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SUMI4ARY

This report seeks to answer the fundamental question , “Can one simulate
the dynamic response of an R/C slab as a single degree-of-freedom system
(with realistic parameters and parameter values), using a priori infor-
mation? This question was simplified into two related questions , namely

(i) Is there an acceptable set of simple model parameters that
allow the slab to be modeled as a single degree-of-freedom
system? and

(ii) Could one have predicted these parameters a priori , i.e.,
before a nuclear attack?

The study concludes that yes , there are physically realistic para-
meters that can be found (using Parameter Estimation Techniques) that
allow slabs to be adequately modeled this way and that reproduce that
actual dynamic response of slab. Secondly, these parameters can often
(but apparently not always) be determined from static test data , elemen-
tary theory , or cornbinations thereof. Recommendations are made concerning
the future design and testing of R/C slabs.
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1. INTRODUCTION

Estimating the vulnerability of a structure to an attack by a nuclear

weapon requires some method of determining the response of the structure

to the transient loadings produced by the detonation of ~he weapon . Single

degree—of—freedom systems are commonly used within the defense community

as the means of modeling the response of structures to these transient

loadings. While it is recognized that estimates of strength and stiff—

ness produced by single-degree—of—freedom system models may be in error ,

it has been generally argued that the models are adequate since the over-

alluncertainties of the problem do not justify the use of more complex

system models. The objective of this study is to exmamine the questic~ of

the adequacy of a single—degree—of—freedom model to predict the transient

response of one class of structural member, the slab. The approach useâ

is to seek the answer to two related questions:

1. Is there any set of parameters for a sing le degree—of—freedom

model that will match the experimentally derived transient re-

sponse of various slab designs?

2. Can these parameters reasonable be estimated on an a priori

basis from either static test data or from engineering principles

The analytical procedure used is the technique of Parameter Estima-
tion. This technique basically takes a system model of any degree of
complexity and determines that Set of model parameters which minimizes
the -~ifferences between the observed and calculated response values.

The report itself is organi.-~ed in the following manner. The ideal-

ization of the slal. as a single degree—of-freedom system is discussed
first , (i.e., the assumptions and approximations made), followed by a

scussion of the “multi-parameter ” one degree—of-freedom model used

in the study . The next section deals with estimation of parameters (i.e.,

fitting the model to the data) , followed by results presented for three

(widel y different R/C slabs. A section of suggested procedures for ana-

1’:~~ing slabs as single degree—of-freedom models is then presented , and

t h ~ - report ends with conclusions and recommendations for the future design

and testing of such structures.

1—1
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2. IDEALIZATION OF A SLAB AS A SINGLE DEGREE-OF-FREEDOM SYSTEM

This section follows the discussion by Watt (Reference 3), and simi-

lar results are also presented in Biggs (Reference 2) and other texts

(Reference 4). In the design of blast—resistant structures , cons iderab le

economy can be realized if the design includes not only the elastic but

also the plastic resistance of the structure. Plastic behavior is not

generally permissible under continuous operating conditions , bu t is in

many cases quite appropriate for design when the s t ructure is subjec t to
a severe dynamic loading only once or twice during its life.

It can be concluded from examination of exact or rigorous dynamic

analysis (i.g., Reference 2) that relatively simple structures having

simple boundary conditions can be easily analyzed . Otherwise,the analysis ,

though not impossible , becomes cumbersome . For this reason and for practi-

cal design purposes , the idealized spring—mass , single—degree—of—freedom

approximate analysis is commonly used. This method provides a means for

analyzing the more complex structures rapidly and with a reasonable de-

gree of accuracy (Reference 2).

2.1 EQUATION OF MOTION

The actual deep slab structure and tne idealized spring-mass system

are shown in Figure 2—1. The first peak value of deflection is of primary
ir~terest for this problem , and damping is often neglected (Reference 4),

but for completeness it has been retained . From the free-body diagram shown
in Figure 2-1 , the equation of motion for the equivalent 1 d-o-f system is

Me~~
(t) + 

~e~
’(t) + K y(t) — Fe (t) = 0 (2-1)

WhL’re Me = equivalent or effective mass , lb-sec 2/in (Kg)

t )  = acceleration of slab at time t, in/sec2 (m/sec 2)

= equivalent or effective damping, lb-sec/in (Newtons-meters/
sec)

y(t) = velocity of slab at time t, in/sec (m/sec)

Ke = equivalent or effective stiffness , lb/in (Newtons/rn )

y(t) = deflection of slab at time t, inches (m)

Fe(t) = equivalent or effective force at t~~~
’
~~~~~-~ ——

2-1 
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b. IDEAL IZED DEEP SLAB SPECIMEN
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Figure 2-1. Deep Slab Specimen and 1 d-o-f Model
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In order tc d e f i n e  the equivalent  system , the pa rameters Me l 
~e ’ K ,

and Fe must be evaluated . The equivalent  one—degree—of freedom system is
one for which the kinet ic  energy,  dissipat ion , internal  energy, and work
done by all  ext er nal fo rces ar e at all  t ime s equal to the same qu an t i ti e s

f or the continuous—mass deep slab s t ruc ture .  It is assumed that the de-
flected shape of the s t ruc ture  is the same as that due to static loading.
(Thi s is a key a s sumpt ion . )

If any poi nt on the def lec t ing  surface  of the deep slab is described
by

y ( x , z , t )  = A ( t ) ~~(x , z )  ( 2 — 2 )

where

A(t) = displacement , in ches (meters)  as a funct ion of time t

~. ( x , z)  = assumed def lec t ing shape ( i . e . ,  mode shape) of the deep slab

the velocity y ( t )  of any point on the slab becomes

y ( x , z , t )  = A ( t ) q ~(x , z )  ( 2 — 3 )

If th e equivalent system is to respond similarly to the mi dspan of

the actual  s t ructure,  then the displacements and velocities of both systems
must be the same.

Equat ing the kinet ic  energy of both systems y ields

l/ 2 M A ( t ) 2 = 1/2f M [ A ( t ) ~~(x , z ) ] 2 
dS

or 
2 

(2—4)

Me =j ~~ (x , s) dS

whe re S is the area of the slab (p l a n f o rm) .

Equating external  work y ie lds

F eA ( t )  F [ A ( t ) ~~ (x , z ) J  d S

F e F~ (x , z )  dS ( 2 — 5 )

~~~~~~I .1 ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L- - -~~~~~~
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where
2 . 3  2M = mass per unit area , lb-sec u n  (kg/rn

F = force per uni t  area , pounds/ in 2 (N ewtons/m 2 )

Similar ly,  equ a t i n g  the dissipation yields

‘- S .
~ A ( t )  = I c A ( t ) ~~(x , z )  dSe .,

wher e c is a “ loca lized ’ damping term .

The eq uivalent  load of Equation ( 2 — 5 )  app lies to the mag n it ude of the
load , wh i l e  bo th loads have the same time funct ion .

• The res is tance or s t i f f n e s s  is the internal  force tending to restore
the system to its unloaded static position . If the s t i f f n e s s  is def ined in
terms of the load di s t r ibu t ion, then the maximum stiffness is numerically
equa l to the total load of the same dis t r ibut ion t~(x , z )  which would cause a
unit deflection at the poin t where the deflection is equal to that of the
equivalent system .

The shape function ~ (x,z) changes as the deep slab progresses through
the d i f f e r e n t  stress ranges , i.e., elastic , elastic—plastic , and plastic.
Thus, a complete solution requires that a shape function for each range be
considered . Or , to put it another way , the effective mass , Me~ 

is really
M~~(y ) , i.e., it is displacement-dependent. Similar ly ,  

~e and Fe depend upo n
the displacement.

2.2 CANONICAL FORM OF THE EQUATION FOR VARIOUS MODE SHAPES

If one de f ines  the total  mass (of the slab) by

~T J
S 

dS ( 2 — 6 a )

then

MT = phS (2-6b)

where S is the planform area of the slab and it is assumed that the average

~~~~~~~~ ( p )  and the s lab th ickness  (h )  a re  cons tan t .  S i m i l a r l y ,  the  t ota l
f or ce app lied is d e f i n e d  by

FT p dS (2-7a)

2 — 4

_ _  ~1
_ _ _ _ _ _ _ _ _ _ _ _  
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and when the pressure , p ( t )  is assumed to be un i form (over the p lanformarea) one has

FT = pS 
( 2 7b)

Finally, if one combines the preceding results (Equations 2-6b , 2-7b ,and 2—4 , 2-5, with 2—1) and then divides through by the area , S, he obtains
the canonical form

+ 
~~~ 

+ k (y )  = ap(t) (2-8)

where the mass coefficient

= !~~h ~~~~~ 
(2-9a)

~hS

and the is always i. Similarly k
e (y) is the restoring force(per unit area) (i.e., it represents the stat ic  load—deflection curve ,

pressure vs. deflection). It is clear that

~f
5

F~~~ds~ p(t) ~ dS ( (2-9b)pS pS

• and that a < 1.

Estjinat~ s of the coefficients ~j  an d a ca n be obtai n ed by assum±ng
various forms for the mode shape , 

~~~. For example , whe n ~=l , ( i . e . ,  the
slab translates through space like a rigid-body), then ~~1 and ~~l.Similarl y, if = sin ~~ (bending l ike  a simply-supported beam in one
direction only), then

1.
2L

,sin  — dx
= ~~~~ . • 

L = = .6366
L

2—5
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I
Or, if the slab acts like a plate (or membrane) in two directions , then

- - 1TZ
~~(x , z )  = sin — sin

= ~~~jfsin 2
~~i~~~ 

.~~2~~~z) dxdz = (1)2 = .25

a = Jgff(sin sin dxdz = (2 )
2 

= . 4 0 53

Thus, a priori , one has bounds on the coefficients a and ~ of the

canonical Equation (2-8). These “bounding values” will be used subsequently

when the parameters of Equation (2—8) are estimated . As stated previously,

k (y) represents the static load—deflection curve, and 6e~
’ is the damping

term , which has practically negligible influence on the maximum initial

response (cf. Biggs , Reference 2). A typical pressure vs. deflection curve

is shown in Figure 2-2, and Figure 2—3 shows a representative deflection-

time history.

2.3 “REAL-WORLD” EXPERIMENTAL EFFECTS

In practice , the mass coefficient p (and the force coefficient , a)

will vary with the displacement y. For example, a thick slab might be ex-
• pected to start out deflecting linearly (with p .5, say), and end up

“punching through” (with ~ 1, say) as the pressure loading increases. In

other words, one might have

.5 < u (y) < 1 (2—l0a)

during the dynamic response. Similar restrictions apply to the force coeffi-

cient , a,

.6 .~~ a (y) 1 (2 10b)

for thick slabs. This type of behavior was observed by Watt, Reference 3.

Conversely,  fo r t h i n , conven t iona l  s labs , Brown an d Black (Reference

5) found that they began deflecting linearl y (like a plate) and ended up

stretching , like a membrane. In this case , one might expect (at least

tentatively)

. 2 5  < p < . 3 5  ( 2 — I l a )

2 — 6
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and 4 < t < ~~~~

where ~i = ~(y) and ‘x = a (y) both vary somewhat with deflection .

Finally, Keenan ’s laced slabs (Reference 6) behave much like a wide

beam with plastic hinges. Again , one might estimate

.25 < p < .33 (2—l2a)

and

.5 ~ ~ .6 
(2—12b)

2 . 4  TEXTBOOK RESULTS

Biggs (Reference 2) presents approximate methods for the design of
beams and slabs . In Chapter Five (pp. 199—244), Biggs discusses a “mass
factor ” Km (analogous to the p used herein) and a “load factor ” K~~(analogous
to cC) . Tabulated values of K (p) and KL ( :

~
) are given therein for beams and

slabs subjected to various dynamic loads , including uniform pressure .

An important observation made by Biggs (and not originally recognized
by the authors) is that the factor a (or KL) is inherently contained in the
static-load deflection curve . Thus , the equation of motion can be written
as

+ 6e~
’ +ak (y)  = ap ( t )  (2—13 )

or , (di v iding through by a)

MA~ + ~~ + k(y) = p (t) (2—14)

where ~~~~ is called “ the load mass factor” .a

• I n equa t ion  ( 2 — 1 4 )  k ( y )  is the s ta t ic  resis tance f u n c t i o n  (pressure
vs. deflection ) of the slab . If we neglect damping (as Biggs suggests) then
eI •~~~ t io n  (2-14) becomes

M A f ~ + k(y) = p ( t )  ( 2 — 1 5 )

Finall y, if k(y) is approxima ted by a bi—linear (elasto—p lastic)curve ,

k(y) requires just two parameters to define it , namely P1~~ 
(the yield stress)

• 
and d11~ (the displacement when yielding begins). Thus , equation (2—15) has

2 — 9
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just three parameters (A , Pt . ,  and d1 ) as opposed to the more complicated
“multi—parameter ” model , which will be discussed shortly.

Initiall y, good results were obtained (in fitting the dynamic responsc
data) using the multi—parameter model. However , as more dynamic data were
anal yz ed , it became clear that the most physically significant results would
come from as simple a model as possible. For this reason , equation (2—15)
was even tua l ly  used in a t tempt ing  to f i t  the dyna mic data .

2 — 1 0
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• ; 3. MULTI-PARAMETER 1 d-o-f MODEL

When this study was begun , it was not known how well a “simple model”

(w i th constant mass p and force c o e f f i c i e n t , a) would perform in try ing to

app roximate the dynamic response da ta .  Hence , the one d—o— f model was made
fairly general in the computer program (PEBLS)* which was used in this work.

If one rewrites the equation of motion (2—8) (repeated below for convenience)

+ + k ( y )  = aP(t) (2-8)

and notes that the mass term p = p (y) and the force coefficient ~ = ~(y)

then one has

+ + k~~(y )  = a(y)P(t) (3—1)

Based upon the limits expected for  (~~,p) (see Section 2. ) then one

might choose a linear variation of ( p , u ) with deflection as shown in F i g u r e
3— 1.

DEFLECTION , y

Figure 3-la. Variation of Force Coefficient • with Deflection

*parameter Estimation for Blast—Loaded Structures
3—1 

_ _ _ _ _  _ _ _ _  
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• DEFLECTION , y

I ~7 •  •

Figure 3—lb. Variation of Mass Coefficient ~. with Deflection

For the spring force , k (y), PEBLS uses a bi—linear loac—deflec tion

curve  (F i c~~re 3—2)

• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ST

D E F L E C T I O N , y
• d

L 7 7 _ I ~~ g 9

Figure 3—2 . Force—deflection Curve Used in PEBLS

• 3 — 2
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If  th e pressure , p (t), is measured incorrectly, (i.e., the c~~namic

pressure gage is not reading properly) then one might wan t to “scale up~
(or scale down ) the pressure , p. Thus , PEELS uses

p ( t ) = Pscalef(t)

• where f(t) is the experimental (pressure vs. time ) data . Finally, the

damping term was kept linear (i.e., just 
~~~~ 

since it was expect ec to h ave
• little effect.

Thus , for generality, the eleven parameters

~~~~~~~~ ~l’ ~~~ 
mass coef f i c ient

(u
s

, .L
1

~~ a~~) force coefficient

~~1in ’ ~~~~~ 
E 1 t ) bi—linear spring

~scale 
- pressure scaling

— damp ing

were incorporated in the computer program . The resu1tinc~ model is referred
to herein as a “multi—parameter 1 d—o—f model.”

Note , of course , that the model can be readily simplified . For

example , by Setting

C (or a
~~~

= O )

one obtains

= constant (or cx = a1 c o n s t a n t)

i.e , one can revert back to the “constant mode ” model with non—varying

• mass anc~ force coefficients.

• Similarl y, by putting Epiast = .001* (or .01) one can achieve an

e~ -~~~ir — perfectly plastic force—deflection curve for the restoring sprina.

~~~ not use Eplast 0 or 6 E 0 in the computer program , since they appear

in the denominator within the FØRTRA N coding.

3—3
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I
Puttinq 

~scale 
= 1.0 gives no magnifica tion on the pressure , and ~ = .001*

gives low danpinc- . ‘2hus, at the outset, it was desirable to program a

multi-~ arameter model with the flexibility of progressive simplif ication

just noted .

Faving chosen a “multi—parame ter ” 1 d-o—f model , one is then faced

with the problem of selecting its parameters: a0, a1, ~
id . . .  etc. In mos t

- • cases , one has theore tical resul ts  to guide  him , (e.g. C < L 1), and

he may a2so have some estimate of the mode shape , ~, (which al lows h± r~.

to compu te ,•, a) and in many cases a static load—deflection curve . wi th

these a priori estimates , the analyst  has a set of “initial parameters”

for his model. Based upon his experience , the analyst also places a quanti-

tative measure of confidence on his initial estimates, and these numerical

confidence estimates are used in the search for a final set of parameters.

Th i s  sea~- ah fo r “ best est imates ” of the pa r ameter s is te rmed “ parameter
es t ima tion ,” as discussed in the next  section .

~~~~r • footnote previous page.
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4 . FITTING THE MODEL TO THE DATA : PARAMETER ESTIMATION

4.1 INTRODUCTION AND BACKGROUND

The question of selecting the parameters (a0, a1, a~~, ..., etc.)
of the 1 d—o-f model in such a way that the analytical model “ma tches ” the

experimental data is a problem of “parame ter est ima tion .” Parameter estima-
tion is related to the more general problem of “ system identification ”

(References 7 and 8). The main idea is to use differences betwee~-i measured

and predicted behavior (e.g., the dynamic response , y, as a func tion of

t ime , t) to adjust key parameters of a model automatically so as to mini-

mize response differences (i.e. , minimize  y - — y - ) .analytical experimental
The procedure is quite general and can be applied to either linear or non-

linear mathematical models (cf. Figure 4—1). 

• I I OBSERVE D BEHAVIOR
~i TEST

INPUT

__________ 
PREDI CTED BE HA V IO R 

~~~~~~~~~ YES 
STOP

L _ _  _ __ J  
NO

REVISED PARAMETER VAL L~~S 
~~~~~~T E R

I N ITIAL
PARAME TER

• VALUES

Fic;ure 4-1. Flow Diagram of Model V e r i f i c a t ion / P a r a~~~ter• Est ima t ion Procedure

In the present study , the model parameters are chosen to rinim ize

r~ vector norm

4 — 1

_ _  _ _ _ _ _ _  _ _  ~- 
_ _ _ _ _



N = {~~u }T{~~u} (4-1)

where the vector {Au} is given by

~~model 
— 

~
‘expt~ 

at time t1

= (y - y ) at time t2 model expt 2

-~u . = (y — y ) at time t., and so forth .
i model expt 1

Note that uncertainties must be recognized in both the analysis

(model) and the test (experiment) . That is, one expects (from a staLlc

load-deflection curve , say) to know the yield force (stress) fairly well,
but there is still an uncertainty in it (e.g., ~l0%). Similarl y, in

• the measured response, 
~expt’ 

one does not know 
~i 

exactll, but rather

with some uncertainty. Computational methods are available for utilizing

this information in a quantitative manner so as to achieve an optimum

- $ (minimum variance) fit between analysis and test. In other words , when
• confidence in the data is greater than confidence in the model (analysis)

the model is adjusted so that it tends to match the data . When the converse

is true , changes to the model will be relatively small.

4.2 STATISTICAL PARAMETER ESTIMATION

As just discussed , methods for parameter estimation which recognize

the respective uncertainties in both analysis and test have an obvious

nractical .~dvantage . Such a method was employed in this study. The origi-

ra l derivation and application of the method appear in reference 9.

The particular algorithm for statistical parameter estimation des—

cribed in that paper uses a linear estimator in that it operates on the

L :-i ~ of a linearized relationshi p between a parameter vector , {r}, and an

observation vector , {u}. If r~ and u~ denote prior (initial) estimates of

the elements of these vectors based upon analytical models , then the “true ”

values r and u are assumed to be related through a sensitivity matrix by

the equation (linearized Taylor ’s series expansion)

4 — 2
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(u  — u ) } = [T ]  (r — r )  ) + {c )  (4—2)

If u represents measured data with random error {C}, and the notation
(u — u )  tu and (r — r~ ) Ar is adopted , then equation (4—2) becomes

{:.u) = [T]{~ r} + {c} (4—3)

where

[TI = response sensitivity matrix of order (n~ .)

— = length of parameter vector , {Ar}

n = length of observation vector , {t ~u }

• Using the f o l l o w i n g  notat ion  adopted in

[ S I  = E[{r — r ) } { ( r  — r } T] = x ~) covariance matrix of the

parameter vector {r~

E[{C){C}T) = (~~ ~) covariance matrix of the experimental

error vector {c)

{S *} = E [{r* — r )}{(r* — r~ )}
T] = (~ 

x 
~) covariance matrix of

the vector {r*}

‘
~
‘.i~~~ revised estinate of the parameters {r*} and its covariance are given by

= {r} + [~~]{(u — u~ )} (4—4)

[S *] = [ S I  — [G] [T}{S }

w!lere the estimator matrix [~~ ] is defined as

(~~J = ~~~~~ [T]
T([T] E S )  [T)T = [S~~~

] )
~~~ 

(4 - 6 )

• Equations (4—4) through (4—6) represent the Kalman Filter equations

as applied to the estimation problem (Reference 10). The estimator matrix

‘;~ as given by equation (4—6) is derived such that the vector norm

N = {Au~
’{Au) (4—1)

is minimized (cf. References 9 and 10). Equation (4-1) is a measure of the

mean-sq uare dev ia t ion  between the exper iment a l  (measured ) response and the
theore t ica l  (calculated ) response .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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It is important to note at this point that the sensitivity matrix

[Ti = [3u/~ r] and the estimator matrix [G] are updated as the computational

algorithm iterates. The Kalman Filter equations are recursive in nature ,

and eventuall y the estimator matrix EGI will reach a steady-state solution

(cf. Reference 10). This approach (using a linearized Taylor ’s series)

is conceptually similar to app lying Newton ’s method for solving nonlinear

simultaneous equations .

Furthermore , as indicated previously, the method of satistical

parameter estimation applies when there are “noisy ” data. Experimental

error is represented by {~~ } in equation (4—3) and is accounted for by

the covariance matrix 
~
5

CC ’ 
of eciuation ( 4 — 6 )  . The reader interested

in further details of Statistical Parameter Estimation may wish to consult

- - 
• References 7 and 8.

Previous structural application (Reference 9 ) of statistical

parameter estimation used natural frequencies and mode shapes (i.e., modal
• deflections at particular locations) as elements of the observation vector .

Reference 11 uses frequency-response data and assumes steady-state harmonic

excitation. The estimation procedure can be applied in either the time—

domain (cf. Reference 12) or the frequency domain. The present study uses

the time-domain approach, since the mathematical model is non-linear.

4.3 BAYESIAN ESTIMATION EQUATIONS

TL~ J.H. Wigg ins Company has made use of “Statistical Parameter

Estimation ” previously (e.g., References 9 and 11), and developments in

this area have continued apace . Thus , Isenberg (Reference 13) recently

prepared a systematic account of statistical parameter estimation , least-

squares , weighted residual methods , etc. From this systematic study, there

resulted a set of Bayesian estimation equations , which are presented in

this section of the report. (These results have been abstracted from

Reference 13) . Details of Isenberg ’s results are included herein as

Appendix A)

In Bayesian estimation , one is given a prior estimate of the para—

• meters r0, along with the associated covariance matrix 5rr~ 
One then

sec~ s to minimize the objective function

4 — 4
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n

• F = 
~~~ 

w .~ (u o 
— u

i) (U  
— u . )

1=1 j= i.

+ 
~~~~

. .  (r~ - rj  (ro 
- r~ )

t l  ~~ .L

where
— lw = S ~~

and

• and Srr is as symmetric matrix as is S~~ .

The variables u , u - , w. ., etc., are defined in Appendix A. To on -
- 

• 0~ i i)
ient the reader,  note that  (U o~ ...u i) represent the d i f f e r e n c e  between experi-
ment (u b rv d ~ 

and the theory (u., of the model) . The terms w .  repre-

sents a “weighting ” matrix , where some data points are weighted more heavily

• than others. The reason for this “weighting ” is that all the data points

may not have been obtained with equal certainty (i.e., the experimenter may

have more confidence in some data points than in others) . For example , the

experimenter might find it easier to measure the maximum deflection

say) that the deflection at a (finite) early time (e.g., at t= .l millisec) .

The introduction of w .  allows the experimenter to influence the model

(which is being estimated) by selectivity weighting his data points .

Fimilanly , equation (4—7) contains the parameters (r0 
— r

~
) , where

r 0 is the initial (a priori) estimate of the i~~ parameter.’ The weightira

ma~ rix , ~~~ allows the structural analyst to influence the parameters esti-

ra t d by the algorithm in a fashion similar to the experirnentalist. Thus,

Y tb~ analyst has a great deal of confidence in the i~-~ parameter , he can

c::~ r~ ss that confidence through the weighting matrix , ~~~~~~~~~ In actual prac-

tice , the matrices w and ~ are given by

w = S~~ 
(4—8a)

anu

• —1w = S
rr (4—Sb )

4-5 
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where  S and S are “covariance ’ matrices defined in Appendix A. The userrr
of PEBLS controls the “route ” the program takes (to minimize F in equation

4—7 ) by his selection of S~~ and Srr •

To summarize the technique of Bayesian estimation , we iteratively
solve the sequence

T = T (r  ) ( 4 — 9 a )

S = 5 (r e ) ( 4 — 9 b )

G STTw = G (r e
) (4-9c)

• r = r 0 + G [u o~ ue
_T (ro

_r
e)J (4-9d)

• 
• and repeat the next sequence with r replacing re

. We continue to iterate

until the d i f f e r e n c e  between r and r e becomes s u f f i c i e n t l y  small and the se-
quence has therefore converged. The final value of S is S

~~r
I the revised

parameter covariance matrix. It should be noted that when the response is

linear with respect to the parameters , only one iteration is required .

I • As discussed in Appendix A , the matrix T is a “sensitivity ” matrix ,

i.e., the change in response due to a unit change in a parameter. (See

equation (42) in Appendix A.) The matrix S is a covaniance matrix , and G

is the “estimator ” matrix. The vector , r , is the set of parameters (e.g.,

~~~ 
a1, O2~ 

etc.) of the mathematical model. (See Section 3.0) Equations

~4~~9 )  are used within PEBLS to obtain the revised estimates of the model

‘~-~.rame terS.

4 — 6
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5.0 RESULTS FOR THREE (WIDELY DIFFERENT) TYPES
OF REINFORCED CON CRE TE SLABS

5.1 INTRODUCTION

Static and dynamic data from three series of tests were used in

this study . The results of the modeling are contained in this section of

the report , with Section 5.2 devoted to Watt’s (deep) slabs (Reference 3),

Section 5.3 to Brown and Black’s conventional slabs (Reference 5), and

Section 5.4 on Keenan ’s laced slabs (Reference 6). The sensitivity of

the results is given in Section 5.5 , and additional results are given for a

three—parameter model (of Watt ’s Slabs), a four—parameter model (of Brown
and Black ’s Slab), and a simple model of Keenan ’s Slabs.

5.2 WATT’S DEEP SLABS (Reference 3)

Reference 3 reports on static and dynamic tests of deep R/C slabs

(span-to—thickness ratio of 4.12). Two types of slabs were tested (namely
mach—modeled slabs and environmentally-modeled slabs) but static test data
were available only for the latter. The slabs were square in plan , but
they were placed over a circular cavity and thus had an unsupported diameter

of 24 inches in the center. Dynamic pressure loads were applied by the WES
Small Blast Load Generator , which involved detonating an explosive mixture
of gases and driving a shock wave against the face of the slab .

The dynamic response was recorded using accelerometers mounted in

the center of the slab and also on the support structure. The accelerometer

traces were digitized and then integrated in time to give velocities and
• displacements. Pressure—time histories were also recorded . For further

details, see Reference 3.

The computer program , PEBLS, allows velocities to be part of the
“observation vector ,” {Au). Since velocities were available in Watt’s test

• data , they were used (along with the displacements) to form the observation
vector . Results were obtained only for the Environmentally Designed Slabs ,
test specimens ED1, ED2 and ED3. Figure 5-1 shows the experimental data

which was used as input to the program and Figure 5-2 gives the correspond-

ing pressure-time histories. The experimental data used from Figure 5-1 is

tabulated in Table I for the three test specimens, ED1 , ED2 and ED3.

• I n add i t ion  to the data on disp lacemen t and vel oc i t i e s, note that
the user must input an estimate of the error in the experimental observa—

• tions. (The error in observations relates to the matrix [S
~~

] - see
Equation (4—8a) discussed previously) . Thus , the percent errors in the

5—1



TABLE I

A. EXPERIMENTAL RESPONSE FOR THREE SLABS P
H TIME TIME SLAB ED SLAB ED 2 SLAB ED 3

POINT M SEC DISPL. VEL. DISPL. VEL . DISPL. VEL

1 .25 02 180 01 90 .025 180

2 .5 ~O8 320 06 480 .09 350
3 .75 15 380 18 435 .18 350
4 1.0 .21 190 .2 7 310 .26 280

-
~~ 5 1.25 255 120 .33 235 .32 210

6 1.5 .285 90 .39 210 .37 120

7 2 .15  .325 0 .455 0 41 0

B. CONFIDENCE IN THE EXPERIMENTAL OBSERVATIONS

TIME TIME SLAB ED 1 SLAB ED 2 SLAB ED 3

POINT M SEC DISPL • VEL DISPL. VEL . DISPL VEL .

.30*7 25/ 1 .5 7 1 . sZ .30 7 .257
• 1 .25 V V V V V V

________ _________ 

~,—~OOOO36 //2025. ,/bOO225 ,,/18225. ,,K0000563 ,,
/
~O25.

.20 7 .is/ 
- 

0.5 7 .30/ .20 7 .157
2 .50 V V V V V V

________ _________ ~v~
<O0O256 ,/~3O4 . ,,K0009 ,,/20736. ,,,K000324 ,,V~756 25

• .15 7 .15/ .25 7 
- 

.25/ .15 7 .15 7
3 .75 V V V V V V

________ ________ 
,,.-<öOO5O63 ,,

/‘3249. ,,XöO2O25 ,,-11827. ,V’bO0729 ,/~756.25

.10 7 .15/ .15 7 .257 10 7 .157
4 1.0 V V V V V V

________ _________ 
~~-~0O0441 ,,..412.25 ,,~-(oo 164o ~/ 6O06. ~,7~0OO676 ,A764.

_  

1.2 5  

_ _ _  _

6 1 5  
- V -~/  - 

~V
’ ~9/ ~~V

________ _________ 

,,~—‘bOO8123 /-‘tO6 25 ,/‘b03422 ,,/3969. ~~
./bO1369 ,,.-loo .

05 7 = 6/ .10 7 = 6/ .05 •~~~~~~~ = 67
7 2.15 V V V V 7 V

,~-<0OO2641 ,V506 25 ,—~‘oO2O7O ,-/3969. /.<000420 (7’i~O0 .

• i * 1

PER CENT
• ERROR

VA RI A NCE 5 — 2
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velocities and displacements are also given in Table I (the bottom half)

along with the corresponding variances .* A small percent error indicates

good confidence in the data , and a large error indicates poor confidence.

Thus Table I shows that we have more confidence in the displacements at t4
through t7 (the later times) than we do in those near the initial times

(t1 through t3).

The results of the parameter estimation calculations are shown in

Table II , which gives the ten parameters which were estimated 
~~lin ’ diin~

E lat e etc.), showing their initial values , their values estimated for each

• test slab , etc. For example , the initial (“prior ”) model used a yield stress

of 525 LB/IN2 (P1. ), and after the estimation procedure (for slab ED1) the

estimated value of the yield stress was 450 LB/IN2. Perhaps the more impor-

tant thing to note in Table II, however , is that the RMS deviation decreased

from .0428 -initially (Slab ED1) to .0048 (when the revised parameters were

used), i.e., a factor of ten improvement in the RMS value .

The de f l ection vs. time is shown plotted in Figure 5-3 for Slab ED1 ,
where the three curves represent

( i )  the experimental  data ,
(ii) the initial model response ,

and , (iii) the model response using the “optimum ” parameters just esti-

mated.

H
• L) A .

r - . FINAL MODEL
EXPERIMENTAL DATA 

~~~~~~~~ 
(REVISED PARAMETERS )
.

L)

• 

I: 

.~ 

~~ 

~~~~~~~~~~~~~~~~~~ AL 

~~TO 2.5
TIME , MILLI-SECONDS

Figure 5—3. Deflection — Time History of Slab ED 1,
Showing the Initial and Final Mode l Results.

*The v a r i a n c e  is equal to the square of the s tandard  dev i a t i on . See
Reference 14.
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It is also noteworthy that the static load-deflection curve

(estimated by this procedure) is a fairly good fit to the static test

data. (See Figure 5—4). These results , presented in Table II and Figure

5-3, were based upon a relatively “good” prior model. That is, given the

experimental static load-deflection curve of Figure 5-4, one could make a

pretty fair guess about the values of the parameters P • , d - , E ,fin fin plast
etc.

The question naturally arises, “What if one didn ’t have the static

load-deflection curve?” In this case, he would rely on a combination of

experience and analysis to come up with a prior model for the non-linear

load-deflection characteristic. But then the question is, “How well would

the estimation procedure perform ,” or more specifically, “Will the estima—

tion procedure still arrive at a good bi-linear approximation to the exper-

imental load-deflection curve?”

To test this problem out, a poor initial model (with a yield stress

of only 200 LB/IN2) was input to the program along with the experimental 
J

• response data from Table I. The results are shown in Table III and Figures j
5—5 and 5— 6. Referring to Figure 5—5 , note that the response curve for the

revised model matches the experimental data almost ex’.ctly, although the

initial (prior) model gives rather poor results.

Figure 5-6 shows similar results, where the load-deflection curve

io~ the final model is much closer to the experimental data than is the

initial model. These preliminary results were encouraging , and it appeared

that the 1 d-o-f model (as used herein) was able to match the experimental

response for deep slabs.

Refer again for a moment to Table II. Note that Table Ii contains

both the init ,al estimates of error in the parameters as well as revised

~rror estimates. For some parameters (e.g., EMUD) , the initial error

f imate was 50% , and after data for three slabs had been supplied to the

• computer program , the error was barely reduced (i.e., the revised error was

49-i). However , note that other parameters (like PLIN , for example) began

with an estimated error of 50% , which was subsequently reduced to 17% ,

i.e., a significant improvement.

Thus , it seemed that everything was working exactly as had been

intended , and the parameters (see Table II) were coming out with “reasonable ”

values. At the suggestion of the Technical Monitor , we simplified the

model from ten parameters (Table II) to four parameters, namely:
5—6
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TABLE I I I

A. PARAMETER VALUES , B E G I N N I N G  WITH A POOR MODEL

SLAB ED 1

INITIAL VALUE FINAL VALUE

PuN 200.00 399.700

DLI N .07 .105

EPLAST 10.00 11.500

EMUØ .80 .792

• 
EMU 1 1.00 .965

EMUD .07 .082

ALPO .80 .794

ALPD .07 .030

BETA .05 .056

PSCALE 1.00 1.01 6

B. RMS DEVIATION

INITIAL MODEL .173

• FINAL MODEL .0049
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•

• A sing le mass parameter , ~.avg
I Two spring-force parameters (P - and d -fin fin
• And one force parameter , 

~scale 
(the ovalue was set

equal to unity).

The results of this “four-parameter model” are sho~rn in Table IV ,

and Figures 5-7 through 5-9 , respectively, for slabs ED1 , ED2 , and ED3.

Note that by adjusting these four parameters ~p, 
~lin ’ d1

. and 
~scale~~The parameter estimation program was still able to closely fit the dis-

placement time-histories. The parameters still seemed to have reasonable

values , but it was somewhat disturbing that the force—deflection para—

meters 
~~lin ’ d1 . )  did not match the static load—deflection data as well

as had been expected. These discrepancies were thought to be due to slight

variations in the individual slabs , however.

At this point in the study, everything looked rosy, and it was

(somewhat naively) assumed that similar results would be obtained for the

other types of slabs as well. However , that was not the case , as is dis-

cussed in the sections which follow .
• 5.3 RESULTS FOR BROWN AND BLACK’S CONVENTIONAL R/C SLABS (Reference 5)

Reference 5 provides both static and dynamic test data on conven-

tional R/C slabs , where the slabs were square in plan and had a span of 29

inches and a thickness of .89 inches. The static test data are shown in

Ficure 5-10. Note that these static tests were continued to destruction of

the slab , i.e., until the slab could carry no more load , at a deflection of

a~~ roxirnately 4 inches. At this point in the test, the concrete was highly

fractured , and the reinforcing steel was stretched to its ultimate capac-

ity. (For additional details and photograph of the damaged slabs , see Re-

ference 5).

Brown and Black’s tests are noteworthy for the fact that they

~~~er~ ined the ultimate pressure capacity of their slabs (From 20 to 25

~-si , s-:e Figure 5-10) and the corresponding maximum deflection (i.e.,about

4 inches). This information was not obtained for Watt ’s deep slabls , dis-

cussed previously (cf. Figure 5—6). Thus , from their static tests, Brown

and Black knew that a deflection of about 4 inches corresponded to the

ultima te capacity of their slabs. Yet , in the dynamic tests (see Figure

5-11), the slabs were all driven to amplitudes well in excess of 5 inches.

Not surprising ly, each of the dynamically tested slabs was severely

damaged . (See Reference 5 for photos of the tested slabs). These tests

5—11
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Table IV

Estimated Parameters for Watt ’s Slabs

SLAB SLAB SLABPARAMETER ED 1 ED 2 ED 3

MASS COEFFICIENT p .93 1.00 .95

YIELD FORC E 400 360 443

- 

- 

ELASTIC DISPLACEMENT d 1~~ .137 .173 .168

PRESSURE SCALE FACTOR 1
~sca1e .96 .82 .90

RMS DEVIATION ARMS .005 .015 .003

~— 1 2  
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(by Brown and Black) were therefore fundamentally different than Watt ’s
tests , where the ultimate capacity of the slabs was not measured , and the
dynamic tests were run at less than the ultimate strength. On the other hand ,
the authors of Reference 5 did measure the ultimate strength of their slabs ,
and then they tested (dynamically) to well-beyond the static capability.

These basic differences in the test philosophy and test results were not
immediately recognized by the writer. It was only after difficulties were
experienced with the parameter estimation procedure that a closer look was
nade into the test details.

Initially, a 10-parameter model was used to fit the test data for

slab ID-2. (The pressure-time history for this test is given in Figure

5-12 , and the displacement time—history is shown in Figure 5—13.) This

multi—parameter model resulted in a good fit to the time—history data (see

Fiqure 5-14) and the force—deflection results also looked promising (cf.

Figure 5-15) . However , in contrast with the earlier results (Section 5.2)

the parameters for cx , p , etc , did not appear to be physically realistic.

To get a better understanding of what was happening , the 10-parameter model

was simplified (e.g., p was held constant , a was held constant , etc.) but

Eplast (the post-y ield slope) was still allowed to vary (since it was

expected that a bi—linear characteristic would be needed to approximate the

force-deflection curve) . Several parameter estimation runs were then made

(they are tabulated in Table V) each with the same result: the program

arrived at a “nearly—linear ” force—deflection curve when fitting the dynamic

test data. The fit to the dynamic data was fairly good in each case , as

denoted by

I N 1 1/2
t = 

~~ 
— Ye x )21

which is a measure of the deviation between the model (theory) and the test

(experiment) .

At this point , it was decided to try to use a linear force-deflection

c - - ’ ’ - e  and see what the parameter estimation program would do. Again , it

• ~ichieved a fairly good fit to the dynamic test data , with 
~rms 

less than .01.

(See the last line of Table V.) These results were disturbing , at least

initiall y, since they were unexpected . What had been expected was that some

form of strain-hardening (e.g., like Figure 5-15) would be required to

satisfactorily fit the dynamic data. It was thought that the strain—

5—18
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- a: -r ir~ : wo u ld L~ rc’aujred because the static load—deflection data was

stronc~l\- nor-linear (c.f. Figure 5—10). However , the parameter estimation

e-~ ’:ations ~- e j t  fitting the dynamic data and using a nearly—linear model to

do so.

I :nallv , after some hand calculations usinc~ the nc th c~: of e~~~ iv a l c - r . t

l~~nearization (Reference 15) it was recognized that the dynamic da ta (or a t
least the maximum deflection , 

~max~ 
can a lways  be f i tted by an “eq u iva lent

l i nea r model” . For an~’ loading func tion , p (t), the response of the 1 d-o—f

system is well-approximated by

y (t) = (1 — cos 
~eq

t) ómax (5—1)

w h e r e  
mq is the frequency of the equivalent linear oscillator ,

k2 
= 

~~~~~~~~ (5—2)eq m

and k is the “equiva len t  l inear s t i f f n e s s” .eq

If one begins with the non—linear differential equation

+ 
~nl  (y) = p(t) (5-3)

and the approximate solution

‘ 

y(t) = 
~max 

(1—cos 
~eq

t) (5—4)

(where f 
1
(y)is ~~~ non—linear force-deflection curve) then multip l~~inc both

sides of ohe equation (5—3) by

= 6 sin t (5—4)eq max eq

and integrating the result gives

ff fl1
( Y )  ~~~~ dt =fPft) & eq~ max 

sin ‘ eq t dt (5—5)

The limits on the integration are from y=O to y=6 , or in terms
7’ max

of the time , t , from t=0 to t = —. At both these times , tiie velocity, ~ ,
eq

is zero , and t~ w kinetic eneri~y term vanishes. Equation (5—5) then

- j C ’ S t~~

‘TI

( “ eq

J f 1
(y)dy = J ~~~~~~~~~~~ sin 0q

t dt (5—6)

0 0
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which says that the strain energy (stored in the nonlinear spring ) is equal

to the “work done ” by the applied force p(t).

As a first approximation , one might try p(t) = p
0 

= a constan t , if

the loading function does not change much during the initial response . Then ,

the right—hand—side of equation (5—6) gives

fPo 
0eq6max sin W~qt dt = 2PoOea 6

max

and one finally has

J - maxf~~1 ( y ) d y  = 2
~ o~ eq~max 

(5—8)

0

which can be solve d for the equivalent linear frequency (O eq) and thence

the equivalent linear stiffness 
~~eq~~ 

Note that 0eq is given in terms of

the area (strain energy) under the force—deflection curve , and the rraxin- un

displacement , 
~max~ 

Also note that no restriction has been p aced on the

force—deflection characteristic , f
1
(y).

Based upon the foregoing discussion , it is the author’s opinion that

the parameter estimation algorithm performed an “equivalent linearization ”

(or something similar) to achieve a good fit to the dynamic test data of

Reference 5 with a nearly-linear force—deflection curve. If this hypothesis

is correct , it is only natural to inquire as to why something similar did

not occur previously, e.g., in the case of Watt ’s slabs (Section 5.2). A

possible explanation for this difference in behavior is that ~att ’s slabs

were tested in a “moderately nonlinear ” range (with the maximum deflection

~~ , equal to just 2 or 3 elastic deflectior±s, d11~ ) whereas Brown and
Black ’s slabs were loaded to their ultimate capacity . For the latter , the

-
. - r-aximurn c’Teflections w-?re on the order of 15 to 20 times the elastic deflec-

tions. As stated previously, there was a fundamental difference in the

tes t ing  phi losophies used in References 3 and 5. This poin t will be dif—

cussed in more detail in Section 5.9.

5.4 RESULTS FOR KEENAN’S “LACED” R/C SLABS (REFERENCE 6)

Feference 6 presents results for static and dynamic tests of uni-

formly—loaded one—way reinforced , “ la ced” slabs . The slabs had a span of

5— 25
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Figure 5-17. Time Variation of Pressure and Deflection , Slab D3-l
(Keenan , Reference 6)
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Figure 5-19. Variation of Deflection Across the Semi-Span
(Keenari ’s Slab D3-1)
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6 feet (72 inches) and a thickness of 6 inches , giving a span—to—depth

ratio of 12. These slabs are unusual because of their “lacing ” reinforce-

ment , which is shown in Figure 5—16. Keenan ’s tests are also unusual by

virtue of the fact that the tests were conducted at several different

pressure levels. Recall that Watt’s tests (Reference 3) and Brown and

Black ’s (Reference 5) were each conducted at basically a single (dynamic)

pressure level. Keenan recognized that a nonlinear system (such as an R/C

slab) should be tested throughout its nonlinear range. Thus , his tests
began at a low level of (dynamic) pressure , p(t), and became progressively

more severe . However , a testing program of this type requires either several

identical specimens (which is expensive) or several tests on the same

specimen (which results in cyclic loading and progressive failure). Both

alternatives are undesirable, from the point of view of the test engineer.

Keenan chose the latter course , and he successively tested the slabs to

higher and higher pressures. The most significant data , from the point of

view of the present study, occurred on the “first shot.” Thus , the atten—

t ion is focused herein on Keenan ’s test specimen D3—1. The pressure vs.

time history and displacement time history for this slab are shown in

Figure 5—17. A typical static pressure vs. deflection curve for such slabs

is shown in Figure 5-18.

Referring to Figure 5—17 , note that there are three displacement

tr~s.~-s , namely Dl , 02, and DC. These traces refer to three separate dis—
ol~?cernent-rneasuring gages , mounted at points along the span of the slab ,

with gage , DC in the center. By using three displacement gages (instead of
j u s t  one , in the center) Keenan observed that the displacements varied in
space, as well as with time . For example , Figure 5—19 shows the readings of

the three displacement gages (connected by straight lines) at identical

T t  is sloar from Figure 5—19 that more than one mode is participa-

t .~~~ ij in t~ie rusponse , and in particular , it appear that the first mode
(iike sin -~~

) is interacting with the third mode (like sin

Several attempts were made to “fit ” the cent ra l  response (gage DC )
of Keenan ’s slab D3—l to the one degree—of-freedom model. The results

~:~~cL were successful are given in Table VI in terms of the model of

parameters. Of particular note was the fact that the “force coefficient” ,

• ~~~~ was always estimated as befinning at a very low value (e.g., .02 , etc.)
ini tially. Attempts to fit the response curve with a constant cx (like an

~avg such as was successfu l  wi th  Watt ’s slabs) were t o t a l l y  unsuccessful
in t h i s  case.

L 
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by beg inning with 
~ 

.C2 and then going u~- to 1
1 

= 1, the force
coefficient deemphasized the initial pressure peak , since the force applied

te the 1 d—o-f model is g iven by the product of a and p(t). ‘.cithout this

significant “re—shaping ” of the pressure pulse , it was not possible to

ach ieve a very good fit to the dynamic response data for Keenan ’s laced

slabs.

Keenar ’s tests used prima—cord explosives placed in vented firing

tubes to produce the dynamic over—pressure on the slabs. Possibly, because

of non—uniformi ty of pressure loading or perhaps because of gas leakage

(around the edges of the slab) Keenan ’s in i t i a l  pressure read ing  may have

been too hi gh. Or , another possibility is that the interaction of the

fundamental mode with the higher modes occurred in such a fashion that

the “effective force ” on the fur ciamental mode was initially reduced .

In that regard , it is worth noting that tha slab failure occurred

(both statically and dynamically) with a hinging action at the supported

ends and in the center (see Figure  5-20). Yet from the linear theory of

vibraticns , one expects the slab to respond initially (i.e., at small

amplitudes) in terms of the vibration modes of a clamped—clamped beam.

Thus , the slab response must make a (fairly significant) transition fror:.

several vibration modes at small amplitudes to a hinged mode at large

amplitudes. This modal transition might be the “cause ” of the reduced force

c o e f f i c ien t (a) which the estimation algorithm seems to require in fitting

the response data for Keerian ’s slab D3—l .

7 7 — 2 9 9

4’

Figure 5—20. Deflection Mode Typical of Keenan ’s Laced Slabs
(Reference 6)
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5.5 SENSITIVITY OF THE RESULTS TO MODEL PARAMETERS

In the parameter estimation algorithm , the “sensitivity matrix ” ,

IT] , is calculated and used in arriving at the revised parameters. The

individual elerients of [T] constitute the “change in response per unit

change in a given parameter ,” and these sensitivities are tabulated in

the computer printout. To give the reader a feeling for which parameters

have the most significance , Tables VII through IX have been prepared. These

tables give the sensitivities at three locations in the dynamic response

time—history, namely

(i) the sensitivities during the initial response, when the

deflection is near zero ,

(ii) the sensitivities at the mid-response , when the velocity is

a maximum , and

(iii) the sensitivities at the maximum response .

Admittedly, Tables VII through IX are somewhat misleading, in that

the absolute sensitivities (which are used and output by the computer program)

have been tabulated. Thus , Table VII gives L~y1/~~
i as —2 .4x10 2, which means

the displacement y changes ~2.4xl0
2
~ for a unit change in the mass coef-

ficient ~~~ . Note , however , that y1 itself may have been 
only lxlO initially

so ~y~/Ap could mean a relative change in y1 of 240%. It would be desirable

(if possible) to present the relative sensitivities , like (t~y1/y1) (divided

by) (~~~/i~). To do so at this point in time would require many hours of

sc-arching through old computer runs and was not thought to be worthwhile.

Subsequent changes to PEBLS (to print out relative as well as absolute

sensitivities) are definitely indicated at a future date.

This is not to imply that Tables VII through IX are not useful;

note, foi examtle in Table IX that the sensitivity t
~
y
~
/AcL

0 
was 75 .5  at the

maximum r~ sponse point. Clearly y. is very sensitive to cx0, as indicated
by the high value , namely 75.5.

5.6 THREE-PARAMETER MODEL RESULTS FOR WATT’S SLABS

~s stated in Section 2.4 , it eventually became evident that a three-

~~i arneter model (involving X , the load—mass factor , 
~lin 

and di~~
) was

the simplest elasto—plastic model one can consider (Cf. Biggs , Reference 2).

Accordingly , an attempt was made to “fit” Watt ’s dynamic test data using

this three—parameter model . The results are summarized in Table X , which

shows that a pretty fai r  f i t  (e.g., ax-i RMS error of .01)  can be obtained
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Table V III

Typical  Sensi tivi t ies  of the Response to Various Model Pa rameters

(Brown and Black ’s Slab ID_2)*

I N I T I A L  RESPONSE MID- RESPONSE MAXIMUM RESPONSE
(NEAR-ZERO (NEAR MAXIMUM (AT MAXIMUM

.4 
DISPL ACEMENT)  VELOCITY )  D I S P L A C E M E N T )

SENSITIVITY TO
FORCE PARAMETERS:

.16 6.5 3,8

l~~~~d 
-1.5 x 1O~~ -.43 - .41

SENSITIVITY TO
MASS PARAMETERS :

1 ~ 1O~~ -1.0 -.53

.16 .34 .19

SENSITIVITY TO
BI-LINEA R SPRING
PARAMETERS:

-2 x 1O
~~ 

-.13 - .30

— 
~~~~~~~ .53 1.08

~~
i1
~~

p1ast 0 -.06 -1,05

SENSITIVITY TO
PRESSURE-SCALING
PARAMETER:

~ i’~~sca 1e .22 2.5 5.04

*See also Ta b le VI , row two .
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Table IX

Typical  Sens i t iv i t i e s  of the Response to Various
Model Parameters (Keenan ’s Slab D3_l)*

INITIAt RESPONSE MID-RES PONSE MAXIMUM RESPONSE
(NEAR-ZERO (NEAR MAXIMUM (AT MAXIMUM

_______________________ DISPLA CEMENT ) VELOCITY )  DISPLACEMENT )

SENSITIVITY TO
FORCE PARAMETERS:

.49 27.3 75.5

-.01 -5.3 -16,0

SENSITIVITY TO
MASS PARAMETERS:

~y1/~lu0 -.013 -1,46 -4,36

3.9x lO 6 .018 .062

SENSITIVITY TO
BI—LINEAR SPRING

- - PARAMETERS:

‘ “-Pi1~ 
~8.4xlO

6 -7,5x lO~~ ~4 .5xl0
2

4,3xl~~~ 2.67 7.82

AYi/~
Eplast 0 2,2~~10~~ l.5~ io 2

~EflSITIV1 TY TO
DRESSURE~ SCAL INGL PARAMETER

~~i”~~sca1e 5.6x ~~~~~~ .95 3.74

*See also Ta b le V , row six.

~
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with the simple model. Note , also , the “yield force” P
1 

was typically

estimated at about 450 Lb/in
2
, in pretty fair agreement with the static

test data , (cf. Figure 5-4 and 5—21). As shown in Figure 5-21 , the estimated

elasto—plastic load—deflertion curves are quite close to the results from

static tests. Thus , one can get a fairly good estimate of the analytical

load—deflection curve from static test data.

Note that Table X also gives estimated load—mass factor of close to

unity . A load-mass factor of exactly unity is predicted if the slab “punches

through” with rio spanwise bending. Watt ’s tests (Reference 3) showed that

many of his slabs did “punch through” , which accounts for the load-mass

factors estimated and shown in Table X. It is felt that the parameters given

in Table X are “physically realistic ” for Watt ’s slabs , and this confirms

the earlier result that simple models will work pretty well for Watt’ s data.

Table X. Three-Parameter Model Estimates
for watt ’s Slabs

PARAMETER SLAB ED1 SLAB ED2 SLAB E03

LOAD-MASS FACTOR , .98 1.19 1,05

Y I E L D  FORCE , 
~~~~ 

422 439 480

E L A S T I C  DISPLACEMENT , .137 .137 .135
d .

1 -in

GOODNESS 0~ n T , .006 .016 - 005
i.e., .~rms
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5.7 FOUR-PARAMETER MODEL FOR BROWN AND BLACK’S SLAB ID-2

In keeping with the theme of using the “simplest possible model” ,

a four—parameter model was attempted with Brown and Black ’s test data. The

four parameters were A (the load—mass fac~tor) P1~~~ d1~~ and E 1 t , the

latter being added primarily because of the stronger non-linear force-

deflection results (of. Figure 5—10) -

Table XI. Results of Estimation Procedure for Brown and Black’ s Slab ID— 2

COMP UTED A N D OBS L KVLI j UI~~,~LAC E M E N T  ~PUN ~ E
POI NT TEST TIM E U— A N A L I T I C  U—OB S VU Y Z U — U T E S T

1 0 .25000E—02 O .9434 1E—01 0 .600001—01 0.143411 — 0 1
2 O .S0000E—02 0.54926 0.50000 0.492561—01
3 O.7S000E—0 2 1.5285 1 .2000 0 .32651
4 O .I00 00E—O1 2.9136 2.0000 0 .97379
5 O .12500E—0I 4.6882 3 .0000 1 .6082

.4 6 0,IS000E— O 1 6.4586 4 .2000 2.25b 6
7 O .17500E 01 8.0667 5.4000 2 .o667
B 0 .200001—01 9.2944 6.1000 3.1944
9 0 22S00E—01 9.9598 6.8000 3 .1596

10 0.3000 0E—0i 9.6021 7.0400 2 .5621

OBJ E CTIVE DUE TO O B S E R V A T I O N S  S 17 9 . 7 6 9  PMS E RR U W IN 0bSE~~V ATT0h S s 2 .0 1 0 64
— OBJECTI V E DUE TO PARA M E T E K S • 0 . 0 0 0 0 0 0  T O T A L  O B J E C T I V E  I U N C T I O N  • 1 7 9 . 1b9

COMPUT ED AND O B S C RV E O  D I S P L A C E M E N T  RESPONS E
POINT TEST T IME I l—ANAL Y TIC U OB SEPVE D YsU UTEST

1 0.250001—02 0 .80062E—Oi 0.R0000E—01 0 .861561—03
2 0 .50000F— 02 0.41053 0.~~0O00 — O .2 94 7 1E—01
3 0.1500O~ — O 2 1.1535 1.2000 — 0 .4€.5 27E—01

O .1 0oo0~:— Oi 2.0~ 01 2.0000 O .0012 0E—O 1
5 0.12S00~ —O 1 3.1507 3.0000 0 .15069
6 0.IS000E—0 1 4.2646 4,2000 O .64625E—O 1
7 0 .l7500F—O 1 5.31’# i 5.4000 — 0 .80906E—0l
B 0.20O00~ — U i  6.2040 6.1000 0.10399
9 0 .22500~ — 01 6.8204 6.8000 0 .20403E—01

10 O ,3000O~ — 01 6.8452 7.0400 — 0 .19475

OBJ E CTIV E DUE TO ORSERV A T IO N S  = 1.06444 PMS E R Rf lW IN ORS E RVITI ON S z 0.959385E— 0j
OB JE CTIV E D UE TO PA P A M F T E R S  = 1 .53308 TOTAL OBJECTIVE ~UN C TI0N z 2 .59753

Tabie XTI. Parameters Estimated for Brown and Black’ s Slab

PA RA M ~ T~ R CO IFID€NCr LEVELS
-
. INITIA L , L,ATEST PERCENT

.4 P A R A M E T E R  ESTI M ATE ESTIMATE VARIANCE CQ~~ IDE’iCE
PLIN 14 . 0 0 0  19 .266  2 . 8 8 7 7  12 . 1 3 8

• OLIN 0 .2 5 0 0 0  0 . 3 3 19 4  0 . 1 1 5 1 8 E — 0 1  4 2 . 9 2 8
E PLS 1 . 4 0 0 0  0 . 3 7 3 4 3  0 . 3 3 278 4 1 . 2 0 5
E M U 1  0 .7 0 0 0 0  0 .8 2 8 4 4  0 . 3 6 9 3 1 E — 0 1  27 .416
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The results from the computer run are shown in Table XI which

gives the initial response (top half) and the final response (bottom half

of Table XI) . Note that  the RMS error in observation went from a value of

2.07 (initially) to a value of only .0959 (final estimate).

The final estimated parameter values are given in Table XII,

which shows 
~lin ’ 

d1~0~ 
Epiast 

and A (labeled EMU1) each having a

significan t improvement in confidence level (e.g., from 75% to 12% , etc.).

Note also that the values estimated appear to be “physically reasonable ” and

acceptable from an intuitive standpoint. (For example , see the text by Biggs,

Reference 2, for typical load—mass factors, and Figure 5—22 for the static

load—deflection curve) . Biggs test, p. 214 , gives theoretical load—mass

factors in the range

.51 < X < .67

for square two—way slabs (
a/b = 1) .  Table XII gives a load—mass factor of.82,

which is in fair agreement with the theory . Note that Biggs ’ values are

calculated assuming “yield—line theory ” for the failure of the slab.

Fi gure 5—22 shows the estimated bi—linear pressure vs. deflection

fair ai.i’Dunt of scatter is indicated by the test data , suggesting that the

slabs were of non-uniform quality . Again one sees that simplified theory

and the static load—deflection data provide fairly good estimates of the

final model parameters.

5.8 FOUR PARAMETER MODEL FOR KEENAN’S SLAB D3-l

Keenan ’s data (on his Slab D3-l) proved to be fairly difficult to
“fit” with the simple four—parameter model. Several computer runs were made

using the data shown in Figure 5—17). Discussed previously in Section 5.4).

Accepting the data as accurate , the computer program PEBLS originally esti-

mated a load-mass factor of about three (3) for Slab D3—l . This result was

unexpected (and we felt it was incorrect) so a closer look was taken at the

data (Figure 5—1 7).

Referring to Figure 5—17 , note that tne disp lacement trace ~C sh ‘-s
a -~~‘1ection of nearly—zero out to a time of .002 sec (2 mil1i—seconds~
Note also that the pressure , p(t) is the highest during this early time

period . Thus the possibility occurred that perhaps Keenan ’s displacement

trace was in error , since when the pressure is greatest , (and the accel-

er-~tion is a maximum) one would expect that displacement would occur (and

not be near—zero) .
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Table X II I . Resul ts of Est ima tion Procedure for  Keen an ’s Slab D3-1

COMPUTED AND OBS E RV ED DISP LAC EMENT RE SPONSE
POINT TEST TIM E U — A N A L Y T i C  U—OBS E RVED YsU—UT EST

I 0.20000L—02 0.32253 0, 20000 0 .12253
2 0 .30000F—02 0.60658  0. 35000 0.25658
3 O .40000E—02 0.89463 0.53000 0.36463
4 0.S0000E—02 1 .1630 0.75500 0 .40801
5 O .60000E—02 1.3919 0.96000 0,43189
6 O.7000 0E—02 1.5662 ~,1bO 0 0.40623
7 0.B0000F—0 2 1 .6745 1.2900 0.38446
B 0.IO600 E— O 1 1 .5771 1 .4600 0.11710

ObJ ECTIV E DUE TO O B S E R V A T I O N S  a 8 3 .9 7 8 6  RM S ERROR IN OBSERVATIONS • 0 .33416 8
OB JECTIVE DUE TO PARAMETERS • 0.000000 TOTAL OB JECTIV E FUNCTI ON • 83 ,9786

COMP UTEL ) AND OB SEN V ED DISPLACEM ENT RES PONSE
POINT TEST TIME U — A N A L Y T I C  U—O B SERV ED YzU—UT ES T

I 0.20000E—02 0.19966 0.20000 —0, 344 55E— 03
2 0 .3 0 000E— 0 2 0 .37947 0 .3 5000  0 , 2 9 4 71E—01
3 0 .40 0 00 E—02 0 .577 6 7 0 . 53 00 0  0 . 4 7666E— 0 1
4 0 .S0000E—0 2 0 . 7 7 6 3 8  0,75500 O .23378E—01
5 O .b0000E— 0 2 0 ,9 68 30 0 .96000 0 .8 3 0 05 E—0 2
6 0 . 7 0 0 0 0 E — 0 2  1 .1314 1.ibOO —O . 2264 2 E—01

.4 7 0.B0000E— 02 1.2718 1.2900 — O .12229E— 01
- : B 0 .IObOOE 01 1,4548 1,4600 0,52067E 02

O b J ECTIVE DUE TO OBS ERVATIONS = 0.45933 6 PUS ERROR IN OBSERVATIONS • 0.235729E—01
OBJECTIVE D U E  TO PARAMETERS 5 1.98882 TOTAL OBJECTIVE FUNCT ION • 2 . 4 4 8 1 5

— Ta b le X IV . Parameters  Es tima ted for  Keenan ’s Slab D3-1

P A R A M E T E R  CO N F1D F NCE LEV EL S
INITIAL LATEST PERC EN T

P A R A M E T E R  EST IM A TE ~STI M ATI. V A R I A N C E  CON FI DE NC E
PLIN 110 .00 8 6 .4 7 1  112 .11  9 ,6256
D L I N  0 .3 4 0 0 0  0 .8 85 27 E 01 0 . 2 3 3 1 5 E— 0 1  4 4 .~~ 09
EPLS 3.0000 0.75941 24.797 497.97 .4

EMuI 0 .80000 1 . 18 63 0 ,9 8 2 4 3 E— 0 1  39 .180 &

5 — 4 2
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For this reason , the displacement data was “shifted” to the left
in time a distance of .002 sec. Thus , the time t = 0 was taken as the t ime
that the pressure—trace began , and the time on the displacement trace was
shifted to a new time , (t’ = t — .002). When this adjustment to Keenan ’s
data was made , a fairly satisfactory “fit” was obtained using the four—
parameter model. *

Using the static load-deflection curve (Figure 5-18), one can

es tima te 
~ lin ’ d1 . ,  and E last fairly well for Slab D3-l. Then , using

these values with a representative load—mass factor , the results shown in

Table XIII are obtained (top half) . Note that the RMS error value is .33 ,

indicating a poor initial model. After a number of interations , PEBLS had

reduced the RMS deviation to .023 , as shown in the lower half of Table XIII.

T~e final values of the parameters ~lin ’ d1in s Eplast 
and (where the

latter now represents the load—mass factor , A ) are given in Table XIV .
Again , it is felt that these parameter values are “physically reasonable ”
and roughly in agreement with intuition .

Biggs ’ text, P.209 , gives load-mass factors in the rar,ge

.66 < A < .78

for simply—supported one-way slabs . These values are in contrast with the

factor 1.18 estimated by PEBLS and given in Table XIV. Also note that the

estimated pressure-vs—deflection curve does not fit the static data very

well (Figure 5-23).

.4 
In retrospect it is thought that the initial values 

~~lin 
= 110,

d1~~ 
= . 3 4 )  were “poor estimates ” and that they contributed to the relatively

poor )erformance of the estimation program in this instance. For example ,

re ferring to Fi gure 5—23 , one sees that a better “initial estimate ” might

have been (P1. = 110, dlin 
= 1.0) for example. It is speculated that a

better initial estimate would have produced more realistic results for the

load-mass factor and for the pressure vs—deflection curve .

* The reader will recall that the “multi-parameter ” model (Section 5.4)

selected cz0 
such that the initial pressures were (in effect) “cut off”

(i.e., the pressure pulse was reshaped in time).
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5.9 DISCUSSION OF RESULTS

These results (especially those in Section 5.6 , 5.7, and 5.8) led to

the conclusion that realistic parameters can be found that allow single de-

gree-of-freedom models to accurately reproduce dynamic response data for
actual slabs. It also appears that (in many cases) these model parameters

are close to those which would be predicted a priori.
A major result of this effort is the recommendation that

• “Tests on any non—linear structure (or element such as rein-

forced concrete slab)  should be conducted at several levels
of force excitation ”.

When put in the above terms, such a recommendation seems almost tn-

vial. Any student of non—linear vibrations or non—linear circuit theory

knows that the dynamic response (i.e., output) depends in a non-linear fa-

shion upon the excitation (i.e., upon the input). This non-linear depen-

dence is the very basis for labeling the problem as “non-linear ” in the

.4 first place. Nevertheless , such a non-linear dependence between the dynamic

response and the applied over-pressure p(t) was not examined in two of the

three main references used herein as sources of dynamic test data. This

situation can perhaps best be illustrated by an analogy with earthquake

eng ineer ing ,  as follows.

S~4po~ e one has a single—story steel—framed structure , where the

behavior of the steel coltimns is thought to be represented by a bi-linear

(e l a s t o —p la s t i c)  spr ing .  The structural engineer wishes to identify the

non—linear characteristic (i.e., force—deflection curve) of his structure ,

so he can calculate if the structure will fail during a major earthquake .

• If the structure is excited only at small amplitudes (e.g., by, say , magni-

tude 3 or 4 earthquakes) it will never (or very seldom) be driven into the

non-linear range , and there will be no way humanly possible for the engineer
.4 

~~
— I~~~--tI f y (with any reasonable degree of certainty ) the non—linear charac-

~~-~-~ stjcs of his structure.

A similar , but less-obvious condition exists when the structure exper-

iences only one non-linear event , say a magnitude of 6.5 earthquake . Now

the engineer finds that his structure h~ s been driven into the non-linear

i~~r~~e, and he can calculate (i.e., identify) the yield stress , say , of his

bi-linear elasto—plastic force—deflection curve . However , he still cannot

predict (with very much certainty) whether or not his structure will collapse

if it is hit by a major earthquake (e.g., magnitude 7.8, say). He needs

test data at several levels of exc i t a t ion  for  his non—linear structure.
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To return to the problem at hand , namely the response of H/C slabs ,

Watt ’s tests (reference 3) are analogous to the magnitude 6.5 earthquake

just considered . The slabs were driven into the non—linear range (with a

maximum dynamic deflection of about .4 inches) but the static load-deflec—

tioii curve showed the slab still yielding at a deflection of .8 inches.

Without further testing , one has little or no way of knowing whether these

deep slabs will withstand a dynamic overpressure of 2000 psi or 20,000 psi

before failing catastrophically . They have not been tested to a magnitude

7.8 (major earthquake event).

Conversely, all of Brown and Black ’s tests (reference 5) drove the

test slabs to major failure. They measured a static failure deflection of

about 4 inches , yet each of their test slabs was driven to dynamic deflec-

tion on the order of 7 inches or more. They tested to only major earth-

quakes (using our analogy) and experienced no moderate or low-level loading.

Clearly, if the structure is always driven to collapse , one obtains little

r information about its behavior throughout its dynamic range.

This state of affairs leads to the following major recommenda tion :

• “Fu ture dynamic test ing (of slabs , box—like bunkers , or other

.4 non-linear structures) should be conducted at three fairly distinct

levels of excitation . For want of a more precise definition , the

three levels recommended are :
(i) moderately non—linear (e.g., 2 or 3 elastic deflections)

(ii) strongly non—linear (e.g., 7 or B elastic deflections)

(iii) to complete failure (e.g., total collapse)

• Such a test sequence may (possibly) triple the cost of a typica l test pro-

gram . However , an incomplete or inconclusive test program may prove mis-

leading and mi ght actually end up costing more in the long run . Keenan

(reference 6) recognized the need to test at various dynamic pressure

1ev~ 1s, which he accomp lished wi th  the adverse s i d e - e f f e c t  of h a v i n g  to re-
test partiall y damaged slabs . Presumably, Keenan was under a bud get con-

straint which limited the number of virgin test specimens at his disposal.

A difficulty with Keenan ’s work (reference 6) was that his static

• ~-:- s~ s were not taken to complete failure of his test slab . His dynamic

tests covered the ranges of linear , moderately non—linear , and strongly

n o n — l i n e a r  tests , b ut the f a i l u r e  load ( i . e . ,  total  col lapse)  of the slabs
was not determined . This situation led to the following recommendation:

• “Static tests of non-linear structural elements (or complete

5 — 4 6
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structures) should be continued to the point of total collapse

if at all possible.”

The preceeding remarks and recommendations are among the major conclu-

sions which kept recurring to the writers of this report. They have been

emphasized herein with the hope that they can be utilized in planning and

conducting future tests. It is recognized , however, that in any test pro-

gram compromises must be made, and test planners may choose not to accept
all of our recommendations.

The estimation program was successful in fitting Watt ’s deep slab

data with both a “multi—parameter ” model and a simplified four—parameter

model where the values of the parameters obtained were “physically reaso-

nable ” (i.e., they agreed with intuition) . For Brown and Black’s conven-

tional slab data , it was again possible to fit the dynamic response results ,

but the result was a “near—linear ” model which was much less satisfying

intuitively. Similarly, it was possible to fit Keenan ’s laced slab data

(with the multi-parameter model) but the estimation scheme greatly de-

emphasized the initial pressures (of the pressure—time history)

Successful attempts were also made to fit the various test data with

simple three and four-parameter models. These results were significant, in

that the models thus estimated were physically realistic , (and still quite

simple) yet they gave a good “fit” to the dynamic data (i.e., low P.MS

error values). Thus, the authors were led ultimately to the major conclu-

sion that, “Simple models can be made to work” , as discuss~d in detail in

Section 5.0.

Regarding recommendations for future work in this area of dynamic

modeling , it may be said that greater emphasis should be placed on f i n d i n g
parameters which agree with “physical intuition ” or elementary theory ,

rather than on making a general model which can encompass all the test

data. When the study was begun, it was not known whether a simple (3 para-

meter , say) model would suffice or not. Watt’s report showed that the slab

went through three distinct phases of deformation , and orginally it was

decided to model deformation-dependent properties for the mass , stiffness ,

and applied force. The result was that (by using all the parameters) one

could “fit” the response data rather easily. But , the problem (which did

not become evident until later) was that the parameter values obtained were

not readily acceptable from a physical standpoint. The mathematics of

system identification was originally over-emphasized with respect to the

physics of the slab—deformation problem .
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I,

I

It is also recommended that some “sensitivity studies ” be conducted ,

name ly to see how much that maximum displacement (Y max) veries with changes

in the parameters (A , olin ’ d l i ,  etc.) For example , just how significant is
the fact that the load-mass factor was estimated at .82 (vs. a theoretical

value ranging from .51 to .67) for Brown and Black ’s slabs. Would a value

of = .7 have changed the results much? The answer to these questions are

.4 
l eft to a future study .
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6 . CONCLUDING REMARKS AND RECOMMENDATIONS

The primary conclusion of this report is that

Realistic parameters can be found (using Parameter Estimation )

that allow single degree-of—freedom models to accurately

reproduce dynamic response data for actual slabs.

A related secondaty conclusion is that

Often (but not always) these model parameters can be estimated

fairly accurately. The estimates can be provided by static test

( i f  available), and by yield—line theory if test data is missing.

These conclusions are substantiated in the body of the report.

Ma j o r  recommendations of this repor t are that

• “Tests on any non—linear structure (or element such as reinforced

• concrete slab) should be conducted at several levels of force

~ -‘-itation ”.

• “Future dynamic testing (of slabs , box—like bunkers , or other

non—linear structures) should be conducted at three fairly

distinct levels of excitation. For want of a more precise

definition , the three test levels recommended are :

(i) moderately non—linear , (e.g., 2 or 3 elastic deflections)

(ii) strongly non—linear , (e.g., 7 or 8 elastic deflections)
( i i i )  to complete failure (e.g., total collapse)

• “Static tests of non-linear structural elements (or complete

structures) should be continued to the point of total collapse

if at all possible. ”

The rationale behind these recommendations is included in the main

.4 tpxt.
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Least Squares

In the least squares approach first developed by Gauss two

centur ies  ago , we d e f i n e  the res idua l  U
1 as the difference

between the observed value of the response (or dependent

variable) anc: the calculated value of the response:

E U
0 

— U. (1 )
1

— where

u .  = u(x 1., X 2~ • ..  X mif r 1, r 2 ,  r 3 ...  r~~) ( 2 )

In Eq. 2, the vector x~ represents the independent variables

used to generate the calculated response and for a ground

shock calcula t ion are represented by location and time . Of

crucial importance to the least squares method is that the
equation chosen for  u1 is the best representa t ion  of the exper i-

ment being simulated.

By the Gauss or least squared method , we seek to min imize  the

sum of the squares res iduals  given by

F = = 
i~
:
1 

(u 0 
— u . ) 2 ( 3 )

where n is the total number of experimental  measurements .
Thus , Eq. (3) is the objective function first evolved by Gauss .

Note tha t  th i s  object ive  fu n c t i o n  does not account  fo r  pos-
sible e r rors  in the independent variable. Experience has shown

tha t  errors  in the dependent  v a r i a b l e  are u s u a l l y  two orders
of m a g n i t u d e  h ighe r  than  those in the independent  va r i ab l e
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thus allrwing the latter ’s errors to be neglected . Nonethe-

less , fo:- those special cases where the two types of errors

are of ec ual  magn itude , Eq. (3) can he suitably modified (see

Ref. 1).

If the measurements x
1 

and u
0 

are repeated n time s and the

average values computed these’average values should approach
the true values as n approaches i n f i n i t y. This wi l l  occur
if systematic errors do not affect the measurements. Such

errors  cons is tent ly  cause the measured response to be either
larger or smaller than the true values. The errors can arise

from three sources:

1. A mistake in the measuring technique

2. A fault in a measuring instrument

3. Failure to account for a factor affecting
the experiment.

Tnus for example , if temperature affects the response of an

accelerometer , such a devise located in close proximity to

.4 the heat of a blast might contain a systematic error in its
measurement .

• The s implest case of least squares is that of the polynomial .
For a s t r a igh t  l ine this  becomes

F = 
~~~~~ 

(u  - r1 
— r

2
x
~
)
2 

(4)

where for the sake of simplicity we are considering the case

of a s ir ~gle independent variable , x 1 . We see than that the
.4 o b j e c t i v e  f u n c t i o n , F , is a f u n c t i o n  of r 1 and r 2 .  Of the

A-4
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many values that t -~ese parameters can assume , we seek th e
set that minimizes F. At this minirurr- , we require tha ’.

= 0 (5)

= 0 (6 )

which- yields two equations . (It should be noted that no

maximum exis ts  for F since for  any maximum one might  postu-
late , an even greater maximum can be found.) Applying the

criteria of Eqs. (5) and (6) to Eq. (4) yields the two linear

equations

r
1

n + r
2 i~~l 

x .  = 

i~ l 
u ( 7 )

r 1~~~~~~xj + r 2~~~~~~x~~ =~~~~~~xju0 ( 8 )

which can be readily solved for r 1 and r 2 .

The above derivation can be extended to any polynomial of order

p-l defined by

.4 p
V k-i.4 

U .L  r x .
1 k=l k 1

If we cast the r e su l t i ng  set of equations ( 7 )  and ( 8 )  in m a t r i x
form obtaining

Cr = V ( 10)
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it can readily be shown that the el ~ments of C and V are

given by :

Cj k  = 
i~ l 

~
j + k_ 2  

(11)

.4 and

= U
0 

(12 )

An interesting phenomenon arises when the degree of the
.4 

polynomial becomes too high . If we normal ize  our independent
variable so that it ranges from 0 to 1 (which is always pos-
sible) an~ employ a sample of uniformjy distributed data ,
then the elements of C are given by

.4 
~~~~~ f1 x

j+k_ 2dx = j+k-I ( 13)

The terms represented by 
j+~~~l 

are elements of the so—called

Ililbert matrix . The determinant of this matrix is given by (ref. 2)

D — [l!2!3!. • (p-i) (14)P 
— 

p! (p+l) 1... (2p—l)

which approaches zero very rapidly as the matrix grows as

shown in Table 1.
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1

2 8.3X ~~~
2

3 4 .6X 10 4

4 1.7X10
7

5 3.7X 10~~
2

6 5.4X 1 0 18

7 4.8X10 25

8 - 2.7X~O
33

9 9.7X 1 0’ 4 3

Table 1. Determinants of Hu bert-like Matrices as a
Func t ion of Ma trix Size

• When the determinan t of the ma t r ix  associated with a l inear
set of equation s approaches zero , the system is said to be
i l l -condit ioned. The set of parameters , r , generated from
such a system are adversely affected by round-off , i.e. it

has a large error associated with it . In the ex treme , the
determinant will  be so close to zero so as to render the
matrix to be computationally singular . Experience has shown
that this occurs when the number of parameters is about 6

(fifth-order polynomial). The method most often used to

circumvent this problem is the implementation of orthogonal

polynom ials.  However , since the desired effect is somewhat
artificial , it is preferable to employ a lower order poly-

nomial (fourth—order or lower)
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The least squares method is not confined to polynomials. The

me thod can easily be extended to other functions by allowing
to assume a form that is linear with respe:t to the para-

me ters :

u. = r1g ( x . )  + r
2g2

(x.) + . . .  + r~~g~~(x.)

= r~g~~(x~) (15)

By insert ing Eq. (15) into Eq . ( 13) and requiring that

= 0 k = 1, 2... p (16)
k

we again obtain a linear set of equations of the form

C r = V  (10)

where now the elements of C and V are :

Cjk = ~~ (x.)g ~~(x~ ) (17)

and

Vk g ( x ~ ) u 0 (18)

It is seen that  the polynomial of Eq. ( 9 )  is a special case
of Eq. (15) where

~k~’±~ = x 1 (19)

Since most functions are expandable into polynomials , the
earlier comments regarding the Hu bert—like matrix generated

by the use of high—order polynomials can be extended to most

functions defined by Eq. (15).
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A cursory examination of Cjk  in Eq. (17) will reveal that

C is a symmetric matrix. This property which also ap~ .ies
to the matrix generated through the pol ynor r i a l  (see Eq (11 ))
permits a substantial savings in computational tire si.~ce onl y
the upper or lower triangle of C need be compu ted (al ng Wjth

its diagonal elements)

For ease of notation , define the matrix T by

T.~ g~~(x.) (20)

where T is n X p. Then in matrix form , the parame ter estira te ,

r , in Eq .  ( 10)  is given by

r = (T TT) l TTu (2 1)

Therefore , the matr ix  given by

- 

~ - G = (T TT)~~~ TT ( 2 2 )

is that vehicle which yields the estimate , r, as a linear
transform ation of the exper imental response (vector of
observations)

It is obvious that the least squares technique cannot be

employed when the number of parameters exceeds the n umber
of measurements , i.e. p > ri. When th is occurs , the system of

Eq. (10) is said to be underdeterrnined. When p is equal to n

each of the residuals in Eq. (3) will be zero resulting in a

minimum value of zero for F. For this case the system is said 
.4

to possess zero degrees of freedom which is the difference

between p and n.
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Weigh ted Leas t Squares

The formulation of Eq. (3)

has two implicit assumptions: firstly , that all the experi-

mental points are measured with the same degree of precision ,

and secondly, that all the residuals have the same dimensions.

Therefore , if some points were measured with high precision ,

Eq. (3) would treat these points with equal weight as the

other observations. As an example of the second assumption ,

if some of the responses were in units of seconds and the

rest in units of meters/second (as might happen in a velocity
waveform response to a ground shock) the formulation of Eq.
(3) would be untenable.

The above two problems are solved by adding statistical weight-

.4 
ing to the least squares formulation. Each squared residual ,

is multiplied by a weight,w11, which is equal to the inverse

of the square of the uncertainty or standard deviation or:

- 

. = = SE
~ ii 

(23)

wr~ere ~~~ is the variance of the ~
th observation . The re-

sulting weighted least squares formulation is given by

n
2F = w. - U .  - m m ( 2 4 )

i=1 11 1 .4
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Minimizing this scalar with respect to each parameter again

yields a linear system of equations :

Cr = V (10)

where

Cjk = 
i~ l 

~~~~~~~~~~~~~~~ (25)

and

Vk = w~~.g (x )u (26)

It should be noted the C matrix defined through Eq. (25) is
again symmetric.

In matr ix  form , the parameter estimate , r , in Eq. (10) is

no~ given by

r = (TTwT)~~~T
Twu0 (27)

where the matrix , T, is again given by:

T , . = ~ .(x~ ) (20)

and

—l .~w = S~~ (2 ~ )

where both w and S
CE 

are diagonal matrices. Thus , the linear

transformation from u0 to r is achieved by

r = Gu 0 ( 2 8 )
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1

where

G (T TwT) l TTw (29)

Now the covariance of the estimate is given by

S E E ( Z
r r

Z
r~~~~~

) •  ( 3 0 )  )

Zrr  is the random error in r , and E denotes expectation. By

the transformation of Eq. (28) :

* T T TS = E ( GZ
C E

(GZ
C C

) I = GE(Z z )G (31)

where E ( Z
~~r

Z
~~~

) is the expectation of the observatior-. error ,
u — u

0, and rela ted to 
~~~ 

by

s = E ( Z  zT ( 3 2 )
.4 E E  cc cc

where Z is the random error in Ucc 0

— Returning to Eq. (31)

.4 
* T T TS = GE(Z Z )G G S  Grr cc cc cc

= (TTwT)~~~ T
Tww l ( ( T TwT)~~~ TTw] T

= (TTwT)~~~ T
T[(TTwT)~~ TTwJ T

= (T TwT)~~~[(T
TwT)~~~ (TTwT)]T

T —1 T — l  — l — l= (T wT) = (T S T )  = C .

At this point we should now pose the question , “How do we
know that the estimate of the experimental error of the response

is co r r ec t ?”  This es t imate  is based on the judgement  of the

A— 12
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experimeritalist and when the measurements are conducted by a

team it is unusual for a group to agree on an error estirrate .

To answer the above question , we resort to Eq. (32)

S = E(Z zT \ (32)cc cc c cj

Having chosen a mathematical model for our experiment , we
believe this model to be correct. Thus, if there were no

experimental errors , and the correct model was postulated ,

our experimental points would coincide with those of the

model , i . e . ,  all the res iduals  would be zero. There fore ,
the residual  

~~~ 
appearing in Eq. (32) can be attributed

to experimental and mathematical error and can then be used

a s a check on the input covariance . If Eq. (32) does not

yield a covariance matr ix  similar to the input covariance
ma trix , then S

~ 
should be adjusted and the least squares

process repeated . When Eq. (32) is finally satisfied , the

error estimates will be substantially correct. Unless the

above steps are carried out, Eq. (33), ~r.’hich specifies the

revised parameter covariance will be incorrect.

When the above errors are experimental , we have implicitly

assumed that the mathematical model is correct. When the

model is incorrect , we have failed to account for factors

a f f e c t i n g  the experiment and possibly introduced a sys temat ic
error . Under this condition , the res idual in Eq. ( 3 2 )

- .  .4 will not be completely generated by experimental error. How-

ever , it is reasonable to assume that if several models are
postulated and the above steps executed , such that Eq. (32)

is obeyed , then the model with the best fit would be closest
- 

, 
‘ to the t rue  mathemat ica l  model.
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The technique of adjusting the covariance matrix , S ,

should not be in te rpreted as cas ting doub t on the c red ib i l ity
of the exper imerita l i s t  who first estimates the experimental
errors. If the expe r imen ta l i s t  is regarded to be competent ,
then a substantial disparity between the original and

adjusted covariances would most likely indicate that the

mathematical model is incorrect and a reappraisal is suggested.
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Nonlinear Weighted Least Squares

T~ie case of nonlinear least s~ uares occurs when the functicr.

u . appearing in the objective function

F = ~~~~~~~ ~~~
w
~ ±(u 

- u.) 2 (34)

is a nonlinear combination of the parameter vector r:

u. = u (xi, r1, r2 ... r~ ) (35)

Note that for the sake of clarity , we have assumed on l y  one
independent variable in Eq. (34) . Nonetheless , the ensuing

derivation can readily be extended to multiple independent

variables by substituting a vector for x 1 .

The reader can readily determine that minimizing Eq. (34)

using Eq. (35) leads to a set of nonlinear equations. Rather

than treat each case individually, it is preferable to start

with Eq. (35) and develop a general technique.

!.~inimizing the objective function of Eq. (34) with respect

to each parameter , rkJ yields

- u .) = 0 k = 1, 2, 3 . .. 
~~ (36)

In order to obtain a linearized formulation , we expand u into

a truncated Taylor series evaluated at an estimated value of

r denoted by the index , e:

A- 15
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r~ r

~ 
U + (r 1 

— r 
)(

~~~~
)r=r e~ 

(r 2 
-

+ ... + (r ~ - rep)(~~~~)r r e 
(37)

We now d e f i n e  a s e n s i t i v i t y  m a t r i x  T by

~~~ (
~~~~)r=r e 

( 3 8 )

and a per turbat ion vector R by

R . r .  - re

where T is n p and R is of length p. Eq .  ( 3 7 )  then becomes

u1 U e + R1T~ 1 + R 2T .2  + . .. + R~ T1~ ( 4 0 )

It should be noted that  for the l inear case where

= 

j~~l 
J J 1  ( 15)

then

= g x ~~ ( 4 1)

• - 
Therefore the T matrix defined by Eq. (38) is the same as the
T matrix specified by Eq. (20)

A- 16
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Returning tc che n ~n1inear problem , we take the derivative
of u1 in Eq. (40) ith respect to rk :

~. U .
= Tik (42)

Inserting Eqs. (40) and (42) into Eq. (36) yields

w . i ( u  — U - R 1T. 1 
— R 2T . 2 - . • .  -

= 0 k = 1, 2 , 3 ... p (43)

The expression of Eq. (43) gives the linear set of equations
of the form

C R = V  (44)

where the elements of C and V are

C~~ = 

i~ 1 
W i Ti .T.k

and

Vk = 

i~ 1 
wiTik (u O~ 

- u e j )  (4 6 )

Note that C is symmetric.

When the system of Eq. (44) is solved for R , the new estimate
ot r is given by

r = r + R ( 4 7 )

L
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This value of r is only approximate , but if the sequence is

converging , it is a be:ter ?stirnate than the previous set

in re . Therefore , if ~e re?lace the values in re by those

from r and repeat the sequ~nce , we will get an even better

set for r. In the limit as r approaches re, the higher order

terms in Eq. (37) go to zero faster than R , and the formu-

lation becomes exact.

The choice of the initial guess for re in the above sequence
can be of paramount importance . Experiments for nonlinear

cases have shown that some cases have converged when the initial

and final values differed by a factor of l0~ , while in other

cases , the sequence diverged when the initial values dif-

fered from the true values by only 20%. In general , however ,
the better the initial guess , the greater the chances for
conver gence. When d ivergence does occur , other methods can be
employed. Often a seemingly diverging problem can be brought
to convergence by implementing a search algorithm (see Ref. 3).

Eqs. (44) — (47) are quite general , and can be applied to the

linear case. For this purpose , we set re equal to zero. The

reader can rea d i ly determin e that the linear case is then
retrieved , and is solved in a single itera tion.

In matri>: form , the parameter estimate r in Eq. (47) is

r = re + R = re + C V

= re + (T wT) 1TT w(u0 
— U e)

or

r = r e + G ( U
o~~~~~U e

) ( 4 8 )
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where G has been der ived  previous ly  as

G = (TTwT) 1TT W (29)

The covariances of the estimate and the observation ~re

respectively

* * *‘r
S = E(Z Z ) (30)rr  rr rr

H and

S = E(Z z T ) ( 3 2 )
C C

*
As has been derived earlier Z is related to Z byrr

*z = GZ ( 4 _
~rr

Here , however , we must assume that the true value of r and
the calculated value of r are su f f i c ien tly close so that
the G matrix is the same for both . With this assumption ,

we con tinue , and applying Eq. (33) obtain the revised co-
variance matrix.

s;r = (TTS~~ T)
1 (33)

As ha s been noted f or the linear case,  this derivation is

based on the assumption that Eq. (32) for the observation

covariance matrix is valid. If the expectation of Z1 iS

• 
- 

not equal to S~~~, then S should be adjusted and the sequence

of iterations repeated until we obtain a close approximation

for S in E(Z C [Z
T ).

A—19
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1
I

The problem of ill—conditioning associated with the C m a t r i x
in linear least squares is also found to occur with the C
matrix of Eq. (45) in the nonlinear mode. This is because 1most functions can be approximated by a power series. This
au thor has foun d the prob lem to be more severe in the non line ar
case having noted severe ill—conditioning commonly manifested
when 5 parameters were used .

I

I

I
1
i
I
I
I

I

• 
1
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Minimum Variance

Up to now we have assumed that the errors in the rneasu ements
are statisticall y independent so that the covariance ~atrix
SC E is diagonal. In many experiments a cross-correlat on
exists such that other elements of S are non-zero. sinecc
important property of this matrix is the fact that it must

be symmetric since the matrix is defined by E(Z zT ).

For the most gener al case which is nonl inear the objective
-

n 
func tion is

F = 

i~ l j~ l 
wij(uo~ 

- u i ) ( u0 .  
- u.) (50)

or in matrix form

F = (u - u)T w(u0 
- u) -

~ mm (51)

where w is a weight matrix defined by

w S~~ 
( 5 2 )

and since s is symmetric

T• w = w . ( 5 3 )

Minimizing the objective function of Eq. (50) with respect

to each parameter , rk~ 
yields:

~~~~~ 

~~~~~~~~~~~~~~~ [(Up 
- u.) ~ i + 

(u~~ 
- = 0 ( 5 4 )

A-2l



1

or 

n n

~~ 

w ..(u - u . ) ~~_-! = ( 55 )

due to the symmetry of w. By the truncated Taylor ser Les
H of Eq. ( 37 )  and sub st i tut ion from Eqs. (38 )  and ( 3 9 ) ,  Eq. (55 )

takes the form

- U - R
1T .  — R2T.2 

- ... - R T .~~ T. = 0

(56)or

R 1 wjj T j lT ik + R 2 wj j Tj2 T jk + ... + R
P~~~~~~~ Wi j T

j P
Tik

~~ 
wi jTmk (uO .  

- u
ej )  

k = 1, 2 , 3... p (57)

The expression of Eq. (57) yields the linear set of equations
of the form

C R = V  ( 5 8 )

where the elements of C an d V a re defined by

Ck~ ~~~~~
W i . T . k T .  ( 5 9 )

i J
and

Vk 
= 

~~~~
w
~~
Tmk(uO 

- uej) 
(60)
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In matrix form the parameter estimate , r, imbedded in Eq. (58)

is given by:

r = re + (T TwT)~~ TTW(u0 
— Ue) (61)

As in the case of nonlinear least squares the solution is

obtained by iteration. The matrix used for the linear

transformation is seen to be

• 
I 

G = (TTwT)~~ TTw C 1TTw . (62)

It is interesting to note the difference between least squares

and minimum variance as embodied in the transformation matrices

c f Eqs. (29) and (62). The weight matrix w appearing in

Eq. (29) is diagonal while its counterpart in Eq. (62) is

not. However , as seen in Eq. (59), since the inverse of
C is symmetric, C is also symmetric which is also true f or
the least squares case. Similarly the dangers implicit in

the ill—conditioning of the C matrix resulting from the use

of too many parameters can also be carried over to minimum

variance.

The covariance matrix associated with the parameter estimate

is specified by Eq. (33)

* T — 1  —l — lSrr = CT S T )  c . (33)

It should be noted , however , that 
~~~ 

as defined in this

section will now be full and not diagonal.

A-23
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B~yesian Estimation

• As seen earlier , ~.he technique of minimum variance cons-

titutes the most qeneral tool for parameter estimation.

Theoretical ly ,  th~ problem is well—posed and barring any
ill—conditioning in the C matrix and divergence for the non-

linear case , has a well—defined solution. However , for a

substantial number of observations , the weight matrix , being

of size L x L, the storage capacity of the computer may be
exceeded . The problem can be resolved by dividing the

experimental data into batches and processing them sequentially.

However , to accomplish this we must transfer from batch to hatch
the knowledge we have gained concerning the parameter estimate .

Mathema tically,  this technique is known as “Bayesian Estima-
tion” after the mathematician who first expressed the concept

in terms of probability .

In Bayes ian estimation we are given a prior estimate of the
param eters , r0, along with the associated covariance matrix
S • We then seek to minimize the objective functionrr

F = ~~~~~~ w..(u ~~~~~~~~~~~ ~~~~~~~• i=l j=1 ‘J oi 2. O
~

+

~~~ 
~~~~~~~~~~~~~~~ 

(r - r
i) (r 

- r.) (63)

where w = (64)cc

and = S
_i 

(65)
• rr

and Srr is a symmetric matrix as is ~~~~ 
In comparing this ob~ectiVe

function with that of Eq. (50), we find that the second double

A-24

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _



‘ V - • • • 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

series term on the right-hand side of Eq. (63) accounts for

our knowledge of the Bayesian pr’or. Then logically the new

parameter estimate we wi l l  obtain via Eq. ( 6 3 )  w il l  be a
compromise between our knowledge concerning the experimental

F 
data (the first double series term in Eq. (63)) and the Bayesian

prior. This means that were we to solve for the new parameter

estimate using Eq. (50), the solution would be the same as
that for the extreme case for Eq. (63) when Srr -

~

Minimizing Eq. (72) with respect to each parameter rk give s

~~~ ~~~
w
i~~[(uo

:u
i)~~~~~:(uo 

-

+ W
~ i (r0. 

— r.) ark

air — r k
+ L w .  (r — r.~ 

k 
= 0 (66)ik~~o. i.i 3rk

Since the fun ction u is nonlinear , we expand it aga in into
a trun ca ted Taylor series evaluated at an estimated value , re :

• U~ ~ 
tie + R1T~ 1 

+ R2T9~2 + •. .  + RpT2r, 
(67)

and note that

• 

~~~~~~~~~ 
(68)
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and

~ I r  — r k
— __________ = —l . ( 6 9 )

~ 
rk

Substituting Eqs . (75) , (76) and (77) into Eq. (74) gives

~~ w ..(u - U - R1T.1 R 2T~ 2 
- ... - R PT ) T . k

+~~~ ~~~w~~~(u~ 
- Ue~ 

- R iT
~~i 

R~~T. 2 
- ... - R

P
TiP)Tj k

+
~~~

wk.(r — r.) + ~~~~~k(rO . 
— r~) 

= 0 (70)

Si nce S
CE 

and Srr are symmetric , w and w are also symmetric.
Therefore the two double series terms of Eq. (70) are identical

as are the two single series terms . Eq. ( 7 0 )  then s imp l i f ies

~~ ~~~w..(u tie 
- R

1T.1 
- R 2T~~2 

— ... - R
P

T j P ) T ik

+ w~(. 
(r  

— r:) = 0 (71)

We then note that

r — r; = r0 
— re — (72)

which upon insertion into Eq. (71) and some manipulation

gives
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+ 
~~

+ R2 (~k2 + ~~ 
w
I~~
TIk T~2)

+ ... + R~ 
(~kp + ~~ ~~

w i. T i k T . )

: 

~~l~~~~~(°a 
r~~) 

+ 
j = l ( ° j  

- u
ej) ~~i ~~~

The expression of Eq. (73) gives the linear set of equations

of the form

C R = V  (74)

• where the elements of C and V are defined by

Ck~ 
= Wkj~~~~~ ~~

wjjTjkTjQ (75)

• and

V
k 

= 

3~~l 
wk~~(rO .  

- r ed) + j~~
l(° °j 

- uej ) i=l 
~~~ Tik

(76)

As seen from Eq. (75) , the C matrix is symmetric which again

eases much of the computation.

In matrix form the parameter estimate is obtained by itera t ivel y
solving the relation

r = r + + TTwT)~~~[w (r0 
— re) + TTw (u0 — u )j (77)

I. ~-
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The iterati n starts with r replacing re, calculating T as
a function f the independent variables and re, and then
generating by Eq. (77). When r converges to re, the itera-
tions are i ~rminated .

An aiterna~-e expression for r will now be determined . If the term

TTwT(r0 
- re) (78)

is added and subtracted to the terms appearing in the square

brackets on the right-hand side of Eq. (77), we obtain

r re + (~~ 
+ TTwT) i [( - re)

+ TTwT(r - re) - T
TwT(r0 

- r )

+ TTW (u - tie)]

re + (~~ 
+ TT~~ )_1( + TTWT) (r0 

- re)

+ + TTwT 
)~~ 
l[ T

TwT (r - re) + T
Tw (~0 - ~ e~ I

= r e + (ro
_ r

e)

+ + TTwT)_i[TTw(u0 
— ue) 

- TTwT (r0 
- re)I

= r0 
+ ( + TTwT )_ 1TT

W [u0 - U - T(r - r)]

= r o +G [uo
_ u

e
_
T(ro

_ r
e)]

A- 28

_ _ _  —. -.- ----- - ---- - ---

.~ - __________



r - -

~~~

where

G E (~ + T
T
~~

)_1TTw . (80)

The revised covar ia~ ce matrix of the parameter is found byi noting that the err r of the new estimate is related to the¶ error in the observation , Z
~~~

t and the pr ior parameter error
Zrr by Eq. (77)

* TZrr = ~w + T w T) W Z rr

+ (
~ + TTWT)~~ TTw z~~~ (81)

The revised covariance matrix is then

S — E~
’
Z z*T

rr ~~rr rr

= + TTwT) E(Zrr Z~ r)[(~ + TTwT)_1~
] 

T

+ (
~ 
+ T~ WT)~~~ T

TWE(Z z T
)[(~~ + TTWT)_1TTW] (82)

where the cross—correlation between Zrr and is assume d

to be zero. Noting that

E (Z rZ
T
r) = ~l— 1 (83)

and

E(Z ZT )  = w~~
1 ( 84 )

give s upon substitution into Eq. ( 8 2 )
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r T
* T \ — ‘~~~—i I” T

S r =
~~

w + T w T )
~~~

ww [~w + Tw T J w~

r T
+ + TTwT)_ 1TTwW l (W  + TTWT)_1T

T
W]

= (
~ + TTwT)~~~ [(~ + TTwT)_~~~]

+ (
~ + TTwT)_ 1[(~ + TTwT)_1 TTWT]

= (
~ + TTw T )_ 1~~(~ + TTWT)_l(~ + TTWT)]

= + T T
WT)

1 
= C 1 ( 8 3 )

As in case of weighted least squares Eq. (82) assumes that
the true value of r and the calculated value of r are

sufficiently close so that the T matrix is the same for

both. If this is not true, a cons iderable error may be
introduced .

To s ummarize the techni que of Bayesian es timation , we itera—

t iv ely solve the sequence

T = T(re) (84)

s = ( + TTwT)~~ = s(re) (85)

G = STTw = G (re) (86)

r = r o + G [uo
_ u

e
_ T (r

o
_ r

e ) (87)

and repea t the nex t sequence w ith r repl acin g re. We con—

tinue to itera te un til the di f f e r ence  between r and re
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becomes sufficiently small and the sequence has therefore

converged. The final value of S is S
~ r

s the revised para-

meter covariance matrix. It should be noted that when the

response is linear with respect to the parameters , only
one iteration is recuired. This means that since r is

always set equal tor 0 for the first iteration , the te rm
(r
0 

— r
e
) in Eq. (87) is zero for the linear case. Alter-

natively, as will be noted later , one can choose to set both

re and Ue equal to zero for the linear case.

When sequen tial batch processing is used , the Bayesian tech --

nique should yield the same solution as that whi ch woul d
be obtained by processing all batches together without a

Bayesian prior . To test this , let us confine ourselves to

two batches denoted by indices 1 and 2 along with a linear

estimator . The processing of the first batch uses no prior

estimate and gives a parameter estimate (Eq. (77)):

r
1 

= (T1
Tw
1T1)~~ T

1
Tw
1u0 

( 8 8 )

and a revised covariance

* ‘TS = IT w T I = w (89)rr 1 \ l  11, 2

The estimate and the covariance of Eqs. (88) and (89) are

input as information about the prior for the second batch .

This gives (Eq. (77))

r2 
= 
(2 + T2

Tw2T2)_1(w2r1 + T2
Tw
2u0 )

= (T1
TW

1
T1 

+ T2
Tw2T2)

l(T1
Tw1U0 + T2

Tw2u0 )

(90)
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Eq. (90) gives the estimate r2 resulting from ~ linear

accumula tion of all the experimental data , hen-re , proving

the affect of the Bayesian prior . For 1~ batc ies of data

this gives

r = (
~ 

T~
TW~T.) 

~~ 

T~~w.u (91)

The proof can readily be extended to the nonlinear case.

Here , however , the final value of T
~ 

for  each batch wi l l
not necessarily be the same thereby yielding a different
estimate for the final batch. If the system defining u is

- - highly nonlinear such that large variations in T
~ 

are en-

countered from batch to batch , the error could be substantial.

The procedure outlined in this section is correct provided

that the covariarice matrices of the observations and the prior

are correct . As noted in the earlier sections , the new

parameter es timate has little mer it if wron g covari ance s ar e
employed .

Eqs. (R4) through (87) constitute the most general case of

parameter estimation , and the reader will find that the

equ at ions of the previous sec tions are spec ial ca ses of
this system . However , the Bayesian aspect which has been

added in this section is particularly appealing in the non-

l inear ca se for three reasons :

1. The prior parameter estimate constitutes a good guess

• of the parameter estimate and hence increase the chances 1::
for convergence.

LJ~ r. 
~~ 

_
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2. The Bayesian formulation drives the solution closer to

the prior than does minimum variance (the Bayesian :ech-
nique with no prior). This also leads to fas te r  cc - -

vergence.

3. As seen from Eq. (69) the dependency of the Bayesia’~
formulation on the prior is linear . This means that as

the dependency on the prior is increased (via Srr) the

problem becomes more linear and conver gence is enhance d .

In addition to the above observations , the addition of a

Bayesian prior to both linear and nonlinear problems renders

the C matrix of the resulting Set of equations more diagonally

dominant and hence more non—singular . This is why experiments

have shown that when a prior estimate is used , the number of
parameters may be increased substantially without generating

a Hu bert—like matrix .

The use of a prior estimate is not restricted to sequential

batch processing. Often, for example , in ground shock calcu-
lations , the analys t may want to pro cess a s ingle batch of
experimen tal data and incorporate wha t he believes to be a
reasona ble es timate of the parameters , alon g wi th the error
estimates of these parameters. If these incorporated values

are re asonable , the Bayesian technique becomes a powerful

• tool , par ticul arly when the number of obser vat ion s is rela-
tively small. The analyst should be cautioned however , against

• using this tool for a small number of observations and then

attaching a relatively large error to the prior estimate. This

in e f f e ct attr ibu tes a sma ll leve l of credence to the prior , and
in the limit , will generate a solution for an underdetermined

system . Obviously , the conf idence level for the evolve d para-
meter estima te wi l l  be qu ite small in di ca ting the solution to
be us eless.
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SUMMARY

The different types of optimization which have been analyzed

here can be summarized by catagorizing the estimator type ,

the structure of the covariance matrix for the observations ,

and the structure of the covariance matrix for the prior

estimates.

The estimator type can be linear or non-linear. When a

linear estimator is employed , no iterations are required.

For this case , the general non linear formu lation can be
- 

• 

employed with the initial estimate re and the initial cal-

culated response Ue l both set equal to zero. From Eq. (79)

the revised estimate is

r = r 0 + G(u0 — T r ) (92)

where G is defined by Eq. (80). The revised estimate can be

obtained alternatively from Eq. (77)

-. T —l i’ Tr = (w + T wT) (w r0 + T wu0). (93)

In either case , the solution is obtained withou t iter ation
by applying either Eq. (92) or (93). The revised covariance

matrix is given by Eq. (83) .

The structure of the covariance matrix for the observations

can be either identity, d ia gonal ,  or full. The case where

the matrix is identity corresponds to unweighted least squares.

When the matrix is non—unit diagonal , the residuals are

• 
weighted with no cross—correlation between the observations.

When the covariance matrix is non—diagonal , cross-correlation

among the observations has been assumed . As has been noted

earl ier , the covariance matrix for the observations will always
be symmetric.
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- • The covariance matrix for the prior estimate can be either

infinite, diagonal or full. The case where the elements of

the matrix are infinite in value , corresponds to complete

lack of confidence in the prior estimate and is equiva lent

to the absence of a Bayesian prior . The associated weight

matrix , ~~i, will be nu ll , and the estimator will attempt to

drive the calculated response toward the data . When the

covariance matrix is diagonal , a prior estimate has been

specified , but no cross—correlation is postulated among

its elements. Lastly , when the covariance matrix is full ,

H cross—correlation has been assumed between the components of

the prior estimate. As with the observation covariance matrix ,

the covariance matrix for the prior estimate will always

be symmetric.

The various combinations of the two governing covariance

matrices are depicted in Table 2. The four boxes on the lower

right—hand side give the possible combinations for a Bayesian

prior estimate and are therefore separated from the rest

of the table by a bold line . Note the two empty boxes on

the left—hand side . This is because the use of a diagonal or

full prior covariance matrix along with an identity observa-

tion covariance matrix would result in a system of incompatible

units for the objective function of Eq. (63) , and is therefore

meaningless. It should also be noted that the seven cases

shown in the table can be applied with either a linear or

nonlinear estimator givinc a total of fourteen possible con—

binations .

The revised estimates and covariances for the various methods

discussed here are summarized in Table 3. For the linear case , -

no iterations are required and the solution is immediate . For

A-35
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COVAR IAN E MATRIX FOR OBS ERVATIONS

IDENTITY DIAGONAL FULL

L.j

~ UNWE IGHT ED LEAST WEIGHT ED LEAST MINIMUM V~PIANCE
~ S QUARES SQUARES AND NO AND NO PRIOR
— PRIOR

W E IGHTED LEAST MINIMUM VAR IANCE
SQUA RES AND NO AND NO CROSS -
CR OSS-CORRELAT ION CORRELATIO N O~ON PRIOR PRIOR

• WEIG HTED LEAST MINIMUM VARIANCE
SQ UAR ES AND AN D CROSS

E CROSS-CORRELATION CORRELAT ION ON
ON PRIOR PRI OR

Table 2. Optimization Schemes Resulting From Various Combinations
of Governing Covariance Matrices. Portion of table with
bold-face border uses Bayesian prior estimate .
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the nonlinear case , toe solution is obtained by iteratively I
replacing r

e by r until the difference between re and r is
deemed to be sufficiently small. For the linear case, the
solution obtained is that for the true extremum of the objective
function. For the nonlinear cases , the method may converge 

(to a local minimum or may even diverge. When this occurs ,

• special methods should be employed to increase the so-called
radius of convergence .

The an alysis shown here does not include possible error s in
the measurement of the independent variables since they are
usually relatively negligible. However , there are situations

¶ in which both the dependent and independent variables contain
errors of equal magnitude. For these cases, a new estimator -

must be evolved .

1

II
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NOMENCLATURE

C = ma tr i x  fo r  l i nea r  set of equa tions
D = determinant of J-lilbert—like matrix

E = expectation operator

F = objective function

g = linear least squares operator

G = linear transformation matrix

ni = number of independent variables

n = number of observation s

r = parameter vector

R = perturbation vector for nonlinear estimation

S = covariance matrix

T = sensitivity matrix

p = number of parameters

U = response vector

• U = residual or difference between observed and calculated
response

V = free vector for linear set of equations

w = observa tion weigh t matrix

w = parameter weight matrix

z = random error

Subscripts

e = latest iterative estimate

o = known pr ior , either experimentally or analytically
rr = associated with parameter

= associated with observation

Superscripts

* = rev ised
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APPENDIX B

VERIFICATION AND CHECK-OUT OF THE COMPUTER PROGRAM , PEBLS*

‘I SUMMARY

When the computer program ~f i tted” Brown and Black ’ s tes t data  us ing
a near-linear force-deflection characteristic , there occurred the gnawing

uncer tainty ,  “Was the compute r program coded correctly?” To verif y tha t in-

deed the program was working properly, it was decided to estimate the para-

meters of a bi—linear textbook example (for which an analy t i ca l  solut ion was
available) . The estimation procedure was successful for this example , and
the results are reported in this appendix.

3.1 Results from Biggs ’ Text (Reference 2)

There are a few non-linear problems of elasto-plastic systems where

exact solutions are available. One such exact solution is given in Biggs ’

text , Reference 2, Section 2.7 (p. 69 ff). Figure B—i describes the problem ,

name ly an elasto—p lastic beam subjected to a Heaviside step-function loading .
Biggs gives a graph of the response (see Figure 13— 1) and also formulas from
which the response u(t) can be computed at any time. (For further details

consult Reference 2.)

* P a r am e t e r  Estimation of Blast-Loaded Structures

B-i
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Figure B-l. Exapmle From Biggs Text
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B.2 Input Data to PEBLS Computer Program

The input data used for this example is shown below . Note that

the initial estimate of P1 . was 45.3 and the initial estimate of d1~~ w~~s

.543 , exac~~y the values from Biggs text (of. Figure B—i). These two para-
meters were input with a confidence of 10% on each , as shown in the input

data . The “ experimental” data (which in this case was computed , using the
equations from Biggs ’ text) is shown on page B-4. This “experimental” re-

sponse was taken at seven time points (t1, t2, . . .t.~) and was assumed to be
known with an accuracy of about 2%. There were just two points required to
define the pressure—time history, since it was a step—function .

PARA ME TER ESTIMAT ION FOR BLAST —L OAD ED STRUCTUR E S

1—DO, ELASTIC— PLASTIC TEST
— 

IT !RATION L IMIT 2 12

BA C~3TEP LIMIT ~ 4 ____________

CON VERGE NCE CRITERION ON OBJECTIVE FUNCTION 1 0.00500

CONVERGE NCE CRITERION ON CKAN GE IN PARAMETERS a 0.01000 
-

MOUSE STEP HEDUC TIO N FACTOR $ 1.00000

PARA M ETER MOVE LIM IT 2 0.20000

- 

- 

THE TI ME H ISTORY USES AT MOST 160 TINE POINTS 
- -

-
- 

- THE TIME INCR EME NT I O .5OO00~~— 03 SECONDS

THE M A X I M U M  TIME THUS * 0 .79500E—01 SECONDS

- 
THE SLAB MASS PER UN IT A R EA 2 0.25907E—0i

INIT IA LS ESTI MATES OP~ PARAMETERS
E STIMA IION IMI T IA LS PERCE NT

F PARAM E TE R CODE ESTIMATE V A R I A N C E  CONFIDE NCE
PL IN 1 45 .300 20.521 10.000
DL5!N 1 0.54300 0.29485E—02 10.000
EPLSS 0 0.00000 0.00000 0.00000
EML J O 0 1.0000 0.00000 0.00000
E M U I 0 1.0000 0.00000 0.00000
E M UD  0 9.9000 0.00000 0.00000
ALIPO 0 1.0000 0.00000 0.00000
AL PL 0 1.0000 0.00000 0.00000
A L PO 0 9.9000 0.00000 0.00000

• - BETA 0 0.00000 0.00000 0.00000
PSCL. 0 1.0000 0.00000 0.00000

THE TOTAL NU MBER Q~ PARAMETERS BEING ESTIMATED (NP) a 2
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EXPE R IMEN TAL , BLAST A ND RESPONSE OBSERVAT iONS — DATA LET 1

DISPL ACEMENT RESPONSE

THE NUMBER OF PRESSURE DATA POINTS a 2

H THE NUMBER OF RE SPONSE DATA POINTS Z 7 
____

EXPERI M ENTAL RESPONSE DATA 
_____

POINT TIME (SEC) RESPONSE VARIANCE CONF IDEN CE (()
I 0,I0000E—O 1 0.56530E 01 0.12780E—05 0.19998E—01
2 0.20000E—03 0.20836 0 .17370E—04 0.20003E—01
3 0.3000 0E—01 0.40781 0.66520E—04 0 .19999E—01
4 0.37100E—01 0.54300 0 .11790E—03 O .19997E—O1
5 0.45000E—01 0.66363 0.17620E—03 O.2 0002E—01
6 0.SS000E—O 1 0.76352 0 .23320E—03 O.2 0001E—01
7 0.66900E—01 0.80553 0.25950E—03 0.19999E—O 1

BLAST RECORD 
—~~~~~~~ - -

POINT TiME (SEC) PRESSURE
1 O.00000E+O0 O ,300 00E+02
2 O.I0000E+O1 0,30000E*02

b
1~

I
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B .3 Initial PEBLS Results for Biggs Example

The results of the first iteration of the program PEBLS are shown in

Table B-i. Note particularly that the analytic response (computed within

PEELS using numerical integration ) did not agree exactly with the observed
response (computed by hand using Bi ggs analytical equations 2.57a , and 2 .61,
p . 75 , Reference 2). Also note that the RMS error in observations was com— -

puted as .889 x10 3, i.e., .000889, which gives the reader an idea of the
“goodness of fit” between the model (u-analytic) and the data (u-observed).

After three iterations , the results were as shown in Table B-2. Note

that now u-analytic (computed by PEBLS) is slightly closer to u—observed
(the  “ exper imental”  data)  and the RMS error in observations has been halved ,
i . e . ,  it is now .399x10 3 ( . 0 0 0 3 9 9 ) .  The f i nal information output by the
program is shown in Table 3-3). Note that the parameters 

~~~~ 
and

have been estimated at 45.314 and .54443 , respectively, although Biggs
exact  values a re 4 5 . 3  and .543 .  Thus , the estimation procedure wil l  not
exactly reproduce the parameters of our mathematical example. This (slight)
discrepancy may be due to small errors in numerical integration (which ,after
all , is not exact) or due to the fact that the “test data” were input with

a confidence of 2% (and were thus not known exactly).
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Table B-l

COMPUTED A ND OBS ERVED DI5~’L A CEMEM T R~ SPONSE
POINT TEST TINe U AN A LYT IC U— OB SERVED ISU—UTEST

1 0 ,I0000E—0i 0.56367E—01 0.56530L•01 •0.t6342E~ O3
2 0.20000E—01 0,2’07V 0 0.20 836 — 0.5b424E—03
3 0,30000E—O1 0,40b82 0,40781 — 0,99456E—03
4 0.371001—01 0.54280 0.54300 — 0.19620E—03
S 0.45000E—0l 0.66310 O ,6636~ — O .52977E—03
B 0 .SS000E—01 0.76250 0.76352 — 0.101771—02
7 0,469001—01 0.80382 0.80551 —0 ,168681—02

OBJ ECT IVE DUE TO OB SERVATIO N S s 0.7142061— 01 MM S ERNOR IN OBSE KVATI ONS • 0,8891761—03
OBJECTIVE DUE TO PA RAMETERS • 0.000000 TOTAL OBJECTIVE FUNCTION C 0.7142 061—01

Table B-2

COMPUTED AND UB SERV P.D U ISPLA CEMLN T RV.SPON$E
— 

POI NT TEST TIME U—A N ALYTIC U—O BSEK V ED YsU—UT ES T
1 0.100001—0 1 0.5637 01—0 1 0.565305—01 —0 .159881—03
2 0.200001—01 0.20785 0,20N36 —0 .511051—03
3 0.300001—01 0,40706 0.40781 —0 .75332 1—03 • 

-

— 4 0.3710 01—01 0.54331 0.54300 0,310641—03
S 0,450001—0 1 0.66396 0.663a3 0,328061—03
6 0.550001—01 0.76376 0.76352 0 .237201—03
7 0,~b30OE—0% 0.80548 0.80551 —0 .279621—04

- • OBJECTIVE DUE TO OBSERVATION S • 0.4524131—0 1 RM S ERROR IN OBSERVATIONS • 0.3991771—03
OBJECTIVE DUE TO PARAMETERS • 0.7068641—03 TOTAL OBJECTIVE FUNCTION S 0.4594~ 1E— 01

Table B-3

PA RAMETER CON FIDENCE LEVELS 
I—

IN ITIAL LATEST PERCENT
PARA METER ESTIMAT E ESTIMA TE VARUN C E CONF IDENCE
PLI N 45.300 45.314 1.9332 3.069)
DL IN 0.54300 0.54443 0.742901—03 3.0196
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B.4 PEBLS Results for a Poorer Initial Model

If the initial model had been in error , say one had of 49 and

of .45 (versus the exact values of 45.3 and .543 from Biggs text) , the

question was , “How well will PEBLS perform?” The input data for this case

is shown on page B-8. Note that now the confidence in the parameters is

given as 20% , whereas formerly it was 10% (Cf. page B—3).The “experimental”

response data were taken to be the same as previously; (see page B-4). The

results of the first iteration with this input data are shown in Table B—4.

Note that the maximum value of u—analytic was calculated as .51185 , whe reas
the “data” gave .80551 for the same time point , point number 7. Also note

that the RMS error in observations went up to .1401, whereas in the previous
example it was .000899, initially.

After the three iterations , PEELS gave the results shown in Table

B-5. Note that the RMS error has been reduced (from .1401) to .0046, and
a significant improvement in “fitting ” the dynamic data had been achieved.

The final estimated values of the parameters P and d are also shownfin fin
in Table B-5, where the former is given as 43.8 and the latter (d1~~

)

is .51265. For comparison purposes , the “exact” values (used in Biggs

example) were 45.3 and .543, respectively. It is noteworthy that a rela-
tively “good” fit to the data (RMS error of .0046) was obtained , although
the estimated parameters olin and d1~~ 

are only within about 5% of their
“ exact ” values.
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POOR INITIAL MODEL

PARA METER ESTIMATION FOR BLAST —L OADED STRUCTURES

1—DOF ELASTIC— PLASTIC TEST

ITERATION LIMIT s~~~~~12

BACKSTEP LIM IT 2 4 
________________  _____

CO NVERGENCE CR ITLR ION ON OBJECTIVE FUNCTION a 0.00500

CONVERGE NCE CRIT ERION ON CHANGE IN PARAM ETERS a 0.01000

NOU SE STEP REDUCTIO N FACTOR •1 . 00000 - - -

PARAM E TER MOVE LIMIT 2 0.20000

THE TI ME HISTORY USES AT MOST 160 TIME POINTS

THE TI ME INCR FM E NT : O,50000E~ 03 SECONDS 
- -

THE MAX I MUM T IME THUS • 0.79500E—01 SECONDS

THE SLAB MASS PER UNIT AREA a 0.25906E .01

INITIA L ESTIMATES OF PARAME TE RS ~~~ 
- -

- 

• 

ESTI MATION INITIAL PERCENT
PARA M ETER 

- 
CODE E STIMATE V A R I A N C E  CONFIDENCE

PLIN 1 49,000 96.040 20.000
DLIN 1 0.45000 0.SL000E•02 20.000
EPLS 

— 
0 

— 
0.00000 0.00000 0.00000

EM UO 0 1.0000 0.00000 0.00000
EMU 1 0 1.0000 0.00000 0.00000
ENUD 0 9.9000 0.00000 0.00000

- 

ALI PO 0 1.0000 
-

~~ 

- 

0,00000 0.00000
ALP1 0 1.0000 0.00000 0.00000
A L,PD 0 9.9000 0.00000 0.00000

- 

BETA 
- 

0  0.00000 
-

~~~~ 

- 

0.00000 0.00000
PSCL 0 1.0000 0.00000 0.00000

THE TOTAL NU MB ER OF PARAM ETERS BE ING ESTIMATED (NP) • 2

8-8
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Table B-4

COMPUT ED AND OB SERVED D ISPLAC EMI NT RE SPONSE
POINT TEST TI NI U—A NALYTIC U—OBSE RV E D YsU— UTE ST

* 0.100001—0 * 0.559061—01 0.563301—01 — 0.623881—03
2 0.200001—01 0.20094 0.20836 —0 ,74243 1—0 2
3 0.300001—01 0.37623 0,40781 •O,31Sb01—0 1 —

4 0.311001—0 1 0.47976 0,54300 •0,632351—0 1
5 0.450001—01 0.552B0 0.66363 .0,11083

~ 0. 01—01 0.57960 0.76352 —0.1 8392
7 0.469001—0* 0.51*85 0,80551 —0 .29366

OB JECTIVE DUE TO OBSERVATIONS • 95.9008 RNS ERROR IN OBSERVATIONS S 0 .140101
OBJECTIVE DUE TO PA RAMETERS • 0.000000 TOTAL OBJECTIVE FUNCTION • 95.9008

Table B—5

COMPUT E D AND OBS ERV ED D ISPLACEM EN T RESPONSE
POINT TEST T IM E U — A N A L Y T I C  U—U BS I ;PV LD Y=U—UT E ST

1 0,1 00001—01 O.563i11—01 O,5b5301— O 1 —0. 198981—03
2 0.200001—0* 0.20725 0 ,20V36 — 0 .111 13 1—0 2
3 0,300001—0 1 0,40433 0,40781 —0. 348291—02
4 0.371 001—01 0,53761 0.54300 —0 .539461—02
5 0.450001—01 0.65640 0.66363 .0.72328 1— 02
6 0.550001—01 0.75901 0.76352 —0.4513 31—02
7 0.669001—0* 0,8*159 0,80551 0.607451—02

OB JECTIV E DUE TO OB SERV AT IONS R 0 ,169*10 RMS ERROR IN OBSE RVATIONS • 0.4651601—03
OBJECTIVE DUE TO PA RAMETERS • 0.767073 TOTAL OBJECT IVE FUNCTION s O .916t83

P A R A M E T E R  CONFIDENCE LEVELS
INITI AL LATEST PERCENT

PARA METER ESTI MA TE E STIMATE V A R I A N C E  CON FIDENCE
PLIN 49.000 43 .820 8 .1278 5 .8182
OLIN 0.45000 0.5*2 85 0 .318811—02 12.547

8-9
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B . 5  Conclusions

Additonal work was done to verify that sequential processing of the

experimental data gave similar results . Basically, the result of this exer-
cise was to convince the authors that the program PEELS was functioning
correctly and numerically integrating properly. Since exact analytical ex~m-
ples are not available with varying p, a, etc., all the loops and logic of
PEBLS have not been verified by hand calculations . Nevertheless, the authors
can state with some confidence that the program is completely functional ,
and it appears to be properly coded .
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