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NOTATION

a Foca l di stance

C0 Drag coefficient $
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CIF Lift coefficient due to friction

C1~ 
Lift coefficient due to pressure

CM Moment coefficient
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f Frequency of vortex shedding

Natura l frequency of vortex shedding
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Ii h2 = co~h
2
~ - cos 2o
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ABSTRAC T

The autorotation of plates norma l to a

uniform para llel flow is explained in detail for
H low Reynolds numbers by means of numerical solutions

of the Navier-Stokes equations. The i ncompressible

fluid flow is assumed to be laminar and two-

dimensional . Comparisons are made with high

Reynolds-number and three-dimensional flows . The
a r t i cle def ines  au toro ta tion , gives an historical
account of investigat ions into autorotation , and

shows that autorotation is caused by a complicated

interplay of vortex shedding, boundary -layer hysteresis ,

and vorticity generation around the edges of the plate .

1 . INTRODUCTION

The aerodynamic phenomenon of autorotation has puzzled aerodynamicists ,

bal listicians , and biologists for many years . In most technical applica-

tions in which autorotation occurs , it has an undesirable effect on the
performance of the device under consideration. For instance , autorotation

can greatly influence the control of finned missiles , rockets , airplanes ,

and reentry bodies. In a few areas , however, autorotation of bodies is

exploited . In nature certain tree fruits and seeds are disseminated

through autorotation . In aerobal listics autorotation of bomblets is

encouraged to cover a wide target area.
Although special cases of autorotation and partial aspects of it are

fairly well understood , the basic reason for it and the detailed explan~-

tion of it are still lacking. This paper will clarify some of the

unsolved problems , at least for the simple case of an autorotating plate .

The brief account of the 125-year history of the study of autoro-

tation will familiarize the reader with the motivations for studying this

• phenomenon , give him an appreciation of the difficulties by describing

1
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successes and fa i lures, and explain why only the advent of ~owerfu1
computers could give the solutions to the problem.

In order to follow the historical development of the study of auto-

rotation ,the essential mechanism of this phenomenon must be anticipated .
The following paragraphs outline this mechanism for the simplest case ,
that of an autorotating plate .

A rectangular plate is free to rotate about an axis of syninetry
which is fixed in a position normal to a uniform parallel flow. After
an initial impulse the plate continues to rotate under certain conditions
without any external source of power. The spinning plate then obtains
its whole kinetic energy from the parallel stream; the plate autorotates .
Flow visualization and measurements reveal that the rate of rotation is
synchronous with the frequency of vortex shedding , and that this fre-
quency is equal to or larger than the frequency of vortices shed from a
fixed plate . This synchronization is an essential condition to under-
standing autorotation because without it previously or prematurely shed
vortices interfere with the development of the boundary layer in front
of the plate and with vortex separation in the rear , thus causing a
damping effect.

During each half-revolution there is a period in which the rotation
of the plate is supported and a period in which it Is retarded by the
action of the fluid flow. Surplus torque , which is required for auto-
rotation , is mainly obtained in the retard ing period when the plate moves
from the normal to the parallel position relative to the flow . Location
and strength of the vortices generated behind the two edges of the plate
as well as the deceleration of the front boundary layer determine the
amount of surplus torque . In addition , to overcome the braking effect of
the retarding period , the plate must have a sufficiently large moment of
inertia. If this moment of Inertia is too small the plate cannot rotate .
It will wobble and slow to a stop. The same happens if the concentrat ion
of vorticity near the edge is not strong enough .

The mechanism of autorotatfon is thus a complicated interplay and J
synchronization of four processes : (1) vortex sheddIng , (2) boundary-layer
hysteresIs , (3) vortlcfty generation around the edges , and (4) flywheel2
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behavior requiring a sufficiently large moment of inertia.
A plate with a freely moving axis may obtain additional rotation

energy through rhythmic translational acceleration and deceleration . The
classical example is that of a freely falling rectangular piece of
cardboard . Lift due to rotation causes the cardboard to fall obliquely.

• 2. BACKGROUND

2.1 DEFINITION
The concept of autorotation is not uniquely defined in fluid

dynamics. A few researchers consider any continuous rotation of a body in
a parallel flow without external source of power as autorotation . The
body then derives its kinetic energy from the fluid flow . Under this
definition , windmi lls , water wheels , anemometers , helicopter blades (when
rotating without power during fall), and certain tree fru i ts and seeds
are such “autorotating ” devices 1,2 (Fig. la , b). It is important to
point out that these bodies are geometrically shaped in such a way that
even under stjtlc conditions , that is, when kept fixed in a fluid flow ,
a torque is present which initiates rotation when the body is released .
In this category also belong symmetrically shaped bodies whose geometric
centers do not coincide with the centers of mass. Furthermore , symmetric
bodies with uniform mass distribution can rotate in a parallel shear
flow. Spheres and circular cyl i nders, for Instance , spin due to
asymmetric wall-shear stress3 (Fig. lc).

McCorm ick, B.W., Aerodynamics of V/STOL flight. Academic Press.
New Yor k, 1967.
2 Norberg , R.A. , Autorotation , Self-Stability , and Structure of Single -
Winged Fruits and Seeds (Samaras) with Comparative Remarks on Anima l
Flight. B1o1 . Rev. 48 (1973) , 561.

Poe , G.G. and A. Acrivos , Closed-streamline flows past rotating single
cylinders and spheres: inertia effects. Journ . Fluid Mech. 72 (1975),

• 605.

•
3

I
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Figure 1 - Bodies Spinning Due to Transfer of Kinetic Energy
from the Flow. (In this paper, spinning of this type is

not considered to be autorotation.) a) Anemometer;
b) Maple Seed; c) Shear Flow
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Most fluid dynamicists restrict the concept of autorotation to the

induced motion of bodies which requires an initial rotation of the body

in the fluid flow to cause self-susta ined spinning . Two cases may be

distinguished , depending on whether the axis of rotation is parallel or

normal to the flow. The classical examples of the first case are the

Lanchester propeller (Fig. 2a) and the spinning airfoil (Fig. 2b)~’
5’6

Examples of the second (normal) case are the falling cardboard and the

rotating dumbbell (Fig. 2c).7 The axis of the cardboard may be free to

translate or may be fixed (Fig. 2d). Cruciform systems can also auto-
rotate (Fig. 2e). In both cases of autorotation , the axis of rotation
does not need to be exactly parallel or normal to the flow. In fact, one
case may pass over to the other.

In this paper the latter definition for autorotation has been

• adopted , and the study focusses on the autorotating plate , Fig. 2d.

Riabouchinsky , D.P., Thirty years of theoretical and experimental
research in fluid mechanics. Journ . Royal Aeron . Soc . 39 (1935) , 282.

Durand , W.F. (editor), Aerodynamic Theory. Dover Publications 1963.
• Vol . V , 208.

• - 
6 Bairstow , 1., Applied AerodynamIcs. 2nd ed. Longmans , Green and Co.,
New Yor k, 1939. Chapter V, 212.

Smi th, A.M.O., On the Motion of a Tumbling Body . Journ . Aeron .
Sc iences 20 (1953) , 73.
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Figure 2 - Autorotating Bodies, a) Lanchester Propel l er;
b) Sp inning Airfoil; c) Rotating Dumbbell; d) Rotating

Plate; e) Rotating Cruciform Plate System
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2. 2 HISTORY
• The study of autorotation has quite a long history compared to the

study of other aerodynamic concepts. The oldest known explanation for the

• normal type of autorotation , that for a falling rectangular piece of

car dboard, never really went beyond a qualitative or partial description ,
and until recently experiments gave data only for overall properties such

• j as average drag, lift , and roll. The following paragraphs give a brIef

• history of the study of this type of autorotation .

When a piece of cardboard is dropped , it starts wobbling as sketched
in Fig. 3. This wobbling may continue or may change to autorotation . In
the latter case the cardboard does not fall vertically but obliquely
(Fig. 4). Maxwell8 in 1853 was probably the first to describe this
phenomenon. He recognized that the center of mass and the center of
aerodynamic forces do not coincide , and this gives rise to a torque. He
also recognized that the deviation from vertical fall is attributable to
the lift due to rotation . This latter pheno~~ on was described sli ghtly
earlier (in 1851 ) by Magnus , but Maxwell was probably unaware of his
work. Magnus ’ name is attached to this effect although recognition and

1 study of it go back to the time of Newton .9

• Maxwell ’ s explanation of autorotation may be summarized with the aid
of Fig. 4. Shortly before it assumes position 1, the plate is parallel

Ii to the path ; at position 2 It Is norma l to the path. In the latter
position the drag is larger. The plate , therefore , has a higher velocity
at position 1 than at position 3 , and the torque at position 1 is larger
than at position 3. Since a plate always tends to place itself normal to
the path , the torque at position 1 is in the direction of rotation ; at
position 3 the torque is opposite to the direction of rotation . Hence ,
the torque supporting rotation is larger than the adverse torque . This

• 
8 Maxwell , J.C., On a particular case of the descent of a heavy body In

• a resisting medium. Scientific Papers. Cambridge University Press
• 

. (1890), 115.

Barkla , H.M. and L.J. Auchterlonie, The Magnus or Robins effect on
rotating spheres. Journ . Fluid Mech . 47 (1971), 437.

7
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Figure 3 - Wobbl ing Plate During Fal l
with Vortices Shed at each 1

Turning Point
2

3

4

5

6

_ _  7

• Figure 4 - Path of a Freely Falling Autorotating Cardboard
The Axis of Rotation is Perpendicular to this Sheet

excess torque is balanced , according to Maxwell , by an opposing torque due
to rotation. This latter statement is generally not correct. Maxwell
assumed that the total torque can be divided into a “quasi-steady ” part
and a contribution due to rotation , the latter being always opposite to

• the directi on of rotation . “Quasi-steady ” means that the forces on the
body vary so slowly wi th rotation that they can be computed at a particular

• instant as if the body were not rotating. It will be shown later that, H
to expla in autorotation, the asymmetric (sometimes called “dynami c” or

• hysteresis”) effect of rotation must contribute to the driving torque.

8 F
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Greenhill in 1880 developed , on the basis of Kirchhoff ’s studies , a

potential-flow solution which is cited in Lamb .1° According to this
solution the motion of a plate or a disk subj ect to an impulse is analogous
to that of a pendulum . The oscil lat ing phase (Fig. 3 without vort ices) P
can become rotatory if the kinetic energy and certain constants (which

implicitly contain the moment of inertia) are sufficiently large . The

path is undulatory , with the vertical position of the plate and the l owest
angular velocity at the peak of the trajectory (Ref. 10, p. 176).

At about the same time (1880) a few papers~~’
12 ’13 appeared in which

Maxwell ’s idea was essentially restated : the centers of gravity and aero-

dynamic forces do not coincide and , thus , a torque develops which is a
function of the angle of attack. Ahlborn 13 in 1897 presented a detailed
explanation of this process based only on the quasi-steady approach.

In 1901 Köppen 14 applied the idea of autorotation to construction of

a flying machine and a parachute . However , the small lift-to-drag ratio
of autorotating plates did not encourage further development of flying
mac hi nes based on that principle.

From 1904 to 1918 Riabouchinsk y ’s private institute in Koutchino
performed a number of interesting experiments on autorotation in which
Joukows ky was also involved .4’15 About 1 905 Riabouchinsky introduced the
term “autorotation” as it is used in this paper (Section 2.1) , and he

distinguished for the first time between autorotating plates with fixed

• 10 Lamb, H., Hydrodynamics. Sixth edition . Dover Publication , 1945.
li Mouillard , M. , Th~orie de l ’A ~roplane. L’ empire de l’ a i r , 1881 ,

• 210.
12 Gerlach , E., Zeitschr. f~ir Luftsch . 5 (1886), 65.

13 Ahiborn , F., Der Schwebf1ug und die Falibewegung ebener Tafein in der
Luft . Abh . ci. Naturw. Ver. Hamburg XV , 1897.

• ~. 14 Köppen , W., Illustr. aär. Mitteil. 5 (1901), 158.

-• 15 Joukowsky, N., De la chute dans 1 ‘air de corps légers de forme
al longée, anlmé s d’un mouvement rotatoire . Bulletin de l’ Inst.
aérodynamlque de Koutchino , fasc. 1 (1912) , 51.

~~~~~
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axes and those with freely moving axes. He realized that Maxwell ’s
explanation was deficient because, for a plate autorotating about a fixed
ax is , the veloc ity of the flow (or In a frame fixed in a fluid at rest at
infinity, the translational velocity of the body) is constant. Thus,
Maxwell ’s assumption that, in position 1 of Fig. 4, the movement of the
plate is faster than in position 3 does not apply for a plate with a
s *ed axis. He offe red the explanation that in position 1 of Fig. 4 the
streamlines at the retreating edge of the plate are more curved than in
position 3 and , thus , due to the higher suction effect the torque
favorable to rotation is greater. This recognition includes the important
facts that a quasi-steady theory cannot be sufficient to explain auto-
rotation of plates wi th fixed axes and that the asymmetric flow effect of
rotation must be considered . A few years later Riabouchinsky recognized
that the moment of inertia must be large enough to overcome the period of
adverse torque. He also found that systems with three or four plates
(Fig. 2e), as well as proj ectiles and nonstabilized airships , can auto-
rotate . He also observed that the ratio of rotational to translational
speed must be smaller than unity for autorotation , and that the shape of
the edges of the plate affects the rate of autorotation (FIg. 5).

: 1 7

Figure 5 - “Riabouchlnsky-type” Body

Although Rlabouchinsky observed a strong vortex behind the
rotating plate which revolved In the same direction as the plate ,4 and

10
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although later , in 1929 , Ahlborn16 mentioned periodic vortex shedding,
the significance of these observations was not recognized .

In 1941 Oupleich 17 published results of extensive work with freely
falling plates in air and water. These experiments provide a weal th of

• valuable quantitative data which will be referred to again in Section 4.3.
Dupleich’ s explanation of autorotation , however , is adopted from Maxwell ,
and depends on the incorrect idea that the influence of rotation on the
total torque is always opposite to the direction of rotation .

In Germany during World War II autorotation of plates was of interest
in producing high lift on aircraft wings. 18 21 A summary of this effort
is given In English by Crabtree .22 An auxiliary wing capable of auto-
rotation was mounted j ust below the trailing edge of the main wing.
Another study in Germany, described by Schnel1er 23 in 1941 , was probably
the first on rotating missiles. It described “lunar motion ” .

16 Ahlborn , F ., The Magnus Effect in Theory and in Reality . Translation
in NACA TM 567 , May 1930.

• 17 Dupleich , P., Rotation par Chute Libre des Ailettes Rectangulaire s de
Forme Al longee. Publications Scientifiques et Techniques du Secretariat
d’Etat a l’Av iation , 1941 , No. 176. Translated into English in NACA
TM 1201 , April 1949.

18 von Holst, E., Der rotierende Flügel als Mittel zur Hochauftriebserzeugung.
Jahrbuch 1941 d. deutschen Luftfahrtforschung I, 372.
19 Kuchemann , D., Auftrleb und Widerstand eines rotierenden F1~igels.
Deutsche Luftfahrt forschung , Forschungsbericht 1651 , 1942.
20 Wiese , H., Drehleistungsmessungen an rotierenden FlLigeln. AVA
Göttingen , Bericht 42/A/ 14. 1942.
21 K~ichemann, D., Dreikomponentenmessungen an einem Fl~igel mitrotierendem Hilfsfluge l. Deutsche Luftfahrtforschung, Forschungsbericht
1513 , 1941.
22 Crabtree , L.F. , The rotating flap as a high -lift device . Royal
Aircraft Est. Farnborough Tech. Note , Aero 2492 , 1957.

Schneller , E., The lunar motion of fin stabilized projectiles . Report
from the Techn ische Hochschule Darmstadt 1940/1941 . Translated by CADO ,
Wright-Patterson Air Force Base, Dayton , Ohio. All 3271.
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Before investigations after World War II are di scussed , it will help
to review briefly the history of the study of autorotation about an axis

parallel to the flow . At the turn of the century this type of autorotation 
p

was discovered in connection with a device now called the Lanchester

tourbillon or Lanchester propel ler. (T he or igi n of this terminology could
not be traced by the author.) Riabouchinsky mentioned in his survey
paper4 that in 1905 Patrick Alexander demonstrated this phenomenon

(Fig. 2a) .
Without initial rotation the force R acting on the Lanchester

propeller blade is equal to the drag D. Fig. 2a. With a small initial

spin the flow relative to the body has a nonzero angle with respect to

the undisturbed flow. The resultant force R , composed now of drag D and

lift L, causes a torque opposite to the initial spin , and the propeller

will come to a stop. Above a certain va l ue of the initial spin , however ,

the resulting force has a component in the direction of rotation . This
torque increases trie angular speed until a ba l ance with the damping
forces is achieved , and the device then autorotates .

In 1 906 Rlabouchinsky published a paper4 in which he showed that the
blade does not need a profile as shown in Fig. 2a but that it also
autorotates if it is infinitel y thin. In 1909 Riabouchinsky found that a
propeller blade with a slot near one edge autorotates in the direction of
the slot. During World War I and in the Twenties a type of autorotation
similar to that of the Lanchester propeller was studied carefully since

• it played an Important role in the performance of aircraft . Relf and
Lavender in England are credited with being the first investigators to
observe this phenomenon.24

According to Bairstow6 and Bryant and Gates25 the origin of this

type of autorotation may be explained with the aid of Fig. 2b in the
following way: Once an airfoil rotates around an axis parallel to the flow ,

24 Fuchs , R. and L. Hopf, Aerodynamik. R.C. Schmidt & Co., Berlin , 1922,
424.
25 Bryant, 1.W. and S.B. Gates, The spinning of aeroplanes. Journ . Royal
Aeron . Soc. 31 (1927), 619.
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the downward moving part of the wing usually encounters a relative flow
velocity which causes a higher lift than the veloc i ty on the upward
moving part. This is due to the different angles of attack. The 

p

difference in the lift causes a torque opposite to the rotation. However ,

if the angle of attack of the downward moving part of the wing becomes so
large that this part stalls , the corresponding lift decreases and may

become smaller than the lift of the upward moving part . The resulting
torque is then in the direction of rotation , and again , the airfoil
autorotates. In this connection one distinguishes steep and flat spin of

an aircraft on the basis of the spiral path of the aircraft . Overall
summaries of the literature on autorotating airplanes are given by Durand 5

and Bairstow .6 Additional references are given by Knight 26 and more
recent ones by Neihouse et al. 27 The theory of autorotating airplanes is
based on the quasi-steady approach (strip theory). Work on the spinning

• of modern aircraft is still going on.28

After World War II interest in autorotation around an axis normal to
the flow arose in three basic areas : (1) the aerodynamics of releasable
nose sections of fuselages for use in emergency situations ; (2) the
aerodynamics of finned missiles ; and (3) the aeroballistics of bomblets .
All three cases are highly complex , since the flow around the body must
be considered three-dimensional , and since in many instances the axis of
rotation performs precession and nutation . Most of the research in these
areas is documented in U.S. Government reports , a fact which reflects
not only their military application but also the preliminary nature of
their contents.

It may be mentioned that some interest in autorotation exists in
biol ogy. There are tree seeds which not only rotate like a helicopter

26 Knight , M., Wind tunnel tests on autorotation and the “Flat Spin ” .
NACA Rep. 273, 1927.
27 Neihouse , A. !. , W. J . Klinar , and S.H. Scher , Status of spin research
for recent airplane designs. NASA TR 57 , 1960.
28 Spangler , S.B. and M.F.E. Dillenius , Investigation of Aerodynamic
Loads at Spin Entry. Report ONR-CR212-225-2 , May 1976.

13



blade (Fig. lb) but simultaneousl y autorotate about the longer axis of

the seed.29’30

In the following the three basic research areas are discussed :

(1) The autorotation of proje ctiles and nonstabilized airshi ps
was earlier observed by Riabouch insky .4 Later , this effect was noticed

with released nose sections of fuselages , and investigations were carried

out at Douglas Aircraft Corporation . A 1953 summary of this effort is
given in a paper by A.M.0. Smith.7 Some years later autorotation became
a problem for reentry bodies. The Mercury capsule of Glenn and Carpenter

could be stabilized during reentry into the atmosphere only by opening a

parachute .31 ’32 A.M.0. Smith ’s paper7 is of interest in other respects
also. He mentions the autorotation of dumbbells (Fig. 2c) which is
explained by the difference in drag of the spheres at subcritical and
supercritical Reynolds numbers . In the transition range from laminar to
turbulent flow the drag of the sphere drops drastically. This kind of

autorotation is , therefore, restricted to the Reynolds-number range of

about 4~lO~. A.M.0. Smith also made an important contribution to the
understanding of the autorotating cardboard . He realized (what had
already been indicated in Riabouchinsk y ’s idea4) that the asymmetry due
to rotation is the key to explaining autorotation and that this asymmetry
is caused by hysteresis during acceleration . Although the importance of
hysteresis for oscillating wings was recognized earlier (see the
literature in [33]), A.M.O. Smith linked it to autorotation . It will be

29 Paturi , F., Nature , Mother of Invention. Harper & Row , New York , 1976.
30 McCutchen , C.W. , The Spinning Rotation of Ash and Tulip Tree Samaras.
Science 197 (1977), 691.
31 Results of the Second U.S. Manned Orbital Space Flight May 24, 1962.
NASA SP-6, 1962.
32 Campbell , J.P., low-Speed Aerodynamic Research Related to the Landing
of Space Vehicles.

More , F.K. , Lift Hysteresis at Stall as an Unsteady Boundary-layer
Phenomenon . NACA Rep. 1291 , 1956 .
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seen later that hysteresis is an important necessary , but not sufficient

• cond’ition for autorotat ion .
1 (2) Research on the autorotation of finned missi lc ’s and

rockets , because of its importance in stabil izing rotating finned bodies ,

is the most extensive of tha t in the three basic area s , and is sti l l

continuing. The investigation probably started with Schneller ’s
• contribution 23 on “lunar moti on” and expanded immediately

after World War II. However, it was not until 1955 that Nicolaides and

Gr i ffin 34 described the problem of “rol l speed-up ” as the self-sustained

• I spinning of missiles with cruciform fins at high angles of attack (larger

than 36°). Oddly enough , the relation of this problem to autorotating
• plates normal to the flow was not recognized , and the explanation for

roll speed-up rested on the hypothesis that the single vortex shed from
• the spinning cylindrical body interferes with the fins . Nico laides 35

• •~~ soon acknowledged that this hypothesis was incorrect , since fins themselves
can rotate without the missile body . He proposed another approach by
including stall in a quasi-steady strip theory . In this context Nicolaides
mentioned autorotation of spinning aircraft (around an axis parallel to
the flow), but he noticed that this kind of autorotation and roll speed-up

• are not the same. The work during the period from 1955 through 1958 with

• references to prior investigations was summarized by Nicolaides ,36

Brown,37 and Greene.38 At that time two movies of wind-tunnel experiments
• j with a plate and a cruciform plate system were made at the Department of

• Nico laides , J.D. and T.F. Griffin , On a Fluid Mechanism for Roll
Lock-in and Rolling Speed-up Due to Angle of Attack of Cruciform• Configurations. BUORD Tech. Note No. 16 , Sept. 1955.

Nicolaides , J.D., On the Rolling Motion of Missiles . BUORD Tech.
Note No. 33, March 1957.
36 Nicolaides , J.D. , Final Technical Note. BUORD 1961 .

Brown, F.N.M. , Summary report on cruciform fin study . University of
• Notre Dame, Indiana , Dept. of Aeronautical Engineering , Contract NORD

17702, May 1958.
38 Greene , J.E., An Investigation of the Rolling Motion of Cruciform-fin
Configurations. NAVORD Rep. 6262, March 1960.
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Aeronautical Engineering of the University of Notre Dame under
F.N.M. Brown . On the basis of these revealing flow pictures Lugt39 In

4 1961 related roll speed-up explicitly to the autorotat lon of plates
normal to the flow . In this paper he also suggested the use of slots to
prevent or reduce autorotation . Subsequent experiments at the University
of Notre Dame and the Naval Academy, as reported by Daniels and Clare ,40’41

verified the usefulness of slots .
In recent years work has continued to accura tely ana lyze

and predict roll speed-up from experimental data without any attempt to
explain the phenomenon . Nonlinear least-square fitting was done by
Cohen et al ,42 with a third order polynomial suggested by Daniels.43 It
may be pointed out that there Is a close analogy of the curve for the
moment coefficient versus roll with that for rotating airplanes [see
Ref. 5, p. 2O9~. Fiechter44 also observ ed autorotat lon In the regi on of
“roll lock-in ” (angles of attack between roll slow-down and roll speed-up)
which is caused by vortices shed from the disturbed boundary layer of the
missile body .

(3) Parallel to the study of autorotation of finned missiles
was the investigation of autorotating bomblets. The purpose of this work
is directly opposite to that of work wi th finned missiles. Whereas the
goal of missil~ aerodynamlcists Is to prevent uncontrol led rotation , that

Lugt , H.J., Sel f-Sustained Spinning of a Cruciform Fin System. Proc.
Fifth U.S. Navy Symposium on Aerobal listics. Naval Ordnance Lab.,
White Oak , Md., 1961.
40 Daniels P., Fin Slots vs Roll Lock-In and Rol l Speed-Up . Journ .
Spacecraft and Rockets 4 (1967), 410.
41 Dan iels , P. and T.A. d are, Aerodynamic Characteristics of the Slotted
Fin. Journ . Ai rcraft 9 (1972), 603.
42 Cohen , C.J., l .A. Clare, and F.L. Stevens, Analysis of the Nonlinear
Rolling Motion of Finned Missiles. AIM 12 (1974), 303.

Daniels , P., A Study of the No.~linear Rolling Motion of a Four-Finned
Missile. Journ . Spacecraft and Rockets 7 (1970), 510. •

Flechter , M., Kegelpendelung , Autorotation und Wirbelsysteme schianker
Flugkorper. Zeitschr. Flugwlssenschaften 20 (1972) , 281 .

~~~ .• •
~ 16

F



v _~ — — -‘ 
~~~~~~

,,!,,. - — - ---- 
— _________

(I • — ... —.— --• 

~~ ~~~~~~~~~~~~~~~~~~ 

. 
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~p’~

I

,

of aeroballistlc engineers Is to encourage autorotation In order to cover

a wide target area for self-dispersing bomblets. This process is
similar to the dissem ination of rotating tree seeds and f ru its.  Burgess 45

assembled a collect ion of papers on the subjec t and a few comments are’

offered here .
In 1948 Zaroodney46 observed that mortar shells can have

a high rate of spin. He postulated a new phenomenon due to the “In’.tabil ity
of spin” without relating It to known autorotation phenomena . Flatau ,47

Gebman ,45 and Bustamante and Stone45’48 obta i ned experimental data on the

autorotation of plates normal to the flow with application to bomblets.

Flatau and Gebman investigated a ‘Riabouchthsky-type ” device sketched In

Fi g. 5. Strictly speaking , however, the rotation of this device does not

fall under the~concept of autorotation as defined in Section 2.1. For

reentry studies Bustamante and Stone4ShI
4B made a series of experiments

with plates , right circular cylinders , and disks with freely movin g and

fixed axes in subsonic and hypersonic flow , it appears , although not

absolutely conclusively , that plates can autorotate in hypersonic flow.

Right circular cylinders clearly are able to do this. Bustamante and

Stone consider the vortex shed behind the retreating edge of the plate

responsible for autorotat ion .
In recent years some investigath~n’~ have beeu~ pt’rtormed

which are not directly related to the three application area’~ dt ’.cussed

so far, but which give valuable Insight into the mechat~ ’.m of autorotat lon
normal to the flow .

Burgess , F.F. (ed.), Proceedings of Conference on Dynam~c~ and Aero-
dynamics of Bomblets. Vol . 1. Tech. Rep . AFATL-T R-67-195, Oct. 1967.

46 Zaroodney , S.J., On the Mechanism of Dispersion and Short Ranges efl
Motor Fire . Ballistic Research Lab. No. 668, 1948.
47 Flatau , A. , An Investigation of the Rotational and Aerodynamic
Characteristics of High Aspect Ratio Rotors. U.S. Army E~1gewood Arsena l
CRDL TM 1-4 , 1964 .
48 Bustamante , A.C.  and G.W. Stone , The Autorotation Character istics of
Various Shapes for Subsonic and Hypersonic Flows . Journ . AIM 69-l3~, 19b’).

17



~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

The characteristics of freely falling oblate spheroids are
of interest in the study of hailstones. 49 Kry and List5° determined the
range of autorotation In which the quasi-steady technique can be applied .
List et a1 51 actually computed rates of autorotatlon by means of the quasi -

• steady approach. In the same way Soong52 used experimental data for non-
• rotating bodies from Stilley 53 to determine the fl i ght path of a discus .

During a no-spin throw (no rotation around the axIs normal to the disk) the
discus autorotates perpendicular to the flight path . Experiments with
freely falling disks have been made by Wlllma rth et al. 54

An important paper on autorotat ing plates was published by
E.H. Smith in l971.~~ In this paper he reports and analyzes results of
experiments on the hysteresis effect on which the explanation of auto-
rotating plates with fixed axes rests. He also gives for the first time

detailed data on drag, lift , and moment coefficients as a function of time .

Data on the influence of Reynolds number, moment of inertia , etc . are also
given and compared with sketches of flow patterns. E.H. Smith claims

originality of these flow patterns, but this claim is not valid since the
movies made at the Un i versity of Notre Dame a decade earlier are more

detailed and more Intormative . Despite this slig ht criticism , Smith’ s

Kry , P.R. and R. List , Angular motions of freely falling spheroidal
hailstone models. Physics of Flui ds 17 (1974), 1093.
50 Kry, P.R. and R. List , Aerodynamic torques on rotating oblate
spheroids. Physics of Fluids 17 (1974), 1087.

L i s t , R., U.W. Rentsch , A.C. Byram , and [.P. Lozowski , b urn . Atmos .
S d .  30 (1973 ) . 653 .
52 Soong , T.C. ,  The Dynamics of Discus Throw . Trans. ASME , Journ . Appl .
Mech ., Dec . 1976 , 531 .

Stilley . G.D., Aerodynamic Analysis of the Self-Sustained Flare .
AD-7401l7. Naval Ammunition Depot , Crane , m d . ,  Oct. 1972.

Wilmarth , W.W ., N.E. Hawk , A.J. Galloway , and F.W. Roos , Aerodynamics
of oscillating disks and a right-circular cyl inder . Journ . Fluid Mech.
27 (1967), 177.

Smith , E.H. , Autorotating wings: an experimental investigation . Journ .
Fluid Mech. 50 (1971), 513.
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paper is an important one, and more of its content will be referred to
later.

• 2.3 THE STATE OF THE ART $
The history of the concept and explanation of autorotation over the

last 125 years is quite colorful . The various attempts , motivations , and
• experiences related to explaining and exploiting this phenomenon have an

element of incoherence which is probably due to the different application
areas involved . This may account for the lac k of concern for prev i ous
work which one finds in the literature . For instance , Riabouchinsky ’ s
contributions seem enti rely forgotten ; Greenhill ’s paper was uncovered by

• the author56 In 1965, although his results are contained in the widely S
used reference books of Lamb1° and Milne-Thomson .57 Dupleich ’s extensive
experimental data were largely unnoticed , or were merely referenced despite
the translation of his paper i nto English in a NACA report .17 Some
researchers do not reference previous work at all as, for instance , the

• authors of [48].
Autorotation about an axis parallel to the flow (Fig. 2a and b) can

be explained and computed approximately by the quasi-steady technique .
This approach neglects dynamic effects due to rotation .

Autorotation about an axis norma l to the flow (Fig. 2c , d, e) can

also be explained and crudely computed for bodies with freely moving axes
by means of the quasi-steady method (see, e.g. [50, 52]), at least under
certain conditions. The neglect of dynamic effects is here more serious

• than in the study of autorotation about an axis parallel to the flow . In
fact, if the plate has a sufficiently large moment of inertia , the freely
falling body will behave like one with a fixed axis.

• The autorotatlon of plates about an axis fixed in a parallel constant
flow cannot be explained by a quasi-steady theory. The average torque

56 Lugt, H.J., On the autorotation of fin systems . U.S. Naval Weapons
Laboratory, Dahigren, Va., Tech. Memo. No. K-22/65, Jan. 1965.

Milne-Thomson , L.M., Theoretical Hydrodynamics, The MacMillan Co.,
N.Y., 1968, 5th ed.
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is here always ~~~~ Nor can the flow around the body be computed by

boundary layer theory (because of the complicated vortex-shedding process)

or by discrete vortex models (which are inaccurate when the vortex sheet

is close to the body).56 Experimentally , it is difficult to obtain
• information on the local drag, lift , and moment coefficients which require

knowledge of the surface pressure . In fact, it is only recently that such

measurements have been made on the spinning right circular cylinder by

Miller 58 at Edgewood Arsenal, Aberdeen Proving Ground . A fruitfu l

investigation must be based , according to Lugt56 in 1965, on the time-
dependent equations of motion , whose solutions include delayed boundary-
layer separation and vortex shedding of a rotating body . That is , the

full Navier-Stokes equations must be used . This is why previous attempts

to explain autorotation failed or gave only a partial answer.

Thus , autorotation of plates about a fixed axis normal to the flow
is still not sufficiently well understood . The objective of this paper is

• to clarify the problem and to present a detailed and quantitative explana-
tion of autorotation . This investigation is based on numerical solutions
of the Navier-Stokes equations for lamina r fluid motion .

3. MODEL FORMULAT ION AND SOLUTION TECHNIQUE

3.1 DESCRIPTION OF THE FLOW MODEL
The available information on autorotating plates norma l to the flow

clearly reveals that the mechanism of autorotation is intricate and
complex. A theoretical study should be made with a model which is simple S

enough to be handled mathematicall y yet sufficiently realistic to explain
autorotation .

The movement of a freely falling cardboard in air or of a thin
metallic plate in water indicates that the autorotation around the longer

axis is quite stable , and that the model can be simplified by assuming

58 Miller , M.C., Surface Pressure Measurements on a Spinning Wind Tunnel 
S

Model . AIAA Journ . 14 (1976), 1669.
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the laminar flow of an incompressible fluid around an infinitely long I
• 

. plate in two space dimensions. More careful experiments with endplates
confirm that three-dimensional effects are not essential for autorotation .
In fact, they interfere with autorotatlon . Since autorotation of a plate PS about a fixed axis cannot be explained by a quasi-steady theory, the
assumption of a fixed axis focusses the study on the essential features

which generate autorotation . Under this assumption the motion of the body

has one degree of freedom, that is , the body rotates only about the fixed
axis with the angular veloc i ty ~ = dct/dt’, where ~ is the angle of attack

• and t’ the time . The equation for the angular motion is then

I = T FL + TEX (1)

where I is the moment of inertia , and T FL and ~~ 
are the torques exerted

on the body by the fluid and from the outside , respectively. Autorotation

is defined by

TFL = 

~~ I TFL d~ = 0, TEX 0 (2)

In general , of course, the value of the integra l 5 TFL d~ is not zero
except for certain values of ‘~~. 0

The experiments of E.H. Smith 55 show that autorotation can occur at
Reynolds numbers as low as 100 and that the angular veloc i ty s~ of the
rotating plate can be almost constant for a sufficiently large dimension-
less moment of inertia. 7 These observations make a numerical analysis of

• the problem attractive .
• 

• The occurrence of autorotation at low Reynolds numbers permits the
construction of solutions of the Navier-Stokes equations with presently

• available computers and experience in numerical analysis. The assumption

of constant ~ overcomes another difficulty in numerical formulations and

solutions: In order to induce the plate to autorotate a certain amount of
initial rotation must be provided . If this initial impulse Is too weak ,

the plate will oscillate a few times, and the motion may then come to a

• stop or it may become autorotatlon . If the initial rotation is too
strong, the plate will rotate due to this initial impulse and may

21
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subsequently autorotate . In both cases numerical computations would
require a number of trials with excessively long computer runs to arrive
at a solution for the state of autorotation . This situation can be
avoided by assuming a constant ~I of the plate . Then , only the Reynolds
number, the Rossby number (which is the ratio of translational to
rotational velocity of the plate), and the geometric quantities occur as
flow parameters after the initial phase .

In general , the condition of autorotation (Equation (2)) will not be
satisfied for a prescribed set of fl ow parameters If c~ is a constant.
Rather , it follows from Equation (1) that TFL = - TEX~ 

If is positive ,

the plate must be driven by the external torque TEX~ 
for instance , by an

electric motor. If is negative , T EX wil l  cause braking. If T EX is

zero , autorotation exists.
Riabouchinsky 4 experimented wi th the Lanchester propeller (Fig. 2a)

and obtained a relation between the average torque TFL and ~ as indicated
in Fi g. 6. (In this figure TFL and ~ have been replaced by the average
moment coefficient CM (to be defined later) and by the ratio ~ld/2U , where

S d is the chord of the wing and U the constant speed of the parallel flow.)
• If the propeller rotates in a fluid at rest at infinity CR0 = 0), CM

is always positive . Energy must be provided to rotate the propeller .

c

:
1st

&ld/2U = 1/Ro

Figure 6 - Average Moment Coefficient ~ 
Plotted Against c~d/2U. In the

Shaded Area the Body Autorotates but Increases its Rotation Until
the Point A Is Reached. This is the Condition for Stable , (in S

• the average ) Steady-State Autorotat lon

22
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Near the other extreme , if the propeller rotates very slowly relative to

the paralle l flow (Ro -
~ 

=), the torque is also positive. In between , a

region of negative torque exists , which Riabouchinsky called “autorotative ” .

Here, TEX has a braking effect. If this effect were removed, the propel-
S ler would increase its rotation until the point A in Fig. 6. This is the

state of stable, steady autorotation)1 For thi s , Definition (2) must be
augmented by the stability criterion 

~ M’~~ 
> 0 or 

~
CM/3Ro < 0. The same

• situation , observed by Riabouchinsky for the Lanchester propeller , holds

also for the plate rotating about a fixed axis norma l to the flow . Thus ,

the phenomenon of autorotation can be studied by examining the flow

behavior for various values of Ro.
For numerical reasons, as given by Lugt and Ohring ,59 it is convenient

I to approximate the plate by a thin elliptic cylinder in a coordinate

system (n,6) which is related to the Cartesian coordinates (x,y) through

x + iy = a cosh(~~+ io), a > 0 (3)

where a is the focal distance. n is the elliptic body contour. Its

I va l ue is also a measure of the relative thickness of the “plate ” . Again
for numerical reasons , = 0.1 was chosen (except for one case with

= 0.6) instead of “1 = 0, which is the infinitely thin plate .60

However , it may be mentioned that the difference in the results between

= 0 and 
~ 

= 0.1 is insignificant.

• If the reference frame is fixed to the body , the initial/boundary
value problem for the Navier-Stokes equations expressed in terms of the

• vorticity ~ and the stream function ~ is

+ 1-. ~~~~ = 4
~ h~ ~

(n, e) Re U)

• v 2~p = w (5)

Lugt , H.J. and S. Ohring , Rotating elliptic cylinders in a viscous fluid
at rest or In a parallel stream . Journ . Fluid Mech. 79 (1977), 127.

- 

60 Lugt , H.J and H.J. Haussling , Laminar flow past an abruptly accelerated
elliptic cylinder at 450 incidence . Journ . Fluid Mech. 65 (1974), 711.

~ 
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where the fl ow quantities are made dimensionless by the constant veloc ity
U and the foca l distance a. Reynolds and Rossby numbers are defined by
Re = 2a1J/v, Ro = U/an. It is practical also to introduce Red = dU/v , 

p

Rod,2 2U/dc~ with d = 2a cosh as the chord of the plate . The parameter

h is h2 = cosh2 
n - cos 2 o.

The boundary conditions are (Fig. 7):

6=const

I~~~~
Th

~~~~
Figure 7 - Elliptic Coordinate System and Definition

of Angle of Attack

= 0, ~4e/~ r~ = 0 at ~ = (6)

h~~~/~e = cos(e-t/Ro)
1 1 ~ at n == ~ (7)

h ag,/a~ =sin (e—t/Ro)+ (hRo) cosh~~sinh n~
wi th c*(t) t/Ro the angle of attack.

The abrupt start of the body from rest is chosen as the initial
condition . A comparison wi th other acceleration models is given by
Lugt and Haussllng. 61 In this paper , the initial condition consists of
the potential-flow solution and a vorticity sheet at the body surface

S enforcing the nonslip condition .59 Part of the initial condition is the
initial angle of attack ~ = a,~. In all examples u,.~ is chosen to be 00

61 Lugt, H.J. and H.J. Haussling, The Acceleration of Thin Cyl i ndrical
Bodies in a Viscous Fluid. Journ . Appl . Mech. 45 (1978), 1. •
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since for this angle the transient period is short compared to that for
59

cz = ir /2.
The drag , lift , and moment coefficients are defined by

CD = rag/b-p U

CL = lift/~ p U2 ~ (8)

CM = torque4-p u2(~.)
2

The torque here is the torque caused by the fluid , that is TFL.
Each of the coefficients in Equation (8) consists of two parts .

The drag coefficient is the sum of the drag due to pressure and the drag

due to friction
CD CDP + C DF (9)

wi th

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (10)

CD F r [COs tt J w1 sin ede + tanh sin 
~ ~l cos ode] (11)

e o
The lift and moment coefficients may be expressed in a corresponding

way.6° In this notation , negati ve va l ues of CD~ CL~ and CM deno te ,
respectively, drag, lift in the direction of the Magnus force, and torque

supporting the body rotation.

3.2 OUTLINE OF THE NUMERICAL ANALYSIS
The initial/boundary-value problem defined in the previous section

is solved by the same finite-difference scheme used in an earlier paper.59

It is , therefore, not necessary to repeat the procedure here, but it may

be mentioned that the vorticity equation (4) is discretized with the

DuFort-Frankel scheme, and that the Poisson equation (5) is solved with

Hockney’s direct method. Furthermore, the following transformation is

made for numerical reasons :59
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= + 2/Ro(cos h2 r~ - sin2 o ) (12)

= ~ + 2/Ro (13)

Thi s transformation avo ids large values of ~ at the outer boundary but
leaves the grid fixed to the body .

The grid has been chosen in such a way that the infinite region of

integration is replaced by a finite network of points n1+ (I-l)~n,
with I = l ,...,97 and j = l ,...,96; ~ = 0.04. The time

inc rements , except in the brief initial phase where they are very small ,

are
Ro 2

_ 1
~~

2 , 4 , ~ = 0.1 t~t = O . O O 2 51

Rod,2 = 6 ~t = 0.003

Rod,2 = 2, n1 = 0.6 ~t = 0.005

Since M = ~t/Ro, more computer time is required to calculate one plate
revolution at higher Rossby number. The computer time required on the

IBM 360-91 for each time step is 0.7 sec. One cycle, equal to half a plate

revo lution, requires then 1250 time steps times 0.7 times Ro, which is

87O~Ro sec or l4.5•Ro m m .
The accuracy of the numerical scheme was previously checked for the

nonrotating plate6° by comparing results with varying grids , wi th
experimental results by Honji ,60 and with a different numerical scheme by
Mehta of Stanford Univers i ty (private communication ) and by Collins and
Dennis. 61 The general rotating plate program was checked for the special
case of the rotating circular cylinder. 59 For Ro = 4 and 6 a new numerical
phenomenon has been observed , the reason for which is not yet known . The
curves for the force and moment coefficients show oscillations from time
step to time step which may cease for a while and then resume (Figure 8).

I
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The following cases have been computed .

TABLE 1 - LIST OF COMPUTED CASES

[S
. 

Rod,2 Ro Red Re n~ ~o Range

‘1 1 ~2OO 200 0.1 00 00 - 5.5i~
2 ~.4OO 400 0.1 00 00 - 4~
4 ~2OO 200 0.1 Q0 00 - 2.2i~
6 ‘~.2OO 200 0.1 00 00 - 1.5~

2 2.37 200 169 0.6 00 00 - 6n

From previous ca l cula tions59’60’62’63 the results for Ro = 0.5 , 2 ,
Re 200, = 0.1 are known . Also data are available for the limiting

cases Ro = 0 and Ro = ~ , a = 45°. The results are presented in the form

of flow patterns for streaml ines and equi-vorticity lines with ~*_values

of -3.0, -2.8,... ,O,...,2.8, 3.0 and with w*_values of -11.0 , -9.0,...,

9.0, 11.0. In addition , the force and moment coefficients , the surface

pressure, and the local contributions to the torque are given .
Since there exists no preferred reference frame in which to present

the streaml i nes,59 the selection of such a frame depends on how useful it
is for discussions of the flow patterns. Two different reference frames
have been chosen : (1) a frame fixed to the center of the body , but
rotating in relation to the plate , and (2) a frame fixed to the body .

62 Lugt , H.J. and S. Ohring , Efficiency of numerical methods in solving
the time-dependent two-dimensional Navier-Stokes equations. Proc. m t .

• Conf. Numerical Methods in Fluid Dyn., Southampton , p. 65. New York :
Cra ne, Russak & Co.
63 Lugt, H.J. and S. Ohring, Rotating thin elliptic cylinder in a parallel
viscous fluid flow. Proc. 4th m t .  Conf. Numerical Methods in Fluid Dyn.,
Boulder. Lecture Notes in Phys. vol . 35 , p. 257 .
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4. RESULTS AND DISCUSSIONS

• 4.1 LOW REYNOLDS-NUMBER FLOW

As stated in Section 3.1 it is assumed that the plate rotates with

constant angular velocity ci about a fixed axis norma l to a uniform

• parallel stream. For this situation potential-flow theory (discrete

vortices are not considered ) and quasi-steady viscous flow models predict

a vanishing average torque for all Ro: CM(Ro) 0. This means that , once

the plate starts rotating, it does not need a driving torque TEX ; it

always autorotates. In potential-f low theory the average torque is even

zero for periodic motions but arbitrary ci(t). Here , “periodic ” means

CM(0) = CM( SlTn) with n = 1 ,2,3... Circulation does not contribute to the
torque. Obviously, such mathematical models are unrealistic.

However , the variation of the torque with -sin 2cz predicted in those
theories is remarkably accurate . Except for a slight phase shift this
relation is also found in experimenta l results of autorotation 55 and in
numerical results based on the Navier-Stokes equations (Figures 9 through
13). The fixed (nonrotating plate) always tends to position itself
normal to the parallel fl ow. Rotating plates behave in most cases in the
same way. Except for the small phase shift the torque supports rotation

when ~ changes from 
00 to iT!2 (supporting period), but it counteracts

rotation from iT/2 to i~ (retarding period).
The transient phase after the abrupt start is short, especially for

a0 = ~~~~ For the cases considered in this paper , the transient time
interval is approximately t = it with t0 0, c~~~° In some cases

(Figures 9 and 13) the average C0- and CL
_values increase and decrease ,

respectively, over the whole time span computed . This effect is probably

due to the development of the wake and would vanish after a certain time

• This conclusion is based on experience wi th flows past circular

cylinders .64 The CM_curves do not show this “transient” effect.

64 Dawson , C.W. and M. Marcus, DMC - A Computer Code to Simulate Viscous• Flow About Arbitrarily Shaped Bodies. Proc . 1970 Heat Transfer and Fluid
• Mechanics Institute , Stanford University Press, 1970.
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Figure 13 - C0, CL~ 
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= 0.6, a0 = 0 Degrees
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The ampl itudes of the curves in Figures 9 through 13 may a lso change S

when the frequency of vortex shedding is different from the rate of body

rotation . In order to further discuss the change in frequency the following

• notations are introduced . The frequency of vortex shedding behind a

nonrotating body is called the “natural ” frequency 
~N’ 

whereas the

frequency of vortex shedding fràm a rotating body is designated by f. The

• frequency f~ of the rotating plate is ~~~~~~~~~ 
Behind a flat plate a vor tex

at each tip may be washed downstream every half revolution . Then , vortex
shedding and plate rotation are synchronous if

= i~f or f~ = f/2 (14)

S If one introduces the dimensonless form of the frequency f, the Strouhal 
5

number St = fd!U, Equation (14) can be written in the dimensionless form

I Rod,? = 2/it St (15)

For the fixed plate with Re = 200, ri 1 
= 0.1, and ci = 450 , StN fd sin a/U

S Is, according to Lugt and Haussl ing,60 about 0.18. Thus , for the
synchronous s ituation one ex pects Rod,2 s~ 3.6, prov ided f = 

~~ 
which need

S 
not be the case.

• In fact, condition (15) is usually not fulfilled . Two kinds of

I deviations may be distinguished : (1) c/f % un with n = 2,3,..., and

(2) c/f = it + Sci, where ISci j~~ it. The magnitude of ‘Sci can be determined

from Figures 9 through 13, whereas the integer n is best obtained from

patterns of equi-vorticity lines.
By including previous results59 the following data (which exclude the

initial phase) are given in Table 2. According to this list only the

cases Rod,? = 2 and 4 , Red = 200, = 0.1 have synchronized frequencies.
S 

(The value for Rod,? = 2, Red = 200, 
~1 

0.1 has been taken from
l onger computer runs.) A comparison with the predicted synchronous 

S

value Rod,2 ~ 3.6 for f = reveals that synchronization occurs at 
~N

and values of f above.
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TABLE 2 - DATA FOR THE FREQUENCIES OF VORTEX SHEDDING

Rod,2 Red ill fl ‘Sa

0.5 200 0.1 3
1 200 0.1 2
2 200 0.1 1
4 200 0.1 1

6 200 0.1 -6° 45’

2 400 0.1 -3°
2 200 0.6 _40

The average va lue of C0 is defined by
S 

— 1 2ir(n+l)
C0 = 

~~~
— f C0 dci , n = 0,1 ,... (16)

2irn

S with corresponding definitions for C1 and ~~ 
Negative values for these

coefficients indicate real drag, lift in the direct ion of the Magnus force ,
and torque supporting rotation , respectively. It is also useful to
distinguish between the retarding and supporting periods for CM:

CMR 2n (n+l )_ CM 
> 0

— 
= f CM dci for only (17)

CMS 2nn CM < O  
S

The data are given in Table 3. According to this table and Fig. 6

autorotation and rotation with braking RN < 0) occur in the range

2 < Rod,2 ~ 6, Red = 200, = 0.1. The minimum of is at Rod,2 = ~,
Red = 200.

In FIg. 14 a representative cycle of CM (half revolution ) for RD = 1 ,

2, 4, 6, Re = 200, ri 1 
= 0.1 is plotted . As can be seen immediately the

retarding period is crucial for explainin g autorotation .
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TABLE 3 - MOMENT COEFFI C IENTS

Rod,? ~ d ~l ~MR ~MS ~M 
Range

1 200 0.1 0.810 -0.481 +0.329 3u - 5u

2 200 0.1 0.443 -0.405 +0.038 3.Sit - 4.5n

4 200 0.1 0.296 -0.383 -0.087 ii - 2it
6 200 0.1 0.300 -0.319 -0.019 n/2 - 3n/2
2 400 0.1 0.453 -0.447 +0.006 2it - 4iu

2 200 0.6 0.435 -0.257 +0.178 4u - 5ui

It may be noted that the magn i tudes of the frictional parts of the
total forces (that is , CDF. CLFI and CMF) are an order of magnitude

S smaller than C0, CL, and CM~ 
even for a thick body with = 0.6. The

following discussions are , therefore, based mainly on the pressure and
the coefficient CMP.

Two questions arise in the explanation of autorotation : (1) Where
5 does the additional torque which permits autorotation come from?

(2) Why is autorotation observed only in a certain Rossby-number range
(assuming the other flow parameters to be constant)? S

The second question will be discussed first since it is easier to
answer. As already pointed out in Ref. 59 two types of vortex shedding
can be distinguished , depending on whether the vortex at the retreating
edge is in front of or behind the edge as seen from the direction of
parallel flow. Figures 15 through 21. For Ro ~ 1 , Re = 200 the relative
rate of rotation is so fast that vortices shed from the edges of the plate
do not have time to leave the vicinity of the plate and they therefore
i nterfere with the following other edge . Hence , the vortices are
trapped for a while and f is smaller than c/u (Table 2). The plate

requires an outside driving torque TEX to rotate. For larger Ro,

probably Ro ~ 6, the rotation relative to translation is so slow that now
the frequency of vortex shedding f is l arger than ci/ut . Although 

~M 
is 

S

still negative for Ro = 6, the fact that its absolute value is smaller

than that for Ro = 4 indicates the trend toward positive va lues . The

38
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a / b ~~~~~~~~

Figure 15 - Sketch of Vortex Shedding About a Rotating Plate , a) Initial
Phase for Pure Rotation (Ro=0), b) Initial Phase for Small Rossby S

number (Ro<1), c) Vortex Pattern for 1 ~ Ro ~ 2, Re = 200 at
a Later Stage, d) Vortex Pattern for Maximum Support of
Autorotation , Ro 4, Re = 200, e) Vortex Pattern for

R o > 6 , Re= 200

region 2 < Ro ~ 6 or 0.167 ~ lJRo < 0.5, Re = 200, = 0.1 corresponds
roughly with the shaded area in Fig. 6 (see ~dso Fig. 22). Since a freely S

rotating plate with CM 
< 0 increases its angular veloc i ty, autorotation

occurs a little above Ro = 2 for Re = 200, = 0.1. The motion is

synchronous.
What mechanism provides excess torque in the shaded region of

Figures 6 and 22 and damping in the other regions?
Supporting Period
In potential flow the moment coefficient is CM = - ~ sin 2ci for a fixed

H plate , or for a rotating plate with constant ci. The minimum value in the

supporting period from ~ = 0° to it is CM ~ -iT for = 0.1 at ~
- = 45°.

S This torque is generated through the asymmetric displacement of the
S stagnation points if the plate is neither parallel nor normal to the flow .

In viscous fluid flows the torque is reduced considerably since the

• center of pressure in the rear of the body is generally much closer to the
body center than it is in potential flow . Viscosity modifies the flow

characteristics in the fol lowing way:
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a 3w + 5/Sw

Figure l6a - Sequence of Streamlines and Equi-vort icity Lines Around
a Rotating Thin Elliptic Cylinder (“plate ”) in a Parallel Flow

• for Ro = 1 , Re = 200, n1 = 0.1, a
~ 

= 0 Degrees . The . 
S

S Streaml ines are Computed in a Frame Which is Fixed
to the Body Wi th Regard to Translation but Which

is Fixed in Space with Regard to Rotation S
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Fi gure l6b - Same Situation as in Figure 16a but Streaml i nes are
Computed in a Frame Fixed to the Body
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Figure l8a - Same Situation as in Figure l6a but for Ro 4
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Computed in a Frame Fixed to the Body

50

—55- — -
55 55 5 5 —-  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 

~~~~ :~~TL ..~
-
~~~~

---- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—
55

—

_ _ _  a 2 n

a 2 n + 1/S n

~~~~~~- -~~‘ 
~~~~~~~~~ a— 2n+ 2/5n

• ‘

~~ I 
— - a 2n+3/S n

I 
_

S

_

5 

a 2n+4/Sn

~~~ ~~~~~~~~ 

a 2n+ 6/S n S

_ _ _

_  

a 3 n
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Fi gure 22 - CMR. EMS’ and CM versus Ro for Re 200, 111 
= 0.1.

In the Shaded Area the Body Autorotates but Increases its
S Rotation Until the Point A is Reached . This is the

Condition for Stable, Steady-State Autorotation

Rotation enhances ICM I when compared with the nonrotating case (Fig. 14).

Behind a fixed plate CM oscillates according to the frequency ~N 
of the

I K~rm~n-vortex street between 0.38 ~ C ~ 0.95 for Re = 200, ~ = 0.1 ,

a = 45°. Howeve r, in the case of the rotating plate Ro = 2, Re = 200,
= 0.1 , c* = 45° : CM = -1,5. The difference may be explained with the

5 

aid of Figures 17 through 20 and Figures 23 and 24. Behind the leading
(retreating) edge a vorticity tongue is visible which owes its existence
to the boundary layer in front of the edge . Its strength and location S

determine the local torque contribution . The faster the rotation , the S

more closely the tongue clings to the rear of the edge since the vorticity
has not enough time to be convected downstream. This clinging causes a
higher suction effect behind the edge (see curves of the surface pressure

in Fig. 23b and c). This may also be explained In the following way: with

faster rotation vortex separation (stall), which is defi ned by the first
occurrence of a vorticity extremum inside the fluid , is delayed . This

S 

hysteresis effect is due to the acceleration of fluid with growing a causing

a reduction of the adverse pressure gradient. For instance , for Ro = 2,
Re 200, the vortex at the leading edge separates between 60° and 75°
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(Fig. 17). The local torque distribution in Fig. 24b and c shows that 
I

in the region between 135° ~ e ~ 180° support for the driving torque

increases with diminishing Ro.
It may be mentioned that due to differences in the absolute values

of the pressure from one cycle to the next the curves in Figures 23, 26

and especially in Figures 24, 27 are only approximate values . However,
5 

the Information contained in the curves, is sufficient to draw physical

conclus ions. 
S
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Around the trailin g (advancing) edge differences in the local torque
due to the various shapes of the vorticity tongue are negli gible except
for Ro ~ 1 . Here , the vortices from the preceding cycle cause a shift in
the stagnation points (Fig. 23b and c) in such a way that the shift has an
adverse effect on the local torque. To a certain extent this effect
counteracts for Ro = 1 the advantage described before. As a result , CMS
decreases only slightly with smaller Ro (Fig. 22). The main contributor S

to this comes from the vortex behind the retreating (leading) edge. 
S

Retarding Period
The major differences among the various Ro-cases occur in the

retardi ng period . It is here, where viscous effects decide the balance
between CMS and ~MR 

and , thus , can cause the situation > that is ,
S 

autorotation . Again , the flow behavior around the retreating edge (which
is now the trailing edge) becomes crucial . S

From potential-flow theory it is known (and this is valid for viscous
flows also) that the front stagnation point migrates during the supporting
period over most of the front side of the plate (Fig. 25a). In contrast ,

in the retarding period , the front stagnation point remains close to the
leading edge (Fig. 25b). This has the following consequence : for Ro = 1
the surface pressure drops sharply over the prolonged boundary layer in
front of the plate from the stagnation point toward the center where the
lowest pressure due to rotation occurs. A relative maximum exists near
the trailing edge at e ~ 12° (Fig. 23e and f). This maximum is due to

a
”

~~~iK 
(I 

_ _

b /

Figure 25 - The Location of the Front Stagnation Point in the S

Supporti ng Period (a) and in the Retarding Period (b)
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the existence of another stagnation point which has formed because of the
presence of ~ newly generated vorticity tongue while the older vortex has
not yet been convected sufficiently far away (Fig. l5c). The sharp
pressure drop causes a large adverse torque as can be seen from Fig. 24e

S and f. With increasing Ro the absolute value of p1 r i ses , and the pressure
drop diminishes . The rear stagnation point near the trailing edge as well
as the stagnation point in front of the trailing edge migrate toward chit
edge, diminishing the asyuinet~y of the vorticity tongue . This causes the
surface pressure to level off at Ro ~ 4, resulting in CMS > ~MR~ 

This

peculiar situation does not occur in the supporting period , where a lways
an asyninetrlc vorticity tongue appears and where due to the behavior of the

front stagnation point (Fig. 25a) the surface pressure in front of the
plate is high and quite evenly distri buted (Fig. 23b). For Ro=6 a vorti-
city tongue of opposite sign develops at the rear edge due to the slowness
of the rotation (Fig. 15e). The older vortex has already left the vicinit y
of the plate . The surface pressure drops (Fig. 23f) causing an adverse
local torque. The change in the direction of the vorticity tongue at the
rear edge in the retarding period can again be explained by the hysteresis 

5

effect: wi th decreasing a the fluid is decelerated , caus ing an adverse
pressure gradient. This effect is high for small Ro, the separation point
is on the front side of the plate . For high Ro , the flow behaves like that
past a fixed plate , that is , the flow separates behind the edge . Between S

the two cases the situation of autorotation occurs where the flow separates

• at the rear edge like a flow past the trailing edge of a flat plate
S parallel to a constant stream.

In sumary, a minimu m of CMR occurs at Ro=4 which is smaller than
(Fig. 22). The synchronization of vortex shedding and rate of rotation

minimizes the adverse effect of the vorticity produced in front of the S

rear edge. The condition for this is that the amount of vorticity shed
from both sides of the rear edge is the same , although with opposite signs
(Fig. lsd).

Around the leadi ng (advanc ing) edge early separa tlono f a vortex weakens
the influence on the torque due to vorticity spreading from the edge to
the extent that it Is favorable for autorotatlon . This effect can be

seen when the vorticity field in the initia l phase is compared wi th that S

70

--S S



S 

p

at a later time (Fig. h a), a = ~- + and ,i + ~ - . In the first case

4 the vortex is much stronger than at the later time . The strong vortex

has a larger adverse effect on the torque . This adverse effect is

smallest for Ro = 4 (Fig. 24e and f).
Although the occurrence of a minimum in CMR is a necessary condition

for autorotation , it is not sufficient. It is well known that plates

with sharp edges autorotate better than those with blunt edges4’47 and
that blunt bodies do not necessarily autorotate . In order to study this

effect , flows around a thick elliptical cylinder were investigated .
In the limit -~ the ell iptic cyl i nder becomes a circular one. The

distinction between retarding and supporting periods disappears , and the

S 
torque is always positive , at least for the Oseen-type flow59 and the
special cases studied by Thoman and Szewczyk.65 The fat ellipse 

~ 
= 0.6

has been selected as a typical example of conditions between the extremes
= 0 and = ~. From simple geometrical considerations one expects

that tip effects are no longer pronounced and that the larger surface area
S 

(when d is kept constant) has an adverse effect on autorotation .
S Dynamically, one expects for = 0.6 less concentration of vorticity

around the blunt tips and larger frictional effects.
Table 3 shows that indeed the average moment coefficient CM is

positive for n.~ 
= 0.6, and that this body does not autorotate. However ,

Table 3 also indicates that the difference between CMR and is not as
4ramatic as one might expect. This means that the curvature effects
(when comparing the resul ts for r~, = 0.1 and = 0.6) are rather subtle ,

and this is confirmed in Figures 26 and 27. It appears that for a = 60°
(Fig. 27) the vortex behind the retreating tip of the body is weaker,

and that this is the major cause for the small value 0~ ~~
. The fact

S that the thick ellipse does not autorotate for Ro = 2, Re = 200, does not
S mean that it cannot autorotate at all. It is still possible that it could

autorotate for higher Ro and for c1 ~ constant. The autorotation of blunt

65 Thoman , D.C. and A.A. Szewczyk , Numerical solutions of time dependent
two dimensional flow of a viscous , i ncompress ib le ~1uid over stationary
and rotating cylinders . Univ. Notre Dame, Dept. Mech. Engineering, Tech.
Rep. 66-14 , 1966 .
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bodies like hailstones suggest this. Recently, Taneda66 published

photographs of streamlines and streaklines of elliptic cylinders with

I = 0.55 rotating with constant s~ in a parallel flow . These experiments
were carr ied ou t for Red = 41 , Rod,2 = 5.9; Red = 129, Rod,2 = 2; and

S Red = 140, Rod,2 = 20. It appears that synchron i zation occurs even for

the large Rossby number of 20. This is in contrast to the results obtained

for = 0.1 , where synchronization is restricted to 2 ~ Ro ~ 4 for Re= 200.
The case Ro = 2, Re = 400 has been chosen to study the effect of

Reynolds number on autorotation . Although the computation of the cases
Re= 200 and 400 has yielded no essential differences , a slight phase shift
is observed in Table 2. This indicates that a slight asynchronization
occurs when Re increases. This idea will be further pursued in Section 4.2.

It has been assumed that c~ = constant which implies an infinite
moment of iner ti a. Exper iments55 have shown that this is a good assump-
tion over a wide range of values for the moment of inertia. However, for

small moment of inertia the angular veloc i ty c~ of the plate would decrease
during the retarding period , and the generation of surface vorticity would
be reduced . Under these condition s the plate would either keep rotating
at a smaller average ~ or it would oscillate .

It may be mentioned that autorotation can be considered analogous to
S 

the oscillation of a body in a parallel stream . The highest excitation S

normal to the flow occurs when the natura l frequency of vortex shedding is

equal to the frequency of the oscillating body. A few of the numerous

literature67’68’69 on oscillating circular cyl i nders are cited . But the
analogy between rotating and oscillating bodies goes even further. If the
frequency of the oscillating body is not equal , but is close to the

66 Taneda , S., Visual Study of Unsteady Separated Flows Around Bodies .
Prog. Aerospace S d .  17 (1977) , 287 .
67 Koopmann , G.H., The vortex wakes of vibrating cylinders at low
Reynolds numbers. Journ . Fluid Mech. 28 (1967), 501
68 GriffIn , 0.M., The Unsteady Wake of an Oscillating Cylinder at Low
Reynolds Number. Trans. ASME , Journ . Appi . Mech., Dec. 1971 , 729.
69 Griffin , 0.M. and S.E. Ramberg , The vortex-street wakes of vibrating
cyl i nders. Journ. Fluid Mech. 66 (1974), 553.
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natural frequency of vortex shedding , the natural frequency will adjust
to the oscillating frequency . This phenomenon is called “lock-in ” . In
the case of the rotating plate lock-in occurs in the region 2 ~ Ro ~ 4
for Re = 200, = 0.1. Deviation from this condition causes aerodynamic
damping. This effect has been clearly demonstrated at least for Ro ~ 1.

Conc l us ion
Autorotation of plates normal to a parallel flow occurs under the

S fol lowing conditions :
(1) A necessary but not sufficient condition for autorotation is the

S synchronization of vortex shedding and rate of rotation . A lock-in effect
is observed over a certain Ro-range , in which the frequency of vortex
shedding adjusts to the rate of rotation . This Ro-range roughly coincides
with the shaded area in Fig. 22.
(2) Under condition (1) the difference in the average surface pressure
between front and rear side of the plate has a minimum during the
retarding period . This corresponds to the condition that the amount of
vorticity shed from both sides at the rear edge is about the same (with
opposite signs , of course) . 

~MR 
reaches a minimum at Ro ~ 4 which is

S smaller than CMS. In the supporting period the presence of the vortex
at the retreating edge also favors autorotation although not as strongly
as in the retarding period . Thus , the characteristics of the vortex at
the retreating edge over the entire cycle of rotation is essential for
autorotation.

5 

- (3) Sufficient surface vorticity around the edges must be produced to
meet condition (2). A sharp edge is most favorable for autorotation . The

S 

fat elliptical cyl i nder n1 = 0.6 does not autorotate for Ro=2 , Re= 200
(c~ = constant).
(4) The dimensionless moment of inertia must be sufficiently large.
(5) Autorotation requires the fulfillment of all conditions (1) through
(4). The exact rate of autorotation is determined by an intricate inter-
play of (1) through (4). For Re = 200, = 0.1 , ~ = constant , stable
autorotation occurs at Ro % 2.

85
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4.2 EXTRAPOLATION TO HIGH REYNOLDS-NUMBER FLOW

Except for some instances in biofluid-dynamics , autorotation of
technical interest occurs in the high Reynolds-number range. With

presently available computers and numerical techniques it is very expensive

in computer time to obtain solutions of the Navier-Stokes equations for
the problem of autorotation beyond Re = 1000, let alone problems which

involve turbulent motions. Experiments have shown that autorotatipn occurs

up to Re = 5 • 10~ and probably higher. Is the explanation for autorota-

tion at these high Reynolds numbers different from that for the low values

given in Section 4.1? This question wil l be answered by analyzing

available experimental data and a smoke tunnel movie from the University

of Notre Dame.
In flows at higher Reynolds number convection of vorticity dominates

over diffusion of vorticity. The boundary layers become thinner , producing

more vorticity and causing stronger vortices at the retreating edge.

Shear layers behind the advancing edge become thinner and eventually

become unstable and turbulent. (See Figure 28.)

R.~~~2OO Re~~~1OOO Re~~~1O5

low Re intermediate Re high Re

Figure 28 - Sketch of Flow Patterns Around an Autorotating
Plate for Var ious Reynolds Numbers

The conditions for the occurrence of autorotation summarized on page

85 also hold for high Reynolds-number flow:

(1) SynchronizatIon has been observed in all experiments.

(2) The hysteresis effect can be observed in the smoke tunnel movie in

which the delay of vortex separation behind the retreating edge in the

supporting period Is clearly visible.
(3) The Influence on autorotation of surface vorticity around the edges

1 1
86

L



______________ —---~~~
.--.—

~~-,- 
.p

~~- ~~~~~~~~~~~~~~~~~ - —- 
p-.’ ~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.

is demonstrated in Rlabouchinsky ’s experiments from 1909, Figure 29.

Al though no Reynolds number is given by Riabouchinsky , the value i s not in
the low Re range. Similar results wi th the shape of Figure 5 were obtained p
by Flatau .47 The Rossby number is about 1.2 for Re ~ 3~l0~ (Ro = 0.7 for

bodies wi th endplates).

cZR/U - 0.627 0.522 0.429
Ro = 1.60 1.92 2.33

Figure 29 - The Influence of The Edge on Autorotation According
to Riabouchi nsky4

(4) The dimensionless moment of Inertia must be sufficiently large at

high Reynolds numbers also.4’55

(5) The Interplay of conditions (1) through (4) is also obvious.

It remains now to compare computer output for low Reynolds numbers
with available experimental data at intermediate and high Reynolds numbers .

In order to avoid three-dimensional effects on the data during the

experiments, in this section only data for aspect ratios larger than 5

are used)7’~
2’55 In addition , the compari son is restricted to thin

plates and to almost constant rotation so that the Rossby number is a
function of the Reynolds number only.

Al though potential-flow theory (without considering discontinuity
sheets) cannot predict a restricted Ro-range for autorotation , a

theoretical limit can be given at which the two stagnation points on the

pla te migrate Into the fluid. This happens at Ro — 0.5. Below thi s
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value , closed streaml i nes around the body occur. Rlabouchinsky4 noti ced
that Ro ~ 1 for autorotation. More detailed data were given by Dupleich,17

• Crabtree,22 Bustamante and Stone,48 and E.H. Smith.55 For the Intermed iate
Re range (Re ~ 2000) Dupleich measured Ro ~ 1.3 , Bustamante and Stone
Ro ~ 1 for high Reynolds numbers . E.H. Smith found , for various airfoils
(flat plate , thin elliptic cylinder , wedge airfoil) autorotating around a

fixed axis , an almos t li near dependence of Ro on Re w ith

< Re < 3l 0~
2.4>Ro > 1.0

However , a peak was observed by Smith around Re 10~ attributed to
turbulence effects. For plates rotating around a free axis the Rossby
number was l ower. Crabtree cites data for thin plates with biconvex

circular-arc sections and found , depending on whether endplates have been

used or not, Ro ~ 1.2 with endplates , Ro ~ 2 without for Re ~ l0~. It is
also worth noting that thick bodies with biconvex circular-arc sections

have higher Ro, despite the fact that the edges are sharp . This observa-

tion is in agreement with the argument that a larger surface area causes

more friction , and that the difference in surface pressure distribution

between the front and rear sides of the plate decreases.

The ex per imental resu lts on Ro = f(Re ) are sun~arized in the statement

that with increasing Re the Rossby number decreases , and that Ro is smaller

for plates autorotating around a freely moving axis than for those with a

fixed axis.
Force coeffic ients over one revolu ti on we re measured by Smith .55

Figure 30 shows a comparison of the computed value for Re = 200 with

experimental data for Re = 90000. The qualitative agreement is sur-
prisingly good. Quantitatively, one expects from Smith ’s resul ts sma ll er
values of CD and CL for Re = 200. The reason for the discrepancy is not

clear. It may be mentioned , however , and this is valid for afl experi-

mental data , that the influence of the ball bearings on the measurements

is difficult to avoid. The closeness of data for laminar and turbulent

flows may be explained by recent studies on organized structures in

I
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Figure 30 - Drag and Lift Coefficient for One Cycle (half a revolution).
Comparison of Numerical Results wi th Experimental Data for Autoro-

tating Plates. Remember that Negative Drag is Real Drag and
• Negative Lift Is Magnus Lift in the Notation of this Paper
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turbulent motions with significant lifetimes.70 The large vortex behind

the retreating edge of the plate (Fig. 28) is the c.ominant feature of the

flow in both the laminar and turbulent case, and the fine-scale turbulent

structure has probably a smaller influence on the flow characteristics.

Plates and cylinders of elliptic cross-section are not the only bodies

capable of autorotation . Riabouchlnsky7 made experiments with systems of

three and four synhiletrically arranged plates which later became important

for flows past bodies with cruciform fins. Other results on cruciform

fins wi th and without bodies , on right cyl inders , and on rectangular
prisms are recorded in Refs. 17 , 38, and 45. Figure 31 shows a sketch

of streakl ine patterns for an autorotating cruciform fin system.

~ I

Figure 31 - Sketch of Streaml ines56 Around an Autorotating Fin
System at Re l0~

The followi ng approximate data of measured Rossby numbers are given

in the literature : For cruciform fins with endplates and a fixed axis at

Re ~ 5~lO~ the Rossby number is about 2.2 according to Greene.
38 The

same Rossby number was observed by Dupleich 17 for cruciform fins in free

fall at Re % 1000. For a triangula r arrangement of plates the Rossby

number was about 1.4 for Re % 1000. It appears from these results that

the number of plates (at least up tc~ 4) has no effect or only a slight

infl uence on the Rossby number.

70 Roshko, A., Structure of Turbulent Shear Flows : A New Look AIAA
Journal 14 (1976), 1349.
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4.3 COI~IENTS ON 3D-FLOW
The discussions in the prev ious pages were restricted to two-d imen-

s ional flows , that is , the span of the plate or elliptic cyl inder was con- P
sidered to be infinitely long . This is not the case in reality , and the
influence of a finite span on the flow characteristics must be evaluated.
In additi on, the axis of rotation need not be perpendicular to the flow , a
situation which makes the problem extremely complicated . At present , three-
dimensional flows of such complexity can be studied only experimentally.
To begin wi th, the axis of rotation is considered to be normal to the flow .

A measure for the finiteness of the span is the aspect ratio: span to

• chord . All experiments agree that the rate of autorotation and the lift-
to-drag ratio diminish with decreasing aspect ratio. Quantitative data
were given by Bustamante and Stone48 who summarized them in the formula

1/Ro = 1 - e °~
2
~~ (18)

where AR i s the as pec t ratio. Endpl ates preserve, to a certain extent ,
the two-dimensionalit y . Thus, when a high rate of autorotation is desired
or when three-dimensional effects in wind tunnels are to be reduced ,
endplates are advantageous.22’38’47

To aid in understanding the influence of a finite span on autoro-
• tation , the flow field may be idealized as a potential flow with vortex

l ines or tubes (for curved vortex fields). Clearly , in two-dimensional
flows all vortex lines are stra ight, infinitely l ong , and perpendicular
to the plane. A body with finite span, however , will be surrounded by a
flow in which the vortex lines are either closed or must end on the body .
They are bent at the ends of the wing , thus giving rise to a secondary
flow. This flow interferes with the primary (two-dimensional) flow by
weakening It in two ways: decreasing the strength of the primary flow,
and speeding up the process of instabi lity since curved vortex tubes are
highly unstable in general.71

71 Taneda , S., Studies on Wake Vortices (I), An Exper imental Study on the
Structure of the Vortex Street Behind a Circular Cylinder of Finite
Length. Reports of Research Institute for Appl ied Mechanics , Vol . I,
No. 4, Dec. 1952.

I
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I
The l ocation and arrangement of the vortex tubes can only be con-

jectured without photographic evidence. The followi ng discussion may be

guided by simpler , confirmed cases. Taneda71 presented the following

model. For a K~rm~n-vortex Street behind a fixed circular cylinder of
finite length , based on the evaluation of photographs :

Figure 32 - Taneda’s Vortex-Tube Model of 1952 for the Periodic
Vortex Shedding Past a Circular Cyl inder

If the cylindrical body is nonsyninetric , as in the case of a wi ng at
high angle of attack , the vortex tubes are still closed and linked
together but will be stretched where the vortex strength is large . Thus,

Helmholtz (or Kelvin ’s) laws are not violated .
If the aspect ratio decreases so that a sphere , or cube type body

resul ts , the vortex tubes will simplif y to the double -helix model
developed by Pao and Kao?’2

FIgure 33 - The Double-Helix Model by Pao and Kao of 1975 for the
Periodic Vortex Shedding Past a Sphere

72 Pao, H. and Kao, T.W., On Vortex Shedding in the Wake of a Sphere.
Catholic University of America , Tech. Rep. No. HY-75-OOl , May 1975.
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The axis of a rotating body is always a vortex line or tube. The
• reader may be reminded of the well-known vortex model for a propeller. The

vortex tubes around an autorotating plate are then imagined in the following p
way: the two-dimensional model (Figure 34a) consists of two starting

vortices whose circulations balance the circulation of the rotating plate

(see Fig. l7a). After each half cycle vortices of unequal strengths are

shed, but they also balance so that the total circulation remains zero.
Figure 34b shows a proposed three-dimensional model in which the vortex

tubes are linked together. This configuration , of course, is very un-
stable down stream.

/
y~ r~ r~ 

p~
0

a 
—~

0 o

FIgure 34 - Proposed Vortex-Tube Model for an Autorotating
Plate of (a) Infinite Span, (b) Finite Span

The situation becomes even more complicated if the axis of rotation

is not perpendicular to the flow but forms an angle B with the flow
direction in the range 00 < g < 900. The axis may even gyrate (Ref. 45,

p. 529). Some experimental data38 are ava i labl e for a cruci form fin
configuration . These data are presented in Figure 35.
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Figure 35 - Autorotation of a Cruciform Fin System (Figure 2e)
Wi th and Without Endplates. 1/Ro f(B). Aspect Ratio = 3

(from Ref. 38)

Autorotation is not restricted to rectangular plates or systems of
rectangular pl ates. The shape of the pl ate may be ci rcular or may have a
delta form. Experiments have been performed by Bustamante and Stone.48

The Rossby number at hi gh Re-flow is for circular disks about twice as
large as for long rectangular plates. For del ta-shaped plates the Ro-
number Is even higher. The rate of autorotation can be optimized for
different purposes. If autorotation is desired , the rate of spin can be
enhanced by a proper , propeller-like shape of the body with endplates.45 ’47

However, such a devise then assumes a gyro-type configuration dncl is not
strict ly autoroteting in the sense of the definition on page 5.

Autorotation can be suppressed by the use of slots ,39 ’40’41

fences ,55 and probably by shrouded fins. Slots were proposed by the
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author,39 and the results of subsequent experiments have been reported in
Refs. 40 and 41. It is still not clear which slot position would be most
effective. Slots slanted with respect to the edges of the plate would be p
very effective since they would disturb the two-dimensionality of the
vortex tubes (which are parallel to the wedges).

The influence of fences on autorotation was investigated by
E.H. Smith.55 The interpretation of the results is consistent with the
present theory: fences at the axis of rotation disturb the development of
the boundary l ayer along the entire front of the plate in the retarding
period . As was pointed out on page 68, the prolonged development of this
boundary l ayer is the main cause of autorotation. Smi th ’s ex per iments
with Re = 78000 show that the Rossby number can be increased by a factor
of 4 through the use of fences at the midsection of the plate . Fences
at the tips act similarl y as Riabouchinsky-type bodies (Figs. 5 and 29).
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