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SUMMARY

This report seeks to answer the fundamental guestion, "Can one simulate
the dynamic response of an R/C slab as a single degree-of-freedom system
(with realistic parameters and parameter values), using a priori infor-

mation? This question was simplified into two related questions, namely

ﬁ (i) Is there an acceptable set of simple model parameters that
s allow the slab to be modeled as a single degree-of-freedom
g system? and

(ii) Could one have predicted these parameters a priori, i.e.,
8 before a nuclear attack?

The study concludes that yes, there are physically realistic para-
meters that can be found (using Parameter Estimation Techniques) that !
allow slabs to be adequately modeled this way and that reproduce that
actual dynamic response of slab. Secondly, these parameters can often
}; (but apparently not always) be determined from static test data, elemen-
J tary theory, or combinationsthereof. Recommendations are made ccncerning
the future design and testing of R/C slabs.
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165 INTRODUCTION

Estimating the vulnerability of a structure to an attack by a nuclear
weapon requires some method of determining the response of the structure
to the transient loadings produced by the detonation of the weapon. Single
degree-of-freedom systems are commonly used within the defense community
as the means of modeling the response of structures to these transient
loadings. While it is recognized that estimates of strength and stiff-
ness produced by single-degree-of-freedom system models may be in error,
it has been generally argued that the models are adequate since the over-
alluncertainties of the problem do not justify the use of more complex
system models. The objective of this study is to exmamine the question of
the adequacy of a single-degree-of-freedom model to predict the transient
response of one class of structural member, the slab. The approach used

is to seek the answer to two related questions:

1. Is there any set of parameters for a single degree-of-freedom
model that will match the experimentally derived transient re-

sponse of various slab designs?

2. Can these parameters reasonable be estimated on an a priori

basis from either static test data or from engineering principles

The analytical procedure used is the technique of Parameter Estima-
tion. This technique basically takes a system model of any degree of
complexity and determines that set of model parameters which minimizes
the differences between the observed and calculated response values.

The report itself is organized in the following manner. The ideal-
ization of the slab as a single degree-of-freedom system is discussed
first, (i.e., the assumptions and approximations made), followed by a
discussion of the "multi-parameter" one degree-of-freedom model used
in the study. The next section deals with estimation of parameters (i.e.,
fitting the model to the data), followed by results presented for three
(widely different R/C slabs. A section of suggested procedures for ana-
lvzing slabs as single degree-~of-freedom models is then presented, and
the report ends with conclusions and recommendations for the future design

and testing of such structures.
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2. IDEALIZATION OF A SLAB AS A SINGLE DEGREE-OF-FREEDOM SYSTEM

This section follows the discussion by Watt (Reference 3), and simi-
lar results are also presented in Biggs (Reference 2) and other texts
(Reference 4). In the design of blast-resistant structures, considerable
economy can be realized if the design includes not only the elastic but
also the plastic resistance of the structure. Plastic behavior is not
generally permissible under continuous operating conditions, but is in
many cases quite appropriate for design when the structure is subject to

a severe dynamic loading only once or twice during its life.

It can be concluded from examination of exact or rigorous dynamic
analysis (i.g., Reference 2) that relatively simple structures having
simple boundary conditions can be easily analyzed. Otherwise, the analysis,
though not impossible, becomes cumbersome. For this reason and for practi-
cal design purposes, the idealized spring-mass, single-degree-of-freedom
approximate analysis is commonly used. This method provides a means for
analyzing the more complex structures rapidly and with a reasonable de-

gree of accuracy (Reference 2).

205K EQUATION OF MOTION

The actual deep slab structure and the idealized spring-mass system
are shown in Figure 2-1. The first peak value of deflection is of primary
interest for this problem, and damping-is often neglected (Reference 4),
but for completeness it has been retained. From the free-body diagram shown

in Figure 2-1, the equation of motion for the equivalent 1 d-o-f system is

MF(E) + BY(£) + Koy (t) - F_(¢) = 0 i
where Me = equivalent or effective mass, lb—secz/in (Kg)
y(t) = acceleration of slab at time t, in/sec2 (m/secz)
Be = equivalent or effective damping, lb-sec/in (Newtons-meters/
}(t) = velocity of slab at time t, in/sec (m/sec) o
Ke = equivalent or effective stiffness, lb/in (Newtons/m)

y(t) = deflection of slab at time t, inches (m)

equivalent or effective force at t = Ersme.
£=1 Y W "
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Figure 2-1. Deep Slab Specimen and 1 d-o-f Model
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In order tc define the equivalent system, the parameters Me' Be’ Ke,

and Fe must be evaluated. The equivalent one-degree-of freedom system is

one for which the kinetic energy, dissipation, internal energy, and work |
done by all external forces are at all times equal to the same guantities
for the continuous-mass deep slab structure. It is assumed that the de-

i
i flected shape of the structure is the same as that due to static loading.
|

El (This is a key assumption.) ﬁ
| If any point on the deflecting surface of the deep slab is described H
| by Ej
3 |
| |
- y(x,z,t) = A(t)d(x,2) (2-2) =

~ |
; where
A(t) = displacement, inches (meters) as a function of time t {

[

¢ (x,2) assumed deflecting shape (i.e., mode shape) of the deep slab

the velocity y(t) of any point on the slab becomes

v(x,2z,t) = A(t)¢ (x,2) (2-3)

If the equivalent system is to respond similarly to the midspan of
& the actual structure, then the displacements and velocities of both systems
B must be the same.

Equating the kinetic energy of both systems yields

- s .
1/21\461!\(1:)2 = 1/2_/ M[A(t)cb(X.z)]z ds

or S (2-4)
Me =f M¢2(x,s) ds
R where S is the area of the slab (planform).

Equating external work yields
S |
) FeA(t) =f F(A(t)d (x,2z)] dS J
|
s %
. =f F¢ (x,2z) ds (2-5) |




where

M

mass per unit area, 1b—sec2/in3 (kg/mz)

F force per unit area, pounds/in2 (Newtons/mz)

Similarly, equating the dissipation yields

S v
beA(t) = [ cA(t)¢(x,z) dS
o

where c is a "localized" damping term.

The equivalent load of Equation (2-5) applies to the magnitude of the
load, while both loads have the same time function.

The resistance or stiffness is the internal force tending to restore
the system to its unloaded static position. If the stiffness is defined in
terms of the load distribution, then the maximum stiffness is numerically
equal to the total load of the same distribution ¢ (x,z) which would cause a

unit deflection at the point where the deflection is equal to that of the
equivalent system.

The shape function ¢ (x,z) changes as the deep slab progresses through
the different stress ranges, i.e., elastic, elastic-plastic, and plastic.
Thus, a complete solution requires that a shape function for each range be
considered. Or, to put it another way, the effective mass, M. is really
Me(y), i.e., it is displacement-dependent. Similarly, Be and F_ depend upon
the displacement.

2.2 CANONICAL FORM OF THE EQUATION FOR VARIOUS MODE SHAPES

If one defines the total mass (of the slab) by

S
MT i/ﬁ ph ds (2-6a)

then

where S is the planform area of the slab and it is assumed that the average

density (p) and the slab thickness (h) are constant. Similarly, the total
force applied is defined by

s
P =f p ds (2-7a)




and when the pressure, p(t) is assumed to be uniform (over the planform
area) one has

FT = pS

(2-7b)
Finally, if one combines the preceding results (Equations 2-6b, 2-7b,
and 2-4, 2-5, with 2-1) and then divides through by the area, S, he obtains

<

the canonical form

EMY + Eey + ke(y) = ap(t) (2-8)
where the mass coefficient
i o
u = ——LE.__ (2—93)
chs
and the u is always £ k. similariy ke (y) is the restoring force
(per unit area) (i.e., it represents the static load-deflection curve,
pressure vs. deflection). It is clear that
£
; =‘fs£_c.i§ = f (t) 2 ds (2-9b)
[ »s ps

and that o < 1.

Estimates of the coefficients U and a can be obtained by assuming
various forms for the mode shape, ¢.

For example, when ¢=1, (i.e., the
slab translates through space like a rigid-body),
Similarly, if ¢ = sin lL’i

direction only), then

then p=1 and a=1.
(bending like a simply-supported beam in one

N
]
wm

2) - 6366




Or, if the slab acts like a plate (or membrane) in two directions, then

. mX . mZ
X,2 & ST SR
¢ (x,2) : b

2
| . 2(mx . 2 vz _f1 o
EB~17;1n (Er) sin (7;> dxdz = (§> = .25
i : i m 2 2
a = EEJC](sin é? sin 7?) dxdz = (;) = .4053

Thus, a priori, one has bounds on the coefficients a and u of the
canonical Equation (2-8). These "bounding values" will be used subsequently
when the parameters of Equation (2-8) are estimated. As stated previously,
ke(y) represents the static load-deflection curve, and Be9 is the damping
term, which has practically negligible influence on the maximum initial
response (cf. Biggs, Reference 2). A typical pressure vs. deflection curve

is shown in Figure 2-2, and Figure 2-3 shows a representative deflection-
time history.

e
!

2.3 "REAL-WORLD" EXPERIMENTAL EFFECTS

In practice, the mass coefficient uy (and the force coefficient, a)
will vary with the displacement y. For example, a thick slab might be ex-
pected to start out deflecting linearly (with y = .5, say), and end up

"punching through" (with p = 1, say) as the pressure loading increases. In
other words, one might have

S 2 uiy) =1 (2-10a)

during the dynamic response. Similar restrictions apply to the force coeffi-
cient, a,

+0 K Ay} < & (2-10b)
for thick slabs. This type of behavior was observed by Watt, Reference 3.

Conversely, for thin, conventional slabs, Brown and Black (Reference
5) found that they began deflecting linearly (like a plate) and ended up
stretching, like a membrane. In this case, one might expect (at least
tentatively)

28< g W25 (2-11a)
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Figure 2-2. Typical Pressure vs. Deflection Curve
(Watt, Reference 3)
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and A B
where u = p(y) and o = a(y) both vary somewhat with deflection.

Finally, Keenan's laced slabs (Reference 6) behave much like a wide

beam with plastic hinges. Again, one might estimate

.25 < p < .33 (2-12a)
and

JE S e < g (2-12b)
2.4 TEXTBOOK RESULTS

Biggs (Reference 2) presents approximate methods for the design of
beams and slabs. 1In Chapter Five (pp. 199-244), Biggs discusses a "mass

factor" Km (analogous to the p used herein) and a "load factor" K. (analogous

L
to a). Tabulated values of Km () and KL(a)are given therein for beams and

slabs subjected to various dynamic loads, including uniform pressure.

An important observation made by Biggs (and not originally recognized
by the authors) is that the factor o (or KL) is inherently contained in the

static-load deflection curve. Thus, the equation of motion can be written
as

WMy + B3 +ak(y) = ap(t) iy

or, (dividing through by a)
MAY + ¢ + k(y) = p(t) (2-14)

where A=% is called "the load mass factor".

In equation (2-14) k(y) is the static resistance function (pressure
vs. deflection) of the slab. If we neglect damping (as Biggs suggests) then
egquation (2-14) becomes

MMy + k(y) = p(t) (2=15)

Finally, if k(y) is approximated by a bi-linear (elasto-plastic)curve,

k(y) reguires just two parameters to define it, namely Pjipn (the yield stress)

and dy,,, (the displacement when yielding begins). Thus, equation (2-15) has
2=9




just three parameters (A, Plin’ and dlin) as opposed to the more complicated

"multi-parameter" model, which will be discussed shortly.

Initially, good results were obtained (in fitting the dynamic responsc

data) using the multi-parameter model. However, as more dynamic data were

analyzed, it became clear that the most physically significant results would

come from as simple a model as possible. For this reason, equation (2-15)

was eventually used in attempting to fit the dynamic data.

cads i




3. MULTI-PARAMETER 1 d-o-f MODEL

When this study was begun, it was not known how well a "simple model"
(with constant mass p and force coefficient, a) would perform in trying to |
approximate the dynamic response data. Hence, the one d-o-f model was made

fairly general in the computer program (PEBLS)* which was used in this work.

If one rewrites the equation of motion (2-8) (repeated below for convenience)

WMy + B Y + k(y) = aP(t) (2-8)

and notes that the mass term u = u(y) and the force coefficient o« = a(y),

then one has

Mu(y)y + Be§ * K, Gy = alyhRI(t) (3-1)

i e

Based upon the limits expected for (a,u) (see Section 2. ) then one
might choose a linear variation of (u,a) with deflection as shown in Figure

S=1by

FORCE COEFFICIENT, o

- DEFLECTION, y

¢ Figure 3-la. Variation of Force Coefficient . with Deflection

*Parameter Estimation for Blast-Loaded Structures
3-1
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Figure 3-1b. Variation of Mass Coefficient . with Deflection

For the spring force, ke(y), PEBLS uses a bi-linear load-deflection
curve (Figure 3-2).

4 EpLAsT

FORCE

! M DEFLECTION, y
| d
4

L 77-1299

Figure 3-2. Force-deflection Curve Used in PEBLS
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If the pressure, p(t), is measured incorrectly, (i.e., the dvnamic
pressure gage is not reading properly) then one might want to "scale up"

(or scale down) the pressure, p. Thus, PEBLS uses %

Rty = p f(t)

scale

where f (t) is the experimental (pressure vs. time) data. Finally, the
damping term was kept linear (i.e., just Ee9) since it was expected to have
little effect.

Thus, for generality, the eleven parameters

(po, s pd) ~ mass coefficient
(uo, Gy od) ~ force coefficient
(plin' dlin' Eplast) ~ bi~-linear spring

p ~ pressure scaling

scale

£ ~ damping

were incorporated in the computer program. The resulting model is referred
to herein as a "multi-parameter 1 d-o-f mocel."

Note, of course, that the model can be readily simplified. For
example, by setting

Ha = ¢ (ox ag = 0)
one obtains

=y constant (or a = a, constant)

el

i.e., one can revert back to the "constant mode" model with non-varying

mass ané¢ force coefficients.

Similarly, by putting E .001* (or .01) one can achieve an

plast i
elazs-ic - perfectly plastic force-deflection curve for the restoring spring.

*Do not use E 2 0or B = 0 in the computer program, since they appear

plast
in the denominator within the F@RTRAN coding.

I3
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Putting p 1.0 gives no magnification on the pressure, and £ = .001%

scale T
gives low damping. “hus, at the outset, it was cesirable to program a
multi-parameter model with the flexibility of progressive simplification

just noted.

Faving chosen a "multi-parameter" 1 d-o-f model, one is then faced

with the problem of selecting its parameters: «o o etc. In most

or %17 Og---
cases, one has theoretical results to guide him, (e.g. § < p < 1), and

ke may also have some estimate of the mode shape, ¢, (which allows him

to compute u, a) and in many cases a static loac-deflection curve. With
these a priori estimates, the analyst has a set of "initial parameters"

for his model. Based upon his experience, the analyst also places a guanti-
tative measure of confidence on his initial estimates, and these numerical
confidence estimates are used in the search for a final set of parameters.
This search for "best estimates" of the parameters is termed "parameter

estimation," as discussed in the next section.

*See footnote previous page.




4. FITTING THE MODEL TO THE DATA: PARAMETER ESTIMATION

4.1 INTRODUCTION AND BACKGROUND

The question of selecting the parameters (ao, Gyr Ggr owees etc.)

of the 1 d-o-f model in such a way that the analytical model "matches" the

experimental data is a problem of "parameter estimation." Parameter estima-
tion is related to the more general problem of "system identification"

(References 7 and 8). The main idea is to use differences between measured

and predicted behavior (e.g., the dynamic response, y, as a function of
time, t) to adjust key parameters of a model automatically so as to mini-

mize response differences (i.e., minimize yanalytical = yexperimental)'

The procedure 1is quite general and can be applied to either linear or non-

linear mathematical models (cf. Figure 4-1).

INPUT

COMPARE
MODEL & TEST
AGREE?

e S |
REVISE
REVISED PARAMETER VALUES PARAMETER
ESTIMATES
INITIAL
PARAMETER
VALUES

Flow Diagram of Model Verification/Parameter

Figure 4-1. !
Estimation Procedure

In the present study, the model parameters are chosen to minimize

the vector norm




N = {au}T{au) (4-1)

where the vector {Au} is given by

8y = Opedel = Yoxpe! 8% SIS &,
AUZ = (ymodel =\ yexpt) RE hune t2
du, = (ymodel = yexpt) at time tg, and so forth.

Note that uncertainties must be recognized in both the analysis
(mocdel) and the test (experiment). That is, one expects (from a static
load-deflection curve, say) to know the yield force (stress) fairly well,
but there is still an uncertainty in it (e.g., £10%). Similarly, in

the measured response, y one does not know y exactly, but rather

expt’
with some uncertainty. Computational methods are available for utilizing
this information in a quantitative manner so as to achieve an optimum
(minimum variance) fit between analysis and test. In other words, when

cenfidence in the data is greater than confidence in the model (analysis),

the model is adjusted so that it tends to match the data. When the converse

is true, changes to the model will be relatively small.
4.2 STATISTICAL PARAMETER ESTIMATION

As just discussed, methods for parameter estimation which recognize
the respective uncertainties in both analysis and test have an obvious
practical advantage. Such a method was employed in this study. The origi-
nal derivation and application of the method appear in reference 9.

The particular algorithm for statistical parameter estimation des-
cribed in that paper uses a linear estimator in that it operates on the
bLz<is of a linearized relationship between a parameter vector, {r}, and an
observation vector, {u}. 1If rp and up denote prior (initial) estimates of
the elements of these vectors based upon analytical models, then the "true"
values r and u are assumed to be related through a sensitivity matrix by
the equation (linearized Taylor's series expansion)

4-~2
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{(u - up)} = [T]{(r - rp)] + {¢e} (4-2)

If u represents measured data with random error {e}, and the notation
(o = up) = Au and (r = rp) = Ar is adopted, then eguation (4-2) becomes

{aut = [PILAx} + fe) (4-3)

where

ER) response sensitivity matrix of order (nx )

length of parameter vector, {Ar}

n = length of observation vector, {Au}

Using the following notation adopted in

18,.1 = EblE = rp)}{(r - rp}T] = (2 x {) covariance matrix of the
parameter vector {r}
£8 0. = E[{E}{E]T] = (nxn) covariance matrix of the experimental

error vector {e}

{Srr*} = BEf{r* - rp)}{(r* - rp)}T] = (2 X 2) covariance matrix of

the vector {r*}

“ne revised estimate of the parameters {r*} and its covariance are given by

{r*} = {rp} + [Gl1{(u - up)} (4-4)

[8..%1 = 8.1 ~ [G1IT){s ] (4-5)

where the estimator matrix [é] is defined as

-

o L I o -
(6} = (s, T (IT1(s, 3 IT1T = [s_ 1) (4-6)

Equations (4-4) through (4-6) represent the Kalman Filter equations
as applied to the estimation problem (Reference 10). The estimator matrix

i) as civen by equation (4-6) is derived such that the vector norm
N = {Au}'{Au} (4-1)

is minimized (cf. References 9 and 10). Equation (4-1) is a measure of the
mean-square deviation between the experimental (measured) response and the

theoretical (calculated) response. -3
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It is important to note at this point that the sensitivity matrix
[T] = [3u/dr] and the estimator matrix [G] are updated as the computational
algorithm iterates. The Kalman Filter equations are recursive in nature,
and eventually the estimator matrix [G] will reach a steady-state solution
(cf. Reference 10). This approach (using a linearized Taylor's series)
is conceptually similar to applying Newton's method for solving nonlinear

simultaneous equations.

Furthermore, as indicated previously, the method of satistical
parameter estimation applies when there are "noisy" data. Experimental
error is represented by {e} in equation (4-3) and is accounted for by
the covariance matrix [Sss] of equation (4-6). The reader interested
in further details of Statistical Parameter Estimation may wish to consult

References 7 and 8.

Previous structural application (Reference 9) of statistical
parameter estimation used natural frequencies and mode shapes (i.e., modal
deflections at particular locations) as elements of the observation vector.
Reference 11 uses frequency-response data and assumes steady-state harmonic
excitation. The estimation procedure can be applied in either the time-
domain (cf. Reference 12) or the frequency domain. The present study uses

the time-domain approach, since the mathematical model is non-linear.
4.3 BAYESIAN ESTIMATION EQUATIONS

The J.H. Wiggins Company has made use of "Statistical Parameter
Estimation" previously (e.g., References 9 and 11), and developments in
this area have continued apace. Thus, Isenberg (Reference 13) recently
prepared a systematic account of statistical parameter estimation, least-
squares, weighted residual methods, etc. From this systematic study, there

resulted a set of Bayesian estimation equations, which are presented in

this section of the report. (These results have been abstracted from
Reference 13). Details of Isenberg's results are included herein as
Appendix A).

In Bayesian estimation, one is given a prior estimate of the para-

meters r _, along with the associated covariance matrix Srr’ One then

sceks to minimize the objective function

-
.
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Went (uobserved

have more confidence in some data points than in others).

o

s Eh

exprcss that confidence through the weighting matrix, Qij'
tice, the matrices w and w are given by

] w = S_%

7 i 4 4
1 and

[ ]

| A -1

| w =S

| rr

experimenter might find it easier to measure the maximum deflection (§

espo s 1 ot : : 1
5 is the initial (a priori) estimate of the 1-‘3—rl parameter,

i=l J=1
n n (4=7)
2 ; D e r&)(roj_ - x))
=1 {=41 1
where
w = Sce
and
- -1
| w=S__
i
and Srr is as symmetric matrix as 1s See'
The variables Ug.r Uy wij’ etc., are defined in Appendix A. To ori-
i

ient the reader, note that (uOi-ui) represent the difference between experi-
) and the theory (ui, of the model). The terms wij repre-
sents a "weighting" matrix, where some data points are weighted more heavily
than others. The reason for this "weighting" is that all the data points
may not have been obtained with equal certainty (i.e., the experimenter may
For example, the

max’

say) that the deflection at a (finite) early time (e.g., at t=.1 millisec).
The introduction of wij allows the experimenter to influence the model
(which is being estimated) by selectivity weighting his data points.

Similarly, equation (4-7) contains the parameters (ro.— ri), where

The weighting

ma%rix, Qij allows the structural analyst to influence the parameters esti-
mated by the algorithm in a fashion similar to the experimentalist. Thus,

if the 2nalyst has a great deal of confidence in the i— parameter, he can

In actual prac-

(4-8a)

(4-8b)

sl e s




where S;E and Srr are "covariance" matrices defined in Appendix A. The user
o
of PEBLS controls the "route" the program takes (to minimize F in eguation

4-7) by his selection of See and Srr'

To summarize the technique of Bayesian estimation, we iteratively
solve the sequence

T =0 (re) (4-9a)

S = (w + TTwT)'l =S (r,) (4-9b)
T

G =STw =G (r)) (4-9¢)

ML + G [uo—ue-T (ro—re)] (4-94)

and repeat the next sequence with r replacing r,- We continue to iterate
until the difference between r and ry becomes sufficiently small and the se-
quence has therefore converged. The final value of S is S;r, the revised
parameter covariance matrix. It should be noted that when the response is

linear with respect to the parameters, only one iteration is required.

As discussed in Appendix A, the matrix T is a "sensitivity" matrix,
i.e., the change in response due to a unit change in a parameter. (See
equation (42) in Appendix A.) The matrix S is a covariance matrix, and G
is the "estimator" matrix. The vector, r, is the set of parameters (e.g.,
Ggr Gy %n etc.) of the mathematical model. (See Section 3.0) Eguations
(1-3) are used within PEBLS to obtain the revised estimates of the model
parameters.




5.0 RESULTS FOR THREE (WIDELY DIFFERENT) TYPES
OF REINFORCED CONCRETE SLABS

5.1 INTRODUCTION

Static and dynamic data from three series of tests were used in
this study. The results of the modeling are contained in this section of
the report, with Section 5.2 devoted to Watt's (deep) slabs (Reference 3),
Section 5.3 to Brown and Black's conventional slabs (Reference 5), and
Section 5.4 on Keenan's laced slabs (Reference 6). The sensitivity of
the results is given in Section 5.5, and additional results are given for a
three-parameter model (of Watt's Slabs), a four-parameter model (of Brown

and Black's Slab), and a simple model of Keenan's Slabs.

5.2 WATT'S DEEP SLABS (Reference 3)

Reference 3 reports on static and dynamic tests of deep R/C slabs
(span-to-thickness ratio of 4.12). Two types of slabs were tested (namely
mach-modeled slabs and environmentally-modeled slabs) but static test data
were available only for the latter. The slabs were scuare in plan, but
they were placed over a circular cavity and thus had an unsupported diameter
of 24 inches in the center. Dynamic pressure loads were applied by the WES
Small Blast Load Generator, which involved detonating an explosive mixture

of gases and driving a shock wave against the face of the slab.

The dynamic response was recorded using accelerometers mounted in
the center of the slab and also on the support structure. The accelerometer
traces were digitized and then integrated in time to give velocities and
displacements. Pressure-time histories were also recorded. For further
details, see Reference 3.

The computer program, PEBLS, allows velocities to be part of the
"observation vector," {Au}. Since velocities were available in Watt's test
data, they were used (along with the displacements) to form the observation
vector. Results were obtained only for the Environmentally Designed Slabs,
test specimens ED1l, ED2 and ED3. Figure 5-1 shows the experimental data
which was used as input to the program and Figure 5-2 gives the correspond-
ing pressure-time histories. The experimental data used from Figure 5-1 is
tabulated in Table I for the three test specimens, EDl, ED2 and ED3.

In addition to the data on displacement and velocities, note that
the user must input an estimate of the error in the experimental observa-

tions. (The error in observations relates to the matrix [SCEJ - see

Equation (4-8a) discussed previously). Thus, the percent errors in the
5-1




TABLE 1

A. EXPERIMENTAL RESPONSE FOR THREE SLABS
B THE e SLAB ED 1 SLAB ED 2 SLAB ED 3
POINT | M SEC | DISPL. | VEL. DISPL. | VEL. DISPL. | VEL
1 .25 02 180 01 90 .025 180
2 5 .08 320 06 480 .09 350
3 .75 15 380 18 435 .18 350
4 1.0 21 190 .27 310 .26 280
5 1.25 255 120 53 235 33 210
6 1.5 285 90 .39 210 7. 120
7 2.15 .325 0 .455 0 41 0
B. CONFIDENCE IN THE EXPERIMENTAL OBSERVATIONS
i Stk SLAB ED 1 SLAB ED 2 SLAB ED 3
POINT M SEC DISPL. VEL DISPL. VEL. DISPL VEL.
.30* 25 1.5 1.5 .30 .25
] .25
7000036 2025. 000225 18225.| 0000563 025.
.20 15 0.5 .30 .20 .15
2 .50
000256 304. 0009 20736.| 7000324 756.25
.15 .15 .25 .25 .15 .15
3 .75
70005063 | 3249, 002025 11827.| 000729 756.25
.10 .15 .15 .25 .10 .15
4 1.0
7000441 12.25 | 001640 6006. 000676 764.
.10 .20 .15 .25 .10 .20
5 1.25
0006503 76.0 002450 3452, 001024 764.
.10 .25 15 .30 10 .25
6 1.5
0008123 06 25 003422 3969 001369 00.
.05 =6 10 = 6 .05 =6
7 2.15 ‘
0002641 ~506.25| 002070 3969 000420 800.
PER CENT
ERROR
VARIANCE 5-2
i i - R ey . - ik n'mﬁl...‘“’ ol dabils  addai;




3P T

B e o

AIRBLAST PRESSURE, PSI
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velocities and displacements are also given in Table I (the bottom half)
along with the corresponding variances.* A small percent error indicates

good confidence in the data, and a large error indicates poor confidence.

Thus Table I shows that we have more confidence in the displacements at t
through t7
(tl through t3).

4
(the later times) than we do in those near the initial times

The results of the parameter estimation calculations are shown in
Table II, which gives the ten parameters which were estimated (Plin' dlin’
| Eplast’ etc.), showing their initial values, their values estimated for each
H test slab, etc. For example, the initial ("prior") model used a yield stress
of 525 LB/IN2 (Plin)’ and after the estimation procedure (for slab ED1l) the
estimated value of the yield stress was 450 LB/IN2. Perhaps the more impor-
tant thing to note in Table II, however, is that the RMS deviation decreased
b from .0428 .initially (Slab ED1l) to .0048 (when the revised parameters were

used), i.e., a factor of ten improvement in the RMS value.

The deflection vs. time is shown plotted in Figure 5-3 for Slab EDI1,

where the three curves represent
(i) the experimental data,
i (ii) the initial model response,
and, (iii) the model response using the "optimum" parameters just esti-
mated.

&
w
b =
2.4 FINAL MODEL
| = EXPERIMENTAL DATA (REVISED PARAMETERS)
. ‘1 g .
| o |
{ = o
} e ’——"
4 Eg & ;f”‘ﬂ‘\\\\\
: - z
z INITIAL MODEL
. (/'1 r
=
- I 1 1 1 )
0 5 1.0 1.5 2.0 2.5

TIME, MILLI-SECONDS

11-1299

Figure 5-3. Deflection - Time History of Slab ED 1,
Showing the Initial and Final Model Results.

*The variance is equal to the square of the standard deviation. See

Reference 14.
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It is also noteworthy that the static load-deflection curve
(estimated by this procedure) is a fairly good fit to the static test
data. (See Figure 5-4). These results, presented in Table II and Figure
5-3, were based upon a relatively "good" prior model. That is, given the
experimental static load~-deflection curve of Figure 5-4, one could make a
pretty fair guess about the values of the parameters Plin' dlin’ Eplast'

etc.

The guestion naturally arises, "What if one didn't have the static
load-deflection curve?" 1In this case, he would rely on a combination of
experience and analysis to come up with a prior model for the non-linear
load-deflection characteristic. But then the question is, "“How well would
the estimation procedure perform," or more specifically, "Will the estima-
tion procedure still arrive at a good bi-linear approximation to the exper-

imental load-deflection curve?"

To test this problem out, a poor initial model (with a yield stress
of only 200 LB/INZ) was input to the program along with the experimental
response data from Table I. The results are shown in Table III and Figures
5-5 and 5-6. Referring to Figure 5-5, note that the response curve for the
revised model matches the experimental data almost exactly, although the

initial (prior) model gives rather poor results.

Figure 5-6 shows similar results, where the load-deflection curve
for the final model is much closer to the experimental data than is the
initial model. These preliminary results were encouraging, and it appeared
that the 1 d-o-f model (as used herein) was able to match the experimental

response for deep slabs.

Refer again for a moment to Table II. Note that Table II contains
both the initial estimates of error in the parameters as well as revised
error estimates. For some parameters (e.g., EMUD), the initial error
estimate was 50%, and after data for three slabs had been supplied to the
computer program, the error was barely reduced (i.e., the revised error was
49%). However, note that other parameters (like PLIN, for example) began
with an estimated error of 50%, which was subsequently reduced to 17%,

i.e., a significant improvement.

Thus, it seemed that everything was working exactly as had been
intended, and the parameters (see Table II) were coming out with "reasonable"
values. At the suggestion of the Technical Monitor, we simplified the

model from ten parameters (Table II) to four parameters, namely:
5-6
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TABLE 111

A. PARAMETER VALUES, BEGINNING WITH A POOR MODEL

SLAB ED 1

INITIAL VALUE FINAL VALUE
PLIN 200.00 399.700
DLIN .07 .105
EPLAST 10.00 11.500
EMUG .80 192
EMU 1 1.00 .965
EMUD .07 .082
ALPO .80 .794
ALPD .07 .030
BETA .05 .056
PSCALE 1.00 1.016

B. RMS DEVIATION
INITIAL MODEL VS
FINAL MODEL .0049
5~8




MID-SPAN DEFLECTION, INCHES
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Figure 5-5. Deflection - Time History, Beginning
With a Poor Prior Model
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® A single mass parameter,
avg

® Two spring-force parameters (Plin and d

e /nd one force parameter, P

lin)

et (the a value was set
equal to unitv).

The results of this "four-parameter model" are shown in Table IV,

and Figures 5-7 through 5-9, respectively, for slabs ED1, ED2, and ED3.

lin scale)'
The parameter estimation program was still able to closely fit the dis-

Note that by adjusting these four parameters (u, Plin’ d and p
placement time-histories. The parameters still seemed to have reasonable
values, but it was somewhat disturbing that the force-deflection para-
meters (plin’ dlin) did not match the static load-deflection data as well
as had been expected. These discrepancies were thought to be due to slight

variations in the individual slabs, however.

At this point in the study, everything looked rosy, and it was
(somewhat naively) assumed that similar results would be obtained for the
other types of slabs as well. However, that was not the case, as is dis-
cussed in the sections which follow.

5.3 RESULTS FOR BROWN AND BLACK'S CONVENTIONAL R/C SLABS (Reference 5)

Reference 5 provides both static and dynamic test data on conven-
tional R/C slabs, where the slabs were square in plan and had a span of 29
inches and a thickness of .89 inches. The static test data are shown in
Figure 5-10. Note that these static tests were continued to destruction of
the slab, i.e., until the slab could carry no more load, at a deflection of
approximately 4 inches. At this point in the test, the concrete was highly
fractured, and the reinforcing steel was stretched to its ultimate capac-
ity. (For additional details and photograph of the damaged slabs, see Re-

ference 5).

Brown and Black's tests are noteworthy for the fact that they
Actermined the ultimate pressure capacity of their slabs (From 20 to 25
psi, sce Figure 5-10) and the corresponding maximum deflection (i.e.,about
4 inches). This information was not obtained for Watt's deep slabls, dis-
cussed previously (cf. Figure 5-6). Thus, from their static tests, Brown
and Black knew that a deflection of about 4 inches corresponded to the

ultimate capacity of their slabs. Yet, in the dynamic tests (see Figure

5-11), the slabs were all driven to amplitudes well in excess of 5 inches.
Not surprisingly, each of the dynamically tested slabs was severely
damaged. (See Reference 5 for photos of the tested slabs). These tests

5-11
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Table IV
Estimated Parameters for Watt's Slabs
i SLAB SLAB SLAB
4 PARAMETER ED 1 ED 2 ED 3
' MASS COEFFICIENT v .93 1.00 .95
1 YIELD FORCE Py, 400 360 443
4
i ELASTIC DISPLACEMENT dy.. 187 173 .168
|
j PRESSURE SCALE FACTOR P_ .1, .96 .82 .90
RMS DEVIATION ARMS .005 .015 .003
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(by Brown and Black) were therefore fundamentally different than Watt's

tests, where the ultimate capacity of the slabs was not measured, and the

dynamic tests were run at less than the ultimate strength. On the other hand,

the authors of Reference 5 did measure the ultimate strength of their slabs,
and then they tested (dynamically) to well-beyond the static capability.
These basic differences in the test philosophy and test results were not
immediately recognized by the writer. It was only after difficulties were
experienced with the parameter estimation procedure that a closer look was
made into the test details.

Initially, a l0-parameter model was used to fit the test data for
slab ID-2. (The pressure-time history for this test is given in Figure
5-12, and the displacement time-history is shown in Figure 5-13.) This
multi-parameter model resulted in a good fit to the time-history data (see
Figure 5-14) and the force-deflection results also looked promising (cf.
Figure 5-15). However, in contrast with the earlier results (Section 5.2)
the parameters for a, u, etc, did not appear to be physically realistic.

To get a better understanding of what was happening, the l0-parameter model
was simplified (e.g., ¢ was held constant, o was held constant, etc.) but
Eplast (the post-yield slope) was still allowed to vary (since it was
expected that a bi-linear characteristic would be needed to approximate the
force-deflection curve). Several parameter estimation runs were then made
(they are tabulated in Table V) each with the same result: the program
arrived at a "nearly-linear" force-deflection curve when fitting the dynamic
test data. The fit to the dynamic data was fairly good in each case, as
denoted by

L. & l1/2
{% Z yth = yexi)zl

which is a measure of the deviation between the model (theory) and the test

(experiment) .

At this point, it was decided to try to use a linear force-deflection
cvrve and see what the parameter estimation program would do. Again, it
achieved a fairly good fit to the dynamic test data, with Arms less than .01.
(See the last line of Table V.) These results were disturbing, at least
initially, since they were unexpected. What had been expected was that some
form of strain-hardening (e.g., like Figure 5-15) would be required to
satisfactorily fit the dynamic data. It was thought that the strain-
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Figure 5-12. Overpressure-Time Records for Slab D2

(Reference 5)
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Figure 5-15. Multi-Parameter Model, Showing Fit to the Static
Deflection Data
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“ardening would ke required because the static load-deflection data was
strongly non-linear (c.f. Figure 5-10). However, the parameter estimation
ecuations Vept fitting the dynamic cata and using a nearly-linear model to

do so.

Finally, after some hand calculations using the method of equivalent

linearization (Reference 15) it was recognized that the dynamic data (or at

: " o ’ : el
least the maximum deflection, 6max) can always be fitted by an "equivalent
linear model". For any loading function, p(t), the response of thel d-o-f
system is well-approximatecd by

y(t) = (1 - cos ueqt) 6max (5=1)
where 4 g is the frequency of the equivalent linear oscillator,

2 k
: cq (5=2)
eq m

anad kec is the "equivalent linear stiffness".
)

If one begins with the non-linear differential eqguation

_" + —| -

my fnl(y) p(t) (5=3)
and the approximate sclution

villaz)Be émax (l1=cos ‘eqt) (5-4)

(where f l(y)is any non-linear force-deflection curve)then multiplying both
n
sides of ithe equation (5-3) by

y = sin w__ t (5-4)

y. .06
“eq max eq

and integrating the result gives

2 P
By 4 dy = I oy - -5
2 J[fnl(y) 3t dt p{t) “qumax sin Yeg t dt (5=5)
The 1limits on the integration are from y=0 to y=¢ s or in terms
ma-
of the time, t, from t=0 to t = 51-. At both these times, thie velocity, ¥.
€q
is zero, and the kinetic enerygy term vanishes. Ecquation (5-5) then
uces to
P Ll
“max / /‘“eq
fnl(y)dy = p(t)ueqémax sin “eqt dt (5=6)
0
5-24
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which says that the strain energy (stored in the nonlinear spring) is equal

to the "work done" by the applied force p(t).

As a first approximation, one might try p(t) = P, =& constant, if
the loading function does not change much during the initial response. Then,

the right-hand-sice of ecuation (5-6) gives

./;b weqdmax sin meqt dt = 2poweaémax (S—7)
and one finally has

5

‘max
4/. fa1(y)dy = 2poweq6max (5-8)
0
which can be solved for the eguivalent linear frequency (ueq) and thence
the equivalent linear stiffness (keq). Note that Yeq is given in terms of
the area (strain energy) under the force-deflection curve, and the maximum
displacement, 6max' Also note that no restriction has been placed on the

force-deflection characteristic, fnl(y)'

Based upon the foregoing discussion, it is the author's opinion that
the parameter estimation algorithm performed an "equivalent linearization"
(or something similar) to achieve a good fit to the dynamic test data of
Reference 5 with a nearly-linear force-deflection curve. If this hypothesis
is correct, it is only natural to inquire as to why something similar did
not occur previously, e.g., in the case of Watt's slabs (Section 5.2). A
possible explanation for this difference in behavior is that Watt's slabs
were tested in a "moderately nonlinear" range (with the maximum deflection

& ecual to just 2 or 3 elastic deflections, d ) whereas Brown and

max lin

Black's slabs were loaded to their ultimate capacity. For the latter, the
maximum deflections were on the order of 15 to 20 times the elastic deflec-
tions. As stated previously, there was a fundamental difference in the

testing philosophies used in References 3 and 5. This point will be dif-

cussed in more detail in Section 5.9.

4 5.4 RESULTS FOR KEENAN'S "LACED" R/C SLABS (REFERENCE 6)

keference 6 presents results for static and dynamic tests of uni-

-v'-'v'*.

formly-loaded one-way reinforced, "laced" slabs. The slabs had a span of

5=23
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Figure 5-17. Time Variation of Pressure and Deflection, Slab D3-1
(Keenan, Reference 6)
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¢ feet (72 inches) and a thickness of 6 inches, giving a span-to-depth
ratio of 12. These slabs are unusual because of their "lacing" reinforce-
ment, which is shown in Figure 5-16. Keenan's tests are also unusual by

virtue of the fact that the tests were conducted at several different

pressure levels. Recall that Watt's tests (Reference 3) and Brown and

Black's (Reference 5) were each conducted at basically a single (dynamic)
pressure level. Keenan recognized that a nonlinear system (such as an k/C
slab) should be tested throughout its nonlinear range. Thus, his tests
began at a low level of (dynamic) pressure, p(t), and became progressively
more severe. However, a testing program of this type requires either several
identical specimens (which is expensive) or several tests on the same
specimen (which results in cyclic loading and progressive failure). Both
alternatives arc undesirable, from the point of view of the test engineer.
Keenan chose the latter course, and he successively tested the slabs to
higher and higher pressures. The most significant data, from the point of
view of the present study, occurred on the "first shot." Thus, the atten-
tion is focused herein on Keenan's test specimen D3-1. The pressure vs.
time history and displacement time history for this slab are shown in
Figure 5-17. & typical static pressure vs. deflection curve for such slabs
is shown in Figure 5-18.

Referring to Figure 5-17, note that there are three displacement
tvaces, namely D1, C2, and DC. These traces refer to three separate dis-
placement-measuring gages, mounted at points along the span of the slakt,
with gage, DC in the center. By using three displacement gages (instead of
just one, in the center) Keenan observed that the displacements varied in
space, as well as with time. For example, Figure 5-19 shows the readings of

the three displacement gages (connected by straight lines) at identical

..... T
. S o iy

[

s clcar from Figure 5-19 that more than one mode is participa-
L1y 1n the response, and in particular, it appear that the first mode

(like sin %?) is interacting with the third mode (like sin 3£x).

Several attempts were made to "fit" the central response (gage DC)

of Keenan's slab D3-1 to the one degree-of-freedom model. The results
wiich were successful are given in Table VI in terms of the model of
parameters. Of particular note was the fact that the "force coefficient",
2, was always estimated as ktefinning at a very low value (e.g., .02, etc.)
initially. Attempts to fit the response curve with a constant a (like an
“avg such as was successful with Watt's slabs) were totally unsuccessful

in this case.
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By beginning with o, = .02 and then going up to a, = 1, the force
coefficient deemphasized the initial pressure peak, since the force applied
to the 1 é-o-f model is given by the product of a and p(t). Without this
significant "re-shaping" of the pressure pulse, it was not possible to
achieve a very good fit to the dynamic response data for Keenan's laced

slabs.

Keenan's tests used prima-cord explosives placed in vented firing
tubes to produce the dynamic over-pressure on the slabs. Possibly, because
of non-uniformity of pressure loading or perhaps because of gas leakage
(around the edges of the slab) Keenan's initial pressure reading may have
been too high. Or, another possikility is that the interaction of the
fundamental mode with the higher modes occurred in such a fashion that

the "effective force" on the fundamental mode was initially reduced.

In that regard, it is worth noting that tha slab failure occurred
(both statically and dynamically) with a hinging action at the supported
ends and in the center (see Figure 5-20). Yet from the linear theory of
vibraticns, one expects the slab to respond initially (i.e., at small
amplitudes) in terms of the vibration modes of a clamped-clamped beam.
Thus, the slab response must make a (fairly significant) transition from
several vibration modes at small amplitudes to a hinged mode at large
amplitudes. This modal transition might be the "cause" of the reduced force
coefficient (a) which the estimation algorithm seems to reguire in fitting

the response cdata for Keenan's slab D2-1.

17-1208

Figure 5-20. Deflection Mode Typical of Keenan's Laced Slabs

(Reference 6)
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55 SENSITIVITY OF THL RESULTS TO MODEL PARAMETERS

In the parameter estimation algorithm, the "sensitivity matrix",

[T), is calculated and used in arriving at the revised parameters. The

individual elements of [T] constitute the "change in response per unit
| change in a given parameter," and these sensitivities are tabulated in
‘ the computer printout. To give the reader a feeling for which parameters
i have the most significance, Tables VII through IX have been prepared. These
tables give the sensitivities at three locations in the dynamic response
time-history, namely
(1) the sensitivities during the initial response, when the
deflection is near zero,
(1) the sensitivities at the mid-response, when the velocity is
a maximum, and

| (1ii) the sensitivities at the maximum response.

L e YR oy VY e R4S N B P

Admittedly, Tables VII through IX are somewhat misleading, in that
the absolute sensitivities(which are used and output by the computer program)

have been tabulated. Thus, Table VII gives Ayl/Au as —2.4x10-2
2
|

, which means

&
{
£
k
£
t

the displacement 41 changes |2.4x10 for a unit change in the mass coef-
ficient u. Note, however, that ¥, itself may have been only 1x10 initially
so Ayl/Au could mean a relative change in Yy of 240%. It would be desirable
(if possible) to present the relative sensitivities, like (Ayl/yl) (divided

by) (4u/u). To do so at this point in time would require many hours of

g

7 scarching through old computer runs and was not thought to be worthwhile.
| Subsequent changes to PEBLS (to print out relative as well as absolute

sensitivities) are definitely indicated at a future date.

This is not to imply that Tables VII through IX are not useful;
; note, for example in Table IX that the sensitivity Ayi/Aao was 75.5 at the
i maximum response point. Clearly ¥ is very sensitive to a s as indicated

P

bv the high value, namely 75.5.
5.6 THREE-PARAMETER MODEL RESULTS FOR WATT'S SLABS

As stated in Section 2.4, it eventually became evident that a three-

TR (W SR YT TV T

perameter model (involving X, the load-mass factor, Plin and d ) was

lin

the simplest elasto-plastic model one can consider (cf. Biggs, Reference 2).

| Accordingly, an attempt was made to "fit" Watt's dynamic test data using
this three-parameter model. The results are summarized in Table X, which

shows that a pretty fair fit (e.g., an RMS error of .0l) can be obtained
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Table VIII

Typical Sensitivities of the Response to Various Model Parameters

(Brown and Black's Slab ID-2)*

i INITIAL RESPONSE | MID-RESPONSE  |MAXIMUM RESPONSE
) (NEAR-ZERO (NEAR MAXIMUM | (AT MAXIMUM
DISPLACEMENT) VELOCITY) DISPLACEMENT)

1 SENSITIVITY TO
i FORCE PARAMETERS:

— 4

by /b .16 6.5 3.8

Ay, /8oy 5l -.43 -8

i SENSITIVITY TO
MASS PARAMETERS:

ay;/ug 1x1073 -1.0 -.53

Ayi/ALd .16 .34 19

SENSITIVITY TO
BI-LINEAR SPRING

PARAMETERS :

by, /8P, -2x107" 13 -.30
-3

by, /8dys 1.0x10 .53 1.08

0Y4/BE 1 st 0 -.06 -1.05

SENSITIVITY TO

PRESSURE-SCALING

PARAMETER:

8Y< /P a1 .22 2.5 5.04

*See also Table VI, row two.
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Table IX

Typical Sensitivities of the Response to Various

Mocdel Parameters

(Keenan's Slal £3-1)*

INITIAL RESPONSE | MID-RESPONSE  |MAXIMUM RESPONSE
(NEAR-ZERO (NEAR MAXIMUM | (AT MAXIMUM
DISPLACEMENT) VELOCITY) DISPLACEMENT)
SENSITIVITY TO
FORCE PARAMETERS:

L i.‘y.i/ﬁsfxo .49 27.3 75.5
by /8 . -5.3 -16.0
SENSITIVITY TO
MASS PARAMETERS:
ay;/8u, -.013 1.26 -4.36
0/ bug 3.9x 1070 .018 062
SENSITIVITY TO
BI-LINEAR SPRING
PARAMETERS :

Ty 5 _3 2
Lys/oPys -8.4%10 -7.5x10 -4.5% 10
=3
by;/8dy s 4.3%19 2.67 7.82
by./6E 0 _2.2x107% 21.5x1072
~i"""plast : i
SENSITIVITY TO
PRESSURE -SCALING
PARAMETER
=3
84/ P g a1 5.6 10 .95 3.74

*See also Table V, row six.
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with the simple model. Note, also, the "yield force" P was typically

estimated at about 450 Lb/inz, in pretty fair agreemenilsith the static

test data, (cf. Figure 5-4 and 5-21). As shown in Figure 5-21, the estimated
elasto-plastic load-deflection curves are quite close to the results from
static tests. Thus, one can get a fairly good estimate of the analytical

load-deflection curve from static test data.

Note that Table X also gives estimated load-mass factor of close to
unity. A load-mass factor of exactly unity is predicted if the slab "punches
through" with no spanwise bending. Watt's tests (Reference 3) showed that
many of his slabs did "punch through", which accounts for the load-mass
factors estimated and shown in Table X. It is felt that the parameters given
in Table X are "physically realistic" for Watt's slabs, and this confirms
the earlier result that simple models will work pretty well for Watt's data.

Table X. Three-Parameter Model Lstimates
for Watt's ESlabs

PARAMETER SLAB ED1 SLAB ED2 SLAB ED3

LOAD-MASS FACTOR, .98 1«19 1.05

YIELD FORCE, P”n 422 439 480
R
ELASTIC DISPLACEMENT, « 137 « |37 « 135
d1in
GOODNESS OF FIT, .006 .016 .005
i.e., Orms

5=3

e i o ey uﬂ. R — e 2 W x.ak_‘_.i S e e




i

g1gdd bursn punod sejewllsyg [eurg Jjo abuey
pue ejeq 3S9L bUIMOYS uoT3Oo9(3FoQ uedsSpIl SnSIdA SINSSdId

S3IHONI ‘NOILD3IN 430
v'o €0

"1Z-G 2anb1g

)
SgvV1sS € ¥04
SILVHNILSI |

#
|
|
|
e
|
|

1S 8v1s

(€ 3IN3¥343¥) vivo 1S3)

WVIQ HONI"PZ

| .
-

IHNSSIYIHINO DLV LS
1 1 1

140ddNs

00z

oov

009

008

000°4

1Sd '3¥NSS3IHAHIAO DiILlviS

5=38




547 FOUR-PARAMETER MODEL FOR BROWN AND BLACK'S SLAB ID-2

In keeping with the theme of using the "simplest possible model",

a four-parameter model was attempted with Brown and Black's test data. The

i dlin A Eplast’ e
latter being added primarily because of the stronger non-linear force-

four parameters were X (the load-mass factor) P

deflection results (cf. Figure 5-10).

Table XI. Results of Estimation Procedure for Brown and Black's Slab ID-2

COMPUTED AND OBSERVED DISPLACEMENT RESPUNSE

POINT TEST TIME U=ANALYTIC U=OBSEKRVED YsU=-UTEST
1 0,25000E=02 0,94341E=01 0,80000e=01 0,14341E-01 |
2 0,50000E=02 0,54926 0.50000 0.,49256E-01 e
3 0,75000E=02 1.528% 1,2000 0.32851
4 0,10000E=01 2.9738 2,0000 0,97379
S 0,12500E=01 4,6882 3.0000 1.6882
6 0,15000E=01 6.4588 4,2000 2,2588
7 0.17500E=01 8,0667 5.4000 2,0667
8 0,20000E=01 9.2944 6.1000 3.1944
9 0,22500E=01 9.9598 ©.,8000 3. 1598
10 0.30000E=01 9.6021 7.0400 2.5621
OBJECTIVE DUE TO OBSERVATIONS 3 179.769 RMS ERRUK IN UBSERVATIONS = 2.07064
OBJECTIVE DUE TO PARAMETERS s 0,000000 TOTAL OBJECTIVE FUNCTION = 179,709

COMPUTED AND OBSERVED DISPLACEMENT RESPONSE

1
POINT  TEST TIME U=ANALYTIC U=0OBSERVED Y=U=UTEST |
1 0,25000E=02 0,80862E=01 0,80000E=01 0.86156L=0)
2 0.50000€E=02 0.47053 0.50000 =0.29471E=0G1
3 0.75000E=02 1.,1535 1.2000 =0.46527E=01 |
4 0.10000£E=01 2.0801 2,0000 0.80120E=01
5 0.12500E=01 3,1507 3.0000 0.15069
6 0.15000E=01 64,2646 4,2000 0.64625E=01
7 0,17500E=01 5.3191 5.4000 =0.80906E=01
8 0.20000F=01 6.2040 6.1000 0.,10399
9 0.22500F=01 6.8204 6.,8000 0.20403E=01
10 0.30000E=01 6.8452 7.0400 «0.19475 |
OBJECTIVE DUE TO ORSERVATIONS = 1.06444 RMS ERROR IN ORSERVATIONS = 0,959385E=01
OBJECTIVE DUE TO PARAMETERS = 1.53308 TOTAL OBJECTIVE FUNCTION = 2.59753

Takle XTI. Parameters Estimated for Brown and Black's Slab

PARAMETER CONFIDENCE LEVELS

INITIAL LATEST PERCENT
PARAMETER ESTIMATE ESTIMATE VARIANCE CGNE IDENCE
PLIN 14,000 19.266 2.8877 12.138
DLIN 0.25000 0.33194 0.,11518E=01 42.928
EPLS 1.4000 0.37343 0,33278 41,205
EMU1L 0.70000 0.,82844 0.,36831E=01 27.416

e r————
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The results from the computer run are shown in Table XI which
gives the initial response (top half) and the final response (bottom half
of Table XI). Note that the RMS error in observation went from a value of

2.07 (initially) to a value of only .0959 (final estimate).

The final estimated parameter values are given in Table XII,

which shows Plin' dlin’ Eplast and A (labeled EMUl) each having a

significant improvement in confidence level (e.g., from 75% to 12%, etc.).
Note also that the values estimated appear to be "physically reasonable" and
acceptable from an intuitive standpoint. (For example, see the text by Biggs,
Reference 2, for typical load-mass factors, and Figure 5-22 for the static
load-deflection curve). Biggs test, p. 214, gives theoretical load-mass

factors in the range
<5l < A < .67

for square two-way slabs (a/b = 1). Table XII gives a load-mass factor of .82,
which is in fair agreement with the theory. Note that Biggs' values are

calculated assuming "yield-line theory" for the failure of the slab.

Figure 5-22 shows the estimated bi-linear pressure vs. deflection
fair amount of scatter is indicated by the test data, suggesting that the
slabs were of non-uniform quality. Again one sees that simplified theory
and the static load-deflection data provide fairly good estimates of the

final model parameters.

5.8 FOUR PARAMETER MODEL FOR KEENAN'S SLAB D3-1

Keenan's data (on his Slab D3-1) proved to be fairly difficult to
"fit" with the simple four-parameter model. Several computer runs were made
using the data shown in Figure 5-17). Discussed previously in Section 5.4).
Accepting the data as accurate, the computer program PEBLS originally esti-
mated a load-mass factor of about three (3) for Slab D3-1. This result was
unexpected (and we felt it was incorrect) so a closer look was taken at the
data (Figure 5-17).

Referring to Figure 5-17, note that tne displacement trace DC shows
a aeflection of nearly-zero out to a time of .002 sec (2 milli-seconds;.
Note also that the pressure, p(t) is the highest during this early time
period. Thus the possibility occurred that perhaps Keenan's displacement
trace was in error, since when the pressure is greatest, (and the accel-
eration is a maximum) one would expect that displacement would occur (and

not be near-zero).
5-40
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Table XIII. Results of Estimation Procedure for Keenan's Slab D3-1

COMPUTED AND OBSERVED DISPLACEMENT RESPONSE
POINT TEST TImt U=ANALYTIC U=0BSERVED Y=U~UTEST
1 0,20000E=02 0.32253 0,20000 0,122%)
2 0,30000F=02 0.,60658 0,35000 0.25658
3 0,40000E=02 0.89463 0.53000 0.36463
4 0.50000E=02 1,1630 0.75500 0.40801
S 0.60000E=02 1.3919 0,96000 0.43189
6 0.70000E=02 1.5662 1.1600 0.,40623
7 0.,80000E=-02 1.6745 1.2900 0.38446
8 0,10600E-01 1.5771 1.4600 0.11710
OBJECTIVE DUE TO OBSERVATIONS = 83,9786 RmS ERROR IN OBSERVATIONS = 0,334168
OBJECTIVE DUE TO PARAMETERS s 0,000000 TOTAL OBJECTIVE FUNCTION = 83,9786

COMPUTED AND OBSEKRVED DISPLACEMENT RESPONSE

POINT TEST TIME U=ANALYTIC U=OBSERVED Y=U=UTEST
1 0,20000E=02 0.19966 0.20000 =0,34455E~03
2 0.30000E=02 0,37947 0.35000 0.29471E~01
3 0.40000E=02 0,57767 0.53000 0.47666E=01
4 0.50000E=02 0.77838 0.75500 0,23378BE=01
5 0.60000E=02 0,96830 0,96000 0,83005E=02
6 0.70000E=02 1.1374 1.1600 =0,22642E=-01
7 0,80000E=02 1,2778 1,2900 =0.12229E-01
L} 0.10600E=01 1,4548 1,4600 =0,52067E=02
+ OBJECTIVE DUE TO OBSERVATIONS = 0,459336 RMS ERROR IN OBSERVATIONS = 0,235729E=-01
OBJECTIVE DUE TO PARAMETERS = 1.98882 TOTAL OBJECTIVE FUNCTION = 2.44815

Table XIV . Parameters Estimated for Keenan's Slab D3-1

PARAMETER CONFIDENCE LEVELS

INITIAL LATEST PERCENT
PARAMETER ESTIMATE ESTIMATE VARIANCE CONFIDENCE
PLIN 110,00 86,471 112,11 9.6256
DLIN 0.34000 0.,88527E=01 0,23315€E=01 44,309
EPLS 1.0000 0.75941 24,797 497,97

EMU1L 0,80000 1.1863 0,98243E=01 39.180

e ottt e ! e onll
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For this reason, the displacement data was "shifted" to the left
in time a distance of .002 sec. Thus, the time t = 0 was taken as the time
that the pressure-trace began, and the time on the displacement trace was
shifted to a new time, (t' = t - .002). When this adjustment to Keenan's
data was made, a fairly satisfactory "fit" was obtained using the four-
parameter model. *

Using the static load-deflection curve (Figure 5-18), one can
estimate Plin' dlin’ and Eplast fairly well for Slab D3-1. Then, using
these values with a representative load-mass factor, the results shown in
Table XIII are obtained (top half). Note that the RMS error value is .33,
indicating a poor initial model. After a number of interations, PEBLS had
reduced the RMS deviation to .023, as shown in the lower half of Table XIII.

1in* Yin’ Bojase,
latter now represents the load-mass factor, )A) are given in Table XIV.

The final values of the parameters P and My (where the
Again, it is felt that these parameter values are "physically reasonable"
and roughly in agreement with intuition. ]

Biggs' text, P.209, gives load-mass factors in the rarnge
.66 < A < .78

for simply-supported one-way slabs. These values are in contrast with the
factor 1.18 estimated by PEBLS and given in Table XIV. Also note that the
estimated pressure-vs-deflection curve does not fit the static data very
well (Figure 5-23).

In retrospect it is thought that the initial values (Plin = 1llo,
dlin = .34) were "poor estimates" and that they contributed to the relatively
poor performance of the estimation program in this instance. For example,
referring to Figure 5-23, one seces that a better "initial estimate" might
s =0 e
petter initial estimate would have produced more realistic results for the

have been (P = 1.0) for example. It is speculated that a

load-mass factor and for the pressure vs-deflection curve.

?7The reader will recall that the "multi-parameter" model (Section 5.4)
selected a, such that the initial pressures were (in effect) "cut off"

(i.e., the pressure pulse was reshaped in time).
5-43
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5.9 DISCUSSION OF RESULTS

These results (especially those in Section 5.6, 5.7, and 5.8) led to
the conclusion that realistic parameters can be found that allow single de-
gree-of-freedom models to accurately reproduce dynamic response data for
actual slabs. It also appears that (in many cases) these model parameters
are close to those which would be predicted a priori.

A major result of this effort is the recommendation that

e "Tests on any non-linear structure (or element such as rein-

forced concrete slab) should be conducted at several levels

of force excitation".

When put in the above terms, such a recommendation seems almost tri-
vial. Any student of non-linear vibrations or non-linear circuit theory
knows that the dynamic response (i.e., output) depends in a non-linear fa-
shion upon the excitation (i.e., upon the input). This non-linear depen-
dence is the very basis for labeling the problem as "non-linear" in the
first place. Nevertheless, such a non-linear dependence between the dynamic
response and the applied over-pressure p(t) was not examined in two of the
three main references used herein as sources of dynamic test data. This
situation can perhaps best be illustrated by an analogy with earthquake

engineering, as follows.

Suppose one has a single-story steel-framed structure, where the
behavior of the steel columns is thought to be represented by a bi-linear
(elasto-plastic) spring. The structural engineer wishes to identify the
non-linear characteristic (i.e., force-deflection curve) of his structure,
so he can calculate if the structure will fail during a major earthquake.

If the structure is excited only at small amplitudes (e.g., by, say, magni-
tude 3 or 4 earthguakes) it will never (or very seldom) be driven into the
non-linear range, and there will be no way humanly possible for the encineer
to idertify (with any reasonable degree of certainty) the non-linear charac-

teristics of his structure.

A similar, but less-obvious condition exists when the structure exper-
iences only one non-linear event, say a magnitude of 6.5 earthquake. Now
the engineer finds that his structure has been driven into the non-linear
ternye, and he can calculate (i.e., identify) the yield stress, say, of his
bi-linear elasto-plastic force-deflection curve. However, he still cannot
predict (with very much certainty) whether or not his structure will collapse
if it is hit by a major earthquake (e.g., magnitude 7.8, say). He needs

test data at several levels of excitation for his non-linear structure.
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To return to the problem at hand, namely the response of R/C slabs,
Watt's tests (reference 3) are analogous to the magnitude 6.5 earthquake

just considered. The slabs were driven into the non-linear range (with a

eas ~ oot

maximum dynamic deflection of about .4 inches) but the static load-deflec- I
[ tion curve showed the slab still yielding at a deflection of .8 inches.

| Without further testing, one has little or no way of knowing whether these
deep slabs will withstand a dynamic overpressure of 2000 psi or 20,000 psi
before failing catastrophically. They have not been tested to a magnitude

7.8 (major earthquake event).

WISV Sy O Ly R—

Conversely, all of Brown and Black's tests (reference 5) drove the
test slabs to major failure. They measured a static failure deflection of

{ about 4 inches, yet each of their test slabs was driven to dynamic deflec-

e eyt

tion on the order of 7 inches or more. They tested to only major earth-
E quakes (using our analogy) and experienced no moderate or low-level loading.
P Clearly, if the structure is always driven to collapse, one obtains little

information about its behavior throughout its dynamic range.
This state of affairs leads to the following major recommendation:

i ® "Future dynamic testing (of slabs, box-like bunkers, or other
: non-linear structures) should be conducted at three fairly distinct
levels of excitation. For want of a more precise definition, the
three levels recommended are:

(1) moderately non-linear (e.g., 2 or 3 elastic deflections)

(ii) strongly non-linear (e.g., 7 or 8 elastic deflections)

(iii) to complete failure (e.g., total collapse)

r Such a test sequence may (possibly) triple the cost of a typical test pro-
gram. However, an incomplete or inconclusive test program may prove mis-
leading and might actually end up costing more in the long run. Keenan
(reference 6) recognized the need to test at various dynamic pressure
levels, which he accomplished with the adverse side-effect of having to re-
test partially damaged slabs. Presumably, Keenan was under a budget con-

straint which limited the number of virgin test specimens at his disposal.

A difficulty with Keenan's work (reference 6) was that his static

p teocts were not taken to complete failure of his test slab. His dynamic

' tests covered the ranges of linear, moderately non-linear, and strongly
non-~linear tests, but the failure load (i.e., total collapse) of the slabs

was not determined. This situation led to the following recommendation:

e "Static tests of non-linear structural elements (or complete
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structures) should be continued to the point of total collapse

if at all possible."

The preceeding remarks and recommendations are among the major conclu-

sions which kept recurring to the writers of this report. They have been
emphasized herein with the hope that they can be utilized in planning and
conducting future tests. It is recognized, however, that in any test pro-
gram compromises must be made, and test planners may choose not to accept

all of our recommendations. 1

The estimation program was successful in fitting Watt's deep slab
data with both a "multi-parameter” model and a simplified four-parameter
model where the values of the parameters obtained were "physically reaso-
nable" (i.e., they agreed with intuition). For Brown and Black's conven-

' tional slab data, it was again possible to fit the dynamic response results,
i but the result was a "near-linear" model which was much less satisfying
intuitively. Similarly, it was possible to fit Keenan's laced slab data
é {with the multi-parameter model) but the estimation scheme greatly de-
emphasized the initial pressures (of the pressure-time history).

Successful attempts were also made to fit the various test data with
simple three and four-parameter models. These results were significant, in
that the models thus estimated were physically realistic, (and still quite
simple) yet they gave a good "fit" to the dynamic data (i.e., low RMS
error values). Thus, the authors were led ultimately to the major conclu- ]
sion that, "Simple models can be made to work", as discussed in detail in

Section 5.0.

Regarding recommendations for future work in this area of dynamic

. modeling, it may be said that greater emphasis should be placed on finding
parameters which agree with "physical intuition" or elementary theory,
rather than on making a general model which can encompass all the test
data. When the study was begun, it was not known whether a simple (3 para-
meter, say) model would suffice or not. Watt's report showed that the slab
went through three distinct phases of deformation, and orginally it was
decided to model deformation-dependent properties for the mass, stiffness,
and applied force. The result was that (by using all the parameters) one

could "fit" the response data rather easily. But, the problem (which did ‘
not become evident until later) was that the parameter values obtained were

not readily acceptable from a physical standpoint. The mathematics of

system identification was originally over-emphasized with respect to the

physics of the slab-deformation problem.
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It is also recommended that some "sensitivity studies" be conducted,
namely to see how much that maximum displacement (Y max) veries with changes
in the parameters (A, Plin’ dlin’ etc.) For example, just how significant is
the fact that the load-mass factor was estimated at .82 (vs. a theoretical
value ranging from .51 to .67) for Brown and Black's slabs. Would a value

i of » = .7 have changed the results much? The answer to these questions are

left to a future study.
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CONCLUDING REMARKS AND RECOMMENDATIONS

The primary conclusion of this report is that
Realistic parameters can be found (using Parameter Estimation)
that allow single degree-of-freedom models to accurately
reproduce dynamic response data for actual slabs.

A related secondaty conclusion is that
Often (but not always) these model parameters can be estimated
fairly accurately. The estimates can be provided by static test
(if available), and by yield-line theory if test data is missing.

These conclusions are substantiated in the body of the report.

Major recommendations of this report are that

® "Tests on any non-linear structure (or element such as reinforced

concrete slab) should be conducted at several levels of force

Sxcitation™.

e "Future dynamic testing (of slabs, box-like bunkers, or other
non-linear structures) should be conducted at three fairly
distinct levels of excitation. For want of a more precise

definition, the three test levels recommended are:

(1) moderately non-linear, (e.g., 2 or 3 elastic deflections)
(ii) strongly non-linear, (e.g., 7 or 8 elastic deflections)
(&850, to complete failure (e.g., total collapse)

e "Static tests of non-linear structural elements (or complete
structures) should be continued to the point of total collapse
if at all possible."

The rationale behind these recommendations is included in the main

text.
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Least Squares

In the least squares approach first developed by Gauss two
centuries ago, we define the residual Ui as the difference
between the observed value of the response (or dependent

variable) anc the calculated value of the response:

(1)

"
c

i
c

Ui o. i

where

r r s 3 (2)

B s W e By e R

17 Tyr Ty oe rp)
In Eg. 2, the vector Xy represents the independent variables
used to generate the calculated response and for a ground

shock calculation are represented by location and time. Of
crucial importance to the least squares method is that the
equation chosen for u, is the best representation of the experi-

ment being simulated.

By the Gauss or least squared method, we seek to minimize the

sum of the squares residuals given by

n n
P Y e § o s w? (3)
ie1 * 481 9

where n is the total number of experimental measurements.

Thus, Eq. (3) is the objective function first evolved by Gauss.
Note that this objective function does not account for pos-
sible errors in the independent variable. Experience has shown

that errors in the dependent variable are usually two orders
of magnitude higher than those in the independent variable
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thus allcwing the latter's errors to be neglected. Nonethe-

less, fo: those special cases where the two types of errors
are of ecual magnitude, Eg. (3) can be suitably modified (see

Ref. 1).

I1f the measurements X5 and uo_ are repeated n times and the
average values computed theselaverage values should approach
the true values as n approaches infinity. This will occur

if systematic errors do not affect the measurements. Such
errors consistently cause the measured response to be either
larger or smaller than the true values. The errors can arise

from three sources:

1. A mistake in the measuring technigue
2. A fault in a measuring instrument

3. PFailure to account for a factor affecting
the experiment.

Thus for example, if temperature affects the response of an
accelerometer, such a devise located in close proximity to
the heat of a blast might contain a systematic error in its |

measurement.

The simplest case of least sguares is that of the polynomial.

For a straight line this becomes

n
N 2

F = Z’ (uo_ TV rzxi) (4)
1=1 i

where for the sake of simplicity we are considering the case
of a single independent variable, X - We see than that the

objective function, F, is a function of rl and rz. Of the

B ﬁﬂ' i, s i -.‘.‘ e




many values that these parameters can assume, we seek the

set that minimizes F. At this minimum, we require tha®

3
5?1 =0 (5)
3F _
3, B (6)

which yields two equations. (It should be noted that no
maximum exists for F since for any maximum one might postu-
late, an even greater maximum can be found.) Applying the

criteria of Egs. (5) and (6) to Eq. (4) yields the two linear
equations

n n
rn +r, & R, *® ;z; uoi (7)
n n n
"1 iZl s T 121 i izl *1%;, i
which can be readily solved for ry and r,.

The above derivation can be extended to any polynomial of order
p-1 defined by

P
" k-1
u;= z rkxi (9)

If we cast the resulting set of equations (7) and (8) in matrix
form obtaining

Cr =V

i
|
{i
!




it can readily be shown that the el :ments of C and V are

given by:
n
j+k=-2
C.k = zi xg (11)
J i=1
and
{ n
A .-l
i Voo — Z xJ. u (12)
S 4

An interesting phenomenon arises when the degree of the
polynomial becomes too high. If we normalize our independent
variable so that it ranges from 0 to 1 (which is always pos-
sible) and employ a sample of uniformly distributed data,
then the elements of C are given by

1 R
2 j+k=-2 5 n
Cjk~ ri/(; X dx = J9k=1 (13)

The terms represented by SI%TT are elements of the so-called

[112131: .. (oe2) 11" (14)

Dp = pt(p+l)!...(2p-1)!

which approaches zero very rapidly as the matrix grows as

shown in Table 1.

Hilbert matrix. The determinant of this matrix is given by (ref.
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Table 1. Determinants of Hilbert-like Matrices as a
Function of Matrix Size

When the determinant of the matrix associated with a linear
set of equations approaches zero, the system is said to be
ill-conditioned. The set of parameters, r, generated from

such a system are adversely affected by round-off, i.e. it
has a large error associated with it. In the extreme, the
determinant will be so close to zero so as to render the
matrix to be computationally singular. Experience has shown
that this occurs when the number of parameters is about 6

fifth-order polynomial). The method most often used to
circumvent this problem is the implementation of orthogonal
polynomials. However, since the desired effect is somewhat
artificial, it is preferable to employ a lower order poly-
nomial (fourth-order or lower).

- s o ——-a ——————————————
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The least squares method is not confined to polynomials. The
method can easily be extended to other functions by allowing

Uy to assume a form that is linear with respe-t to the para-

meters:
u; = rlgl(xi) + rzgz(xi) e R e etk rpgp(xi)
p
= Z gt (15)
= k’k 71

By inserting Eq. (15) into Eg. (13) and reguiring that
— =0 e =il 2 D (16)
we again obtain a linear set of equations of the form

Cr = V (10)

where now the elements of C and V are:

n
Cjk = ;z; gj(xi)gk(xi) (17)
and
n
VvV, = . . 18)
K ;2; gk(xl)uoi (

It is seen that the polynomial of Eg. (9) is a special case
of Eg. (15) where

gk(xi) = xt-l (19)

Since most functions are expandable into polynomials, the
earlier comments regarding the Hilbert-like matrix generated
by the use of high-order polynomials can be extended to most
functions defined by Eg. (15).
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A cursory examination of Cjk in Eq. (17) will reveal that

C is a symmetric matrix. This property which also app .ies

to the matrix generated through the polynomial (see Eg (11))
permits a substantial savings in computational time si.ice only
the upper or lower triangle of C need be computed (al ng with
its diagonal elements).

For ease of notation, define the matrix T by

Tij = gj(xi) (20)
where T is n X p. Then in matrix form, the parameter estimate,

r, in Eqg. (10) is given by

r = (7)1 TTuo . (21)

Therefore, the matrix given by

L

G = (TTr)" 1 7 (22)

is that vehicle which yields the estimate, r, as a linear
transformation of the experimental response (vector of

observations) .

It is obvious that the least squares technique cannot be
employed when the number of parameters exceeds the number
of measurements, i.e. p > n. When this occurs, the system of
Eg. (10) is said to be underdetermined. When p is equal to n

each of the residuals in Eg. (3) will be zero resulting in a
minimum value of zero for F. For this case the system is said

to possess zero degrees of freedom which is the difference

between p and n.

e ——————————




Weighted Least Squares

The formulation of Eg. (3)

n
F = jz Ui (3)
i=1

has two implicit assumptions: firstly, that all the experi-
mental points are measured with the same degree of precision,
and seconrndly, that all the residuals have the same dimensions.
Therefore, if some points were measured with high precision,
Eg. (3) would treat these points with equal weight as the
other observations. As an example of the second assumption,

if some of the responses were in units of seconds and the
rest in units of meters/second (as might happen in a velocity
waveform response to a ground shock) the formulation of Eq.
(3) would be untenable.

The above two problems are solved by adding statistical weight-
ing to the least sguares formulation. Each squared residual,

2
Ui,
of the square of the uncertainty or standard deviation or:

is multiplied by a weight,wii, which is equal to the inverse

! i
Wite =R =aet = (23)
ii a 2 scc..
5t ii

; : .th
where sggii is the variance of the i

sulting weighted least squares formulation is given by

observation. The re-

n

Fa w,; U2 = min (24)
i=1




Minimizing this scalar with respect to each parameter again
yields a linear system of equations:

Cr =V (10)
where
n
Cjk = ;2; wiigj(xi)gk(xi) (25 )
and
n

It should be noted the C matrix defined through Eg. (25)
again symmetric.

is

In matrix form, the parameter estimate, r, in Eg. (10) is
now given by

v - (TTwT)-lTTwuo (27)

where the matrix, T, is again given by:

= g.(x. 20
Tij gj(xl) (20)
and
-1
w = see (23)

where both w and See are diagonal matrices. Thus, the linear
transformation from L, to r is achieved by

r = Gu, (28)

e




Gli= (T

Now the covar

7 st

*

Srr

*
er

Twr) ™1 1Ty (29)

iance of the estimate is given by

*
S B (30)

is the random error in r, and E denotes expectation. By
the transformation of Eg. (28):

| ., et e A :
‘ Spp ™ Elez, (62 )] = €E(Z 2 16 (31)
i where E(ZCEZZE) is the expectation of the observation errcr,
i u - oug, and related to SCE by
T
=" 2
See (zeezee) e

where 2Z is
€€

the random error in uo.

b Returning to Eqg. (31)

E | . at T o T

1 srr 3 GE(ZCCZEC)G e seeG
= (Twn) 7! 1w (1T 7Y 1T T
= (7w "1 2T (rTwr) Y rTw) T

= (2Twr) " (rTwr) "L (1 Twr) ) T

= (TTwr) "~

3 ; At this point

is correct?"

il =il

E e [
= (T SCET) = C (33)

we should now pose the guestion, "How do we

know that the estimate of the experimental error of the response

This estimate is based on the judgement of the




T

experimentalist and when the measurements are conducted by a

team it is unusual for a group to agree on an error estimate.

To answer the above question, we resort to Eg. (32)

s =E(Z zT) (32)

EE glE T EE

Having chosen a mathematical model for our experiment, we
believe this model to be correct. Thus, if there were no
experimental errors, and the correct model was postulated,
our experimental points would coincide with those of the
model, i.e., all the residuals would be zero. Therefore,
the residual Zce appearing in Eg. (32) can be attributed
to experimental and mathematical error and can then be used
as a check on the input covariance. If Eg. (32) does not
yield a covariance matrix similar to the input covariance
matrix, then See should be adjusted and the least sguares
process repeated. When Eg. (32) is finally satisfied, the
error estimates will be substantially correct. Unless the
above steps are carried out, Eg. (33), which specifies the

revised parameter covariance will be incorrect.

When the above errors are experimental, we have implicitly
assumed that the mathematical model is correct. When the
model is incorrect, we have failed to account for factors
affecting the experiment and possibly introduced a systematic
error. Under this condition, the residual zcc in Eg. (32}
will not be completely generated by experimental error. How-
ever, it is reasonable to assume that if several models are
postulated and the above steps executed, such that Eg. (32)
is obeyed, then the model with the best fit would be closest

to the true mathematical model.




gty Sebogi inades

The technique of adjusting the covariance matrix, S c*
should not be interpreted as casting doubt on the credibility
of the experimentalist who first estimates the experimental
errors. If the experimentalist is regarded to be competent,
then a substantial disparity between the original and
adjusted covariances would most likely indicate that the

mathematical model is incorrect and a reappraisal is suggested.
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Nonlinear Weighted Least Sauares

Tae case of nonlinear least sguares occurs when the function

ug appearing in the objective function

n n
2 2
F = Zw..u. = ZW‘.(u = 11 . (34)
i=1 AU lGER T = Rl oi 1

is a nonlinear combination of the parameter vector r:

By = BR. 5 F T
i (x50 Ty

r.} (35)

5 s+ Ip

Note that for the sake of clarity, we have assumed only one
independent variable in Eg. (34). Nonetheless, the ensuinc
derivation can readily be extended to multiple independent

variables by substituting a vector for X, -

The reader can readily determine that minimizing Eg. (34)
using Eg. (35) leads to a set of nonlinear equations. Rather
than treat each case individually, it is preferable to start
with Eg. (35) and develop a general technique.

Minimizing the objective function of Eg. (34) with respect

to each parameter, Ty yields

W, (o, = 4,) —==0 k=1, 2 30 136D
1 2l oi 5t ark

0
e

In order to obtain a linearized formulation, we expand u into

a truncated Taylor series evaluated at an estimatecd value of

r denoted by the index, e:




(aui) (Bui)
u. = u + E. =r — L e = —=
3 e ( 3 el) ary r=r. ( e ez) 8r2 o
)
* +(r -r — (37)
P e ar el
p plr=r_
We now define a sensitivity matrix T by

,% (aui)
4 T.. = |=— (38)
.i BN e
? ]
! { and a perturbation vector R by

‘ R.E2r, -r 39)

' J J € :

where T is n > p and R is of length p. Eg. (37) then becomes

o e ; : s :
U. ~ u + R Tll 5 R2T12 + RpTlp (40)

2 It should be noted that for the linear case where

| L3
then
aui
gq = gk(xl) (41)

Al Therefore the T matrix defined by Eq. (38) is the same as the
' T matrix specified by Eq. (20).
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Returning tc che nnlinear problem, we take the derivative

of uy in Eg. (40) -ith respect to I, :

Zai (42)
Brk ik

=0 K=dp8 3 vou'p (43)

The expression of Eq.
of the form

(43) gives the linear set of ecuations

CR =V (44)

where the elements of C and V are
n
Gl = 22 L ISR (45)
Jk ji=1 17ij7ik
and
n
N = zg weT, (u = u ) (46)
k =5 4 ik o5 ei

Note that C is symmetric.

When the system of Eg. (44) is solved for R, the new estimate
ot r is given by

L o A + R (47)

A=y




This value of r is only approximate, but if the seguence is

converging, it is a be:ter =stimate than the previous set
in r, - Therefore, if we reolace the values in R by those
from r and repeat the secuznce, we will get an even better
set for r. 1In the limit as r approaches r,, the higher order
terms in Eg. (37) go to zero faster than R, and the formu-

lation becomes exact.

The choice of the initial guess for r. in the above seguence

can be of paramount importance. Experiments for nonlinear

cases have shown that some cases have converged when the initial
and final values differed by a factor of 107, while in other
cases, the sequence diverged when the initial values dif-

fered from the true values by only 20%. In general, however,
the better the initial guess, the greater the chances for
convergence. When divergence does occur, other methods can be
employed. Often a seemingly diverging problem can be brought

to convergence by implementing a search algorithm (see Ref. 3).

Egs. (44) - (47) are quite general, and can be applied to the

linear case. For this purpose, we set r_ equal to zero. The

e
reader can readily determine that the linear case is then
retrieved, and is solved in a single iteration.

In matrix form, the parameter estimate r in Eg. (47) is

or

(48)

lal

"
\a
£
(2}
€

(e]

|

[




where G has been derived previously as

G = (TTwT) ITlw (29)

The covariances of the estimate and the observation are

respectively
&8 =B 5" (30
FE - rrirr’ AR
and
s Ly
e T EGE 8 (32)
*
As has been derived earlier ch is related to I
*
Z = G2Z (49)

it E£€

Here, how=aver, we must assume that the true value of r and
the calculated value of r are sufficiently close so that
the G matrix is the same for both. With this assumption,
we continue, ané applying Eg. (33) obtain the revised co-

variance matrix.

s¥ = (rfs7iqml (33)
LE €€

As has been noted for the linear case, this derivation is

based on the assumption that Egq. (32) for the observation

: : - : . &
covariance matrix is valid. 1If the expectation of Z__2__

not egual to Sec' then SCE should be adjusted anc¢ the seguence

of iterations repeated until we obtain a close approximation

: T
for SEE in E(ZEEZE(L

Rl LRt b 00 el S s W e S
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The problem of ill-conditioning associated with the C matrix

in linear least squares is also found to occur with the C
matrix of Eg. (45) in the nonlinear mode. This is because

most functions can be approximated by a power series. This
author has found the problem to be more severe in the nonlinear

case having noted severe ill-conditioning commonly manifested
when 5 parameters were used.

!
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Minimum Variance
Up to now we have assumed that the errors in the measu ‘ements
{ are statistically independent so that the covariance :atrix
: see is diagonal. 1In many experiments a cross-correlat on
% exists such that other elements of see are non-zero. une
| important property of this matrix is the fact that it nust
: be symmetric since the matrix is defined by E(ZECZEC).
|
!

For the most general case which is nonlinear the objective
function is

b N
F = iZl jzl wij(uoi - ui)(uoj - uj) (50)

or in matrix form
ff F=(u - w" wlu, - u) + min (51)

where w is a weight matrix defined by

L 52)
W:See (

and since see is symmetric
w=w. (53}

Minimizing the objective function of Eg. (50) with respect

to each parameter, yields:

n

n

| ) e 1 a0 (s8)
; w.. |(u C u.) u -~ u.) = 4
{ =1 =1 ij ( o4 i r ( oj J)eor,
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n n
: aui
j 2 E w.. (u - u.l=— =0 £55)
' =1 31 i3 25 ] Ty

due to the symmetry of w. By the truncated Taylor ser ies

of Eg. (37) and substitution from Egs. (38) and (39), Eg. (55)
takes the form

o, s B i Tt

ZZwij(uo. - ue. - Rlle - Rsz2 =les = RuT
13 J J

(56)
or

.

N
=]
[
5
|
o
W

R 25 :S Wiso B g Bl e B 25 :E w. T.-T.. * .., # R ZE w
1 13 gl Ik 2 i3

ijT52 4k PS5 YiiTipTix
| =Z z o (“oj L uej) k=1, 2, 3...p &%

The expression of Eq. (57) yields the linear set of equations
' of the form

CR =V (58)
48 where the elements of C and V are defined by
Cyp zzzgwijTiijﬁ (59)
. b
? and
{
v, = Zzwij'rik (uo. - ue‘) (60)
i) J J
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In matrix form the parameter estimate, r, imbedded in Eg. (58) _
is given by: i

=y + (TTwT)- T w(u_ - u.) (61) |

As in the case of nonlinear least sguares the solution is
obtained by iteration. The matrix used for the linear
transformation is seen to be

1L

T w = C_1

G = (TTwT)™ T w. (62)

It is interesting to note the difference between least sguares
and minimum variance as embodied in the transformation matrices
of Egs. (29) and (62). The weight matrix w appearinc in
Eg. (289) is diagonal while its counterpart in Eg. (62) is
not. However, as seen in Eg. (59), since the inverse of

C is symmetric, C is also symmetric which is also true for
the least squares case. Similarly the dangers implicit in
the ill-conditioning of the C matrix resulting from the use
of too many parameters can also be carried over to minimum
variance.

The covariance matrix associated with the parameter estimate
is specified by Eg. (33)
* T

srr = W3

=1 =1 -1
SCET) =€ . (33)

It should be noted, however, that sce as defined in this

section will now be full and not diagonal.

B S AP
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Bayesian Estimation

As seen earlier, ‘he technique of minimum variance cons-
titutes the most ygeneral tool for parameter estimation.
Theoretically, the problem is well-posed and barring any
ill-conditioning in the C matrix and divergence for the non-
linear case, has a well-defined solution. However, for a
substantial number of observations, the weight matrix, being

of size L x L, the storage capacity of the computer may be
exceeded. The problem can be resolved by dividing the
experimental data into batches and processing them seguentially.
However, to accomplish this we must transfer from batch to batch
the knowledge we have gained concerning the parameter estimate.
Mathematically, this technique is known as "Bayesian Estima-
tion" after the mathematician who first expressed the concept
in terms of probability.

In Bayesian estimation we are given a prior estimate of the
parameters, Ty along with the associated covariance matrix
S__. We then seek to minimize the objective function

rr
n n
B ==§E jzvv..(u - u.)(u - u.)
i=]1 §=1 ] Oi 1 Oj J
P P
+z Q..(r - r-) (r - r.) (63)
i=1 j=171%J O 1 Oj J
e
where w = S (64)
€E
A -1
and w =S (65)
rr

ard Sep is a symmetric matrix as is S__. In comparing this objective

function with that of Eg. (50), we find that the second double




Eie oot L - ot

series termon the right-hand side of Eg. (63) accounts for
our knowledge of the Bayesian prior. Then logically the new
parameter estimate we will obtain via Eg. (63) will be a

compromise between our knowledge concerning the experimental

data (the first double series term in Eg. (63)) and the Bayesian

prior. This means that were we to solve for the new parameter
estimate using Eg. (50), the solution would be the same as

that for the extreme case for Eg. (63) when Srr + <,

Minimizing Eg. (72) with respect to each parameter ry gives

GI6Le au.T
aarF 5= Z Z Yi; (uo %= ui)ar * <uo b u')arl |
X 15 3|\ K j ) k—J

W, .
E kj ; ark
a(r -r )
+ E w r -r °k = = 0 (66)
=~ “ik\ 0. 1 or
7 T k

Since the function u is nonlinear, we expand it again into
a truncated Taylor series evaluated at an estimated value, r,:

u, ~ u + RlTll + R2T£2 * e * RPTRP (67)

and note that

du
it S (68)

ark Lk
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and

Substituting Egs. (75), (76) and (77) into Eq. (74) gives

25 ES w..fu = = RUR = ROT o= . = R, )T.
e 13( 0 ey L= gjil 2 92 P Jp/ ik

+zi szij(uoi sy o Bk T AR RpTip)Tjk

+Z’wkj (ro; - r,.) + zwik(roﬂ. - ri) =0 (70)

Since S and srr are symmetric, w and w are also symmetric.
Therefore the two double series terms of Eg. (70) are identical
as are the two single series terms. Eq. (70) then simplifies

to

g Ej:wij (uQj * W = Rlle - RZTjZ = e = Rijp)Tik

+zwkj(ro' - r,-) =0 (71)

-
v

We then note that

r = T, =T -r - R (72)

which upon insertion into Eg. (71) and some manipulation

gives
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15 ij ik jp
P n n
= :E w. .(r - T ) + ES (u - u ) zz w T |
=1 kJ( o‘7 3 3=1 oj ej j=1 13 ik
k=1, 2, .. P (73)

The expression of Eg. (73) gives the linear set of ecuations

of the form
CR =V (74)

where the elements of C and V are defined by

Hon
Sh i w D
ke = ke = j=lwijTiij2 (75)
and
P n n
v = zz & .(r -r ) + zi (u = u ) :E Wi = T
k J=1 kJ oj ej 3=1 oj ej ij=1 13 ik

(76)
As seen from Eq. (75), the C matrix is symmetric which again
eases much of the computation.

In matrix form the parameter estimate is obtained by iteratively

solving the relation

= 1
5 rowr + (Q + TTwT)-l[w(ro - re) * TTw(uo — ue)J(77)




The iteration starts with r replacing r., calculating T as
a function >f the independent variables and Ior and then

generating - by Eg. (77). When r converges to r the itera-

el
tions are t :rminated.

An alternate expression for r will now be determined. 1If the term

TTwT<ro = re) (78)

is added and subtracted to the terms appearing in the square
brackets on the right-hand side of Eg. (77), we obtain

~

i 2 il )—1 ( _ )
R N (w + T wT {w ro re
+ - - -

T wT ro re T wT ro re

- Ml - u,)]

AT-lAT)(_)
+ (w + T ) (w + T wT ro re

L}
H

o i =1 T, T
+ (w + T wT) [-T wT(ro - re) + 7 w(uo - ue”

i
H
o
+
S
2]
o
!
H
0
S —
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where
G = (Cv + 7w ?)‘lTTw . (80)

The revised covarizice matrix of the parameter is found by
noting that the erro>r of the new estimate is related to the

: error in the observation, Zee' and the prior parameter error
‘é Z_ . by Eq. (77)
g * (A T )-1*
| =
4 er w + T wT w er
! ~ =
: + (w + TTwT) & (81)

The revised covariance matrix is then

* (Z* *T)
Ser = B\%rrlyy

T
k| A T )-1~ ( T (A T )-1«
Gw + T wT wL erzrr [w + T wT

+

T
(G + TTwT)‘l TTwE(Z 2T )(Q + TTwT)'lTTw
€EE EE (82)

where the cross-correlation between er and zee is assumed
to be zero. Noting that

g R
| e (z,,27,) = @ (83)
: and
; i I |
| E(zeszcc " (84)

; i gives upon substitution into Eg. (82)

A-29




i rr

(83) }

As in case of weighted least sguares Eqg. (82) assumes that |
the true value of r and the calculated value of r are i
sufficiently close so that the T matrix is the same for
both. 1If this is not true, a considerable error may be |
‘:s introduced.

To summarize the technique of Bayesian estimation, we itera-

tively solve the seguence
. T = T(rg) (84) 3
s = (i + 2Twr) - S(re) (85) |
. G = ST w = G(re) (86) i
, r=r_+Glu -u, -T(, -z (87) {

FRERRY

e* We con- f

tinue to iterate until the difference between r and r,

and repeat the next sequence with r replacing r




becomes sufficiently small and the sequence has therefore

converged. The final value of S is S;r, the revised para-
meter covariance matrix. It should be noted that when the
response is linear with respect to the parameters, only

one iteration is reguired. This means that since E is
always set egqual to T for the first iteration, the term

(ro - re) in Eq. (87) is zero for the linear case. Alter-
natively, as will be noted later, one can choose to set both

9 and u, equal to zero for the linear case.

When sequential batch processing is used, the Bayesian tech-
nigue should yield the same solution as that which would

be obtained by processing all batches together without a
Bayesian prior. To test this, let us confine ourselves to
two batches denoted by indices 1 and 2 along with a linear
estimator. The processing of the first batch uses no prior
estimate and gives a parameter estimate (Eg. (77)):
<’1‘]_Tw'.l_Tl).1 T Tw u (88)

) By et

and a revised covariance

. . T -1 _ -1
srrl = (Tl wlTl) =W, (89)

The estimate and the covariance of Egs. (88) and (89) are
input as information about the prior for the second batch.
This gives (Eqg. (77))

~ T -1~ T
2 (Wz * szz) (w2r1 e w2"02)

2]
]

T T -1 & e
(Tl wlT1 + T2 w2T2) (T w,u + e Wal 2)

(90)




Eg. (90) gives the estimate r., resulting from a linear

2
accumulation of all the experimental data, hen-te, proving
the affect of the Bayesian prior. For K batchies of data

this gives

i T 2 T
s B o~ Ty Wiy a2
i=1 i=1

5

The proof can readily be extended to the nonlinear case.

Here, however, the final value of Ti for each batch will

not necessarily be the same thereby yielding a different
estimate for the final batch. If the system defining u is
highly nonlinear such that large variations in Ti are en-
countered from batch to batch, the error could be substantial.

The procedure outlined in this section is correct provided
that the covariance matrices of the observations and the prior
are correct. As noted in the earlier sections, the new
parameter estimate has little merit if wrong covariances are

employed.

Egs. (84) through (87) constitute the most general case of
parameter estimation, and the reader will find that the
equations of the previous sections are special cases of
this system. However, the Bayesian aspect which has been
added in this section is particularly appealing in the non-

linear case for three reasons:

1. The prior parameter estimate constitutes a good guess
of the parameter estimate and hence increase the chances

for convergence.
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2. The Bayesian formulation drives the solution closer to
the prior than does minimum variance (the Bayesian :ech-
nigque with no prior). This also leads to faster cc -

vergence.

3. As seen from Eg. (69) the dependency of the Bayesian
formulation on the prior is linear. This means that as
the dependency on the prior is increased (via Srr) the
problem becomes more linear and convergence is enhanced.

In addition to the above observations, the addition of a 1
Bayesian prior to both linear and nonlinear problems renders
the C matrix of the resulting set of eguations more diagonally 1
dominant and hence more non-singular. This is why experiments
have shown that when a prior estimate is used, the number of

parameters may be increased substantially without generating

a Hilbert-like matrix.

The use of a prior estimate is not restricted to seguential
batch processing. Often, for example, in ground shock calcu-
lations, the analyst may want to process a single batch of
experimental data and incorporate what he believes to be a
reasonable estimate of the parameters, along with the error
estimates of these parameters. If these incorporated values
are reasonable, the Bayesian technigue becomes a powerful

tool, particularly when the number of observations is rela-
tively small. The analyst should be cautioned however, against
using this tool for a small number of observations and then
attaching a relatively large error to the prior estimate. This
in effect attributes a small level of credence to the prior, and
in the limit, will generate a solution for an underdetermined
system. Obviously, the confidence level for the evolved para-
meter estimate will be quite small indicating the solution to

be useless.




SUMMARY

The different types of optimization which have been analyzed

here can be summarized by catagorizing the estimator type,

the structure of the covariance matrix for the observations,

and the structure of the covariance matrix for the prior

estimates. |

: The estimator type can be linear or non-linear. When a

| linear estimator is employed, no iterations are required.

8 For this case, the general nonlinear formulation can be
employed with the initial estimate r, and the initial cal-
culated response u,, both set equal to zero. From Eg. (79)

the revised estimate is

Rl + G(uo - Tro) (92)

where G is defined by Eg. (80). The revised estimate can be ]
obtained alternatively from Eqg. (77)

'. r= (w+ Tow) 1w r, + TTwuo). (93)

: In either case, the solution is obtained without iteration
; by applying either Eg. (92) or (93). The revised covariance
matrix is given by Eg. (83).

The structure of the covariance matrix for the observations
can be either identity, diagonal, or full. The case where
the matrix is identity corresponds to unweighted least sguares.

When the matrix is non-unit diagonal, the residuals are
weighted with no cross-correlation between the observations.
When the covariance matrix is non-diagonal, cross-correlation
among the observations has been assumed. As has been noted
earlier, the covariance matrix for the observations will always

be symmetric.




Do, 2

The covariance matrix for the prior estimate can be either
infinite, diagonal or full. The case where the elements of
the matrix are infinite in value, corresponds to complete
lack of confidence in the prior estimate and is eguivalent
to the absence of a Bayesian prior. The associated weight
matrix, Q, will be null, and the estimator will attempt to
drive the calculated response toward the data. When the
covariance matrix is diagonal, a prior estimate has been
specified, but no cross-correlation is postulated among

its elements. Lastly, when the covariance matrix is full,
cross-correlation has been assumed between the components of
the prior estimate. As with the observation covariance matrix,
the covariance matrix for the prior estimate will always

be symmetric.

The various combinations of the two governing covariance
matrices are depicted in Table 2. The four boxes on the lower
right-hand side give the possible combinations for a Bayesian
prior estimate and are therefore separated from the rest

of the table by a bold line. Note the two empty boxes on

the 1left-hand side. This is because the use of a diagonal or
full prior covariance matrix along with an identity observa-
tion covariance matrix would result in a system of incompatible
units for the objective function of Eg. (63), and is therefore
meaningless. It should also be noted that the seven cases
shown in the table can be applied with either a linear or
nonlinear estimator givinc a total of fourteen possible com-

binations.

The revised estimates and covariances for the various methods
discussed here are surmarized in Table 3. For the linear case,

no iterations are reguired and the solution is immediate. For

o i " s sl il s r ot i s Lt s e D




P T

v T

COVARIANCE MATRIX FOR PRIOR

Table 2.

COVARIANCE MATRIX FOR OBSERVATIONS

IDENTITY DIAGONAL FULL
(&)
=
Z | UNWEIGHTED LEAST WEIGHTED LEAST MINIMUM VARIANCE
= | SQUARES SQUARES AND NO AND NO PRIOR
— PRIOR
g WEIGHTED LEAST MINIMUM VARIANCE
= SQUARES AND NO AND NO CROSS-
< CROSS-CORRELATION | CORRELATION ON
= ON PRIOR PRIOR
WEIGHTED LEAST MINIMUM VARIANCE
S SQUARES AND AND CROSS -
2 CROSS-CORRELATION | CORRELATION ON
ON PRIOR PRIOR

Optimization Schemes Resulting From Various Combinations
of Governing Covariance Matrices. Portion of table with

bold-face border uses Bayesian prior estimate.




:mz : o:vwwmh— 5 Am; i o..v..._mu__- hwwmhh " ....m « %

- -
33 Jd
W R B ¥0 NOTLYWILST NYISIAVS ¥Y3HITHON
9 (0] 9 0 |33 33 Ad (0]
ﬁA 4= %1-"n _a 1=Spd4-Syd +5)
0 _33 0 J4u 33 Ad
n 4
” " e TR R e § S e S RS -
B Oy 40 NOTLVWILSI NYISIAYE MYINIT
0 3 3
(%01 =) Pspn (1250 + 12s) + %
33 3, _ 0433 33 3 JINVIMYA WOWINTW ¥YINTINON ONY
n-n Jd
-\t-5i4 ( Fisiy -S4y ¢ S3YYNDS 1SV31 QILIOTIM YYINIINON
4
1
3 0, 33 JINVIUVA WOWINIW HYINIT GNY
- h_-mh_v S-St SIYYNDS 15VI1 GILHOIIM HYINIT
IO T o ®n b .
_-A % v i _-AHP v hh_-APhhv SIYYNDS L1SYIT YYINI

IS 3INVIHYA0D GISIATY

4 “JLYWILSI Q3SIAIY

QOHL3IW

SPOY3oW uotrjewr3isy jo Axeuung

‘g a1qel

a=Jy

:
A

i Leen




the nonlinear case, the solution is obtained by iteratively
replacing S by r until the difference between ro and r is
deemed to be sufficiently small. For the linear case, the

solution obtained is that for the true extremum of the objective

function. For the nonlinear cases, the method may converge
to a local minimum or may even diverge. When this occurs,
special methods should be employed to increase the so-called
radius of convergence.

{ The analysis shown here does not include possible errors in

}“
|
l
i
:
|
Ji
i
|

the measurement of the independent variables since they are
usually relatively negligible. However, there are situations
| in which both the dependent and independent variables contain
3 errors of equal magnitude. For these cases, a new estimator
& must be evolved.

A-38




REFERENCES

Wolberg, J.R., "Prediction Analysis", Van Nostrand, New
York, 1967.

Ralston, A. "A First Course in Numerical Analysis," McGraw-
Hill, New York, 1965.

W>lberg, J.R. and J. Isenberg, "A Nonlinear Least Squares
Search Algorithm", Computer Methods in Applied Mechanics
and Engineering, Vol. 5, pp. 1-9, 1975.




i i R R o

X =

EE =

e £ DY 3 H R 3 3 Ga Y9N8 0
]

N £> 8 <&
[}

NOMENCLATURE

matrix for linear set of egquations
determinant of Hilbert-like matrix
expectation operator

objective function

linear least sguares operator
linear transformation matrix
number of independent variables
number of observations

parameter vector

perturbation vector for nonlinear estimation
covariance matrix

sensitivity matrix

number of parameters

response vector

residual or difference between observed and calculatecd
response

free vector for linear set of eguations

observation weight matrix

parameter weight matrix

random error

Subscripts

latest iterative estimate
known prior, either experimentally or analytically
associated with parameter

associated with observation

Superscripts

revised
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VERIFICATION AND CHECK-OUT OF THE COMPUTER PROGRAM, PEBLS*

SUMMARY 1

When the computer program "fitted" Brown and Black's test data using
a near-linear force-deflection characteristic,

there occurred the gnawing

uncertainty, "Was the computer program coded correctly?" To verify that in-

deed the program was working properly, it was decided to estimate the para-

meters of a bi-linear textbook example (for which an analytical solution was

available). The estimation procedure was successful for this example, and

the results are reported in this appendix.

Bol Results from Biggs' Text (Reference 2)

There are a few non-linear problems of elasto-plastic systems where

exact sclutions are available. One such exact solution is given in Biggs'

text, Reference 2, Section 2.7 (p. 69 ff). Figure B-1l describes the problem,

namely an elasto-plastic beam subjected to a Heaviside step-function loading.
Biggs gives a graph of the response (see Figure 8-1) and also formulas from
which the response u(t) can be computed at any time.
consult Reference 2.)

(For further details

*Parameter Estimation of Blast-Loaded Structures

et hadlls *Lm’-mﬁ‘t-&' s




Rigorous Analysis of One-degree Systems
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B.2

the initial estimate of Plin was 45.3 and the initial estimate of d

Input Data to PEBLS Computer Program

The input data used for this example is shown below. Note that

. wWas
lin -

.543, exactly the values from Biggs text (cf. Figure B-1l). These two para-

meters were input with a confidence of 10% on each, as shown in the input

data. The "experimental" data (which in this case was computed, using the

equations from Biggs' text) is shown on page B-4. This "experimental" re-

sponse was taken at seven time points (tl, t2, ...t7) and was assumed to be

known with an accuracy of about 2%. There were just two points required to

define the pressure-time history, since it was a step-function.

PARAMETER ESTIMATION FOR BLAST=LOADED STRUCTURES

1-D0F ELASTIC=PLASTIC TES?

ITERATION LIMIT = 12

BACKSTEP LIMIT = L

CONVERGENCE CRITERION ON OBJECTIVE FUNCTION = 0,00500

" CONVERGENCE CRITERION ON CHANGE IN PARAMETERS = 0,01000

__MOUSE STEP REDUCTION FACTOR =

_1,00000
PARAMETER MOVE LIMIT = 0.20000

THE TIME HISTORY USES AT MOST 160 TIME POINTS
THE TIME INCREMENT = 0,50000E=03 SECONDS
THE MAXIMUM TIME THUS = 0,79500E=01 SECONDS

THE SLAB MASS PER UNIT AREA = 0,25907E<01%

INITIAL ESTIMATES OF PARAMETERS

ESTIMATION INITIAL PERCENT
PARAMETER CODE ESTIMATE VARIANCE CONFIDENCE
PLIN 1 45,300 20.521 10.000
DLIN 1 0.54300 0.2948SE=-02 10,000
EPLS 0 0.00000 0.,00000 0,00000
EMUO 0 1.0000 0,00000 0,00000
EMU1 0 1.0000 0,00000 0,00000
EMUD 0 9.9000 0,00000 0.00000
ALPO 0 1.0000 0,00000 0.,00000
ALP1 0 1.0000 0.00000 0,00000
ALPD 0 9.9000 0,00000 0.00000
BETA 0 0.00000 0,00000 0.00000
PSCL 0 1.0000 0.,00000 0,00000

THE TOTAL NUMBER QF PARAMETERS BEING ESTIMATED (NP) = 2

B=3
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DISPLACEMENT RESPONSE

TIME (SEC)
0,10000E=01

0.20000E=01

0,30000E=01
0,37100E=01
0.45000E=01

0.55000E=01

0.66900E-01

~ BLAST RECORD

TIME (SEC)

~ 0,00000E+00 _
2 0.10000E+01

~THE NUMBER OF PRESSURE DATA POINTS = 2

__YTHE NUMBER OF RESPONSE DATA POINTS = 7

EXPERIMENTAL RESPONSE DATA

EXPERINENTAL BLAST AND RESPONSE OBSERVATIONS = DATA SET 1

RESPONSE "VARIANCE  CONFIDENCE (()
0.56530E~01 0.12780E=05 0,19998E=01
0,20836  0,17370E=04  0,20003E=-01
0.40781 0.66520E=04 0,19999E=01
0.54300 0.11790E=03 0.19997E=01
0.66363 0.17620E=03 0,20002E=01
0.,76352 0.23320E°03 0.20001E=01
0.80551 0.,25950E=03 0.19999E=01

PRESSURE
0O.30000E¢02 @000
"0,30000E+02 Sy

,
|
|
\
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B3 Initial PEBLS Results for Biggs Example

The results of the first iteration of the program PEBLS are shown in
Table B-1. Note particularly that the analytic response (computed within
PEBLS using numerical integration) did not agree exactly with the observed
response (computed by hand using Biggs analytical equations 2.57a, and 2.61,
p. 75, Reference 2). Also note that the RMS error in observations was com- °
puted as .889x10_3, i.e., .000889, which gives the reader an idea of the
"goodness of fit" between the model (u-analytic) and the data (u-observed).

After three iterations, the results were as shown in Table B-2. Note
that now u-analytic (computed by PEBLS) is slightly closer to u-observed
(the "experimental" data) and the RMS error in observations has been halved,
i.e., it is now .399x10_3 (.000399). The final information output by the
program is shown in Table B-3). Note that the parameters (P1in and dlin)
have been estimated at 45.314 and .54443, respectively, although Biggs
exact values are 45.3 and .543. Thus, the estimation procedure will not
exactly reproduce the parameters of our mathematical example. This (slight)
discrepancy may be due to small errors in numerical integration (which,after
all, is not exact) or due to the fact that the "test data" were input with

a confidence of 2% (and were thus not known exactly).




Table B-1

COMPUTED AND OBSERVED DISPLACEMENT RESPONSE

POINT TEST TIMc U=ANALYTIC U=UBSERVED YsU=UTEST
1 0.10000€E=01 0,56367€-01 0,56530£E-01 =0,16342E=-03
2 0,20000E=01 0,20780 0,20836 *0,56424E-03
B 3 0,30000E=01 0,40682 0,40781 =0,99456E-03
i 4 0.,37300E=01 0,54280 0,54300 =0,19620E=-03
S 0,45000E-01 0,66310 0,66363 =0,52977€-03
6 0,55000E=01 0.76250 0,76352 =0.10177E=02
7 0,66900E=01 0,80382 0,80551 =0,16868E=02

i OBJECTIVE DUE TO OBSERVATIONS =
I OBJECTIVE DUE TO PARAMETERS s

COMPUTED AND UBSERVED DI

POINT TEST TIME U=ANALYTIC
1 0,10000E=01 0,506370E=01
2 0,20000E=01 0,20785
3 0.30000E=03 0,40706
e 0,37100€E-01 0,54331
S 0,45000E-01 0,66396
6 0,55000E=01 0,76376
! 7 0,669300E=01 0,8054%

OBJECTIVE DUE TO UBSERVATIONS =
3 OBJECTIVE DUL TO PARAMETERS s

: INITIAL

. PARAMETER ESTIMATE

; PLIN  45.300
DLIN  0,54300

0.714206E=01 RMS ERROR IN OBSERVATIONS =
0.,000000 TOTAL OBJECTIVE FUNCTION =

Table B-2

SPLACEMENT RESPONSE

U=OBSERVED YsU=UTEST

0,56530E=0} =0,15988E-03
0,20836 =0,51105€=03
0,40781 =0,75332E=03
0,54300 0,31064E=03
0,66303 0,32606E=03
0.76352 0,23720E=03
0,805%1 =0,27962E=04

0,452413E=01 RMS ERROR IN OBSERVATIONS =
0,706864E=03 TOUTAL OBJECTIVE FUNCTION =

Table B-3

PARAMETER CONFIDENCE LEVELS

LATEST PERCENT
ESTIMATE VARIANCE CONFIDENCE
45,314 1.9332 3.0693
0.54443 0.74290E=03 5.0196

PR e .

0,889176E=03
0.714206E=01

0.,399177€E-03
0.459401E-01

- —




B.4 PEBLS Results for a Poorer Initial Model

If the initial model had been in error, say one had Plin of 49 and
dlin of .45 (versus the exact values of 45.3 and .543 from Biggs text), the
guestion was, "How well will PEBLS perform?" The input data for this case
is shown on page B-8. Note that now the confidence in the parameters is ;
given as 20%, whereas formerly it was 10% (cf. page B-3).The "experimental"
response data were taken to be the same as previously; (see page B-4). The

results of the first iteration with this input data are shown in Table B-~4.
Note that the maximum value of u-analytic was calculated as .51185, whereas
the "data" gave .80551 for the same time point, point number 7. Also note
that the RMS error in observations went up to .1401, whereas in the previous
example it was .000899, initially.

After the three iterations, PEBLS gave the results shown in Table
B-5. Note that the RMS error has been reduced (from .1401) to .0046, and
a significant improvement in "fitting" the dynamic data had been achieved.

The final estimated values of the parameters P and dlin are also shown

lin
lin) is given as 43.8 and the latter (dli )

n
is .51285. For comparison purposes, the "exact" values (used in Biggs

in Table B-5, where the former (P

example) were 45.3 and .543, respectively. It is noteworthy that a rela-
tively "good" fit to the data (RMS error of .0046) was obtained, although

the estimated parameters Plin and dlin are only within about 5% of their
"exact" values.
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POOR INITIAL MODEL

PARAMETER ESTIMATION FOR BLAST=LOADED STRUCTURES

1=DOF ELASTIC=PLASTIC TEST

! TITERATION LIMIT = 12

_BACKSTEP LINIT = 4

CONVERGENCE CRITERION ON OBJECTIVE FUNCTION = 0,00500

" CONVERGENCE CRITERION ON CHANGE IN PARAMETERS = 0,01000

_ MOUSE STEP REDUCTION FACTOR = 1,00000
PARAMETER MQOVE LIMIT = 0.20000

_THE TIME INCREMENT = 0,50000E=03 SECONDS

THE MAXIMUM TIME THUS 2 0,.79S5S00E-01 SECONDS

THE TOTAL NUMBER OF PARAMETERS BEING ESTIMATED (NP) =

2

THE SLAB MASS PER UNIT AREA = 0,25906E=01 4
|
Pl INITIAL ESTIMATES OF PARAMETERS
ESTIMATION INITIAL PERCENT
PARAMETER  CODE __ ESTIMATE _ VARIANCE _ CONFIDENCE
PLIN 1 49.000 96.040 20,000
DLIN 1 0.45000 0.81000E=02 20.000
_EPLS 0  0,00000  0.00000 0.00000
EMUO 0 1.0000 0,00000 0.00000
EMUL [\ 1.0000 0.00000 0.00000
~ EMUD 0 © 9.9000  0,00000 0.,00000
ALPO 0 1.0000 0.00000 0.00000
ALP1 0 1.0000 0.00000 0,00000
ALPD 0 9.9000 0,00000 0.00000
BETA 0 0.00000 0,00000 0.00000
PSCL 0 1,0000 0.,00000 0.00000
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OBJECTIVE

Table B-4

COMPUTED AND OBSERVED DISPLACEMENT RESPONSE

TEST TInt

0.10000E=01
0,20000E=01
0.30000E=01
0.37100E=01
0,45000E=01
Ced3u0b=Vi
0.66900E=01

U=ANALYTIC
0,55906E=01
0,20094
0,37623
0.47976
0.55280
0.57960
0.5118%

DUE TO OBSERVATIONS =

OBJECTIVE DUE TO PARAMETERS ]

POINT

NV E WN -

OBJECTIVE DUE TO OBSERVATIONS =
OBJECTIVE DUE TO PAKAMETERS s 0,767073

95.9008
0.000000

U=DBSEKVED
0,56530E-01
0,20836
0.40781
0,54300
0,66363
0,76352
0,00551

Table B-5

YsU=UTEST
«0,62388E-03
“0,74243E~02
©0,31560E=01
«0,63235e-01
«0,11083
«0,18392
*0,29366

RMS ERROR IN OBSERVATIONS = 0,140101
TOTAL OBJECTIVE FUNCTION

COMPUTED AND OBSERVED DISPLACEMENT RESPONSE

TEST TIME

0,10000E=01
0,20000E=01
0,30000E=01
0,37100E=01
0,45000E=01
0.55000E=01
0,66900E~01

U=ANALYTIC U=UBSERVED
0.,56331E=01 0.,56530E=01
0,20725 0,20836
0,4043) 0,40781
0.53761 0.54300
0.65640 0.,66363
0,75901 0.761352
0.81159 0,80551
0,169110

PARAMETER CONFIDENCE LEVELS

PARAMETER

PLIN 49.000
DLIN 0.45000

INITIAL LATEST
ESTIMATE ESTIMATE VARIANCE
43.820 8.1279
0.51288 0.31881E=02
B-9

Y=U=UTEST
=0,19898E=03
=0,11113E-02
=0,34829E=02
=0.,53946E=02
=0,72328E=02
«0,45133€-02

0,60765E=02

RMS ERROR IN OBSERVATIONS s 0,466160E=02
TOTAL OBJECTIVE FUNCTION

PERCENT
CONFIDENCE
$5.8182
12,547

L] 95.9008

s 0,9361813
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Bad Conclusions

Additonal work was done to verify that sequential processing of the

experimental data gave similar results. Basically, the result of this exer-

cise was to convince the authors that the program PEBLS was functioning

correctly and numerically integrating properly. Since exact analytical exam-

ples are not available with varying u, o, etc., all the loops and logic of

PEBLS have not been verified by hand calculations. Nevertheless, the authors

can state with some confidence that the program is completely functional,
and it appears to be properly coded.
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