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ABSTRACT

A stochastic model demonstrates low-cost meteorol-
ogical support to environment dependent simulation studies.
Only the univariate problem is demonstrated, but extentions
to multivariate applications are feasible. This applicat-
ion models atmospheric visibility. The model simulates
time series at a given geographical point. A historically
derived cumulative frequency distribution is converted to
its equivalent normal deviate and fitted by a rational
approximation. A Markovian time dependence is assumed.
Seasonal and diurnal cycles are modeled. A run is init-
iated via a random draw from a unit normal distribution.
Alternately, an initial value may be specified. Subseq-
uent values are generated using a time-correlation weight-
ed linear combination of the prior value and a unit normal
random input. This produces a Brownian Movement phenomena
within the appropriate probability density function. A
given run tends to regress toward the climatological mean
while exhibiting random flucuations. A run of sufficient
length recreates the probability density functions. Res-
ults presented verify model performance against historical
data and include a few applications. The FORTRAN computer

subroutine is published in an appendix.
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§ i.¢ Histogram summarizing 10 years of data

! : for duration of ceilings below 3000 feet.

‘ - Frequency (f) is plotted against time (t)
in hourly increments. There were 94 cases.
Duration was truncated at 23 hours and a
new series was started. This created a

{ spike at 23 hours. The solid curve is a

E | 10,000 case simulation normalized by freq-

uency for comparison with the 94 real data

cases. (After Boehm and Abbott, 1977)c « « « « 6

2. Same as Figure 1, but for 100 cases rand-
omly chosen from the 10,000 case simulation.
(After Boehw and Abbott, 1977): s + s « s » = » B

B This sample raw distribution (pdf) is
generated from Fulda, FRG November RUSWO
data, 0000L to 0200L time composite. The
values printed at the left of the histogram
bar are the probabilities that a randomly
chosen observation will fall into the visib-
ility range specified by the numbers immed-
iately above and below the probability;
€.g., for the second line, .037 is the prob-
ability that a visibility falls within the
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4, This is the cfd of the Figure 3 pdf. The
sums accumulate upward from zero (the reverse
of equivalent values in Table 1). This fac-
ilitates military applications. Here the
value on the second line corresponds to a
probability of <141 (104 + 037 = 141,
using Figure 3 values) that a randomly sel-
ected observation will have a value less
than 1.2 km. The last bar which brings the
ogive to 1.0 has been omitted to facilitate
scale expansion in the other categories. The
RMSE and maximum error associated with first,
second, and third order regression polynomial
fits are listed below the cfd. The intersec-
tion of these fits, respectively denoted by
Ly 25y and 3, is overprinted on the cfde « + s « 13
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November 0100L simulated pdf for Fulda,
FRG. The pdf is a composite of 5,000 in-
dependent random draws from a unit-normal
distribution. Accordingly, this is a test
of the random number generator and the lin-
ear model, but the Markov time dependence
is not tested here. The histogram is read
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tains the corresponding time-period his-
torical data. However, the intervals
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The upper histogram is the pdf from the
5,000 day simulation discussed in Figure 5.
The data are valid for November 0700L at
Fulda, FRG. The data display a composite
of the second points in 5,000 Markov chains
(using a six hour time step) extending from
the Figure 5 initial values and employing
the linear model of the diurnal cycle. The
lower histogram is the historical pdf used
to generate the linear simulation coeffic-
ients. When comparing values, note that
there are minor variations in interval
definition. The model provides an excellent
approximation, but it is the weakest between
the .5 km and 2.0 km thresholds. This is
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The upper histogram is the pdf from the
5,000 day simulation discussed in Figure 5.
The data are valid for November 1300L at
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from the values associated with Figure 6
and employing the linezr model of the diur-
nal cycle. The lower histogram is the his-
torical pdf used to generate the linear
simulation coefficients. When comparing
values, note that there are minor varia-
tions in interval definition. The model
provides an excellent approximation, but
it is the weakest between the .5 km and
2.0 km thresholds. This ic discussed in
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The upper histogram 1is the pdf from the
5,000 day simulation discussed in Figure 5.
The data are valid for November 1900L at
Fulda, FRG. The data display a composite
of the fourth points in 5,000 Markov chains
(using a six hour time step) extending from
the values associated with Figure 7 and em-
ploying the linear model of the diurnal cy-
cle. The lower histogram is the historical
pdf used to generate the linear simulation
coefficients. When comparing values, note
that there are minor variations in interval
definition. The model provides an excellent
approximation, but it is the weakest between
the .5 km and 2.0 km thresholds. This is
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The upper histogram is the pdf from the
5,000 day simulation discussed in Figure 5.
The data are valid for November 0100L at
Fulda, FRG. The data display a composite of
the fifth points in 5,000 Markov chains (us-
ing a six hour time step) extending from the
values associated with Figure 8 and employing
the linear model of the diurnal cycle. The
lower histogram is the historical pdf used to
generate the linear simulation coefficients.
When comparing values, note that there are
minor variations in interval definition. The
model provides an excellent approximation,
but it is weakest between the .5 km and 2.0
km thresholds. This is discussed in the text. 21

Simulation of the composite time duration
(cfd) of 1,000 events, v less than 3 km, giv-
en that v is below 3 km at 0100L. The 0100L
value of v is obtained by repeated random
draws from the pdf until the specified crit-
erion is met. 3 km = v terminates a time
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Simulation of the composite time duration
(cfd) of 1,000 events, v less than 3 km, giv-
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value, 1.5 m, at 0300L. One thousand
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Meteorological insight into these events and
their time evolution is offered in the text.

Conditional climatology is generated via
simulation for comparison with Figure 12
rare event conditional climatology. One
thousand trials are composited. 1In 13(a),

v is selected randomly from the portion of
the pdf containing the event, v less than

3 km at 0300L. 13(b) displays the resulting
conditional pdf at 0500L, and 13(c) displays
the conditional pdf at 0700FE. .« « o o « o o

The transformation of cumulative frequency
of ceiling height to its END is depicted
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DEFINITION OF SYMBOLS
AND ACRONYMS

A A transformation parameter which is a function of t.

AFB Air Force Base.

B A transformation parameter which is a function of t.

cfd Cumulative frequency distribution.

ds Total differential of s.

END Equivalent normal deviate, a unit normal function.

FRG Federal Republic of Germany.

K.l . Density weighted monochromgtic absorption coeffic-
ient averaged over the near-infrared wavelengths.

Kw . Density weighted monoc@rgmatic absorption coeffic-
lent averaged over the visible wavelengths.

km Kilometers.

KX Monochromatic absorption coefficient.

L Local time on a 24 hour clock.

1n Naperian logarithm.

m Meters.

n A random variable drawn from a unit normal distri-
butiorn.

P, Optical path media density.

pdf Probability density function.

R Coefficient of correlation expressing the linear re-

lationship between paired observations lagged in time.

Kol




e o
:'._'—— T ————————— e r—————
DEFINITION OF SYMBOLS
AND ACRONYMS
3
% A A transformation parameter which is a function of t.
| AFB Air Force Base.
f B A transformation parameter which is a function of t.
;@ efd Cumulative frequency distribution.
4
| ds Total differential of s.
: i END Equivalent normal deviate, a unit normal function.
]
! i FRG Fecderal Republic of Germany.
4 K Density weighted monochromatic absorption coeffic-
ient averaged over the near-infrared wavelengths.
B Density weighted monochromatic absorption coeffic-
ient averaged over the visible wavelengths.
t km Kilometers.
. Ky Monochromatic absorption coefficient.
L Local time on a 24 hour clock.
1n Naperian logarithm.
m Meters.
n A random variable drawn from a unit normal distri-
bution.
Pa Optical path media density.
pdf Probability density function.
; R Coefficient of correlation expressing the linear re-
i lationship between paired observations lagged in time.
;
! xi




DEFINITION OF SYMBOLS AND ACRONYMS - Continued

Rt The value of R when the time lag equals t.
R1 The value of R when the time lag equals 1 hour.
RMSE Root mean squared error.

RUSWO Revised uniform summary of weather observations.
s Length in meters along an optical path.

'I‘.l Radiation transmissivity averaged over the near-
infrared wavelengths.

T Radiation transmissivity averaged over the visible
wavelengths.

T, Radiation monochromatic transmissivity.

TACFIRE The tactical fire direction system, an automated
system for control of U.S. Army field artillery
assets in support of offensive and defensive military
operations.

T Time.

to Supsgripped times, e.g., to, tl, vy refer to
specific times.

u Optical path length, as defined by Beer's Law.

\'s Visibility in meters.

X The END of v.

y x at t plus delta t.

A transformation constant.

A Wavelength of electromagnetic radiation.
U Population mean.
" The radian angle equivalent of 180°.

Population standard deviation.
) Functional notation.
$ Functional notation.
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CHAPTER 1

INTRODUCTION

Military decisions are making ever increasing use
of decision models. Methods in use range from modeled raw
data with human decisions to real world data with modeled
decisions. An example of the former is a training simul-
ation and an example of the latter is an aircraft computer
flight plan. Within this spectrum, a useful application is
weapons performance simulation (e.g., Pickett, et al.,
1977). Such simulations provide insight for weapons sel-
ection, tactics development, and related applications.

Military decisions tend to be complex. A wide
variety of environmental factors are involved. These
factors include terrain, seasonal foliage, trafficability,
meteorology, electromagnetic environment, and many others.
Due to the sheer volume of potential data inputs, some
factors receive more emphasis than others. Depending on
the application, environmental factors are carefully mod-
eled or ignored. Resource limitations usually preclude
consideration of all such dependent variables. Difficult
choices are faced in applications ranging from combat oper-
ations to laboratory simulations. The goal in each case is

to reach a near optimal decision within the time and

1
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resource constraints.

This thesis addresses one subset of the total
problem, the meteorological environment. A model designed
to provide meteorological support to environment dependent
simulation studies is described in Chapter 2. This applic-
ation is the first operational test of the techniques pro-
posed by Boehm and Abbott (1977). Since the model selected
for use is one of several distinct modeling alternatives,

a brief rationale is provided to justify the choice. Fin-
ally, this chapter outlines the military applications used
to demonstrate model capabilities. Results of the demon-
strations are presented in Chapter 3. The summary in Chap-
ter 4 provides the author's conclusions, and Chapter 5

offers suggestions for future research.




CHAPTER 2

PROBLEM DESCRIPTION

A self-contained computer subroutine is developed
to simulate observed atmospheric visibility. This model is
designed to support simulations of broader scope which are
dependent upon meteorological conditions. Visibility is
selected for demonstration purposes, but any observable
atmospheric variable or combination of variables could be
substituted.

a. Rationale for Model Choice

There are a number of ways one could build such
a model. Options are reviewed in Appendix A. The sel-
ected option is the proposal of Boehm and Abbott (1977).
There are several reasons for this choice. Clearly, the
"no meteorological impact" assumption can be discarded
as trivial for the purpose at hand. Newtonian models1

are prohibitively expensive. They are discussed in

Appendix A only because they represent an option and

because it is conceivable that they may become a viable

alternative in the future. This leaves the historical

1Models based upon numerical integration of
Newtonian physics.




N
data model? and statistical simulation of historical data.
The statistical model retains the advantages of the histor-
ical data model and overcomes most of the disadvantages.
Since the model's attributes have not been fully estab-
lished, it presents a higher risk; but the potential of
the model is worth developing.

b. The Mathematical Model

Details of the mathematical model are presented in
Appendix B. A generalized version is available in Boehm
and Abbott (1977). A documented computer subroutine is
provided in Appendix C.

Conceptually, the model works as follows. The
cumulative frequency distribution (cfd) of the event (ob-
served visibility) is estimated from historical data. The
cfd is then transformed to an equivalent normal deviate
(END) space, and modeled using a rational approximation.
Since the probability density function (pdf) is known
(the END is by definition a unit normal distribution), a
random "walk" through the pdf generates data which can be
converted to simulated observations. The time domain is

assumed to be a first order Markov process.3 A "Brownian

2Models which simply replay recorded observations.

3A first order Markov process is a process wherein
events prior to the current value have no predictive util-
ity. To the extent prediction is achievable, it is depen-
dent only upon the current value. For a comprehensive
guide to the literature, see Whiton (1977).

e o T N ———
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5
movement” model is added to produce a tendency for the sim-
ulated variable to regress (in time) toward the mean clima-
tological value (the expected value). This generates event
frequencies and durations commensurate with observed real-
world values.

c. Model Performance

Before proceeding, it is useful to establish that
the model produces the desired result. Since the simula-
tion variable is an END, a test of independenp,simulated
observations amounts to verification that the normal random
number generator meets specifications. Having established
this, the Markov assumption remains. Boehm and Abbott
(1977) tested the model on time sequences of low ceilings
occurring at Rickenbacker Air Force Base. Ten years of
data were used to estimate the duration of January ceil-
ings below 3000 feet, given a ceiling below 3000 feet at
time, 0000L. A simulated climatology was generated from
10,000 model runs. See Figure 1. The Kolmogorov-Smirnov
test indicated that the probability that chance could
account for the differences between the modeled and estim-
ated distributions exceeded 98%.

A rather important inference can be drawn from
this result. It relates to the error introduced by using
a rational approximation to model the cfd. Since the curve
is smoother, discrepancies will exist whenever the model

has fewer degrees of freedom than the number of partitions

.. " 0 pevIr v . i il il el pe- e W .




[

20

15

Figure 1. Histogram summarizing 10 years of data

for duration of ceilings below 3000 feet.
is plotted against time (t) in hourly increments.

Frequency (f)

There

were 94 cases. Duration was truncated at 23 hours and a

new series was started. This created a spike at 23 hours.

The solid curve is a 10,000 case simulation normalized by
frequency for comparison with the 94 real data cases.

(After Boehm and Abbott, 1977).




TR e,

7
in the estimated distribution. Experience indicates that a
root mean squared error (RMSE) less than 10% is acceptable
(5% RMSE is more typical). However, in using the model,
the Kolmogorov-Smirnov test indicates that the error has
not been magnified by the modeling process. A possible
explanation for this involves the sampling error in the
estimated distribution. The erratic hour to hour variat-
ions in Figure 1 are likely to be manifestations of sam-
pling error. It would take over 1,000 years of recorded
data to generate a data base comparable to fhe simulation.
Consider now a sample drawn at random from the 10,000 case
simulation. See Figure 2. While not a formal proof, vis-
val inspection indicates that the historical sample is at
least as representative as the actual population sample.
This is formalized by the Kolmogorov-Smirnov results. It
is the author's opinion that the simulation may be a better
estimate of future probabilities than the historical sam-
ple, i.e.; the hour to hour variations represent noise in
the historically derived distribution.

These results provide some confidence that the
model will perform to expectations. Never-the-less, each
new application should be verified. A systematic valid-

ation of the visibility model is presented in the next

chapter.
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Figure 2. Same as Figure 1, but for 100 cases |
randomly chosen from the 10,000 case simulation. (After
Boehm and Abbott,1977).

o i

L oy i e el i a Ny S -3 bl i X onon N PN N




il e T

CHAPTER 3
RESULTS

Data sources and details associated with deriving
the model equations from the historical data cfd are dis-
cussed. Next, validity is established by generating a
simulated c¢fd and comparing the simulation to the histor-
ical data cfd. Finally, some model applications are
presented.

a. Generating the Rational Approximations

The raw data are taken from the United States
Environmental Technical Applications Center Revised Uniform
Summary of Weather Observations (RUSWO) for Fulda, FRG.

The visibility data are distributed into 15 distance
intervals; and three, hourly observations are grouped
together; see Table 1. For weapon performance simulations,
accurate modeling of low visibilities is critical. There-
fore, the category thresholds approximating .5, 1, 2, 5,
and 7 km are fitted. This insures that the most reliable
simulation is obtained for operationally significant
values.

The model requires that a specific time be assigned
to the cfd vice the three hour composite. Accordingly, the
midpoint of the composite period is assumed to be the valid

9
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Table 1. Visibility observations are recorded in
units of miles. Reported thresholds are in column 1. The
kilometer (km) equivalents are in column 2. Representative
thresholds compatible with weapon ranges are .5, 1, 2, 5,
and 7 km. The thresholds closest to these values are fit-
ted by regression polynomials. Column 3 lists the trans-
formed thresholds selected for fitting. The column 4 data
are from the November, 0000L to 0200L, Fulda, FRG RUSWO.
Note that probabilities accumulate upward from O miles,
i.e., they provide the probability that visibility will be
above a given threshold.

v thresholds Equivalent v Fitted thresholds Cumulative

in miles in kilometers of In(v + €) probability
00 = v SO =ES 5.497 1.000
W25 = v = .896
3l =y = 6.616 .896
500 = HOR= .862
o =\ 1.2 = v 70280 .859
100N ="+ 1.6 = v .855
1.25 = v 200 = Vv Te 721 .833
1e500 = 2ol = v .810
2,000 = v Fa2 =V 8.150 . 792
2¢ 50 = v L.0 = v .« 766
Fa00 = W a8 = W 8.532 el 7
L.,00 = v 6.4 = v 8.807 691
5600 = v 8.0 = v 9.023 w513
6,00 = v 97 =V 9.200 . 390
10.00 = 1641 = v 10:.102 « 305
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time of the distribution. The diurnal cycle is modeled by
eight cfd curves which represent the 24 hour day. This
provides three hour interval time resolution. Intermediate
values are obtained as required via linear interpolation.
Seasonal dependence is provided by using a different set
of eight curves for each month. Only the months of Septem- 1
ber, October, and November are provided in the model. If
a month outside this range is requested the model stops |
execution. |

The November raw distribution (i.e., the pdf) for
0100L is shown in Figure 3. November is chosen for display

because the higher incidence of adverse visibilities makes

the distribution more difficult to fit thereby increasing
the errors associated with the fit. The printed value on
the line represents event frequency while the intervening
values are interval labels. The graph is read as .104

probability that a randomly chosen visibility observation

will fall into the 0 to .5 km interval, .037 that it will

fall into the .5 to 1.2 km interval, etc. The spike at
probability, .305, corresponds to the "good weather" bias.
This occurs because interval resolution is lost when vis-
ibility exceeds 16.1 km.

Figure 4 provides the cfd corresponding to the pdf
in Figure 3. The values are read in the same manner as the
pdf except that they accumulate, i.e., the probability of
a value below 1.2 km is .104 + .037 = .141, etc.
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Figure 3. This sample raw distribution (pdf) is
generated from Fulda, FRG November RUSWO data, 0000L to
0200L time composite. The values printed at the left of
the histogram bar are the probabilities that a randomly
chosen observation will fall into the visibility range
specified by the numbers immediately above and below the
probability; e.g., for the second line, .037 is the prob-
ability that a visibility falls within the interval .5 km
to 1.2 km.
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Figure 4. This is the cfd of the Figure 3 pdf.

The sums are accumulated upward from zero (the reverse of
equivalent values in Table 1). This facilitates military
applications. Here the value on the second line corresponds
to a probability of .141 (.104 + .037 = .141, using Figure 3
values) that a randomly selected observation will have a
value less than 1.2 km. The last bar which brings the ogive
to 1.0 has been omitted to facilitate scale expansion in the
other categories. The RMSE and maximum error associated
with first, second, and third order regression polynomial
fits are listed below the crfd. The intersection of these
fits, respectively denoted by 1, 2, and 3, is overprinted

on the cfd.
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The c¢fd interval thresholds are fitted by a first,
second, and third order regression polynomial. The RMSE
and maximum error associated with each fit are listed in
Figure 4 below the cfd. The first order (linear) fit is
selected for use. Based upon analysis of error data, one
might be tempted to use a higher order (quadratic or cubic)
fit. There is a problem associated with these fits. A
region of negative slope exists on each curve. If this
region includes realizable values of the simulation variable
then one has in effect a region with negative cumulative
probability, a serious theoretical deficiency. Boehm (1976)
discusses this problem and how to avoid it. In the present
case (Figure 4), the quadratic has a usable range from 6.65
to o, while the cubic has unlimited usable range. The
range of the cubic is adequate, but that of the quadratic
is not. However, use of the cubic may generate other prob-
lems, e.g., the cubic range may nct be ade .ate for all
eight curves in each month and time interpolation may prod-
uce problems. Furthermore, some care is required in select-
ing the proper root when inverting the equation. Finally,
there is no guarantee that the higher order fit will produce
a more accurate simulation model. When ten class intervals
are fitted using two, three, and four free parameters, res-
pectively; it is reasonable to expect a smaller error of
fit from the latter two in comparison to the former. How-

ever, the higher order fits may be simply capturing the

—
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historical data sampling error. These reasons lead to the
linear fit choice. The 12% maximum error in Figure 4 is
the largest encountered within the 3 months considered.
Linear fit errors are summarized in Table 2.

b. Testing Model Validity

The model is used to generate 5000 independent 24
hour sequences commencing at 0100L. Distributions are
created at 6 hour intervals from the 5000 day simulated
period of record. The pdf thus derived is shown in Figures
5 through 9. Figure 5 simply verifies the combination of
the transformation assumptions and the computer routine
which generates unit-normal random numbers. However, this
is an important verification since it is the basic building
block of the model. Furthermore, a conceivable model appl-
ication is the simulation of a sequence of independent
observations. Figure 5 is precisely this.

Figures 6 through 9 test the Markov assumption
through 24 hours. The upper pdf is from the simulation
and the lower pdf is from the corresponding historical data.
Once more the reasonable agreement between the two is appar-
ent.

The agreement is formally tested using the one-
tailed Kolmogorov-Smirnov one-sample statistic. The one-
sample statistic is used because the simulation sample is
sufficiently large to define a population. This assumption

is tested by increasing the number of simulated observations

'
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b Table 2. The RMSE and maximum errors produced by
1 a least sguares linear regression polynomial fit applied
3 " to the historical-data visibility cfd in the transform
space. Errors are listed by local time and month.

Time Sep (61017 Nov

RMSE Max Error RMSE Max Error RMSE Max Error

| 0100L 2.6% 5.9% 3.9% 8.2% 6.7% 12.2% |
i 0400L 3.3% 7.4% 3.6% 7.4% 4.1% 6.9% |
0700L 2.7% 4.8% 3.4% 7.2% 3.7% 6.7%
1000L 2.60 4.5% 3.0% 508% 2.870 Ll'08%
1300L 1.1% 2.0% 3.2% 7.8% 2.9% 6.0%
1600L 1.2% 3.2% 2.9% 6.8% 3.3% 7.2%
1900L 2.7% 7.1% 2.7% 6.6% 3.6% 6.9% j
2200L 3-370 71970 3-30 7.8% 5-4% 9-2%
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is a test of the random number generator and the linear
model, but the Markov time dependence is not tested here.
The histogram is read in the same manner as Figure 3, which
contains the corresponding time-period historical data.
However,
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Figure 6. The upper histogram is the pdf from the
5000 day simulation discussed in Figure 5. The data are
valid for November 0700L at Fulda, FRG. The data display
a composite of the second points in 5000 Markov chains (us-
ing a six hour time step) extending from the Figure 5 init-
ial values and employing the linear model of the diurnal
cycle. The lower histogram is the historical pdf used to
generate the linear simulation coefficients. When comparing
values, note that there are minor variations in interval
definition. The model provides an excellent approximation,
but it is the weakest between the .5 km and 2.0 km thres-
holds. This is discussed in the text.
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Figure 7. The upper histogram is the pdf from the
5000 day simulation discussed in Figure 5. The data are
valid for November 1300L at Fulda, FRG. The data display
a composite of the third points in 5000 Markov chains (us-
ing a six hour time step) extending from the values associ-
i ated with Figure 6 and employing the linear model of the
i diurnal cycle. The lower histogram is the historical pdf
1 used to generate the linear simulation coefficients. When
comparing values, note that there are minor variations in
interval definition. The model provides an excellent appro-
! ximation, but it is the weakest between the .5 km and 2.0 km
[ thresholds. This is discussed in the text.
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Figure 8. The upper histogram is the pdf from the
5000 day simulation discussed in Figure 5. The data are
valid for November 1900L at Fulda, FRG. The data display
a composite of the fourth points in 5000 Markov chains (us-
ing a six hour time step) extending from the values associ-
ated with Figure 7 and employing the linear model of the
diurnal cycle. The lower histogram is the historical pdf
used to generate the linear simulation coefficients. When
comparing values, note that there are minor variations in
interval definition. The model provides an excellent appro-
ximation, but it is the weakest between the .5 km and 2.0 km
thresholds. This is discussed in the text.
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from 5,000 to 25,000. The distribution does not change

;
} ' within the first three decimal places of event frequency.
‘ The one-tailed test is used because the visibility histori-
: cal distribution tends to be "J" shaped, i.e., bimodal with
f one mode in the 0 to .5 km interval and the dominant mode
in the 16.1 km = v interval. Accordingly, a linear model
tends to systematically overestimate the cfd between these
modes. This tendency is apparent in Figures 6 through 9.
The Kolmogorov-Smirnov statistic tests the null
hypothesis that the historical data represent a sample
B drawn from the simulation population. Assigning large alpha
(a0 = .2) the null hypothesis must be accepted. This equates
to a willingness to reject a true hypothesis one in five
times. Of course smaller values of alpha are even more
restrictive.

c. Model Applications

The application potential has been established by
the foregoing verification that modeled data sequences are
in reasonable agreement with the data samples observed in
nature. It is beyond the scope of this work to seek and
verify operational applications. ‘Rather, a contrived ex-

ample is presented, and it is left to the interested reader

R

to pursue applicability to operational problems.

‘ The demonstration example simulates the probability

[
|
‘
i
'

that an advancing enemy tank will not be visually detected

prior to arriving within 3,000 meters of a watchful observer
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who has a reasonable field of view. Time commences at
0100L on a typical November day near Fulda, FRG and it
runs through 24 hours. Simulation results are displayed
in Figure 10, This is 2 composite of 1,000 trials. The
initial visibility is chosen at random from the appropri-
ate pdf. This is a binary event, i.e., visibility above
or below 3,000 meters. The 50% probability of visual
sighting beyond 3,000 meters is not reached until 0700L.
Thereafter, the probability increases rapidly through noon.
However, if improvement is not attained by noon, further
increase in expectations is markedly reduced.

One might hypothesize that the enemy will advance
under cover of adverse visibility conditions. Accordingly,
it is assumed that the initial condition is zero visibility
(this is a rare event in November; it has probability, 2.5%).
Once more a composite is generated from 1,000 cases. Each
run is terminated if simulated visibility equals or exceeds
3,000 meters. The simulated expectations are displayed in
Figure 11.

The differences produced by the alternative assump-
tions of v = 3 km vice v = 0 km are apparent in Figure 10
and Figure 11. The probability of v above 3 km increases
much more slowly in Figure 11, and the 50% probability is
not reached until noon. At the end of 24 hours the probab-

ility approximates that associated with the Figure 10, 1300L

values. DMeteorologically sound arguments can be offered
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Figure 10. Simulation of the composite time dur-
ation (cfd) of 1000 events, v less than 3 km, given that v
is below 3 km at 0100L. The 0100L value of v is obtained
by repeated random draws from the pdf until the specified

criterion is met. 3 km = v terminates a time series.
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for the differences associated with these related condit-
ional probabilities. Low visibilities are common in morn-
ing fog; however, if v = 0 km already at 0100L, the cause

is likely to be something other than radiational cooling.
One possibility is the synoptic environment associated with
recent rainfall and a near stationary front in the vicinity.
Such conditions will tend to persist.

3 Figures 12 and 13 display the tendency for adverse

conditions to persist through the morning hours from a

; different perspective. 1,000 cases are included in each com-

4 posite. Figure 12 contains simulated distributions at 0300L,
0500L, and 0700L given that the visibility at 0300L equals
1.5 meters. This is a relatively rare event; however, given 1
this condition, probabilities relating to subsequent events

1 can be inferred from the model. Once more the tendency for

adverse visibility to persist through early morning, once 1

onset is established, 1s apparent. Alternately, a random
choice (related to historical probability) of visibility
below 3 km represents a much more common condition. Again
low visibilities persist, but not to the same degree. It
should be recognized that a statistical composite such as
this contains samples wherein v = 2 km at 0300L goes to 0 km
at 0700L as a result of continued radiational cooling, and
it contains samples wherein v = 0 km at 0300L goes to 10 km
at 0700L with the intervening passage of a frontal system.

The former is common and the latter is not, but either is
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Figure 12. Rare event climatology is generated via
simulation. In 12(a), v is assigned the value, 1.5 m, at
0300L. One thousand trials are composited. 12(b) displays
the resulting conditional pdf at 0500L, and 12(c) displays
the conditional pdf at 0700L. Meteorological insight into
these events and their time evolution is offered in the
text.
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realizable within a particular simulation set. The relative
probabilities are brought into perspective only by a large
composite of simulations.

The model capabilities have now been demonstrated.
Figure 5 illustrates a composite sequence of independent
observations. Figures 6 through 10 provide applications
from simulated serial observations. Finally, Figures 11
through 13 demonstrate the capability to rerun a vignette
with altered assumptions.

The capabilities of the model are apparent, but it
is equally apparent that one would like additional options.
The example just presented assumes that the enemy observes
and reacts to current events but lacks predictive skill

and the ability to alter the visibility environment. A

more realistic requirement might be for ar initial visibil-
ity of zero meters plus at least an 85% expectation that
visibility will remain below 2,000 meters for a minimum of
five hours. This allows some time for the enemy to react
once these conditions are met. Finally, the enemy may
choose to employ artillery smoke if visibility exceeds

1500 meters following initiation of his movement. Simula-
tion of meteorological aspects of this relatively more com-
plex vignette 1is beyond the capability of the simple model
presented here, but it is not beyond the capability of the

generalized methodology. Problems with complexity equal

to or greater than this provide the requirements which will
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ultimately unite resources with knowledgable researchers

and produce a generalized simulation capability.
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CHAPTER 4
SUMMARY AND CONCLUSIONS

A first order Markov model is used to simulate
atmospheric visibility observations. In its present form,
the suggested use of such a model is to support environ-
ment dependent simulation studies. The model is inexpen-
sive to operate and self-contained. It is capable of gen-
erating sequences of either independent or serially correl-
ated observations. The initial value of a correlated seq-
uence may be specified or obtained via a random draw from
the pdf. No control is exercised over subsequent values;
they are a function of the previous value in the series,
the serial (time) correlation, and an imposed random
variation.

The model generates visibilities valid at a geogr-
aphical point, Fulda, FRG. However, the methodology is
more general. Visibilities at any geographical point can
be simulated if appropriate values of the model paramet-
ers, A and B, are introduced. The correlation, Ry» 1is
reasonably robust. A geographical shift does not normally

require a change.1 Furthermore, any single meteorological

1Boehm, personal communication.
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variable can be modeled using this general approach; how-

ever, instead of simply changing model parameters, an al-
ternate mathematical expression (rational approximation)
for the END is needed if the variable is not log-normal.
Simultaneous modeling of several variables at multiple
locations is also feasible. This more difficult problem
is discussed in the next chapter.

Typically, environment dependent simulation studies
model meteorological dependence by rerunning historical
sequences. The stochastic model demonstrated here is
capable of providing this support and more. The simulat-
ion model duplicates the positive features of the histor-
ical model and it does not suffer from the negative feat-
ures. Advantages afforded by the stochastic model are:

- Minimal computer assets are required.
The univariate meteorological simulation lies within the
capabilities of a hand-held programmable calculator.

- Simulation is not limited by the finite
sequences available in recorded history.

- Cumbersome file manipulation associated
with the historical model is avoided.

- Vignettes dependent upon a given initial
value of the meteorological variable are easily supported.
Historical models require cumbersome record searches; and
for rare events, recorded data may be inadequate.

- Sensitivity analyses are easily supported
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by the simulation model.

- If a sequence of independent values is
required, the serial correlation inherent in historical
data is easily avoided.

The focus has been upon simulation support. The
methodology has operational utility as well. For example,
if the initial value of a sequence is the current obser-
vation, a forecast can be generated in time or space.2

Forecasting in time is common, but less is known
about how to successfully forecast in space. However, if
these capabilities are demonstrated, a number of applica-
tions result. An example is optimal placement of meteorol-
ogical observations in time and space to support field
artillery operations. Another is preselection of prepared
weapon positions as a function of the small scale varia-
tions in climatology. These climatic variations can be
modeled when available data are inadequate to provide a
historical data estimate, e.g., remote regions or enemy
territory. The list of potential uses is extensive, but
research is required if these capabilities are to be

realized.

2The mathematical formulation differs somewhat.
See Tahnk (1975) and Boehm (1976).
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CHAPTER 5

SUGGESTIONS FOR FURTHER RESEARCH

Modeling the time evolution of a multivariate dis-
tribution must be demonstrated if the final enclave of his-
torical data model applications is to be breached by simul-
ation. Precise time-space predictions at any specified
resolution are a required capability which is not available
today. Promising methods have been proposed; however, dif-
ficulties will undoubtedly be encountered during the applied
research phase of model development.

An important theoretical question in meteorology
is the definition of optimal time and space positioning
within the global or regional observational networks. This
is an economic problem. The requirement is to determine the
point at which the cost of the observations exceeds the ben-
efits to be derived from the data applications. On a small-
er scale, the United States Army faces precisely the same
problem. The optimal time-space resolution of observations
taken in support of field artillery operations is unknown.
The simulation technique presented here, together with the
capability extensions which appear to be feasible, can add-

ress such questions. For example with the new TACFIRE sys-

tem providing a significant computer capability within each

34




-_—

bl a

s 24

AT .

35

artillery battalion, a network of meteorological observat-
ions can be adjusted in space and time via simulation to
coincide with the position of each artillery tube. Cor-
rected observations can be generated in seconds. Thus,
relocation of the tubes does not degrade environmental sup-
port. The system would require input of a few numbers
following each meteorological observation. Currently, met-
eorological parameters are often assumed constant between
successive time observations and they are linearly interp-

olated or extrapolated in space. Research is needed to

provide the economic limitations of increased sophistication.

The benefits appear to be significant. Small improvements
in the accuracy of an artillery delivered mine field have
a potentially high wartime utility.

The technological sophistication of the battlefield
is constantly increasing. The small number of environment
dependent applications represents the tip of an iceberg of
potential current and future applications for a stochastic
meteorological simulation model taken in conjunction with
existing microprocessor technology. In many situations,
ow: +ational applications still use World War II methods to
exploit environmental data. Research is needed to deter-
mine what is possible and produce corresponding capabilit-
ies. The high price tag associated with sophisticated
weapons limits the acquisition rates. Technology of the

type proposed herein can in principle increase utility and
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effectiveness of such systems thereby offsetting acquisition

limitations.

It is not intended to imply that the method presen-

ted is the only feasible approach. Many components of the

problem are being pursued by Air Force Geophysics Labora-

tory at the request of the Air Weather Service. Several

alternative methodologies are being explored. It is the

author's opinion that current efforts are small in relation

to the large potential benefits which are obtainable.
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APPENDIX A
METEOROLOGICAL MODELS

The meteorological models available for simulation

applications cover a wide range of complexity and cost. On

one end of the spectrum is the "no meteorological impact"

assumption. It is simple, but the cost is low only if the

assumption is correct. The other end of the spectrum reach-

es into the fringe areas of applied, if not basic, research.

The model used in this study is a statistical sim-
ulation of historical data proposed by Boehm and Abbott
(1977). This and alternative modeling options are review-

ed.

a. The No Impact Assumption

One can easily conceiwe a scenario which is not
dependent upon meteorological variables. A simple example
is a battle simulation which is initiated and concluded
within a matter of minutes. Here the assumption is not
"no impact;" it is "no time variation" since initial con-
ditions are not expected to change during the course of the
simulation. Accordingly, a mean value (or a best/worst

case value) can be assigned and held constant for the

simulation.

In the example just presented, formal testing is

38
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not used in choosing to freeze meteorological conditions in
time and space. The choice is a personal judgement (e.g.,

a personal probability; Savage, 1954). Such judgments are
powerful tools when based upon expert opinion. Alternately,
one could formally test a no impact hypothesis (Spiegel,
1975). When only one variable is being considered, it

may be simpler to model the variable than to establish

that modeling is unnecessary. On the other hand, testing

may be valuable if one wishes to show that modeling a uni-

variate dependence is adequate, i.e., a multivariate treat-

ment is unnecessary. Multivariate models are considerably
more complex than their univariate counterparts. Research
is needed to improve multivariate modeling.

b. Modeling Meteorological Impact

Models of the meteorological environment fall into
three general categories; historical data models, Newtonian
models, and stochastic models. References in each category
are included to illustrate the general approach in current
use rather than to provide a developmental audit trail.

(1) Historical Data Modeling

A historical data model uses time-sequenced data
to provide meteorological inputs to a simulation model.
Spatial variation can be added, but this presents an inter-
polation problem because recorded observations are spatial-
ly sparse (they may be located tens of kilometers apart in

densely populated industrial societies or thousands of
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kilometers apart over the oceans of the Southern Hemis-
phere).

This model has both good and bad features. On the
positive side, it is inexpensive (given adequate mass stor-
age handling capability); a reasonable time sequence of
events is maintained (e.g., a realistic time lag is guar-
anteed for a clear sky to become overcast); and joint
occurrence probabilities for multivariate applications are
reasonable (e.g., rain does not fall from a cloudless sky).
The latter two features are obvious since the model is no-
thing more than a replay of recorded history. On the neg-
ative side, it is difficult to estimate the sampling error
and for some applications, the data are perishable.

Considar perishability. An example is a sensit- |
ivity analysis. If meteorological inputs are held constant
while other parameters are varied, one risks tuning a deci-

sion to a historical meteorological sequence. This situ-

ation is not unlike a statistician always entering his
random number table at the same point during a sequence of
related experiments. Random variations of weather inputs ;
would seem preferable even though subsequent analysis may
be made more difficult.

In summary, historical data models are inexpensive

and easy to use. Given a short suspense, they may offer

the only option; however, some care should be exercised

when interpreting results from sequential use and reuse




of limited data.
(2) Newtonian Models

Newtonian models are used extensively in generating
operational forecasts of meteorological conditions (Shuman
and Hovermale, 1968). They are also used to simulate glob-
al climate (Manabe, 1969). These models require numerical
solution of physical laws (expressed mathematically).
Newton's laws of motion, mass-~energy conservation, and
thermodynamic laws are cast into a set of ncnseparable
partial differential equations. These equations can be
solved approximately if a number of simplifying assumptions
are made. Currently, only deterministic models are in oper-
ational use; however, in principle, it is possible to est-
imate the time/space evolution of the initial uncertainty
(Fleming, 1970).

Newtonian models have not been used to generate
meteorological input variables for problems of the type
being considered here. There are two obvious reasons. |
The first is cost. These models can dominate a large com-
puter. The second is that model outputs do not directly
provide values of the dependent variables normally needed.
Statistical methods can be used to convert outputs into
the needed variables (Klein and Glahn, 1974); however,
it then becomes cost-effective to use a statistical method

directly.,
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(3) Stochastic Models

Stochastic forecast models have been used to gen-
erate meteorological forecasts for over ten years. These
models (used either directly or in combination with New-
tonian models) are promising to automate many forecasting
tasks currently being performed manually. The most common

approaches employ discriminant analysis (Miller, 1962),

s S i cot N

equivalent Markov regression (Miller, 1964), nonlinear
rcgression (Miller, 1969), or Markov chains (Gringorten,
1966 and Boehm, 1976). Boehm and Abbott (1977) use a
Markov process to generate equivalent historical data. The
methods extends earlier work by Gringorten (1966) and

McCabe (1968).

The stochastic models all operate on the same gen-
eral principles. Historical data are used to estimate the
correlation between present and future events. These
relationships are then used to generate a time series.
Methods for spreading the time series in space have been
proposed by Von Luetzow (1973) and Gringorten (1976, .

The model outputs are probabilistic by nature, but one
can easily devise rules for converting to deterministic

values if they are needed.
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APPENDIX B

MODEL DESCRIPTION

Simulated historical data are generated by a com-
puter to provide representative values of atmospheric sur-
face visibility. Representative values means that event
frequencies and durations correspond to those found in
the observed climatological distribution. Of course, dev-
iations the order of magnitude of observed year to year
variability are both acceptable and desirable. The model
used is that proposed by Boehm and Abbott (1977). It is
adapted to the one variable under consideration. The vis-
ibility climatology of any geographical point could be

simulated by this model if the distribution equations are

known and introduced into the computer program.

a. Modeling Surface Visibility

The model employs normal time series theory.
Accordingly, raw values of visibility must be generated
from the END. Visibility is known to be log-normal (Chis-
holm and Kruse, 1974). This means that the transformation:

x = A In(v+€) + B (1)
produces a normal variable, x, where v is visibility in

meters (nondimensionalized). The constant, €, is needed to

avoid the rapid slope change and singularity as v approaches

44
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zero.1 The coefficients, A and B, are given by:

=1

A=d (2)

and

B = -pgt (3)

where p is the mean and ¢ is the standard deviation of the
1In v population, i.e., x is the standard normal of 1n v.2

A and B are functions of time.3 This is where the diurnal
and seasonal cycles are taken into account within the model.
Diurnal variations are modeled by defining the distribution
coefficients at equal intervals over a 24 hour period, and
seasonal variation is modeled by developing distinct coef-
ficients for each month.u Intermediate diurnal distribu-
tions are obtained as needed via linear interpolation for
diurnal cycles. The impact of the transformation is seen
schematically in Figure 14. Generating the END is an ap-

proximate and highly nonlinear process as compared to the

linear transformation associated with variable standardiz

ation. The latter produces a unit-normal if and only if

he 244, is selected by trial and error.

2This simple relationship of v to x is the result
of & priori knowledge of the distribution. Boehm (1976)

provides guidance for deriving the END when the distri-
bution is unknown.

3Historical meteorological data are used to estimate
A and B.

uAlternately, one could represent the annual var-

iation as either two seasons (warm and cold) or four
seasons.
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the original distribution is normal.

Analytic expressions are now available for the pdf
and cfd. Using functional notation, let ¢(x) = pdf, and
let § = cfd. Then by definition:

$(x)

(2w)_%exp(-%x2) (4)

and

P(x) = 7% _¢(w)aw (5)

where w is a dummy variable.

Applications dictate model use at this point.
Assume that a weapon's performance is dependent upon the
f‘ i instantaneous value of visibility. The model simulates
| a value of x using a normal random number generator, ai.
(1) can be solved for v since A and B are known parameters.
A more interesting problem is a decision simulation
which is dependent upon current visibility and subsequent
1 values at the same location, but over a specified time
y interval, e.g., 12 hours. In this case, the simulation

must address the correlation between successive values of

visibility in the time domain. Given x, the END of visib-
ility at tine, Ty let y equal the END at a subsequent
time, tl‘ and let R equal the correlation between x and y.
i ) Since x and y are both normal, the joint distribution of
x and y will be given by:
i - 2y39-1 o 2 2
] ¢(x,y) = [2m(1-R")* ] "exp[-#(x"+Rxy+y“)/(1-R)] (6)

{ A relationship which will produce the result in (6) is:

¥y = Rx + (1-R2)%n (7)
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where n is a unit-normal random variable (Feller, 1966).

Recursive use of (7) from t, to t t

0 10 tor ees defines
l a simulation algorithm. Since y at each step is related to
% : x of the preceding step via the parameter, R, (7) produces
| | a first order Markov process if Rt= Rf. Rt is the value
of R at time, t; and R1 is the value of Rat t =1 hour.5
Weather events such as visibility are well approximated

by a first order Markov process (Tahnk, 1975). The simul-
ation algorithm, (7), will tend to regress toward the mean
value (Feller, 1966), but the random input will produce a

fluctuation about the mean.

b. Converting Visibility to Transmissivity

Some applications require atmospheric transmissiv-
ity rather than visibility. Accordingly, it is useful to
derive a relationship which converts simulated visibility
into transmissivity. Beer's Law states:

: T,= exp(-k,u) (8)

E relating the monochromatic transmissivity, T to the

)\’
optical path length, u, via an absorption coefficient, kx

(Fleagle and Businger, 1963). TA is defined as the ratio

of incident to transmitted radiation at wavelength, \; and

the optical path is defined as:

| 5R1 is estimated from historical data. Use of this
continuous”exponential definition of the time decay of R

actually defines an Ornstein-Uhlenbeck process, the contin-

uous counterpart of a first order Ma:kov process.

g e e ey )
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u = J'zpads (9)
where Pe is path media density and s is path length. Ior :
small intervals of i, kx may be assumed constant; and for
small s, horizontal gradients of p, may be neglected near
the earth's surface. Substituting v for s, Beer's Law can
be written:

E T = exp(-K v) (10)

Tw is mean transmissivity over the visible spectrum range,

e microns,6 and Kw is a density weighted absorp-
? tion coefficient. The near infrared spectrum, 7 = A = 11 !

microns, is also of interest. Using the prior assumptions

with analogous notation gives:

T.= exp(-Kiv) (11)

The empirical relationship, Ki=

of K;. With the parameters thus defined, (10) and (11) pro-

.83Kw, provides an estimate

vide the needed relationships for deriving transmissivities
from simulated visibilities.

A word of caution is in order. Beer's Law is stric-
tly valid only for monochromatic transmissivity with negli-
gible scattering and emissivity at the wavelength under
consideration. The above relationships are crude (partic-

ularly for the near infrared) and should be used with dis-

NR———

cretion. See Craig (1965) for a detailed discussion.

6One micron equals 10"6 meter.
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APPENDIX C

MODEL SUBROUTINES

IN FORTRAN

The FORTRAN function PAWSES returns a simulated
visibility, 0 = v = 30 km, PAWSES has three arguments,
DELT, RKIND, and MNTH, which must be supplied by the user.
Rules for applying the function are provided within the
code. The remainder of the functions which are accessed
by PAWSES are transparent to the user. However, the sys-
tem subroutines and functions must be supplied if not avail-
able in the library. These are listed with a brief descr-
iption of their purpose. Examples which demonstrate all
user options are provided.

a. The FORTRAN Code

FUNCTION PAWSES (DELT,RKIND,MNTH)
PROTOTYPE AWS ENVIRONMENT SIMULATION (PAWSES) FUNCTION:
11 MAY 78 VERSION BY ABBOTT. PAWSES RETURNS A SIMULATED
VISIBILITY, O0.LT.V.LT.30 KM, IN A RANDOM SEQUENCE WHICH
SIMULATES ACTUAL WEATHER.

THE USER MUST SUPPLY 3 ARGUMENTS.

1. DELT: A NEGATIVE DELT GENERATES AN INITIAL
VALUE,V(1), OF A NEW SEQUENCE VALID AT TOD=-DELT
WHERE TOD IS TIME OF DAY IN HOURS. TO GENERATE
N ADDITIONAL VALUES; V(2), V(3), «.., V(N); DELT
IS THE POSITIVE TIME INCREMENT IN HOURS BETWEEN
V(1) AND V(2), V(3) AND V(4), ETC. THE SUCCESSIVE
V(I) NEED NOT BE EQUALLY SPACED IN TIME.

2. RKIND IS REFERENCED ONLY WHEN DELT IS NEGATIVE.
IT CONTROLS THE TYPE OF SEQUENCE TO BE GENERATED.

Qaaaaanaaaanaaaaaa
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THERE ARE 3 OPTIONS:

A. IF(ABS(RKIND).GT.30.) THE RANDOM NUMBER
GENERATOR SEED IS RESET TO THE VALUE RKIND.

B. IF(15..LT.ABS(RKIND).AND.ABS(RKIND).LT.30.)
END = RKIND + 20, OR RKIND -~ 20. RESPECTIVELY FOR
NEGATIVE AND POSITIVE VALUES OF RKIND.

C. REMAINING VALUES OF RKIND SELECT THE END
RANDOMLY FROM THE VALUE RANGE -3.3 TO 3.3.

3. MNTH SPECIFIES THE MONTH FOR WHICH A REPRESENTA-
TIVE SEQUENCE IS DESIRED. THIS VERSION HAS ONLY 3
MONTHS, SEP, OCT, AND NOV. TIF MNTH DOES NOT HAVE
THE VALUE 9, 10, OR 11, EXECUTION IS STOPPED.

DATA X,ISEED,OLD/0.,0,1.E10/
IF(MNTH.GT.11) GO TO 20
IF(MNTH.L?. 9] GO 70 20
IF(DELT.GT.0.) GO TO 50
IF(ABS(RKIND).LT.30.) GO TO 10
ISEED = 1
X = RKIND
CALL RANSET(X)
GO TO 1

10 IF(ABS(RKIND).LT.15) GO TO 1
E = RKIND + 20.
IF(RKIND.GT.0.) E = RKIND - 20.
TOD = ~DELT
6o TO 3

50 IF(DELT.EQ.OLD) GO TO 2

THIS SECTION FOR CHANGE IN DELT

R =.95% DRILT
R IS CORRELATION FROM ONE TIME TO TIME PLUS DELT
D = SQRT(1.-R**2)
OLD = DELT
GO TO 2

THIS SECTION FOR NEGATIVE DELT. IT GIVES NEW TOD.

1 TOD = -DELT
E = RANDOM(X, ISEED)
GO TO 3

THIS SECTION FOR POSITIVE DELT.

2 E = R¥E + D*RANDOM(X, ISEED)
TOD = AMOD(TOD+DELT, 24.)
IF(E.GT.3.3) E = 3.3
IF(E.LT.-3.3) E = -3.3 *

3 PAWSES = XRAW(E,MNTH, TOD)




53

i RETURN
g 20 STOP1
% END

FUNCTION RANDOM (X,ISEED)
IF(ISEED.GT.0) GO TO 2
ISEED = 1

CALL SECOND (X)

CALL RANSET (X)

2SS = 0.
DO 4 I=1,12
X RANF (X)

L s
S
RANDOM = S
RETURN

. i
ﬁ

S + X

LR

S - 6.

FUNCTTON XRAW (E,MONTH,TOD)

DIMENSION A(2),B(2),COEF(2,8,12)

DATA COEF/128%0.,-3.7737,.35767,-2.5142,.28516,
-2.6612,.32512,-4,6655,.50725,-10.391,1.05796,
-8.7369,.82468,-6.0119,.53009,-5.22585, .4519,
-3.2424,.3006,-2.7119,.30975,-2.6765, . 3194,
-3.90145, .43904,-6.6982, .6888,-7.5218,.7588,
'6-731 ’ .67966."“’-1589, '359n-5'1006| -577“%
-5.2522,.60202,-4.9336,.55584,-50687,.5636,
-5.9769,.63807,-5.6332,.59148,-5.6805,.61517,
-5.273,.5885,16%0./

IT = TOD + .01

O~ o Fw o =

J = (IT-1)/3. + 1 i
A(1) = COEF(1,J,MONTH)

A(2) = COEF(2,J,MONTH)

Jd = J + 1

IF(JJ.EQ.9) JJ =1

B(1) COEF(1,JJ,MONTH)

B(2) = COEF(2,JJ,MONTH) i

RS = (TOB=1.)/ 3. = & = 1.

DO 1 I=1,2

1 A(I) = RI*(B(I)-A(I)) + A(I) ]

C THE ABOVE IS THE LINEAR INTERPOLATION IN TIME.

XRAW = VEND(E,A)

RETURN

END

T meecme st
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FUNCTION VEND(END,A)

DIMENSION A(2)
THIS IS THE INVERSE TRANSFORMATION.
A CONTAINS THE COEFFICIENTS.

G = (END-A(1))/A(2)

VEND = (EXP(G) - 244.)/1000.
METERS ARE CONVERTED TO KILOMETERS.

| IF(VEND.LT.O0.) VEND = O.

i : IF(VEND.GT.30.) VEND = 30.
! | RETURN

{ END

b. Library Routines

ABS(X) provides absolute value of X.

i | AMOD(A,B) provides the remainder of A divided by B.

é SECOND(X) provides current computer clock time and
stores it in X. This value is used to seed the random num-
ber generator.

RANSET(X) initializes RANF with the random number
seed, X.
- RANF(X) provides random numbers of equal probability
: over the interval 0 to 1.
EXP(X) provides e*.
SQRT(X) provides the square root of X.
c. Examples
o Example 1: Generate 10 independent, randomly sel-
ected observations valid at 1230L in September.
DO 2 I=1,10
§ 2 V(I) = PAWSES(-12.5,0.,9)

! Example 2: Generate 10 observations in a sequence

in which the first observation, valid at 0730L in October,
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is randomly selected; the second observation is valid at
0900L; and subsequent observations are taken at two hour

intervals.

';; : V(1) = PAWSES(-7.5,0.,10)
& V(2) = PAWSES(1.5,0.,10)
i : ; DO 2 I=3,10

1 2 V(I) = PAWSES(2.,0.,10)

3 Example 3: Generate two sequences of hourly obser-

E i vations, initiated at 0600L in November, wherein the initial

value of the first sequence is 3 km and the initial value

of the second sequence is chosen at random. This requires
some computation by the user. Using the data within the
array COEF in FUNCTION XRAW, the 0600L November coefficients
require linear interpolation between the O400L coefficients, :
COEF(I,2,11), and the 0700L coefficients, COEF(I,3,11), for |
I =1, 2. The result is: |
A(1)
A(2)

(]

-5.0398
. 571

(]

then

END = A(2) 1n(v+€) + A(1)
where v = 3000 m and € = 244; thus END = -0.4216. The seq- §

uences are then generated as follows: 1

C INITIAL VALUE IS 3 KM,
RKIND = ~-20.4216

V(1) = PAWSES(-6.,RKIND,11)
DO 2 I=2,5
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2 V(1) = PAWSES(1.,0.,11)

C RANDOM INITIAL VALUE.
V(6) = PAWSES(-6.,0.,11)
DO 3 I=7,10

3 V(I) = PAWSES(1.,0.,11)

.
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