) To Output

______________J — l j Print 6 IPass 4:No ,_ .lcai cuiat. Rest422
1 ~~~

Aim Points
X2.ALAT(I) VY2 ALON(I) I Do 440 For Done
I I~~2 To NHAP

423 V ___________________
I

eDo Call SNAPIT
~~~~~~~~~ ~~~~ 

Nof \ (6 .1
~,r~::t

o:tPut
IFLY( I)—0? )

IDIST—Distance 431From (Xi ,Yl) To 
I~~~U 1—ALAT(I -l)CX • V1.ALON(I—i)

IJAT.ALAT(I)
___________ VAT.ALON(I)

J4 
Nc<~~~

ID
~~T )  

_ _ _ _ _ _

424 4 J.J+l 1tie Ye~~/~~ j.~~, 4 Call POSTFLY T
425 êNo 1No ~ 

Compute ASH

J— J-l 
Launch Point

ALON(l).RLOWG

Figure 98. (Part 4 of 4)

477

I.. - — ~~~~~~~~~~ - -- --~ ‘~~~~~~~~~~~~~~~



--~ —-—-— —-~ —-- - •-~ -—- ---•------ -— •—-.- - - - ——---•-•—----~ .---•----•- ---- -- ---—--—--- - ------- -—--—- - - -- - ---
~~

-• - - --
~~~

- -•--•• • -- -—-----•,--•------ -- -- - -------- -- —

supplied to PLANOUT by POSTALOC without aim points , and approx i mately in
their proper order. They may appear later in the lists than they should ,
but not earlier. Figure 99 shows a list of happenings with ASM event s ,
to illustrate what is meant. The list indicates a DROPBOMB event at
point 2 followed by ASM events at points 3 and 4, then a DROPBOMB event
at point 5 and an ASM event at points 6 and 7. Suppose that the ASMs
were to be launched or aimed as shown in figure 99; that is , at points
1, 9, 10, and 11. Then the list of happenings would be rearranged as
shown . If an ASM point fe ll before the origin , the origin would be used
as the aim point . The aim points 9, 10, and 11 would be computed using
the LAUNCH subroutine.

The processing for block 40 is carried out in four separate steps, util-
izing the arrays from common /ASMARRAY/ . (1) The ASH targets are first
examined to see if they are in range of the origin or some other prior
fly point such as a drop bomb point. Those which are not are flagged by
setting the corresponding cell of array IFLY to 1. In the example in
f i gure 99 , points 3 and 4 would not be flagged , but points 6 and 7 would.
(2) The ASH targets flagged in the last step would again be examined in
the second pass to see if any were in range of a previous ASM fly point .
In the example shown, point 7 would be in range of ASH target 6. The
aim point (No. 10) for ASM target 6 is computed at this step . The
bomber ’s path is now ful ly dete rmined . (3) Sort indices are now gener-
ated for all events. For all fly points, the point number is taken as
the sort index. For all other points , (i.e. , all ASH points which are
not f ly points; in this example , points 3, 4 , and 7) , the sort index is
a numbe r whose intege r part is the earliest point just out of range , and
who~ e fract ional part is the distance to this point. After the sort in-

dices are generated , the l ist is approximately rearranged using the ORDER
and REORDER functions. (4) The aim points for the rest of the ASMs are
calculated .

Subroutine FLYPOINT, which has the entries PREFL1, PREFL2 , and POSTFLY,
is logically an integral part of this coding block . Subroutine LAUNCH
is called only by POSTFLY.

I f the last event is an ASM event , the depenetration corridor is re—
‘li-cted .

The Locations of appropria te Change Alt i tude events associated with the
rang ’s G2 and G 3 are now calculated by subroutine ADJUST. If the target
area was fo und to be degenerate , blocks 50 and 60 are skipped .

Block 50: Apply GOLOW— 2 Before First Targe t (figure 100)

Block 50 posts all events in the target area, including ASH launches
frost the corridor origin, and altitude changes. AU. events except
ASH launches are entered in the detailed History table as one-line
events. For ASM launches two lines are required, the first for infor-
ination pertaining to the launch and the second for information pertain-
ing to the target. As the event list is processed, all possible Decoy

478

•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



F— —
~~~

—-
~~

— —- ,— -- --- —----‘ — ---- - - —--—----- -- —----- -—- - -—- - - — - —‘ — ---—— — ---—-------—— — —.---,—- —

(a) Before Adjustment 6 7
ORIGIN *

x DEPEN
1
~~~~~~~~ 2 

I

/ 

-

Point IBTYPE

I DOGLEG
2 DROPBcII1D

• 3 AIMASM
-4 AIMA SM
S DROPROMB
6 Al MASM
7 AIMASM
8 DEP EN

(b) After  Adjustment

6 ,X 7 x
I
II 

-..,~9 /  

- 

I
, DEPEN

~ 
S

3 4

Point I BTYPE
1 DOG LEG
3 AIMASM
4 AIMASM
2 DROPBOM B
6 AIMASM
7 A IMASM
S ~eopaa4a
8 DEPEN 

-

Figure 99. Illustration of ASH Event Adjustment

479 

~~ -S- --~ _ _ _ _ _



511
Initialize Flags

And Counters ; Increment Ret rieve
Latitude A~A Pointer; Set Latitude And
Longitude To Next Event 

~~ng~tude
Of Or igin After Ori gin Of This Event

Is Event
A Laun ch

ASM?
512 Yes

Post Launch
Yes

In Detailed Corridor
Histo ry Table Origin?

No No

513 5014
Is This - Yes Set
The Last Position

Event? Pointers
No

5013
- Store Index

Of Last Nord
548 Fil led I n

Array DELDI S (B lack oO)

Set Pointer Do 548
INK To Consider Do For All  No Is Yes Save Index

Last Event Remaining PATALT To Last
Processed Events RICE? Target

Done

Retrieve 591
Type Of

This Event 5153

. . Has Somber Yes Set Depenetration
~1~ 4 Depenetrated ’ Flag (I F L GDPEN)
Is Bomber

Yes Aoproa ching No No
5101 The Ori gin At 510

Lcw Altitude ?

Figure 100. Subroutine PLAN
Block 50: App ly G0L~ J2 Before First Target
(Part l of 5)

480

I— _________
— --- — —



— - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-—‘,—r

510

5101
Reset KDST To Con
tinue To Incremen

-. Decoy Coverage
istance From P~e

Have Launch orridor Legs ; Se
~ 1 Before Target Flag To Omi t Deco

Launch At Origin

+ Yes
5102 +No/ Is Last Event Is Bomber Yes“

~\ ASM Target?__/ ®_~~
(

~~FlYin~~At $110

5’OO I 5120 ______________

;et Flag To Omit

~~~~~~~~~~~~~~~Launches At \m. Corridor/ \ Gone Low?Origin? 
j \ origifl / \~jNo 

~~~ 
4Y es

5203 $201 V F Add DistanceCall POSTLALJN Should Bomber N~ Sine. Last Event. 1 (Post Priority S Go Low Before To C~ ,rent Decoy 5130
Decoy Laintch) This Event? coverage Distance

L ye,

5121 Y
Re t r ieve I

Latitude And Set Flag s To
Longitude Of Show That Bomb.
This Event Has Cons Low

And Last Event

I I~ II I Add Distance
Calculate Inter- Call INTE RP Bef ors Going
polation Factor To Perform Low To Current
For Finding Co Ints~~~1atjoI% Decoy Cov.ragsLow Location Distance

5l~~

_ _ _ _

Arr~~~~~~D1S 1 o ~~~~) 2~~~ ..j
j ~~~~

~~~~~ I F
_________

~~~~ Lati~uds
And Lon$itu44
To Process Next

£vent
-
~~

Figure 100. (Part 2 of 5)

481

• p

- — ----- --- — - - -- -~~~~~~-~-~--— -.- .--- ~~

——-.-- --~ ~~

N

N

H

N
Should

-

No Bomber Go
$130 High Before

This Event? -

Sill
N.

Retrie ve Latitude
And Longitude Of
This Event And

Last Event

5204

Store Latitude Call INTE RP No
—

~

-

And Longitude Of To Perform
~For Findin GoGo High Location Interpolation High Location 51S~

Set Flag Yes
Call POST17 To To Show That
(Post Go High) Somber Has IFLCDPEN.2~

Gone High
No

5151 5156

Call POSTLAUN IJI ~ /
Has The

(Flag Priority 4 I.~~ (Priority 4

Decoy Law~ch) J \D*COY
_

Launch

I
3133 5152 V 3150 V

~~~~~~~~~ P Lx d Set Currenteset t~t u e  Decoy Coverage all POSTLAUN T
5133 - 

~~~~ 
Distance To (Flag Priority 7

~
°esstn Distance Flown Decoy Launch)roc g After Going High __________________

Figure 100. (Part 3 of 5)

482

-~~~~~~ - -- ~~ -
- -~~ -

-~ --~ —----- - - - - - • -
~~~~~

- -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _

5130

5130
Retrieve

Latitude And
Longitude Of
Last Event

5135
Retrieve

Yes Is Event A Latitude And
600 Depenetration ? Longitude Of 5135

This Event
(Block bO) No

547 530
Is Even t No s Event No
A Refuel A Cruise 512

Abort ? Missile?

591 Yes Yes

Begin Pos ting 5125
Abort Event; 599

If At Low Altitude , Is Event A Yes

Post GO HIGH Event; Post An Abort Bomb Target ?
Calculate Dis tance Target No
To Fuel Exhaustion

546

Cal l INTERP 800 Is Event No
To Perform P~n ASM

Interpolation (Return) Launch?
I Yes
‘V 592 560

Finish Posting Store Index
Abort Event; To Detailed Post ASM Launch

Ad j ust Decoy
~~~ History Table And ASM Target

Coverage Distance (~4-1T) 
Events

To Reflect Abort 
________________

(Return)

Figure 100. (Part 4 of 5)

• 483

-------— -• ~~~~~~~~~~ ~~~~~~~ —~~_ —  —— 
_
~~~~

_ . i_
— ---, • • - - -—--~-~---~ -- — -~---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -

554

554

Is BomberYes Flying At
Low Alt i tude?

• No5140
5141 5)46

• Set Event H theNumber . Sct Event NUInbCi~For Flagging No For Flagging
A Possible The Launch

Decoy Launch Been Flagged?

Yes

Yes

—

Fi
~~~

P;
~~~~~~~

i
5143 Call POSTLALJN
Ii U (% F l a g Priori ty

~fl Set Flag To Show
~

Cal~ POSTLALJN ~ 1J
DeCOY

~~~~_JJ 
Priority 4

Flag Priority III Launch ; Increment
Decoy Launch II Index To Array

jJ DELDIS(KI)ST)

_________________ 
5142 

_______ 3
Set Flag To I Call P0518 1 Call POSTLAUN
Show Priority 

~~j begin Posting J~ Flag Priority 8
1 Launch DROI’BOMIi Event 

J 

Decoy Launch

• ..i:ri : 
Does Second

L~~pBOM8 Evenf Start Af Thj s W0
548

Fi gure 100. (Part 5 of 5)

484

_ _ _ _ _ _ _ _ _  

—~~~~--— -L - -  
- -



Launch situations are flagged by storing the appropriate information
pertaining to the launch and the second for information pertaining
to the target. As the event list is processed , all possible Decoy
Launch situations are flagged by storing the appropriate information in
arrays Lr~DIT , LPR IORITY , and NDCYR Q (see block 30). If the value of
a t t r ibu te  PAYALT is HIGH , this block checks if a second segment of low-
al t i tude f l ight  is planned after the las t target.  If so , an altitude
change event is p laced af te r  the last target.

Processing is terminated with the occurrenc e of the input events DEPEN ,
LAND , or DIVEMISL. For DEPEN , a normal exit is made to block 60
described in the next section. For LAND , pos t a GO HIGH event if cur-
rently at low al t i tude and determine an abort poinL on the line con-
necting the last target and the depenetration point at which the
bomber ’s range (fuel) is exhausted. If the bomber would normally
use all available range in reaching its las t assigned target , a hypo-
thetical abort point is established 5 minutes ’ flight distance
beyond the target. For DIVEMISL , an abort event is posted immediatel y
at the last target.

Block 60: Post Depenetration Events (figure 101)

This block of coding completes the processing for a normal sortie,
processing from the last target to the recovery point or base. It
computes the most distant recovery base that has available space,
associated with this depenetration point, that the bomber can reach.
The information on this base and the depenetration corridor index are
recorded in the depenetration event. Counts are updated and saved
within arrays NAMCAP and NUSED for eventual suimnarizing prints. In
addi tion , the time of flight to each of the possible recovery bases
is computed and stored. These calculations follow the processing of
the depenetration leg events.

485 

- - - -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- -F- —--—- - ~~~~~~~~~~~~~~~~~~~~~~~~ 
-- --- --- --- --------- - • —---——,— —--,------- -— - —-- ---—--• -----——----—-- - - - - - - - - --.,--

~-- -- - - - --— ---, —--- •—~~--- ——-..--- -—-.-—,- --.—

U

Dipsnetration
[~~~F1ag J

POST 1711ye, I’ Should

Ev j\aigI~?

Post
Depenstration

Event

6QSt~~~
I Post All
Events for

Depene tration
~~~~~Calculate Maximum 610 $

Distance Bomber I 1— Post
Can Fly At High Li -

~ Pecovery
Altitude From Even t

Last Leg (DISMAX)
~
— 619-625

I /Has Ti.. of Flight \ Compute Tim. Of
,/ Been Computed for \ No ~~ Flight From

• \ This D.penetratj on / Depenetration Point
\~~~ Poi nt? / To Each Associated

I
Recovery Base

626 $
Compute Bases

That This Bomber 4
Can Reach

615
Add Final Data To
Recovery Event (At
Farthest Reachable

Recovery Base)

• I
I

Figure 101. Subroutine PLAN
Block 60: Post Depenetration Events

486

3

— - - - — —
• - -• - -

_ _ -~~~~~~-• • - ~~~-~~ - - • —~~~~~-— - - .~~~---• - •—-- - -—-- - - -~~~—----~—- - - - - - - - --- -- _ _

4.8.14 Subroutine PLANBOMB

PURPOSE: Cont rol processing of bomber plans

ENT RY POINTS: P LANBOMB

FORMAL PARAMETERS: None

COMMON BLOCKS: C30, DECA , DINDATA , DINDT2 , EVENTS , MH2 , OUTSRT ,
POLITE , PPINFO , PPXX , RL

SUBROUTINES CALLED: DECOYADD, DISTF , DISTIME , INTERP , PLAN, SNAPIT ,
SWTCHALT

CALLED BY: ALTPLAN, PLNTPLAN

Method:

The first action of this subroutine is to call subroutine PLAN. Together
these two subroutines control the processing of bomber plans. In the
discussion that follows, the two subroutines are to be thought of as
sequential parts of an integral process.

-
• Figure 102 shows a typical path a bomber would take between the time of

its launch and its recovery . The bomber is launched from a base , flies
to a re fuel point or area if refueling is called for , then to a corn -
dor entry point. It may then fly one or more prespecified doglegs

• (called precornidor legs) which define a penetration route before
reaching the point labeled- Corridor Origin. From the origin it flies
over the targe t area and its assigned targets in their proper order.
It then enters the depenetratton corridor which may also consist of one
or more doglegs . From there it flies to the recovery point or base.

This path may logically be divided into four parts : (1) the launch and
re fuel portion, (2) the preco r ridor legs, (3) the target area which is
the main par t of the plan, and (4) the depenetration and recovery por-
tion.

In PLANBOMB/PLAN , each bomber sortie is processed in much the same order
as it is flown; that is, first the precorridor section events are posted ,
then those of the target section, and finally, the depanetration and
recovery section events. Besides the posting of the target events them-.
selves , the main processing consists of posting events for changes of
altitude and decoy launches. All postings for bomber events are made in
the arrays of coemon /DDADATA/. The completed plan is output, and proc-
essing begins on the new plan.

487

- —-— - --- — - - ----•-• -~~~- -----~- ----- -~-- --- ---- ----- —--------•- • - ——--- ______~~___ •_ •__ ~~_._~~__ ~~ ___. z~-.~• - - - -

S_ KellER BASE DLTSCBIOn of Flight

‘ ~
..

b REFUEL POINT

~~ COR*IDOR Eh~~Y (First us.r~~irscted rout, point)

, PENETBATION ROUTE L EGS (Call.d precorridor Jigso i.e.. optional route
~ legs which contsol
‘
~ / bomber Touting prier
%~ / to the corridor origin)
‘I4 CORR I DOR ORIGIN (From thi s point , bombers ay
I’t fly direct to ta rgets)

/
/

/ AXIS ORIENTATION POINT
/

/
0 FIRST TARGET

a LAST TARGET

,..
*.

~~ ‘
*,~~PENETRATION COU.IDOR POINT

DEPENETRATJOW KIlTS LEGS—— Route if refuel ing i. specified
end precorri dor Jig s are 4sf m e d
in data bus..

00— If refueling is not specified and hUC~~ERY MU
precuridor legs a~se not def imad,
the bv.bu Is routed in $ straight
line from its bass to the corridorseigin. In this case the corridor
seigiri is also the corridor entry
point.

Figure 102 . Path of Typical Bomber Sortie

488

- - - -- _ _ _ _ _ _ _ _ _

Afte r subroutine PLAN has completed subroutine SWTCHALT is called to con-
ver t the CHANGALT events to GO LOW or GO HIGH events. Subroutine DISTIME
then is called to compute distances between events and associated time in—
crements, and subroutine DECOYADD is called to allocate the available de—
coys. Decoy Launches are now added to the detailed History table by exam-
ining each event to see if a launch is to be inserted (indicated if the
corresponding word in array ILAUNDEC is nonzero). For low—altitude
launches (ILAUNDEC=O), the actual launch point must be computed . The De-
coy Launches are inserted by copying each event into a temporary detailed
History table. If a GO HIGH event has a decoy launch indicated, the
launch is inserted after the GO HIGH. For all other events with indicated
decoy launches, the launch is inserted before the event is copied. Decoy
launches are posted by adding to event LAUNDCOY to the event array (JTP)
and storing the number of decoys launched (>0) in the array usually re-
served for the place index (KPL) . The remaining information required in
the detailed History table is stored in the normal manner.

Decoys are terminated as the detailed History table is recopied into its
original arr ays . Each time a high-altitude Decoy Launch event is en-
countered, the total decoy flight time is computed from the distance in
array DISTORE (f illed by subroutine DECOYADD) and added to the next odd
word in an array (TSTORE) which holds the remaining flight time of all
decoys which have been launched but not yet terminated at the time of
this event. The number of decoys to be terminated is added to the next
even word of TSTORE . As each subsequent event is processed, the time
since the last event (HDT) is subtracted from the times in TSTORE.

T,fl~enever a decoy has no flight time remaining, a LAUNDCOY event, together
with the number of decoys being terminated (stored as a negative number)
and other relevant information, is added to the detailed History table.
If the bomber depenetrates or aborts while decoys are still flying, the
remaining decoys are terminated i ediately before the final event. It
should be noted that decoys launched at low altitude are not terminated.

Subroutine PLANBOMB is illustrated in figure 103.

489

_ _ _ _ _ _ _ _ _ _ _ — - • - -~~~~~~~— - —~~~~~— — -~~-—•-•-~- . ----~~—~ ---

- - - - - - - -~~~~ —--
~~~—~~~~~~ — -----• ------ - -~~~~~~ -- — - -- -~~~~~~~~~~~~~~~~- — --. -~~~~~~~

- —

QTART D

808 i

~Co~,ute Tine PoICoordinating At
Corridor Entry

_ _ _

824 ~Yes

Set Time
To Zero

8O9~~~~~
Coopute
Launch
Time

~~ Call SWFQIALTTo Convert
P lan ’s Change

Altitude Events

Call DISTH~ -
( 

‘
~ To Coopute Dis-

tance And Time

if 
Between Events

Call SNAP IT 
~ I ICai i DE~~YADD I Store Total

(10,2) To 
~~~~ ~ I To Allocate Ii~ Ni~ ber Of

~btput Print 10 fl ~j Decoys Events

Figure 103. Subroutine PLANBOMB (Part 1 of 9)

490

_ _ • -~~--- - -- — - ---~~~~~~~.-- - - ~~- -~~~~~~~~
-—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-—

~
-.

~~~~~



~~~~~---~~~~••---~~. ---~~~~~~—- ~~~~~~~~~~

- P
Initialize

Indices, Etc.,
For Adding

Decoy Launches

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ;t
~~~~~~~~~~~~

Las t Event From Store Number Of
/ Altitude Decoy \Yes Decoy Travel Time Decoys To Be

Launch To Be )
~~ ‘ (To Get Remaining --0 Launched In I LAUN

Decoy Flight Time And Reset Number
(DCOYTIME))

Figure 103. (Part 2 of 9)

491

4

_ _ _ _ _ _ _ _ _ _  - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -



~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  ~

H
_________________ 8043 8050 4’
[insert Time [i~~rement ii~~i] fshould I)e~~~\I Decoy Launch InL ~~ For Storing L.. Yes! Be Launched

Temporary J ~] Events (IWO) ~~~~ —j Between Th i s
~ History Table I [

~~~ 
By One

\~Last_ Event?
$ No

Adjust Time Fo~J 8041Next Event To
Reflect Decoy Decrement

Launch Event Indices

4’ 8046
4’

~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

8049
Calculate Subtract Time 8047I ;;~~~~] ‘~E~3~’ [

~

i
VC:JreF

~~~~~ }I 

No
~~~

!vent

N
$

i 8048 4’Yes

I Decrement 1
8022 —_J Event Indices I

L By One

Figure 103. (Part 3 of 9)

.1

492

- - - — - ------- -- —~ —-----——~~~~~---—-—--~~—-—---~~~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
~
.‘— --

—.- --~~.— --- - - _---— _—_ - - - -—- -—~~~— - --------—-•—-.---•~~---,-—- -_-~~-—-_——-——--— —.- —--—--•-—-——-—-------—.~-.—-,------..-.--_—-- ---.-,-——~-—

•

_ _ _

Post GO HIGH Event J Post Time And Number Is The Launch The No
~n Temporary Detaile4 Launched For Decoy First Event In The[H i s t o ry Table Launch Event Plan?

I Yes
___________________ 8080
Post Launch Decoy Finish Posting

~._J Event In Temporary Launch Decoy Event
‘
~~~

] Detailed History 8062 With Latitude And
Table Longitude Of Boabe

8022 Launch

80818023 8022 Cal culate Dis-Calculate Is Last tance Between
(8072) Cumulative Time Yes 

Event Posted Last Event And 0-.I U l l  ASM Target’ Decoy Launch

8024
I Increment Calculate
I Index JO To I Cumulative TimeProcess Next From Last Event $025 

________

Retrieve Latitude
~ No And Longitude Of

~ Events Before AndFIas Last 
After Decoy LaunchEvent In Yes 

8070Plan Been
Proce ssed?

Find Distance
8001 Call  INTERP Between These

To Perform Events; Calculate
Fol lowing  The 8001 Interpolation Interpolating

80b2 
Finish PostingStore Index To Decoy Launch\rrav Containing Event WithDecoy Distance 1 Interpolated( I o r  Use In Decoy Latitude AndTerminat ion)  Longitude

8062

Figure 103. (Part 4 of 9)

493

~

-- - --- - -— -~~~---- — — -— - ~~~~~~~—--- -- • - -~~------ ~~~~~~~~~~~~~~~~~~~



-• - -

8032 
________________

In iti ali ze

~~~~~~~~~Calcu1at 1n~ ~ 
~ {HistO~Y Iablj

Location Of ~
Decoy Termination I

8800

(~~~~~
,J

All Events Ifl1~~~~ c’< ~~~~~~)~~~~ I
\

__
~~~ I Detai led ‘.~~....‘ No

History Table]
Do 8503

8802 8811 8803

N / Is Event \ No / Is Yes Store
8503 0( Type Launch ( Event A Hi gh Speed

\ Decoy? \ GO HIGH? In SPOIl
I Yes

5 3  ___________

• 8501 8504 Set Flag To Show

~~~~~~~~~~~~~~ 
jul

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

4 
Is In Pr es~

L508 8506 __________________

1~tore Flight Time 1 ____________ IRetrieve Indicesi / ~ Is It

~~~~~ J~
, No<

_
D
~~

t
~~~~~~>~~ 

~~FOr This Event Have Tw~
~~RE And ITSTO IYes In Array DISTORE Terminations?

___________  I 1N0
Sto re Fl i ght Ti mej $ ____________________

And Number
Te rminated 8610

(JLAI R4 ) For Later
Termination

Figure 103. (Part 5 of 9)

• 494

- - ~~~ •~~ ~~~~~~~~~~
-.t — ---~- -

- - ---- - - -—-.- --- - -- -
~~~~~



~~~
_—_ ~~~* • ~-~ - — ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

• W ~~J 1 ~~~~~~

• 8505

8505
Store Flight Time

And Number
Terminated (1) In
TSTORE And ITST ORE

8610
Set Last Index

8610 To Be
Check ed

8611

Set Sequence
Check Variable

Yes
[ Do 8613 For Done Has

~~ 
All Entries In Sequencf~

Decoy Table Changed?
Do No

YesJ< Termj natio~\ 8615
\~iii~es In Order),’

No
8612

Exchange Times
I And Set

~~~~~~~~~~ 
Sequence Check

Variable

Figure 103. (Part 6 of 9)

495

r _______ -

8503

8503 3
/ Are
/Decoys In The\NO(Process Of) 8512
\ Being /
\Terminated?/

Yes
8555 - 8625

~~ Is This \ l lncrement Index i
ul No/ Event Type \Yes

~~~~ 
To Detai led 

_____

An ASH / 1 History Table 602

\Target’ / (IWO)

Sto re Fl ight  Time
And Number Terminated 

______

For On ly 8505
Termination 

_ _  

_ _  8511 ?

• 

f !
~~~~~~~

me

J

8615

Done

~~~
*cr

~~~~~~

v

~~~

Ye

~~ 

F;oI
T
Lasy . ent

~

8626 8627 
8622

_____________ 

~ Finding Latitude,~~ 
~~~~~~~~~~~~~~~~~~ 

ITo Te~~iflatioj

C~i l cuI at e 1 II~ nd Latitude A~ iI Te~~~n tCuillulative I I Longitude Of This1 I Call I NTERP [
~ Usi I ~~~~~Tme From FøIIvent; Calculate ~

- To Perform
~
•••

~~~~ I n te olat  d I~~( F )

I.a-t Bomber Interpolation 
~ 

Interpolation I Lati tude And I “ ‘Vent Factor Longitude j

Figure 103. (Part 7 of 9)

496

i

- ___________ —



- —•~~~----, ____  ___

8511 8511 F

8545 Yes Yes 8572
• Is Next Shou ld Next Increment IndexWas There Yes Entry In No Decoy Be To Decoy Fli ghtA Decoy TSTORE ~rra Terminated (i.e., Time Array ToFlying? . - o’ Next ISTORE Test For Anothe

Entry cO) ? Termination
No No

8560 8512
Set Decoy Increment Index
Flag To To Detailed

0 Hist ory Table

• 8512

Yes I. This Event
An Abort , Or

Last Event In
Plan?

- No
8601 8602

Are There Post Event
8601 Still Decoys No 

Being 8500
Plying? Processed

Yes

Terminate 8602One Decoy
Launch

ncrement Index Increment m d c  Set Decoy
To Detailed o Decoy Flight Flag ToHistory Table Time Table o

8601

Figure 103. (Part 8 of 9)

- --~~~~~~~~~~~ ~~~~~ 
-

-~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• 

j



- • = ?  ‘- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~------~~—~ - - ----- —- - —-----‘ ----v-- - ‘ ‘ ~~~~~—~~~_s--— ,?----— rr ’ 5’

- 

.

~~~~~~~~~~~~~~~~~

1

~~IJ H
• ~~~~~ETU~~~~)

-

Figure 103. (Part 9 of 9)

498

~ - - -
-

--~~~~~~~~

-________ •~~~~~ ~~~~~~~~~~~~ ~~~—~~~---

r -

~

--—---- -

~~~~ ~~~~

— - - --—-- -- ___________________

4.8.15 Subroutine PLANTMIS

PURPOSE: Control processing of missile plans.

ENTRY POINTS: PLANTMIS

FORMAL PARAMETERS: None

COMMON BLOCKS: ClO , C30, GRPSTF , TIMELINE , TYPSTF

SUBROUTINES CALLED: ATN2PI , DISTF , CLOG , HEAD , MODFY , NEXTFT

CALLED BY: ALTPLAN , PLNTPLAN

Method:

The subroutine ’s main function is to determine the missile launch time
based on any timing informa tion provided by the user via MISTME and
MSLCOR clauses (subroutine LNCHDATA). First the subroutine checks
th rough all the target assignments. This information is needed Sinc e,
if there are several targets assigned to a missile and more than one
have f i x e d  time assignments, only the first fixed time assignment en-
countered  will  be considered. Thus, if a previous fixed time assign-
ment has determined the launch time for the missile , no further calu—
lat ions need be done to compute the launch time for later reentry vt—
hid es on the missile . If there are no f ixed assignments (with timing)
on a missile with MIRV payload , the launch time is computed by consider-
ing on ly the da ta for the targe t assigned to the first reentry vehicle
on the  booster.

For salvoed missiles, local parameter DELTA is calculated based on salvo
number , n umber of simul taneous launches , and launch interval. DELTA is
the amount added to the basic launch time for launch interval constraints.

If the weapon is not fixed , PLANTMIS checks the plan type. If the strike
is reta l ia tory (INITSTRK 2) the complicated time plan is ignored and
the launch time is the time specified by FOOTPRNT. If INITSTRK 1 there
are two options. If the missile type has a FLIGHT CORNSL the launch time
is computed so that the fraction of the flight specified by CORMSL is
completed at time zero . If the missile type has a LINE CORMSL the situa—
tion is more complex.

The sub routine then calculates whether the missile f l ight path crosses
one of the timing lines input to subroutine LNCHDATA . If the missile
crosses a line, the launch time is computed so that the missile crosses
the timing line at time equal to CORMSL. If the missile fails to cross
any l ine, the launch time is chosen so that the missile will impact at
time zero.
FIn.,fly, the launch time is stored in attribute SI.OW1 and the north ’
i as h It . (~;KrYT B ) ,md I I led

499

- — 
— — - •

~~~ 

- •s~-.-—a-. S~ is ~~

7
~ -

~
-• - •_ - --- ---- ,

~------- --—--- -

Subroutine PLANTMIS is illustrated in figure 104.

500

-
-I - •• • -

~~
•

•
-: -

-

—~~- - -~~~~~~~~~~~~~~~ —- _
~~~~~~~~~ - - • -~~~~~~~~ -~~~~~~~~~ — - • -~~ --- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ .- -----



- -~~~~- ~~~~~- - - ~~~~~ - - ---- —-- ----~~- - - -

C~~ TART D
1

Call NEXTTT
- 

~~~~ 
For Next

Sortie Event

K_~~~~~~~~~

No

Call HEAD
J For Weapon

Aaaignment

_ _

2
•

(

~~ Lxed

)

Ye

,
No

_ _ _ _ _ _ _ _ _ _

No j~~~~~rst \ Store Launch
\Aaaignment? / Time In

\~ J SLM 1

$Yee

L1 SaVe coord inateal

Number Tabl e

_ _ _

• 1~RETURN D
Figure 104. Subroutine PLANTMIS (Part 1 of 3)

• 301

_ _ ~~~~~~

Compute
DELTA Bas ed

On Salvo

_ _ _ _

8

/
‘ Reta l ia tory Str ike Or

Non-Alert Gr oup Yes
— I Time From

Or No CORNSL Given? / [~~~~~~~
j

<

U > N o
~~~~~~

t

~~~~

fl

~

h

Compute C ross Product
Perpendicular To

Plane Of Flight Path

Fi gu re 104 . (Part 2 of 3)

502

Closer
No Than

Others?

Yes

Set Fraction
______-

Of Fligh t
Complete

Figure 104. (Part 3 of 3)

503

- - ...• ?-
•

- • -
-

—j— •—
~
-.-—-- -—- -.--•-‘---~ - - — ----.~~~~~~- ----- •-- --—- LI~~~~~~~ —~ ~~~~~~~~~~~~ -~~ - ... ~~~~~~~~~~~~~~~~~~~~~ _ .—.


~~~-- ---~
- •~~~~- •~~~~~~~

--•-,--- —-— - - -—---•• -----~~-- - •-- ,‘- - - ---• - -- - - • --- —-—---~~----~~~- - - - - --—-~---———---- ~~~~

4.8.16 Subroutine POST

PURPOSE: To enter the event type, event location, and
place code to the arrays in common /DINDATA/ .

ENTRY POINTS : POST
POST4 (Refuel event)

POST8 (Local Attrition event)
POST15 (formerly, Launch Decoy event; now

• inactive)
POST17 (Change Altitude event)

FORMAL PARAMETERS: A = Latitude of event
B = Longitude of event
I = Place code for event

COt44ON BLOCKS: DINDATA , EVENTS

SUBROUTINES CALLED: None

CALLED BY: PLAN

Method:

The event type is determined by the entry point used. Subroutine POST
increments the /DINDATA/ line counter (~IHT) by 1, then enters the event
type code in JTP (MHT) , the latitude of the event in HLA (MHT) , the
longitude in IILO (MHT) and the place index in KPL (MEl T) .

Subroutine POST is illustrated in figure 105.

504

~~~~~~~~~~~ 
-- -

‘ .
• -

— -•----— —- ----•- - -— -- -- • -— - •-- ~—---——-- _
~~~i~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --



r•

--

~~~~

--— -- -

~~~~~~

---
__

~~

_

~

__ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Post Re fuel
Entry POST4 (STAR ~~~ unter~~~* Even t To JTP In ~~

En try POST8 ~~

I increment Post Change

En try POST17 (ST ~~~flte j__ø1 Altitude Event _____

~_0o y

Post Location I
Of Event To

- /DINDATA/

_ _ _ _ _

ll0~~~

Entry POST15
(~_

START }—
ps-1~ RETURN~~)

Figure 105. Subroutine POST

505

L - —-— • ~~~~~~~~~~~~~~~~~~~• —~~~~
-

~~~~~~~~~~~~~~~~~~~ • • ~~~~~~~



4.8.17 Subroutine POSTIAUN~-

PURPOSE: To add information pertaining to possible decoy
launches to the arrays examined by subroutine
DECOYADD.

ENTRY POINTS : POSTLAUN

FORMA L PARA’1ETERS: LPR , LIlT, LDST

COMHON BLOCKS: DECA

SUBROUTINES CALLED: None

CALLED BY: PLAN

Method:

POSTLAUN increments the counter for the number of poss ible decoy launches
(NPSLN) and stores the information sent through the calling parameters
in the appropriate arrays , indexed by NPSLN. Parame t er LP R con ta ins
the pr ior i ty  of the possible launch ; parameter LHT contains the number
of the event fol lowing the possible launch; and parameter LDST contains
the index to the word in DELDIS in which the decoy coverage distance is
stored . Parameter LDST will be meaningfu l only for launches of priority
5 , 7, or 8.

Subroutine POSTLAUN is illustrated in figure 106.

506

-  - -•- - -- ---- •— ~~~~~~~~~~~~~~~~~~~~~~~~ 
-

• — •-_- --—--.- -— - -—-_.---•~~.- -- ---—--



pr - ~~~~~~~~~~~~~~~~~~~~ r~~~ -——-

START

• 
~ 1

Incremen t Number Of
Poss ible Decoy
Launches By One

Store Priori ty
Of Possible
Launch (LPR)

I
Store Number Of I
Even t Fol low ing I
Poss ible Launch

(LHT)

Store Index
To DELD I S

(LDST)

C RETURN 
1)

Figure 106. Subroutine POSTLAUN

507

__________ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - •
~~~~~

- - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


4.8.18 Subroutine SNAPIT

PURPOSE: SNAPIT is called for all optional print8. It
checks to see if the print is active and calls
SNAPOUT if it is.

ENTRY POINTS: SNAPIT

FORMAL PARAMETERS: 10 — Print request number
NO — Print option code

COMMON BLOCKS: SNAPON

SUBROUTINES CALLED: SNAPOUT, TIMEME

CALLED BY: ADJUST , LAUNCH , PLAN , PLANBOMB, PLANTANK , PLANTMT S ,
PLNTPLAN

Method:

First the element of NAP (/SNAP ON/) corresponding to the print request
number is checked. If It is not equal to 3 the subroutine exits.
Othe rwise , TIMEME is called to suspend timing. If the print option
code is equal to 1 a header is produced. SNAPOUT is called and then
TIMEME to resume timing.

Subroutine SNAPIT is illustrated in figure 107.

-

.•~~~~~
•

~~~~~~~~~~~~~~~~

-- -_
H

-——— 
-- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— --~ ~~~~~~~~~~~~~~~~~~~~~~~



- —• _---- •_ - •---- ------_- -------- —_•--•-- —~
_ -- -— -.-— ~~~ --  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I

START

Option NActive? ° RETU RN

Yes

Call
TIMEME

(—2 )

Write Yes HeaderOut Desired?Heade r

No

Call
SNAPOUT

Call
TIMEME
(—3)

RETU RN

Figure 107. Subroutine SNAPIT

509



_ —— - . - -•- — — .. _ — - . -‘ _~ _ _~~~
_ _ _ . .

~~~~~~~~~~~~~
__ ‘ ‘ _ _ ‘ _ _ _ ._ -

~
—-•—

~~~
- •

~
_— •-•. - 

4.8.19 Subroutine SNAPOUT

PURPOSE: To perform all optional printing within PLANOUT.

ENTVt ’ POINTS: SNAPOUT

FO1 MAL PARAMETERS : ILK Print request number
MLK — Print option code

COMMON BLOCKS: ASMARRAY, C30, CONTROL, CORCOUNT, DINDATA , DINDT2,
DISTC, GRPSTF, HILO, IDP, INDATA, lOUT, IRF, LASM,
LAUNSNAP, OUTSRT , OUTSRA , PAYSTF , SPASM , TYPSTF ,
WHDSTF

SUBROUTINES CALLED: CONVLL , DISTF , CLOG , TIMEME

CALLED BY: SNAPIT

Method :

The Users Manual (UM 9—77 , Volume IV) describes the optional prints
avai lable in PLANOUT (numbered 1 through 15), and the data card format
to be used when requesting them. The cards are printed initially by
subroutine SNAPCON.

Then during processing, subroutine SNAPCON is entered as each new sortie
Is read in to be processed. SNAPCON scans the list of requests and de—
termines , by matching the group , corridor , and sortie numbers of the in-
coming sortie against the request list , which prints are to be activated
and which are to be inactive during the processing of the record. It
communicates this information to subroutine SNAPIT via common block
/ SNAPON/. This contains a 15—word array NAP , one cell for each print
request. The cell is set to 3 for active requests; otherwise it is set
to l .

The subroutine SNAPIT is called wherever a particular print might possi-
bly be issued . For example , SNAPIT is called upon to print the detailed
plan immediatel y a f te r  this plan has been completed . SNAPIT then checks
cel l  3 of NAP and issues the print only if the cell is set to 3. It
c a l l s  on subroutine SNAPOUT to do the actual pr int ing.  This separation
of subroutines is made because the resulting FORTRAN—p roduced program is
more e f f i c i e n t ;  SNAPIT and SNAPOUT might logically be treated as one
subroutine.

SNAPOUT It se l f  contains only printing routines. In some instances, the
prim option code (MLK), passed with the print request number, may se-
lect d i f f e ring print options within the given print number.

Subront Inc SNAPOUT is illustrated in figure 108.

510

I

___ 
- _ - _ --  _ - .

~
-- - •...

~~~~~~
‘ - - -_ . -

~~
-
~~~

- -
~~

-•- -
~

- - --_



- -

EI~ 
START

(
~
j  
_
I Print I

~~~ ir/ /OUTSRT/ /—I Record J

~~L UNADJU STed k / Z~~ [-

[Print J Snap

- / Print I
~ / Detailed /~
/

Plan
/

4 / Print / Call TIMEME

~~/ Timin g /— = To Print

/ Header / Time Data

-5
~~~1J~~TURN

)~~

0
Figure 108. Sub routine SNAPOUT (Part 1 of 2)

511



r~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

0

—6 / Print I
~ —//ASMARRAY/ I
/ Snap J

=7 Print /
~~-ft’recorridor/-

/ 
Legs

/

=8 /~~int De- /
~~‘-/~enet rat ion/~

/ 
Corrid~~

J

9 [~ Print /
~~

_/ Basic ___________

/ Inpu~~~
1
f

~~~~~~~~~~la7~~~~C~ii)

I

Figure 108. (Part 2 of 2)

512

_____ ~ ____________

:~
‘
~
‘

-

~~~~

— 

— --- - -_ ~— _ ---~_— -
-- ---_ --— - - _ _

~
-_ -—_—-

~
.-



_

_ _ _  

I

4 .8 .20  Subroutine SORBOMB

PURPOSE: To update bomber sorties in the integrated data
base.

ENTRY POINTS: SORBOM

FORMAL PARAMETERS: None

COMMON BLOCKS: ClO , C30 , DINDATA , DINDT 2 , GRPSTF , lOUT , PAYSTF ,
PPINFO

SUBROUTINES CALLED: ABORT, DIRECT , DLETE , HEAD , MODFY, NEXTTT , STORE

CALLED BY: ALTPLAN , PLNTPLAN

Method:

First the sor tie table data is entered in /C30/ and the SRTYTB record
nxdified . Next all of the events currently with the sortie are deleted.
As the deleting process takes place, any weapon assignment events have
their  place codes and the reference code of their corresponding ASSIGN
reco rd saved.

Then the subroutine takes the events in /DINDATA/ one at a time . Each
non—assignment event is simply saved in /C30/ and stored. For each
weapon assignment event, the appropriate ASSIGN record , identified by
the place code , is retrieved before the sortie event is stored for
prope r l inkage .

Subr outine SORBOMB is illustrated in figure 109 .

-1

- 

_— _
~ . - c ~

-

~ 

~~ - -- - -- ~~~~-- --- - ----- ~~----- --~~~~ — --- .-
~~~ -- - .-~~~~~~~~~~~~ ---- - -


r - - - — --- --- - — - —
~~~~~~~~ - - --—_-_-_

START

Store Data
In Sor tie

Table

Call MODFY
For Sortie

Table

Call NEXTTT
1 For Next

Even t

End Of 3
Chain?

No

Call DLETE No Assignment
For Event Event?
Type B

Yes
2
Save Event
Place Code

Call DLETE And
For Even t Ref erence

Type A Code Of
Assignment
Re ord

Figure 109. Subroutine SORBOMB (Part 1 of 2)

514

4 ,. f •

- — - - --- ---- - - - - _ --—------ -- - .-- ---- - ~~—~------ ~- -_-~~~~~ -- —~~ --~~~~
_ - -—-,-- - --. --- -~~~~~~~~~ -~~-_ ~--~_---—



— - - -

~~

,

_ _  

H

Zero IC~D( To
Show

Aasign~ent
Not Used

/DINDATA/ 
j 

~~~~~c~~~ RN)

Store Event
Data In

/C 301

Call STORE I No /Assigfl.~~~_________ For Event I—rn
~

-c Event ?
Typ e S

_ _ _ _

$Yes
Find

Corresponding
Assignment
Reference

Code

I
Ciii DIRECT I
For ASSIGN

~Record~~~~

No/~~~
cond

-(Bos~b Type

\~
a.i$n.d?

$ fr..
I Call STORE Ciii) WF Y

rn ~
For Event For ASSIGN
Type A Record

Figure 109. (Part 2 of 2)

515

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _____



—

4.8.21 SubroutIne SWTCHALT

PURPOSE: To convert each bomber plan’s change altitude
events to go high or go low events.

ENTRY POINTS : SWTCHALT

FORMAL PARAMETERS: None

COMMON BLOCKS: DINDATA , EVENTS

SUBROUTINES CALLED: None

CALLED BY: PLANBOMB

Me t hod :

SWTCHALT examines the plan contained in common block /DINDATA/ , and re-
places the event code for each odd—numbered Change Altitude event with
a go low event code. The even—numbered Change Altitude events become
go highs.

Subroutine SWTCHALT is illustrated in f i gure 110.

L 
_ _ _ _ _ _  - - _ _ _ _ _ _

- .~~~~~ ~ ~~~ 
—
— 5 . - -——-- _~~~ ‘ -

_ _ _ _ _ _  --~~~ 



- - -
~--- ---~- -

~ START~~~~~

IFY=11

M IN =N P L + 2

_ _ _ _ _ _ _  

4
Do 820 For Each

RI TURN 
‘\

4
Done Eve nt In /DINDATA / ___________________________

~~etween MIN And MHT 
4 -

Do

/ Is Th is A~\ No
~~Change Alti tude)—

\ Event? /
802 +Yes

(~~FY=~~~) 
Ye~~~ IFY= 1

803 4No 805 4’
I Change Event T~~1I FY=O 

~~j 
IGOLOW

Ø
If IFY =O _______

IGOH I If IFY= 1

Figure 110. Subroutine SWTCHALT

517

____ ~~~~~~~~~~~~ -.~~~—; -~~~~~~



*4.9 Subroutine PLANTANK

PURPOSE: To generate tanker plans.

ENTRY POINTS: PLANTANK

FORMAL PARAMETERS: None

COM~”ON BLOCKS: ARTIME , CONTROL, ClO , Cl5 , C30 , DINDATA , DINDT2 ,
EVENTS , DPENRE F , ICLASS , INDATA , lOUT, IRF , KEYS ,
LASREF , OUTSRT , PRNCON , RECBAS , SNAPON , TANKA ,
TANKB, TANKER

SUBROUTINES CALLED: CLIN~YATA, DIRECT , DISTF , DLET E, HDFND , IPUT , ORDER ,
PRNTAB , RETRy , SLOG , SNAPCON , SNAPIT , STORE , VAN

CALLED BY: PLANOUT

Method:

Enter tanker plan generated consists of seven events: (1) Launch event ,
(2) Enter Refuel Area , (3) Leave Refuel Area, with (4) ,  (5) ,  (6 ) ;  and
(7) as alternate Recovery events, as shown in table 11.

Tanker plans are generated in the following operation . As each input
record is read in, Nt plans are generated : Na p lans for aler t tankers ,
and then N t ~Na for nonalert tankers .

Each tanker base is first inspected to determine if its tankers are to
be automatically allocated . Then , after all bases have been inspected ,
PLANTANK fills common block /TANKB/ with required data and calls sub-
routine VAN to allocate those tankers to specific re f uel areas in such
a way as to minimize the total miles flown by them while servicing all
bomber requests.

When VAN has returned its solution , PLANTANK allocates any extra tankers
and then proceeds to calculate the time schedules for individual flights.

In the second—strike case ,- all tankers are sent to their assigned refuel
areas at the earliest possible moment, considering delays bef ore launch
due to alert or nonalert status as well as the travel time required be-
tween base and refuel area.

In the first—strike case, however, they are scheduled as follows.
Bombers have been scheduled by PLNTPLAN to arrive at specific refuel
areas over a period of time (which may be several hours) so as to sat-
isf y the requirements associated with the CORBOMB input parameter.
These bomber refuels have been posted in the matrix IARVLS/ARVLS (I,J)
where 3 indicates data for the Jth refuel to be scheduled by PLNTPLAN ,
* First subroutine of overlay TANK.

51.8 

---,- ,-. - -i------ - - -~~



- -~ -~ -- -- -—-~ -~ ---- - -- _ _ _ _ _ _ _ _ _ _ _

1=1 contains the scheduled time of the Jth refuel, 1—2 contains the
assigned refuel area.

As each tanker is processed , the IARVLS arr ay is searched for the first
unserviced bomber refuel which is to occur at the refuel area to which
the tanker has been assigned by subroutine VAN. When found , the bomber
time of arrival is retrieved , the tanker is scheduled to launch so as
to arrive at the refuel area .1 hour prior to the bomber , and the IARVLS
entry is set to zero , to indicate that the bomber has been serviced.
If the search finds no unserviced bomber at the refuel area, the tanker
is ext ra , thus PLANTAI4K schedules it to arrive .1 hour before the earliest
bomber at the area (stored in array ARTIME) .

After scheduling has been comp leted, distances from refuel area to re-
covery bases are calculated for each tanker, the recovery events are
ordered by ascending distance, and EVENTAPE, PLANTAPE , and printed re—
ports are output with tanker plans according to user options.

Figure 111 illustrates subroutine PLANTANK.

519

-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— - — ~~~~
-._ ..,--,_-——-- —- —- . - ,-— -

Table 1.1.. Tanker Plan

Event Type Time Place

Launch Delay INDEXTK

Enter Refuel Area DIST/V
~ 

IREFFK as set by PLANTANK

Leave Refuel Area TTOS IREFTK as set by PLANTANK

Recover1 DI1/V (RCBLAT , RCBLONG) 1
Recover2 D12 /V t (RCBLAT , RCBLONG) 2
Recover

3 
DI

3
/V
~ 

(RCBLAT , RCBLONC )
3

Recover
4 

DI
4

/V
~ 

(RCBLAT , RCBLONG) 4
Where DIST = Distance from tanker base to refuel area

DI = Distance from refuel area to recovery basex x

1 

520 

* 

-

.

_ _ _ _  _ _ _ _  

-



~ —- - -———~ .- —----- --- --
~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

START

1010

Ini tialize

And Source Array

iii[~~~Do 120 0 For Call ‘JAM To
ITJCal To Done Set RMAX Allocate

Number Of And G4fiJ(Tankers To
Tanker Bases Refuel Areas

Do
1025

Does Refuel Set I RCHKIndex Indicate No F B
Automatic

or ase

Al location?
Yes

1020
Subtract Number OfMd Number Of Tanicers From NumberTankers To Of Required RefuelsSOURCE Array At Area

1170-1200

Fill COST Array Md One To
______ For This Base And IRCD IFAll Refuel Areas

Figure ill. Subroutine PLAI4TANK (Part 1 of 4)

521

- _~~~ r : ~~~~~~~~~~~~~~~~
i _ _

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~



- - - - - - — — -. - -*-.- ,.~~~.- - -——- -- - - ------——--- - --- -- ------- ----- --—-~--—- — - ---— --—---.-- --~~~----- -~~~----—~..

31) fl 
-

I n i t i a l i z e  1 [ Print / ~0/~~~~~
Refuc1 Index

Surplus T:inker I I SKIPPED /4 ( Indicate Automatic
Cout roi (I SF’RLF) j  / Ncssage / \ Allocation?

i Eyes
V ios . V  -

Initialize iisl Do 115 For I Done
Output Ficids Each VAN

Solution Element

V 3Do
Call SNAPcON To

In i t i a l i z e  No! Is This \
Pri nt kcquc~ts 

Element )
For Tallk cL’s \ (ISOL) >O~~~ /

Yes

____________}

~~

c !rin: 
~~~~~ ettai:To Th~~~~

F i l l DI STR)~F Array
)c it Di a cs From RETURN e~~~~

1

~~ea

Refuel Area

Subtract One
Retri eve ITKth From ISOL
Tanker Reco rd

From Goimnon /TANKA/ 110 3
~~~~ Yes! Is This The\

-~
__-__f Fj l St  F~r 

______________

L..~
Ot1 ALI RT_ Ta

~~~~~_J 
- 120 ~~No

3 lb (‘•

~~~

.

\_____ Set IR ~FK
=Refucl Area

Fill In itial
Output Fields

Figure 111. (Part 2 of 4)

522
~

L~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —  —~~ -~~~~~~—~~~~~~~~~-———



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

300

Was
310 Do 310 For Done My Area Yes

Each’ Refuel Area Found In

lb Range?

My Bombers 312-320 
No

No To Refuel thoose Add One T
At Area? Closest Surplus

Yes Refuel Area Counter
303

N Is Area Within 400
Range Of This - Set LaunchTanker Base? Time For Second 400

Yes Strike
304

Find Refuel Area -

With Proportiona tely Is Th is a NoLeast N~aber Of Surplus First Strike?Tankers Assigned
Yes

Do 450 For Each450 Done Bomber Refuel In
Array ARVLS

- 

Do• 410
Set ARRTDI-Arrj val Is Refuel To

Time Of Ear liest Occur At This
Bomber At Area Refue l Area?

- Yes
420

Flag Tanker Retrieve Time
As Surp lus Of Bomber

(IflRA) Refuel (ARRTIN)

430
Calculate

Tanker Launch 460
- 

Time (DEL)

Figure 111. (Part 3 of 4)

523

—- —- -~~~ -- — - -—
~~ ~~~~

— --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~ 
- - -  -



- - — ‘ ‘~~~~‘ ——-—-- - -——,--—,—
~
-- ----— - --—--—- -—- 

~
—-- —-------—- ---,-w-1~~

— --—---—-__ ••____”__’_____ •____ -——-_ —--,.----,
~~~~

—------
~
-——.- --— —

~
—------------ -

—

(
~~~

460

’

1’
Post Tanker

Launch
Time -:

3—602

Post All

(I~) ~LR~~
S

Sto re Sortie
ITable Data In[ /C30/

Call STORE
For

L SRTYTB

±~
r

~~~~
ts

~Done ./
Print

/

[Store Event I!
L Data In

PRNTAB

1C11
STORE

L
RE±

~~~~~~~

Figure ill. (Part 4 of 4)

• 
• 524

—• 
• •~, p 

•~
_ - - . _  -

- - _
__~.- (.- 

- ,  
-

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~- —-— —--~~~~~~~- - --


4.9.1 Subroutine PRNTAB

PURPOSE: To print the final tanker allocation tables.

ENT RY POINTS: PRNTAB

FORMAL PARAMETER S: None

COMMON BLOCKS: ARTIME , C30 , DPENREF , IRF

SUBROUTINES CALLED: CONVLL

CALLED BY: PLNTPLAN

Method:

Subroutine PRNTAB outputs tanker allocation information , first for the
user—assigned refuel areas , then , a f te r skipping a line , for the refue l
areas calculated by PLNTPLAN .

Subroutine PRNTAB is illustrated in figure 112.

•

525

___ ~~~


~~~~~
-
~~~~

----—
~~~~~~~

- •--- - - • • -
~~~~~~

- - - •
~~~

-
~~~~~

- -
~~~~~~~~~~~~

— •- - -•

( START

Print Headings
For Tanker

Allocation Table

In i t ia l ize  J To 1,
LSW To 1, And K To

Number Of User-Assi gned
Refuel Areas

10

Ski p One Set
Print  Line LSW=2

I Do S For Done Set J=l+Number Of
— 4  Refuel Areas Lsw=l? 

es User-Assigned Refuel
I J To K Areas ; Set K=Total
[ _______________________ Number Of Refuel Areas

~~~Do 12 
No

Determine Number Of Print NUMBER
Extra Tankers At OF BUDDY

Area (ISURP) TANKERS =N

• I Retrieve Coordinates TI
L Of Re fue l Area RE JRN

4 / Print

/ Detai l Lines

Figu re 112. Subroutine PRNTA B

526

• — — -

-
~

-— —- - - - - ~~~~~~~ —~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ---—--~ ~~~ - —~~— ——-

4.9.2 Subroutine VAN

PURPOSE : To solve the transportation problem of allocat-
-;

•
ing available tankers to bomber refuels so as
to minimize the total tanker miles flown.

ENTRY POINTS :

F0R~-lAL PARAMETERS: None

COHMON B LOCKS: AI~T IME , TANKB

SUBROUTINES CALLED: GLOG, SLOG

CALLED BY: PLANTANK

\iethod:

The task of allocating tankers to refuel areas in such a way as to
service all bomber refuel requirements is considered by subroutine
PLANTAN K to be a form of the classic transportation problem. Hence,
it structures the data as such in common /TANKB/, and calls subrou—
t ine VAN to app ly VOGEL ’s Approximation Method to obtain a solution.

A general statement of the problem described in the following involves
the variables shown in figure 113.

Each cell in figure 113 has two entries a8sociated with it:

a. COST (i , j) = distance from base i to refue l area j + safety
factor of .5 mi l e s .

b. X (i,j) = number of tankers at base i to be assigned to
refuel area j.

The cost matr ix is an input to the algor i thm ; the X matr ix is its
solut i on .

The s tatement of the transportation problem to be solved is:

Given: all i , j , a1, b3 , and COST (i , j) ,

Find : a l l X (i , j) such that the total number of tanker miles
flown

/ R C
(E ~~~~ [COST(i , j) * X (i ,j)J)
\ izl j 1 I

527

~

~
—-—-••

~
~~

-- — •- - --—-~~~~~~ -~~~~~~~~~~~~ — ~~~

j = Refuel area
number

_ _ _ _ _ _ C _ _

i = l * * * a 1

2 a2

3

—— ____

a3

I a. = Total number
I i = Tanker of tankers
I base ava i lab le

numb er I I at tanker
_ _ _ _ _ _ _ _ base i

R~~~~~~~~~~~

f

~~~~~~~~~~~~~ efuel ar~~~ i a

* CO~ T(~~~~~~~
(1 1) 

** COST(I~~~~~~~
12 )

Figure 113. Base/Refuel Area Sample Matrix

•1

528

_ _ _  - , — -

- - _ . — --— ——~~~~--- ~ •-_ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



_ _ _ _ _ _ _ _ _ _ _  - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~

is minimized, subject to the constraints that

a. the to ta l number of tankers assigned from base i must equal
the to ta l number of tankers available at base i

(~~ X (i , j) = a1 for I�i<R
\j = l

b. the total number of tankers assigned to refuel area j must
equal the total number required at refuel area j

/ R
X(i,j) = b~ for 1~~ j~~~C

i=l

\ dummy refuel area is created to handle extra tankers , which are
later reassigned by subroutine PLANTANK.

rhe FORTRAN labels used in VAM rather than the symbols above are :

Table Symbol FORTRAN Name

C CHAX
R R~IAX
a SOURCE (I)
b SINK(J)
COST (i,j) COST(I,J)
X(i,j) ISOL(K) , where

X(RBASLOC (I) ,CBASLOC(J)) = ISOL(K)

The solut ion is found using Vogel’s Approximation Method , a standard
operations research techni que . The steps of the procedure are :

a. For each row and column in the COST ma t r ix , calculate the
difference between the smallest and next-smallest entry
(row and column penalties).

b. Select the row or column with the largest difference .
c. Al loca te as many tankers as poss ible to the smallest COST

cell in that row at column .
d. Allocate zero elsewhere in the row or col umn where the supply

(tankers) or demand (refuel requests) has been exhausted .
e. Make the only feasible allocation in any rows or columns

hav ing only one cell without an allocation of tankers.
f. El iminate al.l fully allocated rows and columns from further

considerat ion. Stop if no rows or columns remain. Other-
wise ,

g. Begin again , using the modified COST matrix.

529

~

S% .S L~~~~~- _ —

p.r — -~~ - —~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- - __

A itoudegenerate basic feas ible solution w i l l have (CMAX+RMAX-l) felt -
zero allocations in the ISOL array.

Subroutine yAM is illustrated in figure 114.

I

530

<
~
,-

- _ —
.-

• - —•.-~
_

- - -~~ (_ - _

_______________________ _________________ _______ ~~~~~~~~~~~~~~
-

• ~~

_ _ _ _ _ _ _ _ - - ------ -----_ --_ - - - - - ---_-- - -—__ -- - -_ - - - • - - - -- -
~
--

EI~
START~~~)

IBASIS=0 1
Initialize SINK

Array With
NBOMBREF Array

Initialize ICCHK
Array And Total

Fields To 0

4
Set TSRCE =
Total Number
Of Tankers

Set TSINK =
Total Number

Of Bomber
Refuel s

,- Yes
404 TSRCE=O?

No 503
4 Create Dummy
TSRCE>TSINK? Refuel Area For

Ex tra Tankers
504 No 1041

Print
COST

Matrix

1043 —1050
• r in t

SOURCE/SINK 7Values 00

Figure 114. Subroutine VAM (Part 1 of 8)

531

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - _



[~ èt Row Penaities~ j  r I
Save Location Of 

~
_ — ___ IDOOVR= BOTh I

Smallest Cost In L I

[ Retrieve
Number Of Rows
I (NROW) And
I Number Of
Eolumns (NCOL)

7
-~

Does I000VR= No
ROW Or BOTH ? -

8 Yes

Do 33 For Done
Each R::, I 35

Set RORDER

To 107

No Is Th is Row
To Be Included?

Yes
Row I PenaltyDo 32 For Done =RORDER(2 ) 33Each Column , ~ -RORDER(1)

Do

No Is This Column
To Be Included?

Yes —

Figure 114. (Par t 2 of 8)

532

• -p ~~~ ~ - . - 
-

_____________  -—~~~~~—_______



9000

Is There Only No
One Column?

900
Yes

= Compare RORDER(1)

Row Penalty to COST(I ,J)

=COST(I ,J)

_ _ _ _ _ _ _ _ _ _ _ _ _  

ii’)

IROW (I , l)=J RORDER(2)=RORDER(l)
IROW( I ,2)= -l RORDER(l)=COST (I ,J)

I ROW( I ,2) = IROW ( I , l)
IROW(I ,l)=J

20

RORDER(2) =COST(I ,J)
IROW(I ,2)=J

I~ 
No
~~~~~cosT(!J)<RoRDER(2)?~~~~~

I 31 +
Yes

IRORD ER(2) ’COST(T ,J) I
I IROW (I ,2)=J ~J

Figure 1.14. (Part 3 of 8)

533

— -- —-—- — __—--_-—-- ~~ _ . ‘_ - - —--—- -—.•—•——-—--—--~ • ___•4•_ _ ____ _ ___J._ —e._ __~~._4_,-. ~ • ----•—-• -

• - -• - - — — -- - ---~ -- •- —.- —----- - .— -—------—- ------ - ---------,----- ---— -- - —-----•~--•——-••— .-.•—.-~~~~~
_w,——-- —w- .--

_ _ _ _

H
Column I Does IDOOVR=

1 Penalties . ——-- ~~~~
(COLUMN Or

No

I save Location \ BOTH ”
~~
-- Of Smallest _____________

In Column 36 ~ Yes

Each Column Done 69

Do

Set
CORDER

~~~~~~

_ $
No / Is lhis \

~~~ Coluntn To Be )
\~~ Inc 1uded? /

3 Yes

62 Each Row , T
[D o ~~~ ~~~~~~~

L~~ No / Is This Row
To Be

\ Included?

800
Yes

Only One \,~~No

Row? /
3801

4

Yes

Figure 114. (Part 4 of 8)

534

_ _ _ _ _ _-
- -

- - -‘
~ . - :•

- - -

_

~

-- — —~~
—
~~
-—

~~~~~~
—

~~~— •- - -~~~~--~~~~— — _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~


- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~r-~~~~~---~- . , - • - -- —~~~~

60

•
50

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

j CORD ER (2)=COST( I J) I co ST 
CORDER(2)=COST (I ,J)

L ICOL(J ,2 ) 1  RDER>CO ICOL(J ,2)=I

40 ___________

CORDER(2 ) =CORDER(l)
CORDER(l )=COST( I ,J)

ICOL(J ,2)=ICOL(J ,l)
ICOL(J , 1)’.!

4

Figure 114. (Part 5 of 8)

535 -

___________________________________________________________________________________________ — . _~~~_~~_,~ _~ •__ -,~ —_- -.~~~~ --~ — -~-.----~- ~•~-~-



-
~ —----—— -

~~

- --—-- —- - • ••
~~~~~~

- -
~~

69

Find Largest Of Initialize
Row And — — PENMAX And
Column Penalties INDE X To 0 100

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
~~o~

0
a

r
E~~~~ Done 

IND::>1? Yes

KL=I -
(Number
Of Rows)

695

No Is This Row No
KL>O? To Be 90

Considered?
Yes

69
No Is This Column

To Be
Considered? es

Yes

P ENMAX = 
80 

-

NMAX > RPENA~~f~ompare PENMAX RPENAL tAdd 1 To m dcxl
Ith Penalty

I PENMAX<RPENAL
70 

_______

I PEN MA X=RPENAL(I)
INDEX= l

[ PENTIE(1)=I

Figure 114. (Part 6 of 8)

536

- -, - -~~~~- - --



-- _______ 
~~~~~~~~~~ 

-•_ -
~~

100

130
/ Is PENTIE(l) \ N ROW=PENTIE(l)
S, > (Number Of 1- ° COL=
\ Rows)?~~_/ IROW (PENTI E(l) ,l)

110 $Yes

COL= PE N TIE(l) -RMA X
ROW=ICOL(COL , 1)

139

_ _ _ _ _
Add One To

_ _ _ _ _ _ _ _ _ _ _ _ _139 IBASIS

[CBASL0C(IBAsIs) =COL

SOURCE cROW)) Yes i~ oov~= — ...

~__

Satisfy

140

Satisty
T000VR=ROW Post Solut ion:

ISOL(IBASIS) =
SOURCE (ROW)

Post Solution :
ISOL(IBASIS)=SINK(COL) Subtract

SOURCE (ROW) From

Subtract SINK (COL)
From SOUR CE(ROW) .

Eliminate Row

~~ From Further
Computation

Eliminate Column
From Further 170
Computations

Figure 114. (Part 7 of 8)

537

p.

~

- -•

~

-—- -

~

- - -
~~~~~~~

—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- -,----- 

~~~
----- ----- - -

~1-- ~~~~~
—. --

300

~~~~~~~~ No(~~as

_

Soiuti~~~~\~~es 

~~~~So~~~~~on / *I~~~~J~~T~J )

270

[

COL=PEN TrE(i) =PMA
~
T

261

Do 260 For Done /pENTIE(1)>\,~
4O ,J

R0W PENT IE(1)
I~~1 To Index RMAX? / I (PENT IE(1) , l)

~ Do
____________________ 251

/ PENTIE(I) ~~\Yç~J ~.PENT=\>(Number Of Rows)?]
[

PENTIE(I)-PMAX

No
201

260

With~~ ~~ e~~~~~~n
T
~~t~~~ No J~~EN T I E (l~~~

)

Yes
This Row ? / \jhis Column? /

____________I Yes lYes INO
202 7 252 7 270 7

ROW=PENTIE(I) COL-MPENT I COL=PENTJ~~

(PEN TIEI) ,1) ROW=ICOL(MPENT~~~
j ~~[ROW JCQL(COL 1)

261

I ROW=PENTIE (l)

I COL= IROW
[ç~ .NTIE(1) ,l)

Figure 114. (Part 8 of 8)

538

_ _ _ _ _

-
- - ~~~~

- -: -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ --~~~~~ -——  _~~~ .—-



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 

- 

• 

--

*
4.10 Subroutine INTRFACE

PURPOSE: Drive r subroutine for overlay which creates ASTAPE
and STRIKE tapes

ENTRY POINTS: INTRFACE

FORMAL PARAMETERS: None

COMMON BLOCKS : ADVRB , ClO , Cl5 , C30 , EVCOM , NOFSYS , OOPS , PLTYP ,
PRNCON , PSW

SUBROUTINES CALLED : ABOUT , DIRECT , HDFND, HEAD , IFSET , NEXTTT ,
RDCLAUSE , RET Ry , STOUT , TYPFIND , WEPDATA

CALLED BY: ENTMOD (PLANOUT)

Method:

First the print switches in block /PSW/ are set according to block
/PRNCON/ . Also if the frequency for the ABTAPE print option (13) is
not 1, the print  report code (ABUNIT) is reset to 42. RDCLAUSE and
IFSET are now called to read the GAMETIME, FUNCOM and all IF and
SETTING clauses. WEPDATA is now called for weapon data.

The sortie header is retrieved and each sortie processed in order.
A f t e r  the last sortie any active tapes have file marks written on them
and are rewound . For each sortie the following procedure is followed :
TYPFIND is called to set type names and numbers. If ABTAPE is active ,
ABOUT is called to produce an A—Record .

Then each event of the sortie is retrieved. For each event the data
in block /EVCOM/ is updated. If the event is a weapon assignment event
and STRIKE tape is active , STOUT is called . For any event if ABTAP E is
active ABOUT is called fo r a B—Record .

Subroutine INTRFACE is illustrated in figure 115.

* Firs t  subroutine of ove rlay INTR.

539



-- - 
_--__ _________

P ~~ AD—A 058 1406 COMMAND AND CONTROL TECHNICAL CENTER WASHINGTON D C F/G 15/7
THE CCTC QUICK—REACTING GENERAL WAR GAMING SYSTEM (QUICK). VOLU——ETC (U)
APR 78 0 4 SANDERS. P F MAYKRANTZ. J M HERRON

UNCLASSIFIED CCTC—CSM—MM—9 —7 7—VO L— ’4— PT SB IE—AD—E 1QO 085 NL

~~A f l 8  ~~
088408 _________________________________________________________________



r ~~~~~~~~~~

C ST;TD

r Set STRIKE
And AB TAPE

Print Switches
To “False”

(

For All H~
o

/STRIKE Tape \ Set STRIKE

Print Option Yes 

~~

$No

ABTAPE
~~~~ No ( Print Option ) 2

(13)?

Yes

Set ABTAP E
IPrint Switch To
[True s Uni t = 12

Yes~~~~~~~e~uencY)

Set Prin t
Unit To 42

Figure 115. Subroutine INTRFACE (Part 1 of 5)

540

~

~.—-- ~ ~—- --~~~~~~ - ----~~~~~--~~~
—- —--— -—

~
- -

~~~~~~~~
-

~~~~~~~~~ ~~~~~~~ _______________


—~~ •— • • ~~~~~~~~~~~ -~~—.~~~ -~~~~~~ .-• ~~~~~~~~

I . A

Call RDCLAUSE
For CANETI ME

And FIJNCOM
Clause

Error?

No

11 IFSET For
IF And SETTING

Clauses

Error? Yes RETU RN

No

Call
WEPDATA

Call HDFND
And RETRV For

Sortie
Header

3

Fi gure 115. (Part 2 of 5)

541

• .~—.•.
,•• .• . •

.
‘ ~

•
.

L — —

r — - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~—
.-~- .—. -- •. -~~~

3

Call NEXTTT
For Next
Sortie

End Of o 6
Chain?

Yes

STRIKE Tape Yes End File And
Active? Rewind

STRIKE Ta e

No

ABTAPE Yes EnJ File And
Active? Rewind

ABTAPE

No

RETURN

Figure 115. (Part 3 of 5)

542

1 ” - ,,- .
_ _

- T ___________

- ---

~

-- —

~

-

~

—

~

-—-• - ~~~~~~~~~~ ~~~~~~~~~~~~~~~ ____

_ -~~~~~~~ —

r

H _ _

11 HEAD For
Group
Record

[Call
TYPFIND

ABTAPE ~~~s~Yes

~

j Call ABOUT~~]JActive ? For A Card

H Call NEXTTT
if For Next

Event

(

dOf
)Yes

Figure 115. (Part 4 of 5)

543 t

r -~~ -
- -~~~~~~• -

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-- -- -—~~~~~~~



_ _
~

•_
~

__ ur
~

-
__ 

—~~~
— -. — -

~ 
—

~~
- -

B

Increment
Elapsed Time

And Save
Position

Event
Type A?

Yes

Call HEAD To
Retrieve

sigument Data

Call DIRECT To
Retrieve

Target Data

STRIKE N
Tape Active?

Yes

Call
STOUT 8

No ABTAPE
Active?

Yes

7 Call ABOUT
~~ For 8 Card

Figure 115. (Part 5 of 5)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -- ---

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



—.-~‘-
-—--- — ---- -—----- - - — ----- - -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4.10.1 Subroutine ABOUT

PURPOSE: Write records on ABTAPE.

ENTRY POINTS: ABOUT

FORMAL PARAMETERS : lAB — =1: Produce A—Record
=2: Produce B—Record

COMMON BLOCKS: C30, DEFVAR, EVCOM, GRPSTF , IFSCOM, MODE , PAYSTF ,
PLTYP , PSW , TYPSTF , WHDSTF

SUBROUTINES CALLED: CONVLL, FINDTIME~I IAZIM , IFUNCT , ICETROB, INFORM ,
NOP, NTIME , XSET , XWHERE

CALLED BY: INTRFACE

Method:

First data is stored in variable block /DEFVAR/. Depending on whether
the call is for an A or B reáord , different values are filled. The
positions in /DEFVAR/ correspond to record fields as delineated in
figure 60. For an A—Record , NTIME is called to set the time of launch.
For a B—Record , FINDTIME is called and IAZIM is used for missile
azimuth and back—azimuth.

When all data is stored , all pairs of IF and SETTING clauses are exe-
cuted . Finally, the desired record is formatted using INFORM and
written on the output unit (LTN 16).

Subroutine ABOUT is illustrated in figure 116.

545 

~~~~~~~~~~~~~~ -
.--~~~~~

~~
—•-•,.---- ---- ----— -

~~~~~~1

~~~~~~TART 
D

*

F Increment B
(A Card?)~

p.i.-l Line Count And

I L Set MODE
Yes

Store ValuesIncrement A
Line Count

In Variable
Array

Store Line
Numbers, Index, Call FINDTIME
Sortie No. And For Event
Type Index Time

Call NTIME
For Time

Calculate

Of Launch Azimu th Or
Back—Azimuth

Store Remaining
Values In

Variable Array

Figure 116. Subroutine ABOUT (Part 1 of 4)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- - — -~~~~ ~~~— - - —~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~ -- - - ~~~~~~~~~~~~~~~ -~ - - - -
~~~



Store Class And
Warhead
Indexes

Store Remaining
Values In

Variable Array

Of IF And

Call
XWHERE

No IF Clause
Satisfied?

Yes

Call
XSET

Figure 116. (Part 2 of 4)

547

- • C .- -

- - - ---- - -

~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• A Card? No 
10

Call INFORM To
Reset Integer

Values

~~~~ ~~
/
~~~ te A car7

___________/ / Print UnitJ

CR~~~
RND

Figure 116. (Part 3 of 4)

548

__ I_ 
~Lf -. -----—-- — 

- 
- • - . • • . - 

— ______________

~ - ;  -
- — -- — - c .- • - 

-

________  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ :—~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
__j



-~ -_~ .~ --— - -- —~~~~~~~ —

P
Call INFORM For
Integer Fields

30—35

all CONVLL For
Latitude And

Longi tude

~Call INFORM For
Integer Fields
38—45, 47 , And

49—51

—

Print Yes Write B Card

Desired? On Desired
Print Uni t

No

RETURN

Figure 116. (Part 4 of 4)

549

-

~

- - -

~ 

----— — ~~1 ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r m

I
4.1 0.2 Subroutine FINDTIM E

PURPOSE: Set times based on input and /GAMETIME/ block.
Result is packed into output parameter

ENTRY POINTS: FINDTIME

FORMAL PARAMETERS: XX - Input Time
II — Output time packed as follows

Month * 100000000 + Day * 100000 + Hour *
1000 + Minute * 100 + Second

COMMON BLOCKS: GAMETIME

SUBROUTINES CALLED: None

CALLED BY: ABOUT, STOUT

Method:

Time is set from /GAMETIME/ by adding XX to HHR. Then the subroutine
assures that normal limits are observed (i.e., 24 hours/day , etc.) and
the result is packed into II.

Subroutine FINDTIME is illustrated in figure 117.

550

T 1 . _
-

_~~
t_~•

~~~~~~~~~~ — — -— — -- - I ~~~~~~~~~~~~~~~~ —i- -—’-—



~ ~~~~~~

(START~~~~~

Set Day, Month and
Break Time into
Hours, Minutes and

Seconds

_ _ _ _

Make Sure Seconds,
Minutes , Hours and

Days fit into
Normal Limits

[ Pack Data
into II for

L Return

CRETURN
D

Figure 117. Subroutine FINDTIME

551

- C - 
•,

- - --- -—- - -- -~~~~~~~~
--

-
- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-

4.10.3 Function IAZIM

PURPOSE: Calculate missile azimuths and back—azimuths.

ENTRY POINTS: IAZIM

FORMAL PARAMETERS: XLAT - Origin Latitude
XLONG - Origin Longitude
YLAT - Destination Latitude
YLONC — Destination Longitude

COMMON BLOCKS: None

/SUBROUTINES CALLED: None

CALLED BY: ABOUT

Method:

Azimuth is calculated using formulae shown in figure 118. To calculate
back—azimuth inputs are reversed (Destination = XLAT, XLONG; Origin =

YLAT , YLONG).

Function IA1IM is illustrated in figure 118.

552

~~
-
— -~~~

_ _ - -- ——— - --

~~~~~~~~~~~~~~~~~~~~ ~~~ 

—

~

-
• • •- 

- 

- 
— . • 

—--_______

- -~~~~~~~~~~~~~~~ - ———- - -~~ - --——-------—---~~~~~~~~-- - ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- ——-

~~~~~~~~~


r•—- --•-~-•- - --- --
~~

- ---
~’------ -—-- - ------ -—--—---’- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — --•-- - .---
- - -- -

~

CSTART )
- 1 . _ _ _ _ _

Set Ri To First
Latitude In

Radians , R2 To
Second Latitude

In Rad ians

I Set RD To

I Difference In
Longitudes In

L Radian s

Set RA Cos~~(Sin Ri * Sin R2 +
Cos Ri * Cos R2 * Cos RD

Set Azimuth=Cos l

(Sin R2—Cos pJ)~ * Sin Rl
Sin RA *Cos Ri

Convert Azimuth
To Degrees And
Round Of f To

Integer

C 
RETURN D

Figure 118. Function IAZIM

I
I 553



~ — —,—-- _v~~——_ .~~ --~~~---- -•—•~—— _-—-. —~~
--•--- • —-- _

-- - ,•-•-- --.-—---.--——---~
_

!r
4.10.4 Subrout Ine IFSET

PURPOSE: Store IF and SETTING clause indexes and rhang ’
field references to variables

ENTRY POINTS : IFSET

FORMAL PARAMETERS: None.

COMMON BLOCKS: ADVRB , IFSCOM, OOPS , ZEES

SUBROUTINES CALLED: INSCET, INSPUT , UNCODE , XLL

CALLED BY: INTRFACE

Method:

Processing for IF and SETTING clauses is essentially the same. The
clauses are processed in pairs. As each pair is processed , their in-
dexes are saved in appropriate entries in block /IFSCOM/. Each in-
struction of each clause is examined. Only two sorts of instructions
are altered.

First, any instruction wi th an alphabetic value has that value compared
to the list of field names (VNAHE). it a match is found the instruc-
tion is altered to a variable instruction with an index to the /DEFVAR /
block (see subroutine XSET) .

Second , if one of the altered instructions refer to a field whose value
is ei ther a latitude or longitude , the following instruction has its
value conve r ted to decimal degrees by XLL.

Sub routine IFSET is illustrated in f i gure 119.

•

1

554

_ _ _ _ _ _ _ _ _ _ _ _ _  • . -& _
‘_ 
:. c.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
- -

~~~~~
-
~~~~~~~~~


-•-—-•• .---•-.- - - _-—•--- — ~~ .—- ~~~—- __

C
START

D

~~~~~~~~~~~~~~~~~

_  

~<
_

/ETTING ~~[\ ~~o

\~~~ or
_

STRIKE~
,
,/ ABTAPE? /

~~Yes 
~~Yes

Set ISET [ Set ISET
And LAST From And Last
Limits For From Limits

STRIKE L For ABTAP E

Call INSGET
For Address Of
SETTING Claus~

j  2

~~~
INC ciaE~~~~~/~~~~

Tr0t
/

CRETURND

FIgure 119. SubroutIne TFSET (Part 1 of 4)

555

~~~---~~~~~~~ --- -~~~~-~~~~~~~~~~ - - - - -~~~~~ - -- ~~~~~~~~~~ 



— --- ---- -

• 

1

3

all INSGET For
Address Of
IF Clause

IF Clause No 
2Found?

Yes

4
IncrementProcessing -STRiKE ClauseFor STRIKE
Count AndClauses?

tore Addresses

No
5 6
Increment ABTAPE Set IBR To
lause Count And ~~ Process IF
Store Addresses Clause

Reset IBR To
7 Process 8

SETTING Clause

Call INSGET &
UNCOD E For
Next Input

Item

Figure 119. (Part 2 of 4)

556



-~~~ ~~~~~~~~~~~~~~~~~~ 
-- -- -- -

~ 
• -- • 

~~~~~~~~~~~~~~ 
‘
~~~~~~~~~~~~~

•
~~~~~~~~ -~~~~~ ~~~~~~~~

H _ _ _

~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Y

14

~Yes
—

Yes No

/

“
Processin~~~~~~~.~~~~~ i

~~<
” Intern

IF Clause? Variable?

• ~No
INc

/~~ ~~~~~~ NPair? 1 16

~Yes

Processing Yes
STRIKE?

$No

~
RETURN

1~~
z

Figure 119. (Part 3 of 4)

557

-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -

_
---- - -- ‘- -----

16

Yes
Attribute?

19 No

Numeric Yes
Value?

No No

Is Alphabetic Call XLL To
Value in List o Is Conversion Yes

Convert To
Of Field Names Switch On? Decimal Degrees

(VNAME)?
_ _ _ _ _ _ _

Yes

Reset Third Ii Call INSPUT (I
Word To Index if To Insert ~~~~~~~~~~~

‘

Of Variable ~~~nverted Va1~ ejJ

Reset First
Word Based On

Type Of
Variable-

t
Reset Second
And Fourth

Words

Set Conversion ~Call INSPUT ToSwitch ~~ Alter Clause B

Figure 119. (Part 4 of 4)

558

1
_ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~



_ - - - . ----,•-—•—---- -—- ____________

4.10.5 Function IFUNCT

• PURPOSE: Return numeric function code as per FUNCOM clause.

ENTRY POINTS: IFUNCT

FORMAL PARAMETERS: IXY — Type index of weapon

COMMON BLOCKS: IFUNC , TYPSTF

SUBROUTINES CALLED: None

CALLED BY: ABOUT, STOUT

Method:

Function code value is retrieved from TFUNCT and compared to contents
of JFUNC array. When a match is found the corresponding value of
INDFUNC is returned.

Func tion IFUNCT is illustrated in figure 120.

_ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  • • •~~~~~.



- - -- --~~~~~~~~~~~~~~~ •- -  — ••-- —.•----—- - -~~~-- --- ~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~ -•---- ---~—-~~~ --~~~~~~~ -- -----

QTAR
~ID

Retrieve 
-

Function
I Code
L (FUNCT I)

,/
‘
~Is Code In ~\Yes 

j Set IFUNC From 1
JFUNC Table? INDFUNC Table

$No 

_________

L IFU~~
t o ~~~~~~~ RETURN 3

Figure 120. Function IFUNCT

560

.~~~
•_

~~
-• 

- - 
• 

•
— - — •• — 

-- - —.-- —•—--- —•------ -—• ••••— - -- — — - ~——-•——---.- - -- ‘——---••-- --------—•———--~~~~~~ : _  _ —~-_._- --~ •_- ~~~~~ ~~~~~~~~~~~~~~~~~~~~~ •—.~ — - -~~ ~~~~~~~ • _  — -— -



-- -
•,-

- -- -_ — - _ — - _ ,-------- - - - - -  • — - - -
~~

— - -‘.--- -

4.10.6 Subroutine INFORM

PURPOSE : To create BCD fields from Numeric input.

ENTRY POINTS: INFORM, IPROB , NTIME

FORMAL PARAMETERS: IN, X , T - Input numeric
OUT — Output BCD field

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: ABOUT, STOUT

Method:

Entry INFORM: Successive digits are obtained from IN by dividing and
determining the remainder. These digits are then inserted in OUT from
right to left. The effect of a number of fewer than six digits is to
zero fill the remainder of OUT.

Ent ry IPROB: The inpu t is converted to a percent. Percent of 100 or
greater are returned as —1. All others are sent to entry INFORM.

Entry NTIME: The input is split into hours, minutes and seconds. It
is then packed and sent to entry INFORM.

Subroutine INFORM is illustrated in figure 121.

561

- ---—--- .--•---,- ------ , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



I

START Entry IPROB

Convert
Probabil ity To

START Entry INFORM Percent

No 100
Or Greater?

Yes

Using Ft~ Insert The
Mphabetic Equivalent Of Set Return
Each Number From Right Value As
To Left Including Any “—1”
Zeros That Remain In
The Left—Most Digits

FIgure 121. Subroutine INFORM: Entries INFORM and IPROB
(Part 1 of 2)

562

— ..



n —--- -
~~~

-- • - -
~~~~~~~~~~~

--
~
--- -~~~~--- ---—

(
STARTD

I .  —

Break Time
Into Hours,
Minutes And
Seconds

—

Assure That
Minutes And

Seconds Fall In
Norma l Limits

Set Desired
lalue to Seconds
I- 10 * Minutes -1
1000 * Hours

Figure 121. Entry NTIME (Part 2 of 2)

563

-- ---— i~~i:~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • -- ~~~~~



F — - — 
- — — — ‘ r~~~~.~~ ’~~~~- 

- 
~~~~~~~-— - ‘~~,~ —.~~~‘ - -  - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •

i i

4. 10.7 Function NOP

PURPOSE: To find the operation code associated with
event type 7. f

ENTRY POINTS: NOP ‘

FORMAL PARAMETERS: I - Event type

CO~ 4ON BLOCKS : MODE, TAB

SUBROUTINES CALLED: None

CALLED BY: ABOUT

Method:

First, if NOPSHOT equals 3 or 4, the values of ITAB(J) for J~ l8 , 19 , 20 ,
and 21 are reset to NOPSHOT and NOPSHOT is reset to zero.

In any case NO is set equal to ITAB(I+1),

Finall y,  if I is 19, MODE is set equal to 4 or if I is 18, MODE is set
equal to l.

Function NOP is illustrated in figure 122.

I

564

~~~ —_ - --_ ~~~~~~~~~~ — -
— - --—1TL~r~-- ____ ____________ ~~~

-—

___ ~~~

START

Is Event A
Dog leg 3 ~~ No
A Dogleg 4?

Yes

Set ITAB (J) Equal
To NOPSHOT For

J~ l8 , 19, 20 , 21

Set NOPSHOT
Equal To 0

‘U’s
6 7

Set NO Equal
[

-To ITAB (1+1)

4 10

IS I Equal ‘\Yes , . . I Se t MODE Equal
To 19? / “1 To 4

No

‘s— (TOI~ ?
__) C~~D1. Yes

20 7
Set MODE Equal

[T o l

2S

~~~~~~~

4

CREWRND

Figure 122. Function NOP

565

1~ 

- - - -  ~~~~~-



1~.
4.[O.8 Subroutine PRNTOFFS

PURPOSE: To print the offensive system table.

ENTRY POINTS: PRNTOFFS

FORMAL PARAMETERS: None

COMMON BLOCKS: C30, GRPSTF, NOFSYS, PAYSTF, TYPSTF, WHDSTF

SUBROUTINES CALLED: None

CALLED BY: INTRFACE

Method:

After printing the header, each weapon group is checked. If it is a
different type from the previous weapon group, the data for it is
printed .

Subroutine PRNTOFFS is illustrated in figure 123.

566

__________
_ _  

-



— — ------ —--— —~~~- - -— ___ - -- - v---—

C

STARD

_ _ _

/ Write —

/ Offe nsive

/ System Header

Set Payload And
Type Indexes

Figure 123. Subroutine PRNTOFFS

567

• -_ - -—--—-—--•-—---•---—-~--_—•— --— - -— ~—- -~~ --~~~~~~~~~~~~~
‘ 

— —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _  -_ _ _ _ _  --•

4.10.9 Subroutine RDCLAUSE

PURPOSE: To read in GAMETIME and FUNCOM clauses.

ENTRY POINTS: RDCLAUSE

FORMAL PARAMETERS: None

COMMON BLOCKS: ADVRB, GAMETIME, IFUNC, OOPS, ZEES

SUBROUTINE S CALLED: INSGET

CALLED BY: INTRFACE

Method:

First the GAMETIME ciause is read and its value stored in block
/GANETIME/. Next the FUNCOM clause is read and its values stored
in block /IFUNC/. if either clause is missing an error message
appears.

Subroutine RDCLAUSE is illustrated in figure 124.

• 

568

_ _ _ _ _  

4
________________________-- — 

-~~_. 
-

~~~ - .~ q :-• ~~-

_________ ________ — --—- -_ ----- ——--~
-—---—

CS;TD (~
)

/“~~~~METIME
“

~~ No I Set ERROR

\~
1ause

_
Input~
,
,/]~~~To “True”

~?es
_ _ _ _ _ _ _IF Call INSCET 1 [~~Write ~/3

~
‘-
~)

For Next if ,k4issing Clause /ILInput Item JJ L~~
ror Message/

I

Alphabetic Yes
\ Value?

No

4

Write Message
For Error In RETURNGAMETIME
Clause

Figure 124. Subroutine RDCLAUSE (Part 1. of 5)

569

_ _ _
i -

-
~~~~ 

-
~~~~~

-—

p..-
~~~~~~~~~~~~ 

•— —------ -- — --_ -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--- ---., “--.
~~~ 

-_ - ----—--,—_.-.-—— -- — -“——-- ----- - ------. • — —
~~

----
~~ 

- - - • -_ - _——

• 
_ _

Set IBR Based
• On Alphabetic

Value

Legal Value? No

Yes

Call INSGET Fo
Next Input

Item

“EQUALS” No
- Operator?

Yes

Call INSGET Fo
Next Input

Item

Numeric Value? No

Yes

A

Figure 124. (Part 2 of 5)

_ _ _ _ _ _ _  -



— - - -- - - • -~ •- - — --------- -_— — --_ - - -•--- ------- - -• -__ - - ———----—- - - - - • - -- - - -_ --~~--- -- - --~---- —,— --- 
~~~~~---- — • _--- -.—-. —--~-- --.—---,-~~

~~~~~
AY s t~~~

Aj

= 2 : KM Set KMON _______

To Value

= 3:KYEAR Set KYEAR

~j To Value

4:~~ R [ Set ~~R I ~To Value

Figure 124. (Part 3 of 5)

571

-- - - -- -—-- ----- _— ----~~~—- _—-•---_-- .----- --------— -—-—-— -•---_---•-~ —k----—-



- 
~~—--~. r - --- -~ 

-- _ _ _
~~~~~~~ C _

~~

10

FUNCO:cl:use ° 1

INDFUNC
• Array

End Of
• Clause?

No

Alphabetic Yes 14Value ?

0

13

—

Set ERROR

j
~~~~~~~ essa~e For

Figure 124. (Part 4 of 5)

572

~~— - - • - •~~~~~~~~~~ ---- ‘~~
-,

~~-
.•-. - - 

• .  
- 

— • 
- ‘

- - - — ~~~~~~~~~
----- 

— — - — -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —rn -- ~~~~



Save Alphabe tic
Value In

JFUNC

Call INSGET II
Next Input

Item

Comma? No

Yes

Call INSGET For
Next Input

Item

Numeric No 13Value?

Yes

Save Numeric
In INDFUNC

12

Figure 124. (Part 5 of 5)

573 

— F --

________  _____ • •
- -~~~~~~~~~~~~~~~~



-—- • -——.-~ --— -• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---—~~~-- -- ---- -- --—
~~~

. —
I

4.10.10 Subroutine STOUT

PURPOSE: Write records on STRIKE tape

ENTRY POINTS: STOUT

FORMAL PARAMETERS: None

COMMON BLOCKS: C30, DEFVAR, EVCOM, GRPSTF , IFSCOM, PAYSTF , PSW,
TYPSTF , WHDSTF

SUBROUTINES CALLED: CONVLL, FINDTIME, IFUNCT, IGETHOB, INFORM , IPROB,
XSET, XWHERE

CALLED BY: INTRFACE

Method:

First data is stored in variable block /DEFVAR/. The positions in
/DEFVAR/ correspond to record files as in figure 59. When all data is
stored, all pairs of IF and SETTING clauses are executed. Finally, the
record is reformatted using INFORM and written on the output unit
(LTN4).

Subroutine STOUT is illustrated in figure 125.

-

~~~:r

57’

__________________ • ~~--•~~~ -—



_ _ _ _ _  - - 

I

H Q~
ARTD

1
. F  Store Sortie

Number And Tiim
In Variable Arra’

Call
FINDTIME

- t
Store Latitude
Longitude And

I~ESIG

Set Weapon
Indexes

[ Store Weapon
Data In

[Variable Arrays

1
Store Target

Data In
Variable Arrays

6~~

Figure 125. Subroutine STOUT (Part 1 of 3)

575

___________________________ _____________



• ~~~ 
-—-—i -,--—-- - - ---------- -------——------ -- -_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

1

~~~~~~~~~~~ause
N0

Clause Pairs 

Done

Do

Call XWHERE
For IF
Clause

No IF Clause
Satisfied?

Yes

Call XSET For
SETTING Clause -

•

L~~~~~~~~~

_ 
_ ___ _ _ _ _

Figure 125. (Part 2 of 3) - - 
- -

j  

576

__________ - • 
r 

- 
- - - . 

— — ~~~~~~~~~ —-•— —-~~~~ — ——-~~~~~~~~ _ _ — — — - - - ~~~~~ —__—~~~~~ — — —  _ _ f~~~~~~~~~~~~~ _

_

~~__ —~~~~ -—-~ ~~~~~~~~~~~~~~~~~~ 
• -.

~~~~~~~~~ -—— -~~~~~~~
_ — — — • —~~~~~~~~~~~

— — —-- -- — — w__ -

H. __
Call INFORM

?or Field 1 And
Time Fields

all CONVLL For
Lat i tute And
Longitude

Call IPROB
For Fields

6—8

all INFORM For
Fields 9—11,

13, And
17—21

Write Record

Yes Write STRIKE
Print Desired? Record To

Print

No

RETURN

Figure 125. (Part 3 of 3)

577

~~.-‘ ~~~~~~~~~~~~~~~ — -_-_ ~~-- -•_ —_---— --

- --,~•-—--- —•- --—--- ------ • ---•-- —--- — ------—--
~
--- - .- -~~~~~—,--—~~----.- —.=

~~
- - - - -

4.10.11 Subroutine TYPFIND

PURPOSE: To set values in the /PLTYP/ block .

ENTRY POINTS: TYPFIND

FORMAL PARAMETERS: None

COMMON BLOCKS: PLTYP

SUBROUTINES CALLED: None

CALLED BY: INTRFACE

Method:

The value in PLANAME is sought in table TNANES. When found , the index
is stored in IPL.ANTYP and the three character name in the corresponding
position in SNANE S is stored in SHORNAME.

Subroutine TYPFIND is illustrated in f igure 126.

I
*

(
~~~START ii::~

_____ [

~~~

For All Names1 Don~~~~[Set To Indicate
In TNANES

r

[No t In

jDo

~~No /Type Name
\

\

In TNANES?

~~Yes

1~~~et IPIANTTP L
And SHORNANE

From Index j

•

-

(~~~
TURND

Figure 126. Subroutine TYPFIND

579

— _ - --•-- - - - _ ~~~~~~~— -——-~~~-— - __ - -
~~~~~~~~~~ -~~~~~~~~~~

-
~
-•--•- ----- • - -- - - ---- -~~~~~~~ - -—



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _

4.10.12 Subroutine XSET

PURPOSE: To execute a SETTING clause.

ENTRY POINTS: XSET

FORMAL PA1W4ETERS: BEGIN — Pointer to beginning of SETTING clause in
-
- input array

COMMON BLOCKS: C30, DEFVAR, ZEES

SUBROUTINES CALLED: ABORT, INSGET, IORFL , UNCOD E

CALLED BY: ABOUT, STOUT

Method:

This subroutine is best understood by reference to figure 127. Basically,
the instructions in the SETTING clause are retrieved and executed one at
a time. In the process, values on which mathematical operations take
place are saved in ZZ. The main operations are those of load and equals

Fwhich cause variables in common /DEFVAR/ and attributes in /C30/ to be
set. The variable YY Is used to transfer values in this operation .

I

580

~
__5 -

-~~~~~~~~~~~~~~~~~~~~ ---—~~~~~~.-- -• - - - -— —-- —---—--- --

(~~
START

_)~~~~~

• _ _ _

Set ISW 1
To Show
Variable

Call INSGET
And UNCODE

—
~ For Next

-
Ins truc t ion

2 No

3
Yes End Of Yes

Termination? RETURNClause?

No

‘
~~~Equals? ~~~

No

Yes
Logical?

- 
- 

- Figure 127. Subroutine XSET (Part I of 7)

581

r r

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ . - - - - - —_--
~~
— ——_‘—-

~~~~~
-—-_--

~
__--—-- _.—-‘•— - —-‘-.-- — -—-. — --- — ———

F

/Load Or

)

~~~~~
®

Yes [ Set IBR= l Or
Minus? ~~~

‘-J 2, Depending

\ / [On Instruction

No
U V 

_ _ _ _ _ _

/ Times Or\ Yes ( Set IBR 3 Or
Divide? 

) —a”-] 4, Depending

\~~ J 10n Instruction

~ No 

_____________(
~ Powe~~~

) 

Yea 

“L 
Set IBR=5 7—~—-~.<~

Call
ABORT

Figure 121. (Part 2 of 7)

582



________ __ _________  ~~ -_ - - --—-~•--_ - -~~~ -

6

th ter:l?

YesI I Call IORFL
I Set YY From

Attribute? 
Block /C30/ —i For Numeric

11 
No

~ 
Y~~

f

~~~~et YY Frorn ~~~~~~

Variable? No

Yes
13

Set YY From Integer No
Variable Variable?

Array (VARXX)

Yes

Float YY

Figure 127. (Part 3 of 7)

583

— _-—•—---—— — • — - • —_— • __~~ _~~~ ~~ —.——— ‘—— • -—•—----— - -~-—---•--

- - - - - _ ~~~~~~~~~~~ -— ---—- ------_ - —-- — - - - —-- _-—-— --—- -— - -,- - - - — •- --—•-
~~

- --—----- - - — - - - - -- -•---.--— - — -_ - - - - -

8

Yes

No
ITYP=l?

Yes

Fix YY

- Store YY In

~~ Variable Array
(VARxx)

I

-

~~~~~~~~~~~~~~~~~~~

Figure 127. (Part 4 of 7)

584

I,.
— 

C ? --

L • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
•-

~~~
-- -— —-—-— —~~~~~~~~~~ - —-- - ~~ -~~ -—


~~~~~~~~~~~~~
---.--

~ 
- --- • —--

~~~
-- ---- —-- --_ --_-

•

? 2 1 _
•

~~~~~~~~~~~Hn a1
~~~~~~~~~~~~

Yes

17 20

Set ZZ From
Internal? es

Internal
Variable (Xx)

No

A::rib::e?

NO Set ZZ
• 5 Variable? From Block

/C30/

Yes

Set ISW= l,
ITYP From

Ins truction

Set ZZ From
Variable Array

(VARXX)

Figure 127. (Part S of 7)

585

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— —_-•. ~ —•-- -•-.-—--- --- —-.
~
-•---- -w- — -‘--- —--— 

_—_ 
i.—’- ,- _—.--, -‘r

Yea Set WW From
In ternal? In ternal

[ Variable (XX)

No

Attribute?

No

Numeric Set WW From
Value? 

Cs 
~~ Instruction

Variable? 
Yea 

~~ Va:~~~~e Array
(VARXX)

5

Figure 127. (Part 6 of 7)

586

_ __ ,_ _~~ __ •  - - — - — - -  -
- - - -‘ - -

~~~ r~~~~ 
-

~

_ _ _

- - - --.------ - —— -
~~~~~~

—
~
—.-- -— --- 1~~~ ---—‘- -- -----~ —~~ • -~~~-~~~~~~~~ -~----..

29

~~~~trac~~~~H~~~~~~1~~~~~~~~~~~

~~~~~~~H~~~~Th~~~~0

Figure 127. (Part 7 of 7)

587

- -
-

~~ • 
- -

i - .
-

• • — — - - •_  ~~~-~~~~~~- _ ~~~ •—~~~~~~~~~ _ - - — —_  -~~~~~~~~ -~~~~-- -~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~



REFERENCES

1. M.M. Flood , “The Traveling Salesman Problem ,” Opns. Res. 4, 61—75
(1956).

2. R.H. Gonzalez, “Solution of the Traveling Salesman Problem by
Dynamic Pro gramming on the Hypercube ,” Interim Technical Report
No . 18, OR Center , M.I.T., 1962.

3. ‘1. Held and R.M. Karp , “A Dynamic Programming Approach to Sequencing
Problems ,” J. Soc. Indust. and Appl. Math. 10, 196—210 (1962).

L . M.J. Rossman , R.J. Twery, and F.D. Stone , “A Solution to the Travel-
ing Salesman Problem by Combinatorial Programming,” mimeographed .

5. M.J. Rossman and R.J. Twery , “Combinatorial Programming ,” presented
at 6th Annual ORSA meeting, May 1958, mImeogra phed .

6. W.L. Eastman , “Linear Programming with Pattern Constraints,” Ph.D.

• dissertation , Harvard University , July 1958; also, in augmented
form : Report No. BL—20 The Computation Laboratory, Harvard Uni-
versity, July 1958.

7. G.B. Dantzig, D.R. Fulkerson , and S.M. Johnson, “Solution of a
Large Scale Traveling Salesman Problem ,” Opns. Res. 2, 393—410
(1954).

8. G.A.  Croes , “A Method for Solving Traveling Salesman Problems,”
Opns. Res. 6, 791—814 (1958).

9. D.W. Sweeney, “The Exploration of a New Algorithm for Solving the
Travel ing Salesman Problem ,” M.S. Thesis, M.I.T., 1963.

10. A. Doig and A.H. Land , “An Automatic Method of Solving Discrete
Programming Problems ,” Econometrica 28, 49-7—520 (1960).

589



~~-- —p
~~

-•- .- ___ __ ____ _ _•____•____ __ _____ —-— -~~~
- -:~~~~

-
~~~

-- —-- - -

APPENDIX A

SORTIE GENERATION ~ALGORITHMS AND CONCEPT

Algorithms employed within the Sortie Generation subsystem are discussed
within this appendix. Induced are: basic sortie generation , de tailed
sortie specifications , actual height of burst calculations , tanker allo-
cation techniqu&- and missile timing.

A . 1 Basic Sortie Generation

The development of the Q UICK strateg ic war pl an may be viewed as incor -
porating two major planning tasks. The initial task involves that pro-
cessing required to establish an allocation of weapons to target which
max imizes target destruction within the scenario and weapon system con— -
straints established for the plan. Then , to implement this allocation ,
specific missile and bomber plans (i.e., sortie specifications) must be
generated for each delivery vehicle. The latter task, referred to as
“sortie generation” includes the preparation of a set of basic sortie
specifications and the subsequent expansion/refinement of the data con-
tained therein to produce a set of detailed sortie spevifications. This

• section addresses the development of the basic sortie data. The prepara-
tion of detailed specifications is discussed In the following section.

The optimum allocation developed by module ALOC specifies only the wea—
pon type and approximate base location (the group centroid) of the wea-
pons allocation to each target; it does not specify the precise bomber
or missile which is allocated to each target. In addi tion, when allo-
cating bombs and MIRVs (multiple independent ly targetable re-entry ve-
hicles), AthC does not consider the req uirement for geograph ically group-
ing targets for attack by a single delivery veh icle , bomber or MIRV .

The development of the basic sortie data for the individual missiles and
bombers (i.e., the genera tion of the basic sor tie* specifications for
these vehicles) is primarily performed by module POSTALOC. In the case
of missiles , the task is less complex since the missile fligh t plans are

• ba sica l ly determined once a specific target or target set (provided by
FOOTPRNT) is associated with a specific type of missile and the launch
and target coordinates are known. In the case -of bombers , the process
is more complicated . The development of basic bomber sorties requires
the association of several strikes in a single -sortie. Moreover , it is
necessary to associate each sortie with specific launch and recovery
baaes and to select a flight profile which specifies where low-altitude
capabil ity should be used. Since the allocator (ALOC) does not distin-
guish between bombs and air—to-sur face missiles (ASMs) carried by the
snmt’ ~i lr raft , it remains for module POSTALOC to determine which tar-
gets should be targeted with bombs and which/with air-to-surface missiles .

* As ,,s~ .l in QUICK the term sortie refers to an operat iona l I ligh t or
fligh t plan associated with one delivery ~ehic1e , missile or bomber.

—,-..~ -—-- —— ,-—---•--—-,- — ---—----—------—-~ — -——- ——-- ----•, -— —-—-•--~— - -~~~-—. - --——•-—— -—,-- —-- -------------- ,-----•-v-•-~—-—- ---— ——• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~

‘1

Prior to being input to module POSTALOC, the weapon-to—target :tssi gnmeiil
data developed by module ALOC are processed by module ALOCOUT. The ma-
jot functions performed by these programs are described in other sections
of this manual but are summarized here for purpose of continuity.

The weapon allocator ALOC supplies module ALOCOUT with data for each
target , specifying the weapon groups assigned to each target together
with associated targeting data. ALOCOUT extracts from these records
the data relevant to sortie generation and reorganizes the extracted
data by weapon group, giving for each weapon group the number of strikes
and the specific targets assigned through each penetration corridor ,
plus associated data relating to these targets. ALOCOUT is also respon-
sible for computing any aiming offse ts required by the plan. In the
case of simple targets or multiple targets , these offsets are simply
set to zero. In the case of complex targets , which cam have several
elements at slightly different coordinates , ALOCOUT selects optimum
aim points within the target complex. A complex target (or target com-
plex) is a combination of target elements sufficiently close that a wea-
pon on any one of them will have some probability of killing other ele-
ments in the complex. Such target complexes must be targeted as a unit

-- not as individuals. Thus, module ALOC treats them as a unit , allo-
ca t ing weapon s agains t their total value , using one set of coordinates.
In order to maximize targeting efficiency against such a complex , one
must select desired ground zeros (DGZs) or aim points among the target
elements.

If the plan includes missile weapon groups equipped with MIRVs (multi-
ple independent ly targetable re-entry vehicles), module FOOTPRNT must
be included in the plan development cycle. This program processes the
ind ividual weapon—to-target assignments and constructs the specific
booster loads (the re-entry vehicle-to-target assignments to be asso-
ciated with a single MIRV-capable missile) for each weapon group with
a MIRV capability .

Bomber Plans

The sortie definitions developed in module POSTALOC are generated sep-
arately for each weapon group and , within each weapon group , separa tely
for each penetration corridor . For tactical bombers or naval bombers
(i.e., PKNAV > 0.0), a penetration corridor is not used . However , to
preserve the logic of the program , a dummy corridor index is defined to
indicate no corridor usage. This corridor index is tested before per-
forming distance calculations and strike assignments so that the appro-
priate substitutions are made in the method of processing . The basic
sortie plan consists of ordered lists of the targets to be struck by
each bomber , an indication of whether a target is to be struck with a
bomb or an ASM, and an estimate of the distances between successive
flight points that are flown at low altitude . The sortie definition
does not , however , include the actual coordinates for the various
events; e.g., launch , refue l , and drop bomb. These, together with the —

release points for ASMs are calculated in module PLANOUT.

592

The bomber sorties are actually constructed in the following fashion.
First , the module reads in the strikes assigned to a given group. Row-

- ever , i t reads them one corridor at a time. This division of strikes -

forms a raid ; i.e., the aircraft from one group routed by way of not
more than one corridor. Next , the strikes in the raid are rough ly di-
vided among the availab le vehicles and bases. Then, each sortie is
evaluated in considerable detail , taking into account bomber range, es-
timated attrition rates , low altitude capability, and the indicator
used in weapon allocation which specifies the use of either bombs or
ASMs on a given target. During this process , provision is made to omit
strikes that seem unprofitable . Each strike omitted may be assigned to
another sortie , so that this phase usua lly inc ludes some refinement of
the initial rough allocation of strikes. Only after all of the sorties
for the given corridor are defined are the strike data for the next
corrid or read in. Rather than omit some strikes , the module will con-
sider using an ASM on a bomb target (or a bomb on an ASM target) if
there are ASMs (or bombs) available. Although this use of an ASM or
bomb is contrary to the allocation preference , this use of weapons is
preferable to omitting strikes with no replacement. -

•

A more detailed discussion of initial raid generation and sortie optim-
ization is inc l~ided below .

Initial Raid Generation: As indicated above, the first step itt the gen-
eration of the sorties for a given weapon group and corridor is to as-
certain the portion of the vehicles and warheads in the group that
should be allocated to each raid . For a first approximation , the num-
ber of warheads assigned to each penetration corridor is proportional

• to the number of strikes assigned in each corridor in module ALOC.
However , if this number of warheads does not correspond to an integral
number of delivery vehicles , the necessary additional warheads required
to prod uce an in tegral number of delivery vehicles are assigned to each
corridor as it is processed . Since the corridors are delivered for pro-
ceas ing in orde r of decreasing number of strikes assigned , this rule
puts a slightly higher ratio of bombers to targets in corridors with
large raids. In this way, bombers assigned to corridors where there
are few other bombers will have more flexibility to select from the
geographically sparse target set assigned. In the extreme case where
a corridor happens to have only one or two isolated strikes assigned ,
the corridor will probably be skipped in the assignment of bombers from
the group, so that isolated individual bombers are less likely to be
assigned to such a corridor.

The next necessary task is to assign strikes within the raid to indi-
vidual sorties. This requires the assignment of individual weapons to
individual targets in accordance with the location of the targets rela—
tive to the penetration corridor. The assignment is accomplished through
the use of curvilinear coordinate systems chosen to parallel typical
f l ight paths within the penetration corridor.

593

—

______________ ______ - - - - ; -

l~igure [2811 tustrates two examp I~-s ot the coordinate system emp loyt’d iii
the planning of corridor penetrations. For strategic bomber s, the co-
ordinate system shown in established with the X=0, y=0 position corre-
sponding to the origin of the penetration corridor. The y axis is par-
allel to the axis defined by the corridor origin and the coordinates of
the corridor orientation point. For tactical or navel bombers , the x 0 ,
y=O position is defined as follows. Consider the centroid of the group
of launch bases and the centroid of the group of target bases ; and de-
fine the distance between the two centroids to be DISTC. The origin of
the coordina te sys tem is located at the end of the d irected l ine segmen t
which originates at the target centroid , passes through the launch bas e
centroid , and has a magnitude of 2 x DISTC. Thus, in this coordinate
system it is possible to locate both the targets and the launch bases.

The equations which describe the transformation from the Cartesian co-
ordinates x , y to the curvilinear coordinates p, 0’ are as follows :

x
k
y

p = y
2 + kx 2 for 10 1 � 1.0

1/k
1 + N -y x � 0

0-

-(1 + 1~~i
1/k

-y) x < 0

= 1~~
2/k + kx 2 a l l x

Investigation of the two graphs presented reveals that lines correspond-
ing to constant values of 0 rough ly parallel the type of f l igh t pa ths
which should be followed by pene tra ting bombers. Thus, in the assign-
ment of sorties , a single bomber should be assigned targets which have
approximatel y the same values of 0. Further consideration of the graphs
indicates the alteration of the parameter k can be used to reflect cer-
tam planning objectives into the sorties. For example , higher val ues
of k should be used when saturation of defenses is desired , while lower
values shou ld be used if greater importance is attached to minimizing
th e flight distances to targets (k is the corridor parameter KORSTY).

The procedure used to assign strikes within the raid to individua l sor-
ties now becomes clear. First , all strikes are arranged in increasing
order of their 0 coordinates. Then, the flights fr om each launch base
are processed in order of the distance from the base to the corridor
entry point , thus causing the vehicles to be processed in order of time
of arrival.

To provide an approximation of saturation and roll-back tactics , each -

flight is assigned , as a uni t , to either one side of the corridor or
the other. The first flights are usua lly assigned to shallow targets
(for which the absolute values of~~ are higher), while later flights

594

_ _ _ ~~~_ _ _ _____ _ __ •_~~~~_ _ ~~_ _1

_ _ _ —-- - - ~~~~~~~ -— - ~~~-~~~-- -~~~~~~~~~~~~— ~~~~ -— - ~~~~~~~~~- - -~~~~~~~—

\.;
- I l l

~~~~~~~~ .~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

~~ \ I I I ~

~~~~. 
~~~~~~ \~~ 

,v
K-2

___ ---s--- ~~~ _ _ _

1~~
..(\ I ~~~~~~~~~~~~~~

•

_ _ _

N V

_ _ _--

~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -_ _ _

Figure 128. Illustrative Curvilinear Functions

595

________ • -—~~~---- -~~~~ ~~~~ -~~~~~~~~~~~~~~~~~~ - - ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~
--

~~
--

~
-
~~~~

art~ assigned to deeper targets (for which t h e absolute values ul 0 ore
lower).  Even if the density of strikes on the two sides of the corri-
dor is quite different , the f l igh ts going to opposi te sides ar e ke pt
roughly in balance by comparing the value of 0 bef ore deciding to wh ich
side to assign the next fl ight. In order to maintain this balance , it
is desirable to have at least five or six flights. Thus if there are
four or fewer bases , two f l ights  are sent from each base. If there is
no penetration corridor defined , the launch bases are processed in or-
der of their absolute values of 0 alternating from one side of the co-
ordinate system to the other , in an attempt to make the sortie paths
approximate as closely as possib le the direction of the lines of con-
stant 0.

Within each f l i g h t , str ikes are assigned to one sortie at a time by
working through the list of unassigned strikes. Before any strike is
ass igned , however , all strikes previously assigned to the sortie are
checked to be sure that  it would not duplicate  a previous ly ass igned
targe t  (where m u l t i p l e  str ikes may be allocated to the same target).
If such dupl ica t ion would occur , the strike is skipped , and later
strikes on the list are processed to get the specified quota for the
sortie. Processing for the next sortie in the flight always begins
with the first unassigned strike and continues from there . St rikes
ac tua l ly assigned to each sortie are always arranged in order of in-
creasing values of p thus corresponding to the initial time order or
sequence of the strikes.

Sortie Value (VALSORTY): The optimization of the sortie is accomp l ished
by a heuristic programming technique . To determine the effectiveness
of modif icat ions  to the initial bomber sortie , the concept of the over-
all value of the sortie must be defined. The total value of the sorties
is a function of the value associated with each of the flight points in
the sortie and of the probability that each of these flight points is
successfully executed . Specifically , VALSORTY , the total value of the
sortie , is expressed as follows :

VALSORTY = ~~ SURV(I) * V( I )

where the summation is over all flight points including recovery.
SURV(I) is the estimated probability of the bomber surviving to reach
the fl ight point I, and V(I) is the estimated value of reaching that
point.

The value V(I) attached to the target , I, depends on whether it is to
be attacked by a bomb or an ASM.

1. if I is target for a bomb then : V(I) = RVAL(tgt)

2. If I is target for an ASM them: V(l) = RVAL(tgt) * [[.0 +
TIMEPREM(tgt)) 

-

in the second relation , TIMEPREM is a bonus factor that Is

596 
-

• 

- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — - 4

given for using an ASM on targets selected for ASMs in the wea-
pon allocation process.

3. If I is a recovery point then we define : V(I) VALRECVR *

~ RVAL(tgt). In the third equation , the sti~~ation is over all
targets in the sortie , wh ich implies that the value of recov—
erv is equal to the input parameter fraction VALRECVR of the
value of all targets in the mission.

The variable RVAL as calculated in program ALOC is actually a measure
of the marginal utility of each weapon. For weapon allocations not
directed by the player (not allocated through the use of the “fixed
assignment ” capability), the margina l utility RVAL is computed as

I (VT D
1

-VTD1) 1RVAL
J

- I
-l

I /PEN
L J ‘~

where:

VTD
1

= Resid ual targe t value af ter the alloca tion of
the 1th weapon(s) on target 3
[VTD

0
= VTO — original target value]

th
= Lagrange multiplier for the I weapon

th
‘EN

1
= Aggrega te pene tra tion probability for I weapon

This formula applies for targets with no terminal missile defenses. In
this instance , VTD1...j is equal to the res idual target value prior to
the allocation of the 1th weapon. However , for targets with terminal
ballistic missile defenses , VTD1..j is defined to be the residual target
value if all weapons from the same group as weapon I are removed . This
affords an accurate representation of missiles which are used for de-
fense suppression.

For all weapons assigned by the fixed weapon assignment capability , the
marg in al utili ty is computed as

RVAL • VTO/x
i

The computation of SURV(I) for the formula is based on a simple expon-
ential attrition law. If the integrated attrition probability on each
individual leg to a point J is given by ATLEC(J), then the survival
probabili ty for the bomber to the point I will be given by:

I~T ’l
SURv(I) = EXPF ~ ATLEG (J)

I J~’~l

597

••• ~~~ •~~~~~~~~~~~~~~ • _ _ _ _ _ _ _ _ _ _ _ _

- -
~~~~~~~~~~ —--~~- - - ~~~~~~~ -- - -- • -~~~~~~~~~~~~~~~~~~~~~ --- --~~~~~~~~ - •-~~~~~~~ - - -—-- - - - - - - • -~~~~~~~ --

The attrition ATLEG(J) includes both area and local attrition for the
leg.

Applicat ion of Low-Altitude Rang:~~ In selecting low-altitude range ,
QUICK assumes that on any leg or fraction of a leg flown at low alti-
tude the attrition rates will be reduced by the factor HILOAT . In
order to estimate the expected value of the sortie, therefore , an es-
timate must be made of how the available low-altitude range should be
applied. Notice that a change in the assumed attrition rate for any
leg or part of a leg will change the integrated attrition for the leg
ATLEG (J). This in turn will change the probability of survival to any
point I (SURV(I)) which is required to evaluate VALSORTY.

The program therefore begins by summing the total distance for the sor-
tie as specified . This distance is subtracted from the aircraft range
to give the surplus range RNGSURP available for the mission. Using the
conversion fac tor RANGED , this surplus range is used to estimate the
available low-altitude distance AVAILOW for the mission. Finally ,
AVAILOW is allocated to the various legs.

The allocation of the low altitude range AVAILOW is subject to several
restrictions . In order to realistically model actual bomber flight pro-
f iles , low altitude range is allocated so that the bomber can go from
low to h igh al titude only once after it passes the corridor origin.
A t t r i b u t e  PAYALT (bomber weapon release altitude indicator) can also
restrict the low altitude range allocation. If the value of attribute
PAYALT is HIVAL (its default value), then low altitude range is allo-
cated in a manner intended to maximize the value of the sortie VALSORTY.
Weapon releases (i.

~~~~., 
bomb drops or ASM launches) may occur at either

high or low altitude. However , if PAYALT was the value LOW, a l l weapon
releases must occur at low altitude. In this case the vailable range
is first allocated to the intertarget legs. If the bomber does not have
sufficient fuel reserve to fly over all weapon release points at low
altitud e , weapons are deleted until this criterion can be met. If there
is more low altitude range available after the intertarget allocation ,
t h e ex cess is allocated to maximize sortie value. The allocation of
this excess is performed in the same manner as in the HIVAL case. If
PAYALT has the value HIGH, all weapon releases must occur at high al-
t L t ~it le . The avai lable low altitude range , i f any , is first allocated
to bomber fligh t prior to the first target (as in the HIVAL case) to
maximize sortie value . A low to high altitude transition is then plan-
ned Just prior to the first target so that all weapons can be released
at high altitude . If the bomber has sufficient fuel reserves that it
can fly the entire distance from the last target to recovery at low al-
titude , then a h igh to low altitude transition is planned following the
last target. There is no corresponding low to high altitude transition
plann ed for this second low altitude flight because the bomber is allowed
to climb to high altitude only once after penetration. In this case , the
bomber proceeds to the recovery base at low altitude. For the remainder
of this section , the low altitude range allocation method assumes that
PAYALT has value HIVAL. For other values of PAYALT, the altitude

598

~

-~~~~~~~~~~~~ --- ~~- --- - - - •

- -- ---
~~~~~~

-—
~~~~ 

constraints are imposed over the target area and any excess range is
allocated as described below.

During this allocation of available low-altitude range, the following
alternatives are provided :

a. Allocate low-altitude range to that remaining precorridor leg
that has the highest attrition

b. Extend the low—altitude flight from the first target one more
leg toward the depenetration point (where the attrition is
assumed to end)

c. Extend the low—altitude flight a little further in front of
the first target toward the corridor origin .

Choices among these alternatives are made on the basis of which one will
produce the largest rate of increase in VALSORTY per nautical mile of
l o w - a l t i t u d e range required .

To illustrate how the priorities for this allocation work out mathemati-
ca l ly , we note that the cumulative survival probability SURV to route
point i can be represented as a product of the survival probabilities
S 1 for each leg j up to and including the jt h~ Thus we can rewrite the
equation for VALSORTY as follows :

i=n j =i
V = E it S , \T~

i=l j=l -~

where V is the value of the sortie and V1 is the value of successfully
reach ing the ith route point . (This is referred to as the value done ,
or VA LDONE, in the program.)

We also no te that S 1 e~~
1 where is the total attrition of the ~th

leg. Obviously aj Is a function of Lj , the low-altitude distance allo-
cated to the jth leg.

Differentiating V with respect to Lk , the low altitude allocated to some
speci f ic leg k , we obtain

~~~
S
k~~

O
~~

dLk

while

i=n 
~ 

i—i

k i=k k j—l

599

_ _



~

Sk -ak 

-

Thus

j=i 1 ~~k-Il S 1 ~~~ ~~~~~~~k L i=k j’.l -‘ J k

Now separating out the common factors S~ for j=i,k, and noting that

i=k
ii S. = SURV (k)
i=l

we obtain

f i ~’~n j=i 1 
~°~k= -SURV(k) it S . v

1
k L i=k j=k+l -~ -I k

The term in the square bracket is the estimated value of the remainder
of the mission , assuming that the aircraft arrives successfully at the
point k. (This is called VALON(k) in the module.) Since cu.~ is theto ta l  attrition for the kth leg , the quantity ~cLk/aLk 

is simp ly the
difference between high-altitude and low-altitude rates per nautical
mile. Moreover , since we are assuming a constant ratio RILOAT be—
tween high-altitude and low-altitude attrition rates , this quantity is
proportional to the attrition rate. Therefore, we can write :

— -SURV (k) * VAL ON(k ) + (Attrition Rate (k)) ~ CONSTANT
k

Thus the leg where additional low-altitude range will do the most good
can be sele cted by comparing the product of the first three factors in
th e above expression for aV/

~
L
k.

ibis is the technique used in determining whether the next increment of
low-altitude range is to go into the precorridor legs , the leg to the
first target , or in extending the low—altitude flight to additional legs
or fractions th reof beyond the first target.*

The attrition rate used in this decision process for legs beyond the
first target is simply ATLEG(k)/DISTLEG (k); thus the effective attri-

Actuall y the values of the SURV used in the subroutine during the allo-
cation of the low-altitude flight are all divided by the value of SUB’.’
to  the f i r s t  t a rge t .  This speeds up the operation of the routine ,
since changes in the survival probability in the precorridor legs or
on the way to the first targets, as allocations are made to these
legs , do not af fec t  the value of SURV which must be used in later legs.

600 ¶

________________ 
I

- p 3 A~~&~~~~~~~~~~~S~~~



th
tion rate also reflects any local attrition associated with the k
route point.

The assumed position-dependent attrition rate per nautical mi le is used
on the leg to target one so that low-altitude range is added to this
leg only as far ahead of the target as is justified by the assumed attri—
tion ratt~.

The attrition rate used in the precorridor legs is the constant value
spec ified in the data base.

It is a l so  worth noting that regardless of which leg k receives the final
allocation of low altitud e, this al lo cat ion will correspond to some value
for the quantity aV/~ Lk. This value , of course , is the marginal value
of additional low-altitude range. It can be converted (using the con-
version factor RANGED) to obtain a margina l value of additional range
or the marginal value of saving distance , known as VALDIST, is computed
by program POSTALOC and used to estimate the value of the distance saved
in alternative sortie definitions.

Th e above alloca tion procedure prod uces a rigorous ly optimum allocation
of the low-altitude range to the sortie so long as there is no local
attrition . However , where local attrition is present at specific tar-
gets late in the sortie , a theoretically optimum allocation might allo-
cate limited low-altitude range explicitly for each such target. If
this were permitted , it cou ld lead to sor ties which unrealis t ically go
low f or each defended targe t and f ly  high between such targets. To
avoid this difficulty , the requirement has been imposed that after pass-
ing the corridor origin a flight is allowed to go low only once.

Moreover , for s imp licity of computation during the development of the
sortie definitions , the f l igh t is required to go low bef ore the f i rs t
target , if it is going to fly low at all. Obviously, i f there is local
attrition at a target toward the end of the mission but not at the first
target , it might be better to stay high past the first target and save
the low-altitude capability to be used in the vicinity of later defended
targets. While this possibility is ignored (for computational speed)
during the development of the sortie definitions , after the sortie de-
f ini t ion is complete a fina l check is made and , if such a change would
increase the estimated value of VALSORTY, the change is incorporated in
the final version of the flight plan.

If there are no defended targe ts where the bomber is scheduled to f ly
h igh af ter using its low-altitude range , no changes in the sortie are
considered. Otherwise , QUICK tries extending the low-altitude range to
include the next defended target. When any low-altitude capability is
left prior to the first target of the sortie , the excess is allocated
as before between the leg to the first target and the precorridor legs.
If there is no such excess , the point where the aircraft first goes low
is set as  soon after the first target as possible. The resulting value
of VALSORTY is then computed . If the sortie value Is Increased over

601

_ — - 
-

- 
- - - -. —-—  

~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

—“- -~~~~~~~ -- - - - -~~~--- ~~,--- - - --- . -

that prev ious ly obtained , the revised sortie is used. if not , the prior
version is retained . This process is repeated until a version of the
sortie is tested in which the low-altitude flight is extended to the
last defended target. That version of the sortie which produced the

-~ best value of VALS ORTY is then selected . There is a possibility that
in the original version of a given sor tie , the total range may be in-
adequate to execute the sortie as defined , even if the entire mission
were carried out at high altitude . In this case, low altitude is not
assigned to any of the legs. Moreover , VALSORTY is computed so that it
receives no contribution from any route point beyond the maximum range
of the aircraft . In this case , later operations usually resul t in the
omission of some targets that cannot be reached or the elimination of
recovery , so that a revised sortie definition is developed which con-
stitutes a feasible sortie.

Depenetration Routine: Each bomber for which a recovery is planned must
exit via a depenetration corridor. These corridors , while having no
attrition associated wi th them , serve to define the geographic route to
be flown wh ile Leaving enemy territory . When a bomber leaves a depene-
rration corridor , it recovers at a base which is associated with that
corridor . The bomber chooses the depenetration corridor according to
the last target struck in the sortie. If Dl is the distance from that
target to the depenetration point , and D2 is the distance from depene-
tration point to the nearest recovery base associated with that point
(or corridor), then the depene tration corridor used is the corr idor
which minimizes

(2*Dl) + D2

Sortie Modifications: All decisions on the modifications of the sortie
d e f i n i t i o n are based on the estimated effect the changes will produce
in the value of VA LSORTY .

The Initial sortie definition may not even be feasible. It may require
too many warheads ; it may require too much range; or it may specify al l
bombs whereas the aircraft may carry ASMs. Thus, the task of program
POSTALOC is to revise the sortie definition to produce a feasible sor-

c with the highest possible expected value of VALSORTY.

In accomplishing this , the program estimates the marginal value of using
bombs in a sortie and the potential advantage of using ASMs instead ,
performing one or more of the following functions.

o Determine which targets assigned bombs should be converted to
ASMs when not all ASMs are assigned

o Determine which remaining bombs are the least value and should
be deleted if too many strikes are assigned

o Determine which route points (recovery or bomb targets) are of
nega tive value to the sortie and should be deleted .

602

_~~~~~~~~~~~~~~~~~~~r
-

In so doing , it analyzes each route point in succession down to and per-
haps including the recovery point. The processing of each route point
is handled in two parts . First , the marginal value of the route point
as a target for a bomb is evaluated. Then, the value of the same rou te
point is calculated as a potential ASM target , and the marginal value
of changing it to an ASM target is estimated . For these computations
the recovery point is not inc luded in the evaluation.

When al l ASMs have been assigned , there may still be too many strikes
for the available warheads. The next step may then be , still exclud-
ing the recovery point , to select the least valuable remaining bomb
which could be deleted . Finally , the sortie is evaluated again, this
time inc luding the recovery point to be sure that all route points in-
cluding the recovery make a positive contribution to the payoff.

The marg ina l va lue of each rout e point is also evaluated . The value of
reaching the route point , mult ipl ied by the probability of surviving to
reach it , is compared with the cost of doing so.

This cost consists of two elements:

o Change in the probability of reaching succeeding targets be-
cause of local attri t ion , if any , at this target , or because
of additional area attrition over the added distance required
to f1y to this target

o Reduction in the amount of low-altitude flight available be-
cause of the extra distance to the target , which in turn can
effect penetration probability to all targets.

In analyzing each target , the program considers an alternative flight
route which bypasses the targe t and goes direc t ly from the preceding
to the succeeding target. The effect of this route on the expected
payof f for succeeding route points can be directly evaluated . The
change in a t t r i t ion is known, so the change in the cmu]ative survival
probabi l i ty SURV to the succeeding target can be computed , and the value
VALON of the r emainder of the sortie is made available.

The change ~V in VALSORTY , due to change in available low-altitude capa-
bility, is only estimated. The estimate is based on the amount of dis-
tance saved by skipping the target DISTSV multiplied by the quantity
VA LDIST , the marginal value of distønce. However , where the saving in
distance is very large , this type of linear extrapolation with a con-
stant VA LDIST can be quite misleading and could even exceed the full
value of all targets in the sortie. Obviously, the value of the sortie
can never exceed the actual value VALMAX of all route points , and with
one target k omitted could not exceed VAUIAX-V(k). Consequently , the
value VALO of omitting a target k cannot exceed POTVALO-VAU4AX-V (k)-
VALSORTY . This quantity POTVALO is therefore used to establish a l imit-
ing val ue for the value of saving distance. The quantity VALDIST is ~ased
to give the derivative for small values of DISTSV. The actual form used

603

- --~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~ 



—__-.-,‘ ____.?_—-.__—--_-- ,-_,:- ---- ._—_(_ _ -- - --- —--—--—--~~~~~ --,-.— - - -—~~~~- -—.--_ ---_. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for estimating ~,V for distance saved is:

AV = ~‘OTVALO * [1.0 - 1.0/( 1.0 + TEMP)]

where TEMP = VALDIST * DISTSV/POTVALO .

In the second phase of the process -- to estimate the value of the tar-
get as an ASM target -- the time premium for using an ASM on the target
is added into the basic value RVAL of the target , and the survival pro-
bab ility used is that for the earliest possible launch point in range
of  the target.

Determining the value of omitting a route point requires calculation of
the distance saved. Once this information has been computed for two
successive route points , the next computations are distances that are
necessary to determine whether the two points are out of order on the
route. The following figure illustrates the method used.

This f igure  i l l u s t r a t e s  a route:

4 via leg A to 5
5 via leg B to 6
6 via leg C to 7.

Consider the possibility of reversing the order of points 5 and 6 on the
route . The present distance is A + B + C; the revised distance would be
I) + B + E , using dashed alternative legs D and E.

I f  the reversed path is shor ter , then D + B + E < A  + B + C or A + C -

D - E > 0. When we consider omitting 5, we compute DISTSV = A ÷ B - D.
When we consider omitting 6, we compute DISTSV B + C - E.

Add ing the two values of DISTSV and subtracting 2B we obtain A + C - D
- E. Therefore, if this value is positive the Iwo route point s are out
ol urder , and the flag JSEQERR is set to indicate one of the two tar-
gets for possible temporary omission. Usually the first target is
f l agged. (The presumption is that a later evaluation will result in
the replacement of such a target in its proper position in the sortie.)
However , if the first target is also a launching point for ASMs , even
temporary omission would be complicated ; thus, rather than seek an

604 
- -

- - - - - - - -~~ — - --— - - -~~~-- —-- -~~~~ -- - - - -~~ ~~~~~~~~~~~~~~~~~~~~ - 
—--——.-—=

~~—



p.- - 
~~~~~~

—
~~~~~~

- - - —_ .---— --, -

~~~~

—-—
_

-

alternative launch point for the ASMs, the second target will be flagged
instead . If both route points are also ASM launching points no flag is
set , and the current order of targets is not changed.

The problem of route points serving double duty as ASM launch poInts
also arises when the marginal value of omitting route points is being
estimated. Therefore , after the original value VALD is estimated , a
check is made to see if the point is used as an ASM launch point. If
so, the value VALO of omitting the point is decremented to reflec t
changes in the i~arginal value of the ASM, for which a new and probably
inferior launch point must be found. If such an alternative launch
point cannot be found , the entire value of the ASH Is charged to VA LO.
Except in the most extreme cases this is sufficient to preclude omis-
sion of this target.

If the program (POSTALOC) is to delete a bomb where the same route point
is used as a launch point for an ASM, it first seeks an alternative
launch point for the ASM. However , if it canno t f ind one , the ASM is
omitted also.

The desirability of using an ASM on one of the omitted targets is also
estimated . This can be done either to find a target for an unused ASM
or to evaluate the value of substituting an omitted strike point as the
targe t for an ASM already assigned.

Changes in the bomber route are not considered at this point. In this
way, the values of changes considered can be evaluated exactly.

The oper;~t ion l~ divided into two portions. First , the program scans
all targets in the mission currently assigned for ASMs, skipping any
target used as its own launch point , since its omission would change
the bomber route. The marg inal value of the others is determined by
multi ply ing the value of the strikes as ASM targets by the survival
probabil ity for aircraft to the launch point. During this phase, the
strike JDEL with the lowest marginal ASM value MINDA is determined.

In the second portion of the operation , all omitted strikes are evalu-
ated as ASM targets. The method of evaluation is exactly the same ,
excep t tha t a suitable launch point must be found. The first route
poin t wi thin range of each targe t is taken as the potent ial launch
point. As it proceeds through this part of the program , it keeps a
record of the strike JADDA with the highest marginal ASM payoff MAXDA .
and the associated launch point IAIM. Of course , strikes are disqual—
if ied for such consideration if another strike on the same target is
already in the sortie definition.

The module (POSTALOC) also estimates the value of strikes in the omit
list as potential targets for bombs. It does this by finding an addi-
tiona l target or an omitted target that is more profitable for a bomb
than the least valuable in the sortie. In turn, each target in the
omit Ii ~;I Is processed . Each potential target is trIed first in ~u

805

— —. — - - - - . - --

pusi ti on just before the first target with a higher value of Rik). ilie
distance added to the sortie is then evaluated . The target is then
tried in a position on the other side of its nearest neighbor (nearest
in value of RHO). If this position produces a lower value for the dis-
tance added , this position is accepted instead of the original position.

The marginal contribution of the bomb in the preferred position is then
computed. The method parallels the calcu lation of the marg inal val ue
of bombs in EVALB . The effect of the extra attrition on following tar-
gets is evaluated. Then the effect on low-altitude range is estimated
using (VALDIST * DISTAD). These quantities are added to get the total
benefit VALO of not flying to this new route point . The value of the
rarget , times the probability of surviving to reach it , is then compu ted
to get the net marginal value of adding the target DVALB .

The index for the target with the highest DVALB is then recorded as
JADDB , and the route point it should follow is recorded as JAF . Of
course , any strike on a target already in the sortie is excluded from
consideration to avoid duplicate strikes on the same target by the same
b omber.

—

Missile Plans

Module FOOTPRNT generates missile sortie specifications for each missile
weapon group and its assigned targets. Since MIRV missiles are a special
case of missiles, the description of the add itional processing for these
weapons is deferred to the next section. For non—MIRV missiles, m d i—
vidual targets are assigned to individual vehicles. For MIRV missiles,
an ordered set of targets is assigned to each vehicle . From these data ,
specific strikes are assigned to specific delivery vehicles within the
weapon group. The development of the missile plans is relatively straight—
forward . With the exception of the timing computations (e.g., launch time ,
performed in PLNTPLAN), the missile plans are complete as output by
FOOTPRNT.

Figure 129 illustrates the structure of a typical missile group . The
group may include several squadrons (two shown) and a squadron may in-
-l ode several sites (four per squadron shown). Each site may hav e one
or more vehicles (three shown). Vehicles are considered to occupy the
i ame site if they are so close together that they would have to be tar-
geted as a simple target. For example , the Polaris squadron of 16 mis-
siles on one submarine is considered to occupy one site , while the
Minuteman squadron of 50 missiles occupies 50 separate sites.

On the other hand , any nonalert missiles in a squadron will constitute
a separate weapon group. Since the vehicle indices within a squadron
may not start from I, the starting vehicle index ISTART for each squadron

t
606

-—-- - - -—- ---— — ~~—-~~~~ -- --~ — --- - .-—

Squadron 5

ite 1 Site 3

Vehicles Vehicles
1,5,9 3,7,11

Squadron 7
Site 2 Sj r ~e~~ 4

x
-

x
X X - X X ite l Site 3

Vehicles Vehicles X X
2,6,10 4 ,8,12 X X

Vehicles Vehicles
1,5, 9 3 ,7,11

Site 2 Site 4
x x

x x
ehicles Vehicles
2,6,10 4 ,8,12

® Vehicles in Group -

X Vehicles not in Group

NOPERSQN = Total Vehicles in Squadron.
NBASE = Number of Bases (or Squadrons) in Group.
NWPSITE = Number of Weapons per Site.
ISTART = Lowest Vehicle Index in Group for Each Squadron.
NWPNS~ = Total Vehicles in Group.

Figure 129. Exemplar Configuration of Missiles in a Group

607

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



Is  supp Lied  a~ :in i n p u t  to  the missile assignment phaso. This and the
other input parameters defining the available weapons for the program - 

—

are shown in figure 129.

The input strikes (allocated weapons) assigned to the group are ordered -

by salvo number and wi thin tha t number by decreasing values of RVAL
(the marginal utility of the weapons computed as described for bomber
weapons). For weapon groups with a MIRV pay load , the strikes are or-
der ed by decreasing value of the total value associated with each
booster  ( i . e . ,  the sum of the values of RVAL for each target assigned
to the booster). In order that each event to be output to PLANOtJT will
contain a mix of val ues for its str ikes , the strikes are not assigned
to launch events in simple serial order. The strikes are distributed
over the events to attempt equalization of strike value between events.
The method for this is to skip certain strikes when constructing an
event. The algorithm selects a strike to start an event , skips a num-
ber of high value strikes , selects another for inclusion in the event ,
and so on. Thus, the first event may be composed of strike numbers 1,
11 , 21 , 31 , . . . ,  in the input list , and the second event may have strikes
2, 12 , 22 The number of strikes to be skipped is computed as a
function of the number of squadrons in the group.

Bef ore assigning the str ikes to each veh icle , the number of vehicles in
the group and the number of vehicle assignments are computed . if the
number of vehicle assignments is less than the number of veh ic les , the
number of vehicles for which a plan will be processed is decreased un-
til it matches the number of assignments. If the number of vehicle
assignments exceeds the number of vehicles , QUICK determines if the
vehicles are carrying a MIRV payload. If so , then modu le FOOTPRNT has
erred in generating the footprint assignments. An error message is
printed to this effect and processing proceeds. The result will be
the omi ssion of some target sets from the final plan. If the group
does not have a MIRV payload , the least valuable assigned targets are
removed until the number of targets equals the number of vehicles.
However , targets assigned through the fixed assignment capability of
module ALOC are not omitted , unless there are more fixed assignments
for this group than there are vehicles. In that case (an input e r r o r ) ,

fixed targets are omitted in order of increasing value (RVAL) until the
iiumber of targets matches the number of vehicles. In addition , an error
message is pr in ted  to this e f f e c t .

MIRV Missile Plans

Technological developments in guidance have made possible the introduc-
t ion of multiple missile warheads on a single missile which can be di-
rected at geographically separate targets. Although the original QUICK
Ceneral War Gaming System was not designed to accommodate multip le in-
dependently targetable reentry vehicles (MIRVs), the introduction of
MIRVa into operational weapons made it very deø irable to incorporate
into the QUICK system the changes required to enable the consideration
vi these weapons.

608

_ _  
- - - -

~~~~~~~-~~~~~~~~~~~~~~ -~~~~—~~~~~~— 


A major ramification g-f the addition of the MIRV capability to the sys-
tem was the necessity to consider the effect upon the target assignments
of “footprint ” constraints: that is , constraints on the geographic con-
figuration of targets assigned to a single missile equipped with MIRVs.
In order to minimize the amount of system alteration required to intro-
duce the MIRV capability, it was decided not to alter the basic weapon
allocation process , but rather to introduce these footprint constraints
into the plan generation process sub8equent to the initial assignments
of targets to weapon groups as effected by module ALOC. Hence , the de-
velopment of the general strike plan now entails , in order of occurrence ,
the in it ialal locat ion of targets to weapon groups in module ALOC , the re-
finement of the target point locations for complex area targets and the
reordering of the assignments according to weapon group in module ALOCOUT,
and the construction of specific booster loads (i.e., the weapon-to-target
point assignments to be associated with a single MIRV-capable missile)
for each weapon group with a MIRV capability in FOOTPRNT. Once module
FOOTPRNT has determined the assignment of targets to booster , this in-
formation is passed to module PLANOIJT. In that program , the booster
load assignments are distributed to the ind ividual boosters in each
squadron according to the according to the method discussed previously
in the section Basic Sortie Generation (Missile Plans). In the MIRV
case , h owever , the value of the sortie is defined to be the sum of all
the marginal utility values (RVAL) for the targets assigned to the
booster . Program FOOTPRNT orders the booster load assignment inforina-
tion in order of decreasing values of sortie before passing the infor-
mation to module PLANOUT.

Throughout this discussion , the term “ target point” wi l l refer to a “de-
sired group zero ” (DGZ) selected either in module ALOC for simple tar-
gets, or in module ALOCOUT for complex and area targets , as the aim
point for a single reentry vehicle (RV). Although , depending upon the
value of a given target , two or more RVs may be allocated to target
points with the same geographic coordinates , these target points will
be considered as being distinc t in all the succeeding processing of the
target assignments.

QUICK’s NIRV Platform Representation: QUICK does not simulate trajectory
paths ; it solves mathematical models. Therefore, for footprinting clar-
ification the MIRV mathematical model must be defined. Accordingly ,
QUICK views each MIRV platform as an initial energy source and , associ-
ated with that source , a rate of energy consumption. The energy source
may be given in terms of pounds (lbs), as a fuel supply ; velocity , as a
m (’mentum measure , or any other measure. By selecting targets as being
lead targets (that is, the initial target assignment for a given foot-
print) QUICK constructs feasible footprints by collec~ing a subset of

• targets such that there is sufficient energy on the MIRV platform to
traverse the targets. A feasible footprint , then is any collection of
targets that may be hit within the energy constraints; no other limita-
tions apply within the QUICK model.

609

The model requires four sets of equations which define footprint feasi-
bility. (For purposes of discussion, assume fuel as being the energy
source.) These sets are equations for:

a. Determining fuel load available for footprinting

b. Determining maximum booster range and range extension

c. Determining fuel consumption per mile of equivalent downrange
distance (explained below)

d. Determining factors for converting crossrange and uprange dis-
tances to equivalent downrange distances.

Explanations of each set of equations follows.

o Fuel Load : This represents the initial source level. It may ,
and usually Is , simply set to a constraint ; say 1000 lbs. Or ,
as in some cases , it equals a second order power series equa-
tion dependent en the range to the first target within the
footprint being developed .

o Maximum Booster Range: This equation limits the distance from
the launch base to the first target within a potential foot-
print . If the first target is beyond the range of the booster
an attempt will be made to use ~‘ome of the “maneuvering fuel

”
to reach it. If range extension equations exist they will be
used , otherwise the fuel consumption equations for a fully
loaded platform will be used.

o Fuel Consumptiona : This set of equations relates the rate of
fuel usage on an (equivalent) downrange distance basis. Down-
range distances are measured along an axis which is parallel
to the shorter of the two great circle routes from the launch
point to the first target point to be hit; crossrange distances
are measured along on axis which is perpendicular to this route.
The uprange direction is defined to be parallel but oppositely
directed to the downrange direction . All MIRV systems , to date ,
give fuel expenditures based on the number of reentry vehicles
currently onboard. In terms of footprint construction , this
implies one set of equations for reentry vehicle deployment at
the first target; another set of equations for the second re-
entry vehicle deployment at the second target and so on.

o Crossrange and Uprange Factors: The fuel consumption rates ,
given above, assume expenditures over a downrange distance.
To compensate for target spacing other than downrange , use is
made of the equivalent downrange distance (EDD) of a target.
The major premise of this method is that all downrange , cross-
range , and uprange distances can be converted into an equivalent
downrange d istance , EDD. The EDD is equal to the downrange

610

~~~~~

•—

~~

--,.--
~~~ 

—
~

•
~~

—
~

—•
~
-.-. -- -

- - -

~

—-

~
- - -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~
_: 

~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~— --- -r~~~~~~~

distance that could be traversed by the payload if the same
amount of energy were expended as would be required to tra-
verse the distance under consideration. In practice, the EDD
from point i to point j, may be expressed by the following
rela tionship:

-) 

DOWN
1~
2 + 
(

~~~
)2 (cR~~)

2
if .j is downrange of i

(EDD
i~
Y =

(
~

) 2 UR
1J
2
+ (

~
)
2

(CR
)

2 if j is uprange of

where :

= downrange-crossrange ratio as user supplied

= downrange-uprange ratio as user supplied

DOWN1. = downrange distance from i to j

CR 1. = crossrange distance from i to j

UR
1~

uprang e distance from i to j

Prel iminary Calcu lations: FOOTPRNT opera tes at a weapon group level.
That is, individual footprints are formulated using weapon strikes from
a weapon group. No one footprint may contain strikes from differing
weapon groups. To minimize the chance that the elimination from booster
assignments of targets which will not fit into a feasible footprint will
cause an underutilization of the available weapon stockpile, additional
RVs are created for MIRV weapon groups in module PREPALOC for assignment
in module ALOC. However, after the processing in module FOOT PR NT , the
expected number of RVs actually utilized will not exceed the number that
are available.

Accordingly, individual strikes associated with a weapon group are read
and stored and , then, sorted according to azimuth (relative to the weap-
on launch base). This sort aids in strike selection since all obser-
vable MIRV platforms to date have a severe penalty of traversing cross-
range relative to downrange or uprange targets with similar azimuths
have a greater potential of forming feasible footprints.

Strike Selection: From the group weapon strike list , a subset is col-
• lected that potentially may form a viable footprint.

611

~

- —-— -
-— ~~—


~~~~~~~~~~~~~~~~~~~~~~~~~~ ~---~~ •

The collection process queries the sorted strike list and nominates
strikes that are unassigned to boosters as being the first tai~~et
(tailed l ead) to be hit within the footprint being formed . Given the
lead target , testing continues within the sorted strike list but now
additiona l strikes are added only if they fall within a geographic area
relative to the lead target. The geographic area is the contour of a
maximum footprint as defined by the MIRV platform equations. If strikes
f a l l  with in this area there is a high probabili ty tha t the collec tion
will form a feasible footprint. Neighboring strikes are collected un-
til a sufficient number are collected . This normally equals the onboard
loading factor plus 50 percent (an arbitrary value) of that number . This
collection is now tested for footprint feasibility .

Booster Assignment: The subset list of collected strikes are now inter-
rogated in order to find an acceptable “path” if it exists , which when
traversed will hit the proper number of targets within the fuel con-
straints of the MIRV platform ; hence forming a footprint.

A dynamic programming algor ithm (pl us branch and bound solutions , appen-
dix B) determines paths. This solution is a variation of the classical
t ravel ing salesman problem which requires a salesman to visit  N cities
once and only once in a path such that he visits the cities with minimal
total distances traveled. For the footprint problem cities become tar-
get assignments and distance becomes the fuel costs of going from assign-
ment I to J.

The solution consists of working the problem backward . Starting at the
end condition (one RV onboard) the minimal path of arriving there is
found by querying the costs of all potential second stage targets. Once
found , the second stage (two TVs onboard) is processed to find the op-
tima l I,J path of arriving there with three RVs onboard . This method
continues until each I,J minimal combination is obtained for all onboard
stages. The global optimal is a summation of local optinials of going
from one stage to the next.

Upon processing all stages, a feas ible pa th is defined if there is
sufficient fuel and no target is contained within the path more than
once . If a feasiblo path is obtained , strikes are assigned to a booster.
For the case of repeating assignments , branch and bound algori thms are
emp loyed (see appendix B).

Other strike subsets are now formed and processing continues.

A.2 Detailed Sortie Specifications

Modu le PLANOIJT processes the bomber and missile plans prepared by
modules FOOTPRNT and POSTALOC and writes them with tanker plans in a
format required by processors external to QUICK.

Table 12 indicates the type of sortie information required by PLANOUT
for each s o r t i e .  Besides sortie identification , launch base , and

- 

612

_____ ________________________ 

4 -

- - 
•~~~~ —— - -  -- - -- - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -



-~~~~~~~~~~~~~ —~~~~-~ -•-~~--—-~~~~~~~~ • ~~~~~~~~~~ -•- - - -~~~~~~~~~ -• -

Table 12 • List of Information Required by PLANOUT

CATEG OR Y

Sortie Identification Group index
Corridor index
Sortie index

Base Information Base index
Base location (lat., long)
Reg ional index
Payload index
Weapon type

Vehicle Information Vehicle index
Vehicle speed (at high and low alti-

tude)
Vehicle range (with and without re-

fueling)

Sortie Information Refuel index
Depenetration corridor
Alert status
Delay before takeoff
Number of targets
Target list
Low-altitude range available

613



~
- -

~ 
_ _

vehic le  information , it describes the target area part of the sort ie  by
l i s t ing  the target events. I t  l i s ts  the targets to be attacked , their
location , and index numbers. It also lists ASM targets , decoy launches ,
and whether the bomber recovers or aborts the mission.

The major functions performed by PLANOUT in processing the input sortie
da ta and crea ting the de tailed sor tie specifications include : assigning
ref uel areas to bombers and alloca ting tankers to service them; calcu-
lating ASM launch points, change al titude , and launch decoy even ts shou ld
occur ; coordinating launch times according to user parameters ; and cal-
culating distances and times between all events of each plan. The tech-
niques associated with each of these functions are discussed below.

Bomber Plans

Figure 130 shows a typical flight route for a long-range bomber sortie
from launch to recovery . Af ter launching from its base , the bomber
flies first to a refue l area if refueling is called for , then to a corri-
dor entry point. It may then fly one or more prespecified dog legs
(called corridor legs) which define a penetration route before reaching
the point labelled corridor origin. From the origin , it flies over a
target area and its assigned targets in their proper order. Finally,
it enters the depenetration corridor , which may also consist of one or
more doglegs , before go ing on to the recovery base. Depending on the
bomber ’s range , a por tion of the f l igh t rou te may be flown at low alti-
tude.

Module PLANOUT generates a detailed sortie plan for each bomber which
defines the flight route, altitude profile , and offensive operations .
The major PLANOUT functions and techniques involved in preparing the
detailed bomber sortie data are discussed in the following paragraphs.

Distance Calculations: Each event of the bomber sortie is assigned a
place of occurrence in latitute and longitude. Later , the great circle
distances between all events are computed in nautical miles. The stan-
(lard law of cosines for a spherical triangle is app lied to compute the
oreat circle distance. The radius of the earth is assumed to be
l4~eO .06 8 nau t ica l  miles .

Bomber Timing: Using the calculated distances between events together
with bomber (high or low altitude) speed or ASM speed , the time inter-
vals between successive bomber events are computed . For the purposes of
QUICK, each event of a plan is assumed to be carried out instantaneously
at a specified time ; i.e., a bomber is assumed to be launched in no time ,
to refuel without delay , and to change altitudes instantly.

614

L ~~~~~~~~~ 1~J!1 
_ _ _ _ _ _ _ _ _ _ _  - — _ _ _ _ _ _ _ _ _ _ _



— ~—.--- —

~~ BOMBER BASE Direct ion of Flig ht

‘~~~~~~

‘ 
—.-

‘ 
S.,.

\
0 REFUEL POINT
0

\ ~ CORR I DOR Eh~~Y (First user~~irected route point)

\ ‘o ~ PENETRATION R0.JTE LEGS (Called precorridor legs,
o ~, .( i.e., optional route

• ‘t legs which control
~~ . / bomber routing pr ior

• / to the corridor ori gin)
‘I
~ CORRIDOR ORIGIN (From this point, bombers say
/~~ 

fly direct to targets)
/

/
/ AXIS ORIENTATION PO I NT
I

I
o FIRST TARCET

0 LAST TARGET
S.-

S.,.

5
”

,,,,.
DEPENETRATION CORR I DOR POINT

DEPENETRATION ROUTE LEGS

—— Rout, if refueling is specified
and precorridor legs are def ined
in data base.

~~RECOVERY BASE
—00— If refueling is not specified and

precorridor legs are not defined,
the bomber is routed in a straig ht
line fros its base to the corridor
origin. In this case the corridor
origin is also the corridor entry
point.

Figure 130. Typical Bomber Flight Route

615

k- - _______

— —.•— ——---• ——



— - —7--%-~~~~~~~~~r -~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~ ••~_~•• , 

Actua l times are determined in the first-str ike case by coordlnaeiitg the
entire sortie with the user-input parameter CORBOMB which s p ec i f i e s  the
distance from the corridor entry point at which the bomber is to be at
time zero. In the second-strike case , the sortie begins a~. the earliest
possible moment , considering any user—specif ied launch delays.  Tactical  - -

a i r c r a f t  launch at t ime = 0.

If the bomber weapon has a launch interval time (attribute LCHINT)
greater than zero, then successive vehicle launches fr~m the same base
are delayed.  A t t r i b u t e  SIMLUN defines the number of simultaneous ve-
hicle launches from each base. Therefore, the first SIMLUN launches
from each base are launched to meet the timing criteria specified in
the preceding paragraph. The next SIMLUN vehicles on each ba8e are
launched after an additional delay of length LCHINT. Each set of
SIMLUN vehicles is launched after an additional delay of length LCHINT
unt i l  a l l  vehicles are launched .

Employment of Decoys: As each bomber plan is processed b y the modu le ,
any f l ight  si tuation which could use a decoy launch (see table 13) is
flagged , and its associated launch priority is stored . The possible
decoy launch events then are arranged by PLANOUT according to priority
and are allocated availab le decoys in the order of this priority. If
there are sufficient decoys available to cover all possible launches ,
double coverage is begun , again according to launch priority. Cover-
age continues until all decoys have been allocated or until six decoys
have been launched at each possible site.

If the distance to be covered by a decoy launch event is greater  than
the range of one decoy , sufficient decoys are allocated to cover the
ent i re  d is tance.  It is assumed that another decoy is launched as soon
as the previous decoy terminates. However , only the first launch event
and the last  termination event are pos ted , since intermediate launch-
termina tion even ts essentially cancel.

Decoys launched at low altitude are assumed to terminate at their asso-
ciated target. For high—altitude launches , either one or two termina-
tion events are required in addition to the launch event.

Changes in Bomber Altitude: The amount of low-altitude range available
to the bomber in executing the planned mission is allocated in program
POSTALOC . The actual latitudes and longitudes of the altitude change
events (GOHICH and GOLOW), and the associated time of the event , are
calculated in PLANOUT.

The bomber ’s low-altitude range capability is specified to PLNTPLAN in
three separate amounts: the amount during the precorridor legs (C1),
the amount iumediately prior to the first target (G2), and fi na l l y  the
amount following the first* target (G3). For realism , values of G~ , G2 ,
G3 equivalent to less than 15 minutes are not applied .

* If the value of a t t r i bu te  PAYALT is HIGH , this low altitude range con-
sists of the distance between the last target and recovery.

616

— — - - — - - - ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~  

- 

- -



- - - -
~~~

-- - - -
~~~

—-
~~~~

Table 13. Launch Priority

LAUNCH PR IOR ITY CIRCUMSTANCES OF LAUNCH

*
1 RL miles before first low-altitude gravity bomb

attack on a SAM-defended target

2 Inm~ediate1y before changing from high to low al-
titude

3 Ininediately before penetrating defended airspace
if f ly ing at high altitude

**4 RH miles before first high-altitude gravity
bomb attack on a SAM-defended target

5 Coverage when f ly ing at high al t i tude over de-
fended airspace before priori ty 4 launch

6 RL miles before subsequent low-altitude gravity
bomb attacks on SAN—defended targets

**-*
7-8 Coverage when flying at high altitude over de-

fended airspace after priority 4 launch

* R
L

= range of decoy at low altitude

R
H

= range of decoy at high altitude

***Priority 8 is used if the coverage is to begin at the point where the
prior ity 4 decoy terminates. Priority 7 is used if the bomber has
changed a l t i tude between the priority 4 and the priority 7 launch.

617

— - ~A~- -~~

• •-•----—------•- ~~—•--• ---•- -•--••-------•-•-—~~~~~~ — - - - —•-,••-•-•--— .•—•----- • — -— -~~~--•••.•.-,----

C1 is measured backward from the corridor origin toward the corridor
entry points. Since corridor attrition may or may not be associated
with the precorridor legs, the low-altitude range capability is applied
against only those precorridor legs where the bomber would experience
at t r i t ion. Any C1 remaining is added to C2.

The initial go-low point after the precorridor legs is determined from
the value of C 2 :

a. If C2 > 0, the go-low event will occur G2 miles before the
first target. Here, the first target is defined to mean the
first bomb target on the first ASM launch point after the
corridor origin.

b. For plans in which G2 = 0, the bomber will go-low at the first
target, provided that the range to be flown at low altitude
after the first target (C3) > 0. If G3 also equals 0, it will
fly the entire mission after the corridor origin at high alti-
tude.

c. If G3 < 0 , the bomber wil l f ly -C2 miles beyond the first tar-
get before going low; the total low-altitude range in this
case is G3 — (-C2) + C 1 miles.

*G3 is always measured out beginning at the f i r s t target , and any G3 re-
maining after the target area is applied during depenetration.

The location of the change-altitude points are initially de term ined by
apply ing C1, C2, and G3 as outlined above. Once the initial processing
is completed , the GOHIGH and GOLOW locations are checked to ensure that
the bomber does not change altitude in an unrealistic manner. If neces-
sary , as exp lained below , the location of these points is modified.

For the purposes of the QUICK system , each event of a plan is assumed
to be carried out instantaneously at the indicated time ; i.e., a bomber
is ascumed to be launched in zero time , to refuel wi th no delay , and to
change altitude instantaneously. Thus , if the bomber is asked to go
high or go low in the immediate neighborhood of a target or ASM launch
point , the order of these events does not matter. However, the de tailed
plan appears more realistic if the bomber climbs immediately after ,
rather than immediately bef ore , a targe t and goes to a low al titude
immediately before , rather than immediately after , a target.

Module PLANOUT adjusts the plan to make certain that this is the case.
The adjustment performed is seen by referring to figure 131 where the
h i g h - a l t i t u d e adjustment is shown. If a bomber is found to climb within
THB minutes before a target (in which case it might be thought of as
f l y ing a path shown by the solid line in the figure), then the altitude

*— However , if the value of attribute PAYALT is HIGH, G3 is measured out
beginning at the last target.

618

- --------

~

-- - - -- -- - --•—---• - --- - - -- —-- ---•- -•• --- -•- -•.-- - --- - - — ~~~~~~~~~~~~~~~

-•-•- -•-- ---— •~~~~~~~~~~~ -——-—-~~— ~~~ --—-—~~~~~~~~~~
• - - - -. - - • - - - -

~~~

Low = 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Alt~~~~ e

Al titude
TARGET

h— THB >~~~THA mj

Altitude
TARGET .

TLB
~~~~~ 

TLA —s’.I

Figure 131. High—Altitude and Low—Altitude Adjustment

619



- - - - - 

I,nu~e event is moved so that It ott ttF~~ TILA minutes iii icr the t f l L ’~~ t~ t ~
which case it might be thought of as flying the pa th shown by a dotted
line). Similarly, the low—altitude adjustment is indicated in figure 131.
Here , it the bomber I. sch.dul.d to ~o low within TLA minutia after
the target , this event is moved so that it goes low TLB minutes prior to
the target. The parameters shown in the figure may be preset to any
value. The current setting of these parameters in module PLANOUT follow.

PARAME TER DESCRIFI’ION

THB=15 
The t ime before (THB) and after (THA) a target or

THA= 2 ASH launch point during which the bomber may not
change from low to high altitude

TLB=1O 
The time before (TLB) and after (TLA) a target or

TLA= 3 
ASM launch point during which the bomber may not
change from high to low altitude

In making these adjustments , the amount of low—altitude flight is never
decreased , but it may be increased as illustrated in figure 132. It
shows two targets labeled TI and T2 with associated values of the param-
eters THB and THA. A section of bomber path is shown by dashed lines.
In this case , a COHIGH event found , say , at point p would be moved first
to point q and finally to point r. The time of low-altitude flight
would be increased in this case at almost twice the sum of THB + THA .
For this to occur , the targets wou ld have to be wi thin THB + THA minutes
of flying time.

ASH Launch: Whenever an ASM target is processed (as indicated in the
basic plan), PLANOUT computes the aim or launch point at which the ASM
assigned to the target is to be fired . The situation is illustrated in
figure 133.

The bomber is f ly ing from a spec if ied point (U1,V1) to point (U2,V2)
and is to fire an ASM at a target (UAT,VAT) enroute, at maximum range

~ if possible. The aim point to be determined is (RLAT,RLONG). In
determining the point (RLAT,RLONG ) , two cases occur:

a. For simpler case exists when the range of the ASM is sufficient
for it to be launched while the bomber is proceeding in a
straight-line path from point (U1,V1) to (U2,V2). This would
be the case if the range of the ASM were R’ (figure 133). The
ASH target is then said to be “in range.” Since it could be
launched at maximum range from either point p or p ’ shown in
the figure , the point p would be chosen as the desired launch
point. Since point p is a point enroute, it is not considered
to be a flypoint.

620 

- -   - - -
~~~~

- -
~~~~~~~~~~ 

- - - - - -
~~~~

- - -
~~~



- - - - —-~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~-—~~~-

H
ThB’

I 
Figure 132 . Increase in Low—Altitude Flight

621 

- - - ~~-- -- --~~~~-
_

_ 
—~~- 

_i
~~ JT _~_~~~

-
~~~~~

- - ~~~~~~~ ~~~~~~~~~~~~~~~~~~

-- .~_~~~~~~~~ __ _ _ & ~~~~~~~~~

(RLAT,RLONG) . Aim point
(U1,V1) = Start of bomber path

(U2,V2) • End of bomber path

(u1.v1)
(UATJVAT) • Target
R - Maximum ASM range

R

p

p” (REAl RLONG)
(UAT,VAT)

N

~
U2,V2

LATITUDE

Figure 133. Illustration of ASM Launch Point Calculation
. -

622

—- _

~~~~~~~~~~~~~~~~~~~~~~~~ - 
- -

~~~~

-

~~
- —-—

~
-- -

-~~~~——- —-— ~~~~~~~~~~~~~~ — ~ __t~ — ---—- — —-— —

___________ - - - - -
‘ -—- --r r~~~

S - -~~~~~~~~~~

b. The more interesting case occurs when the range of the ASH is
equal to R in figure 133. Here, the bomber must deviate from
its course and fly to the point p” to fire the ASM. The ASM
target is noted as “out of range ,” and the point p” is now a
flypoint.

Subsequen tly , during allocation of low-altitude range, any ASH launch
scheduled to occur at the corridor origin will be rescheduled to occur
5 minutes later if the aircraft is also to change to a low altitude
at the origin .

Bomber Refueling

The QUICK design provides for modeling two kinds of bomber refueling
capabil ities : “buddy” and area. In buddy refueling , two aircraf t take
off together and fly to the refuel point ; one then provides fuel to the
second and recovers. Fuel can be provided by either a tanker or another
bomber of the same squadron as the aircraft being refueled.

There are two types of area refueling: directed and automatic refueling.
In the d irec ted mode , the user establishes , in the data base , a specific
ref ueling area (up to 20 per side may be def ined in the da ta base) and
manually assigns the appropriate bombers and tankers to this area. In
the automatic mode , the Plan Generator (module PLANOUT) develops the
refueling plan on the basis of information provided in the data base.
The data base reflects the bomber squadrons which require refueling and
tankers which are available. Module PLANOUT then selects the refueling
area (up to 30 additional refueling areas may be added) and assigns the
bombers and tankers accordingly . To reflect the refueling requirements
associated with a specific plan , the user defines the attribute IREFUEL
for all bomber and tanker units defined in the data base. The codes
which may be as signed as the value of IRE FUE L are as follows :

IREFUE L SETFING ~~FINITI0N

-5 Automatic refueling -- two refuelings re-
quired

-4 Automatic refueling -- one refueling re-
quired

-3 This code is used to flag air-breathing mis-
siles which are to be treated as aircraft
when calculating attrition rates -- no ye-
fueling involved

-2 Buddy refueling -- a bomber from the same
squadron is used in a tanker role

623

_ _ _ _ _ _ _ _ _ _ _ _ _ _- - - - - — —--- ---- — - — S --~ —S- ~~~~~~~~~~~~~~~~~~ -

-

IREFLJE L SETTING DEFINITION

-l Buddy refueling in which support ~s providedby a tanker. Tanker units associated with
buddy refueling need not be defined in the
data base

0 No refueling required

Dir~~ ted area ref ueling -- ref uel are a and
bomber/tanker assignments are directed by
user

For the weapon allocation process to reflect accurately the appropriate
range of all available aircraft , it is necessary to decide pr ior to the
allocation which aircraft have their refueled range and which do not.
If the user has specifically assigned the refue l area and/or budd y re-
fuel i~’g capabil ities , the program assumes that the aircraft can be re—
fuele& .‘~td so indicates to the weapon allocation portion of the program .
If the u- -er selects the automatic refueling capability , there may not be
enough tankers , and therefore a decision must be made in module PLANSET
as to which bombers are to be refueled and which are not. If a count of
the bombers requiring automatic refueling and the tankers available to
perform this refueling indica tes a def iciency of tankers , the aircraft
are given the refueled range on the basis of a set of priorities built
into the program. Alert aircraft are always given priority over non-
alert; aircraft with the least unrefueled range are given priority over
those with a greater range. Thus, when the weapons are allocated , the
range capab ili ty has been completely de termined , and the sorties gener-
ated by module POSTALOC assume either the refueled or unrefueled range
generated by module PLANSET. Where bombers are used as tankers in buddy
refueling (i.e., a bomber unit is assigned the refuel index IREFUEL’~—2) ,
the number of bombers available for the strike is cut in half.

Selection of Refueling Areas: For the directed area mode of refueling ,
the user assigns refuel areas for both bombers and tankers , and the ye-
l’icles are scheduled accordingly . Where buddy refueling is to occur ,
t ankers ,lre ignored by the system. Bombers are scheduled to refuel at
the “buddy point ,” which is at maximum range (as defined below) or at
the corridor entry , whichever is earlier. The maximum range is deter-
m i n e d by:

~~. Let KEFDIF = the bomber ’s refueled range minus range.
Let D1S • the distance (in nautical miles) from base to

corridor entry.

- ~~ ‘ 1”) 4 P F t) I F , let FACTOR — the greater of
DIS-5

or zero. . -

‘~~VDIF . let FACTOR
REFDIF

424

_ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I

c. Nov using FACTOR, the desired point is found by an interpola-
tion along the great circle route between launch base and pene-
trated corridor entry point if the longitudinal difference be-
tween base and entry point is greater than 2.8 degrees. Other-
wise , the desired point is determined , us ing a stra igh t line or
Mercator interpolation.

For the third case , in which a bomber is to be automatically assigned a
ref ue l ar ea by PLANOTJT , the budd y refuel poin t X is f irs t computed as
for budd y refuel ing. The list of tanker bases is then scanned to see
whether the point X is within range of any of them. If not , the closest
tanker base is chosen, and ~ new budd y poin t is calcula ted by interpola-
tion. The new point will fall between the tanker base and the original
budd y point and will be within range of the tanker base. Next , the re-
fuel area nearest the buddy point (if one exists within a prede termined
rad ius) is selected . Let REFDIF be the difference between refueled
range (see figure 134). If there already exists refuel areas which are
within REFDIF of the base and within the specified distance D of the
buddy po in t X , the area nearest X is assigned as the bomber ’s refuel
area. Otherwise , the point X is assigned and added to the list of re-
fuel areas. Ava ilable tankers wi ll la ter be assigned and scheduled by
PLANOUT in such a way as to service all automatically assigned bombers.

Recovery: The List of targets for a bomber terminates in either of two
ways:

a. With a DEPE N event , indicating norma l recovery to the most dis-
tant of the four recovery bases associated with its depenetra-
tion point , that the bomber can reach. The depenetration corri-
dor description is obtained from the system ’s input data , and
the bomber ’s dogleg events , if any , are posted in the proper
order. Any remaining low-altitude range (G3) is app lied at
this t ime .

b. W ith a LAND event , which indicates the aircraft does not have
suffient range to recover. In this case a GOHIGH event is
posted if currently at low altitude and an ABORT event defined
when the bomber ’s range (fuel) is exhausted .

Missile Plans

The Input missile plans prepared by FOOTPRNT are complete with the ex-
ception of the launch and flight times associated with the mission.
These calculations are performed in module PLANOUT , and the appropriate
da ta ar e added to the basic missi le plan.

625

-~~~~~~ --~~~~-
.-

~~~~~---~~~~~—--- — - -~~~~~-



-~~~~~ -~~-~ - — - -~~~ - -~~~ - -~~~~ - - -  ~ -~~ --.-- 
~ - S - ~~~~~~~~~~~~

- - - U - - - -

-

Corr idor
Entry

BUddy Refu.i P01 flt X

‘~~~~~~~~ FDZp ‘t’
~~~~~~~~~’c(

Base
~~~~~~~~ J N Existing Refuel

Area Assigned

I 

Figure 134. Assigning a Refuel Area (Automatic) 

L 
-

626

_ _ _ _  - ~~~~~~~~~~~~~~~~~ -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- 
_________ ~~~~~~ ~~~~~~~~~~~~~~ ,-a~ ~~~~~~~~~~~~~~~~~~~ - - - -



- —----

Missile flight times and launch times are calculated from user inputs.
The main timing parameters used are the minimum flight time (attribute
TOFMIN) and the coordination time for missiles (CORMSL).

Attribute TOFMIN, the minimum flight time for a missile type , may be
equa l to or greater than zero. All flight times less than TOFMIN will
be raised to TOFMIN before the launch and impact times are posted to
the missile plan.

*
The user may specify a CORMS L for each missile type. This parameter
will control the launch timing for initial strikes (INITST 1). There
are two kinds of CORNSL: a “FLIGHT” CORMS L and a “LINE” CORMSL.

A “FLIGHT ” CORMS L is the fraction of the missile ’s flight which is corn-
p leted at time 0.0 exclusive of launch delay. Clearly , such a CORMSL
must lie between 0 and 1. If it is 0, the missile is launched at time
= 0 plus a launch delay . If it is 1.0, the missile impac ts at time = 0
p lus a launch delay .

The “LINE” CORMSL requir es another user input. The user first specifies
a sequence of straight-line segments (not necessarily connected). The
“LINE” CORMSL is then the time at which the missile f i r s t crosses any
line . I f  the flight path does not cross any line, then the missile will
impact at time = 0 plus a launch delay . Because of the great length of
missile paths , great circle routes are used for the lines and the flight
paths , rather than a Mercator projection of coordinates. The timing
calculations which involve “LINE” CORNSLs are described in section 4.

The launch delay specified in the preceding paragraphs is not the alert
or nonalert delays specified in the data base. The launch delay is
computed using the launch interva l t ime (attribute LCHINT) and the salvo
number selected in module ALOC . If the weapon has a zero value for
LCHINT, then the launch delay is zero. If LCHINT is greater than zero,
then the l aunch delay is equal to the produce of LCHINT and the quantity
salvo number minus one. In other words , the second salvo follows the
first after a delay of length LCHINT , the third salvo follows the second
aft tr a delay of LCHINT , etc.

I’ d ie  missile is a fixed weapon with a specific t ime of arrival spec—
if ied from module ALOC, this time i. used to compute the launch time,
regardless of any CORMSL or launch delay. The CORMS L parameter is also
ignored for second-strike plans , bu t the play delay and launch delay are
used.

The launch delay is computed as described in the preceding paragraphs.
The plan delay is the alert or nonalert delay specified in the data base
for the missile group. The launch time in the second-strike case is
equal to the sum of the plan delay and the launch delay .

* In module ALOC, a single value for the parameter CORMSL is applied to
n I ml u~~j Ic typos

627

-- — 



In the case of missiles with a MIRV capability, if there are several
targets assigned to the missile and more than one has a “fixed time”
assigned , only the first fixed—time assignment encountered will be con-
sidered. Thus, if a previous fixed-time assignment has determined the
launch time f or the missile , no further calculations are done to compute
the launch time for later reentry vehicles on the missile . If there are
no fixed assignments (with timing) on a missile with a MIRV pay load , the
launch time is computed by considering only the data for the target
assigned to the first reentry vehicle on the booster.

Tanker Plans

In addition to defining the basic missile and bomber plans , PLANOUT
generates the tanker plans for tankers used in an area refueling mode.
The input data for tankers are obtained from the data base and include :

o Tanker base latitute and longitude

o An index specifying either the refuel area to which it is to be
directed or its availability for automatic allocation by
PLAN0ur

o Number of tankers per squadron

o Number of tankers on alert per squadron

o Tanker speed (referred to below as Vt)

o Alert delay

o Nonaler t delay

o Total time on station (TTOS)

o Tanker type

o Tanker range.

Af ter all bomber plans have been formulated , a plan for each tanker is

~enerated consisting of the seven events shown below :

EVENT TYPE TIME BETWEEN EVENTS PLACE

Launch Delay Tanker base

Enter Refuel Area DIST/Vt Ref uel are a
Leave Refue l Area ITOS Refuel area

Recover1 DIi/Vt Nearest recovery base

Rec over 2 D12/V t 2nd neares t recovery bas e

Recover3 D13/V3 3rd nearest recovery base

Recover4 D14/V4 4th nearest recovery base

628 

—--------~~~ — - - - - ~~~~~~~~ - - 
~~~ - - ~~~.~~~- - -


- - - - ~~ *— -~~~~~mfl —--- — - -r-- -- - ~~~~~~

where DIST = Dis tance from tanker base to ref uel area
DI
~

= Distance from refuel area to recovery bases

First , PLANOUT assigns a refuel area to each tanker that is not user-
• directed to a specific area. This is done in such a way as to minimize

the total tanker miles flown while servicing all bomber requests. The
time of arrival at the refuel area differs depending on whether the
pl an is for a first or second strike .

In the second-strike case , all tankers are sent to their assigned refuel
areas at the earliest possible moment , considering delays before launch
due to alert or nonalert status as well as the travel time required be-
tween base and refuel area.

In the first-strike case , each tanker is scheduled to enter its ass igned
ref uel area .1 hour prior to the arrival of the bomber that it is to
service . The tanker launch time, then , is computed by:

(DIST
Launch t ime = (time due at refuel area) -

\ t

Each tanker is scheduled to leave the refuel area TTOS (total time on
station) hours after arriving. The four recovery base s c loses t to the
refuel area are found , ordered by ascending distance , and posted for
each tanker as alternate recovery events. The flight times from refuel
area to each recovery base are determined and the tanker plan is com-
plete.

A.3 Actua l Height of Burst Calculations

QUICK System plan generation provides files for damage assessment pro-
grams and simulators outside the QUICK system (e.g., SIDAC, NEMO). On
these f iles , the actual height of burst of each strike Is output by the
detailed sortie generation program.

For ground bursts , the actual height of burst is output as 000. For
air bursts , the de tailed sortie genera tion program computes the ac tual
air height of burst and outputs that variable in hundreds of feet.
Actua l air heights of burst range from 100 feet to 99,900 feet.

The actual air height of burst is calculated using two quentities: the
target vulnerability (Vii) and the weapon yield. The first step in the
calculation is the computation of the adjusted vulnerability number (AVN)
by method s described in “Computer Computation of Weapon Radius ,” B-l39-
61 , Air Force Intelligence Center. This computation requires input of
the VN and the cube root of the weapon yield. Next , the scaled height
of burst (SHOB) is selected as shown in table 14. A P—type target is
signified by the letter “P” as the third character of the vulnerability
number VN. A Q-type target has the letter “Q” as the third characger
ol VN. Iina llv , the actual height of burst (MOB) I s calcula ted by the
It’ I I owi iig I.?quaL ion :

629

~~- -~~— - — -—-~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

-—~~~~~~~- i~~~~~~~~
—-~~-- - - — -~~~~~~-~~~~ — - - _ _ _ _ _ _ _ _ _ _

Table 14. Scaled Height of Burst Selection

P-Type Targets

Ad justed Vulnerability Scaled Height of Burst
AVN SHOB (f e e t)

0-9 900

10-12 800

13-14 700

15—1 7 600

18-19 500

20-23 400

-J
24-26 300

27—39 200

>29 100

Q-Type Targe ts

0-10 900

10—11 800

12— 13 700

14-14 600

15—26 300

>26 200

630

_ _ _

~~~~~~
- - :

~~~~~. ~~~~~~~
- - - - - - -- - _ -

~

- -~~~ -~~~~~~~~--- -—~~~-——---— -—~~~~~~~~~~~~~~~~~~~~~~ ~~~ —-

•
_ _ _ _

AHOB =
SHOB*W 1/3

where : AHOB = actual height of burst in hundreds of feet (i.e., AHOB =

9 for 900 fee t)
SHOB = scaled height of burst in feet

W = weapon yield in kilotons.

A. 4 Tanker All ocation Technique

The task of allocating tankers to refuel areas in such a way as to ser-
vice all bombers is considered by PLANO 1JT to be a fo rm of the classical
transportation problem. The variables involved are considered as fol-
lows :

j = Refuel are~1
number

) 1 2 3
C

_ _ _ _ _ _

i = l a
1

2 a2

3 a3

I I

I
• a. = Total number

I i = Tanker I of tankers
base I : available

L number I - -~~~~~ at tanker

I I I~. = Total number of I • base ±
tankers required

R

b
1

b
2

b
3

at refuel area
~

b~

aR

Each cell in the above table has two entries associated with it.

a. COST(i , j) = distance from base i to refuel area j + safety
factor of .5 miles.

b . X
1~

= number of tankers at base i to be assigned to re-
fuel area j .

631

~

— - -~

—

-

The statem ent of the transportation problem to be solved is:

Given: all i , j , a1, ~~~ and COST(i,j),

Find : all Xii such that the total number of tanker miles flown

C

~ ~COST(i ,j) * Xij)
\i1 j=l

is minimized , subject to the constraints that

a. The total number of tankers assigned from base 1. ~ust equal
the total number of tankers available at base i

C
E Xj~~= a i for l � j � R
j=l

b. The total number of tankers assigned to refuel area j must
equal the total number required at refuel area j

R
E X11 b~ for l � j � C
i=l

A dummy refuel area is created to handle extra tankers , which are later
reassigned .

The solution is found using Vogel’s Approximation Method . This method
will be illustrated below by use of an example : additional information
may be found in a basic operations research test, such as Introduction
to Operations Research by F.S. Hillier and G.J. Lieberman , published
by Holden-Day , Inc.

Figure 135 illustrates the formulation of a tanker allocation problem.
There are three refuel areas and three tanker bases. We notice , for
example , that there are eight tankers at tanker base 3 and 20 tankers
are needed ar refuel area 2. The distance from tanker base I to refuel
area 2 is 200 miles , and the distance from tanker base 3 to refuel area
I is 500 miles.

We wish now to allocate the tankers from the tanker bases to the refuel
areas in such a way that all the tankers at the bases are used , all the
requirements at the refuel areas are met , and so that the total mileage
that all the tankers fly is as small as possible.

Suppose we look at tanker base 1 and try to allocate the 20 there to the
refuel areas. There are many possibilities. We could send five tankers
to refuel area 1 and 15 to refuel area 2. We could send all 20 to

632

— -.--— -•-.--,-—,-—•---
~•

--_•----__ _•_•Th._ _ ~—,i-- ~~~~~~~~~~~
- , -~~ c ’—--- ---- -- - ~~ •~~~~• • -.---.-------•? ~~~~~~~~~~~~~~~~~~~~~~

I
p

I
.

-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

—

\
N

Refuel #1 #2 #3

10 Tankers 20 Tankers 10 Tankers
Tanker Needed Needed Needed

- #1

20 Tankers 210 Miles 200 Miles 210 Miles
Available

#2

12 Tankers 500 Miles 220 Miles 500 Miles
Available

#3

8 Tankers 500 Miles 220 Miles 500 Miles
Available

Figure 135. Formulation of a Tanker Allocation Problem

-
633

_ _ _ _ -~~---~~~—~~-- ----- ~~~~------- — - - -- - - • - - - - - -~~~~~~-- -------- —~~~~~~~~~~~~~-

r - - -
~~~~

- - 
~~~~~~~~~~~~~~~~

-- —
~~~~

- - -
~~~~~~~

—--
~~~~

---
~~~~~~

-
~~~~~~~

- -
~~~

---- --—- — - - - - - - -
~~~

refuel area 2. We could send 10 to refuel area I and 10 to refuel area
3. Or we could make many other allocations. Our first impulse would
be to send all  20 tankers to ref uel area 2 because then each tanker
wou ld hav e to fly only 200 miles for a total of 4 ,000 miles. If we did
this , however , refuel area 2 would be saturated and the tankers from
bases 2 and 3 would have to be sent in some order to refuel areas 1 and
3, a distance for each tanker of 500 miles or for all 20 tankers a total
distance of 10,000 miles. This allocation , then , of all  40 tankers would
give a total mileage of 14,000.

if , however , we started all over again and sent 10 of the tankers on base
1 to area 1, the other 10 tankers on base I to area 2, this forces us to
8end the tankers from bases 2 and 3 on a much longer route.

To be more specific , the penalty for not sending the tankers from base 1

on the shortest route to a refuel area is much smaller than the penalty
for not sending the tankers from bases 2 and 3 on the shortest route .
The idea is that if the tankers are not sent on the shortest route to a
refuel area , they can probably be sent on the next shortest route.
Therefore , if the distance along the shortest route is not significantly
d i f f e r ent from the distance along the nex t shor tes t route , there is no
great penalty for sending the tanker on the second shortest route.

We formal ize  th is  idea by defining for a transportation matrix (as in
f igure  135) , a row penalty , which is the difference between the second
shortest  distance in each row. For figure 135 the row penalties are 10
miles , 280 miles, and 280 mi les f or rows 1, 2 and 3. We see I mmediately
from these numbers that the penal ty for not alloca ting tankers fr om row
1 to the closest area is very small compared with the penal ty for not
allocating from rows 2 and 3 to the closest area. We would naturally
then allocate from rows 2 and 3 first.

In general  we would first allocate from the row with the largest penalty,
then from the row with the second largest , and so on. Although the ac-
tual algorithm Is much more complicated , using column as well as row
penalties and using elimination of rows and columns with subsequent
recomputation of penalties , the above example gives the basic idea.

The Voge l Approximation Method has been tested against full-blown trans-
portation algorithms and has been found quite accurate for small ma-
trices.

A.5 Missile Timing

The algorithm for determining the intersection of the timing line and
the fl ight path for missiles with a LINE CORI1SL uses the nature of the
vector cross product to determine possible crossings.

Each great circle segment is the shorter great circle path between two
points on the surface of the earth. By the nature of great circles ,
this path lies completely in the plane defined by the two end points

634 =



- -

and the center of the earth. Given two such segments , the algorithm
will calculate the point of intersection of the segments if they do
cross.

In order to do this, we must define a three-dimensional Cartesian coor-
dinate system and define a position vector.

We assume a right-handed coordinate system as shown in figure 136. The
origin of the system is the center of the earth. The earth is assumed
to have unit rad ius .

Define a position vector r~ 
= (x~ ,yj ,z~) to be the vector originating

at the origin and termination at some point on the earth’s surface.
S ince this vec tor has uni t leng th , we derive the following relation-
ships be tween the end point’s latitude and long itude and the Car tesian
coordinates.

Define: = latitude of end point (+ for North , - for South)

= longi tude of end point , if East (360 - longitude , if
West)

Then :

~~~ fx ~ \ (cos ~~ cos
r~~= (yj~~ =~~ sin a sin~~

\z i/ \ sine

Therefore, each great circle can be defined by two position vectors.

—~~~~ -~~ -~~~Define : R i~ = r1 x rj

is the cross product of two position vectors. This vector , R 11, is
perpendicular to the plane defined by the great circle. (See figure 137.)
Any vector in that plane will be perpendicular to R1~ and any vector with
base at the origin and perpend icular to Rj~ will lie in the plane.

-~~~Define . r1 position vector for first point on timing line

= position vector for second point on timing line

= position vector for launch point

= position vector for target.

is perpendicular to the plane of timing line

R34 is perpendicular to plane of flight path.
—~~~

Let: T = R 12 x R ~~
-~~ -~~~ -~~~ -~~~

= (r1 x r2) x (r3 X r4)

635


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

2

zi 

/ 
Yi
/ ~~~~~ y

/ 

Figure 136 . Coordinate System for Missile Timing Calculations

636

_________________________--- 
- - - -~~~~~---~~~~~ —- - -~~~~~~~ .~~~~~~ -•~~———-~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

p 

I



- - -  ~~~~--• --~~-~~~~ --- ~~~~~~~~~~~~~~ . ---~---—-rr ~~~~~~~~~~~~~~~~~~~

+
R.

SEGMENT

- 
Figu re 137. Relation of R ,1 to Grea t Circle Plane

637

___________ p ~~~~~~~~~~~~~~~~~~~~~~~~~~~



‘jOb COMMAND AND CONTROL T;CHNICAL CENTER WASHINGTON D C FIG 15/’? “NJTHE CCTC QUICK—REACTING GENERAL WAR GAMING SYSTEM (QUICK). VOLU——UC (tJ).
APR 78 D ,J SANDERS, P F MAYKRANTZ , J M HERRON

UNCLASSIFIED CCTC— CSM— MM—9—77 —VO L— ’f— PT S8IE—AO— E100 085 Pt

U END
FILMED

0 -78

31



-~~~ ~~~~ -~~~If we normalize T to have unit length, then T and -T are position vec-
tots. In fact, they are the position vectors for the points of inter-
section of the planes of the timing line and the flight path.

Since ~~is perpendic~jLr 
to ~~~ it ties in the first plane. Since it

is perpendicular to ~~~ it lies in the second plane. Therefore, its
end point must lie on both great circles. (See figure 138.) The end
point does not necessarily lie on the segments defining the timing line
or the flight path.

.
~~~ -~~~~With the coordinates of the T and -T vectors we can compute the latitude

and longitude of the possible intersections.

The line data input is restricted so that the line crosses the flight
path from left to right as the missile would see it. This restriction
eliminates -T as a possible intersection.

If

.~~~ /XT
T = I

\ZT

then

B = sin ’ (ZT)

a = tan ’ (YT/XT)

where the value of the arc tangent is not necessarily the principal
value.

We now test these possible intersections to see if they lie on the seg-
ment as well as in the plane

Define: D(r~ ,~~~ = sho
~E~~

.r great circle distance between end points
of rj and rj

The possible intersection defined by plies on both segments if

D(r1,r2) — D(r1,T) + D(r 2,T)

and

D ~~~~ = D (~M D

If both these relations are true, then the point defined by ~~is the
intersection of the segments and that point is a crossing of the flight
path and the timing line.

~~~ 638



- :  -. -- ~~~~~—~.-,--- — -
~ 

.-———--
~
— . -

~~ 
— — —--—- —,--

2 PLANE 1
+
R34

-T

• PLANE 2

Figure 138. Diagram of T Vector

639

~~~~~~~~~~~~ ~~~ 
—.

PLNTPLAN Rnds the time of the first crossing and uses that time to cal-
culate the launch time so that the missile crosses the line at time
equal to C~~)~ L plus the launch delay. If the missile does not cross
any line , it will be launched to impact at game time equal to the launch
delay. The calculation of the launch delay is described in the Missile
Plans section of Detailed Sortie Specifications of this appendix.

~~~ 640 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

- _____

~ —

APPENDIX B

AN ALGORITHM FOR THE TRAVELING SALESMAN PROB LEM

John D. C. Little
Massachusetts Institute of Technology

Katta C. Murty*
Indian Statistical Institute

Dura W. Sweeney**
International Business Machines Corporation

Caroline Karel
Case Institute of Technology

(Received March 6, 1963)

A ‘branch and bound ’ algorithm is presented for solving
the traveling salesman problem. The set of all tours
(feasible solutions) is broken up into increasingly
small subsets by a procedure called branching For
each subset a lower bound on the length of the tours
therein is calculated . Eventually, a subset is found
that contains a single tour whose length is less than
or equal to some lower bound for every tour. The moti-
vation of the branching and the calculation of the
lower bounds are based on ideas frequently used in solv-
ing assignment problems. Computationally, the algorithm
extends tha sise of problem that can reasonably be solved
without using methods special to the particular problem.

The traveling salesman problem is easy to state: a salesman, starting
in one city , wishes to visit each of n-i other cities once and only
once and return to the start . In what order should he visit the cities
to minimise the total distance traveled? For ‘distance’ we can substi-
tute time, cost, or other measure of effectiveness as desired . Distance
or costs between all city pairs are presumed known.

The problem has become famous because it combines ease of statement with
difficulty of solution. The difficulty is entirety computational, since
a solution obviously exists. There are (n-l)! possible tours, one or

* Work done while on a study assignment at Case Institute of Technology.

Work done while a Sloan Fellow at M.I.T.

641

W ~~~
- ‘-

~~~~~~~~~~~~~~~

more of which must give mthiinum cost. (The minimum cost could conceiv-
ably be infinite--it is conventional to assign an infinite cost to travel
between city pairs that have no direct connection.)

The traveling salesman problem recently achieved national prominance
when a soap company used it as the basis of a promotional contest.
Prizes up to $10,000 were offered for identifying the most correct links
in a particular 33-city problem. (4uite a few people found the best
tour. (The tie breaking contest for these successful mathematicians
was to complete a statement of 25 words or less on “I like . . . because
• . .“.) A number of people, perhaps a little over-educated , wrote the
company that the problem was impossible--an interesting misinterpretation
of the state of the art.

For the early history of the problem, see Flood.1 In recent years a
number of methods for solving the problem have been put forward . Some
suf fe r  from inefficiency, others produce solutions that are not neces-
sarily optimal, and still others require intuitive judgments that would
be hard to program on a computer. For a detailed discussion, see
Gonzalez.2 We shall restrict our discussion to methods that (1) guaran-
tee optimality, (2) seem reasonable to program, and (3) are general,
i.e., not ad hoc to the specific numerical problem.

Among such methods the approach that has been carried furthest computa-
tionally is that of dynamic programming. Held and Karp’ and Gonzalez2
have independently applied the method and have solved various test prob-
lems on computers. Gonzalez programmed an IBM 1620 to handle problems
up to 10 cities. In his work the time to solve a problem grew somewhat
faster than exponentially as the number of cities increased. A 5-city
problem took 10 seconds, a 10-city problem took 8 minutes, and the
addition of one more city multiplied the time by a factor, which, by
10 cities , had grown to 3. Storage requirements expanded with similar
rapidity .

Held and Karp3 have solved problems up to 13 cities by dynamic program-
iiing using an IBM 7090. A 13-city problem required 17 seconds. But
such is the power of an exponential that, if their computation grows
at the same rate as that of Gonzalez, a 20-city problem would require
about 10 hours. Storage requirements, however, may become prohibitive
before then. For larger problems that 13 cities, Held and Karp develop
an approximation that seems to work well but does not guarantee an opti-
mel tour.

We have found two papers in which the problem has been approached by
methods similar to our ‘branch and bound ’ algorithm. Rosaman, Twery ,
and Stone4 in an un~ublish~d paper apply ideas that they have called
combinatorial progra.vning. To illustrate their method they present
a 13-city problem. It was solved in 8 man-days. We have solved their

1-

642

________________ — . . — ~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~



-

problem by hand in about 31~ hours. Eastman ,6 in an unpublished doctoral
thesis and laboratory report, presents a method of solution and several
variations on it. His work and ours contain strong similarities. How-
ever , to use our terminology , his ways of choosing branches and of
calculating bounds are different from ours. He basically solves a
sequence of mss 4 gnment problems that give his bounds. We have a simpler
method , and for branching we use a device with quite a different motiva-
tion. The biggest problem Eastman solves is 10 cities and he gives no
computation times, so that effective comparisons are difficult to make.

Most published problems are symmetric, i.e., the distance from city i to
city j is the same as from J to i. The algorithm to be presented also
works for asymmetric problems; in fact, it seems to work better. Asym-
metric problems arise in various applications. As an example from pro-
duction scheduling, suppose that there is a production cycle of some
time period , during which an assembly line must produce each of n dif-
ferent models. The cost of switching from model I to model ~) is Cij.

~4hat order or prod~cing models minimizes total setup cost? This is a
traveling salesman problem in which it would not necessarily be expected
that Cij=Cji.

To summarize, 13 cities is the largest problem which we know about that
has been solved by a general method which guarantees optimality and
which can reasonably be programmed for a computer. Our method appreci-
ably increases this number. However, the time required increases at
least exponentially with the number of cities and eventually, of course,
becomes prohibitive. Detailed results are given below.

THE ALGORITHM

The basic method will be to break up the set of all tours into smeller
and smaller subsets and to calculate for each of them a lower bound on
the cost (length) of the best tour therein. The bonnds guide the parti-
tioning of the subsets and eventually identify an optimal tour--when a
subset is found that contains a single tour whose cost is less than or
equal to the lower bounds for all other subsets, that tour is optimal.

The subsets of tours are conveniently represented as the nodes of a
tree and the process of partitioning as a branching of the tree. Hence
we have called the method “branch sad bound .”

The algorithm will simultaneously be explained and illustrated by a
numerical example. The explanation does not require reference to the
example , however, for those readers who wish to skip it.

Notation

l’he costs of the traveling salesmen problem form a matrix. Let the
• cities be indexed by i—i , . . ., a. The entry in row L and column j

of the matrix is the cost for going from city I to city j. Let

_  

r .~~~~~~~~~~~~~~~~~ 

_
~~~~~~~ ~~~~~~~~~~~~~~~ 

—-----~~~--_-- — ~~~~~~~~~
•- -

~

- --~~ - - ~~~~~~~~~~~~ ----- - -

c [c(i ,J)] —cost matrix.
C will start out as the original cost matrix of the problem but will
undergo various transformations as the algorithm proceeds.

A tour, t , can be represented as a set of n ordered city pairs, e.g.,

t’.[(i1,i2)(i2~i3) . • • (in_i~
in)(Ln~

Li)]~

which forts a circuit going to each city once and only once. Each (i,j)
represents an arc or leg of the trip. The cost of a tour, t, under a
matrix , C, is the sum of the matrix elements picked out by t and will
be denoted by z(t):

z(t)=
~(i j) in t

C(i , j).

Notice that t always picks out one and only one cost in each row and
in each column. Also, let

x .y ,7= nodes of the tree ;
w(X) = a lower bound on the cost of the tours of X, i.e., z(t)~

w(X) for t a tour of X;
= the cost of the best tour found so far in the algorithm

Lower Bounds

A u se fu l concept in constructing lower bounds wi l l be tha t of reduction .
If a constant, h, is substracted from each element of a row of the cost
matrix , the cost of any tour under the new matrix is h less than under
the old . This is because every tour must contain one and only one
element from that row. The relative costs of all tours are unchanged ,
however, and so any tour optimal under the old will be optimal under
the new.

The process of subtracting the smallest element of a row from each
element in the row will be called reducing the row. A matrix with non-
negative elements and at least one zero in each row and column will be
called a reduced matrix and may be obtained , for example, by reducing
rows and columns. If z(t) is the cost of a tour T under a matrix before
reduction, z1(t) is the coat under the matrix afterward, and h the sum
of constants used in making the reduction, then

z(t)’h+z1(t) . (1)

Since a reduced matrix contains only nonnegative elements, h constitutes
a lover bound on the cost of t under the old matrix.

~TiI1ITT ITTIT

Consider then the 6-city problem shown in figure 139. Reduction of the
• matrix by rows, then columns, give the matrix of figure 140. The total

reduction is 48 so that z(t)~ 48 for all t.

• B ranching

The splitting of the set of all tours into disjoint subsets wil l be
represented by the branching of a tree, as Illustrated in figure 141. The
node containing ‘all tours’ is self-explanatory . The node containing
i,j represents all tours which include the city pair (i,j). The node
containing i,j represents all tours to do not. At the i,j nod e there
is another branching . The node containing k , 1 represents all tours
that inc lude (i ,j) but not (k,l), whereas k,l represents all tours that
include both (i,j) and (k,1). In general, by tracing from a node, X,
back to the start, we can pick up which city pairs are committed to
appear in the tours of X and which are forbidden from appearing. If
the branching process is carred far enough, some node will eventually
:epresent a single tour. Notice that at any stage of the process, the
union of the sets represented by the terminal nodes is the set of all
tours.

When a node X branches Into two further nodes, the node with the newly
committed city pair will frequently be called Y and the node with the
newly forbidden city pair. Y.

I~~~~~27 43 16 30 26

2 7 w I~ I 30 25

3 20 13 cn 35 5 0
From

4 21 16 25 oo 18 18

5 2 46 27 48 Co 5

6 2 3 5 5 9 5 c o

Figure 139. Cost Matrix for .1 6-city Problem. (A typical 1
tour might be t~ J(l,3) (3,2) (2 ,5) (5,6)(6,4) (4,l)I
which has the cos’~ (length) z—43+l3+30+5+9+2l”l’21.)

_________________ - - - -

645

- - —~~~_____

~~~~~~~~~~~~~~ ~~.

L ~~~~~~~~~~~~~~~~ 
— -—- -

~~~ 
-c---—- _~~~~~—~ ~~~~~~~~

- -

P1

— — —••-.—— . ———.-——————-—-— “ . .- F
1 2 3 4 5 6

I Co II 27 14 10

2 I U) 15 o® 29 24

3 15 (3 ~ ~~ ~ o®

~ o
®

o
® 9 Co 2 2

5 2 4 1 22 43 CO o
®

Figure 140. Cost Matrix after Reducing Rows and Columns.
(Circled numbers are values of 9(i , j) .)

Figure 141. Start of Tree

_ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~J
~~

r—_ •I•—__•••,I_
~ - 

r



Flow Chart

The wo rkings of the algorithm will be explained by tracing through the
f low chart of figure 142 .

Box I starts the calculation by putting the original cost matrix of the
problem into C, setting X=l to represent the node, “all tours,” and
setting the cost of the best tour so far to infinity.

Box 2 reduces the matrix and labels node X with Its lower bound w(X).

Box 3 selects (k,l), the city pair on which to base the next branching.
The goal in doing this is to split the tours of X into a subset (Y)
that is quite likely to include the best tour of the node and another
(Y) that is quite unlikely to include it. Possible low cost tours to
consider for V are those involving an (i,j) for which c(i,j) 0.

Consider, therefore, the costs for tours that do not contain (i,j),
i.e., possible tours for V . Since city i must be reached from some
city , these tours must incur at least the cost of the smallest element
in row i, excluding c(i,j). Since city j must connect to some city,
the tours must incur at least the cost of the smallest element in
column j, excluding c(i,,j). Call the sum of these two costs 9(i,j).
We shall choose (k,l) to be that city pair that gives the largest 8(i,j).
(This amounts to a search over (i,j) such that c(i,j)=0, since otherwise
8(i,j)=O.) Notice that, if c(i,j) i~ set to infinity and then row i
and column j are reduced , the sum of the reducing constants is 8(i,j).

For the example, the O(i ,j) values are written in small circles placed in
the ceilsof the zeros of figure 140. The largest B is 9(l,4)=l0+10 and
so (1,4) will ye the first city pair used for branching.

Box 4 extends the tree from node X to V. As will be shown below,
w(V)w(X)+9(k;1). In the example v(T)=l0+48=58 and the node is so
labeled in figure 143.

Box 5 sets up V. Since the city pair (k,l) is now committed to the
tours, row k and column 1 are no longer needed and are deleted from C.
Next , notice that (k i) will be part of some connected path generated
by the city pairs that have been committed to the tours of Y. Suppose —

the path starts at city p and ends at city m. (Possibly p—k or n~ l or
both.) The connecting of m to p should be forbidden for it would
create a subtour (a circuit with less than n cities) and no subtour p

can be part of a tour. Therefore, set c(nt,p)—~~.

After these modifications C can perhaps be reduced in the following
places: row m, column p, any columns that had a zero in row k, and

• any rows that had a zero in column 1. All other rows and columns con-
tain some zero that cannot have been disturbed . Let h be the sum of

647



.—.--• --— - - -- -

START (A)

1~ -~~~ - 7 . -  
;f:-

f C •f~q.flnI c o t  n,atr,. Select nest X fro,n wh,cI, to branchl
X t ( 

Pall outS”) I I as ho mulh.tous terminal nod.
L ‘o -

~~~~~.... - - - - -  _ _ _  ... J L~~~~!.5~~~t~
(
~ _______

2 8 !
1Reduc~~C. l.ubcl X w,,h w(X i~~~~own o f reduc,ng consta ntS -___ J . . - - - - - - — — — 0- - - I FINISH

~ j
No

rCh.0~0 (k .I) for n;,r t tree ~~~
!~ f~~~Ei~~~~_~ _

0H0x 5’
]

sion so that lb.?)
- Ma,, (i .) wher. (i, j) = No

sma l lest cas t n row I. omitt ,ng 10
I c(i. ~) 1 t .aa l les t co st in — - ____________________

j . omi t t ing c(i. ~) 1.
~~ ~ ~~

(1) C .— o rsg ina1 cost matr ix
(2) Read pails (~. i) cont,nft.d

4 to b. in tours ol X.
r—-—-——--—— - Find g ~~c(i j)

Mak e a branch hoe. X to .‘(the (3) For .och such (t , j) del.t.
k~I’ node. Label Y by w(Y) yow l and column j of C.

(l .!)_ .. - - ... J For .ach path among the
(i. I) Find starting city p and

5 ending city a. and set
— - - — •. - c(m. p) = ‘~. For each k,t
Mak e a branch from X to Y~ th. prohi bited from tour of X.
I~,l’ node. Delet, raw It and set c(k . £ 1 e
column I ,n C. F,nd p Start Ing (4) R~ duc• C.
c,ty and m - end,ng c .ty of the
pat h co..~o.n.ng (k,l’) among petl,s (5) Label X w ,th w(X) g +

generate d by the committed ci ty (sun. of redu c,ng co nOtant ~).
pails of ‘(. Set c(m,p)

- ____________

R.Juce C. Label V by w(Y) -.

w(X) 1 (sum of reducing con.
slants).

No ~~ -1
No i ———---—f I~r

< p0’]
1 12

I Z~~~~~~Y)
_ _ _ ____________ 5av, tour

—~~4- I_ _ _ _ _ _

- ____

Figure 142. Flow Chart of the Algorithm

648

— - =.- ..---.—-—-- --.. .- -

the new reducing constants. The lower bound for Y will now be shown to
be

w(Y)=w(X)+h.

The algorithm operates so that the investi gatIon of each node , X , s tar ts
in Box 3 with a matrix C and a lower bound w(X) what stand in a special
relation. If t is any tour of X ,z (t) i t s cost under the or iginal ma t r ix ,
t 1, the city pairs of t ‘ e f t a f t e r removing those committed to the tours
of X , and z 1(t 1) the cost of t 1 under C , then i t w i l l be show n that

z (t) = w (X) + z 1 (t 1) . (2)

This expression is t rue for the f i r s t node by (1). Suppose tha t from a
bound w(X 1) and matrix c1 of a node X 1, the al gorithm constructs a bound
w(X 2) and reduced mat r ix C2 for a node X 2 . (X 2 wi l l be on some branch
out of X 1.) It wi l l be shown that , if (2) is true for X 1, (2) wi l l also
be t r ue for X 2.

-

The opera t ions on C1 to get C2 (shown in Boxes 5 and 10) are always of
the form: de le te row i and column j for each (1 ,j) comm itted to the
tours of X2, insert various infinities , reduce. The lower bound is
always of the form

w(X2)s.w(X 1)+Zc1(i,j)+h, (3)

where the summation is over the c i ty pairs committed in X 2 but not in
and h is the sum of the reducing constants . But consider any t in

X2 (and therefore in X1). If we let z 1(t 1) be the cost of the uncom-
mitted city pairs of X1 under C1 and z2(t2) be the cost of the uncom-
mitted city pairs of X1 under C2,

or using (2), assumed true for X1,

z(t)xw(X1)+Zc1
(i, j)+h+z

2(t2)

=w(X2)+z2(t2
)

80 that (2) is true for X2, as was to be shown.

Equation (3) is used to calculate the lower bounds in Boxes 4, 5, and 10.
The these lower bounds are valid is establIshed by (2) and the non-

• negativity of the elements of C.

649

-
- -~~ .-~~~ ~~~~~~

-.-.-—-
~~~~

-.- -.—-- --..--=- .-.--—- —=.---—--
~~~

-=--—.-- -.-- — —
~~~~~~~~~

-— -—.--.- - - —

t
For the example , the  mat r ix  t f  El ;~t i re I/ t i rtltows the tie le t  I out iti row I ;t t t t l
column 4. The connected path containing (1 ,4) is (1,4) itsel i , so thai
(m,p)=(4,1) and we set c(4,1)’ao. Looking for reductionss, we find tha t
row 2 can be reduced by I. Then w(Y)=48+1=49 as shown.

2 0 
— - 

~~~~~ tours
58

3 15 13 w 3~ 5 0 49
“4 “4

5 2 4 1 22 4i 0

6 1 3 0 0 O c o

(a) (b)

Figure 143. (a) Matrix after Deletion of Row 1 and Column 4

(b) First Branching

It is worth giving another example of finding (n p). Suppose the com-
mitted city pairs were (2,1), (1,4), (4,3), and (5,6) and (k,l) were
(1,4). Then the connected path containing (k,1) would start at 2 and
end at 3 to yield (m ,p)= (3 ,2) .

ox 6 checks to see whether a single tour node is near.

Box 7 selects the next node for branching. There are a number of way s
the choice might be made. The wa~ shown here is to pick the node with
the sinalles lower bound . This leads to the fewest nodes in the tree.

box 8 checks to see whether the algorithm is finished--whether the best
tour so far has a cost less than or equal to the lower bounds on all
termina l nodes of the tree.

650

Li
_ _ _ _ _ _ _

___L ... ~~~~~~~~~~~ _~~~~~_ -_ — —— — -------- - - --—.~ -.--.--

- —--——~ -----~~-—
j—.-- -- -= - ~ -.- -— — -- —, — -.---

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -..-—~— ~~..— ..——— - — — —

Box 9 is a time saver. Most branching is from Y nodes , i.e., to the
right . Such branching involves crossing out rows and columns and other
manipulations that can be done on the matrix left over from the previous
branching . When this case occurs, Box 9 detects it and the algorithm
returns directly to Box 3.

Box 10 takes up the alternate case of setting up an appropriate lower
bound and reduced matrix for an a~rbitrary X. Starting from the original
cost matrix , rows and columns are deleted for city pairs committed to the
tours of X , infinities are placed to block subtours and at forbidden city
pairs, and the resulting matrix is reduced . The lower bound can be corn-
puted from (3) by thinking of X1 in (3) as a starting node with w(X1)~0and matrix equal the original cost matrix. Since different ways of
reducing a matrix may lead to different sums for the reducing constants,
the recalculated w(X) is substituted for the former one.

Boxes 11 and 12 finish up a single tour node. By the time C is 2X2
matrix, there are only two feasible (i,j) left and they complete a tour.

• Since the box is entered with a reduced matrix , the costs of the final
commitments are zero, and z=w(Y) by (2). If z.c20, the new tour is the
best yet and is read off the tree to be saved.

Returning to the example, Box 7 picks 1,4 as the second node for branch-
ing and , since this is a branching to the right, C is already available
in reduced form. As shown in figure 144, the next branching is on the basis
of (2 , 1) wi th  (m ,p) (4 ,2 ) .  Next , we go to the right from 2 , 1 on the
basis of (5,6) with (m,p)=(6 ,5) and then from 5,6 on the basis of (3,5)
with (m,p)=(6,3). At this point C is a 2X2 matrix , and we jump to Box
11 to finish the tour. We find z=63, which is stored as z0 but , on
returning to Boxes 7 and 8, we see that 1,4 has a lower bound of 58.
To set up this node we go through Box 10. After the next branching ,
however, Box 8 shows that the problem is finished .

Discussion

At this point, let us stand back and review the general motivation of the
algorithm. It proceeds by branching, crossing out a row and column,
blocking a subtour, reducing the cost matrix to set a lower bound and
then repeating . Although it is clear that the optimal solution will
eventually be found, why should these particular steps be expected to
be efficient? First of all, the reduction procedure is an efficient
way of building up lower bounds and also of evoking likely city pairs
to put into the tour. Branching is done so as to maximize the lower
bound on the ~ T node without worrying too much about the k,1 node.The reasoning here is that the k,l node represents a smaller problem,
once with the kth row and ith column crossed out. by putting the
emphasis on a large lower bound for the larger problem, nonoptimal tours
are ruled out faster.

651

—



— —wr.~ __~~~ =__ - = —  - ___ _ _,__w- ~~~~~~~~

-~~~~~~~~~-
--

~~~~~~~ —=~~~~~~ —

I

~~~~~~~
( a i l ’~tours

58

I ,4

49
“467

63
6,3

65

2,1

56

5,6

64

~~~

co

63

4,3
6,2

optimal
t our

Figure 144 . Final Tree

~~~~~~~~~~~~~~~~~~~~ J



Insight into the operation of the algorithm is gained by observing tha t
the c rossing out of a row and column and the blocking of the correspond-
ing subtour creates a new traveling salesman problem having one fewer
city . Using the notation of Box 5, we can think of city m and city p as
coalesced into a single city , say, m ’. Setting c(m ,p)=mis the same as
setting c(m ’ ,m ’)=v. The blocking of subtours is a way of introducing
the tour restrictions into what is otherwise an assignment problem and
is accomplished rather successfully by the algorithm.

Finally , unlike most mathematical programming algorithms, the one here
has an extensive memory. It is not required that a trial solution at
any stage be converted into a new and better trial solution at the next
stage. A trial branch can be dropped for a moment while another branch
is investigated . For this reason there is considerable room for experi-
ment in how the next branch is chosen. On the other hand the same
property leads to the ultimate demise of the computation--for n suffi-
ciently large there are just too many branches to investigate and a small
increase in n is likely to lead to a large number of new nodes that
require investigation.

*JDIF ICA T IONS

A variety of embellishments on the basic method can be proposed. We
record several that are incorporated in the computer program used in
later ca lculations . For the program listing itself (see Sweeney.9)

Go to tho Right

5 It is computationally advantageous to keep branching to the right until
it becomes obviously unwise. Specifically , the program always branches

— from the k,l nod e unless its lower bound exceeds or equals the cost of
a known tour. As a result a few extra nodes may be examined , but
usually there will be substantial reduction in the number of time-
consuming setups of Box 10.

One consequence of the modification is ttm t the calculation goes directly
to a tour at the beginning . Then, if the calculations are stopped
before optimality is proven, a good tour is available. There is also
available a lower bound on the optima4 tour. The bound may be valuable
in deciding whether the tour is sufficiently good for some practical
purpose.

Throw Away the Tree

A large probl~~t may involv, thousands of nodes and exceed the capacity
of high sp..d storage. Storage can be saved , although usua lly at the
expense of time, by noting tha t , at any point in the computation , the
cost of ihe best tour so far sets an upper bound on the cost of an

• C

653

---- - - - ~ ~~H~-



r - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

optima l tour . Let the calculation proceed by branching to the right
(storing each te rminal node) unt i l a single tour is found with some
cost , say zo. Normally , one would next find the termina l node with the
smallest lower bound and branch from there . Instead , work back throug h
the termina l nodes, starting from the single tour, and discard nodes
from storage until one is found with a lower bound less than 20. Then,
branch again to the right all the way to a single tour or until the
lower bound on some right-hand node builds to z0. (If the branch goes
to the end , a better tour may be found and

~o
assigned a new, lower

value.) Repeat the procedure: again work up the branch, discarding
terminal nodes with bounds equal or greater than until the first
once smaller is found ; again branch to the right, etc.

The effect of the procedure is that very few nodes need to kept in
storage--something on the order of a few n. These form an orderly
sequence stretching from the current operating node directly back to
the terminal node on the leftmost branch out of “all tours.”

As an illustration , consider the problem and tree of figure 146. The compu-
tation would proceed by laying Out in storage the nodes 4,1; ZT; 37~;and T~ . At the next step we find a tour with zo=63 and the obviously
useless node 4,3. The tour is stored separately from the tree. Working
up the branch, first T5 is discarded, then 57E and ~~T, but T Z has a
bound less than z0. Therefore, branching begins again from there. A
node ~~ is stored and then we find the node to the right has a boundequal(s) z0 and may be discarded . Working back up the tree again, ~~~
is discarded and , since that was the only remaining terminal node, we
are finished .

The procedure saves storage but sometimes increases computation time .
If the first run to the right turns up a rather poor tour, i.e., large
z0, the criterion for throwing away nodes is too stiff. The calculation
is forced to branch out from many nodes whose lower bounds actually
exceed the cost of the optimal tour. The original method would never do
this for It. would never exp lore such nodes unt i l it had finished explor-
ing every node with a smaller bound . In the process, the optimal tour
would be uncovered and so the nodes with larger bounds would never be
examined .

Taking Advantage of Symmetry

If the traveling salesman problem is symmetric and t is any tour,
another tour with the same cost is obtained by traversing the circuit
in the reverse direction. Probably the most promising way to handle this
is to treat the city pair (i,j) as not being ordered. This leads
naturally to a new and somewhat more powerful bounding procedure .
Although the basic ideas are not changed much, considerable reprogram-
ming is required . So far , we have not done it.

654


~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There is another way to take advantage of symmetry Shd this one is easy
to incorporate into our program. All reverse tours can be prohibited
by modifying the nodes along the leftmost branch of the tree. These
are the nodes with no city pairs committed but some forbidden . Suppose
that such a node, X, branches into nodes, Y with (k,l) committed , and
Y, with (k,1) forbidden. The reverse tours of Y all have (l,k) in them.
They .~annot be in I for the presence of both (k,l) and (l,k) is not
possible in any tour. Such of the reverse tours as were in X are in Y.
We may prohibit them by setting c(l,k)—’o (as well as c(k,l)”m) in any
matrix for Y. Thus, a reverse tour is prohibited as soon as the tour
itself is identified to the extent of having one committed city pair.

A Computationa l Aid

In both hand and machine computation (k,l) is easiest calculated by
first finding , for each row k and column 1 of the reduced matrix:

0’(k)=the second smallest cost in row k.

~(l)—the second smallest cost in column I.

Then (k,l)=~ (k)+,9(l) for any (k,l) which has c(k,l)=O. In a hand
computation the a(k) can be written as an extra column to the right
of the matrix and the ~(l) as an extra row at the bottom. After working

• out a few problems, one can see that when the branching is to the right
there is no need to search the whole matrix to resetcr and j3, but that
only certain rows and columns need be examined .

Other Possibilities

If desired , the algorithm can be modified so as to generate all optimal
solutions. Instead of discarding nodes with w(X)=z0, split them up
further until eventually all the terminal nodes either have v>.z0 or are
optimal single tours with zz0. Our computer program does not include
this modification because in some cases it will increase the computing
time a great deal--suppose the cost matrix were all zeroes.

Quite possibly, the average computing time can be decreased by solving
the assignment problem for the original cost matrix and reducing the
matrix by the cost of the optimal assignment in Box 2. (Some methods
for solving the assignment problem leave it in reduced form.). The
advantage lies in the larger lover bound with which the problem starts.
The closer the starting lover bound to the cost of the optimal tour,
the less is the branching that may be expected . Our exploration of the

• possible gains has not been extensive and has yie lded mixed results:
Croes ’ 20-city problem8 was speeded up, but some others were lengthened .

The idea that we are calling ‘branch and bound’ is more genera l than
the traveling salesman algorithm. A minimal solution [or a problem can

655

- -  
I~~~ IT ~~~~~~~~~



—-
~~ .—Ip’

he found by taking the set of all feasible solutions , splitting it up
into disjoint subsets, finding lower bounds on the objective function 4for each subset , splitting again the subset with the smallest lower
bound , and so forth, until an optimal solution !~ found. The efficienc’v
of the process, however, rests very atrongi? on the devices used to split
the subsets and to find the lower bounds. As a simple example of another
use of the method , if the step of setting c(m,p)~~ Is omitted from thetraveling salesman algorithm, it solves the assignment problem. For
another example , see Doig and Land)°

Table 15. Mean and Standard Deviation of T for Random Distance Matrices
(T=tlme in minutes used to solve Traveling Salesman Problem on IBM 7090)

Nun,brr Number of Mean SW. ,fev . ~~~~~ SW. dcv ’’
~~~ 

T 7’ log T log T

10 100 0.01 3 0.007 lng o.oi~ log , . z s
20 100 0.084 0.063 log 0,067 lug 2.~~)
30 tOO 0.975 1.2 10 1050.63 Iog,.q.,
so $ 8.37 10 .2 1054.55

‘~~ 01.1 ainol Ii)’ Ilk,i I ing the cu,,,ulat ive Frcqucnt -y on log nortnal prol..il.ility raiwr
t i l t ing a SI t-aigh litw . eti -ept in t he ~o citieS case (or whi ch the conii ,ula (ion was nunwr i, ii
In the case of to cities the lug norma l fiti only the tail of the .list ru ms intl -. 30 11cr (d ii i t
the 1,rubknis wvul directly to thc ,ulution withou t extra branching and thereby l roiIulv ’I
a lu mp of priil.aL.ility at o.ooa flW)Ute.

- - - - —-----— -- — -

ACKNOWLEDGMENT

The computing time used in the early stages of the work was provided by
the Case Insti tute of Technology Computing Center, the M.I.T. Computa-
tion Center , and the M . I .T . School of Indust r ia l Management Computing
Facility. The time for the production runs was provided by I .B . M . on
the IBM 7090 at the M. I .T . Computation Center . We wish to acknowledge
the help of R . H . Gonzalez for prograumsing certain investigations. His
t ime was supported by the U.S. Army Research Office (Durham).

657

-- -----• ~~-~~ ~~~~~~~~~~~~~~~ ~—-~---•-~~~------ ——________________ - ~— ---~~
--

— — —. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~r ~~~~~~~~~~~
—

~~~~ 
-•- --— — .  

~~~~~
-
~~
--—- —-

~

-— -— ,•

~~

-- -

~~~~~~

— - - -

DISTRIBUTION

Addressee Copies

CCTC Codes
Technical Library (C124) 3
C124 (Stock) 6
C313 i
C314 17
C600 i

DCA Code
205 1

EXTE RNAL
Chief , Studies , Analysis and Gaming Agency, OJCS

ATTN : SFD , Room 1D957 , Pentagon , Washington , DC
20 301 2

Chief of Naval  Operations , ATTN : OP-96C4 , Roots 4A478 ,
Pentagon , Washington , DC 20350 2

Commander—in-Chief , North American Ai r  Defense Command
ATTN : NPX YA , Ent Air  Force Base , CO 80912 2

Commander , U.  S. Air Force Weapons Laboratory (AFSC)
ATTN : AFW L/SUL (Technical Library),
Kirtland Air Force Base , NM 87117 1

Director , Strategic Target planning , ATTN : (JPS ) , Off u t t
Air  Force Base , NE 68113 2

Defense Documentation Center , Cameron Station ,
Alexandria , VA 22314 12

50

659

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ 
-•



~~~~~~~~~~~~~~~

DISTRIBUTION

Addressee Copies

CCTC Codes
Technical Library (C124) 3
C124 (Stock) 6
C313 1
C314 17
C600 1

DCA Code
205 1

EXTERNAL
Chief , Studies , Analysis and Gaming Agency, OJCS
ATTN : STh, Room 1D957, Pentagon , Wash ington , DC
20301 2

Chief of Naval Operations , ATTN : OP—96C4 , Roots 4A47 8 ,
Pentagon, Washington , DC 20350 2

Commander—in-Chief , North American Air Defense Command
ATTN : NPX YA , En t A ir Force Base , CO 80912 2

Commander , U. S. Air Force Weapons Laboratory (AFSC)
ATTN: AFWL/SUL (Technical Library),
Kirtland Air Force Base, NM 87117 1

Director , Strategic Target Planning , ATTN : (JPS), Off u t t
Air Force Base, NE 68113 2

Defense Documentation Center , Cameron Station ,
Alexandria , VA 22314 12

659

- - - — ---- -_- ---- - - - --——- -.- - - __ _ _ . — _ - - ... ,.... ---_-_-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-_— .--—--. -— .——- -- - —-- - - - — —_-— _—- _—.- -._— .--_ 

-~~~

U?4CIASS IF lED
SECU~~:TV CLASSIF ICATION OF ‘tHIS PAGF ‘WP,.n Dot. Ent.r.d)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REP ORT NUMBER 2. GOVT ACCESSION NO. 3. REC IPI& NVS C A T A L O G  NUMBER

CSM MM 9—77, Volume IV ,Parts I&II

4 4. T ITL E (ond SubtIll.) S. TYPE OF REPORT S PERIOD COVERED
THE CCTC QUICK-REACTING GENERAL WAR GAMING SYSTE II
(QUICK), Program Maintenance Manual, Sortie Gen-
eration Subsystem S. PERFORMING ORG. REPORT NUMBER

7. A IJTHOR(.) 9. CONTRACT OR GRANT N $BER(.)

Dale J. Sanders
Paul F. M. Maykrantz DCA 100— —0019
Jim M . Herron

9. PERFORMING ORGANIZAT I ON NAM E AND A DDRESS tO . PROGRAM ELEMENT. PROJECT . TASK

System Sciences , Incorporated 
AREA S WORK UNIT NUMB ERS

4720 Montgomery Lane
Bethesda , Maryland 20014

I I . CONTROLLING OFFI CE NAME AND ADDRESS I?. REPORT DATE
Command and Control Technical Center 15 April 1978
Room 13E—685, The Pentagon , 13. H U MB ER O F  P A G ES
Washington , DC 20301 68U

f4. MONITORING AG ENCY NAME & AODRESS(U dIff.c.t t fro.e Cont,oSIin4 Of f  I c.) IS. SECURITY CLASS. (of thia r.port)

UNCLASSIFIED
IS.. OECLASSIFICATION/DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of Sal. R.port)

Approved for public release; distribution unlimited .

Il. DISTRIBUTION STATEMENT (of (A. ab.t,aet wS.r d In Sleek 20. II dIi.rwt f t.., Ropers)

IS. SU PPLEMENTARY NOTES

IS. KEY WOR DS (ConIi,w. on r.v.ra. aid, if n c000c.p ’ .,id idc.ISfy by block ni..b.r)

War Gaming , Resource Allocation

~J A.STRA CT (C.øiinu. .i~~ If .. c... y c.4 Ids.SIiy by Monk .i..b..)

~ The computerized 
Quick-Reacting General War Gaming System (QUICK ) will accept

inpu t data , au tomatically generate global strategic nuclear war plans , provide
statistical output summaries , and produce input tapes to simulator subsystems
external to QUICK. q

The program Maintenance Manual consists of four vo1uaes~~hich facilitate main-
tenance of the war gaming system. This volume , Volume .W provides the program—

mer/analyst with a technical description of the purpose , functions , general pro—
cedures, and programming techniques applicable to the modules and subroutines of _____ -

DO 
~~~~ 

1413 tosT ON oF5Nov UtsOs~~~t I UNCLASSIFIED

~~~• iWI TV CLA!’. 1C*T’fi4 OF iHIS PAOE (WPu.., Dot. Iotu~e

- -  -~~ 

— c — _________ ~~~~~~~~~~~~~~~~~~~~~~ ru~~~



____ —.-. ,—-..--- -. — -

,j ~

— the S tic Generation Subsystem.
Program Maintenance Manual complements the other QUICK Manuals to

facilitate application of the war gaming system. These manuals Series 9—77 are
published by the Command and Control Technical Center (CCTC), Defense Communica— 4
tions Agency (DCA), The Pentagon, Washington, DC 20301.

- 

H

h a  ~~~~~~

— 

_ _  _ _~~~~ UNClASSIFIED 
_______

Sr.CIII,ITY (I *~~~, r,. *T , ” w  nt ~ ~,t I’& ~~~~’~~ ?- .,. ~,.,o


