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This is the final report for ONR-Contract NO001l4-35-C-O38@, "Investi-
gations on the Dynamics of MHD Flows." The contract has been concerned
with MHD flowa in diffusers and l1iquid-metal brushes, and, to a minor
extent, with the spectroscopy of Helium plasma flows in homogeneous
magnetic fields.

In Chapter II, an exact similarity solution is presented for MHD
flows in plane diffusers when the external magnetic field ﬁo is homogeneous
and parallel to the apse line of the diffuser walls. For this geometry,
the induced magnetic field is in the axial direction, too, so that the
Lorentz force is irrotational, V x (? X ﬁ) = 6. It is shown that the

magnetic field changes the pressure distribution in the flow, but does

not directly affect the velocity field of the flow and the onset of flow

separation. MHD diffusers with axial, homogeneous magnetic fields are,
therefore, not of advantage for MHD generators since they do not permit
to control flow separation by means of the applied magnetic field.

In Chapter III, a similarity theory for MHD diffuser flows with
viscous stress relaxation is presented when the external magnetic field
is azimuthal, io(r) « r_lze (induced magnetic fields are neglected
assuming small magnetic Reynolds numbers, RM << 1), together with a
kinetic discussion of viscous stress relaxation. We show that viscous
stress relaxation changes the form of the velocity field at low Reynolds
numbers R and reduces the critical duct angle 62 for flow separation for
Hartmann numbers Hzli 2R/3, and that flow separation is inhibited for
H2>'2R/3 at any duct angle eo < m.

In Chapter IV, an exact similarity solution for MHD diffuser flows

(without viscous stress relaxation) in an azimuthal magnetic field

SRR DU e TR RU TS ‘ .
NPEON N APPSR RN - NEOW % Sh it




ﬁo(r) « r-lz is presented, under consideration of the induced mag.ietic

6
field which is radial. Since the magnetic Reynolds number of MHD flows
is generally not large, RM € 1, we could demonstrate quantitatively that
the effect of the induced magnetic fields on the velocity distribution
and the onset of separation is small. This result justifies the neglec-
tion of induced magnetic fields in various previous investigations on
MHD flows.

In Chapter V, the Stark-effect in Helium plasmas with homogeneous
magnetic fields is evaluated for absorbtion spectroscopy in presence of
laser radiation of advanced generator flows. It is shown that the laser g
radiation changes qualitatively and quantitatively the satellite spectra,
and that the investigations on this subject in the literature are insuf-
ficient.

Considerable analytical and numerical effort was expanded in studying

the influence of the Hall-effect on MHD diffuser flows. Unfortunately,

this investigation could not be completed in time for this final report.
An account of the latter work will be communicated as soon as the doctoral

research of S. H. Chol has been completed.
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NONLINEAR BOUNDARY-VALUE PROBLEM FOR SELFSIMILAR MAGNETOHYDRODYNAMIC DIFFUSER FLOWS

ACROSS HOMOGENEOUS MAGNETIC FIELDS*

By
H. E. Wilhelm and S. H. Choi
Abstract

Similarity transformations and selfsimilar solutions are derived
for the incompressible radial flow of conducting, viscous fluids across
an external, homogeneous magnetic field (parallel to the apse-line) in
a diffuser with electrodes in the planes 6 = teo (cylindrical coordi-
nate system). The conducting flow across the (axial) external and
induced magnetic fields induces radial and azimuthal current densities,
of which only the azimuthal current density produces a net current flux
I # 0 through the electrodes, presumed that these are connected by an
external circuit. The eigenvalue problems for the radial velocity and
induced magnetic field amplitudes f(6) and y(6) are solved in closed
form. The external and induced magnetic fields are shown to change signif-
icantly the pressure distribution in the flow, but do not directly influence
the velocity distribution and the onset of flow separation. This is due to
the irrotational nature of the Lorentz force, V x [V x i X 3] = 3, due to

the axial (non-curved) magnetic field i(r,e).

*
)Supported by the U.S. Office of Naval Research
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& INTRODUCTION

Analytical similarity solutions for electrically conducting,
incompressible flows between inclined plane walls ("diffuser") exist
in presence of azimuthal external magnetic fields if induced magnetic

fields are neglectedl) or consideredg) (depending on the magnitude of

the magnetic Reynolds number), and even if viscous stress relaxation is

taken into accounté). For compressible plasma flows in diffusers with
azimuthal magnetic fields, closed-form solutions were obtained in the

|
A polytropic approximationﬁ), whereas the general case with heat transfer

and Ohmic and viscous heating required both similarity and numerical

methodSZLé). If the applied magnetic field go is azimuthal, the force
field I x b resulting from the interaction of the current density } and
magnetic induction g is rotational, V x (} X g) = uo_l vV x (g-Vg) # 3,
since g'Vg # 3 (curved g-lines). As a consequence, the velocity field
; in the diffuser is modified by the Lorentz force, whereas the pressure
distribution is similar to that of the (nonconducting) Hamel flowl).
Similarity solutions for magnetohydrodynamic flows in diffusers with
homogeneous external magnetic fields have not been found previously. We

will demonstrate that a two-dimensional (r,6) similarity solution exists

also for incompressible magnetohydrodynamic diffuser flows, if the

L s

applied magnetic field is homogeneous and in the axial direction (z).
The induced magnetic field is then also axial (and z-independent) so

that the magnetic force density is irrotational, V x (3 X g) = 3, since

e

3 xb = -V(32/2u°) + u;1 g'Vg where K'Vg =0 (straight b-lines). In the

4 ; ‘ latter case, therefore, the magnetic volume force changes the pressure

distribution in the flow but does not affect the velocity field directly.
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We present a similarity transformation which transforms the magneto-
hydrodynamic equation of motion for the velocity field ;(r,e) and the
induction equation for the magnetic field g(r.ﬁ) for the incompressible
diffuser flow with an applied homogeneous field Ko in the axial direction
into nonlinear coupled differential equations for the amplitude fields
£(6) and Y(8) of ;(r,e) and K(r,e), respectively. The boundary-value
problem for £(6) is solved in closed form, whereas the eigen-value prob-
lem for y(6) is treated by means of perturbation theory assuming magnetic
Reynolds numbers RM <1 (RM > 1 is generally not encountered in experi-
ments)g). Graphs of the velocity and magnetic field are presented. The
pressure distribution and the onset of separation of the laminar boundary

layer from the walls in the magnetohydrodynamic flow are discussed.

BOUNDARY-VALUE PROBLEM

We consider the radial outflow 3 = {u,0,0} of a viscous, electrically
conducting incompressible fluid (liquids such as mercury or subsonic,
quasi-incompressible plasmas) in a diffuser with plane walls at 8 = teo
and a homogeneous magnetic field go = {0, O, bo} in the axial direction
(Fig. 1). The diffuser walls extend radially from T, >0 to B, S =
and are ideal conductors which collect the aximuthal currents je which
are induced by the radial flow of the conducting fluid across the magnetic
field gﬁ in the z-direction. The electrodes are connected by a load
circuit through which the current i (amp) is transported. Boundary effects
at the remaining insulating walls in the planes z = +z  are not considered

by assuming that sz >> eo(r1+r2)/2, so that all flow fields are two-

dimensional of the form F = F(r,0). Similarly, hydrodynamic and electro-

magnetic entrance (r-rl) and exit (r-rz) effects are disregarded. 1In
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actual diffuser flows, end-effects are minimized by operating the diffuser
in a similar, larger diffuser duct through which the working fluid is
pumped.
For fields independent of z, Maxwell's equation V x b = uuj indi-
cates that the azimuthal current density je(r,e) produces an axial magnetic
field bz(r,e), which in turn requires a radial current density jr(r,e) |
since g

-1

uoje = -Bbz/Br, B =%x abz/ae.

It is also seen that the fields ] = {3_+3,0) and b = {0,0,b_ +b_}
satisfy the basic equations V'T = 0 and V'g = 0. In accordance with the

current transport equation, 3 = O(Z +Vx g) in absence of the Hall-

effectg), the electric field is of the form e = {er, e., 0} and satisfies

e,

the basic equation V x g = 3. We introduce dimensionless flow fields and
independent variables in accordance with (p = pressure field),

U(p,0) = u(r.e)/uos P(p,8) = p(r,0)/p,, Jp’e(o,e) = jr,e("e)/jo'

(1)
B(p,6) = bz(r,e)/bo’ BO =0y Ep’e(p,e) i er’e(rve)/eog e K2
and
psr/ro, r, e(rl,rz) y (3)
where
2 = =
i u(ro,O) * 0 Pympl, 8. = nb, iy * b, . (&)

Based on the magnetohydrodynamic equations for constant density Pos
viscosity u, and conductivity o and Maxwell's equations, we derive for
the dimensionless fields U(p,6), P(p,6), and B(p,8) of the plane diffuser

with axial external magnetic field the nonlinear boundary-value problem:
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=1 2

U.?.Q=___3_[P +_]_._~(1+B)2]+_R__3_y_ ‘(5)
3p 3p 2 - B
p- 90

3 1 - S !

Q 36 [-P - 5N(1+n) + 2R 4 . (6) |
|
ou U :
a—p— + o 0 « () |
3?8 , 138, 1 3°8 19
e e e B = o= oU(18) ] » (8)
ap2 p dp p2 392 RM p op
with

U(p’e)e=ieo 0 Py Ee sy s (9)
[33(0,9)/89]a=teo =0, Py 2P <0 » (10)
+6o
| U(p,8) pd8 = Q>0 , (11)
-eo
P2
[ [9B(p,0)/%0],_,, do = -RI .(12)
pl o

q = pouor0 Q and 1 = jorOI are the dimensional flow rate and dimen-
sional load current, each per unit length Az = 1. Although asymmetric
Hamel flows are compatible with the basic equations and boundary condi-
tionsZ), we consider exclusively symmetric outflows with

u(p,-9) = U(p,+9), B(P,-0) = B(p,+8) . (13)
The flow Reynolds number R, the magnetic Reynolds number RM’ and the
energy ratio N are defined as

R = uoropo/u, Rm = ouu T , N = (bi/uo)/ooui ’ (14)
Eqs. (5-6), (7), and (8) are the equation of motion (r and 6 components),

the continuity equation, and the induction equation [Vzg = -u 0 vV x {3&3)],

respectively. The boundary conditions (9) and (10) consider that the
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fluid does not slip at the walls 6 = ieo and that Eo(p,ieo) = Jp(p,teo) =

R;‘lp-1 an(p,teo)/ae = 0 at the electrodes of infinite conluctivity,
respectively. Eqs. (12) and (13) specify the (given) mass (Q) and
current (I) flows.

From the solutions U(p,0) and B(p,6) of Egqs. (5)-(13), the remaining
(dimensionless) flow fields are obtained as

il 1

o~1 3p/38, J 3B/9p ,(15)

0 —Rm

-1 -1 -1
13p=l?1‘1 p ~ 0B/36, E U(1+4B) —RM 9B/ dp .(16)

0

SIMILARITY TRANSFORMATION AND EIGENVALUE PROBLEMS
The boundary-value problem in Egqs. (5)~(12) has selfsimilar
solutions of the form F(p,0) = pv G(0) for the velocity field U(p,8) and
the magnetic field B(p,8), whereas the pressure field P(p,6) has a more
complicated structure. Integration of Eq. (6) yilelds for the sum of

hydrostatic and magnetic pressures

P+ 3 Ny’ = 2R §+ 8(p) @an
where B(p) is an integration "constant'" with respect to 6. Elimination
of P + -%'N(1+B)2 from Eq. (5) by means of Eq. (17) results in

ok 2%u.  de(p
o
p- 98

-1
R0 do

Q| c?
gl
° N
o;'cv
= (=]

U
— - .(18)
P

Alternatively, V[P + N(1+B)2] could have been eliminated from Egs.

N

(5)-(6) by taking the curl of the equation of motion. Since 3(pU)/3p = 0

by Eq. (7), Eq. (8) can be reduced to

2 2

3" B 1 9B 1 3B 9B

— et —— e — = Uv— .(19)
ap2 p 9p p2 ae2 RM 9p

It is now seen that Eqs. (18) and (19) can be reduced to ordinary

- s e e
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differential equations by means of the similarity transformation
U(p,08) = £(8)/p", n=1 , (20)

B(p,8) = $(8)/p", m> 0 , (23)
where n = 1 by Eq. (7) and m is a still undetermined eigenvalue,

namely:

2 ;
9L re? 4 ar =3280 . _p L2 2
de? o

2
(-] =
o2 + m@+R Y = 0 . (23)

In Eq. (22), aR is a separation constant, and the p-dependent con-

stituent of the pressure field becomes

B(p) = Jup 2 + P (24)

where P_ is the hydrostatic overpressure. Combining of Eqs. (17) and

(24) gives for the total pressure field

P(0,0) + 2N(1+B(p,0)]% = 2R E8L 4 2 & 4 p . (@25)
P p

Note that the sum of hydrostatic and magnetic pressures is of the same
7)

selfsimilar form as the pressure field in the classical Hamel flow—'.

Eqs. (20)-(21) and (25) represent the similarity transformation for the

nonlinear magnetohydrodynamic flow problem under consideration.
Eq. (22) and the boundary condition (9) give for the determination
of the velocity amplitude £(8) the nonlinear eigenvalue problem with

eigenvalue a:

A——

‘ i 2

* i 9L et 44 +aR=0 .
i 2

i : de

: {

i , f(ieo) = (0 s (27)
¥




with
f(-6) = £(+8), f£(0) =1 . (28)

Eq. (23) and the boundary conditions (10) and (12) give for the

determination of the magnetic field amplitude y(86) the linear eigenvalue

problem with eigenvalue u:

{ 2 ) |

4 é—%-+ oy = -ukkn £ , u = ml , (29) |

3 deé |

dy (26 )/de = 0 , (30)

;i with f

1 L, |
| b-8) = Y(+8) (s8) = RIG]' 03" . (D)

In Rq. (4), the identity f(0) = 1 is due to the nondimensionali-
zation of U(p,0) with respect to u = u(ro,O), Eq. (4). Since B(p,0)
is non-dimensionalized with respect to the arbitrary (external.)bo z 0,
|w(0)| # 1 in general in accordance with Eq. (31). In the eigenvalue
problem (29)-(31), f(8) represents a variable coefficient which is
; L assumed to be known from the solution of Eqs. (26)-(28).

Since Y(6) is an even function of 6, by Eq. (31), dy(6)/d6 is an
odd function of 6. Hence, the flux of the radial current density Jp(p,e)
through any surface Py 2 P = constant < Pys [el i_eo, vanishes [Eq. (15)],
+6 +0
fonpde-R;llp'm{eoi“‘- de = 0

ke de
(o]

(32)

SOLUTION FOR f(@)

We seek symmetrical solutions of the boundary-value problem (26)-(28)

g

which represent pure outflows, 0O

|A

f(8) < 1. Net outflow solutions (Q>0)

with backflow regions where f£(6) < 0 are not discussed since they are in

all probability not stable (flow separation). A first integration of

10
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Eq. (26) gives

3

&5? . 2

=12
a8 ER[C - £ = 6R “f° = 3af] (33)

where [df(t@o)/del2 = (2/3)RC > 0 for K > 0. Since df(0)/d6 = 0 and
£(0) = 1,

C=1+6RT+3a>0 . (34)
Backflows occur at the walls 6 = 6 if df/de 20 for 6 = *0 .

Accordingly, the eigenvalues a of pure outflows are larger than a
critical value which is negative,
@28, d=- 146k ) . (35)

In view of Eq. (34), the trinomial in Eq. (33) has the roots

f1=1, f,=f, f,=f (36)
where

£, = H-(+6R™1) £ [(1+6R 1) 2-12a-4 (1+6r™1) 11/ %) (37)
with

f, = conjugate complex X el =l ool

ff & ol } for: a < 4(1+6R )(1-2R ) . (38)

Formal integration of Eq. (34) yields, under consideration of f£f(0) =
£ ]

(8)
(2R/3)1/26 =+

= —rh

-1/2
[(-1) (£-£,) (£-£,) (£-£,) 17 as . (39)
il 2 3
In the evaluation of the elliptic integral 9 in Eq. (39) for pure

outflows, 0 < f£(8) < 1, two cases have to be distinguished:

CASE I: £ = conjugate complex.

In this case, the eigenvalues a lie in the region defined by Eq. (38).

The substitution f = fl- Az[(l-cos¢)/(l+cos¢)], 0 < ¢ < m, reduces

1/2

Eq. (39) to (2R/3)/%2 0 = 17! F(s,k). The solution £(8) is obtained

11
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by inversion of the elliptic integral F(¢,k) of the first kind as:

12, .
S iR 1-cn[(2R/3i/2 A0 ;K] i
1+en{2R/3) ' “16;k]
where
2= [3(1+atsR™1y1/2 ., (41)
B = %[1+%A-2(1+2R—1)] . (42)

The eigenvalue a is given by the boundary condition (27) as the real
root of the transcendental equation,

1/2

eal (2R/3)'/ %20 311 = o205 . (&%)

CASE II: f+ = real.

In this case, the eigenvalues lie in the interval, -(l+6R-1)/3 <
%< = (1+6R—1)(1-2R—1)/4, and f1 > f2 > f3 by Egqs. (36)-(37) since

f, < 0. The substitution f = f2 + (fl—fz)cosz¢, 0 < ¢ < m/2, reduces

Eq. (39) to (2R/3)1/2A9 =+ A-l F(¢,k). Inversion of the elliptic integral

yields the solution:

£0) = £, + (1-£,)en’ [(2R/3) 205k (44)
where

2 = (1mg,) /4 . (5)

K = (-£,)/(-£,) . )
The eigenvalue a is determined by the boundary conditions (27) as
the real root of the transcendental equation,

en’[2R/1) M a6 5] = - £,/(1-£,) .7

For large Reynolds numbers, R >> 1, as encountered in most exper-
iments, both Eqs. (40)-(43) and Eqs. (44)-(47) indicate that A, k, and

o - and, hence, the solution f(e/eo) - depend only on the combination

12
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I =R o This means that flows with different R and 00. but with the

1/2e

gsame [ = R o have identical velocity distributions f(O/Oo). This

Invariance principle is a special case of the one first discovered for
compressible magnetohydrodynamic flowsi).

At the transition from pure outflow, f(8) > 0, to backflow £(8) < 0
in the vicinity of the walls 6 = ieo, the azimuthal velocity gradient
drops to zero at the walls. This transition point is usually defined
as the onset of flow separation in incompressible fluidslg). Applica-
of the condition df(teo)/de = 0 to the solution in Eq. (44), which is

valid for eigenvalues down to the separation value a = -(1+6R_1)/3,

gives for the critical duct angle 50 beyond which separation occurs
1/2i§

(2R/3) = K(k) (48)

where K(k) is the complete elliptic integral of the first kindg).

Substitution of Eq. (48) into Eq. (47) shows that f2 = 0 so that at the

onset of separation

and

-1 |
§, £,21, & =0, £,= (LR ) 49)
: 2 -1 -2 21
is = (1+3R ") /2, K° = (43R ) /2 (50)
Combining of Eqs. (48)~(50) shows that the critical duct angle 50

beyond which (6o > 90) flow separation sets in decreases with increasing

Reynolds number R, e
5, = [(3/(G+R) 1 K(RT(6+2R)) . s 1

Since the eigenvalue o = -(1+6R-1)/3 is negative at the onset of

separation, the total wall pressure P(p,teo) + —;—N[1+B(p,teo)]2 is

positive at the onset of separation by Eq. (25) if the overpressure

TUTRY
P—

P_ 1is sufficiently positive.

In order to have a stable, unseparated diffuser flow, experiments

13
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are generally operated at sufficiently positive eigenvalues, «o 3_—(1+6R—1)/3.
Fig. 2 gives the eigenvalue a for pure outflows versus the invariance
parameter I = R eo (R >> 1) based on Eqs. (43) and (47) for the solu-
tions of types I and II, respectively. o decreases monotonically from
large positive values (for large [~values) to its minimum value a = - 1/3
(for T = 3.18704) below which backflows occur at the walls.

Fig. 3 shows the azimuthal distribution f(x), x = 6/80, of the radial
flow velocity of pure outflows for eigenvalues a = - 1/3 to 5.0 (I = 3.187
to 0.591) based on Eqs. (40) and (44) for the solutions of types I and II,

respectively. It is seen how f(x) changes from the shape of regular out-

flows for small values of T = VR 60 to the critical flow with the maximum
value I = /R 60 = 3,187 (of a pure outflow), at which the transition to

mixed flows occurs. The curves in Fig. 3 imply large Reynolds numbers,

R >> 1, for which the invariance principle holds.

Fig. 4 shows the critical duct angle 50, beyond which (eo > 50)

backflows occur, versus the Reynolds number R based on Eq. (51), It is
recognized that 50 decreases rapidly with increasing R. Pure (unseparated)
outflows can, therefore, only be achieved at large Reynolds numbers R

1f the duct angle is sufficiently small, 6_ < BO(R). It should be noted

that in the present case of a homogeneous, axial go’ the external mag-

E _ netic field can not prevent flow separation, in contrast to an azimuthal,
7 external magnetic field go(r) which inhibits flow separation for Hartmann

numbers Hz >2 R/3l:i). The physical reason for this is to be seen in

the different nature of the Lorentz force, which is irrotational

i [V x (3 X K) = 3] in the former case and rotational [V x (? x 3) # 6] in

the latter case.
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SOLUTION FOR ¥ (6)

For magnetohydrodynamic flows, the magnetic Reynolds number is
commonly not large, RM $ 1. For this reason, the eigenvalue problem
(29)-(31) for the amplitude y(6) of the induced magnetic field B(p,6)
can be solved by means of perturbation theory, assuming that RMf(O)w is
a small term in Eq. (29). Since f(6) < £(0) = 1, this assumption is
valid for

B e et . (52)

In the O-th approximation, RM + 0, the eigenvalues and eigenfunctions of

Eqs. (29)-(30) are:

uéo) - (nﬂ/Go)z, w129, ., . (53)

wéo)(e) = c_ cos(mme/6), n=1,2,3,... ., (54)

with wio)(e) = 0 for n = 0 by Eq. (31). For the determination of the
eigenvalues and eigenfunctions of the perturbed problem (29)-(31),

Ry > 0, we set

un = péo) + uél) e

vn

0, =9 P@ + & 2D D)+ ...

v=1
in accordance with 1-st order perturbation theory. Substitution of

Egqs. (55)-(56) into Eq. (29) yields in the same approximation

(0 g o) v (O 4

1 ) (O
v

I a
vn v
=

v=1

S0 ,® @ F W 0

n n v
v=]1 i

gince the terms of O-th order drop out. Multiplication of Eq. (57) by
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and integration over (-60, + eo) yields for the perturbation of

the eigenvalues

+6

(1 o
My ¥ -RM(nﬂISO) Ie cos (nne/eo)f(e)d(e/eo) , (58)
upon consideration of Eqs. (53)-(54). Multiplication of Eq. (57) by |
w:o). v ¥ n, and integration over (—eo, + 60) yields for the expansion

coefficients of 1-st order

+6
a(l) a RM(nﬂ/eo) Cn o

— cos(vr8/6 ) £(8)cos(nm8/6 )d(6/6 )
vn (vn/Bo)z—(nﬂﬁ%)z <, _eo o o o

> (59)
upon consideration of Eqs. (53)-(54). Combining of Eqs. (58)-(59) and

(55)-(56) yields for the eigenvalues and eigenfunctions of Eqs. (29)-(31):

+1
u - (nn/eo)[(nn/eo) - RM !1 cosznnx f(x) dx], n = 1,2,3,... , (60)

o R
b O /RICG, T o, M=

[cos(nne/e°)+RM(nﬂ/6°) I' b ncos(mreleo)]

v=1 b
s s D=L 2 35000 , (61)
n ] v
[(-1) +RM(n“/e°)v21 (-1) bvn]
where
bvn = { cosvnx f(x) cosnmx dx/[(vn/eo) —(nw/eo) ] . (62)

In Eqs. (60)-(62), x = 9/9o as previously, and the expansion coeffi-
cients c, have been determined in Eq. (61) by means of Eq. (31). The

parameter m, which determines the radial decay of the induced magnetic

16
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field B(p,0) = p-m y(8), is obtained from oo

mEm = JE; e L . (63)

Since an infinite number '"n" of eigenfunctions wn(e) exists

mathematically, the solution for the induced magnetic field, B(p,0) =

p-m(n) wn(e), is not unique. Probably, only the eigenfunction with

n=1 is physically stable, and can be observed in actual diffuser flows
across an axial, homogeneous, external magnetic field. A similar non-

uniqueness exists for the velocity field U(p,8) = £(8)/p of the Hamel
7)

flow—". For one and the same flow rate Q > 0 and duct angle eo, up to
an infinite number of eigenfunctions f(8) exist mathematically, which

represent pure outflow (£>0), symmetrical mixed out- and inflows (fZO),

and asymmetrical flows (in)Z). The solution for f(6) established above

is only insofar "unique" as we have excluded all types of mixed flows
(£20) for given values of Q > 0 and eo by means of physical arguments.
In Table I, the first few (n=1,2,3) eigenvalues m are compared

with their values mio) in the O-th approximation for 60 =5° a=-1/3,

2 =1

5, and RM - 30", 10, 100 based on Eqs. (60) and (63). It is obvious

that m differs hardly from m;O) and varies very little with a and RM’

as long as RM << nn/eo.

TABLE I: Eigenvalues m = ui/z, n = 1,2,3(e°=5°).
G--l/ 3 a=5
Re1072  R=20"! R=10° R=10% Re10"! R=10° o :a{®

my 35.9976 35.9760 35.7589 35.9969 35.9694 35.6927 1 : 36.0000

m, 71.9977 71.9770 71.7695 71.9968 71.9675 71.6748 2 : 72.0000

m

w

107.9977 107.9770 107.7696 107.9967 107.9672 107.6717 : 108.0000

3
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Figs. 5 and 6 show the first few (n=1,2,3) eigenfunctions wn(x)/RMI i

versus x = 6/9o for o = -1/3, RM =10° and a = 5, RM = 10_2, respectively.
In both cases, it is assumed that eo = 5° and o1 =1 (r1 = ro) and

= 100(r2 = 100ro). It is recognized that wn(x) varies little with a and
(0)

n

P2
Ry» and that y_(x) = ¥~ (x).

Thus, a homogeneous, external magnetic field go in the axial direc-
tion has the following effects on the radial flow in a diffuser with
electrodes in the planes 6§ = teo. The radial motion of the conducting
fluid across go induces radial, Jp(p,e), and azimuthal, Je(p,e), current
densities. While the net radial current flow due to Jp(p,e) is zero
[Eq. (32)], the net azimuthal current flow due to Je(p,e) is I #0

[Eq. (12)] if the external circuit is closed. Je(p,e) = mRilp-(m+l)

v_(8)
changes its direction at those coordinate values 6 where Jp(p,e) =

R;l p-(m+1) dwn(e)/de assumes an extremum [Eqs. (15), (21), (61)] as

illustrated in Figs. 5-6. The external, 36, and induced, ﬁ(p,e),
magnetic fields in the axial direction produce an irrotational Lorentz
force, which changes the pressure distribution in the flow [Eq. (25)],
but has no direct influence on the onset of flow separation [Eq. (51)].
The selfsimilar solutions derived are based on the assumption that

the flow is two-dimensional (r,6), which requires a quasi~-infinite

extension of the flow in the z-direction. Whether the selfsimilar solu-
tions are realistic enough remains to be shown by comparison with actual
magnetohydrodynamic diffuser flow experiments, since the condition of
similarity may impose restrictions on the generality of the solutions
obtained.

The radial, two-dimensional diffuser flow considered represents

an idealization which is analogous to the fully developed, axial

18




Hagen-Poiseuille flow between parallel walls. For a more realistic
theory, hydrodynamic and electromagnetic end-effects would have to be
considered, as well as z-dependence of the flow fields due to insulating
walls in the planes z = tzo, z, < o, These complications would render
it extremely difficult to find selfsimilar solutions, presumed that

similarity transformations exist in the three~dimensional case at all.
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Similarity analysis of magnetohydrodynamic flows with viscous stress relaxation

H. E. Wilhelm and S. H. Choi
Department of Electrical Engineering, Colorado State University. Fort Collins, Colorado 80523
(Received | March 1977)

A novel similarity solution in terms of a hyperelliptic integral is given for a magnetohydrodynamic flow
across an azimuthal magnetic field in a diverging duct, under consideration of viscous stress relaxation.
Velocity profiles and the critical duct angle for flow separation are calculated as a function of the Reynolds
number and the Hartmann number. It is shown that viscous stress relaxation modifies the velocity
distribution and reduces considerably the critical duct angle for flow separation at low Reynolds numbers. At
large Reynolds numbers, viscous stress relaxation is less important, and the results approach asymptotically
those of ordinary magnetofluiddynamics, which is based on a static relation between viscous stresses and the

velocity component gradients.

I INTRODUCTION

In classical fluid mechanics' and magnetohydro-
dynamics,? it is assumed that inhomogeneities
Vv, in the velocity components v, produce instant-
aneously viscous stresses Il;,, Mathematically,
this is expressed through a phenomenological
“flux”-“force” relation, given for incompressible
fluids or subsonic flows by*'?

M= —u(V,+ Vo).

In a real continuum, velocity inhomogeneities do
not switch on viscous stresses instantaneously but
rather in accordance with a relaxation process

of characteristic time 7. Indeed, the moment

M,,=m fﬁ (cic, - 3c78, @, F,00%E

of the Boltzmann equation yields, for an incom-
pressible viscous fluid (V+V=0), the relaxation
equation (discussed in connection with the 13-mo-
ment approximation in the Appendix):

8,01,,+ 0V, Il = =77, = p(V,0,+ V,0,),

if thermal forces and terms of higher order in the
field derivatives are neglected. The viscosity u,
the fluid pressure p, and the viscous stress re-
laxation time 7 are interrelated by u=p7, This
equation satisfies the basic requirements of a
(classical) T, ¢-dependent field equation since it

(i) contains space and time derivatives, and (ii)
is invariant against Galilei transformation. The
static Navier-Stokes relation is not in accordance
with either requirement.

The third equation is in the typical form of an
inhomogeneous relaxation equation, with a forcing
term, -p(V,v,+ V,0,). It is seen that it reduces
to the first equation if the temporal (8,11;,) and
convective (v,V,I1,,) relaxation terms are dis-
regarded.

According to the first equation, viscous stresses
would propagate in accordance with a (parabolic)
diffusion equation (continuous “signals” and in-
finite speed of propagation). According to the
third equation, viscous stresses would propagate
in accordance with a (hyperbolic) wave equation
(discontinuous “signal” and finite speed of propa-
gation). This is readily shown, e.g., by combining
the equation of motion for the viscous fluid with
the first and third stress transport equations,
respectively, for the case of a small one-dimen-
sional velocity perturbation. Thus, these equa-
tions give rise to a qualitatively significant dif-
ferent behavior in viscous stress transport.
Quantitatively, the term 8,11, is of importance
for short processes with a duration time t<7=p/
p. A criterion for the quantitative significance of
the term ¢,V,I1,, is not as easily establishable,
since V,I1,, may be quasisingular at certain points
of the fluid. Similarly, the rigorous theory of heat
transport has to be based on a (hyperbolic) wave
equation.®

We consider herein subsonic flows of dense,
ionized gases across an external azimuthal mag-
netic field B, in a duct with inclined walls (so-
called diffuser, Fig. 1). The analysis is based on
the magnetohydrodynamic equations with viscous-
stress relaxation, i.e., we disregard effects of
“magnetic” viscosity (which occur in highly rare-
fied plasma flows) assuming that w,7, < 1, where
w,;=e;By,/m, and T, are the gyration frequency and
collision time of the ions, respectively. By means
of an exact (nonlinear) similarity solution, we
demonstrate that convective-stress relaxation
affects the onset of flow separation, i.e., the
first occurrence of wall back flows which, in gen-
eral, are unstable and result in a turbulent bound-
ary layer. Flow separation is commonly observed
if for given Reynolds (R) and Hartmann (3¢) num-
bers, the duct angle 6, is increased beyond a
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critical value ;. The calculated velocity distri-
butions are qualitatively in agreement with velo-
city profiles observed in diffusers.*

Magnetohydrodynamic diffusers with transverse
magnetic fields and nonvanishing electric load are
frequently used to study the transformation of
kinetic flow energy (due to thermal expansion) into
electric energy. For the experimental realization,
it is suitable to install the diffuser in a similar
larger diverging duct through which the working
fluid is pumped at a constant rate in order to mini-
mize three-dimensional entrance effects. The
development of the boundary-layer with entrance
effect is a complex problem which has been ana-
lyzed only for magnetohydrodynamic flows between
noninclined walls by means of Goertler series ex-
pansions.®

II. NONLINEAR BOUNDARY-VALUE PROBLEM

Let cylindrical coordinates (r, 6,z) be introduced
for the description of the magnetohydrodynamic
flow model (Fig. 1). The conducting fluid is bound-
ed in the surfaces (8=+ 6,,7, <r=v,) and (6=-6,,
7, =7 =<7,) by insulating walls, and in the surfaces
(z=+2z_.)and (z= -z,) by electrodes, which are
connected through an ideal circuit (R=0). The
conducting fluid is injected through the inner cyl-
inder section (r=7,,- 6,< =<+ 6,,-2,<z2<+z,)
and removed downstream through the outer cylin-
der section (r=7,, - 0,5 0<+6,,-z_,<0s+2z.),
The boundary layers at the electrodes are disre-
garded compared with those at the insulating walls
by assuming that the interelectrode spacing is
large, z,>4(r,+7,)6,. The magnetic field has
its sources in an electric current I flowing through
a conducting rod (0sr sy, —®©=z s_+°°,r°<r,).

In accordance with Stokes’s law, $B+d8=pt, the
magnetic field is azimuthal (u, is the permeability
of vacuum) and has the induction

B (1o/21)U/7)8y, 7o=7<eo,

The radial flow ¥=u€, of the conducting fluid
across the magnetic field B induces axial electric
(E,) and current density (j,) fields, presuming

FIG. 1. Geometry of diverging duct with radial velo-
city field ¥ and azimuthal magnetic field ﬁo.

28

that the Hall effect is negligible (w,7,<« 1),
f=0(E,+uB,)g,.

The resulting Lorentz force density is a purely
radial field which opposes the inducting flow,

TxB= —0(E,+uBg)Bg,.

Because of V XE: 0and VeJ=0(V+E+B+V x¥
-V+VxB)=0V+E=0, the axial electric field is
inhomogeneous, and vanishes,

E=EZ,=0, R=0,

since the load of the external circuit is zero. In
this case, the current in the external circuit as-
sumes the maximum value

ra 0
=0 [ f uBgr drd®.
rn 79

These equations are based on the assumption that
the induced magnetic field is small compared with
the external magnetic field, which implies small
magnetic Reynolds numbers,®

Ry= uyoulr,0 <1.

In this elementary radial-flow model, fluid dynam-
ic and electric end effects at r=7, and »=7,(| 6|
= §,) are disregarded.

The magnetohydrodynamic diffuser flow under
consideration is described by the nonlinear bound-
ary-value problem for the radial velocity [u
=u(r, 0)], stress [I1,,=1,(r, 6)], and pressure
[p=p(r, 8)] fields:

pu a_li (e gp_ _(l .a_(yl'[")+ %__tan - Eﬁ)

8r 8r \r dr 80 r
2 7o\
3 aB,(r°)<-;°> “, 1
a 1% _(1 0 ., lﬂn)
0=- =25 r,w(rn,,)+r” ! (2)
du u
oty o
where
u 8I1 du
M;—o;u'*n"'-z#a—r. (4)
wolly o __, 1%
up = +Mg=-u 255" (5)
u 8y, .
k5 or +Mgp=-2u 2, (6)
and
ulr,0=+6,)=0, (7
000
o[ “utr,owae=q. ®)
=8
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Equation (8) specifies the flow rate @ through the
diverging duct. For similarity reasons, Eq. (8)
is equivalent to inlet (»=7,) and outlet (r=7,)
boundary conditions. Instead of Eq. (8), it is
more convenient to assume the Reynolds number
R(0) of the central streamline to be given,’

pu(r, 8= 0)r/u=R(0), (9)

Equations (1), (2) are the » and 8 components
of the equation of motion of the conducting fluid
in the azimuthal magnetic field [By= Bylr ), /r].
Equation (3) represents the continuity equation
for incompressible radial flow, and Egs. (4)-(6)
describe the convective stress relaxation with a
viscosity u=p7. It is noted that for pure radial
flow

Fevii=uod il /ar.

11l. SIMILARITY TRANSFORMATION
The dimensions of the flow fields and the fluid
constants are interrelated by
()= (u/or), (p)= (W)= (u*/pr?).

Accordingly, we try to reduce the partial Eqgs.
(1)=(6) into ordinary differential equations by
means of the similarity transformation:

u(r, 8)={(un/pyr™f (9), (10)
plr, )= (2u?/pr2P(6), (11)
n,.(r, 6)= (2u?/pyrg,,(6), (12)
Mg, (7, 6)= (212/pYr-g,,(6), (13)
Mae(r, 6)= (2142/p)r=2gg(6). (14)

The functions f(6), P(6), and g,,(6) are nondimen-
sional. Upon substitution of Eqs. (10)-(14), we ob-
tain from Eqgs. (1)-(9) the ordinary boundary-
value problem:

fz- -4P+ 7&‘.-*'5@7, (15)
P=P,~ge, (16)
[(P-f)/P) &r=f, (17)
[(P-f)/Pl&gas=-2r1, (18)
[(P=f)/P]8es=~f, (19)
where
f(=£6,)=0, (20)
o!°
f f(0)do=Q/u, (21
%
and
P,=P(0=46,), f(0)=R(0), (22)
J@-(—E)B:(m'- (0/ Yol /27)2. (23)

From the stress-relaxation Eqs. (17)-(18) one ob-
tains the conventiona! static stress relations for

P> i/l : L’n"."- gﬂv’_éf/» gﬂ(ﬁ"‘f; P> '/‘.

V. CLOSED-FORM SOLUTION

Substitution of Eq. (16) into Eq. (19) gives the
pressure function P(6) in terms of the velocity
function £(6),

P=3[2f+ P + (412 + P27, (24)

The minus sign of the square root is not applicable
as one verifies by means of Egs. (20) and (22). By
eliminating P(6) by means of Eq. (16) and g;, by
means of Eq. (18), we find from Egs. (15) and

(20) the nonlinear boundary-value problem for the
velocity function £(6),

F7[2f + Po+ (4 2+ P2)* 2] 4 2P (4f 2+ P2) 2f72
+[(Py+ (4 2+ P2 2){ £ 2+ (4 = 3C2)f
+2[P + (472+ P21 2}}=0,  (25)

where
f(6=16,)=0. (26)

The differential equation for the corresponding
flow without stress relaxation’ is obtained from
Eq. (15) as

f"+f%+ (4 =3%)f+ 4P,=0 for P> |f].
The substitution,

L Y.

de 2 de 2dr
transforms Eq. (25) into a nonlinear differential
equation of first order for §=y(f),

(27

;};-$2+F(f)¢"+0(f)=0. (28)

where

F(f)=4P{[2f + P+ (4f >+ P2) 2)(4f 2+ P 2}
>0, (29)

G(f)=2[P,+ (4f 2+ P2
X {f2+ (4 = 3C)f+ 2[Py+ (4f 2+ P2 2]}
X [2f+ P,+ (4f 2+ P21 /2]
20, (30)

The general solution of Eq. (28) is found by the
method of variation of the integration constant of
the solution of the associated homogeneous equa-
tion as

29
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si=exs(- [ Fpa)
0

x[wg-j;:exp(+ ﬂrmay)aqw], (31)

fo2£(0),

where
boxttf=sON=() w0 (32)
0 d0/py

for symmetrical flows. Combining of Eqs. (27)
and (31) yields an integral solution for 8= §(f)
from which one obtains the analytical solution
f=/(6) by inversion

WILHELM AND S. H.
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In Eq. (33), the + sign has to be used depending
; on whether df/d9=0, or 850 in case of pure out-
E ! flows, f(6)>0. The integration constant ¢, is
1 determined in Eq. (32) for symmetrical flows
with an extremum at #=0, which are of main
practical interest. The remaining integration
constant P, contained in the solution of Eq. (33)
is determined by the boundary condition in Eq.
(26), which gives
!
6= [ "HN1)df. (36)
0
3 Based on Eqs. (33)-(36), velocity distributions
f(8)=0 of pure outflows have been computed for
the typical duct angle §,=5° and given Reynolds
numbers R =R(0)=£(0) of the central stream line
6=0, with the Hartmann number JC as parameter,
%2=0.7R>3R. In the presence of viscous stress
3 relaxation, the onset of flow separation, as will
R | be shown, is inhibited at large Reynolds numbers
! R for Hartmann numbers

i x>%,,; 32,2 3R for R> 1.

The velocity distributions in Figs. 2, 3, and 4
represent net outflows without backflow regions

' since ¥>1C,,. Figure 2 shows f(6) for the rela-

f ! tively small Reynolds number R = 10°and3?=0.7R
‘ ~ 10 R(8=5°). The velocity distributions become
{ ’ flatter and the velocity gradients at the walls
6=x g, increase in magnitude as JC increases.
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1(0)
som [ HNY, £,210), (33)
fo

where

HU )= exp( - _[:F<f)d/)

xu- [ :exp(+ f’:F(I)dI)G(I)df]}m-

(34)

Equations (33) and (34) represent a closed-form
solution for the magnetohydrodynamic diffuser
flow with viscous stress relaxation in terms of a
hyperelliptic integral, since by Eq. (34),

)= [t W R (Bl G Bt 42 < 306 - 50 PO 1D+ P -1
+ 5452+ P22 - (4f 24 P2P2)
+5(8 - 3C) £ (4f*+ PO} - fo(4f 5+ PO)]
+£(8 ~3c)P3{in[27 + (4f 2+ PY) ] - In[2f,+ (4f 5+ POY "‘]})).

(35)

Figure 3 shows f(6) for the moderate Reynolds
number R =10* and }¢?=0.TR - 5R(8,=5°). In this
case, |df (6= +6,)/d6| decreases with decreasing
3C so that a well developed flow exists only in the
central region for small 3?> 3R. Figure 4 shows
f(6) for the relatively large Reynolds number
R=10° and 3?=0.7R - 5R (6,=5°), For small Hart-
mann numbers, 32> 3R, the flow is considerably
depressed in the extended regions adjacent to the
walls so that Reynolds numbers R(6)= 10° are
realized only in the limited central section ||

< 6 of the duct. The f(6) curves in Fig. 4 show
clearly the transition to the limiting velocity dis-
tribution, for which |df (6=+6,)/d6| assumes the
smallest realizable value, as 3~ 3R. It is con-

-0 - 6 - 7 [:
6/8,

FIG. 2. £(0) vs 6 for R =10% and various JC (8,=5°.
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cluded that well developed velocity distributions 2R>8 -3C%

exist for sufficiently large Hartmann numbers fet

K=3C(R; 6,), e.g., ¥*> 4R for R=10° (Fig. 2) and R 3

K32 2R for R=10* (Fig. 3) and R = 10° (Fig. 4). - 3 2 [ ( ($R) )‘ ']
Velocity distributions of the typical form shown Susm gy B-3C+3R) -1+i\-1+ @ wm) )

in Figs. 3 and 4 have been observed in magneto-
hydrodynamic diffuser-flow experiments. A
qualitative comparison is, however, not possible,
since a conical diffuser was used in the experi-
ments.' Velocity distributions without stress
relaxation have been calculated previously.®

V. MAGNETOHYDRODYNAMIC FLOW SEPARATION

The integral solution derived in Eqs. (33), (35),
and (36) describes physical flows as long as P,
= P(8=£6,)=0 for the given parameters R, ¥, and
6,, since the pressure field has to be positive
everywhere, P(6)=0, | 6| <6,. The boundary-
value problem in Eqs. (25)-(26) becomes, in the
limiting case P =0,

f7+5(8 -3 +§Rf?=0, (37)
f(6=26,)=0, (38)
where

](g)-%-%a); f(6=0)=1; R=R(0). (39)

Since P,=0 in Eq. (37), it cannot be reduced to the
relaxation-free case (P,P,> f), The solution for
the limiting flow with vanishing wall pressure P,
is by Eqgs. (37)-(38),

+0= (3/3)""[,“)1':‘)—7;;]71 ¢ (40)
1
where
Q=T+ o (8- - > @-3-1 (D)

is a trinomial in f which has one real and two
complex conjugate roots since, in general,

-10 -8 -6 -4 -2 ] 2 4 ) ) 10
0/8,

FIG. 3. f(6) vs ¢ for R =10 and various 3C(g,= 5°).

31

(42)

Equation (40) contains an elliptic integral which is
resolved by means of the substitution

fo)=1 _HG:::::’), 0=¢=n 43)
which gives

+0= —(3/R)'/*\"F (¢, k) (44)
where

A={3[1+ (8 3R P/, (45)

k= {1+ {72+ (8 ~3C*)R]}. (46)

Inversion of Eq. (44) and substitution of ¢ in Eq.
(43) yields the explicit solution for the case P,
=0:
1 -cn[(3R)x6, k]
2 )
A0 1 -3 f TRy e, 4]

According to Eq. (44), the critical duct angle
6,(Po=0) at which the wall pressure is zero is
given by the boundary condition f(6=16,)=0 as,

84(Py=0)= (3/R\2A"LF (¢4, k), (48)
®,=arccos[(A? - 1)/(2*+ 1)), (49)

(47)

in terms of the characteristic flow numbers R and
3 [rA=x(R,3C), k= k(R,) by Eqs. (45)-(46)]. Since
fa,3=0 for 32 - 8= iR by Eq. (42), the integral in
Eq. (40) diverges for f(6=1+6,)=0. Similarly, Eq.
(47) diverges in this case since £~ 1 for }* -8

- 3R by Eq. (46). It is recognized that

0=<6,=< §,(P,=0)=n for =8+ 3R, (50)
0< §,=< §,(P,=0)<n for 3*< 8+ iR. (51)
Accordingly, physical flow solutions with P(6)

"°a
1.0(xi i SR
2
\
SR
{
X}
2 X
/
i . TR
-0 ~8 -6 -4 -2 4] 2 4 [} ] 10
/6,

FIG. 4. f(6) vs 6 for R =10° and various 3C(6,= 5°).
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=0, | 6| =8, exist for all duct angles 0< 6, <7 if
the Hartmann number is

K =3, W2 =8+1R. (52)

On the other hand, if ¥« i, physical flow solu-
tions with P(6) 0, | 6| - 6,, exist only for duct
angles 0, 0,(P,=0)~m,

In Fig. 5, the critical duct angle 6 6,(P =0)
for vanishing wall pressure is plotted versus
R ~R(0) with iC as a parameter. It is seen that
6, decreases with increasing R, but increases
with increasing C. The stabilizing effect of the
magnetic field at sufficiently large Hartmann num-
bers iC is apparent, in particular, in the regions
>3, (R).

The critical duct angle 6= 6,(P,=0) is also ob-
tained from the condition df(6= +6,)/d6=0, if vis-
cous-stress relaxation is not taken into consider-
ation.” The corresponding curves 6¢= 6,(R,3C) are
shown dashed in Fig. 5. Comparison indicates
that for the same R and iC, 6; “without stress re-
laxation” is considerably larger than 8 “with
stress relaxation” for relatively small Reynolds
numbers, R < 10%, Accordingly, viscous-stress
relaxation has a destabilizing effect on the flow,
which, however, is completely negligible for
large Reynolds numbers, R > 10%, As the wall
pressure drops to zero, the laminar flow solution
can no longer be realized, and flow separation
sets in for duct angles 6,> (R, ¥XC}<m.

In the classical similarity theory for incompres-
sible viscous flow between inclined walls,® solu-
tions with a (positive) homogeneous overpressure
P, exist so that one does not have to be concerned
about negative pressures in back-flow regions at
the onset of separation. The similarity analysis
of the corresponding compresgsible flow® no longer
permits solutions with over pressure, and the
limiting flow solution with df(8=+6,)/d6=0 exhibits

a negative wall pressure, P,<0. For this reason,
the onset of separation was determined from the
condition P(6=+6,)=0.* Similarly, here we have
associated the onset of separation in flows with
stress relaxation with the vanishing of the wall
pressure, ,=0. The observed stabilizing effect
of the magnetic field is due to the increase in the
wall pressure (Fig. 6) with increasing Hartmann
number . In conventional incompressible fluid
dynamics without stress relaxation, the conditions
df(6=+6,)/d6=0 and P(6=+6,)=0 lead to the same
separation criterion.

Interest in this theoretical problem arose in
connection with experiments on boundary-layer
separation in incompressible liquid metal flow
and subsonic magnetogasdynamic flow in nonuni-
form magnetic fields and ducts.*® If the Hart-
mann number is set to zero, the closed-form solu- i
tions presented reduce to those for the flow of i
electrically nonconducting ordinary fluids with
viscous-stress relaxation in diverging ducts.
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APPENDIX: VISCOUS STRESS TRANSPORT EQUATION

Incompressible magnetohydrodynamics is appli-
cable to conducting liquids such as liquid metals,
and also, as an approximation, to collision-domi-
nated ionized gases and plasmas at subsonic flow
speeds. In each case, the viscous momentum
transport is due to the heavy atomic particles
while the electrons affect only the stress relaxa-
tion time 7 through cross-collisions. For this
reason, conducting fluids can be described by
one-fluid magnetohydrodynamic equations.

The stress-relaxation equation for incompres-
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X 10
R=10° 1
1o’
5
R ¢
10
! )
" b 1 2 3 4 5
H/R

FIG. 6. Wall pressure P, vs JC for various R (8,= 5.

sible (V +¥=0) flows is derived as a special case
of the stress-relaxation equation for compressible
(V¥ #0) tlows based on the Boltzmann equation
presuming that the fluids are sufficiently dense and
collision dominated. For liquids a similar stress

J

I i o e
?E"v*' M, xw,+ [ﬂ, X “’r] Y4V, VIL+ 1,V 'V,+p,(vv,+ [Vv'] 1.3V

+ (1, + 99,4+ [, - 99, ] - 311, : V9,5) =Eff£‘

where
C,,= f f (F22~S112)0,4(8r5r Vg, ,dRdE, (A3)

is the binary collision integral,'® and w,= —¢,B/m,
is the gyration frequency ([ ]* designates the in-

1 verse tensor). In the 13-moment approximation,

' the distribution functions f,(,, ¥, ¢) and £,@&,, 7, 1)
are expanded in Hermite tensorial polynomials,

i the expansion coefficients being the first (scalar)

i 13 moments of the distribution function,'® By

i means of these expansions and Eq. (A3) it can be
shown that Eq. (A2) is of the form

; ' ol

—l+B--f Il -Za,,‘r;’,ﬁ., (A4)

at

33

214)

relaxation equation can be derived from the Born-
Green kinetic equation which differs from the
Boltzmann equation through the collision integral
for many-body collisions. The most elegant meth-
od of solution for the Boltzmann equation is the
13-moment approximation due to Grad,'°** which
is mathematically also more rigorous than the
Chapman-Enskog and Hilbert methods.'* The
closure of the 13-moment approximation is forced
by truncating the third-order heat-flux tensor
Qs in terms of the heat-flux vector §

Qm*fff_.-mc.C,c.f(G,F,t)d’E

=3@dp+ a0n+aidyy), (A1)

where f(€, T, t) is the distribution of thermal vel-
ocities €. This truncation affects mainly the
heat-flow dynamics, and is, therefore, an excel-
lent approximation for quasi-isothermal magneto-
hydrodynamic flows (§=0).

Following the original deduction of Grad for a
neutral one-component gas,'!° we multiply the
Boltzmann equation for particles of mass m, and
charge e, in an electromagnetic field E-B by
3m,[¢,8, - (§)c28] and integrate it over the entire
space | [ [d*E, of the thermal velocities E, of the
r particles. Thus, the following moment-conser-
vation equation is obtained for the nonhydrostatic
stress tensor 11, =P, -5 of the » component
(summation s over the remaining components s of
the fluid):

[var]-l e %v % ﬁ'g)

mr[ErEr = il'abk:udfr ’

5)+ (v, +
(A2)

where T, is the viscous-stress relaxation time'*
and 7, is the relaxation time describing the linear
momentum exchange'* between the components »
and s#7. B, is an abbreviation for the remaining
tensor terms on the left side of Eq. (A2), and
a,, are numerical coefficients. For representative
times ¢>7,, the term 98Il /8¢ in Eq. (A4) is negli-
gible, and one obtains the quasi-equilibrium, i,
proportional to the sum of the various driving
force tensors.'® The tensor B, reduces not always
to the velocity gradients V¥, of the Navier-Stokes
relation,'® and for representative times ¢ < 7,, the
13-moment approximation does not approximate
the phenomenological Navier-Stokes relation and
gives better results.'®

For magnetohydrodynamic applications, a sim-
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ple-stress transport equation for the electricalily
conducting, incompressible fluid as a whole can
be deduced from Eq. (A2) by neglecting those
terms which are small compared with the leading
terms. The contribution of the electrons (e) to the
fluid of ions (i) and atoms (a) as a whole is insig-
nificant since m,<«<m, , and'* a,,a,, <« 1. The
magnetic anisotropy terms are negllgible since
w7, << 1 for the heavy ions, and vanish for the
neutral atoms (w,=0). The V+¥, terms can be
disregarded for incompressible fluids and sub-
sonic (compressible) flows, The g, terms are
negligible for quasi-isothermal flows, and the
terms D *+ V¥, are of the order of magritude of
quadnnc terms in VV,, and therefore small com-
pared to the linear ones. The stresses in the elec-
tron gas have no effect on the stress distribution
of the fluid as a whole (m,<<m;, ,). Thus, one ob-
tains from Eq. (A2) as stress transport equation
for incompressible, quasi-isothermal fluid as a
whole:

oll/0t+ T+ Vil = 1] =p(vF+(VF]1),  (A5)

where V=2 n,m,¥,/2 n,m, is the mean-mass velo-
city of the fluid. The relaxation frequency 7! of
the total stress tensor 11 is a linear combination

AND S, H. CHOI 16

of the inverse relaxation times 73, 77!, 771, The
Reynolds number in the preceding sirailarity ana-
lysis and 7 are related by R(0)= [pu(0)y/p(0) fr=.
Equation (A5) can also be derived directly from
elementary physical arguments. The Navier-
Stokes driving force -p(V¥+[V¥)?) of TI follows
from the symmetry argument of Einstein. The
term all /3¢ results from the fact that the Navier-
Stokes quasi-equilibrium 11 /7= -p(V¥+ [V¥]~!) de-
velops within a time of the order of the “coilision”
time 7. Finally, the convective term v+ Vil has
to be added in order to make Eq. (A5) invariant
against Galilei transformations (F'=T - wt,¢'=1¢).
We have based the deduction of the stress trans-
port equation on Grad's 13-moment theory, which
gives all driving forces (for the viscous stresses)
which have a simple physical meaning, i.e., not
only the Navier-Stokes forces ~V¥ and ~[V¥]".
It is seen that the 13-moment theory is more com-
prehensive and more rigorous than the Navier-
Stokes theory, and “refuses to predict results
which may be inaccurate.” ! On the other hand,
the failures of the Navier-Stokes stress equation
may assume catastrophic proportions, e.g., it
“predicts smooth solutions for shock strengths of
infinite magnitude (with a transition from negative
to a positive density).” !°
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Self-similar magnetohydrodynamic diffuser flows with

induced magnetic fields
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The steady diffuser flow of a viscous incompressible fluid with a finite electrical conductivity in the
presence of an external magnetic field is analyzed by means of similarity theory. Power series expansions
for the velocity and induced magnetic fields are presented, and discussed as dependent on the Reynolds,
Hartmann, magnetic Reynolds numbers, and duct angle. Short-circuit current and the critical values of
magnetic Reynolds number and duct angle for flow separation are calculated. It is shown that the induced
magnetic field changes the velocity profile and considerably reduces the critical duct angle at which flow
separation occurs. The critical magnetic Reynolds number for flow separation becomes smaller as the

Reynolds number increases.

I. INTRODUCTION

Extensions of the Jeffery—Hamel flow theory"? to
magnetohydrodynamics have been made by a few au-
thors.*® These approaches to magnetohydrodynamic
flows in a diffuser are based on the approximation, (i)
that the induced magnetic field is negligible (magnetic
Reynolds number M <«1),37® or (ii) that the working fluid
is an ideal electric conductor (electrical conductivity
o= w),3

In the following, the steady flow of an incompressible
viscous fluid with finite conductivity between two inclined
walls (diffuser) in the presence of azimuthal, external,
and induced magnetic fields is analyzed. The electrical
conductivity is assumed to be constant throughout the
diffuser, This approximation is applicable to conducting
liquid and incompressible (subsonic) gaseous plasma
flows.”

It is shown that the steady motion of the conducting
fluid does not induce a magnetic field in the azimuthal
direction, but does induce it in the radial direction. An
analytical solution to the magnetohydrodynamic flow
problem is accomplished by reducing the nonlinear par-
tial differential equations to ordinary ones viaa similari-
ty transformation, and solving the latter equations in
terms of power series. The magnetohydrodynamic
field profiles are presented in dependence of the Rey-
nolds (R), Hartmann (H), magnetic Reynolds (#) num-
bers, and duct angle (6,).

In the limiting case of small magnetic Reynolds num-
bers (M « 1), the nonlinear boundary value problem re-
duces to the conventional magnetohydrodynamic diffuser
problem, * which is based on the approximation that the
induced magnetic field is small compared with the ap-
plied magnetic field.

Il. PHYSICAL PRINCIPLES

The electrically conducting fluid flows between two
nonparallel, insulating walls and two parallel electrode
plates as shown in Fig. 1. The electrodes are short-
circuited so that there is no potential difference between
them, The influence of a load in the external circuit has

1821 The Physics of Fluids, Vol. 20, No. 11, November 1977

been investigated previously.* The conducting fluid is
injected through the inner duct section at =7, and re-
moved downstream through the outer duct section at »
=7;. The boundary layers at the electrodes are disre-
garded compared with those at the insulating walls pre-
suming that the inter-electrode spacing is large, z_

> 3(rg+7,)8y. The external magnetic field has its source
in an electric current /; flowing through an infinitely long
conducting rod located in the z axis. In accordance with
Ampere’s law, fB.ds=y,1l,, the external magnetid field
is azimuthal and has the induction (u, is the permeabili-
ty of vacuum),

By = (o /2m)(Ly /7).

In the absence of flow sources or sinks at the walls,
the velocity field is radial, i.e., v=[v(r, 6), 0, 0]. The
flow of the fluid across the external magnetic field B,
induces a current density field in the axial direction,
J,=0(E, +vB,) presuming that the Hall effect is negligible.
A magnetic field B, is induced in the radial direction by
the current density J,. Since VXE=0and V-J=0V.(E
+vxB) =0V .E=0, a homogeneous electric field E is pos-
sible. However, E, =0, since the terminal voltage is
zero due to the short-circuited external circuit, and
E, 4=0 since the boundary conditions for E, , are ho-
mogeneous. The Hall effect is assumed to be negligible,
wr <1 (w=eB/m is the gyration frequency and t is the
collision time of the electrons). Thus, Maxwell’s equa-

ELECTRODE
INSULATOR

1777, 779N

fo \ n
ELECTRODE  1gpMINALS INSULATOR

FIG. 1. Diffuser duct geometry.
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tions and Ohm's law give, for the magnetic field B=(B,,
B,, 0), the induction equation,

VxB/ugo=v*B .,

11l. BOUNDARY vALUE PROBLEM

In nondimensional form, indicated by the overbars,
the radial velocity 7(¥, 8), the pressure p(7, 8), and the
magnetic field B =|B,(7, 6), B,(7, #), 0] are described
by the nonlinear boundary-value protiem:

, W0 I
= (rn=0, (1)
S0 o 1[e 185 1 8T D
o 8y Rler''7 o7 7' 86" ¥V

H' 171 8 =) 1 8B,]5

= R M[; a7 (YB.)— Y B. ’ (2)
L1y 21 e H_‘Ll[_"— 8B,
0=-= W'R 7 90 ' R M 505750~ B, ,

(3)

11 8 o _18_3,]=—.—
M[? o TB)- 3 5 o (4)
1. 8, - 1 88
e e e ek =
70;(7'8,)4»; 5 0. (5)

In Egs. (1)-(5), the Reynolds (R), Hartmann (¥), and
magnetic Reynolds (M) numbers, and the dimensionless
variables are defined by

L Vg 7 2 E n I 2 .
P (uL}p,) B (p,)( on ) , M=ougvery , (6)
and

p=v/vy, b=p/ogv, Be=B,/(koly/277,),
E'=B' /(I—Lol@/ZWYO) ’ F=r/ro N (7)

where v, is the input velocity at » =7, and 6 =0 (cen-
tral stream line), The solutions to Eqs. (1)~(5) are
subject to the following conditions:

17(;, + 90) =0 F (8)
By(7, £6,) =By(7 , (9)
(7, +6)=0(7, -6)=0, (10)
B,(7, +6)==B,(7, -0), (11)
& (M

s I vrde . (12)

Equation (8) contains the boundary conditions for no slip
of #(7, 6) at the walls, Equation (9) considers the con-
tinuity of the normal component B, at the wall inter-
faces [By(7)=1/7]. Equations (10) anc (11) represent

the symmetry condition for #(7, ¢) and the asymmetry
condition for B,(¥, ), respectively [Eq. (11) will be jus-
tified later]. Equation (12) gives the flow rate @ per unit
depth (az=1),

IV. SIMILARITY TRANSFORMATION AND SERIES
EXPANSIONS

The continuity equation (1) indicates that the velocity
field is of the self-similar form
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o7, A)=F(6)/7 . (13)

For dimensional reasons, the pressure and magnetic in-
duction fields are written as

p(7, 6)=G(6)/7*, (14)
B,(7, 6)=y6)/7 , (15)
Be(7, )=(1/7)[1+¢(6)] . (16)

In Eq. (16), ¢ /7 represents the induced magnetic field
in the azimuthal direction, and 1/7 is the external field.

Substitution of Eqs. (15) and (16) into Eq. (5) (con-
tinuity equation for B) gives

d¢/de =0 . 17
Hence,
¢(6)=const=0, and By=1/7 (18)

by Eq. (9). Thus, the azimuthal component of magnetic
induction is not affected by the steady motion of the con-
ducting fluid. Substitution of Egs. (13), (14), (15), and

(18) into Eqs. (1)-(5) yields the coupled nonlinear ordi-

nary differential equations:

2_ 14 H® 1 dy
~F =26+ p TE YR M a8 S
d 2 H? 1 _
w(6- L red 2 ¥, s
1w,
T A (21)
where
F(6=%6))=0, F(+8)=F(-0)=0, (22)
(+6)==y(=6), (23)
and
8,
J' “rape+ 2 24)
) R u

0
Since the velocity field is symmetrical and greater than
zero for pure outflow [F(+6)=F(- 68)=0], dy/de <0
everywhere and y(+6) == y(- 6) by Eq. (21). Thus, the
condition in Eq. (23), or Eq. (11) is justified.

Integration of Eq. (20) with respect to 6 yields

2 HE s
G=g F-3p i1 ¥ %, (25)

where g, is an integration constant. In the limit of large
Reynolds number R, G(8) in Eq. (25) becomes the con-
stant g;, i.e., the pressure field would no longer depend
on the transverse coordinate (6) (in agreement with the
so-called boundary-layer approximation®),

Elimination of G(8) in Eq. (19) by means of Eq. (25)
leads to

2 2
%0;-+RF'+4F+—HW(-% —w‘)+€°=0, (26)

where C,=2Rg, is an integration constant proportional
to go. Hence, the problem reduces to solving two cou-
pled nonlinear differential equations [Eqs. (21) and (26)].

In the limiting case of vanishing induced magnetic

S. H. Choi and H. E. Wilhelm 1822
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TABLE [, Integration constant C;= 2R go
for R=10', M=1, 6,=5°, and various H.
——————

H? C

2R 1.0101 x 104

3R 2.0004 x 104

6R 3.9999 x 10¢

10R 8.9999 % 10¢

field (M - 0), by eliminating dy/d§ in Eq. (26) by means
of Eq. (21) and taking y(6)~ 0 and F(6)~f(6)/R, Eq. (26)
reduces to the equation, f''+ (@4~ H?)f+f*+a =0, which
has be‘en solved in closed form in terms of elliptic func~
tions.

Normalizing ¢(6) by the factor M,
w(6) =y(6)/M , 27

and eliminating F(6) from Eq. (26) by means of Eq. (21),
one obtains a single nonlinear inhomogeneous differential
equation for ¥(6)
day v \* 2 d¥ o
vy -R(a‘e) +(@-H? 0 +MH®* V2 =C, .
By Egs. (21) and (27), the conditi ns in Eq. (22) and (23)
reduce to

(28)

¥(0)=0, (29)
dv(+6,)/d6 =0, (30)
d*w(0)/d6*=0 . (31)
The flow rate is given by
I% i ‘:o Fdé=- j”:: (%)d9=¥2\1!(160) 1
£,
Q=%F24R¥(x6,) . (32)

Equation (32) could be used as a boundary condition for
¥(6) presuming that the flow rate @ is given (R would
then no longer be independent), It is, however, mathe-
matically more convenient to assume the Reynolds num-
ber R(0) of the central streamline to be given by’

R=R(0)=pyv(r, 6=0)7/p , (33)
which implies
F(6=0)=1, (34)

The solution ¥(6) of Eq. (28) can be expanded in terms
of a power series with respect to §, which satisfies the
conditions in Eqs. (29) and (31)

W(0)= D g 6% .
0

ns

(35)
The equivalent condition to Eq. (34) is, by Eqs. (21) and
(27),

dv/de=-1 at6=0, (36)

Equation (36) determines the first power coefficient in
Eq. (35),

al=-l . (37)
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Substitution of Eq. (35) into Eq. (28) gives
ay=§(Co+Ra}- 4-H%a,],
as=¢[6Ra,a,-3(4 - H*)ay~ MH*a}| ,
a, =3t [R(10a, a5 +9ad) - 5(4 -~ H)ay - 2MH *a, a,] ,
ag=gh[R(14a, a, +30aya5) ~ 14 - HY a,
- MH2a,a5+ad)] ,

(38)

1
Tent = St = 1) [Co 0= (2n = 1)(d - H) ap,

R=n-l

+R Y. (2k+1)(2n =2k = 1)ag,.; Gyrgau
M0

h=n-2

-MH?

azm“ln-u-a] , m=1,2,3,...,
=0

(39)
where 8,,=1 for n=1 and §,,=0 for n#1. Equation (39)
is a two-term recurrence relation from which for a
given a,,,; one can readily compute a,,,; and then a,,,,
@yn,q, and so on, as far as desired.

The nondimensional functions ¥(6) and F(8) =~ ¥'(8)
are, by Eqgs. (35) and (37),

V(O)==-6+ E Gt 1™ (40)
n=1
F(6)=1- D (21+1) g, 6™ . @1)
nal

The condition in Eq. (30) determines the integration con-
stant C, in Eq. (39),
1= Z (2" +l)a8ml 93" y Qgnat =alml((‘0) @ (42)
=l
Equation (42) is a function of C, for a given duct angle

6,. By Egs. (25) and (27), the pressure field G(6) is,
in terms of ¥(6) given by (C,=2Rg,),

G(6)=[2F(8) - MH?¥%(0)/2 + C, /2] . (43)

Equations (39)-(43) represent the formal mathematical
resolution of the boundary-value problem under con-
sideration.

V. DISCUSSION AND RESULTS

Based on a numerical iteration of Eq. (42), the values
of the integration constant C, are given for various Rey-
nolds (R), Hartmann (H), and magnetic Reynolds (M)
numbers in Tables I and II.

A. Flow fields

In Fig. 2, the nondimensional velocity amplitude F(6)
is shown for R=10% M=1, 6,=5°, and various values of
H. The width of the boundary layer is considerably re-
duced as the Hartmann number H increases. The in-
fluence of the magnetic Reynolds number M on the ve-
locity profiles is exhibited for R =10°, 10°, and H®=3R,
6,=5° in Figs. 3 and 4, respectively. It is seen that
the velocity distribution becomes flatter in the center,
but the boundary-layer width remains almost constant

S. H. Choi and M. E. Wilhelm 1823
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TABLE II. Integration constant Cy= 2Rg, for H* =3R, 6, =5°,
and various M

R
M 10° 10 10°
1 2.1226 x 103 2.0004 x 104 2.0000 x 10°
10 2.1416 x 103 2.0055 X 104 2.0006 x 10°
20 2.1620 x 103 2.0107 x 10* 2.0012 % 10°
24.6 2.0014 x 10°
30 2.1819 x 10° 2.0157 X 104
42.6 2.0215 % 10*
50 2.2201 % 10?

222.87 2.4987 x 10}
P ]

as M decreases. The velocity profiles for the critical
magnetic Reynolds numbers, above which flow separation
occurs, are plotted with a dotted line in Figs. 3 and 4.

In Figs. 5 and 6, the nondimensional induced magnetic
field amplitude ¥(6)[= (6)/M] is shown for R =10° 10°
with H%=3R and 6,=5°, respectively. In these figures,
¥(6) increases in magnitude from the center to the walls
for M less than a certain critical value, for which
flow separation sets in. ¥(g) for the critical magnetic
Reynolds number is plotted with dotted line. Unless
M is of the order of unity or larger, it is seen that
¢(=MV¥) is small compared with the applied field. In pure
outflows, the induced magnetic field does not vanish at
the walls since the net current flow across the diffuser
in the axial direction is nonzero.

In accordance with Eqs, (8), (7), (13), and (18), the
axial current density is

J,=ovB, =, /2178 MF(6)/7® (44)
in dimensional form, or in dimensionless form
J,=MF(8) /7%, (45)

where J,=dJ, /(I /2nr%). For pure outflows, the current

flows everywhere in the same direction as I, since F(6)
>0 in Eq. (45). From Eq. (44), the short-circuit cur-
rent flowing across the electrodes is

e [ () 7 s

(46)

0.8}

0.6}
F(0)

o4

0.2t

-0 -08 -06 -04 -02 e 02 04 06 08 10

FIG. 2. F(6) versus 0 for R=10% M=1, 6,=5°, and various
H.
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FIG. 3. F(0) versus 8 for R=10%, H?=3R, 6,=5°, and vari-

ous M. J, is proportional to F(6).

G0 -8 =6 -4 -2 0 2 4 & & 1o
6/8,
FIG. 4. F(6) versus 6 for R=10° H'=3R, 6,=5", and vari-
ous M. J, is proportional to F(6).
10 ¥ ()
/M:gg 08}
20
’/AO
-l .osL
N
{:2.07\ S
02(
0-6-6-4-20,2 4 6 810
6/8,
-02}
04} < 222.87
N ‘
=4 ]
& |
06} 10
§8 ;
-08 80
-10
FIG. 5. W(6) versus 6 for R=10% H’=3R, 6,=5°, and vari-
ous M. I isequaltoM | W (+ 6y .
p
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SR

FIG. 6. ¥ (0) versus 6 for R=10°%, H?=3R, 6,=5", and vari-
ous M. I, is equal to M| ¥ (x §)| .

or in terms of the flow rate,
Le=(M/R)QIn(r, /7,) , @mn

where I,.=1,. /(I /27) and @ =Q/u =R J:30F(6)d. In ac-
cordance with Eq. (32), the flow rate is given in terms
of ‘l‘(t 90),

Toe =M |W(28,) |In(r, /7R . (48)

Thus, the axial current density in Eq. (45) and net short-
circuit current in Eq. (48) can be visualized for various
R, H, and M numbers with 6,=5° in Figs. 3, 4 and 5, 6,
respectively. Anadditional illustration for I, is given

in Fig. 7 as a function of M for various values of H.

B. Flow separation

Magnetohydrodynamic flow separation sets in if one of
the flow parameters goes beyond its “critical” value,
e.g., if the duct angle 6, is larger than a critical value,
6.=6p(R, H, M), I R, H, and M are assumed to be giv-
en, 6, cannot be chosen independently since it assumes
the role of an eigenvalue,

626 30
~
FIG. 7. I, [®I,/M In(r,/7y)?] versus M for various H.
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R

FIG. 8. The critical duct angle 6, for flow separation versus
R for H =3 and various M, with (—) and without (- - =)
induced magnetic induction.

The power series solution derived in Eqs. (40), (41),
and (43) describes physical flows as long as G, =G(#
=+6;) =0 for any set of parameters R, H, M, and 6,,
since the pressure field has to be positive everywhere,
i.e., G(0)=0, 16|=6,. Since F(8)=0 at the walls, G,
in Eq. (43), which is related to the wall pressure, is
given by

Gu=(Co-MH* ¥} 4 )/2R . (49)
As the pressure field drops to zero at the walls, the
laminar flow can no longer be realized, so that flow
separation occurs for duct angles larger than a critical
duct angle 6, at which separation first sets in.® Hence,

at the onset of separation, Eq. (49) yields
Co=MH?*Vj.,, . (50)

For the limiting flow of vanishing wall pressure, Eq.
(50) reduces Eqs. (40) and (41) to

= (Co/MHY =g _+ Y a,,., 60 (51)
n=1
and
1=, 2n+1)ay,, 62", (52)
=l

where ay,,; =@,,,1(Cy). The critical duct angle 6, =6,(R,
M, H) is, therefore, obtained by solving the two coupled
equations, (51) and (52), numerically. In Fig. 8, the
critical duct angles are plotted as a function of R for
various values of M and a given H. It is seen that 6,
decreases as R increases, As M increases, the critical
duct angle 6, decreases for low Reynolds numbers (R
$10) and increases for intermediate Reynolds numbers
(10SR <10%, while 6, varies little with M > 1 at high
Reynolds numbers (R 210%). The critical duct angle 6,
for the limiting case of vanishing induced magnetic field
(M~ 0)! is shown with a dashed line in Fig, 8. Compari-
son indicates that the induced magnetic field reduces

the critical duct angle by about 50%.

A simple way of simulating the self-similar flow in-
jection is to put the diverging channel with free entrance
and exit openings into a larger, similar duct through

S. H. Choi and H. E. Wilhelm
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Stark effect in three-dimensional stochastic electric fields
and a static magnetic field of a helium plasma®
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Atomic absorption spectra of the Hel plasma in the static magnetic field in the absence of laser radiation
are different from spectra in the presence of laser radiation. Especially, it has been theoretically predicted
that the spectral shift of the satellite line, which is seen in the latter case, does not exist in the former
case. In this paper, the effect of three-dimensional high-frequency eclectric fields on the o, o _, and =

of the all

{4

d 1'S,-3'P, transition and the forbidden 1'S,-3'D; lines in atomic absorption

spectra of the Hel plasma in a static magnetic field in the absence of a laser beam is investigated from
the coupled equations for the probability amplitudes of atomic states. It is shown that they should give
rise to a spectral shift of the allowed lines and satellites about forbidden lines. The calculation reveals that
the shift is proportional to the mean-square stochastic electric field, and that the ratio of the intensity of
the near satellite to that of the far satellite is different from the ratio obtained by the second-order
perturbation theory or the three-level rotating-wave approximation. Discussion is given for the validity of

this theory.
PACS numbers: 32.60. +i, 32.70.Jz, 52.70.Kz

I. INTRODUCTION

The transitions between the bound states of an atomic
species in the collisionless plasma are mainly produced
by absorbing or emitting an optical photon of the radia-
tion field or the multiple microwave photons of the
turbulent electric fields.

If the radiation field is composed of only the back-
ground radiation field which covers a wide spread of
frequencies and polarizations, all upper levels of the
allowed transitions are resonantly pumped by the back-
ground radiation field. Accordingly, the probability for
finding the atom in the upper level of the allowed transi-
tion is greater than those in the upper levels of the for-
bidden transitions. Hence, the probability for finding
the atom in the upper level of the forbidden transition is
strongly dependent on those in the upper levels of the
allowed transitions which are coupled with the former
level by turbulent electric fields according to the elec-
tric dipole selection rules. In this case, the turbulent
electric fields produce primarily Stark shifts of the
allowed lines but do not signiticantly shift those of the
forbidden lines (“asymmetrical Stark repulsion”).

Theoretical treatments of the high-frequency Stark
effect, based on second-order time-dependent perturba-
tion theory, have been given by Baranger and Mozer, !
Reinheimer, ? and Copper and Ringler. * Kunze et al, ¢
extended the perturbation calculation up to fourth order,
However, these theories did not include Stark shifts of
the levels. Recognizing this, Hicks ef al.® have devel-
oped a theory which can include Stark shifts (actually
profile). Their theory is based on two consecutive
perturbation calculations, the first calculation being for
the electric field and the second calculation being for
the zero radiation field (spontaneous emission). They
have neglected the fact that at least one intermediate
upper state is not only coupled with the initial upper
state by the interaction with the electric field but also

9Supported in part by the U.S. Office of Naval Research.
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with the final lower state by the induced absorption or
the induced and spontaneous emission of a photon.
Therefore, their theory is, in principle, valid only in
the absence of the strong radiation field, Furthermore,
they assumed that the upper states have equal popula-
tions, a fact that is certainly not in general true,

Recently, Prosnitz et al,® proposed a (nonperturba-
tion) theory which explains rather well the line shape of
both the satellite and allowed line in the presence of
laser radiation. Their theory is based on the coupled
equations for the probability amplitudes with phenome-
nological damping terms, but they do not include any
term for the optical excitation or the radiation field. In
their theory, the spectrum of the satellite lines would
be the same whether the laser radiation is present or
not. Hence, it is obvious that their theory cannot explain
most characteristic effects caused by the radiation
field, In particular, their theory will give rise to in-
valid results for the spectral positions and intensities of
the satellite lines in the absence of the laser field. Even
in the presence of the laser radiation, the satisfactory
agreement between experiment® and theory® appears, in
part, ¢o be due to the use of adjustable phenomenologi-
cal parameters.

For these reasons, I recently have developed a
comprehensive theory which is valid for strong electric
fields and includes Stark shifts of the levels for a three-
level atom with two closely spaced upper levels, both
in the absence and in the presence of the laser
radiation, ’

The formula for a spectral shift of the allowed line in
this theory is not obtained in the theories mentioned
above. Further, this theory explains the the experimen-
tal observation that the ratio of the intensity of the near
satellite to that of the far satellite in the absence of a
laser beam is different from the one predicted by the
second-order perturbation theory, ® or the three-level
rotating-wave approximation, ® and that the Stark repul-
sion is asymmetrical.
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This paper is an extension of the previous theory' to
include more than two upper levels and the interaction
of a magnetic field with the excited atom, I applied
the theory to the o,, 0., and m components of the allowed
1'5,-3'P, line and the forbidden 1'S,-3'D, lines of the
magnetic HeI plasma In the absence of laser radiation,
For mathematical convenience, I treat the absorp-
tion spectrum rather than the emission spectrum. The
emission spectrum can be obtained similarly by taking
the upper state as the initial state, Generally, both
spectral profiles are not the same since the collision-
less turbulent plasma is not in local thermodynamic
equilibrium, *

Il. THEORY

The time-dependent Schridinger equation for the
helium atom and the radiation field with the Coulomb
potential V(r) and the scalar and vector potentials
and A is

m-a—'aft@=(;l; (P-eA)i +ed+ V(r)+ %"(vx;\).s+ﬂ,)

x |g(e), 1)

where H, is the quantized free radiation field Hamil-
tonian and S is the spin angular momentum operator,

Here, the single-particle (one-electron) state is used
for describing the atomic state since, in most optical-
field-producing and turbulent-field-producing transi-
tions, the initial and final states differ only in the mo-
ticn of one electron, Further, the central field approxi-
maticn'® {s used for the electrostatic interactions be-
tween two electrons and the spin-orbit interaction is
neglected (Russell-Saunders state).

In Eq. (1), the scalar and vector potential cin be
decomposed in the form

A=A+ AY+ A% (AS=)0), (2)
e=0"+0"+9°* (#"=9"=0), @3)

where superscripts R, M, and S denote the radiation,
static magnetic, and stochastic electric fields,
respectively.

Since the stochastic field E* is homogeneous within
atomic dimensions, its potential °=& can be written

¥()=-r-E(), 4)
where
E,('):EE’C“(“‘+¢[) U=xuy") (5)

]
are the vector components of the stochastic field, EY

are its amplitudes, 0 are its frequencies, and ¢, are
its random phases, For convenience, we omit the sum-
mation notation in Eq. (5).

The vector potential AY for a uniform magnetic field
of induction B is

A' = !’ Bx T, (6)
V.AY= 0, (7)
(ieR/m)A¥ .9 = - (e/2m)B. L, (8)

where L=~ iflr x¥ {g the angular momentum operator,
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The perturbing radiation field is only the background
field, The background field covers a wide spread of
frequencies and polarizations with no phase relations
between the different frequency components and polari-
zations. Since it is inconvenient to use the summation
notations for different frequencies and polarizations
everytime we write the radiation field, we will choose a
typical monochromatic and linearly polarized field to
calculate the probability of a transition between station-
ary states and omit the summation notation [therefore,

we should bear in mind that A(r) is the summation of

such fields]. The vector potential A in the Schrodinger
picture for the monochromatic and linearly polarized
wave field is!!

A(r) = (%/2,7w)! *¢[a exp(ik . r) + a* exp(- ik.T)], (9)

where ¢, is the dielectric constant, a and a* are annihila-
tion and creation operators, respectively, 7 is the sys-
tem volume, w is the frequency of the wave mode, ¢ is
the photon polarization vector, and Kk is the propagation
vector,

The term H, in Eq. (1) is the energy of the quantized
source-free radiation field in the absence of the atom,

H,=Rw(a’a +3). “(10)

The energy eigenstates of the radiation oscillator of
polarization direction ¢, momentum Ak, and energy Aw
satisfy the eigenvalue equation

Awa‘a|N) =RwN|N), 11)
where N is the occupation number,

The numerical value of the quadratic term (¢A?/2m)
is negligibly small even in more than the second-order
perturbation calculation, Hence, we neglect it in the
following. Then, by choosing the Z direction the same
as the B direction, the Hamiltonian in Eq. (1) is written

H=H,+H', (12)
Hy=- (B/2m)v? + V(r) - (e/2m)B,- (L, +2S,) +H,
(13)
H' = - (e/m)(H/2,™w)! /*[a exp(ik- r) + a* exp(- ik - r)]
x(é.P)-er: E(). (14)
An urtperturbed eigenstate of Hy may be written

|a, N) =]a) |N) (15)
with eigenvalue
E\m=E + Nhw, (16)

where a refers to the atom.

Let the wave function | p(#)) of the perturbed wave
equation [Eq. (1)] be expanded in terms of this com-
plete orthonormal set {Ia, N)} by

| 9(en ='_§) Cio,m(t) exp(= IE\, y)|a, N), amn

By means of the orthogonality property of |a, N), one
obtains the differential equation for the expansion coef-
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ficients (probabmty amplitudes),

dCium(t) z (@, N|H|a’, N*)C s o (t)
dl M te, )
"“P(‘Uu, 0, 1a% l)y 18)
where

Wi w1, =N (E 3y = Eg, )
=NYE = E\ ) + (N= N')w. (19)
It we use the definition of creation and annihilation
operators and the orthogonality relations, we obtain by
taking only the electric dipole term in expansion of

exp(k.r) *

(@, N|H'|a*, N) = ~ lew,,), 1y (W/ 2y Tw)' 12(é - (a|r]a%)
X[V +1)1728,, oy + (') 120, s
-eE-(a|r|a)dy, v, (20)

where

Wigy, 1ay=M1E iy = E 0. (21)

Since (@, N|H’|a’, Ny does not involve the spins and
the spin functions for different S’s are orthogonal, the
spin state does not change in the transition, According-
ly, it will not be specified in the following.

By H, in Eq, (13), the unperturbed singlet atom state
in the static magnetic field is specified by quantum num-
bers n, J, and M (L =J for the singlet state), and its
energy is

Eins,uy=Eln sy + Miw,, (22)

where w, is the Larmor frequency and E}, ,, is the en-

ergy of the level In,J) when no magnetic field is applied
to the plasma. Here the intensity of the static magnetic

field B is limited to the range

B<B,, (23)
where B, is a critical value above which the Faschen-
Back effect becomes important.

The selection rules of the singlet helium states are,
because of J=L and Eq. (20),

M'=M, M1, 24)
J'=J21 (25)

for the transitions both by the radiation field and by
three-dimensional stochastic fields.

In this paper, the transitions from the n=1 level to
the n=3 level of the singlet helium are of interest. The
atomic state 11,0, 0) is negligibly affected by the elec- |

FIG. 1. Schematic diagram for transition. Wavy line: transi-
tion produced by the radiation field. Straight solid line: transi~
tion produced by the stochastic electric field.

tric fields, but the n=3, J=1, 2 states are considerab-
ly affected by these fields,

For convenience, the states in the n=1 and n=3
level I1,0,0), 13,1,1), 13,1,0), 13,1,-1), (3,2,2),
18,2,1), 13,2,0), 13,2,-1), and (8,2, - 2) are denoted
by 0,1,...,8, respectively,

If the atom and radiation field are initially in the
10, Ny) states, the probability amplitude C,(f)
=Ciy, n-np(#), i=1,...,8 for finding the helium atom in
the ¢ substate of level n=3 after absorbing a photon
of energy Aw at time ¢ 18 (Co=C,,, )

dCy(t) 1 i | o
0 . i (:L?o @ |H |7} expliw,, ,0C, ()

+ ' (G| H'|a, Ny expliwy, 1, miC1, ,,(r)),
la, N)

where |a, N) is now the abbreviation for |n,J, M, N),
and i, v 18 the summation for all |a, N) except

Neglecting far-off resonant terms which are small by
orders of magnitude compared to the nearly or exactly
resonant terms as well as the terms associated with the
high-order optical transitions (» > 8), and using the
selection rules described by Eqs. (24) and (25), one
can reduce Eq. (26) to'®!?

%‘9 = Pyexpli(wy + wy = w)t]Cy () + CH{[EL exp(id,) + iE} exp(i¢,)] expli(w, - w, + Q)t]
+ (B3 exp(- i9,) +iE} exp(- i9,)] expli(w; - w - MIIC, (1) + CLEYexp(id,) expli(w, + Q)]
+exp(-i¢,) expli(w, - A)C, (1) + CH{ES exp(ia,) - iES exp(id )] expli(w, + w, + Q)]
+[EL exp(~ id,) - {ES exp(~ i9,)] expli(w; +w, - Q)J}C, (1), @n

450 _ p, explt(wy - wIICy(0) + CHEL expli,) + 1ES explis,)) expli(w; - wy + B))
+[E3exp(- i) + {E exp(- id,)] expli (w - w; - QNIIC4(1) + CIEYHexp(is,) expli(w, + Q)]
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+exp(- i9,) expli(w; - Q)N}Cy(t) + CH[ES exp(ig,) - iES exp(ie,)] expli(w; +w, + Q)]
+[E{exp(- i¢,) - iE) exp(- i¢,)] expli(w; +w, - Q)NC,(1), (28)

%’Sﬂ = Pyexpli(wg - wy - w)]C, (1) + CH[ES exp(ie,) +iES exp(ig,)] expli(w, - w, + )/
+[ES exp(-ip,) +iE)exp(-id,)] expli(w; ~ w, = Q)]}Cq (1) + CIEY explid,) expli (w, + Q)
+ exp(- i¢,) expli(w, = A)]}C; (1) + CH(E? exp(io,) - iES exp(id,)] expli(w, +w, + Q)]
+[ESexp(- i0,) - iEj exp(- id,)] expli(w; +w, - QYIC4(0), (29)

._LQ =- C{*{[ES exp(id,) - iE exp(id,)] expi(- w, + w, + Q)] + [ELexp(- i¢,) - iES exp(- i¢,)]
x expli (- wy +wy = QN}Cy (1), (30)

d—ﬁ’m == C]*EYexp(i¢,) expi (- w, + B)t] + exp(- i¢,) expli(- w, - Q)]}C, (1)

- CY{[ES exp(io,) - iE; exp(id,)] expli (- wy +w, + Q)¢] + [EL exp(- i9,) - iES exp(- i9,)]

xexpli(= wy + wy = AJC, (1), (1)
dcy(t) _

- CY*{[ESexp(io,) +iESexp(id,)] expli(- w, - w, + Q)t] + [ES exp(- ig,) + iES exp(- i¢,)]

x expli(= wy - wy = AIC, (1) - C EYexplio,) expli(- w, + Q)] + exp(- i) expli(- w; - Q)]}C,(0)
- C{*{(EL exp(i®,) - iES exp(id,)] expli(= wy +w, + Q)] + [ES exp(- i9,) - iES exp(- i9,)]

x expli (- wy +wy - DG 1), o
g%;_(g___ - CI*{[ES exp(i,) + iES exp(id,)] expli(- wy - wy + Q)t] + [EL exp(- id,) + iE)exp(-ig,)]

x expli(~ wy - w;, = IIC2(0) - CJ"EYfexplip,) expli(- wq + Q)] + exp(- i6,) expli (- w, - AYIC4(0), ©3)
—I-U"ﬁ - B _ i {(E explis,) +iES exp(is,)] expli(- w; - w, + Q)]

+[Eexp(= i9,) + iES exp(= i6,)] expli(- w; - w, - QYIIC,(1), -

where

Py= ~ de(wy + w;)le, - ie, X1 |x +iy | 0) (N/2e,Hw)! 12, @®5)
P, =- ¢w°¢,(2 ll IO) (N/&omw)‘ /2» (36)
Py= = de(wg- wy)le, +ie, X3 |x - iy |0) (N/2e,™hw)! 2, w5
C=Ge/am1 |x - iy|4), Ci=(Ge/2n)1|2|5), Ci=(e/an)1|x+iy|6), ae)
Ci=(ie/am(2|x - iy|5), Ci=(Ge/2M(2|2|6), C]=(ie/am(2|x +iy|T), ¢9)
CY= (ie/an)3|x - iv|6), C]=(e/2m3|2|T), C}=(e/am(3|x+iy|8). e

In these equations, c, repreunu the j component of the polarization vector, C’ denotes the complex conjugate of
C, wy= wy, ¢ and wy =t (E,“,- Eu,z)) Figure 1 is a schematic diagram showlng the transitions corresponding to
Egs. (27)-(34).

The 0~ atomic transition probabilities per unit time are given by

=|c,|t @=1,...,8), (41)
where ¢ is much smaller than the lifetime of level 0, but much greater than 27/Q. Accordingly, one can write

Colt) =1, (42)

C,(t)«1 (i=1,...,8). (43)

It should be noted that even if C,(f) <1, i=1,...,8, there can still be an effect of observable magnitude if a large
number of independent systems contribute,

Substituting Eq. (42) into Eq, (27) and integrating by parts, one obtains

expli(wg +wz - w)t] -1 expli(w; - wy +Q)t]
Ciln =P =250 “:o +w;L _«; ) + cf([z: exp(i,) +iE} exp(i¢,)]— 1wy =wg +70)

+[EY exp(~ i) + iES exp(~ to»lM) Cutt + 1S (exptio,) SRLELL= M

f(wy-wy f(wy+ Q)

3654 J. Appl. Phys., Vol. 48, No. 9, September 1977 S.H. Kim 3654

44




e emplc 10 BRCL D) ¢ )+ c{ES expiis) - iES expiia )| LBl e+ ]

i(wl*w,_‘*ﬂ)
+[ESexp(- i9,) - iE exp(- id,)| il(t:: :u:-n‘:' )"0")' / Cf((E‘.oxp(w.)ﬂE‘iem(w,)]
ot expli(w; = wy + 0)¢] +(ELexp(~ id,) + iES exp(- id,)] _’d‘_(m_w:.:_f.')_fl) = +ci£‘

i(wy-w, +0Q) l(w, w,-N)
i ilwy + Q) j(w, - B) ﬂi(w,+w;+ﬂ!l|
x(f"’“‘”% + exp(~ '¢.)%‘;ll) e + q([s‘ exp(i¢,) - iE)exp(is,)| W, T, +0)
3 k +wy - Q)
+[ESexpl- id,) - iES expl- id,)] —‘91-5—*~L—’—1"(w"’ e )

Because of the assumption on the transition probability as described in Eq. (43), the second, third, and fourth
terms at the right-hand side of the above equation are neglected in comparison to the rest. This is also justifiable
by the direct estimation of these terms as will be seen in Sec. IV,

In view of Eqs. (30)—(32), dC,(l)/dt, dC(l)/dt, and dCq(t)/d! cannot be neglected.
Substituting Eqs. (30)—(32) into Eq. (44) and differentiating with respect to ¢ yields

L1, 0250, «s)
which has the solution
{ Cy(0)=exp[ J,' £t ar) f,‘ £:1(t") exp[ j;"fu") di"\ar, (48)
; where ;

Al =|c |z([sg exp(i,) + iES exp(io,) | explio,) - iES exp(u,)]% + |Eexp(- i) + iES exp(= id,)|?

* (i = w ~ W]+ | Ejexp(io,) +iES exp(id,) |*(i(wy - wy + Q)] + [EJ exp(- i¢,) +iE} exp(- id,)]

- i291 exp(i20¢) 1 1
x(E}exp(-i9,) - iE} exp(~ w,)l-,-(;"m—;r)-) |ct|2S (exp(m.),( e e

- i20
» expl-i20) SRR + |t 2( 53 enplia,) - 1B explio I BLexplio ) +iE} emiis,)) RN

+ | Ejexp(- ig,)- iEjexp(= id,) |*[i(w; + wy - Q)] + | E} exp(io,) - iEJ exp(io,) [*[i(wy + wy + )]

. : ; - 120t
+(ESexp(- i0,) - {Eexp(- id,)|[ES exp(- id,) +{ES exp(- w»lﬁ,‘fﬁff—_—%) an
and
2y(1) = Py expli(wg + wy, - w)t] + [C{c;‘ﬂ(’“(‘%)ﬂﬂg-:??ul + exp(- w,)%).d)
x{[E exp(i®,) - iE} exp(id,)] expli(- wy + w, + B)E] + [EL exp(- i¢,) - iES exp(- id,)] expli (- wy +w, - Q)¢]}

. B9 explio,)| SR+ wi + 2)] i 1.y €Ly + wy - @)
+cicy E‘,'([E‘}exp(w,)-tE&exp(w,)] "(w": _H:: ) +[Elexp(- i¢,) - iES exp(- id,)] S ’.‘(w“:+w“:_ ) )
x{exp(i¢,) expli(~ w; + Q)] + exp(- id,) exp[i (- w; - n)t]}]c,(t) + cgc;‘([sg explio,) - iES exp(io,)]

egisw‘+w‘+m! i egigw,w,-nm
ey + (Blema(- i0,) - iESaxp(- i9,)) SRlosu= Tl )
x{[ES exp(i®,) - iES explis,)] expli(~ wy + w, + D)t] + [EL exp(- ip,) - iE exp(- id,)] expli(- w; + wy = QYJICs(0).
@8)
! Because of the random properties of phase, the direction, and the amplitude, and the high frequency (2¢> 1) of
| the stochastic electric fields, [;f;(t’)d¢’ fluctuates negligibly about
: Sy Aerary = - iawyt, “9)
; where
; |g1|x - wmzl’gw, =wg) 111215 oy |, IG1ix+iyl6) 1} (w +wy)
‘{ v Ml— ( Z(wl-w,_)- w,—ﬂ 2 2((‘0‘*'(0;) -0 )
{
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2
- S (plasul oy ). -
In these equations, () means the average over the phase, the direction, and the amplitude of the stochastic fields,
a, denotes the Bohr radius, Q=6.7, and w, is 104 cm™ in wave-number units,
Accordingly, one obtains
Cy(t) = exp(- {aw,t) f,'g,(t‘) exp(iaw!)d!’ = Py exp(~ i aw?) f.' oxpli(wy + w, + Aw, - w)I']|dl’ (51)
and
Ty =2n | Py|28(wy + wy + Aw - w). (52)

In these equations, the second and third terms of Eq. (48) are neglected compared to the first term, It will be
justified in Sec, IV,

Equation (52) means that the 0 — 1 allowed line (0, line) is shifted as much as Awg, which is proportional to the
mean-square stochastic electric field (the quadratic Stark effect). Similarly, the probability amplitudes and the
transition probabilities for the 2 and 3 levels (7 and o_ lines) are

Ca(t) = Py exp(- idwy!) [, expli(wy + aws - w)t’] d’, (53)
Ty=2n|P;|28(w, + Awy - w), (54)
where -

_é 121x - i ISII’w -w 121216 1*w; | 1(21x+iy|T) 13wy +w
Aty a“:?q( zr(w,-J_w,_);—L’Tun i - el z[(ul,i's"‘!w‘) — )
3 S(wy-wy) 4w S(wytw
-5 ((WI'“’L) -0 *w’.-n"‘(ww;)'-’r'z')' 65)

Cy(t) = Py exp(~ i awyt) [, expli(wy - w + awy - w)t’]de’, (56)
T,=21|P,|’O(w°-w,+w,—w), (57)
where

_c'%‘ﬁ I81x—iy|6) 1 (wy=wy) , 1(8121T) %W |ga|x+42|za|'gw,+w,z)
&y="3 ( 2f(wy-wy ) -0 i wi-at K 2w +wy)i-Q
g{g;&g Wi=w 3w 8wy +wy)
B ((w,-w,,)'-ii' +w!°n! = (W +w, ) -a ) (58)

Substitution of Eq. (51) into Eq. (30) yields
o pict’ et expli(wg - wy + 2w + 8- w)t] -1
Cul= T + By = w) | (EF e Ug,) - B explig )| =D ATEL =
+ il oy tunz b0t D=1 . (5t ey ig,) - iESexpic i)

* (eg{i(w.-w1+zw;-n-w)ll-l+ e i-w1+w,,-Awp-Q)tj—l)]

w.-w,+2w,_-ﬂ—w _-w,+w,,—Aw,-ﬂ (59)

Accordingly, the probability for the transition 0 —4 is

_2nIP % i(Ix-iyl4)|? :
T‘._—l#(w.—‘b“;"—*_ﬁ'&_—w%"i[o(wo-wi+2w;+ﬂ—w)+6(w°—(dl+2w;—ﬂ—ﬁ’)] (—wﬁw,,-Aw,:ﬂ#O). (60)

Similarly one obtains for the probabilities for the transitions 0 —5, 0 — 6, 0—~7, 0—~8as

2 ? 2 ? -] 2
O iy R e ) ST R L R St R
_znzsg [PytIKlIx +ip18)12 | 1Py II8Ix-ip18)I12 _ IP3I%I(21218)I1
Te= (2(w.+w,,+m,-w) +2(w.-w;+w,-w) G (w.+m,—w))

X[8(wp = wy + 0= w) + 8wy - wy - B - w)), ) (62)

2re (B (1P;121Q21x +iy 1T 12 . IPy121812IT)I2
1',=—”S—,2( 21((«;.4'&.),-«))r +(U.:GL&M3-W) [Bwr=wy=w, +8-0)+ by -y -0, - R-w)],  (63)

Pyl 2e?
T.=%ﬁ—t%[a(w.-w‘-zw;+0-w)+6(w.—w,-Sw,,-ﬂ-w)]. (“)
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In these equations, we used | P;|?= | Py|? =|Py|2, which
comes from the fact that the radiation intensity does not
change significantly in the range of w; + 2w, about w,.

In deriving Eq. (82), we neglect P{P? and P{ P, since
the average of the cross terms between the different
frequency components with no phase relations of the
radiation field is zero,

Equations (80)—(64) mean that there are two satellites
disposed symmetrically in pairs about each of the
forbidden lines, 0—~4, 0—~5, 0—6, 0—7, and 0 —8,
and separated from them by .

It is important to point out that the spectral shift of
the satellite line is not seen in Eqs. (60)—(64) (“asym-
metrical Stark repulsion”). The spectral shift of the
satellite line can be seen in the case of the selective
excitation of the forbidden transition by the laser, This
result cannot be explained by the coupled equations with
the phenomenological damping constants of Prosnitz
et al,® Similar results have been found by Griem!! since
Griem has not treated the laser radiation,

The ratios of the absorption coefficients at these
satellite frequencies to that of the allowed line are

= - —Se"ai(ED (65)
. n’(w,-w,,+Aw,t9)7’
o8- Qelaf(E ( 1 A 1 )
e Wi+ aw; 2 QY (W -wy +Aw,z )/’
(66)
o= ge’agﬁEfZ( 1
S (W +wy + Aw; £ )2
1 0 4 ) -
(wt-w;+w,zﬂ)’ (w,+Aw;3 9) ¥ ( )
ST Qe’aééEfz ( 1
O (wy + Wy + Awq £ Q)7
1
G ae) o)
b 'r'"@i wy + Awyz Q) "
fo. 4, 0—5, 0—6, 0—17, and 0 — 8 satellites, re-

specti =ly, where the minus sign in the above formulas
corresponcs to the near satellite and the plus sign to the
far satellites.

If B=0 (w,=0), there are only two satellites dis-
posed symmetrically in pairs about a forbidden
1'S,-3'D, line and separated from it by Q, The ratio
S, defined above in this case is

. _ __ 5Qe}(Ed
TN (gt Aawz Q) (70)
where
2.2
aw = 109¢°aKED KE pr iy B (71)

It should be pointed out that S, given by Baranger and
Mozer! as
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u_ Rygclaf(Ed  5Qc’ai(E s
= ?:‘r’fu_,n‘!%)? e a#(w,z o (Ru2=100=67)

; (72)
has a factor and a denominator which are different from
Eq. (71) by 5, and by Aw#0, respectively,

The perturbation calculations by Baranger and Mozer!
and Griem'® could not include the detalled coupling
mechanism between the upper states of the allowed and
forbidden transitions and the Stark shifts of the allowed
lines. The deficiency in the coupling mechanism gives
rise to the above difference in factor and the fault that
does not include the Stark shift to Aw #0 of the denomi-
nator, The three-level rotating-wave approximation of
Prosnitz ef al, ® has the former deficiency as the pertur-
bation theory and would give rise to a different denomi-
nator since their theory would claim Stark shifts of the
satellites in the absence of the laser radiation,

11l. CONCLUSIONS

A theory of the spectral shifts of 0,, 0_, and 7 com-
ponents of the allowed line (1!S,-3'P,) and the satellites
about the forbidden line (11S,-3'D;) of a He I plasma in
the static magnetic field has been developed from first
principles, in which the atomic states'are exposed to
(longitudinal) turbulent electric fields and (transverse)
radiation fields, The 0,, 0_, and 7 components of the
allowed line are shifted as much as Aw;, Aw,, and Aws,
respectively, while the satellite lines are not, The
ratio of the integrated intensity of the satellite line to
that of the allowed line is different from the ratio ob-
tained from the second-order perturbation theory! or
the three-level rotating-wave approximation, ¢ From the
observation of the distance in frequency between two
satellites of a forbidden line and of the shifts of the
allowed lines or the ratio of the integrated intensity of
the satellite line to that of allowed line, a quantitative
determination of the frequency and intensity of the
stochastic electric field is possible,

IV. VALIDITY OF THEORY

We discuss as to whether the solutions for C,(¢),
C,(t), and Cy(t) given in Eqs. (51), (53), and (56),
respectively, are good approximate solutions of the
coupled equations (27)—(24). In the following, we denote
Ci(t), i=1,2,3 given in Egqs. (51), (53), and (56) as
Ci(t), i=1,2,3 in order to distinguish from the exact
solutions Cy(f), i=1,2,3.

(i) First, we prove that C{(t) satisties the following
approximate equation:

990 _ ¢ ety g,

dt @3)

where g{(f) can be expressed by replacing C,(f) with
1(t) In Eq. (48).
Since C{(?) satisfies
- 0010 = Py explity + ey - i), (4)
the validity of Eq. (73) depends on that
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['{[Cicl'ﬂ(om(f¢.)M + oxpl= iy expli(w, - ny'l)

i(wy+0Q) i(wy-0N)
x{(ES exp(i®,) - iES exp(is,)| expli(= wy + w, + A)‘| + [ES exp(- i9,) - iELexp(+ id, )| expli(- wy +w, - A

i(wg +wg + QY

: xpli (g + wy + Q)] i :
+61d‘a:((s:exp(w.)-fs;exp(w,)l‘ Mo vw7m)  *[Erexp(-io,) - iEjexp(-ig,)]

h (D)=

I(Wg +w,,-0)

+q°“([‘5=°""“°-)-"E‘:exn«mﬂ—‘d-‘—‘———)—l' Moy twp t DL 4 (B9 exp(- i) - iES exp(- id,)]

iw, +w, + Q)

y x M) {exp(io,) expli(- w, + Q)I’] + exp(- id,) expli(- w, - n)l'l}]cw')

‘Ed'!“’l twgp- 0!(’|

X iy tw - R) ){IE:“P(“-) - iEjexp(i,)] expli(- w, +w, + Q)!']

2
}1 +[Edexp(-i¢,) - iESexp(- i¢,)] expli(- w; +w, - n)t'l}C;(l')}exp(iAw,l')dl'l (75)
can be ignored in comparison to

[C101*=| /' Prexplitwy + wy + awy - w)]at | =2nt | P |2, (76)

where the summation with respect to w has been made in Eq. (76), since the radiation field covers a wide spread of
frequencies and the contributions from various frequencies are additive.

From the direct calculation of Eq. (75) after substituting C§(f) and C§(/),

lctlz, |chi?, |ctf}, |cY|? = Qeal/n?) an

| and
wr, Q, Awy, Adwy, Awy<wy (78)

for most experimental cases, we can be sure that if

1 1 1 ol
@17 Im T A= o)l @i=20F aw=de ! p¥ Awr— da < QATEXERT )

and

1 1 1 (A%
@o. T bu— Aoy’ Bw, 207 bo,— Aoy’ Bu,— 20+ b= doy) < QaeAEDD * 80)

E: hy(2) can be ignored in comparison with |C{(¢)|%. Inequalities (79) and (80) are the same as the criteria for the
| validity of the perturbation calculation, which can be stated in a crude form that #w, and |#w, - 2AQ | are greater
than the perturbing energy of the electric field E,, where

E,~(10Q)!%ea((E})! /2. (81)

(11) We proved that C{(¢) satisfies Eq. (73). Hence, C{(t) obviously satisfies

f(wy+wr-w)t] -

1
i(we + wp - w) - v, (82)

i~ P2
| where

¢
| 001 [c(otemtn et =SB et )t )
0

5 eXpli(wy = wy = np]) dc}‘gq +CES (exp(i ) explilw,t Q)] | o ;o) el = D) agd‘gq

‘(U]'UL-Q) i(w,+0) '(“’1'9)

* C!([E‘. exp(id,) - iE; exp(is,)] %’-’l +[Ezexp(- id,) - iEjexp(- i9,)]

eﬂi!wl +wg - ﬂ!ll dacy(t)
i ) dt 5 . (83)

i(w, *wg - Q)

where dC§{(#)/dt, dC}§(¢)/dt, and dC§(t)/dt is given by replacing C,(t), i=1,2,8 by Ci(t), i=1,2,3 in Eqs. (30)—(32),
respectively,
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Accordingly, if
(et (> [vin [,
where

v+ (B exptio,) + 63 exp(ios,)lm;.’;w“’f_—‘w—“’t%,‘—}m + [ESexp(- i,) +iEY exp(- i6,)] 3’-‘21'19*—'—“’*—‘%’-’1) ¢

flw, - w, -
xCiES (exp(w,)’—"ef.-‘-‘“nﬂﬂ + exp(- i¢,)w) Ci) + c:([s: exp(i¢,) - iES exp(ip,)]
f(wy +9) i(w; - Q) y

x SRlor L 0Lt UL, (50 oy o) - iES expl i) SRLLC o Taiay ) i

(84)

i(wtw,+Q) (85)
then
0= H%ﬁ%’-’l + V- U, (86)

that is, C{(!) is an approximate solution of Eq. (44).
From

2
laml, lesol?, lcg(nl’-s"’—,;{éf—'z (@7)

and Eq, (77), we can be sure that if

22,4
33(Qa; feXED s, 88)

then Eq. (84) is valid, that 1s, C{(?) is a good approximate solution of Eq, (27). Similarly, we can prove the same
for the remaining equations,
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