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ABSTRACT

A stochastic mode l demonstrates low-cost meteorol-

ogical support to environment dependent simulation studies.

Only the univariate problem is demonstrated , but exterition~

to multivariate applications are feasible . This applicat-

ion models atmospheric visibility . The model simulates

time series at a given geographical point. A historically

derived cumulative frequency distribution is converted to

its equivalent normal deviate and fitted by a rational

approximation . A Markovian time dependence is assumed.

Seasonal and diurnal cycles are modeled. A run is init-

iated via a random draw from a unit normal distribution.

Al ternately, an initial value may be specified. Subseq-

uent values are generated using a time-correlation weight-

ed linear combination of the prior value and a unit normal

random input. This produces a Brownian Movement phenomena

within the appropriate probability density function. A

given run tends to regress toward the climatol ogical mean

wh ile exhibiting random flucuations. A run of sufficient

length recreates the probability density functions. Res-

ults presented verify model performance against historical

data and include a few applications. The FORTRAN computer

subroutine is published in an appendix.
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CHAPTER 1

INTR ODUCTION

Military decisions are mak ing ever increasing use

of decision models. Methods in use range from modeled raw

data with human decisions to real world data with modeled

decisions . An example of the former i& a training simul-

ation and an example of the latter is an aircraft computer

flight plan. Within this spectrum , a useful application is

weapons performance simulation (e.g. , Pickett , et al.,

1.977). Such simulations provide insight for weapons sel-

ect ion , tactics development , and related applications .

Military decisions tend to be complex. A wide

variety of environmental factors are involved. These

factors include terrain , seasonal fo liage , tra f f icab ility ,

meteorology , electromagnetic environment , and many others .

• Due to the sheer volume of potential data inputs , some

factors receive more emphasis than others . Depending on

the application , environmental factors are carefully mod-

eled or ignored. Resource limitations usually preclude

cons ideration of all such dependent variables. Difficult

choices are faced in applications ranging from combat oper-

ations to laboratory simulations . The goal in each case is

to reach a near optimal decision within the time and

1
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2

resource constraints .

This thesis addresses one subset of the total

problem , the mete orol ogical environment. A model designed

to provide mete orological supp ort to environment dependent

simulation studies is described in Chapter 2. This applic-

ation is -the first operational test of the techniques pro-

posed by Boehm and Abbott (1977). Since the model selected

for use is one of several distinct modeling alternatives ,

a brief rationale is provided to justify the choice. Fin-

ally , this chapter outlines the military applications used

to demonstrate model capabilities. Results of the demon-

strations are presented in Chapter 3. The summary in Chap-

ter 4 provides the author ’s conclusions , and Chapter 5

offers suggestions for future research .

- • S
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CHAPTER 2

PROBLEM DESCRIPTION

• A self-contained computer subroutine is developed

to simulate observed atmospheric visibility . This model is

designed to support simulations of broader scope which are

dependent upon meteor ological conditions . Visib ility is

selec ted for demonstration purposes, but any observable

atm ospheric variable or comb ination of var iables coul d be

substituted.

a. Rationale for Model Choice

There are a number of ways one could build such

a model. Options are reviewed in Appendix A. The sel-

ected option is the proposal of Boehm and Abbott (1977).

There are several reasons for this choice. Clearly , the

“no meteor olog ical impact” assumption can be discarded

as trivial for the purpose at hand. Newtonian models1

are proh ibitively expensive . They are discussed in

Appendix A only because they represent an option and

because it is conceivable that they may become a viable

alternative in the future . This leaves the historical

‘M odels based upon numer ical integration of
Newtonian physics.

3

t
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data model2 and statistical simulation of historical data.

The s ta t is t ica l  model retains the advantages of the histor-

ical data model and overcomes most of the disadvantages.

Since the model’s attributes have not been fully estab-

l ished , it presents a higher risk ; but the potential of

the model is worth developing .

b. The Mathematical Model

Details of the mathematical model are presented in

Appendix B. A generalized version is available in Boehm

and Abbott (1977). A documented computer subroutine is

provided in Append ix C.

Conceptually , the model works as follows . The

cumulative frequency distribution (cfd ) of the event (ob-

served visibility ) is estimated from historical data. The

cf d is then transformed to an equivalent normal deviate

(END) space , and modeled using a rational approximation.

Since the probability density function (pdf) is known

(the END is by definition a unit normal distribution), a

random “walk ” through the pdf generates data which can be

converted to simulated observations. The time domain is

• 
• 

assumed to be a first order Markov process.3 A “Brownian

2Models which simply replay recorded observations.

3A first order Markov process is a process wherein
events prior to the current value have no predictive util-
ity. To the extent prediction is achievable , it is depen-
dent only upon -the current value. For a comprehensive
guide to the literature , see Whiton (1977).
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5

movc’~ient” model is added to produce a tendency for the sim-

u l a t e d  variable to regress ( i n  t ime ) toward the mean clima-

tological value (the expected value). This generates event

f requencies  and durations commensurate with observed real-

world values.

c . Model Performance

Before proceeding , it is useful to establish that

the model produces the desired result. Since the simula-

t ion variable is an END , a test of independent~ s imulated

observ ations amounts to ver i f i ca t ion that the normal random

number generator meets specifications . Having established

this , the Markov assumption remains. Boehm and Abbott

(1977) tested the model on time sequences of low ceilings

occurring at Rickenbacker Air Force Base. Ten years of

data were use d to estimate the duration of January ceil-

ings below 3000 feet , given a ceiling below 3000 feet at

t ime , 0000L. A simulated climatology was generated from

10 ,000 model runs. See Figure 1. The Kolmogorov-Smirnov

test indicated that the probability that chance could

account f or the d i f ferenc es betwe en the modele d and estim-

ated distributions exceeded 98%.

A rat her important infer enc e can be drawn from

t this result. It relates to the error introduced by using

a rational approximation to model the cfd . Since the curve

is smoother , d is cre pancies wi l l  exist  whenever the model

has fewer degrees of f reedom than the number of parti tions

-. - - S ~~~~~ S~~~ / ~~~~ •~~U~ ’ ~~~~~~~~~~~
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Figure 1. Histogram summarizing 10 years of data
for duration of ceilings below 3000 feet. Frequency (f)
is plotted against time (t) in hourly increments. There
were 914. cases. Duration was truncated at 23 hours and a
new series was started. This created a spike at 23 hours.
The solid curve is a 10,000 case simulation normalized by
frequency for comparison with the 94 real data cases.
(After Boehm and Abbott , 1977).
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in the es t ima ted  d i s t r i b u t i o n .  Exper i ence  indicates that  a

root  mean squared error (R M SE ) less than 10% is acceptable

( 5% RM SE is more t y p i c a l) .  However , in using the model ,

the Kolmogorov-Smirnov test  indicates that the error has

not been magnif ied by the modeling process. A possible

explanation for this involves the sampling error in the

estimated distribution. The erratic hour to hour variat-

ions in Figure 1 are likely to be manifestat ions of sam-

pling error . It would take over 1, 000 years of recorded

data to generate a data base comparable to the simulation.

Consider now a sample drawn at random from the 10,000 case

s imulat ion.  See Figure 2. While not a formal proof , vis-

ual inspection indicates that the historical sample is at

least as representative as -the actual population sample.

This is formalized by the Kolmogorov-Smirnov results . It

is the author ’s opinion that the s imulation may be a be t te r

estimate of future probabilities than the historical sam-

pie , i.e., the hour to hour variations represent noise in

the historically derived distribution.

These results provide some confidence that the

model will perform to expectations . Never-the-less , each

new application should be verified. A systematic valid-

ation of the visibility model is presented in the next

chapter.
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Figure 2. Same as Figure 1 , but for 100 cases H- randomly chosen from the 10,000 case simulation. (After
Boehm and Abbott ,1977). 
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CHAPTER 3

RESULTS

• Data sources and details associated with deriving

the model equations from the historical data cfd are dis-

cussed. Next , validity is established by generating a

s imulated cfd and c omparing the s imulation to the histor-

ical data cfd . Finally, some model applications are

presented.

a. Generating the Rational Approximations

The raw data are taken from the United States

Environmental Technical Applications Center Revised Uniform

• Summary of Weather Observations (RUSWO) for Fulda, FRG.

The visibility data are distributed into 15 distance

intervals ; and three , hourly observations are grouped

together; see Table 1. For weapon performance s imulat ions ,

accurate modeling of low visibilities is critical . There-

fore , the category thresholds approximating .5, 1, 2, 5,

and 7 km are fitted. ThIs insures that the most reliable

s imulat ion is obtained for opera tionally signif icant

values.

The model requires that a specific time be assigned

to the cfd vice the three hour composite . Accordingly , the

midpoint of the composite period is assumed to be the valid 
- 

-
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Table 1. Vis ib i l i ty  observations are recorded in
uni t s  of mi les .  Reported thresholds are in column 1. The

r k i lome te r  ( k m )  equivalents are in column 2. Representat ive
thresholds compatible with weapon ranges are .5, 1, 2 , 5,

• and 7 km. The thresholds closest to these values are fit-
ted by regression polynomials . Column 3 lists the traris-
formed thresholds selected for f i t t ing. The column 4 data

I - are from the November, 0000L to 0200L , Fulda , FRG RUS W O.
Note that probabilit ies accumulate upward from 0 miles ,
i.e., they provide the probability that visibility will be
above a given threshold.

v thresholds Equivalent v Fi t ted thresholds Cumulative
in miles in kilometers of ln(v  + E )  probabil i ty

.00 v .0 ~ v 5.497 1.000

.25~~~v .4~~~v .896

.31 ~ v .5 ~ v 6.616 .896
5

- .5O~~~v .8~~~~v .862
-
~~~~ .75~~~v 1.2~~~v .280 .859

1.00 ~ v 1.6 ~ v .855
1.25 v 2 .0  ~ v 7 .721 .833
1.50 v 2.4 ~ v .810
2.00 v 3.2 ~ v 8.150 .792
2.5O~~~v 4.0~~~v .766
3.00 ~ v 4.8 ~ v 8.532 .7 17
4.00 v 6.4 5 v 8.807 .691.
5.00 ~ v 8.0 s v 9.023 .513
6.00 s v 9.7 s v 9.200 .390

1.0.00 s v 16.1 s v 10.102 .305

- - - - 5 -



t ime of the d i s t r ibu t ion .  The diurna ’ cycle is modeled by

e ight cfd curves which represent the 24 hour day . This

provides three hour interval time resolution. Intermediate

values are obtained as required via linear interpolation .

Seasonal dependence is provided by using a different set

- 
- 

of eight curves for each month . Only the months of ~eptem-

ber , October , and November are provided in the model. If

a month outside this range is requested the model stops

execution.

The November raw dis t r ibut ion ( i . e . ,  the pdf )  for

OIOOL is shown in Figure 3. November is chosen for display

because the higher incidence of adverse visibilities makes

• the distribution more difficult to fit thereby increasing

• the errors associated with the f i t .  The printed value on

the line represents event frequency while the intervening

values are interval labels. The graph is read as .104

probability that a randomly chosen visibility observation

will fall into the 0 to .5 km interval, .037 that it will

fall into the .5 to 1.2 km interval, etc . The spike at

probability , .305, corresponds to the “good weather” bias .

This occurs because interval resolution is lost when vis-

ibility exceeds 16.1 km.

Figure 4 provides the cfd corresponding to the pdf

in Figure 3. The values are read in the same manner as the

pdf except that they accumulate , i.e., the probability of

a value below 1.2 km is .104 + .037 = .141 , etc.
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0.0 km
.1 0 4 + + + + + + + + + + + + +

0.5km
. 037+++++

• 
- 

. 1.2 km
. 0 2 6 + + ++

2.0 km
041 ++++++

3.2 km

- - 4.8 km
.026++++

6.4 km

8.0km

9.7 km

16.1 km
.3O5++++++++++++++++++++++++++++++++++++++

Figure 3. This sample raw distribution (pdf) is
generated from Fulda, FRG November RUSWO data, 0000L to
0200L time composite . The values printed at the left of
the histogram bar are the probabilities that a randomly
chosen observation will fall into the visibility range
specified by the numbers immediately above and below the
probability ; e.g., for the second line , .03? is the prob-
ability that a visibility falls within the interval .5 km
to 1.2 km. 
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‘I,
0.0 km

0.5km
.141 +++++~~~ +

1.2 km
.1 67+++++++~÷312.0 km
• 2 08+ + + + + + + + + +~~~~3 I

3 .2 km
• 2 83+ + + + ÷ + + + +÷ + + + +~~~ 1.

4.8 km
.3 09+ + + + + ++ + ++ ++ + ++ + +  3 2 1

6.4 km

8.0km
.61 o+++ ÷ ++++++++++++++++++++++++ ~-++~9.7 km
695++++++++++++++++++++++++++++++ 1-+++~+316.1 km ___________________________________

1 RMSE = . 0 62~~~~~~~ Max Error = .121966
2 RMSE = .031359 Max Error = .079752
3 RMSE .020458 Max Error = .043726

Figure 4. This is the cfd of the Figure 3 pdf.
The sums are accumulated upward from zero (the reverse of
equivalent values in Table 1). This facilitates military
applications. Here the value on the second line corresponds
to a probability of .141 (.104 + .037 = .141, using Figure 3
values) that a randomly selected observation will have a
value less than 1.2 km. The last bar which brings the ogive
to 1.0 has been omitted to facili+.ate scale expansion in the
other categories. The RMSE and max imum error associated
with first , second , and third order regression polynomial
fits are listed below the cfd. The intersection of these• fits , respectively denoted by 1, 2, and 3, is overprinted
on the cfd.
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The rfd interval thresholds are fitted by a first ,

second , and th i rd  order regression polynomial . The RMSE

and maximum error associated with each fit are listed in

Figure 4 below the cfd. The first order (linear) fit is

selected for use. Based upon analysis of error data , one

might be tempted to use a higher order (quadratic or cubic )

fit. There is a problem associated with these fits . A

region of negative slope exists on each curve . If this

region includes realizable values of the simulation variable

then one has in effect a region with negative cumulative

probability , a serious theoretical deficiency . Boehm (1976)

discusses this problem and how to avoid it. In the present

case (Figure 4), the quadratic has a usable range from 6.65

to ~~~, while the cubic has unlimited usable range . The

range of the cubic is adequate , but that of the quadratic

is not. However , use of the cubic may generate other prob-

lems , e.g., the cubic range may n~ t be ade-~~ate for all

eight curves in each month and time interpolation may prod-

uce problems . Furthermore , some care is required in select-

ing the proper root when inverting the equation. Finally ,

there is no guarantee that the higher order fit will produce

a more accurate simulation model. When ten class intervals

are fitted using two , three , and four free parameters , res-

pectively ; it is reasonable to expect a smaller error of

fit from the latter two in comparison to the former. How-

ever , the higher order fits may be simply capturing the

LJ~ -~~~
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historical data sampling error . These reasons lead to the

linear fit choice. The 12% maximum error in Figure 4 is

the largest encountered within the 3 months considered.

Linear fit errors are summarized in Table 2.

b. Testing Model Validity

The model is used to generate 5000 independent 24

hour sequences commenc ing at O100L. Distributions are

created at 6 hour intervals from the 5000 day simulated

-
~ period of record . The pdf thus derived is shown in Figures

5 through 9. Figure 5 simply verifies the combination of

the transformation assumptions and the computer routine

which generates unit-normal random numbers. However , this

is an important verification since it is the basic building

block of the model. Furthermore , a conceivable model appl-

ication is the simulation of a sequence of independent

observations. Figure 5 is precisely this.

Figures 6 through 9 test the Markov assumption

through 24 hours. The upper pdf is from the simulation

and the lower pdf is from the corresponding historical data.

-
• Once more the reasonable agreement between the two is appar-

ent,

The agreement is formally tested using the one-

• tailed Kolmogorov-Smirnov one-sample statistic . The one-

sample statistic is used because the simulation sample is

suffic iently large to define a population. This assumption

is tested by increasing the number of simulated observations 

---. ----~~ - - ----5 
5 
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Table 2. The RMSE and maximum errors produced by
a least squares linear regression polynomial fit applied
to the historical-data visibility cfd in the transform

H - space. Errors are listed by local time and month .

Time Sep Oct Nov

RMSE Max Error RMSE Max Error RMSE Max Error

OIOOL 2.6% .5 .9% 3.9% 8.2% 6.7% 12.2%
0400L 3.3% 7.4% 3.6% 7.4% 4.1% 6,9%
0700L 2.7% 4.8% 3.4% 7.2% 3.7% 6.7%
1000L 2.6% 4.5% 3.0% .5.8% 2.8% 4.8%
1300L 1.1% 2.0% 3.2% 7.8% 2.9% 6.0%
I600L 1.2% 3 .2% 2. 9% 6.8% 3.3% 7 .2%
1900L 2.7% 7.1% 2.7% 6.6% 3.6% 6.9%

— 
2200L 3.3% 7.9% 3.3% 7.8% 5.4% 9.2%

.5-, .- . —--—-—5-.-- - - - , - - - - - — .5 -
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‘if
0.0 km

.106++++++++++++++++i-++
0.5 km

1.0 km
H . 05 7+- f + -i-++-4- -f + +

1.5 km
.O4Li.÷÷÷÷+÷÷+

2.0 km
.041

2.5 km
- .036++-i-+++
3.0 km

.037+++++++
3.5 km

- - .0 2 6 + +4-++

4 .0 km
024++++

4.5 km
.020++++

5.0 km
. 0 2 4 ++++

5.5 km
. 0 24-i-+++

6.0 k m
.o16+++

6.5 km
.013+-f

7.0km

Figure 5. November OIOOL simulated pdf for Fulda ,
FRG. The pdf is a composite of 5000 independent random
draws from a unit-normal distribution. Accordingly , this
is a test of the random number generator and the linear
model , but the Markov time dependence is not tested here.
The histogram is read in the same manner as Figure 3, whic h
contains the corresponding time-period historical data.
However , the intervals differ.
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0.0  km
. 1 .  O7 + + +~ -~ +++4  ~ ++4 ++- t  4 ~ +

-
• O.~ km

.0 6 1+- i - + ++++++++
1.0 km

2.0 km

3.0 km

5.0 km
.O38+÷-i-++++

6.0 km

7.0 km _ _ _ _ _ _ _

0.0 km

0.5 km

1.2 km
.O19-f++

2.0 km

3.2 km
r .112+++++++++++++++++++

4.8 km
.O38-4-++++-4-+

6.4 km
077++++++++-i-+++++

8.0 km 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _________

Figure 6. The upper histogram is the pdf from the
5000 day simulation discussed in Figure 5. The data are
valid for November 0700L at Fulda, FRG. The data display
a composite of the second points in 5000 Markov chains (us-• - - ing a six hour time s tep)  extending from the Figure .5 m it-

• ial values and employing the linear model of the diurnal
cyc le. The lower histogram is the historical pdf used to
generate the linear simulation coefficients . When comparing
values , note that there are minor variations in interval
definition. The model provides an excellent approximation ,
but it is the weakest between the .5 km and 2.0 km thres-
holds . This is discussed in the text.
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is
0.0 km

0 . 5 k m
04o+++++++

1.0 km
• 072+++-f+++++++++

2.0 km
.O 56+ + +++ +++++

3.0 km
a

5.0 km

6.0 km
.03O+++++

7.0 km

0.0 km
03 3++++++

0.5 km
• 0 2 2 + + ++

1.2 km
. O 27+ + + ++

2.0 km

3.2 km

4. 8 km
.044-i-+++++++

6.4 km
• 076+++++++++++++

8.0 km

Figure 7. The upper histogram is the pdf from the
5000 day simulation discussed in Figure 5. The data are
valid for November 1300L at Fulda, FRG. The data display
a composite of the third points in 5000 Markov chains (us-
ing a six hour time step ) exten d ing from the values assoc i-
ated with Figure 6 and employing the linear model of the
diurnal cycle . The lower histogram is the historical pdf
used to generate the linear simulation coefficients . When
comparing values , note that there are minor variations in
interval d e f i n i t i o n .  The model provides an excellent appro-
x ima tion , but it is the weakest between the .5 km and 2.0 km
thresholds. This is discussed in the text.
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0.0 km
• 0 56 + ++ + + + + + + +

0 .5  k m

1.0 km
• .071++++++-’-++++++

2 .0 km
. o6 1++++++++++ ÷

3.0 k m
.O95 +++ +++++ + ++ +++ +++

5.0 km
.o41+++++++

6.0 km
.035 ++++-f +

7.0 km —_____________________________________________

0.0 km

- • 0 .5 km
- • 

. 006+
1.2 km

.0 1 7-i-÷÷
2.0 km

055++++++++++
3 .2 km

4.8 km

6.4 km
078++-f+++-4-+++++-1-+

8.0km

Figure 8. The upper histogram is the pdf from the
• 5000 day simulation discussed in Figure 5. The data are

valid for November 1900L at Fulda , FRG . The data display
a composite of the fourth points in 5000 Markov chains (us-

- 
- ing a six hour time s tep)  extending from the values associ-

ated with Figure 7 and employ ing the l inear model of the
diurnal cycle.  The lower histogram is the historical  pdf

• used to generate the l inear simulation coefficients . When
c ompar ing values , note that there are minor variations in
interval de f in i t ion .  The model provides an excellent appro-
ximat ion , but it is the weakest between the .5 km and 2 .0  km
thresholds. This is discussed in the text. $
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1~0.0 km

0 .5 km
.o62+++++++++++

1.0 km
.095 +++++++ + +++++++++

2 .0 km

3.0 km
-

- .1O8++ + ++ + + +++ + ++ + + + + + +
5.0 km

.O4 1++ ++ +++
6.0 km

.029+++++
7 .0 km ___________

H 0 .0 km

0.5  k m
• O37 +++++ ++

1.2 km

2 .0 km
.041+++++++

3 .2 k m
.075 +++++ ++++++++

4.8 km

6.4 km
.1 7 8++++++ + ++++++++++++++++ + +++ + + ++ ÷

8.0 km

Figure 9. The upper histogram is the pdf from the
5000 day s imulation discussed in Figure 5. The data are
valid for November OIOO L at Fulda , FRG. The data display
a composite of the f i f t h  points in 5000 Markov chains ( us-

• ing a six hour time s tep)  extend ing from the values associ-
- - 

- ated wi th  Figure 8 and employing the linear model of the
diurnal  cycle.  The lower histogram is the historical pdf

— . u sed to generate the linear s imulation coe f f i c i en t s .  When
c omparing values , note that there are minor variat ions in
interval d e f i n i t i o n .  The model provides an excellent appr o-
xima t ion , but it is weakest between the .5 km and 2 .0  km
thresholds.  This is discussed in the text .
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from 5, 000 to 25, 000. The d i s t r ibu t ion  does not change

wi th in  the f i r s t  three decimal places of event frequency .

The one—tai led  test  is used because the v is ib i l i ty  histori-

cal d i s t r ibu t ion  tends to be “J” shaped , i . e . ,  bimodal wi th

one mode in the 0 to .5 km interval and the dominant mode

in the 16.1 km ~ v interval . Accordingly , a l inear model

tends to systematical ly  overes t imate  the cfd between these

modes .  This tendency is apparent in Figures 6 through 9.

The Kolmogorov-Smirnov s tat is t ic  tests the null

hypothesis that the historical  data represent a sample

drawn from the simulation population. Assigning large alpha

( cx . 2)  the null hypothesis must be accepted.  This equates

to a willingness to r e j ec t  a true hypothesis  one in f ive

t imes. Of course smaller values of alph a are even more

res t r ic t ive.

c. ~ odel App l icat ions

The application potential has been established by

the f oregoing verif ication that mo deled data sequenc es are

in reasonable agreement with the data samples observed in

nature . It is beyond the scope of this work to seek and

ver i fy  operational applications. Rather , a contrived ex-

ample is presented , and it is lef t  to the interested reader

to pursue applicability to operational problems .

The demonstrat ion example s imulates the probability

that an advanc ing enemy tank will not be visually detected

prior to arriving wi th in  3, 000 meters of a watchful  observer
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who has a reasonable f ie ld  of v iew.  Time commences at

O 100L on a typical November day near Fulda , FRG and it

runs through 24 hours . Simulation results are displayed

in Figure 10. This is a composite of 1 ,000 trials. The

initial vis ib ility is chosen at random from the appropri-

ate pdf. This is a binary event , i.e., visibility above

or below 3,000 meters . The 50% probability of visual

sighting beyond 3,000 meters is not reached until O700L.

Thereafter , the probability increases rapidly through noon .

However , if improvement is not attained by noon , fur ther

increase in expectations is markedly reduced.

One might hypothesize that the enemy will advance

under cover of adverse visibility conditions . Accordingly ,

it is assumed that the initial cond i t ion is zero visib ility

(this is a rare event in November ; it has probability , 2.5%).

Once more a composite is generated from 1 ,000 cases. Each

run is terminated if simulated visib ility equals or exc eed s

3,000 meters . The simulated expectations are displayed in

Figure 11.

The d ifferences produce d by the alternative assump-

tions of v 5 3 km vice v = 0 km are apparent in Figure 10

and Figure 11. The probability of v above 3 km increases

much more slowly in Figure 11 , and the 50% probability is

not reached until noon. At the end of 24 hours the probab-

i l i ty approximates that associated with the Figure 10, 1300L

values. Meteorologically sound arguments can be offered

h~~H 
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01.004
• .14 ++++++ + ++

0200L
.2 1++++++++++++

0300L
• 25++++++++++++++

O400L
30+++++++++++++++++

O500 L
. 37++++++++++++++++++++

• o600L

O700L

O800L
51++++++++++++++++ + ++++++++++

- - O900L
56+ + + + +-i- -t -+ + + + + + + + + + + + + + + + +-~~+++++

1000L -

61++++++++++++++++++++++++++++++
11 OOL

• 66+++++i-++++++++++++++++++++++++++++
1200L

75++++++++++++++++++++++++++++++++++++i-++
1. 300L

1400L
• 81++ ++++++++++++++++++++++++ + ++ +++++++++++++

1500L
. 84++ + +++++++-i-++ + +÷+++++++++++++++÷ -i-++ + +++++ ÷ +

1600L
85+ + ÷ + + + + + ++÷ + + + + + + +++ + + ++ + +++ ÷ + + + + + + + + + + + ++ +

1700L
86+++++++++++++++++++++++++++++i-+++++++++++++

1800L
.86++++++++++++++++++ ~+ + + + + + + + + + + + + + + + + + + ÷ + + + + +

1900L

2000L
. 89+++++++++++++++++++++++++++++++++++++++++++++

2100L
.91++++++++++++++++++++++++++++++++++++++++++++++

2200L
• 91+++÷++++++++÷+++++++++-f-4++++++÷÷++++++÷+++++++

2300L
. 93+ ++ +++ ++ + + ++++++ ++ ++++ + + ++ +-i-++++ ++ ++++ +++++ + + +

2400L____________________________________________________

Figure 10. Simulation of the composite time dur-
ation (cfd ) of 1000 events , v less than 3 km , given that v
is below 3 km at O100L. The OIOOL value of v is obtained
by repeated random draws from the p-if until the specified
criterion is met. 3 km S v terminates a time series.
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-‘ Figure 11. Simulation of the composite time dur—
ation ( c f d ) of 1000 events , v less than 3 km , given that v

• equals 0 km at O 100L. 3 km S v terminates a time series.
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for the differences assoc iated with these related condit-

ional probabilities. Low visibilities are common in morn-

ing foe,; however , if v = 0 km already at O100L, the cause

is likely to be someth ing other than radiational cooling .

One possibility is the synoptic environment associated with

recent rainfall and a near stationary front in the vicinity .

Such conditions will tend ‘to persist.

Figures 12 and 13 display the tendency for adverse

- ‘  con d itions to persist through the morning hours from a

different perspective . 1,000 cases are included in each com-

posite. Figure 12 contains simulated distributions at O300L,

0500L, and 0700L given that the visibility at 0300L equals

1.5 meters . This is a relatively rare event ; however , given

this cond ition , probabilities relating to subsequent events

can be inferred from the model. Once more the tendency for

adverse visib ility to persist through early morning , onc e

onset is established , is apparent. Alternately , a random

choice (related to historical probability ) of visibility

below 3 km represents a much more common condition. Again

low visibilities persist , but not to the same degree. It

should be recognized that a statistical composite such as

this contains samples wherein v = 2 km at 0300L goes to 0 km

at O700L as a result of continued radiational cooling , and

it contains samples wherein v = 0 km at 0300L goes to 10 km

at 0700L with the intervening passage of a frontal system.

The former is common and the latter is not , but either is

=- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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12(a) O300L

0 .0  k m

1.0 km
2.0 km
3.0 km

H - 5.0 km
7.0 km ____________________________________

12(b) O500L

0.0 km
0 .5  km

• . 0_
~+2 0 k m  - ‘

3.0 k m .00
5.0 km
7.0km ___________________________________

1 

12(c) 0700L

0 0 km
• 71 ++÷+++++++++++++++++++++++-~-+0 .5  k m

1.0 km
• 2 .0  km o-~+3.0 km

- 
- 

5.0 km
7 .0 k m

Figure 12. Rare event cl imatology is generated via
s imulation.  In 1 2( a ) ,  v is assigned the value , 1.5 m , at
O300L. One thousand trials are composited. 12(b) displays
the resul t ing condit ional  pdf at 0500L , and 12 ( c )  displays
‘the conditional pdf at O700L . Meteorolog ical insight into

• these events and their time evolution is offered in ‘the
text.

____________ 
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13 (a) O300L

0.0  km
.5 km

• ~~~ ~m . 30++++ + +++++ ++km .22++++ + ++ ++
~~~ ~m 00
7.0km _____________________________________

13 (b) O500L

0.0 
~~

1 0  km
~~~~~~~~ 

.2 2+ ++ + + + ++ +

~~~~~~~ ~m
~~~ km .12+ ++++
~~~ km O4++(. 

__________________________________________________________________

13(c) 0700L

0.0 km
0. ,5 km .14++++++

~~~ 
.18+++++++

~~~. ~m

~~~~~~ 
~m

1’ , 5.0 km o6++7 .0 k m _____________________________________

Figure 13. Conditional cl imatology is generated via
s imulation for comparison with Figure 12 rare event condit-
ional climatology. One thousand trials are composi-ted. In
1 3 ( a) ,  v is se lected randomly from the portion of the pdf
containing ‘the event , v less than 3 km at 0300L. 13(b)• displays the resulting conditional pdf at 0500L, and 13(c)
displays the conditional pdf at 0700L.
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r~-alizable within a particular simulation set. The relative

probabilities arc brought into perspective only by a large

composite of simulations .

The model capabilities have now been demonstrated.

Figure 5 illustrates a composite sequence of independent

observations . Figures 6 through 10 provide applications

from simulated serial observations. Finally , Figures 11

‘through 13 demonstrate the capability to rerun a vignette

with altered assumptions.

The capab ilities of the model are apparent , but it

is equally apparent that one would like additional options .

The example just presented assumes that the enemy observ es

and reacts to current events but lacks predictive skill

and the ability to alter the visibility environment. A

more realistic requirement migh t be for ar initial visib il-

ity of zero meters plus at least an 85% expectation that

visib i l i ty will remain below 2 ,000 me ters for a minimum of

five hours. This allows some time for the enemy to react

once these conditions are met. Finally , the enemy may

choose to employ artillery smoke if visib ility exce eds

1500 meters following initiation of his movement . Simula-

tion of mete orological aspects of th is relatively more corn-

p lex vignette is beyond the capab ility of the s imple mo del

presented here ,  but it is not beyond th e capab i l i ty of the

generalized methodology. Problems with complexity equal

to or greater than this provide the requirements which wil l

-1
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ul timate ly unite resourc es with know ledgable researchers

and produce a generalized simulation capability .

-

~ i
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CHAPTER 4

SUTV1MA RY AND CONCLUSIONS

A f irst order Markov model is use d to simulate

atmospheric visibility observations . In its present form ,

the suggested use of such a model is to support environ-

ment dependent simulation studies. The model is inexpen-

sive to operate and self-contained. It is capable of gen-

erating sequences of e ither independent or serially correl-

ated observations. The initial value of a correlated seq-

uence may be specified or obtained via a random draw from

the pdf. No control is exercised over subsequent values;

they are a function of the previous value in the series,

the serial ( t ime ) correlation , and an imposed random

variation.

The model generates visibili t ies  valid at a geogr-

aphical point , Fulda , FRG . However , the methodo logy is

more general. Visibilities at any geographical point can

be simulated if appropriate values of the model paramet-

ers , A and B , are introduced. The correlation , R1, is

reasonably robust. A geographical shift does not normally

• require a change.1 Furthermore , any s ingle meteorological

1Boehm , personal communication.
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variable can be modeled using this general approach ; how-

ever , instead of simply changing model parameters , an al-

ternate mathematical expression (rational approximation )

for the END is needed if the variable is not log-normal.

S imultaneous modeling of several variables at multiple

locations is also feasible. This more difficult problem

is discussed in the next chapter.

Typically , env ironment dependent simulation stud ies

model meteorological dependence by rerunning historical

sequences. The stochastic model demonstrated here is

- 
- :  capable of providing this support and more . The simulat-

ion model duplicates the positive features of the histor-

ical model and it does not suffer from the negative feat-

ures. Advantages afforded by the stochastic model are :

- Minimal computer assets are required.

The univariate meteor ological simulation lies with in the

capabilities of a hand-held programmable calculator.

- Simulation is no t limited by the f in i te

sequences available in recorded history .

- Cumbersome f i le manipulation associated

with the historical model is avoided.

- .  
- 

‘ 
- Vignettes dependent upon a given initial

value of the meteorological variable are easily supported.

Historical models require cumbersome record searches; and

for rare events , recorded data may be inadequate.

- Sensitivity analyses are easily supported

- -  

1~~ - -
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by the s imu la t i on  mode l .

- If a sequenc e of independent values is

required , the serial c orrelation inherent in historical

data is easily avoided.

The focus has been upon simulation support . The

methodology has operational utility as well. For example ,

if the initial value of a sequenc e is the current obser-

vation , a forecast can be generated in time or space.2

Forecasting in time is corn5~on, but less is known

about how to successfully forecast in space. However , if

these capab ilities are demonstrated , a number of applica-

tions result. An example is optimal placement of meteorol-

ogical observations in time and space to support field

artillery operations . Another is preselection of prepared

weapon positions as a function of the small scale varia-

tions in climatology . These climatic variations can be

modeled when available data are inadequate to provide a

his tor ical data est imate , e.g., remote regions or enemy

territory . The list of potential uses is extensive , but

research is require d if these capabilities are to be

realized.

• 2The mathematical formulation differs somewhat.
See Tahnk ( 1 9 7 5)  and Boehm (1976).

- -5 - _ _
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CHAPTER 5

SUGGE STI ONS F OR FURTHER RESEARCH

Mo deling the time evolution of  a multivaria te d is-

tribution must be demonstrated if the final enclave of his- —

torical data model applications is to be breached by simul-

ation. Precise time-space predictions at any specified

- 
- res olution are a required capab ility which is not available

today . Promising methods have been proposed; however , dif-

ficulties will undoubtedly be encountered during the applied

research phase of model development .

An important theoretical question in meteorology

is the def i n i t i o n  of  optimal time and space posit ioning

within the global or regional observational networks. This

is an economic problem. The requirement is to determine the

point  at which the cost of the observations exceeds the ben-

efits to be derived from the data applications . On a small-

er scale , the Unit ed Sta tes  Army f a c e s  precisely  the same

problem. The optimal time-space resolution of observations

taken in support of field artillery operations is unknown.

The s imulation technique presented her e , tog ether with the

ca pab ility extensions which appear to be f e a s ible , can add-

ress such questions . For example with the new TACFIRE sys-

tern providing a significant computer capabil ity within each

34
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a r t illery bat talion , a network of met~ orological observat-

ions can be ad jus ted  in space and t ime via s imulation to

coincide with the position of each artillery tube. Cor-

rected observations can be generated in seconds. Thus ,

relocation of the tubes does not degrade environmental sup-

port. The system would require input of a few numbers

following each meteorological observation. Currently , met-

eorological parameters are often assumed constant between

successive time observations and -they are linearly interp-

olated or extrapolated in space. Research is needed to

provide the economic limitations of increased sophistication.

The benefits appear to be significant. Small improvements

in the accuracy of an artillery delivered mine field have

a potentially high wartime utility .

The technological sophistication of the battlefield

is constantly increasing. The small number of environment

dependent applications represents the tip of an iceberg of

potential current and future appl ications for  a s tochast ic

meteorological simulation model taken in conjunction with

• exis’tirg microprocessor technology. In many situations ,

o .t.ional applications still use World War II methods to

expl: ~t environmental data. Research is needed to deter-

• mine what is possible and produce correspond ing capabilit-

ies. The high pric e tag associated with soph ist icate d

weapons limits the acquisition rates. Technology of the

type proposed here in can in princ iple increase utility and

L . .  I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ‘~~~~~ -- —~~~~~~~~~~~~~~~~~~ - - -  --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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effec t iveness  of such systems thereby of fset t ing acquis i t ion

limitations .

It is not intended to imply that the metho d presen-

ted is the only feasible approach. Many components of the

problem are being pursued by Air Force Geophysics Labora-

tory at the request  of the Air  Weather Service. Several

alternative methodologies are being explored. It is the

author ’s opinion that current efforts are small in relation

to the large potential benefits which are obtainable.

-~~ ~~~~~~~~~~~~~~~~~~~~ ---~~~i. - - -’ ~~ - ~~~~~~~~~~~~~~~~~~ ~~~~
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APPEND IX A

METh OR OLOGI CAL M ODELS

The meteorological  models available for s imulat ion

applications cover a wide range of complexity and cost.  On

one end of the spectrum is the “no meteorological impact”

assumption. It is simple , but the cost is low only if the

assumption is correct. The other end of the spectrum reach-

es into the fringe areas of applied, if  not basic , research.

The model used in this study is a statistical sim-

ulation of historical data proposed by Boehm and Abbott

(1977). This and alternative modeling options are review-

ed.

a. The No Impact Assumption

One can easily conc e ive a scenario wh ich is ~ot

dependent upon meteorological variables. A simple example

is a battle s imulation which is initiate d an d concluded

w ithin a matter of minutes. Here the assumption is not

— 
“no impact ;” it is “no time variation ” since initial con-

d iti ons are not expec ted t o change dur ing the cours e of  the

simulation. Accordingly , a mean value (or a best/worst

case value ) can be ass~~ ned and held constant for the

simulation.

In the example just pres ente d , formal testing is

38
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not used in choosing to f reeze  meteorolog ical con d itions in

time and space. The choice is a personal judgement (e.g.,

a personal probability ; Savage , 1954). Such judgments are

powerful tools when based upon expert opinion. Alternately,

one could formally test a no impact hypothesis (Spiegel ,

1975). When only one variable is being considered , it

may be simpler to model the variable than to establish

that modeling is unnecessary . On the other hand , testing

may be valuable if one wishes to show that modeling a uni-

variate dependence is adequate , i.e., a multivariate treat-

ment is unnecessary . Multivariate models are considerably

more complex than their univariate counterparts. Research

is needed to improve multivariate modeling.

b . Modeling Meteorological Impact

Models of the meteorological environment fall into

three general categories; historical data models , Newt onian

models , and stochastic models. References in each category

are included to illustrate the general approach in current

use rather than to provide a developmental audit trail.

• (1) Historical Data Modeling

A historical data model uses time-sequenced data

• - 
- to provide meteorological inputs to a simulation model.

Spatial variation can be added , but this presents an inter-

polation pro b lem because recor ded observations are spati al-

ly sparse (they may be located tens of kilometers apart in

dens ely  populated industrial societ ies or thousands of

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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kilometers apart over the oceans of the Southern Hemis-

phere).

This model has both good and bad features. On the

positive side , it is inexpensive ( given adequate mass s tor-

age handling capability); a reasonable time sequence of

events is maintained (e.g., a real is t ic  time lag is guar-

anteed for a clear sky to become overcast); and joint

occurrence pro bab ilities f o r  mult ivariat e appli ca tions ar e

reasonable (e.g., rain does not fall from a cloudless sky).

The latter two features are obvious since the model is no—

thing more than a replay of recorded history . On the neg-

ative si de , it is di f f i cu l t  to estimate the sampling error

and f or some applications , the data are perishable.

Cons id~r perishability . An example is a sensit-

• ivity analysis. If meteorological inputs are held constant

while other paramet er s ar e varied , one risks tuning a dec i-

sion to a historical meteorological sequence. This situ-

ation is not unlike a statistic ian always entering his

ran dom number table at the same point dur ing a sequence of

related experiments . Random variations of weather inputs

woul d seem pr ef e r a ble even though subsequent analys is may

be made more difficult.

In summary , historical data models are inexpensive

and easy to use. Given a short suspense , they may o f fe r

the only option ; however , some care should be exercised

when interpreting results f rom sequential use and reuse
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of l i m i t e d  data.

( 2 )  Newtonian  ~odels

Newtonian models are used extens ively in generating

: operational forecasts  of meteorological  condit ions (Shuman

and Hovermale , 19o8) .  They are also used to simulate glob-

al cl imate ( Manabe , 1969) .  These models require numerical

solut ion  of physical laws (expressed mathematically).

- - Newton ’s laws of motion , mass-energy conservation , and

thermodynamic laws are cast into a set of ncnseparable

partial differential equations. These equations can be

solve d approximately if  a number of s implif y i n g  assumpti ons

are made. Currently , only determinis t ic  mode ls are in oper-

ational use ; however , in pr inc iple , it is possible t o est-

imate the time/space evolution of the initial uncertainty

• ( Fleming , 1970).

Newt onian models have not been used to generate

meteorological input variables for problems of the type

being considered here . There are two obvious reasons.

The first is cost. These models can dominate a large corn-

puter. The second is that model outputs do not directly

provide values of the dependent variables normally needed.

S tatistical methods can be use d to convert outputs into

the needed variables (Klein and Glahn , 1974); however ,

it then becomes cost—effective to use a statistical method

d ire~ctly.
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( 3 )  Stochast ic  ~-~odcls

Stochastic forecast models have been used to gen-

crate meteorological forecasts for over ten years. These

models (used either directly or in combination with New-

tonian models) are promising to automate many forecasting

tasks currently being performed manually . The most common

approaches employ discriminant analysis (Miller , 1962),

equivalent Markov regression (Miller , 1964), nonlinear

regression (Miller , 1969), or Markov chains (Gringor ten ,

1966 and Boehm , 1976). Boehm and Abbott (1.977) use a

Markov process to generate equivalent historical data. The

methods extends earlier work by Gringorten (1966) and

McCabe (1968).

The stochastic models all operate on the same gen-

eral princ iples. Historical data are used to estimate the

correlation between present and fu ture  events .  These

relat ionships are then used to generate a time series.

Methods for spreading the time series in space have been

proposed by Von Luetzow (1973) and Gringorten (197~- ,.

The model outputs are probabilistic by nature , hut one

can eas i ly  devise rule s f o r  converting to determinis tic
‘ values if they are needed.

L 
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APPEND IX B

M ODEL D E S C R I P T I ON

Simulated historical data are generated by a cam-

puter to provi de re presentative values of  atmospheric sur-

face visibility . Representative values means that event

f requenc ies and durati ons cor resp ond to those f o u nd in

the observed climatological distribution. Of course , dev—

iations the order of magnitude of observed year to year

variability arc both acceptable and desirable . The model

used is that proposed by Boehm and Abbott  (1977) .  It is

adapted to the one variable under consideration. The vis-

ib ili ty  climatology of any geographical point could be

s imulated by this model if  the d istribution equa tions ar e

known and introduced into the computer program.

a. Modeling Surface Visibility

The model employs normal time series theory .

Accord ingly , raw values of visibi l i ty  must be generate d

from the END. Visibility is known to be log-normal (Chis-

holm and Kruse , 1974). This means that the transformation :

x = A ln(v+E) + B (1)

pro duc es a normal varia ble , x , where v is visibility in

meters (nondimensionalized). The constant , E , is nee ded to

avoi d the rapid slope change and s ingularity as v approaches

44
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zero . ’ The coefficients , A and B , are given by:

A = ( 2 )

and

: B ~~~~~~~~~~~~~ (3)

where ~ is the mean and ~ is the standard deviation of the

in v population , i . e . ,  x is the standard normal of ln v . 2

A and B are funct ions  of t ime .3 This is where the d iurnal

and seasonal cycles are taken into account wi thin  the model.

Diurnal variat ions are modeled by def in ing  the d i s t r ibu t ion

coefficients at equal intervals over a 2 .  hour period , and

seasonal variation is modeled by developing distinc t coef-

fic ients for each month .4 Intermediate diurnal distribu-

tions are obtained as needed via linear interpulation for

— diurnal cycles. The impact of the transfor mation is seen

• schematically in Figure 14. Generating the ~N~D is an ap-

proximate and highly nonlinear proct-su ~u c -ja ~-e -~ ‘to the

l inear t ransformat ion assoc iated wilr. variaL~ e stanuaral:-

ation. The latter produces a unit-normal if and only if

= 244. is selected by trial and error.

2This simple relationship of v to x is the result
of ~ priori knowledge of the distribution. Boehrn (1976)
provi des guidance f o r  deriving the END when the d istri-
bution is unknown.

3i-i istorical meteorological data are used to est imate
A and B.

4Alternate ly , one coul d re presen t the annua l var-
ia tion as either two seas ons (warm and col d)  or f o u r
seasons .
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CEI LING
HEIGHT CUMULATIVE

iN FEET FREQUENCy

l0000— SG~.— —4-

- - 

- 

5Q%_ /

- 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

,

1

3000—.- —40%—

1000—. —30 %—

200 —.- 
~

, —1 .4 — 5 4 — 2 6 0 26

TRAN SNORMAL IZ ED VARIABLE

Figur e 14. The transformation of cumulative frequ—èricy of ceiling height to its END is depicted schematically .• The allowable END variable range is from minus to plusinfinity. (After Boehm and Abbott, 1977.)
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the original distribution is normal.

Analytic expressions are now available for the pdf

and cfd . Using functional notation , let +(x) = pdf, and

let ~ = cfd . Then by definition~

4(x) = (2i-r )~~ exp(-~x
2 ) ( 4)

and

~(x) = J~
x +(w)dw (5)

where w is a dummy variable .

Applications dictate model use at this point .

Assume that a weapon ’s perf ormance is dependent upon the

instantaneous value of visibility . The model simulat€ s

a value of  x us ing a norma l ran dom number genera tor , ai. -

(1) can be solved for v since A and B are known parameters .

A more interesting problem is a decision simulation

wh ich is dependent upon current visib ility and subsequen t

values at the same location , but over a spe c if i e d time

interval, e.g. , 12 hours. In this case , the s imulation

must address the correlation between successive values of

visibility in the time domain. Given x , the END of  visib-

ility at time , to , let y equal the END at a subsequent

t ime , t1.; and let R equal the correlation between x and y.

Sinc e x and y are bo th normal , the joint distribution of

x and y will be g iven by:

•(x,y) = [2Ir(1_R 2)2~~ lexp[~~ (x 2+Rxy+y2)/(1_R 2)~ ( 6 )

A relationship which will produce the result in (6) is:

y = Rx + (1-R ) n (7)

_ _  
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where n is a unit-normal random variable (Feller , 196&).

Recursive use of (7) from t0 to t~~, t2, ... defines
a simulation algorithm. Since y at each step is related to

x of  the prece d ing ste p via the parame ter , R , (7) produces

a f i r s t  order Markov proces s if  Rt= R~ . Rt is the value

of  R at time , t; and R1 is the value of R at t = 1 hour .5

Weather events such as visib i l ity are well appr ox imate d

by a first order Markov process (Tahn.k, 1975). The s imul-

at ion algorithm , (7), will tend to regress toward the mean

value (Feller , 1966), but the random input will produce a

fluctuation about the mean.

b. Converting Visibility to Transmissivity

Some applicati ons re quire atmospheric transmissiv-

ity rather than visibility. Accord ingly , it is useful to

derive a relati onship which converts s imulated visibili ty

into transmissivity . Beer’s Law states:

Tx= exp (-k~
u)  ( 8 )

relating the monochromatic transmissivity , Tx i to the

optical pat h length , u, via an absor ption c o ef f i c i ent,

( F leagle and Businger , 1963). T
~ 

is defined as the ratio

of  inc ident to transmitte d ra d iation at wavelength , X; and

the optical path is def i n e d as :

5R1 is estimated from historical data. Use of this
• 

- c ontinuous exponential definition of  the t ime decay of  R
actually defines an Ornstein-Tjhlenbeck process , the cont in-
ucus counterpart of a first order Ma~kov process.



U J~~P~th~ ( ‘.))

where is path media densi ty  and s is path length . 1-or

sma ll interva ls of  A , kx may be assumed constant ; and for

small s, horizontal  grad ients of 1
~a 

may be neg lecte d near

the earth ’s surface. Substituting v for s, Beer ’s Law can

be written:

T =  exp(-K v) (10)

j T
~ 

is mean transmissivity over the visible spectrum range ,

.4 A .7 microns ,6 and K
~ 

is a density we ighte d abs orp-

tion coeffic ient. The near infrared spectrum , 7 ~ k ~ 11

microns , is also of interest. Using the prior assumptions

with analogo us notati on gives :

T
~
= exp(_K

~
v)  ( i i )

The empirical relationshi p, K1= •83Kw~ 
provid es an estimat e

of  K 1. With the parameters thus defined , (10) and (11) pro—

vide the needed relationships for deriving transmissivities

from simulated visibilities.

A word of caution is in order. Beer ’s Law is stric-

tly valid only for monochromatic transnüssivity with negli-

gible scattering and emissivity at the wavelength under

consideration. The above relationships are crude (partic-

ularly for the near infrared) and should be used with dis-

cretion. See Craig (1965) for a detailed discussion.

6One micron equals io
_6 

meter.
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APPEND IX C

MODEL SUBROUTINE S

IN F ORTRAN

The FORTRAN function PAWSES returns a simulated

vis ib ility , 0 ~ v ~ 30 km. PAWSES has three arguments ,

DELT , R K I N D , and MNTH , which must be supplied by the user.

Rules for applying the function are provided within the

code. The remainder of the functions which are accessed

F by PAWSES are transparent to the user. However , the sys-

tern subrou tine s and f u nctions must be supplied if  not ava il-

able in the library . These are listed with a brief descr-

iption of their purpose. Examples which demonstrate all

user options are provided.

a. The FORTRAN Code

FUN CTI ON PAWSES ( DELT ,RKIND ,IV~NTH )
C PROTOTYPE AWS ENVIRONMENT SIMULATION (PAWSES) FUNCTION :
C 11 MAY 78 VERSION BY ABBOTT. PAWSES RETURNS A SIMULATED
C V I S I B I L I T Y , O.LT.V.LT.3O KM . IN A RANDOM SE QUEN CE WHI CH
C SIMULATES ACTUAL WEATHER .
C
C THE USER MUST SUPPLY 3 ARGUMENTS .
C
C 1. DELT: A NEGATIVE DELT GENERATES AN INITIAL
C VALUE ,V (1), OF A NEW SEQUENCE VALID AT TOD=-DELT
C WHERE TOD IS TIME OF DAY IN HOURS. TO GENERATE
C N ADDITIONAL VALUES; V(2), V(3), . .. ,  V(N); DELT
C IS THE P O S I T I V E  TIME INCREMENT IN H OURS BE~ WE EN
C V (1) AND V(2), V(3) AND V(4), ETC. THE SUCCESSIVE
C V(I) NEED NOT BE EQUALLY SPACED IN TIME .
C
C 2. RKIND IS REFERENCED ONLY WHEN DELT IS N E G A T IVE .

C IT CONTR OLS THE TYPE OF SEQUENCE TO BE GE NERATED . —

51
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C THERE ARE 3 OPTIONS :
C A. IF(ABS (RKIND).GT.30.) THE RANDOM NUMBER
C GENERATOR SEED IS RESET TO THE VALUE R K I N D .
C B. IF(15..LT.ABS(RKIND).AND.ABS(RKIND).LT.30.)
C END = RKIND + 20. OR RKIND - 20.  RESPECTIVELY F&~
C NEGATIVE AND POSITIVE VALUES OF RKIND .

• C C. REMAINING VALUES OF RKIND SELECT THE END
C RANDOMLY FROM THE VALUE RANGE -3.3 TO 3.3.

C
C 3. MNT H SPE C I F I E S  THE M ONTH F OR WHICH A REPRE SENTA-
C TIVE SEQUENCE IS DESIRED . THIS VERSION HAS ONLY 3
C M ONTH S , SEP . OCT . AND NOV. IF MNTI-J DOES NOT HAVE
C THE VALUE 9,  10, OR 11, EXECUTION IS STOPPED .
C

DATA X , ISEED , OLD/O., O , 1.E1O/
I F ( M N T H . G T . 1 1 )  GO TO 20
IF( MNTH .LT . 9) GO TO 20
I F ( D E L T .G T . O . )  GO TO 50
I F ( A B S ( R K I N D ) .L T . 3 0 . )  GO TO 10
ISEED = 1
X = RKIND
CALL RANSET(X)
GO TO 1

10 I F ( A B S ( R K I N D ) .L T . 15 )  GO TO 1
E = RKI ND + 20.
IF(RKIND.GT.O.) E = RKIND - 20.
TOD = -DELT

H GO TO 3
50 IF(DELT.EQ .OLD) GO TO 2

C
C T H I S  SECTI ON F OR CHANGE IN DELT
C

R = .95**DELT
C R IS  C ORRELATI ON FR OM ONE TIME TO TIME PLUS DELT

D = SQRT(1._R**2)
OLD = DELT
GO TO 2

C
C THIS  SECTI ON F OR NEGATIVE DELT . IT GIVE S NEW TOD .
C

1 TOD = -DELT
E = RAND OM ( X , I S E E D )
GO TO 3

C
C THIS SECTION FOR POSITIVE DELT.
C

2 E = R*E + D*RAND OM ( X , ISEED )
TOD = AMOD(T OD +DELT , 2 4 .)
IF (E . G T .3 .3 )  E = 3 .3
IF (E .LT .— 3 . 3 )  E = -3.3  - - -

3 PA WSES = X RAW (E .MNTH , TOD )

I..

~~. *;~
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RETUR N

20 STOP1
END

FUNCTION RANDOM (X , ISEED )
IF(ISEED .GT.O) GO TO 2
ISEED=1

— 

, CALL SECOND ( X )
• CALL RANSET ( X )

2 S = 0.
DO 4 1=1 ,12
X = RANF ( X )

4 S = S + X
S = s - 6 .
RAN DOM=S
RETURN
END

- 

- 

F U N C T I O N  XRAW (E ,MONTH ,TOD )
DIMENSION A ( 2 ) , B ( 2 ) , C O E F ( 2 , 8 ,12)
DATA COEF/ 128*O. , —3 .7737 , .35767, -2.5142 , .28516 ,
1 -2.6612, .32512,—4.6655,.50725,-10.391 ,1.05796,
2 -8.7369, .82468 , — 6 . O 1 19, . 5 3 0 09, -5. 22585, . . 4519,
3 -3.2424,.3006,-2.7119, .30975, — 2 . 6 765, . 3 1 94 ,

- 

- 
4 -3 .9 014 5, .439 O4 , — 6 . 6 9 82 , . 6888 , - 7.5 218 , . 7588 ,

• 5 -6.73 1 , .67966 ,—4.1589, .359 ,—5.1006 , .5774,
6 —5.2522,.6o2o2,—4.9336, .55584,-50687, .5636 ,
7 —5 . 9 7 6 9 , . 6 3 8 O 7, -5. 6332 , . 59 148 , -5. 68 0 5, . 6 1 5 1 7,
8 ~5.273,.5885,16*O./
IT = TOD + .01
j  = ( I T— 1 ) /3 . + 1
A ( 1)  COEF ( 1 ,J ,M ON TH )
A(2) = COEF(2 ,J ,M ONTH )
J J  = J + 1
IF(JJ.EQ.9) JJ = 1
B ( 1 )  = C O E F ( 1 ,JJ ,M ONTH )
B ( 2 )  = COEF(2 ,JJ ,M ONTH )
RJ ( T0D-1 . )/3 . — J + 1.
DO 1 1=1 ,2

• 1 A (I) = R J * ( B ( I )_ A (I ) )  + A(I)
C THE ABOVE IS THE LINEAR INTERPOLATION IN TIME .

XRA W = VE ND(E ,A)
RETURN
END

- --•— .-—- .----- -- .,~~~~ -~
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FUNCTION VE N D (E N D ,A)
DIMENSION A(2)

C ~~IS IS THE INVERSE TRANSFORMATION .
C A CONTAINS THE COEFFICIENTS .

G = (END-A(1))/A(2)
VEND = (EXP(G) - 244.  )/i000.

C METERS ARE CONVERTED TO KILOMETERS.
IF(VEND.LT.O.) VEND 0 .

IF(VEND.GT.30.) VEND = 30.
RETURN
END

b. Library Routines

A B S ( X )  provides absolute value of X .

A M OD(A , B) provides the remainder of A divided by B.

SECOND(X)  provides current computer  clock time and

stores it in X. This value is used to seed the random num-

ber generator.

RANSET(X) initializes RANF with the random number

seed , X .

RANF(X) provides random numbers of equal probability

over the interval 0 to 1.

- EXP(X) provides ex.

SQRT(X) provides the square root of X .

c. Examples

— : Example 1: Generate 10 independent , randomly sel-

ected observations valid at 1230L in September.

-
‘ DO 2 1=1 , 10

2 V(I) = PAWSES(-12.5,O.,9)

Example 2: Generate 10 observations in a sequence

in which the first observation , valid at 0730L in October ,

~~~ II~ ~~ ~ 
~~~~~~~~~~~~~~~ 
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is randomly se lec ted;  the second observation is valid at

O900L ; and subsequent observations are taken at two hour

intervals.

V ( 1 )  PAWSES(-7.5,O .,10) $
V( 2 )  = PAWSES( 1.5 , O . , 1 0 )

DO 2 1=3, 10

2 V(I) PAWSES(2.,0.,10)

Example 3 : Generate two se quences of  hour ly obser-

vations , initiated at 0600L in November , wherein the initial

value of the f i rs t  sequence is 3 km and the initial value

of the second sequence is chosen at random . This requires

some computation by the user. Using the data within the

array C OEF in F U N C T I O N  XRAW , the 0600L November c o ef f i c i ents

require linear interpolation between the 0400L coefficients ,

COEF(I,2,11), and the 0700L coefficients , C O E F ( I ,3,11), for

I = 1 , 2. The result is:

A ( 1)  -5.0398

A ( 2 )  = .571

then

END = A ( 2 )  ln(v-i-E) + A ( 1)

where v = 3000 m and E = 244 s thus END = -0.4216. The seq-

uences are then generated as follows :

C I N I T I A L  VALUE IS 3 KM.

RKI ND = -20.4216

V( 1)  = P A W S E S ( — 6 . , R K I N D , 11)

DO 2 1=2 ,5  

~~~~ - - - -—  
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2 V ( i )  = PAWSES(1.,O.,11)

C RANDOM INITIAL VALUE.

V ( 6)  = P A W S E S (— 6 . , O . , 11)

DO 3 1=7,10

3 V( i ) = PA WSE S( 1., 0., 11) 
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