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heat flow per unit of area

radial position in transformed Z-plane configuration
outer radius of brush

temperature

displacement

sliding speed

complex number representing position in W-plane
coordinate of position

coordinate of position

complex number representing position in Z-plane
coefficient of thermal expansion

dimensionless quantity in contact equation
surface displacement

L/2

poéition on surface where displacement is given
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normal stress
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Fig. 1. Idealized configdration of brush. Outer surface R is
isopotential, and the contact patch is -£ < x < £,
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Axisymmetric configuration, with inner radius ¢,
and outer radius R.
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Fig. 3. Illustration for obtaining Green's function for surface
displacement produced by small element of elevated temperature
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I. SUMMARY

Experimental results in the literature indicate that electric brushes
may deform, leading to point contact with the slip ring at high current J
levels. The present work provides theoretical support for these observations
and a quantative statement showing how operating variables influence this
behavior. The analysis is restricted to a two dimensional model of the
brush, with isotropic and constant material properties. The most unexpected
result is that, for steady current flow, cooling of the exterior of the

brush increases the tendency to deform unfavorably.
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II. INTRODUCTION

The electrical brush may, in idealized form, be thought of as a
wafer shaped object making contact with the moving surface of a steadily
turning cylindrical body, or slip ring. The line of contact would be
parallel with the axis of the cylinder, and the sliding would be perpen-
dicular to this line. Even when no current passes through the line of
contact, frictional heating may deform the brush, causing contact to
transform from a uniformly loaded line to one or more discrete patches.
This is the result of the formation of thermal asperities which move
slowly across the contact zone. These thermal asperities are often
several multiples of the height of the initial roughness or waviness of
the brush face, and the peak of each corresponds to a small region or
patch of contact with the slip ring, which may be highly stressed as
well as hot. Several studies have clarified the nature of the transition

i and Dow has verified

to patch-contact in the absence of current flow,
the theoretical predictions experimentally.3 Kilaparti4 has investi-
gated the role of wear and other factors at work in the limited zone of
contact.

Approaching the problem from the electrical side, Marshall has
shown that a similar formation of heated contact patches occurs in

- McNab7 has reviewed

brushes carrying high levels of current.
the problem of brush wear and has noted ambiguities in the literature
as to the combined effects of current, load and speed. Undoubtedly
these interactions are complicated by the formation of patch contact.
The present study is intended to provide an analysis which incorporates

both frictional heating and current flow, and establishes how these and

other factors interact to determine contact patch size, stress level and

temperature.




III. STATEMENT OF THE PROBLEM

A two dimensional brush of unit thickness will be assumed, of
roughly the configuration shown in Fig. 1. It is approximately in
the form of half a circular disk and has a flat side or edge. Near
the center of the edge is the contact patch of width 24, Tﬂe outer
circular boundary will be taken as an isopotential line over which
a uniformly distributed current passes into the brush. Current exits
through the contact patch. Assuming the electric field is quasistatic
it will obey LaPlace's equation; and once the potential distribution
is determined, the distribution of electrical heating may be found.

The resultant temperature field can be obtained in two steps. First
a solution is obtained for the condition that electrical heat only flows out
through the contact patchk, and that all other boundaries are adiabatic.
Next a solution is found for heat flow into the contact patch and out
through the curved surface of radius R. By superposing these two solutions,
suitably scaled, any combination of heat flows through the patch and outer
surface can be produced.

Once the temperature fields are specified, the thermal displacement
of the boundary can be calculated. In many instances a rounded bulging-
out of the contact patch will be predicted, and through application of

Hertz's theory of contact of cylindrical bodies the conditions can be
found where the contact patch would indeed be pressed smoothly against

the slip ring surface with a contact-free gap to either side.




IV. METHOD OF ATTACK

Because the thermal and electrical problems can easily be solved
in an axisymmetric configuration (see Fig. 2), it has been found practical
to transform these solutions into a very close approximation of the chosen
configuration, by conformal transformation. Once the temperature fields
are so generated, a simple integral equation can be applied to determine
the deflection of the edge of the wafer.

A Green's function for edge deflection can be generated through
determination of the deflection distribution produced by a small patch
of elevated temperature at an arbitrary position in a semi-infinite plate.
This can be found by adaptation of the equations for stress and deflection
in a heated axisymmetric body8 in plane stress. In Fig. 3 is shown the
body with the uniform temperature patch of radius €. Disregarding for
the moment the broken-line construction also on the figure, we note that

for points external to the patch the stresses and deflections are given by:

-O’ET€2/2(x2 + y2)

o’ =
r
Oy = QET€2/2(x2 + y2)
u_ = (1) ate? /%% + y2 (1)

Using the method of images as shown by the broken lines in Fig. 3,
we may superpose the fields produced by two temperature sources equidistant

from the x-axis, and find that on the x-axis:

6 =20 cos 26
y r

g = 0

Xy

U =0
D

4
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By application of the integral equation derived in Ref. (9) for edge
displacements of a plate having an edge load oy, we find the normal
displacement of the edge, 8, to be:
©
§ = #% I cy(5)1n|§-x|d§ (3)

where § is a dummy variable. Integrating and letting ﬂ€2 = dAi’ one finds
that 61 is the deflection of the plate edge at x = 0, caused by a temperature
patch TidAi' at the position Xio ¥y

4aT My dA
i i i
R T R lx,‘lnly /x!}
i n2 2 i i"7i x? 5 y?

When there is a continuous distribution of temperature in the body the

influences may be summed to give, see Appendix B

Fr ;
6= L2 TT 4 [xltaly/x] | —R o
i Y e +3)

As it stands this equation gives the displacement at the origin of the
coordinate system, but a simple geometric transformation will cause it

to apply at x = §,

o Mom " TdA
8(E) = (1Y 4 ‘x-glznl_L| — . — (5)
n2 % 52 x-E'2 y2+(x-§)2

1t is of practical interest that the second term in the brackets has only

a small influence on relative displacements in the contact patch.




V. TEMPERATURE SOLUTIONS IN THE AXISYMMETRIC PLATE

For the case of simple conduction through the cylindrical surface of

radius €, see Fig. 2, LaPlace's equation for temperature will be satisfied

by
B, = Wr) = (Qb/m)ln(r/e) (6)

where Qb is the heat flow moving radially outward, '1‘c is the temperature
of the inner cylindrical surface and T(r) is the temperature at arbitrary
r interior to R.

Turning now to the question of electric current flow, one finds by

analogy
e - e(r) = "= fa(x/e) (7

Noting that electric heat generation will be given by

_ 1de2

it follows that the total electrical heating between r and R is given by

2
Q(r) = L 2ad) 9)

irrespective of the direction of current flow. The maximum magnitude of
Q would be

1%
Q= =5 Ln(R/€) (10)

e

and would be realized as heat flow through the inner surface, if all
heat flow were blocked at the boundary, R. Under the same boundar;

condition, we may write at any r,

R

2
k8T _ - b §
Kdr Q(r) = - L=




and it follows that

Qe s
T(r) - T(R) = 707 L

Q 2
T - R = e /]

This may be rewritten as

Ln(R/€) + 24n(e/r) + [z:(;/:) 2}

(11)

(12)
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VI. CALCULATION OF SURrACE DEFLECTION

As stated above, solutions in the W-plane were to be obtained from
the axisymmetric Z-plane solutions by conformal transformation. To this

e... the Zhukovsky transform may be applied.
W=2+1/2 (13)

This may be rewritten as

z=Lw+Vw?-41/2 (14)

Hence for any W, expressed as a complex number x + iy, there will be a Z,
which can be expressed as reiw. Knowing r, one may use Eq. (6) or (12)
as appropriate, to obtain the temperature at the point and at the corre-
sponding W-point. The use of the transform on the electrically heated

field is permissible because the quantity

2 2 , 2.
3 1 Qe :ae\ i
4= I_K?x) Ty J 1s)
transforms such that
a(z) = q(w) || (16)
dz'

See Ref. (10). Once values of T are known at points in the W-plane it

is possible to evaluate the integral of Eq. (5) at various values of §.
Closed form solution was possible only for the case of simple heat transfer
(see Eq. (6)). Consequently, the space was subdivided into a net of points
and the influences of each were summed. The simple heat flow solution
provided a check on the accuracy of the summation procedure. Results are

reported here as the difference in displacement between contact center

and edge or

6 = 6(0) - 6(£) a7)

= 7.-N‘ '.' " ' — I""-1V “



For the case of simple heat flow radially outward, the exact solution is:

n &aqb
6th s (0.5708) (18)

By numerical integration (for R/€ = 1000)

r~ 4
th K

(0.5715) 19)
See Appendix C.

The close agreement gives confidence in the numerical procedure, so it
may be applied to the case of electrical heating with all of the heat
passing outward through the contact patch, drawing upon Eq. (12) for

the temperatures,; and noting that any component of the temperature distri-
bution that is constant throughout the field will not contribute to defor-
mation of the boundary, therefore it will not contribute to 8. The result

of this numerical integration is

~ lﬂQ
e [ 0.7636
8 =g L-0.5708 + T=RTe (20)

This result is interesting in two respects. First it represents
an indentation rather than a protrusion of the surface, and second it is
dependent on the size of the brush, R. In the first we note simply that
for heat to be removed through the contact patch the lowest temperature
must be at the contact surface, hence a deficit of temperature there and

the resultant indentation.

The second effect is the result of the fact that the more material
through which current is passed the more heat generated.
The combined displacement for electrical heating and brush cooling

may be obtained by superposition of

§=6 + 2
or e th
~ AoQ . Q
e b 0.7636
8= —= [0.5708(Qe D + 15576 @1)

Since Qb represents heat passing through the outer surface of the brush
it may be thought of as a measure of cooling. If the brush were insulated
Qb would be zero. With some forced cooling Qb/Qe might be any value up to

or exceeding unity. 9

.
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VIi. COMBINED EFFECTS OF FRICTIONAL AND ELECTRICAL HEATING
Frictional heating of the contact patch is given by
Qf = uVP

where V is sliding speed, P is contact load and U is friction coefficient.

Recalling that
2
Q, = (I'¢/m%ia(2R/L (22)
one may write

Q 9. 8. (23)

total ‘e

We now note that with isolated slip ring and cooled brush Qb could have

as its upper limit Q Hence the maximum value of &, given by Eq. (22)

total’
would be
5 =% 4.57080 - )+ 0.7636 24)
max  TK - tot Zn(R/G) e

For convenience call the quantity in brackets Y, (in Eq. (24)) making
6 = (ah/7K) (Y) 25)
Let us now draw upon the well known relationship for Hertzian contact

8 = P/1.72E (26)

~

where 8§ is the distance the center of the contact is indented relative
to the edges of the contact. It follows that if the thermal bump is
pressed flat, to assure full contact over the region 24,

P “ah”
T.72E - & Y @7)

10
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Here it is assumed that the deflection of the slip ring is negligible
relative to that of the carbon, therefore only the Young's modulus E
of the carbon brush need be considered.

In Eq. (27) it is seen that 2 jincreases with brush load P. Increasing )
of cooling of the brush causes Y to increase and causes L4 to be smaller for
a given load, an adverse condition. Although the derivation is not valid
for large £ relative to brush size R, nevertheless the condition £ = R
provides a criterion as to when thermal effects are beginning to be important,
and for £ << R the equation should serve to predict contact patch size.

To obtain contact temperature one need culy to refer to Eq. (5,12)
and superpose the magnitudes of T(r = €), thus giving the elevation of
contact temperature above brush temperature T(R). To obtain contact stress

note that its mean value would be P/2L.
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APPENDIX A

DERIVATION OF STRESSES AND DEFLECTIONS FOR POINTS EXTERNAL TO THERMAL PATCH

From reference 1, one can find the expressions for a thin circular

disk with the edge r = b free from stress:

b r

Ur = orE(%-j Trdr - l—z‘j Trdr)
o *i o
L e
Ue = ch(-—ZJ Trdr + ) Trdr - T) (A-1)
b 0 r o
1 o & ~b
u = (1+)a &4 Trdr. + (1-v)ao —5 ! Trdr
St b2 "o

For a body with a uniform temperature patch of radius €, the integral in

the brackets is

rr .€ llb T 2
J Trdr = J Trdr + J Trdr = =
o o €

23 € T 2 iB=2)

Trdr = | Trdr + u Trdr = —=
o "o €
Where the second integral is zero when the temperature is zero outside of

patch. And note that 'rTez = dA.

For b>>e.
1 1 TdA oETdA
O = qE(% - =) == = - ——
r b r2 2m 2ﬂ(x2+y2)
1 TdA 1 Td aETdA
e ini i § ot Koy 7 A
b r 2m(x"+y")

u = (1-{-\!)¢:deA/21'Y-."x2+y2
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Using the method of images as shown by the broken lines in Fig. 3,
we may superpose the fields produced by two temperature sources equi-
distant from the x-axis, and note that by Mohr's circle one can find that

cy = 20r cos 20 (A-3)




APPENDIX B

DEFLECTION OF THE PLATE EDGE

From (3) one finds that the deflection of the plate edge at x = 0 is

A0

2 i
Y em. cyi@)tnls-xildg (B-1)

from (2)

g (§) = 201-_ cos 26

20r(1-2 cos26)

2
QET,dA, - -
-2, - i2 = 4(1 - & <
2rT (g v € +y;
@ET ,dA, - 2 2
e ; T, 1 k, yi | (B-2)
m _§2+yi (§2+yf)24

Substitute (B-2) into (B-1) and note that deflection is symmetric to y-axis.

2 4o A, oo £n|§-xi| ) Lnl§-xi| -

8, = d€ - 2y ——pppey A5 | (B-3)
i 2 " §2+y§ ot Jo E +y2 2 4

® Lo|E-x, | © 4n|E-x |
f 7 32 - ag - 2Y§ f 3 s
oég +y1 o (¢ +yi)

x, &n(x,-§) In(€-x,)
e R i i L g (B~4)
, Y 2. 2 J 2,52
o y;+€ x; yit€ .

2 %y dnlx;-§) 2 ™ En(E-x))
A By s v I P ey s I
o (§ +y)) x; (B74y))

One can integrate each term in (B-4) by parts as following: i

rxi ln(xi-E) ln(xi-g) 1€ lxi 1 X tan

] df = ——— tan = 2~

“o yi+§ Yi Yy Yi %o x,=§

L
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n(E-x.) In(E-x,) 1 >
n(g-x n(S-x, by T -1y
r221d§‘=_—'1_'ta“15_,:'_1-,j E%:.___idg
X, yi+6 Yi X 8 Oy *; s
L L £ - _X
fxi_!:.(.x_i__gldg= n(xi§),— § +Lt ‘1_:..1
2 022 2 htiud | g, 0 ey
o (yi+§ ) 2yi yi+€ i iTo.
PR +Lloean ! &) 48
J i
o 2y§ Ly§+§2 i yiJ *e 3
Lo(E- Incd- 4
ey Aty ig R % G
d i o = 90 e e gl B
x, (y; ¥y Yy i ix;
r s 1
- ———-12 i 2§-2 + — tan-l ;'g-_: g?i
X, 2yi yi+5 i i i

After substitution one can arrive,

R QO!TidAi I- ) E4E |
: e hed exy”
4aT,dA rTTy Ve -
" T Il S
" - 1 X

T X+
ARy
When there is a continuous distribution of temperature in the body, the

influence may be integrated over the whole body to give

§ = {' §.da = X i fL’T-12X+ |xl.¢n|xli- G (B-5)

-~ e —— »-u‘nw



APPENDIX C

EXACT SOLUTION

For the case of simple conduction the heat flow through the contact line

segment in W-plane is

=q |92
where QY and q, are heat flow per unit length in W-plane and Z-plane.

If we let € equal to unity in Z-plane, then

- 8 '
9 = me m (c-2)
From (14) one can get
|92| - L (c-3)
| dw W2
, 2/1-3)
the semi unit circle transforms into a line segment in W-plane. Also,
one can find thac11 the curvature in W-plane is
2., -aq
4 62 - K—w (c-4)
dx'
here for q, heat flow moving outward, the curvature is negative.
let x' = % ,x'lS 1 and
i a%s i . 3‘4°“z|gg|
1 dx2 K K "dw
-zaQb
| - o (C-5)
: Kﬂ‘Jl-x'z
1
‘ integrate (C-5) twice and note dimensional deflection § = §' é one can get
. §(x') = - - X' sin-l x +"-/1-(x')2 + C
3 TTK - -
here ¢ is a constance.
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8=8(0) - 8(1) = =2 G- 1)
faq,
= —= (0.5708) (c-6)

TK




APPENDIX D

NUMERICAL SOLUTION
From (5) and (6) we have :

e Q d
J LT+ gl 2| 22 A

A y2+ (x-E) 2

-ha
§'(§) = —XX
TT2

note that 2
dhy = [

4 2
r =-2r cos 29 + 1 e

3
r

d¢ (D-1)

x= (r + %) cos @

y = (r -%) sing

one can integrate from r=1 to R ¢=0 to T numerically, and note that
dimensional § = % 8'. The final result is

fg,

§=5(0) - 8(2) =+

(0.5715) (D-2)
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