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NOTATION j

a Focal distance
CD Drag coefficient ‘
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ABSTRACT

The autorotation of plates normal to a
uniform parallel flow is explained in detail for ’
Tow Reynolds numbers by means of numerical solutions
of the Navier-Stokes equations. The incompressible
fluid flow is assumed to be laminar and two-
dimensional. Comparisons are made with high
Reynolds-number and three-dimensional flows. The
article defines autorotation, gives an historical
account of investigations into autorotation, and
shows that autorotation is caused by a complicated
interplay of vortex shedding, boundary-layer hysteresis,
and vorticity generation around the edges of the plate.

1. INTRODUCTION

The aerodynamic phenomenon of autorotation has puzzled aerodynamicists,
ballisticians, and biologists for many years. In most technical applica-
tions in which autorotation occurs, it has an undesirable effect on the
performance of the device under consideration. For instance, autorotation
can greatly influence the control of finned missiles, rockets, airplanes,
and reentry bodies. In a few areas, however, autorotation of bodies is
exploited. In nature certain tree fruits and seeds are disseminated
through autorotation. In aeroballistics autorotation of bomblets is
encouraged to cover a wide target area.

Although special cases of autorotation and partial aspects of it are
fairly well understood, the basic reason for it and the detailed explana-
tion of it are still lacking. This paper will clarify some of the
unsolved problems, at least for the simple case of an autorotating plate.

The brief account of the 125-year history of the study of autoro-
tation will familiarize the reader with the motivations for studying this
phenomenon, give him an appreciation of the difficulties by describing




successes and failures, and explain why only the advent of powerful
computers could give the solutions to the problem.

In order to follow the historical development of the study of auto-
rotation, the essential mechanism of this phenomenon must be anticipated.
The following paragraphs outline this mechanism for the simplest case,
that of an autorotating plate.

A rectangular plate is free to rotate about an axis of symmetry
which is fixed in a position normal to a uniform parallel flow. After
an initial impulse the plate continues to rotate under certain conditions
without any external source of power. The spinning plate then obtains
its whole kinetic energy from the parallel stream; the plate autorotates.
Flow visualization and measurements reveal that the rate of rotation is
synchronous with the frequency of vortex shedding, and that this fre-
quency is equal to or larger than the frequency of vortices shed from a
fixed plate. This synchronization is an essential condition to under-
standing autorotation because without it previously or prematurely shed
vortices interfere with the development of the boundary layer in front
of the plate and with vortex separation in the rear, thus causing a
damping effect.

During each half-revolution there is a period in which the rotation
of the plate is supported and a period in which it is retarded by the
action of the fluid flow. Surplus torque, which is required for auto-
rotation, is mainly obtained in the retarding period when the plate moves
from the normal to the parallel position relative to the flow. Location
and strength of the vortices generated behind the two edges of the plate
as well as the deceleration of the front boundary layer determine the
amount of surplus torque. In addition, to overcome the braking effect of
the retarding period, the plate must have a sufficiently large moment of
inertia. If this moment of inertia is too small the plate cannot rotate.
It will wobble and slow to a stop. The same happens if the concentration
of vorticity near the edge is not strong enough.

The mechanism of autorotation is thus a complicated interplay and
synchronization of four processes: (1) vortex shedding, (2) boundary-layer
hysteresis, (3) vorticity generation around the edges, and (4) flywheel
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behavior requiring a sufficiently large moment of inertia.

A plate with a freely moving axis may obtain additional rotation
energy through rhythmic translational acceleration and deceleration. The
classical example is that of a freely falling rectangular piece of .
cardboard. Lift due to rotation causes the cardboard to fall obliquely.

2. BACKGROUND

2.1 DEFINITION
The concept of autorotation is not uniquely defined in fluid

dynamics. A few researchers consider any continuous rotation of a body in
a parallel flow without external source of power as autorotation. The
body then derives its kinetic energy from the fluid flow. Under this
definition, windmills, water wheels, anemometers, helicopter blades (when
rotating without power during fall), and certain tree fruits and seeds
are such "autorotating" devices 1,2 (Fig. la, b). It is important to
point out that these bodies are geometrically shaped in such a way that
even under static conditions, that is, when kept fixed in a fluid flow,

a torque is present which initiates rotation when the body is released.
In this category also belong symmetrically shaped bodies whose geometric
centers do not coincide with the centers of mass. Furthermore, symmetric
bodies with uniform mass distribution can rotate in a parallel shear
flow. Spheres and circular cylinders, for instance, spin due to
asymmetric wall-shear stre553 (Fig. 1c).

! McCormick, B.W., Aerodynamics of V/STOL flight. Academic Press.
New York, 1967.

2 Norberg, R.A., Autorotation, Self-Stability, and Structure of Single-
Winged Fruits and Seeds (Samaras) with Comparative Remarks on Animal :
Flight. Biol. Rev. 48 (1973), 561.

3 Poe, G.G. and A. Acrivos, Closed-streamline flows past rotating single
cylinders and spheres: inertia effects. Journ. Fluid Mech. 72 (1975),

605.
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Figure 1 - Bodies Spinning Due to Transfer of Kinetic Energy
from the Flow. (In this paper, spinning of this type is
not considered to be autorotation.) a) Anemometer;

b) Maple Seed; c) Shear Flow
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Most fluid dynamicists restrict the concept of autorotation to the
induced motion of bodies which requires an initial rotation of the body
in the fluid flow to cause self-sustained spinning. Two cases may be
distinguished, depending on whether the axis of rotation is parallel or
normal to the flow. The classical examples of the first case are the
Lanchester propeller (Fig. 2a) and the spinning airfoil (Fig. 2b).4’5’6
Examples of the second (normal) case are the falling cardboard and the
rotating dumbbell (Fig. 2c).7 The axis of the cardboard may be free to
translate or may be fixed (Fig. 2d). Cruciform systems can also auto-
rotate (Fig. 2e). In both cases of autorotation, the axis of rotation
does not need to be exactly parallel or normal to the flow. In fact, one
case may pass over to the other.

In this paper the latter definition for autorotation has been
adopted, and the study focusses on the autorotating plate, Fig. 2d.

# Riabouchinsky, D.P., Thirty years of theoretical and experimental
research in fluid mechanics. Journ. Royal Aeron. Soc. 39 (1935), 282.

3 Durand, W.F. (editor), Aerodynamic Theory. Dover Publications 1963.
Vol. vV , 208. '

6 Bairstow, L., Applied Aerodynamics. 2nd ed. Longmans, Green and Co.,
New York, 1939. Chapter V, 212.

’ Smith, A.M.0., On the Motion of a Tumbling Body. Journ. Aeron.
Sciences 20 (1953), 73.

—
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Figure 2 - Autorotating Bodies. a) Lanchester Propeller;
b) Spinning Airfoil; c) Rotating Dumbbell; d) Rotating
Plate; e) Rotating Cruciform Plate System
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2.2 HISTORY ,

'w' The study of autorotation has quite a long history compared to the
'4 ; study of other aerodynamic concepts. The oldest known explanation for the
normal type of autorotation, that for a falling rectangular piece of ‘

cardboard, never really went beyond a qualitative or partial description,
and until recently experiments gave data only for overall properties such
as average drag, 1ift, and roll. The following paragraphs give a brief
history of the study of this type of autorotation.

When a piece of cardboard is dropped, it starts wobbling as sketched
in Fig. 3. This wobbling may continue or may change to autorotation. In
the latter case the cardboard does not fall vertically but obliquely E
(Fig. 4). Maxwell8 in 1853 was probably the first to describe this
phenomenon. He recognized that the center of mass and the center of
aerodynamic forces do not coincide, and this gives rise to a torque. He
also recognized that the deviation from vertical fall is attributable to
the 1ift due to rotation. This latter phenoi« on was described slightly
earlier (in 1851) by Magnus, but Maxwell was probably unaware of his

work. Magnus' name is attached to this effect although recognition and
study of it go back to the time of Newton.9

Maxwell's explanation of autorotation may be summarized with the aid
of Fig. 4. Shortly before it assumes position 1, the plate is parallel
to the path; at position 2 it is normal to the path. In the latter
position the drag is larger. The plate, therefore, has a higher velocity
at position 1 than at position 3, and the torque at position 1 is larger
than at position 3. Since a plate always tends to place itself normal to
the path, the torque at position 1 is in the direction of rotation; at .
position 3 the torque is opposite to the direction of rotation. Hence,
the torque supporting rotation is larger than the adverse torque. This

8 Maxwell, J.C., On a particular case of the descent of a heavy body in
? res;sting medium. Scientific Papers. Cambridge University Press
1890), 115.

’ Barkla, H.M. and L.J. Auchterlonie, The Magnus or Robins effect on {

rotating spheres. Journ. Fluid Mech. 47 (1971), 437.




. R B Wbt P o Tl = DR DN s

| T

-—

Figure 3 - Wobbling Plate During Fall
with Vortices Shed at each
Turning Point

Figure 4 - Path of a Freely Falling Autorotating Cardboard
The Axis of Rotation is Perpendicular to this Sheet

excess torque is balanced, according to Maxwell, by an opposing torque due
to rotation. This latter statement is generally not correct. Maxwell
assumed that the total torque can be divided into a "quasi-steady" part

and a contribution due to rotation, the latter being always opposite to

the direction of rotation. "“Quasi-steady" means that the forces on the
body vary so slowly with rotation that they can be computed at a particular
instant as if the body were not rotating. It will be shown later that,

to explain autorotation, the asymmetric (sometimes called "dynamic" or
hysteresis") effect of rotation must contribute to the driving torque.




Greenhill in 1880 developed, on the basis of Kirchhoff's studies, a
potential-flow solution which is cited in Lamb.]0 According to this
solution the motion of a plate or a disk subject to an impulse is analogous
to that of a pendulum. The oscillating phase (Fig. 3 without vortices)
can become rotatory if the kinetic energy and certain constants (which
implicitly contain the moment of inertia) are sufficiently large. The
path is undulatory, with the vertical position of the plate and the lowest
angular velocity at the peak of the trajectory (Ref. 10, p. 176).

At about the same time (1880) a few papersn’]z’]3
Maxwell's idea was essentially restated: the centers of gravity and aero-

appeared in which

dynamic forces do not coincide and, thus, a torque develops which is a
function of the angle of attack. Ahlbor’n]3 in 1897 presented a detailed
explanation of this process based only on the quasi-steady approach.

In 1901 Kﬁppenla applied the idea of autorotation to construction of
a flying machine and a parachute. However, the small lift-to-drag ratio
of autorotating plates did not encourage further development of flying
machines based on that principle.

From 1904 to 1918 Riabouchinsky's private institute in Koutchino
performed a number of interesting experiments on autorotation in which
el About 1905 Riabouchinsky introduced the
term "autorotation" as it is used in this paper (Section 2.1), and he

Joukowsky was also involved.

distinguished for the first time between autorotating plates with fixed

10 Lamb, H., Hydrodynamics. Sixth edition. Dover Publication, 1945.
" Mouillard, M., Theorie de 1'Aeroplane. L'empire de 1'air, 1881,
210.

12

Gerlach, E., Zeitschr. fur Luftsch. 5 (1886), 65.

13 Ahlborn, F., Der Schwebflug und die Fallbewegung ebener Tafeln in der
Luft. Abh. d. Naturw. Ver. Hamburg XV, 1897.

" Koppen, W., Il1lustr. aer. Mitteil. 5 (1901), 158.

L Joukowsky, N., De la chute dans 1'air de corps legers de forme
allongée, animés d'un mouvement rotatoire. Bulletin de 1'lInst.
aérodynamique de Koutchino, fasc. 1 (1912), S51.
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axes and those with freely moving axes. He realized that Maxwell's
explanation was deficient because, for a plate autorotating about a fixed
axis, the velocity of the flow (or in a frame fixed in a fluid at rest at
infinity, the translational velocity of the body) is constant. Thus,
Maxwell's assumption that, in position 1 of Fig. 4, the movement of the
plate is faster than in position 3 does not apply for a plate with a
:'xed axis. He offered the explanation that in position 1 of Fig. 4 the
streamlines at the retreating edge of the plate are more curved than in
position 3 and, thus, due to the higher suction effect the torque
favorable to rotation is greater. This recognition includes the important
facts that a quasi-steady theory cannot be sufficient to explain auto-
rotation of plates with fixed axes and that the asymmetric flow effect of
rotation must be considered. A few years later Riabouchinsky recognized
that the moment of inertia must be large enough to overcome the period of
adverse torque. He also found that systems with three or four plates
(Fig. 2e), as well as projectiles and nonstabilized airships, can auto-
rotate. He also observed that the ratio of rotational to translational
speed must be smaller than unity for autorotation, and that the shape of
the edges of the plate affects the rate of autorotation (Fig. 5).

-

Figure 5 - "Riabouchinsky-type" Body

Although Riabouchinsky observed a strong vortex behind the
rotating plate which revolved in the same direction as the p]ate.4 and

10
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although later, in 1929, Ahlborn]6 mentioned periodic vortex shedding,
the significance of these observations was not recognized.

In 1941 Dupleich]7 published results of extensive work with freely ‘
falling plates in air and water. These experiments provide a wealth of
valuable quantitative data which will be referred to again in Section 4.3. 3
Dupleich's explanation of autorotation, however, is adopted from Maxwell,
and depends on the incorrect idea that the influence of rotation on the
total torque is always opposite to the direction of rotation.

In Germany during World War II autorotation of plates was of interest
18-21

in producing high 1ift on aircraft wings. A summary of this effort
is given in English by Crabtree.22 An auxiliary wing capable of auto-
rotation was mounted just below the trailing edge of the main wing.
Another study in Germany, described by Schneller23 in 1941, was probably

the first on rotating missiles. It described "lunar motion".

16 Ahlborn, F., The Magnus Effect in Theory and in Reality. Translation
in NACA TM 567, May 1930.

17 Dupleich, P., Rotation par Chute Libre des Ailettes Rectangulaires de
Forme Allongee. Publications Scientifiques et Techniques du Secretariat
d'Etat a 1'Aviation, 1941, No. 176. Translated into English in NACA

T™ 1201, April 1949,

L von Holst, E., Der rotierende Fllugel als Mittel zur Hochauftriebserzeugung.
Jahrbuch 1941 d. deutschen Luftfahrtforschung I, 372.

19 Kuchemann, D., Auftrieb und Widerstand eines rotierenden Flugels.
Deutsche Luftfahrt forschung, Forschungsbericht 1651, 1942.

2? Wiese, H., Drehleistungsmessungen an rotierenden Flugeln. AVA
Gottingen, Bericht 42/A/14. 1942.

& Kuchemann, D., Dreikomponentenmessungen an einem Flugel mit
rotierendem Hilfsflugel. Deutsche Luftfahrtforschung, Forschungsbericht
1513, 1941.

e2 Crabtree, L.F., The rotating flap as a high-1ift device. Royal
Aircraft Est. Farnborough Tech. Note, Aero 2492, 1957.

& Schneller, E., The lunar motion of fin stabilized projectiles. Report
from the Technische Hochschule Darmstadt 1940/1941. Translated by CADO, ‘
Wright-Patterson Air Force Base, Dayton, Ohio. AT1 3271.
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Before investigations after World War II are discussed, it will help
to review briefly the history of the study of autorotation about an axis
parallel to the flow. At the turn of the century this type of autorotation
was discovered in connection with a device now called the Lanchester
tourbillon or Lanchester propeller. (The origin of this terminology could
not be traced by the author.) Riabouchinsky mentioned in his survey
paper4 that in 1905 Patrick Alexander demonstrated this phenomenon
(Fig. 2a).

Without initial rotation the force R acting on the Lanchester
propeller blade is equal to the drag D. Fig. 2a. With a small initial
spin the flow relative to the body has a nonzero angle with respect to
the undisturbed flow. The resultant force R, composed now of drag D and
1ift L, causes a torque opposite to the initial spin, and the propeller
will come to a stop. Above a certain value of the initial spin, however,
the resulting force has a component in the direction of rotation. This
torque increases the angular speed until a balance with the damping
forces is achieved, and the device then autorotates.

In 1906 Riabouchinsky published a paper‘4 in which he showed that the
blade does not need a profile as shown in Fig. 2a but that it also
autorotates if it is infinitely thin. In 1909 Riabouchinsky found that a
propeller blade with a slot near one edge autorotates in the direction of
the slot. During World War I and in the Twenties a type of autorotation
similar to that of the Lanchester propelier was studied carefully since
it played an important role in the performance of aircraft. Relf and
Lavender in England are credited with being the first investigators to
observe this phenomenon.24

According to Bairstow6 and Bryant and Gates
type of autorotation may be explained with the aid of Fig. 2b in the
following way: Once an airfoil rotates around an axis parallel to the flow,

25 the origin of this

“ Fuchs, R. and L. Hopf, Aerodynamik. R.C. Schmidt & Co., Berlin, 1922,
424,

. Bryant, L.W. and S.B. Gates, The spinning of aeroplanes. Journ. Royal
Aeron. Soc. 31 (1927), 619.
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the downward moving part of the wing usually encounters a relative flow
velocity which causes a higher 1ift than the velocity on the upward
moving part. This is due to the different angles of attack. The
difference in the 1ift causes a torque opposite to the rotation. However,
if the angle of attack of the downward moving part of the wing becomes so
large that this part stalls, the corresponding 1ift decreases and may
become smaller than the 1ift of the upward moving part. The resulting
torque is then in the direction of rotation, and again, the airfoil
autorotates. In this connection one distinguishes steep and flat spin of
an aircraft on the basis of the spiral path of the aircraft. Overali
summaries of the literature on autorotating airplanes are given by Durand5
and Bairstow.6 Additional references are given by Km’ght26 and more
recent ones by Neihouse et a1.27 The theory of autorotating airplanes is
based on the quasi-steady approach (strip theory). Work on the spinning
of modern aircraft is still going on.28

After World War II interest in autorotation around an axis normal to
the flow arose in three basic areas: (1) the aerodynamics of releasable
nose sections of fuselages for use in emergency situations; (2) the
aerodynamics of finned missiles; and (3) the aeroballistics of bomblets.
A11 three cases are highly complex, since the flow around the body must
be considered three-dimensional, and since in many instances the axis of
rotation performs precession and nutation. Most of the research in these
areas is documented in U.S. Government reports, a fact which reflects
not only their military application but also the preliminary nature of
their contents.

It may be mentioned that some interest in autorotation exists in
biology. There are tree seeds which not only rotate like a helicopter

e Knight, M., Wind tunnel tests on autorotation and the "Flat Spin".
NACA Rep. 273, 1927.

Y Neihouse, A.I., W.J. Klinar, and S.H. Scher, Status of spin research
for recent airplane designs. NASA TR 57, 1960.

-~ Spangler, S.B. and M.F.E. Dillenius, Investigation of Aerodynamic
Loads at Spin Entry. Report ONR-CR212-225-2, May 1976.
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blade (Fig. 1b) but simultaneously autorotate about the longer axis of
the seed.zg’30
In the following the three basic research areas are discussed:

(1) The autorotation of projectiles and nonstabilized airships
was earlier observed by Riabouchinsky.4 Later, this effect was noticed
with released nose sections of fuselages, and investigations were carried
out at Douglas Aircraft Corporation. A 1953 summary of this effort is
given in a paper by A.M.O0. Smith.7 Some years later autorotation became
a problem for reentry bodies. The Mercury capsule of Glenn and Carpenter
could be stabilized during reentry into the atmosphere only by opening a
parachute.3]’32 A.M.0. Smith's paper7 is of interest in other respects
also. He mentions the autorotation of dumbbells (Fig. 2c) which is
explained by the difference in drag of the spheres at subcritical and
supercritical Reynolds numbers. In the transition range from laminar to
turbulent flow the drag of the sphere drops drastically. This kind of
autorotation is, therefore, restricted to the Reynolds-number range of
about 4-105. A.M.0. Smith also made an important contribution to the
understanding of the autorotating cardboard. He realized (what had
already been indicated in Riabouchinsky's idead) that the asymmetry due
to rotation is the key to explaining autorotation and that this asymmetry
is caused by hysteresis during acceleration. Although the importance of
hysteresis for oscillating wings was recognized earlier (see the

literature in [33]), A.M.0. Smith linked it to autorotation. It will be

29 Paturi, F., Nature, Mother of Invention. Harper & Row, New York, 1976.

90 McCutchen, C.W., The Spinning Rotation of Ash and Tulip Tree Samaras.
Science 197 (1977), 691.

o Results of the Second U.S. Manned Orbital Space Flight May 24, 1962.
NASA SP-6, 1962.

32 Campbell, J.P., Low-Speed Aerodynamic Research Related to the Landing
of Space Vehicles.

3 More, F.K., Lift Hysteresis at Stall as an Unsteady Boundary-layer
Phenomenon. NACA Rep. 1291, 1956.




e e

seen later that hysteresis is an important necessary, but not sufficient |

condition for autorotation. ‘
(2) Research on the autorotation of finned missiles and

rockets, because of its importance in stabilizing rotating finned bodies,

is the most extensive of that in the three basic areas, and is still

continuing. The investigation probably started with Schneller's

contribution?3 on “lunar motion" and expanded immediately

after World War II. However, it was not until 1955 that Nicolaides and 1

Griffin34 described the problem of "roll speed-up" as the self-sustained

spinning of missiles with cruciform fins at high angles of attack (larger

than 36°). 0ddly enough, the relation of this problem to autorotating

plates normal to the flow was not recognized, and the explanation for

roll speed-up rested on the hypothesis that the single vortex shed from

the spinning cylindrical body interferes with the fins. Nicolaides35

soon acknowledged that this hypothesis was incorrect, since fins themselves

can rotate without the missile body. He proposed another approach by

including stall in a quasi-steady strip theory. In this context Nicolaides

R

mentioned autorotation of spinning aircraft (around an axis parallel to
the flow), but he noticed that this kind of autorotation and roll speed-up

are not the same. The work during the period from 1955 through 1958 with
36

references to prior investigations was summarized by Nicolaides,
Brown.37 and Greene.38 At that time two movies of wind-tunnel experiments
with a plate and a cruciform plate system were made at the Department of

34 Nicolaides, J.D. and T.F. Griffin, On a Fluid Mechanism for Roll
Lock-in and Rolling Speed-up Due to Angle of Attack of Cruciform
Configurations. BUORD Tech. Note No. 16, Sept. 1955.

35 Nicolaides, J.D., On the Rolling Motion of Missiles. BUORD Tech.
Note No. 33, March 1957.

36

Nicolaides, J.D., Final Technical Note. BUORD 1961.

37 Brown, F.N.M., Summary report on cruciform fin study. University of
Notre Dame, Indiana, Dept. of Aeronautical Engineering, Contract NORD
17702, May 1958.

-8 Greene, J.E., An Investigation of the Rolling Motion of Cruciform-fin
Configurations. NAVORD Rep. 6262, March 1960.
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Aeronautical Engineering of the University of Notre Dame under
F.N.M. Brown. On the basis of these revealing flow pictures Lugt
1961 related roll speed-up explicitly to the autorotation of plates

normal to the flow. In this paper he also suggested the use of slots to
prevent or reduce autorotation. Subsequent experiments at the University
of Notre Dame and the Naval Academy, as reported by Daniels and Clare.40'4]
verified the usefulness of slots.

In recent years work has continued to accurately analyze
and predict roll speed-up from experimental data without any attempt to
explain the phenomenon. Nonlinear least-square fitting was done by
Cohen et a1.42 with a third order polynomial suggested by Daniels.43
may be pointed out that there is a close analogy of the curve for the
moment coefficient versus roll with that for rotating airplanes [see
Ref. 5, p. 209]. F1echter44 also observed autorotation in the region of
"roll lock-in" (angles of attack between roll slow-down and roll speed-up)
which is caused by vortices shed from the disturbed boundary layer of the
missile body.

(3) Parallel to the study of autorotation of finned missiles
was the investigation of autorotating bomblets. The purpose of this work
is directly opposite to that of work with finned missiles. Whereas the
goal of missile aerodynamicists is to prevent uncontrolled rotation, that

39 s

It

39 Lugt, H.J., Self-Sustained Spinning of a Cruciform Fin System. Proc.
Fifth U.S. Navy Symposium on Aeroballistics. Naval Ordnance Lab.,
White Oak, Md., 1961.

40 Daniels P., Fin Slots vs Roll Lock-In and Roll Speed-Up. Journ.
Spacecraft and Rockets 4 (1967), 410. .

ol Daniels, P. and T.A. Clare, Aerodynamic Characteristics of the Slotted
Fin. Journ. Aircraft 9 (1972), 603.

42 Cohen, C.J., T.A. Clare, and F.L. Stevens, Analysis of the Nonlinear
Rolling Motion of Finned Missiles. AIAA 12 (1974), 303.

43 Daniels, P., A Study of the Noalinear Rolling Motion of a Four-Finned
Missile. Journ. Spacecraft and Rockets 7 (1970?. 510.
44

+ Fiechter, M., Kegelpendelung, Autorotation und Wirbelsysteme schlanker
Flugkorper. Zeitschr. Flugwissenschaften 20 (1972), 281.
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of aeroballistic engineers is to encourage autorotation in order to cover
a wide target area for self-dispersing bomblets. This process is
similar to the dissemination of rotating tree seeds and fruits. Burgess
assembled a collection of papers on the subject and a few comments are

45

offered here,

In 1948 Zaroodney46 observed that mortar shells can have
a high rate of spin. He postulated a new phenomenon due to the “instability
of spin" without relating it to known autorotation phenomena. Flatau.47
Gebman.45 and Bustamante and Stoneas‘48 obtained experimental data on the
autorotation of plates normal to the flow with application to bomblets.
Flatau and Gebman investigated a "Riabouchinsky-type" device sketched in
Fig. 5. Strictly speaking, however, the rotation of this device does not
fall under the concept of autorotation as defined in Section 2.1. For
reentry studies Bustamante and Stone“'48 made a series of experiments
with plates, right circular cylinders, and disks with freely moving and
fixed axes in subsonic and hypersonic flow. It appears, although not
absolutely conclusively, that plates can autorotate in hypersonic flow.
Right circular cylinders clearly are able to do this. Bustamante and
Stone consider the vortex shed behind the retreating edge of the plate
responsible for autorotation.

In recent years some investigations have been performed
which are not directly related to the three application areas discussed
so far, but which give valuable insight into the mecharism of autorotation

normal to the flow.

45 Burgess, F.F. (ed.), Proceedings of Conference on Dynamics and Aero-
dynamics of Bomblets. Vol. I. Tech. Rep. AFATL-TR-67-195, Oct. 1967.

46 Zaroodney, S.J., On the Mechanism of Dispersion and Short Ranges of
Motor Fire. Ballistic Research Lab. No. 668, 1948.

i Flatau, A., An Investigation of the Rotational and Aerodynamic
Characteristics of High Aspect Ratio Rotors. U.S. Army tdgewood Arsenal
CRDL TM 1-4, 1964.

48 Bustamante, A.C. and G.W. Stone, The Autorotation Characteristics of
Various Shapes for Subsonic and Hypersonic Flows. Journ. AIAA 69-132, 1969,
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E A The characteristics of freely falling oblate spheroids are
of interest in the study of hailstones.49 Kry and Listso determined the
range of autorotation in which the quasi-steady technique can be applied. ’
List et alSI
steady approach. In the same way Soong52 used experimental data for non-
rotating bodies from Stilley53 to determine the flight path of a discus.
During a no-spin throw (no rotation around the axis normal to the disk) the
discus autorotates perpendicular to the flight path. Experiments with
freely falling disks have been made by Willmarth et al.>t

An important paper on autorotating plates was published by
E.H. Smith in 197\.5S In this paper he reports and analyzes results of
experiments on the hysteresis effect on which the explanation of auto-

actually computed rates of autorotation by means of the quasi-

i vy it sl

rotating plates with fixed axes rests. He also gives for the first time
detailed data on drag, 1ift, and moment coefficients as a function of time.
Data on the influence of Reynolds number, moment of inertia, etc. are also
, given and compared with sketches of flow patterns. E.H. Smith claims

E . originality of these flow patterns, but this claim is not valid since the

RS G A SR e

movies made at the University of Notre Dame a decade earlier are more
detailed and more intormative. Despite this slight criticism, Smith's

| b Kry, P.R. and R. List, Angular motions of freely falling spheroidal
| hailstone models. Physics of Fluids 17 (1974), 1093.

50 Kry, P.R. and R. List, Aerodynamic torques on rotating oblate
spheroids. Physics of Fluids 17 (1974), 1087.

5} List, R., U.W. Rentsch, A.C. Byram, and E.P. Lozowski, Journ. Atmos.
Sci. 30 (1973), 653.

2 Soong, T.C., The Dynamics of Discus Throw. Trans. ASME, Journ. Appl.
Mech., Dec. 1976, 531.

- Stilley, G.D., Aerodynamic Analysis of the Self-Sustained Flare.
AD-740117, Naval Ammunition Depot, Crane, Ind., Oct. 1972.

” Wilmarth, W.W., N.E. Hawk, A.J. Galloway, and F.W. Roos, Aerodynamics
of oscillating disks and a right-circular cylinder. Journ. Fluid Mech.

27 (1967), 177.

. Smith, E.H., Autorotating wings: an experimental investigation. Journ.
Fluid Mech. 50 (1971), 513.
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paper is an important one, and more of its content will be referred to

later.

2.3 THE STATE OF THE ART

The history of the concept and explanation of autorotation over the
last 125 years is quite colorful. The various attempts, motivations, and
experiences related to explaining and exploiting this phenomenon have an
element of incoherence which is probably due to the different application
areas involved. This may account for the lack of concern for previous
work which one finds in the literature. For instance, Riabouchinsky's
contributions seem entirely forgotten; Greenhill's paper was uncovered by
the author56 in 1965, although his results are contained in the widely
used reference books of L.a\mb]0 and Mi]ne~Thomson.57
experimental data were largely unnoticed, or were merely referenced despite
the translation of his paper into English in a NACA repor‘t.]7 Some
researchers do not reference previous work at all as, for instance, the
authors of [48].

Autorotation about an axis parallel to the flow (Fig. 2a and b) can
be explained and computed approximately by the quasi-steady technique.
This approach neglects dynamic effects due to rotation.

Autorotation about an axis normal to the flow (Fig. 2c, d, e) can
also be explained and crudely computed for bodies with freely moving axes
by means of the quasi-steady method (see, e.g. [50, 52]), at least under
certain conditions. The neglect of dynamic effects is here more serious
than in the study of autorotation about an axis parallel to the flow. In
fact, if the plate has a sufficiently large moment of inertia, the freely
falling body will behave 1ike one with a fixed axis.

The autorotation of plates about an axis fixed in a parallel constant
flow cannot be explained by a quasi-steady theory. The average torque

Dupleich's extensive

56 Lugt, H.J., On the autorotation of fin systems. U.S. Naval Weapons
Laboratory, Dahlgren, Va., Tech. Memo. No. K-22/65, Jan. 1965.

57 Milne-Thomson, L.M., Theoretical Hydrodynamics, The MacMillan Co.,
N.Y., 1968, 5th ed.
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is here always : < .. Nor can the flow around the body be computed by
boundary layer theory (because of the complicated vortex-shedding process)

or by discrete vortex models (which are inaccurate when the vortex sheet
is close to the body).°® Experimentally, it is difficult to obtain
information on the local drag, 1ift, and moment coefficients which require
knowledge of the surface pressure. In fact, it is only recently that such
measurements have been made on the spinning right circular cylinder by
Miller58 at Edgewood Arsenal, Aberdeen Proving Ground. A fruitful
investigation must be based, according to Lugt56 in 1965, on the time-
dependent equations of motion, whose solutions include delayed boundary-
layer separation and vortex shedding of a rotating body. That is, the
full Navier-Stokes equations must be used. This is why previous attempts
to explain autorotation failed or gave only a partial answer.

Thus, autorotation of plates about a fixed axis normal to the flow
is still not sufficiently well understood. The objective of this paper is
to clarify the problem and to presert a detailed and quantitative explana-
tion of autorotation. This investigation is based on numerical solutions
of the Navier-Stokes equations for laminar fluid motion.

3. MODEL FORMULATION AND SOLUTION TECHNIQUE

3.1 DESCRIPTION OF THE FLOW MODEL

The available information on autorotating plates normal to the flow
clearly reveals that the mechanism of autorotation is intricate and
complex. A theoretical study should be made with a model which is simple
enough to be handled mathematically yet sufficiently realistic to explain
autorotation.

The movement of a freely falling cardboard in air or of a thin
metallic plate in water indicates that the autorotation around the longer
axis is quite stable, and that the model can be simplified by assuming

58 Miller, M.C., Surface Pressure Measurements on a Spinning Wind Tunnel
Model. AIAA Journ. 14 (1976), 1669.

20

e




the laminar flow of an incompressible fluid around an infinitely long
plate in two space dimensions. More careful experiments with endplates
confirm that three-dimensional effects are not essential for autorotation.
In fact, they interfere with autorotation. Since autorotation of a plate
about a fixed axis cannot be explained by a quasi-steady theory, the
assumption of a fixed axis focusses the study on the essential features
which generate autorotation. Under this assumption the motion of the body
has one degree of freedom, that is, the body rotates only about the fixed
axis with the angular velocity @ = da/dt', where a is the angle of attack
and t' the time. The equation for the angular motion is then

o _
I =zv = TF

at’ ¥ ey (1)

L

where 1 is the moment of inertia, and TFL and TEx are the torques exerted
on the body by the fluid and from the outside, respectively. Autorotation
is defined by

da = 0, TEx : 0 (2)

= 1
R ol
0 FL

In general, of course, the value of the integral j“ TeL da is not zero
except for certain values of a. 0

The experiments of E.H. Smith%S show that autorotation can occur at
Reynolds numbers as low as 100 and that the angular velocity o of the
rotating plate can be almost constant for a sufficiently large dimension-
less moment of 1nertia.7 These observations make a numerical analysis of
the problem attractive.

The occurrence of autorotation at low Reynolds numbers permits the
construction of solutions of the Navier-Stokes equations with presently
available computers and experience in numerical analysis. The assumption
of constant Q overcomes another difficulty in numerical formulations and
solutions: In order to induce the plate to autorotate a certain amount of
jnitial rotation must be provided. If this initial impulse is too weak,
the plate will oscillate a few times, and the motion may then come to a
stop or it may become autorotation. If the initial rotation is too
strong, the plate will rotate due to this initial impulse and may

21
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t subsequently autorotate. In both cases numerical computations would
require a number of trials with excessively long computer runs to arrive
at a solution for the state of autorotation. This situation can be
avoided by assuming a constant @ of the plate. Then, only the Reynolds l
number, the Rossby number (which is the ratio of translational to

| rotational velocity of the plate), and the geometric quantities occur as

l flow parameters after the initial phase.

' § In general, the condition of autorotation (Equation (2)) will not be

! satisfied for a prescribed set of flow parameters if @ is a constant.

= Rather, it follows from Equation (1) that TFL = - TEX’ If TFL is positive,
the plate must be driven by the external torque TEX’ for instance, by an
| electric motor. If TFL is negative, TEx will cause braking. If TEX is

zero, autorotation exists.

Riabouchinsky4 experimented with the Lanchester propeller (Fig. 2a)
and obtained a relation between the average torque T%L and @ as indicated
in Fig. 6. (In this figure T%L and 2 have been replaced by the average
moment coefficient EM (to be defined later) and by the ratio «d/2U, where
] d is the chord of the wing and U the constant speed of the parallel flow.)
X If the propeller rotates in a fluid at rest at infinity (Ro = 0), EM
' is always positive. Energy must be provided to rotate the propeller.

EM

Re = const

A E

; 0 % ey |

Qd/2U = 1/Ro

Figure 6 - Average Moment Coefficient Cy Plotted Against 0d/2U. In the
Shaded Area the Body Autorotates but Increases its Rotation Until
the Point A is Reached. This is the Condition for Stable, (in
the average) Steady-State Autorotation

22




BN i A vl <o G i S &

v e - e
S PR N S a 5 .o
-..__‘A.a..-.._...—..__..—_...

Near the other extreme, if the propeller rotates very slowly relative to ,
the parallel flow (Ro + =), the torque is also positive. In between, a ]
region of negative torque exists, which Riabouchinsky called “autorotative".
Here, TEx has a braking effect. If this effect were removed, the propel- .
ler would increase its rotation until the point A in Fig. 6. This is the
state of stable, steady autorotation.n For this, Definition (2) must be
augmented by the stability criterion aCy/32 > 0 or aCy/3Ro < 0. The same i
situation, observed by Riabouchinsky for the Lanchester propelier, holds
also for the plate rotating about a fixed axis normal to the flow. Thus,
the phenomenon of autorotation can be studied by examining the flow
behavior for various values of Ro.

For numerical reasons, as given by Lugt and Ohring,59 it is convenient
to approximate the plate by a thin elliptic cylinder in a coordinate
system (n,08) which is related to the Cartesian coordinates (x,y) through

x + iy = a cosh(n+is8), a > 0 (3)

where a is the focal distance. n = " is the elliptic body contour. Its
value is also a measure of the relative thickness of the "plate". Again
for numerical reasons, n = 0.1 was chosen (except for one case with
n = 0.6) instead of ny = 0, which is the infinitely thin p1ate.60
However, it may be mentioned that the difference in the results between
n = 0 and n o= 0.1 is insignificant.

If the reference frame is fixed to the body, the initial/boundary
value problem for the Navier-Stokes equations expressed in terms of the
vorticity w and the stream function y is

8

vy = w (5)

59 Lugt, H.J. and S. Ohring, Rotating elliptic cylinders in a viscous fluid
at rest or in a parallel stream. Journ. Fluid Mech. 79 (1977), 127.

- Lugt, H.J and H.J. Haussling, Laminar flow past an abruptly accelerated |
elliptic cylinder at 45° incidence. Journ. Fluid Mech. 65 (1974), 711.
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where the flow quantities are made dimensionless by the constant velocity
U and the focal distance a. Reynolds and Rossby numbers are defined by
Re = 2al/v, Ro = U/af. It is practical also to introduce Red = dU/v,

Rod/2 = 2U/dQ with d = 2a cosh ny as the chord of the plate. The parameter
2

h is h2 = cosh n- cos2 8.
The boundary conditions are (Fig. 7):

Figure 7 - Elliptic Coordinate System and Definition
of Angle of Attack

v=0, /om=0 at n=n, (6)
h']aw/ae = cos(e-t/Ro)
-1 o at n=o (7)
h "ay/an=sin{e-t/Ro) + (hRo) " coshnsinhn

with a(t) = t/Ro the angle of attack.

The abrupt start of the body from rest is chosen as the initial
condition. A comparison with other acceleration models is given by
Lugt and Hauss]ing.Gl In this paper, the initial condition consists of
the potential-flow solution and a vorticity sheet at the body surface
enforcing the nonslip condition.59 Part of the initial condition is the
initial angle of attack a = ag- In all examples aq is chosen to be 0°

o Lugt, H.J. and H.J. Haussling, The Acceleration of Thin Cylindrical
Bodies in a Viscous Fluid. Journ. Appl. Mech. 45 (1978), 1.
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since for this angle the transient period is short compared to that for

a = n/2.59
The drag, 1ift, and moment coefficients are defined by ‘

bttt g

CD = drag/2;>U 5

RN LT

C = lift/z00" 5 (8)

C., = torque/lo Uz(g-)2

M 2 2

The torque here is the torque caused by the fluid, that is TFL'

Each of the coefficients in Equation (8) consists of two parts.
The drag coefficient is the sum of the drag due to pressure and the drag
due to friction

Cp = Cop * Cpr i
with
c =_4..[tanh cos }"(a_w_) sin 6de - sin ?“ (é'(ﬁ) cos 6do ] (10)
0P " Re i g s 0 *
A 2 : , 2n
cDF=-R—e-[- cosu(f) w sin ede + tanh n, sin a (f) w, cos ede] (1)

The 1ift and moment coefficients may be expressed in a corresponding
way.60 In this notation, negative values of CD’ CL, and CM denote,
respectively, drag, 1ift in the direction of the Magnus force, and torque
supporting the body rotation.

3.2 OUTLINE OF THE NUMERICAL ANALYSIS

The initial/boundary-value problem defined in the previous section
is solved by the same finite-difference scheme used in an earlier paper.
It is, therefore, not necessary to repeat the procedure here, but it may
be mentioned that the vorticity equation (4) is discretized with the
DuFort-Frankel scheme, and that the Poisson equation (5) is solved with
Hockney's direct method. Furthermore, the following transformation is
made for numerical reasons:59

59




SRR, 5 R TR, i v A

T e

y* + 2/Ro(cosh2 n - sin2 9) (12)

J
w* + 2/Ro (13)

"

w

This transformation avoids large values of y at the outer boundary but
leaves the grid fixed to the body.

The grid has been chosen in such a way that the infinite region of
integration is replaced by a finite network of points n]+(i-])An,
(3-3)06 with i = 1,...,97 and j = 1,...,965 4n = 0.04. The time
increments, except in the brief initial phase where they are very small,

are
R°d/2 =1, 2, 4, n = 0.1 at = 0.0025
Rod/Z =6 at = 0.003
Rod/2 - 25 Ny * 0.6 at = 0.005

Since Aa = At/Ro, more computer time is required to calculate one plate
revolution at higher Rossby number. The computer time required on the

IBM 360-91 for each time step is 0.7 sec. One cycle, equal to half a plate
revolution, requires then 1250 time steps times 0.7 times Ro, which is
870-Ro sec or 14.5-Ro min.

The accuracy of the numerical scheme was previcusly checked for the
nonrotating p]ate60 by comparing results with varying grids, with
experimental results by Honji,60 and with a different numerical scheme by
Mehta of Stanford University (private communication) and by Collins and

Dennis.sl The general rotating plate program was checked for the special

case of the rotating circular cyh‘nder.59 For Ro = 4 and 6 a new numerical
phenomenon has been observed, the reason for which is not yet known. The
curves for the force and moment coefficients show oscillations from time
step to time step which may cease for a while and then resume (Figure 8).




!
g 4
2
&l
]
&
il
e

RN S

Rl S o

 Nwrh S

saaubag g = 0y ‘L°0 = Ly ‘002 = 3y ‘9 = 0Oy 40} © SNSUIA
zu S3U3S3a4day 3A4N) 3AOQY 3Y] 9 Pue p = 0Y J0j SIUILIL}30)
JUSWOY PUP 22404 Y3 UL PIAJISQQ SUOLIR||LISQ [eDtJawny ~ g 3unbiy

9L

-

80—

vo-

80

0
/e +2 p/L+u 1 Ly/E c/e v/x
.5 e
1 " S b
~ —arhy- 7 ~
5, ’ : ..\. -
. - s
- s 7
* > e
Al 2 ot
s o v
-‘\o
L~ >
# 4
i .-.rl s, o
-' 1 s
= A .’ ’
® o o - .
. . %o . 'l
o ~
v .-\-. \-‘

z




.t Ml . e . . . . .. bt el e i

The following cases have been computed.

TABLE 1 - LIST OF COMPUTED CASES |
Rod/2 Ro Red Re M ) Range
N 1 {~200 200 { 0.1 0° 0° - 5.57
2 2 | 400 400 | 0.1 0° 0° - 4n
4 4 |[~200 200 | 0.1 0° 0° - 2.2«
6 6 | ~200 2001 0.1 0° 0° - 1.5n
2 2.37 | 200 169 | 0.6 0° 0° - 6mn

From previous ca\culation559’60‘62’63 the results for Ro = 0.5, 2,

Re = 200, n = 0.1 are known. Also data are available for the limiting
cases Ro = 0 and Ro = =, a = 45°. The results are presented in the form
of flow patterns for streamlines and equi-vorticity lines with y*-values
of -3.0, -2.8,...,0,...,2.8, 3.0 and with w*-values of -11.0, -9.0,...,
9.0, 11.0. In addition, the force and moment coefficients, the surface
pressure, and the local contributions to the torque are given.

Since there exists no preferred reference frame in which to present
the streamh‘nes,59 the selection of such a frame depends on how useful it
is for discussions of the flow patterns. Two different reference frames
have been chosen: (1) a frame fixed to the center of the body, but

rotating in relation to the plate, and (2) a frame fixed to the body.

o Lugt, H.J. and S. Ohring, Efficiency of numerical methods in solving

the time-dependent two-dimensional Navier-Stokes equations. Proc. Int. '
Conf. Numerical Methods in Fluid Dyn., Southampton, p. 65. New York: |
Crane, Russak & Co.

3 Lugt, H.J. and S. Ohring, Rotating thin elliptic cylinder in a parallel
viscous fluid flow. Proc. 4th Int. Conf. Numerical Methods in Fluid Dyn.,
Boulder. Lecture Notes in Phys. vol. 35, p. 257.
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4. RESULTS AND DISCUSSIONS

4.1 LOW REYNOLDS-NUMBER FLOW

As stated in Section 3.1 it is assumed that the plate rotates with
constant angular velocity @ about a fixed axis normal to a uniform
parallel stream. For this situation potential-flow theory (discrete
vortices are not considered) and quasi-steady viscous flow models predict
a vanishing average torque for all Ro: EM(RO) = 0. This means that, once
the plate starts rotating, it does not need a driving torque TEX; it
always autorotates. In potential-flow theory the average torque is even
zero for periodic motions but arbitrary a(t). Here, "periodic" means
CM(0°) = CM(nn) with n = 1,2,3... Circulation does not contribute to the
torque. Obviously, such mathematical models are unrealistic.

However, the variation of the torque with -sin 2a predicted in those
theories is remarkably accurate. Except for a slight phase shift this
relation is also found in experimental results of autorotation55 and in
numerical results based on the Navier-Stokes equations (Figures 9 through
13). The fixed (nonrotating plate) always tends to position itself
normal to the parallel flow. Rotating plates behave in most cases in the
same way. Except for the small phase shift the torque supports rotation
when o changes from 0° to n/2 (supporting period), but it counteracts
rotation from n/2 to = (retarding period).

The transient phase after the abrupt start is short, especially for
ag = 0°.59 For the cases considered in this paper, the transient time
interval is approximately t = aRo = = with t0=0, a0=0°. In some cases
(Figures 9 and 13) the average CD- and CL-values increase and decrease,
respectively, over the whole time span computed. This effect is probably
due to the development of the wake and would vanish after a certain time
This conclusion is based on experience with flows past circular

cylinders.64 The CM-curves do not show this "transient" effect.

64 Dawson, C.W. and M. Marcus, DMC - A Computer Code to Simulate Viscous
Flow About Arbitrarily Shaped Bodies. Proc. 1970 Heat Transfer and Fluid
Mechanics Institute, Stanford University Press, 1970.
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Figure 9 - CD. CL' and CM versus a for Ro = 1, Re = 200,
Vi @ 0.1, a = 0 Degrees
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Figure 10 - Cp, C . and Cy versus a for Ro = 2, Re = 200 and 400, j

|
|
31 k 1




; B P
3 ot N gl N
o / 3 P
o BN £ LA i
X i & 7
S A e o
N
: o ———\ /\
/
CL :: / VZ |
’;( PN AV |
: LY 4
T\ /
o Em—— R =
g N N

Figure 11 - CD’ CL, and CM versus o for Ro = 4, Re = 200,
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The amplitudes of the curves in Figures 9 through 13 may also change
when the frequency of vortex shedding is different from the rate of body
rotation. In order to further discuss the change in frequency the following j
notations are introduced. The frequency of vortex shedding behind a
nonrotating body is called the "natural" frequency fy, whereas the
frequency of vortex shedding from a rotating body is designated by f. The
frequency fp of the rotating plate is @/2n. Behind a flat plate a vortex
at each tip may be washed downstream every half revolution. Then, vortex
shedding and plate rotation are synchronous if

Q=qnf or fP = f/2 (14)

If one introduces the dimensonless form of the frequency f, the Strouhal
number St = fd/U, Equation (14) can be written in the dimensionless form

Ro o = 2/n St (15)

d/
For the fixed plate with Re = 200, né = 0.1, and o = 45°, StN= fdsina/U
is, according to Lugt and Haussling, 0 about 0.18. Thus, for the
synchronous situation one expects R°d/2 % 3.6, provided f = fy, which need
not be the case.
In fact, condition (15) is usually not fulfilled. Two kinds of
deviations may be distinguished: (1) «/f ¥ mn with n = 2,3,..., and
(2) @/f = n + 8a, where [Sa|<<m. The magnitude of Sa can be determined
from Figures 9 through 13, whereas the integer n is best obtained from
patterns of equi-vorticity lines.
By including previous results™” the following data (which exclude the
initial phase) are given in Table 2. According to this list only the
f cases Rod/2 =2 and 4, Red = 200, m = 0.1 have synchronized frequencies.
(The value for Rod/2 = 2, Rey = 200, n = 0.1 has been taken from
longer computer runs.) A comparison with the predicted synchronous
value Rod/2 x 3.6 for f = fy reveals that synchronization occurs at fy

59

and values of f above.




—_ e PSR o
e e R R S T P

P

:’; TABLE 2 - DATA FOR THE FREQUENCIES OF VORTEX SHEDDING

1 Rod/2 Red " n Sa ]

3 0.5 200 | 0.1 3

1 ] 200 | 0.1 2 ]
3 2 200 | 0.1 1 i
E | 4 200 0.1 1

2 6 200 | 0.1 -6° 45"

: 2 400 | 0.1 -3°

| 2 200 | 0.6 -4°

The average value of CD is defined by

) 2n(n+1)
! =5 { CD da s n=0,0,... (16)
with corresponding definitions for EL and EM. Negative values for these
coefficients indicate real drag, 1ift in the direction of the Magnus force,
and torque supporting rotation, respectively. It is also useful to
distinguish between the retarding and supporting periods for CM:

C, 2n(n+l) _ C,>0
_MR = | Cy da  for M only (17)

The data are given in Table 3. According to this table and Fig. 6
autorotation and rotation with braking (EM < 0) occur in the range
2 < Rod/2 <6, Red = 200, n = 0.1. The minimum of CM is at Rod/2 = 4,
= 200.

In Fig. 14 a representative cycle of CM (half revolution) for Ro = 1,
2, 4, 6, Re = 200, . T 0.1 is plotted. As can be seen immediately the
retarding period is crucial for explaining autorotation.

Red
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TABLE 3 - MOMENT COEFFICIENTS

Rog/2 | Rey N CﬁR Cﬁs CM Range |
1 200 | 0.1 | 0.810(-0.481{+0.329 37 - bn
2 200 | 0.1 { 0.443{-0.405|/+0.038 | 3.5n - 4.5
4 200 { 0.1 | 0.296(-0.383]-0.087 m - 2m
6 200 } 0.1 | 0.300}-0.319)-0.019 | =/2 - 3u/2
2 400 | 0.1 | 0.453}-0.447]+0.006 2t - 4n
2 200 | 0.6 | 0.435|-0.257|+0.178 4n - 5r

It may be noted that the magnitudes of the frictional parts of the

total forces (that is, CDF’ CLF’ and CMF) are an order of magnitude
smaller than CD’ CL, and CM’ even for a thick body with iy = 0.6. The
following discussions are, therefore, based mainly on the pressure and
the coefficient CMP'

Two questions arise in the explanation of autorotation: (1) Where
does the additional torque which permits autorotation come from?

(2) Why is autorotation observed only in a certain Rossby-number range
(assuming the other flow parameters to be constant)?

The second question will be discussed first since it is easier to
answer. As already pointed out in Ref. 59 two types of vortex shedding
can be distinguished, depending on whether the vortex at the retreating
edge is in front of or behind the edge as seen from the direction of

parallel flow. Figures 15 through 21. For Ro = 1, Re = 200 the relative

rate of rotation is so fast that vortices shed from the edges of the plate

do not have time to leave the vicinity of the plate and they therefore

interfere with the following other edge. Hence, the vortices are

trapped for a while and f is smaller than @/ (Table 2). The plate

requires an outside driving torque TEX to rotate. For larger Ro,

probably Ro 2 6, the rotation relative to translation is so slow that now 1
the frequency of vortex shedding f is larger than @/w. Although Cﬁ is

still negative for Ro = 6, the fact that its absolute value is smaller

than that for Ro = 4 indicates the trend toward positive values. The
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Figure 15 - Sketch of Vortex Shedding About a Rotating Plate. a) Initial
Phase for Pure Rotation (Ro=0), b) Initial Phase for Small Rossby
number (Ro<1), c) Vortex Pattern for 1 < Ro < 2, Re = 200 at
a Later Stage, d) Vortex Pattern for Maximum Support of
Autorotation, Ro ~ 4, Re = 200, e) Vortex Pattern for

Ro > 6, Re = 200

region 2 < Ro £ 6 or 0.167 < 1/Ro < 0.5, Re = 200, n o= 0.1 corresponds
roughly with the shaded area in Fig. 6 (see also Fig. 22). Since a freely
rotating plate with Eﬁ < 0 increases its angular velocity, autorotation
occurs a little above Ro = 2 for Re = 200, ny = 0.1. The motion is
synchronous.

What mechanism provides excess torque in the shaded region of
Figures 6 and 22 and damping in the other regions?
Supporting Period
In potential flow the moment coefficient is CM = - 7 sin 2o for a fixed
plate, or for a rotating plate with constant ©. The minimum value in the
supporting period from « = 0° to n is CM ~ -m for n = 0.1 at o = 45°.
This torque is generated through the asymmetric displacement of the
stagnation points if the plate is neither parallel nor normal to the flow.
In viscous fluid flows the torque is reduced considerably since the
center of pressure in the rear of the body is generally much closer to the
body center than it is in potential flow. Viscosity modifies the flow

characteristics in the following way:
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a=3n+1/6x

a=3n+2/8x

a=3n+4/6n

a=3n+86/6xn

a=4n

Figure 16a - Sequence of Streamlines and Equi-vorticity Lines Around
a Rotating Thin Elliptic Cylinder ("plate") in a Parallel Flow 1
for Ro = 1, Re = 200, n = 0.1, ay = 0 Degrees. The .

Streamlines are Computed in a Frame Which is Fixed
to the Body With Regard to Translation but Which
is Fixed in Space with Regard to Rotation
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Figure 16b - Same Situation as in Figure 16a but Streamlines are
Computed in a Frame Fixed to the Body
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Figure 17a - Same Situation as in Figure 16a but for Ro = 2,
ag = 90 Degrees (from Ref. 59)
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Figure 17a - (continued)
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Figure 17b - Same Situation as in Figure 17a but Streamlines are
Computed in a Frame Fixed to the Body
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Figure 19a - Same Situation as in Figure 16a but for Ro
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Figure 20a - Same Situation as in Figure 16a but for Ro = 2, Re = 400
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Figure 20b - Same Situation as in Figure 20a but Streamlines are
Computed in a Frame Fixed to the Body
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Figure 21a - Same Situation as in Figure 16a but for

Ro =2, Red
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d/2 = 200, n = 0.6
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Figure 22 - EﬁR’ EMS’ and fﬁ versus Ro for Re = 200, n, = 0.1.

In the Shaded Area the Body Autorotates but Increases its
Rotation Until the Point A is Reached. This is the
4 1 Condition for Stable, Steady-State Autorotation

1 Rotation enhances |Cy| when compared with the nonrotating case (Fig. 14).
Behind a fixed plate CM oscillates according to the frequency fN of the
! Karman-vortex street between 0.38 < [Cy| < 0.95 for Re = 200, n, = 0.1,
‘j a = 45°.60 However, in the case of the rotating plate Ro = 2, Re = 200,
& : m = 0.1, a = 45°: Cy = -1.5. The difference may be explained with the

‘ aid of Figures 17 through 20 and Figures 23 and 24. Behind the leading
(retreating) edge a vorticity tongue is visible which owes its existence
to the boundary layer in front of the edge. Its strength and location
determine the local torque contribution. The faster the rotation, the
more closely the tongue clings to the rear of the edge since the vorticity
has not enough time to be convected downstream. This clinging causes a
higher suction effect behind the edge (see curves of the surface pressure
in Fig. 23b and c). This may also be explained in the following way: with
faster rotation vortex separation (stall), which is defined by the first
occurrence of a vorticity extremum inside the fluid, is delayed. This
hysteresis effect is due to the acceleration of fluid with growing a causing
a reduction of the adverse pressure gradient. For instance, for Ro = 2,
Re = 200, the vortex at the leading edge separates between 60° and 75°

i
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(Fig. 17). The local torque distribution in Fig. 24b and c shows that
in the region between 135° < ¢ < 180° support for the driving torque
increases with diminishing Ro.

It may be mentioned that due to differences in the absolute values
of the pressure from one cycle to the next the curves in Figures 23, 26
and especially in Figures 24, 27 are only approximate values. However,
the information contained in the curves, is sufficient to draw physical
conclusions.
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Figure 23a - Surface Pressure versus ¢ for Various { a
Ro and Angles of Attack at Re = 200 :
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Around the trailing (advancing) edge differences in the local torque
due to the various shapes of the vorticity tongue are negligible except
for Ro £ 1. Here, the vortices from the preceding cycle cause a shift in
the stagnation points (Fig. 23b and c) in such a way that the shift has an
adverse effect on the local torque. To a certain extent this effect
counteracts for Ro = 1 the advantage described before. As a result, EMS
decreases only slightly with smaller Ro (Fig. 22). The main contributor
to this comes from the vortex behind the retreating (leading) edge.

Retarding Period
The major differences among the various Ro-cases occur in the

e M N e s A AR ARG AN S it~ St o o M N

retarding period. It is here, where viscous effects decide the balance

between Eﬁs and EﬁR and, thus, can cause the situation EMS > EMR’ that is,
autorotation. Again, the flow behavior around the retreating edge (which
is now the trailing edge) becomes crucial.

From potential-flow theory it is known (and this is valid for viscous
flows also) that the front stagnation point migrates during the supporting
period over most of the front side of the plate (Fig. 25a). In contrast,
in the retarding period, the front stagnation point remains close to the
leading edge (Fig. 25b). This has the following consequence: for Ro = 1
the surface pressure drops sharply over the prolonged boundary layer in
front of the plate from the stagnation point toward the center where the

Towest pressure due to rotation occurs. A relative maximum exists near
the trailing edge at o % 12° (Fig. 23e and f). This maximum is due to

-
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Figure 25 - The Location of the Front Stagnation Point in the
Supporting Period (a) and in the Retarding Period (b)
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the existence of another stagnation point which has formed because of the
presence of a newly generated vorticity tongue while the older vortex has
not yet been convected sufficiently far away (Fig. 15c). The sharp
pressure drop causes a large adverse torque as can be seen from Fig. 24e
and f. With increasing Ro the absolute value of M rises, and the pressure
drop diminishes. The rear stagnation point near the trailing edge as well
as the stagnation point in front of the trailing edge migrate toward cthi:
edge, diminishing the asymmetiy of the vorticity tongue. This causes the
surface pressure to level off at Ro % 4, resulting in Eﬁs > éﬁR' This
peculiar situation does not occur in the supporting period, where always

an asymmetric vorticity tongue appears and where due to the behavior of the
front stagnation point (Fig. 25a) the surface pressure in front of the
plate is high and quite evenly distributed (Fig. 23b). For Ro=6 a vorti-
city tongue of opposite sign develops at the rear edge due to the slowness
of the rotation (Fig. 15e). The older vortex has already left the vicinity
of the plate. The surface pressure drops (Fig. 23f) causing an adverse
local torque. The change in the direction of the vorticity tongue at the
rear edge in the retarding period can again be explained by the hysteresis
effect: with decreasing a the fluid is decelerated, causing an adverse
pressure gradient. This effect is high for small Ro, the separation point
is on the front side of the plate. For high Ro, the flow behaves like that
past a fixed plate, that is, the flow separates behind the edge. Between
the two cases the situation of autorotation occurs where the flow separates
at the rear edge like a flow past the trailing edge of a flat plate
parallel to a constant stream.

In summary, a minimum of EﬁR occurs at Ro=4 which is smaller than Eﬁs
(Fig. 22). The synchronization of vortex shedding and rate of rotation
minimizes the adverse effect of the vorticity produced in front of the
rear edge. The condition for this is that the amount of vorticity shed
from both sides of the rear edge is the same, although with opposite signs
(Fig. 15d).

Around the leading (advancing) edge early separationof a vortex weakens

the influence on the torque due to vorticity spreading from the edge to
the extent that it is favorable for autorotation. This effect can be

seen when the vorticity field in the initial phase is compared with that
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at a later time (Fig. 17a), a = %-+ %g and © + %? .

the vortex is much stronger than at the later time. The strong vortex
has a larger adverse effect on the torque. This adverse effect is
smallest for Ro = 4 (Fig. 24e and f). |
Although the occurrence of a minimum in EﬁR is a necessary condition
for autorotation, it is not sufficient. It is well known that plates
with sharp edges autorotate better than those with blunt edges4’47 and
that blunt bodies do not necessarily autorotate. In order to study this
effect, flows around a thick elliptical cylinder were investigated.
In the limit Ny ke the elliptic cylinder becomes a circular one. The
distinction between retarding and supporting periods disappears, and the
torque is always positive, at least for the Oseen-type f1ow59 and the
special cases studied by Thoman and Szewczyk.65 The fat ellipse Sl 0.6
has been selected as a typical example of conditions between the extremes
n = 0 and ) Han From simple geometrical considerations one expects
that tip effects are no longer pronounced and that the Targer surface area
(when d is kept constant) has an adverse effect on autorotation.
Dynamically, one expects for n = 0.6 less concentration of vorticity
around the blunt tips and larger frictional effects.
Table 3 shows that indeed the average moment coefficient EM is
positive for ny = 0.6, and that this body does not autorotate. However,
Table 3 also indicates that the difference between CMR and Eﬁs is not as
dramatic as one might expect. This means that the curvature effects
(when comparing the results for ny = 0.1 and Ny = 0.6) are rather subtle,
and this is confirmed in Figures 26 and 27. It appears that for o = 60° |
(Fig. 27) the vortex behind the retreating tip of the body is weaker,
and that this is the major cause for the small value of EﬁS‘ The fact
that the thick ellipse does not autorotate for Ro = 2, Re = 200, does not 1
mean that it cannot autorotate at all. It is still possible that it could 3
autorotate for higher Ro and for @ # constant. The autorotation of blunt |

In the first case

e e e e ol

65 Thoman, D.C. and A.A. Szewczyk, Numerical solutions of time dependent
two dimensional flow of a viscous, incompressible “luid over stationary
and rotating cylinders. Univ. Notre Dame, Dept. Mech. Engineering, Tech. [ |
Rep. 66-14, 1966. j
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bodies like hailstones suggest this. Recently, Taneda66 published

photographs of streamlines and streaklines of elliptic cylinders with
M = 0.55 rotating with constant @ in a parallel flow. These experiments
were carried out for Red = 41, Rod/2 = 5.9; Red = 129, Rod/2 = 2; and
Red = 140, Rod/2 = 20. It appears that synchronization occurs even for
the large Rossby number of 20. This is in contrast to the results obtained
for n = 0.1, where synchronization is restricted to 2 < Ro £ 4 for Re =200.
The case Ro = 2, Re = 400 has been chosen to study the effect of
Reynolds number on autorotation. Although the computation of the cases
Re = 200 and 400 has yielded no essential differences, a slight phase shift
is observed in Table 2. This indicates that a slight asynchronization
occurs when Re increases. This idea will be further pursued in Section 4.2.
It has been assumed that Q@ = constant which implies an infinite
moment of inertia. Experiments55 have shown that this is a good assump-
tion over a wide range of values for the moment of inertia. However, for
small moment of inertia the angular velocity Q of the plate would decrease
during the retarding period, and the generation of surface vorticity would
be reduced. Under these conditions the plate would either keep rotating
at a smaller average Q or it would oscillate.
It may be mentioned that autorotation can be considered analogous to
the oscillation of a body in a parallel stream. The highest excitation
normal to the flow occurs when the natural frequency of vortex shedding is

equal to the frequency of the oscillating body. A few of the numerous
67,68,69

literature on oscillating circular cylinders are cited. But the
analogy between rotating and oscillating bodies goes even further. If the

frequency of the oscillating body is not equal, but is close to the

66 Taneda, S., Visual Study of Unsteady Separated Flows Around Bodies.
Prog. Aerospace Sci. 17 (1977), 287.

67 Koopmann, G.H., The vortex wakes of vibrating cylinders at low
Reynolds numbers. Journ. Fluid Mech. 28 (1967), 501

68 Griffin, 0.M., The Unsteady Wake of an Oscillating Cylinder at Low
Reynolds Number. Trans. ASME, Journ. Appl. Mech., Dec. 1971, 729.

o Griffin, 0.M. and S.E. Ramberg, The vortex-street wakes of vibrating
cylinders. Journ. Fluid Mech. 66 (1974), 553.
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natural frequency of vortex shedding, the natural frequency will adjust

to the oscillating frequency. This phenomenon is called "lock-in". 1In

the case of the rotating plate lock-in occurs in the region 2 < Ro < 4

for Re = 200, ny = 0.1. Deviation from this condition causes aerodynamic '

damping. This effect has been clearly demonstrated at least for Ro < 1.

Conclusion

Autorotation of plates normal to a parallel flow occurs under the
following conditions:
(1) A necessary but not sufficient condition for autorotation is the
synchronization of vortex shedding and rate of rotation. A lock-in effect
is observed over a certain Ro-range, in which the frequency of vortex
shedding adjusts to the rate of rotation. This Ro-range roughly coincides
with the shaded area in Fig. 22.
(2) Under condition (1) the difference in the average surface pressure
between front and rear side of the plate has a minimum during the
retarding period. This corresponds to the condition that the amount of
vorticity shed from both sides at the rear edge is about the same (with
opposite signs, of course). tMR reaches a minimum at Ro & 4 which is
smaller than CMS' In the supporting period the presence of the vortex
at the retreating edge also favors autorotation although not as strongly
as in the retarding period. Thus, the characteristics of the vortex at
the retreating edge over the entire cycle of rotation is essential for
autorotation.
(3) Sufficient surface vorticity around the edges must be produced to
meet condition (2). A sharp edge is most favorable for autorotation. The
fat elliptical cylinder L S 0.6 does not autorotate for Ro=2, Re =200
(@ = constant).
(4) The dimensionless moment of inertia must be sufficiently large.
(5) Autorotation requires the fulfillment of all conditions (1) through

(4). The exact rate of autorotation is determined by an intricate inter-
play of (1) through (4). For Re = 200, n = 0.1, @ = constant, stable
autorotation occurs at Ro % 2.
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4.2 EXTRAPOLATION TO HIGH REYNOLDS-NUMBER FLOW

Except for some instances in biofluid-dynamics, autorotation of
technical interest occurs in the high Reynolds-number range. With
presently available computers and numerical techniques it is very expensive
in computer time to obtain solutions of the Navier-Stokes equations for
the problem of autorotation beyond Re = 1000, let alone problems which
involve turbulent motions. Experiments have shown that autorotation occurs
up to Re = 5 - 105 and probably higher. Is the explanation for autorota-
tion at these high Reynolds numbers different from that for the low values
given in Section 4.1? This question will be answered by analyzing
available experimental data and a smoke tunnel movie from the University
of Notre Dame.

In flows at higher Reynolds number convection of vorticity dominates
over diffusion of vorticity. The boundary layers become thinner, producing
more vorticity and causing stronger vortices at the retreating edge.

Shear layers behind the advancing edge become thinner and eventually
become unstable and turbulent. (See Figure 28.)

(=)

@ M, Q@ 4

Re ~ 200 Re ~ 1000 Re ~ 10°
low Re intermediate Re high Re

Figure 28 - Sketch of Flow Patterns Around an Autorotating
Plate for Various Reynolds Numbers

The conditions for the occurrence of autorotation summarized on page
85 also hold for high Reynolds-number flow:
(1) Synchronization has been observed in all experiments.
(2) The hysteresis effect can be observed in the smoke tunnel movie in
which the delay of vortex separation behind the retreating edge in the
supporting period is clearly visible.
(3) The influence on autorotation of surface vorticity around the edges
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is demonstrated in Riabouchinsky's experiments from 1909, Figure 29. t
Although no Reynolds number is given by Riabouchinsky, the value is not in

the low Re range. Similar results with the shape of Figure 5 were obtained '
by Flatau.47 The Rossby number is about 1.2 for Re ® 3-104 (Ro = 0.7 for

bodies with endplates).

QR/U = 0.627 0.622 0.429
Ro =160 1.92 2.33

Figure 29 - The Influence of The Edge on Autorotation According
to Riabouchinsky®

(4) The dimensionless moment of inertia must be sufficiently large at
high Reynolds numbers a]so.4’55
(5) The interplay of conditions (1) through (4) is also obvious.

It remains now to compare computer output for low Reynolds numbers
with available experimental data at intermediate and high Reynolds numbers.
In order to avoid three-dimensional effects on the data during the
experiments, in this section only data for aspect ratios larger than 5
are used.”’zz‘55 In addition, the comparison is restricted to thin
plates and to almost constant rotation so that the Rossby number is a
function of the Reynolds number only.

Although potential-flow theory (without considering discontinuity
sheets) cannot predict a restricted Ro-range for autorotation, a
theoretical 1imit can be given at which the two stagnation points on the

plate migrate into the fluid. This happens at Ro = 0.5. Below this
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value, closed streamlines around the body occur. Riabouchinsky4 noticed
that Ro > 1 for autorotation. More detailed data were given by Dupleich,
Crabtree,22 Bustamante and Stone.48 and E.H. Smith.55 For the intermediate
Re range (Re ~ 2000) Dupleich measured Ro % 1.3, Bustamante and Stone

Ro ¥ 1 for high Reynolds numbers. E.H. Smith found, for various airfoils
(flat plate, thin elliptic cylinder, wedge airfoil) autorotating around a
fixed axis, an almost linear dependence of Ro on Re with

16° < Re < 3:10°

2.4 > Ro > 1.0

17

However, a peak was observed by Smith around Re = 104 attributed to

turbulence effects. For plates rotating around a free axis the Rossby
number was lower. Crabtree cites data for thin plates with biconvex
circular-arc sections and found, depending on whether endplates have been
used or not, Ro & 1.2 with endplates, Ro % 2 without for Re ¥ 105. It is
also worth noting that thick bodies with biconvex circular-arc sections
have higher Ro, despite the fact that the edges are sharp. This observa-
tion is in agreement with the argument that a larger surface area causes
more friction, and that the difference in surface pressure distribution
between the frunt and rear sides of the plate decreases.

The experimental results on Ro = f(Re) are summarized in the statement
that with increasing Re the Rossby number decreases, and that Ro is smaller
for plates autorotating around a freely moving axis than for those with a
fixed axis.

Force coefficients over one revolution were measured by Smith.
Figure 30 shows a comparison of the computed value for Re = 200 with
experimental data for Re = 90000. The qualitative agreement is sur-
prisingly good. Quantitatively, one expects from Smith's results smaller
values of CD and CL for Re = 200. The reason for the discrepancy is not
clear. It may be mentioned, however, and this is valid for all experi-
mental data, that the influence of the ball bearings on the measurements
is difficult to avoid. The closeness of data for laminar and turbulent
flows may be explained by recent studies on organized structures in

55
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The large vortex behind ,

} turbulent motions with significant lifetimes.
j the retreating edge of the plate (Fig. 28) is the cominant feature of the
flow in both the laminar and turtulent case, and the fine-scale turbulent
E { structure has probably a smaller influence on the {low characteristics. '
k| Plates and cylinders of elliptic cross-section are not the only bodies

| capable of autorotation. Riabouchinsky7 made experiments with systems of
‘ three and four symmetrically arranged plates which later became important
for flows past bodies with cruciform fins. Other results on cruciform
. fins with and without bodies, on right cylinders, and on rectangular

1 prisms are recorded in Refs. 17, 38, and 45. Figure 31 shows a sketch
of streakline patterns for an autorotating cruciform fin system.

il L Sk et £

; — _—'\\

:! TN %
______________‘\\\\‘~__-‘_”//,/"‘

Figure 31 - Sketch of Stream]ine556 Around an Autorotating Fin ﬂ
System at Re =z 105

The following approximate data of measured Rossby numbers are given
| in the literature: For cruciform fins with endplates and a fixed axis at
Re X 5-105 the Rossby number is about 2.2 according to Greene.38 The
same Rossby number was observed by Dup]eich]7 for cruciform fins in free
fall at Re X 1000. For a triangular arrangement of plates the Rossby
number was about 1.4 for Re ¥ 1000. It appears from these results that
the number of plates (at least up tc 4) has no effect or only a slight

influence on the Rossby number.

70 Roshko, A., Structure of Turbulent Shear Flows: A New Look, AIAA
Journal 14 (1976), 1349.
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4.3 COMMENTS ON 3D-FLOW

The discussions in the previous pages were restricted to two-dimen-
sional flows, that is, the span of the plate or elliptic cylinder was con-
sidered to be infinitely long. This is not the case in reality, and the
influence of a finite span on the flow characteristics must be evaluated.
In addition, the axis of rotation need not be perpendicular to the flow, a
situation which makes the problem extremely complicated. At present, three-
dimensional flows of such complexity can be studied only experimentally.
To begin with, the axis of rotation is considered to be normal to the flow.

A measure for the finiteness of the span is the aspect ratio: span to
chord. A1l experiments agree that the rate of autorotation and the lift-
to-drag ratio diminish with decreasing aspect ratio. Quantitative data
were given by Bustamante and Stone48 who summarized them in the formula

1/Ro = 1 - ¢ 0-2AR (18)

where AR is the aspect ratio. Endplates preserve, to a certain extent,
the two-dimensionality. Thus, when a high rate of autorotation is desired
or when three-dimensional effects in wind tunnels are to be reduced,
endplates are advantageous.22‘38'47

To aid in understanding the influence of a finite span on autoro-
tation, the flow field may be idealized as a potential flow with vortex
lines or tubes (for curved vortex fields). Clearly, in two-dimensional
flows all vortex lines are straight, infinitely long, and perpendicular
to the plane. A body with finite span, however, will be surrounded by a
flow in which the vortex lines are either closed or must end on the body.
They are bent at the ends of the wing, thus giving rise to a secondary
flow. This flow interferes with the primary (two-dimensional) flow by
weakening it in two ways: decreasing the strength of the primary flow,
and speeding up the process of instability since curved vortex tubes are
highly unstable in genera1.7]

n Taneda, S., Studies on Wake Vortices (I), An Experimental Study on the

Structure of the Vortex Street Behind a Circular Cylinder of Finite
Length. Reports of Research Institute for Applied Mechanics, Vol. I,
No. 4, Dec. 1952.
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The location and arrangement of the vortex tubes can only be con-
Jectured without photographic evidence. The following discussion may be
guided by simpler, confirmed cases. Taneda7] presented the following
model. For a Karman-vortex street behind a fixed circular cylinder of
finite length, based on the evaluation of photographs:

Figure 32 - Taneda's Vortex-Tube Model of 1952 for the Periodic
Vortex Shedding Past a Circular Cylinder

If the cylindrical body is nonsymmetric, as in the case of a wing at
high angle of attack, the vortex tubes are still closed and linked
together but will be stretched where the vortex strength is large. Thus,
Helmholtz (or Kelvin's) laws are not violated.

If the aspect ratio decreases so that a sphere, or cube type body
results, the vortex tubes will simplify to the double-helix model 1

developed by Pao and Kao.72

Figure 33 - The Double-Helix Model by Pao and Kao of 1975 for the
Periodic Vortex Shedding Past a Sphere

72 Pao, H. and Kao, T.W., On Vortex Shedding in the Wake of a Sphere.
Catholic University of America, Tech. Rep. No. HY-75-001, May 1975.
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The axis of a rotating body is always a vortex line or tube. The
reader may be reminded of the well-known vortex model for a propeller. The
vortex tubes around an autorotating plate are then imagined in the following
way: the two-dimensional model (Figure 34a) consists of two starting
vortices whose circulations balance the circulation of the rotating plate
(see Fig. 17a). After each half cycle vortices of unequal strengths are
shed, but they also balance so that the total circulation remains zero.
Figure 34b shows a proposed three-dimensional model in which the vortex
tubes are linked together. This configuration, of course, is very un-
stable down stream.

Figure 34 - Proposed Vortex-Tube Model for an Autorotating
Plate of (a) Infinite Span, (b) Finite Span

The situation becomes even more complicated if the axis of rotation
is not perpendicular to the flow but forms an angle g8 with the flow
direction in the range 0° < 8 < 90°. The axis may even gyrate (Ref. 45,
p. 529). Some experimental data38 are available for a cruciform fin
configuration. These data are presented in Figure 35.
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Figure 35 - Autorotation of a Cruciform Fin System (Figure 2e)
With and Without Endplates. 1/Ro = f(B). Aspect Ratio = 3
(from Ref. 38)

Autorotation is not restricted to rectangular plates or systems of
rectangular plates. The shape of the plate may be circular or may have a
delta form. Experiments have been performed by Bustamante and Stone.48
The Rossby number at high Re-flow is for circular disks about twice as
large as for long rectangular plates. For delta-shaped plates the Ro-
number is even higher. The rate of autorotation can be optimized for
different purposes. If autorotation is desired, the rate of spin can be
enhanced by a proper, propeller-like shape of the body with endplates.“s'47
However, such a devise then assumes a gyro-type configuration and is not
strictly autorotating in the sense of the definition on page 5.

Autorotation can be suppressed by the use of slots.39’4°‘4‘
fences.55 and probably by shrouded fins. Slots were proposed by the
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author,”” and the results of subsequent experiments have been reported in
Refs. 40 and 41. It is still not clear which slot position would be most
effective. Slots slanted with respect to the edges of the plate would be
very effective since they would disturb the two-dimensionality of the
vortex tubes (which are parallel to the wedges).

The influence of fences on autorotation was investigated by
E.H. Smith.55 The interpretation of the results is consistent with the
present theory: fences at the axis of rotation disturb the development of
the boundary layer along the entire front of the plate in the retarding
period. As was pointed out on page 68, the prolonged development of this
boundary layer is the main cause of autorotation. Smith's experiments
with Re = 78000 show that the Rossby number can be increased by a factor
of 4 through the use of fences at the midsection of the plate. Fences
at the tips act similarly as Riabouchinsky-type bodies (Figs. 5 and 29).
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