
-

~~~~~

AD—AO58 232 MASSACI’VSZTTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE——ETC FIG 9/2
SYNTHESIS OF SYNCHRONIZATION CODE FOR DATA ABSTRACT IONS.(U)
JUN 78 H S LAVENTHAL N000I —75—C—0661

UNCLASSIFIED NIT/LCS/TR 203 NL

I~~3 fl
j~ 8232

I

-
~~~~~~~ 

-

~~~~~



- - ‘T~ ~T 1  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

i~~~
)

/ / j

LABORATORY FOR ~~XS~~CHUSET~~S

COM PUTER SCIENCE TECHNOLOGY

LI,
u-IL’MIT/LCS/TR-203

, •
~~~~ SYNTHESIS OF

SYNCHRONIZATION CODE
FOR DATA ABSTRACTI ONS

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I P f I ~f1t\
DISTRIBUTLON STATEME?T_A~~ 19 ~~~ Si 191
Appioved for public ieI.~~sl fl _____Distributiac UuIu*ited

~i Lfl ~i[5U U
Mark S. Lavent hal

This research was supported in part by the Advanced
Research Projects Agency of the Department of

Defense, monitored by the Office of Naval Research
under contract N00014-75-C-0661, and in part by the

National Science Foundation under grant DCR74-2 1892

545 TECHNOLOGY SQUARE . CAMI3RII)GE, MASSACHUSETTS 02 139

r i ~-:~-~~ 1T T~T~T~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SECURITY CLASSIFICATION OF THIS PAGE (W~i.n Data Entered)

REPORT DOCUM ENTATI ON PAGE READ INSTRUCTIONS
___ BEFORE_COMPLETING_FORM6~
t . REPORT

MIT/LCS/TR —21Ø3 i 12.
GOVT ACCESSION NO. 3. REC IP IENTS CATALOG NUMBER

~~~~~~~~~ 4. TITLE (~~vd SubttU.) 5. TYPE OF REPORT a PERIOD COVERED

SYnthesi i sn oniza~~o d ~~~~~~~~~~~
j  

Ph.D.Thesis — June 23 , 1978
Abstractions~ 6. PERFORMING ORG. REPORT NUMBER

___________________________________________________ MIT/LCS/TR—2 03
S. CONTRACT7. AU~~$~~~~~~~~~~ 

) • ~~~ ~~~~~~~~~~~~~~~~~~~ 
BE R(s)

9. PERFORMING ORGANIZAT ION NAM E AND ADDRESS tO . PROGRAM ELEMENT. PROJECT , TA SK

~~~~~~~ Mark St4enthal j  DCR74-2l892

MIT/Laboratory for Computer Science ,<~~~~~.
AR EA woR~i~NI 1JwlqBER s

545 Technology Squa re ~~~ . / 2/
Cambr idge , MA 02139 ___________________________

~I. CONTROLLING OFFICE NAME AND ADDRESS Director 12. REPORT OATE

Advanced Research Projects Agency/A~~o~i t~ Pr ram June 1978DeDartment of Defense I
l4bO Wilson Boulevard /~~~~~~~a~.°~~.!t fl~ &c~ ivi~~~s 13. N U M B E R O F PAGESenc roundatlon
Arlington, VA 22209 /Washington, D.C. 20550 231
14. MONITORING AGENCY NAME a AODRESSQI diii , t*eee-.ConEroifffi~ Office) IS. SECURITY CLASS. (of thi. report)

Office of Naval Research ,i \ ~~~ UnclassifiedDepartment of the Navy Y Y~’<~~’<
ISa . DECLA SSIFICAT IOHIDOW PIGRAD INGInformation Systems Program

~
SCHEDULE

Arlington, VA 22217
16. DISTRIBUTION STATEMENT (of fbi. Repori) (~~~ J’—~~~

~~~~~~~~~

• Approved for public release; distribution un1iniited~

I?, D ISTRIBUTION STATEMENT (of the ab.fract entered in Riock 20. if different Iron, R.pott)

15. SUPPLEMENTARY NOTES

19, KEY WORDS (Continue on reverse aid. if necess ity and identity by block number)

synchronization interprocess communication
synthesis monitors
data abstractions deadlock
abstract data types starvation
concurrency
20. “ABSTR A CT (Continue on reverse side it neces.a,v and identity by block number)

~Synchronization code is necessary to control shared access of an abstract
data object in a parallel—processing environment. This thesis explores an
approach in which a synchronization property can be specified in a high—level
nonprocedural language, and an implementation for the specified property can be
synthesized algorithmically . A problem specification language is introduced in
which synchronization properties can be expressed in a structured but natural
manner. A method is then presented for synthesizing an implementation. An —

DD , 
~~~~~~~ 

1473 EDITION OF I NOV 65 IS OSSOL ETE

~Ae.229 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

‘~Tz~~~~~~~~~ TI7 ‘

$(CURITY C~~AUIFICATION OP YNIS PASI(~Sw Dat. ~~~~~~

20. ntermediate form , called a solution specification, is first derived,
representing an abstract solution to the problem. The derivation

• of the solution specification accomplishes the transformation of the
specification from nonprocedural to procedural form . The solution
specification can be translated directly into a source language
synchronization mechanism, such as a monitor.

Specifications for common synchronization properties, such as the
readers—writers and bounded buffer problems, are expressed in the
problem specification language. Corresponding implementations are
then synthesized for these problems. In addition, the derived solution
specification can be used in analyzing the soundness of the original
problem specification with respect to criteria such as freedom from
deadlock and starvation. N

(

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



F.” ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ II ”T~~—~~ -~-2’r - ‘

r
MTT / LCS/ TR— 20 3

SYNTHESIS OF SYNCHRONIZATiON CODE FOR DATA ABSTRACTIONS

by

Mark Steven Laventhal

June, 1978

I ~
This research was supported in part by the Advanced Research Projects Agency of the
Di’partnwnt of Defense, monitored by the Oifice of Naval Research under contract
NOOOl4 -7!~-C-O66l. and in part by the National Science Foundation under grant
DCR74 -21892. -

Massachuse us Institute of Technology

Laboratory for Computer Science 0

Cambridge, Massachusetts
02 139

-
~~~

—- —-~
—--—-- -. . ~--~~ -~ .•— ___lm.J ,~~. - ,-— -- - —-•—“

I ’

SYNTHESIS OF SYNCHRONIZATION CODE FOR DATA ABSTRACTIONS

by

M ark Steven Laventhal

Submitted to the Department of Electrical Engineering and Computer Science on June 23,
1978 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

ABSTRACT

Synchronization code is necessary to control shared access of an abstract data object in
a parallel-processing environment, This thesis explores an approach in which a
synchronization property can be specified in a high-level nonprocedural language. and an
implementation for the specified property can be synthesized algorithmically. A problem
sp ec if icati on lang uage is introduced in which sy nchronizat ion properties can be expressed in
a structured but natural manner. A method is then presented for synthesizing an
implementation. An intermediate form , called a solution specification . is first derived,
represen tin g an abstract solut ion to the problem. The derivation of the solution
specifica tion accom plishes the transformation of the specification from non procedura l to
procedur al form. The so lution specification can be translated directly into a source
language synchronization mechanism, such as a monitor.

Specifications for common synchronization properties, such as the readers-writers and
bounded buffer problems, are expressed in the problem specification language.
Corresponding implementations are then synthesized for these problems. In addition, the
derived solution specification can be used in analyzing the soundness of the original
problem specification with respect to criteria such as freedom from deadlock and starvation.

THESIS SUPERVISOR: Barbara H. Liskov
TITLE: Associate Professor of Electrical Engineering and Computer Science

Keywords: synchronization, synthesis, data abstractions, abstract data
types, concurrency , interprocess communication, monitors,
deadlock, starvation

____ _ _ _ _ _ ~~~ T~~~~

- 3 -

Acknowledgments

I wish to thank a number of people who have contributed in various ways to my

completing this thesis. First of all, I want to express my appreciation to my thesis

su pervisor . Barbara Liskov, for all the help she has given me. Not only has her technical

• advice invariably been sound, but her patience, encouragement, and support during my

many years as a graduate student have been invaluable.

Each of my three readers, Irene Greif, Carl Hewitt, and Liba Svobodova, has

contributed important insights to different aspects of both the research and the presentation

of this thesis. My sincere gratitude goes to all three of them.

Many of the graduate students in the M. I. T. Laboratory for Computer Science have

helped to create an interesting, stimulating, often diverting, and always supportive

atmosphere in which to work . I want to thank in particular my officemates Dean Brock

and Toby Bloom.

Finally, I wish to thank my wife Carol for her deep and constant support and

encouragement . It is she who has enabled me to persevere throughout my graduate school

career , and from whom I derive my inspiration.

~ ‘Ilili ~LilI1iiiiiii& ~~~~~~~ • -—---—-— —~~- - - —.-~ • • - • • —--~~~~ ---—- -~~~~ - —~~-~~— - -.~•--

r”’ ’~’~
—‘—‘-i”•

~T_::T~ii”i~:
“— ._~~-1

~~~~~~~~~ ~~~~

‘- —---

~~

- “_ ., ‘ .— -—-

~

.- -

~~~~

,,, ..-

- 4 .

Table of Contents

Abstract 2

Acknowledgements .
• 3

Table of Contents 4

1. Introduction 6

1.1 Goals of the thesis 6
1.2 Synchronization Mechanisms 8
1.3 Specifications and synthesis 12
1.4 Overview of the thesis 14

2. The Problem Specification Language 17

2.1 Introduction 17
2.2 Data abstractions and synchronization 17
2.3 The guardian model of synchronization 21

• 2.4 Overview of the language 23
2.5 Syntax of the language 27

• 2.6 Semantics of the language 29
2.7 Examples

3. The Solution Specification 42

3.1 Introduction 42
3.2 The basic solution specification structure 43
3.3 Additional features of the solution specification 49
3.4 Semantics of the solution specification 59

4. Derivation of the Solution Specification 63

4.1 Introduction 63
4.2 The derivation algorithm 66

• 4.3 Use of previous states 80
4.4 An example using a previous state 85
4.5 Incorporating argument constraints 94
4.6 Justification of the derivation method 102
4.7 Failure of the derivation algorithm 112


~~~~~~

-

~~~~~~~~~~~~~~~~

—

- 5 -

5. The Source Language Implementation . 117

5.1 Introduction 117
5.2 Monitors 118
5.3 The basic monitor implementation 120
5.4 Previous state information 128
5.5 Qualified gates 129

6. Complete Examples of Synthesis 153

6.1 Introduction 153
6.2 Bounded buffer 153
6.3 Writers ’ priority database 158
6.4 Alternating priority database 169
6.5 Disk head scheduler 180

7. Detecting Erroneous Specifications 190

7.1 Introduction 190
7.2 Deadlock detection 192
7.3 Starvation detection 200

• 8. Summary and Evaluation 206

8.1 Summary of the thesis 206
8.2 The specification language 209
8.3 The synthesis method 212
8.4 Comparison with path expressions 216
8.5 Future work 221

Bibliography 225

Biographic note 228

_

1T11 T1~~T ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
-
~m-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

- 6 -

Chapter 1

Introduct ion and Back ground

1.1 Goals of the thesis

This thesis is concerned with the problem of synchronizing accesses by concurrently

executing processes on a shared data object. Overall the thesis has two major goals. One is

• to design a high-level language in which synchronization properties can be specified in a

nonprocedural form. The other is to devise a method for translating such specifications

into actual source language code that implements the specified properties.

The reliability of computer software has received a great deal of attention in recent

years . The reasons are both economic and intellectual. Rapid advances in hardware

technology have dramaticall y decreased the cost of hardware relative to software, as well as

expanded the range of complex computer applications for which new software is required.

As a result, the cost of producing and maintaining software has become more than ever a

major concern. Since testing and debugging incorrect programs consume a large share of

tota l software costs, methods for improving the reliability of software are increasingly

important from an economic view point. At the same time, the intellectual difficulty of

producing high quality software has become more generally appreciated. The study of how

to produce complex yet reliable software systems represents a fertile area for research.

-~~~
_ _

~~~~~~
.

- 7 -

One productive approach in this area has been the study of language support to

enhance software reliability. The range of current work in the area is quite broad, as

illustrated by (LDRS77]. A particular aspect of this approach that has received wide

attention has been the idea of abstract data types (Lis74]. Language support far abstract

data types gives programmers a facility for implementing data abstractions analogous to the

capability provided by procedures for functional abstractions. Following a methodology

• using data abstractions has been found to be a significant aid in producing reliable

software .

• A number of languages have been developed, and in many cases implemented. that

include mechanisms supporting the concept of abstract data types (e.g. (Lis77J. (Sha77),

(Ges77]). Because of a lack of facilities in these languages for creation of multiple

concurrent processes and interprocess communication, their range of programs until recently

has been restricted to single-process computations. However, it is obvious that many of the

kinds of applications for which the reliability provided by data abstractions are needed,

such as operating systems, require such multiprocessing capabilities. In introducing facilities

for concurrency and interprocess communication into these languages, it is necessary to do

so in a manner that maintains the philosophy and methodology that such languages

support.

This thesis ex plores a particular approach to a key problem in this area. The issue is

the proper synchronization mechanism for a language that supports an abstract data type

mechanism . Specifically, it is assumed that objects of abstract types in the language are

shared among different processes and can be accessed concurrently. This means that some



- 8 -

sort of synchronization mechanism is required to regulate these concurrent accesses.

Synchronization may be required both to maintain the internal consistency of the objects

• and to implement higher-level scheduling decisions.

The approach taken here involves specifying synchronization properties in a

l~ gb-level nonprocedural language, and obtaining automatically an implementation for the

• specified property . Synchronizing concurrent accesses to data can be a complex, error -prone

task . Since the reliability of programs tbat access shared data depends upon the correctness

of the synchronization, it is highly desirable that the synchronization itself be implemented

as reliably as possible. If a specification language can be developed that is powerful enough

to express synchronization properties of interest, and for which implementations can be

synthesized automatically without too much effort , then it can be incorporated into a source

language that sup por ts data abstractions. Programs in the source language can specify

synchronization properties nonprocedurally at a high level, and the compiler can produce

the actual code using the synthesis a lgorithm. This would be a very attractive alternative to

the range of synchronization mechanisms currently available, some of which are surveyed in

the next section.

1.2 Synchronization mechanisms

Whenever concurrent processes share access to common resources, it is necessary that

accesses by different processes be coordinated. The purpose of synchronization code, in the

broadest sense, is to bring about this coordination~ One kind of coordination involves

limiting the combinations of simultaneous accesses allowed on a resource. That is, it is

••~~~~~~~~~



V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 9 -

• sometimes necessary for certain accesses to exclude others from taking place at the same

time. This may be because the resource can inherently support only a limited number of

• concurrent accesses . For instance, a physical device such as a card reader must be devoted

to a single process at a time. Alternatively, the nature of the accesses may be such that

certain kinds of accesses performed concurrently would lead to inconsistent results, such as

the case of two simultaneous updates to a database.

When certain accesses are prevented from occurring immediately, provision must be

made for these deferred accesses eventually to take place. This is another aspect of

coordination that must be handled by the synchronization code. Not only must a —

• mechanism exist for deferring accesses. Decisions must be made as to when deferred

accesses should occur, and these accesses must be activated in some way.

In working on synchronization problems, it has been found that writing

•
• synchronization code is a conceptually difficult task , more difficult in general than writing

sequential programs. This difficulty arises from the non-intuitive nature of many problems

that arise in synchronization, and the combinatorial problem associated with different

possible sets of concurrent accesses on a resource. Therefore, several generations of

synchronization mechanisms have evolved, reacting to the increasing complexity of

concurrent programming applications, and to the resulting need for better, more

well-structured synchronization mechanisms.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

-~~~~~~~~~~~

__ _ ~~~~~~~~~~~~~~~~~~ ~~~ ~~~~T TTI~~ -

- 10 -

Originally, concurrent processes communicated through common shared storage.

Access to this common storage was usually controlled by “locks”, which wert’ set prior to

accesses and reset afterwards . Setting a lock was accomplished by means of an indivisible

“test and set ” instruction, usually implemented in hardware. This mechanism was quite

unstructured, and certainly did not provide great confidence in its reliability. In addition.

locking protocols involved “busy waiting”, so that a process prevented from performing an

access because of an already set lock was forced to perform essentially useless computation

while waiting for the lock to be reset. With the advent of multiprocess time-sharing

systems, this became unacceptable.

An important step forward was the development of the semaphore mechanism [DijBS),

V

on which two operations are possible. Operation P accomplishes a “test and decrement”

instruction, similar to setting a lock. However , the result of an unsuccessful “test” is to block

the given process and place it on a queue associated with the semaphore. This eliminates

the need for busy waiting. Operation V increments the semaphore and dequeues a process •

from the associated queue. With processes communicating via semaphores and using just

these two operations, nearly all common synchronization problems can be solved. In

addition to solving the busy waiting problem, semaphores, unlike locks, can be required to

be fair. This means that service is granted in such a way that a given process is not kept

waiting indefinitely while an arbitrary number of other processes proceed.

_ _ _ _ _

-

~~ ~~~T~I

— II —

A complete generation of alternative mechanisms then appeared, all of them in some

way variations on the semaphore concept. The proposed alternatives were designed to

improve somewhat on the power of the semaphore mechanism. A difficulty common to

semaphores and these alternative mechanisms became apparent, however. They are at too

low a level, comparable to got o statements in the area of control structures. While

sufficiently powerful to solve synchronization problems, they do not provide the

programmer with enough structure to make these solutions easy to construct and reliable in

operation.

Recent emphasis on “structured programming” (Dij72a] and language constructs

suitable for producing reliable softwa re has resulted in a new generation of synchronization

mechanisms . Many of these new Constructs attempt to internalize well-structured disciplines

• developed for the use of semaphore-style mechanisms, in much the same way that the while

statement internalizes a structured style of writing loops originally developed using goto

statements . Among the noteworthy mechanisms in this group are conditional critical regions

(Bri72] and monitors (Hoa74], both of which embody the idea of accessing shared data only

in indivisible segments of code. Both a lso seek to relate the scheduling mechanism for

deferred accesses directly to properties of the shared data as another step toward better

structure. More recent alternatives have attempted to improve further on these mechanisms.

For exam ple, serializers (Hew77] have drawn on experience with the use of monitors to

build even more structure into the mechanism, and thereby correct certain perceived

deficiencies in the monitor construct.

- — - • . V- • V • - •.V VV V_•
~ - ~~~~ — —. —. .. — — • - .‘-•-••-— V-V-—-

— •
~ ~~~~~~~~~~~~~ — - -— - —.—-- •• -- .-•— • - — - • — •

_ _ _ _ _

- 12 -

It is certainly easier to program solutions to non-trivial synchronization problems

using these well-structured mechanisms than with semaphores or the like. However,

synchronization remains an area of great complexity, and thus unreliability, in any large

concurrent system such as an operating system or database management system. There is

still a large conceptual gap between one’s understanding of a synchronization problem and

• the code one must write to solve it. This has motivated recent work whose goal is to allow

the expression of synchronization problems in a more natural form, and in some cases, to

• obtain automatically an implementation for the specified property. Some of this work, and

its relationship with this thesis, is discussed in the next section.

1.3 Specifications and synthesis

Originally, synchronization problems were expressed simply in natural language. The

•

-
informalit y of such descriptions was a contributing factor to the unreliability of the

“solutions” proposed , as well as a source of controversy over just what a problem description

“really” meant. After the widespread acceptance of semaphores, many problems were

expressed via a representative program using semaphores. The circularity inherent in such

a descri ption is obvious, since the solutions to the synchronization problems also used code

involving semaphores, and the distinction between “problem” and “solution” became

negligible. More importantly, the ex pression of a synchronization problem at the level of

actual code, while bridging the gap between specification and program. left the same gap

between people’s intuitive understanding and the specification. The “correctness” of

specifications remained problematic.
V

_ _ _ V V V ~~~ ~~~ --• V - ~~~~~~

V -13 -

A number of informal arguments about the correctness of an algorithm or the

meaning of a mechanism have relied on the notion of “state” to reason indirectly about the

• effect of synchronization code (e.g. [Hab72), (Bri72), (Owi75D. This approach was used by

Hoare in constructing formal proof rules for monitors in [Hoa74). However, such an

approach does not really formalize the meaning of synchronization code and

synchronization problems themselves, but only in their relation to a program or system as a

whole, Issues of modularity make it desirable to formally specify synchronization behavior

•
V

in isolation fr om the procedures being synchronized..

Recent efforts to create structures through which to express synchronization problems

include (Rob75J. 10wi761 and [Gri761 (0ri76J contains En addition a system for synthesizing

solutions from the specification language automatically. However , in all these cases what

can he ex pressed is not a synchronization problem itself, but rather the abstract solution to

the problem. This is an improvement over a “specification” in the form of a concrete

program usin g sema phores, but it still does not allow the specification of a synchronization

problem independent of its solution. In order to do so, it is necessary to have a

nonprocedura l language for describing synchronization behavior that is independent of

• notions of how to implement that behavior.

Path expressions (Camll] are a nonprocedural language for expressing

• synchronization problems. In addition, implementations can be derived directly from path

expression specifications . Path expressions represent the most - nearly comparable work to

this thesis, both in overall goals and in basic approach. A discussion and evaluation of
V

path ex pressions will be deferred until the approach of the thesis has been fully presented.

_ _ _ _ _ _ ~~

— ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ •V ~~ V V ~~~~V

A comparison of this approach with that of path expressions is presented in Section 8.4.

10re75] introduces a theory and notation for describing system behavior, including
V

synchronization behavior. This theory involves the notion of events , over which a time

• ordering relation is defined. The notation introduced in (Gre75) is very general, in keeping

with the abstract level at which events are discussed. The specification language used in

this thesis represents one approach toward refining and structuring that notation.

1.4 Overview of the thesis

• f The view of synchronization taken in this thesis is illustrated in Figure 1.1, which

illustrates the sequence of events involved in accessing a synchronized shared resource.

This view shares with a number of other recent approaches the importance of

encapsulation . The unsynchronized resource to be shared and the synchronization

mechanism for that resource are encapsulated into a single “synchronized resource” module.

The details of the coordination between the two are hidden from the outside world, which

can only access the resource through this higher-level module.

The distinguishing features of the approach here concern the structure imposed on

synchronized accesses of the resource. As indicated in the figure, ever y access involves a

certain fixed sequence of events . The process wishin g to make an access first communicates

this desire to the synchronization mechanism, and this is denoted as the “request” for the

access . When the synchronization mechanism permits the initiation of the access on the

actual resource, the “enter ” event occurs. The termination of the access is communicated to

the synchronization mechanism in the “exit” event.


~~~~~~~~

----

~~~~

—-V.

~~

-

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ TTT~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • 

-

V - ‘5 -

Figure 1.1. Accessing a synchronized resourct.

• synchronized resource module

a iisyiichron lied synchronization
resource mechanism

~..~request-

enter—-

V 
—exit~ 

4

V 

•

h11. 
~~~~~~~~~ ~~~~~~~~~~~~~~ • • - - • V •~~~~~ V • V ~~~~~~~~~~~~~~~ • - . ~~~~~~~~~~~~~~~~~~~~ 

i._ ___..~. • ~~~ ~~~~~~~~~~~

-V.-..- -~~ V— ~~—

- 16 -

V
The specification language of this thesis is designed to describe properties concerning

the time order of these abstract events. Chapter 2 presents this language, both its syntax

and semantics, and includes a number of examples of its use. The synthesis of an

implementation for the specified property is described in Chapters 3 through 5. Chapter 3

• describes the abstract solution specification structure, in which events are implemented by

abstract notions called “gates”. The algorithm .for deriving an equivalent solution

V
specification from a problem specification is presented in Chapter 4. Chapter 5 explains the

implementation of a solution specification in actual code, where the abstract gates are

• replaced by procedures of a monitor. Several examples of complete synthesis for well-known

synchronization problems are presented in Chapter 6. The detection of certain types of

erroneous specifications, those that permit deadlock and starvation, is discussed in chapter 7.

A summary and evaluation of the thesis is contained in Chapter 8.

~fr

-.
V —— -

~~~~~ ~~~~~~~~
. V ~~~~• ~~~~~~~~~~~~~~~ •• — .  —~ 

-



-17 -

Chapter 2

The Problem Specification Language V

2.1 Introduction

The focus of this chapter is on the language used for expressing synchronization

constraints on accesses to an abstract data object. Before the language itself can be

presented , however , it is necessary to “set the scene” in terms of exactly what kind of data 
V

• objects are being treated , what the nature of accesses to these objects is, and what kind of

• synchronization of these accesses is possible. These issues are discussed in the first two

sections of this chapter. Then an overview of the language is presented, including some

motivation . This overview should make it easier to understand the following two Sections,

which formally define the syntax and semantics of the language, respectively. The chapter

concludes with some examp les of using the language to express common synchronization

problems. V

2.2 Data abstrac tions and synchronization

V The data objects with which this thesis is concerned are of the sort that are handled

in a language supporting the notion of abstract data types, such as CLU([Lis77)) or

Simula([Dah72]) . A data object in one of these languages is strongly typed, which is to say

that its data type is an integral part of the object , and represents a severe restriction on how

the object can be used. In particular, there is associated with the abstract data type a set of

basic procedures, or operations. An object of the type can only be accessed through these 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _


-_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • V..•V _ . • V V,V~-~~ .•~V ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
-

V

-18 -

operations, or through higher-level procedures that themselves make use of the operations.

Furthermore, it is only these operations that are allowed to manipulate the lower-level

representation of the abstract object.

In general, an abstract object can be either mutable or immutable. An object is

mutable if it has state , so that its behavior can change over time. Immutable objects do not

have state , and once they are created they are fixed for all time. Thus they are not useful

• for communication between parallel processes, and consequently are not of great interest V

with regard to synchronization. The data objects treated throughout this thesis are V

generally mutable.

An operation of a data type whose objects are mutable can have the function of

V creating an object of the type with some (possibly parameterized) initial state, of accessing

the object’s state without modifying it, or of accessing and updating the state. Assignment

of the object to a variable is not considered to be an operation on the object, but instead

constitutes a (temporary) binding of the variable to the object. See [Sch78] for a more

detailed discussion of the semantics of a language such as CLLJ .

V Synchronization is considered here to impose a constraint on the otherwise

unconstrained time ordering of accesses to an individual data object. By this model, the

ordering among accesses to different objects is completely unconstrained, except for the

normal sequencing order within each individual process. This means that if

synchronization is required among accesses to several objects, then these objects must be

collected together into a single composite object, with the synchronization applying to this

V V

V

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I

-19 -

new higher -level object. It is important to keep in mind that it is the accesses on an object

itself, not on any particular variable that happens to be bound to that object, that are of

V interest. Concurrent processes that share access to a data object presumably employ

different variables for the purpose of referring to it, but it is over the total set of all these

accesses that synchronization is required.

This thesis will not be concerned at all with the exact mechanism by which there come

V • to be concurrent processes , or with how such processes gain joint access to a shared data

object . It is not important whether the processes represent concurrent users of a

time-sharing system , or are created from one process by some sort of fork-join mechanism in V

the language. Nor does it matter if the shared object resides in some form of centra l l ibrary

to which all processes have access , or if a reference to the object must be explicitly passed to

~‘ach one. The issue of synchronizing accesses to an object by concurrent processes is

independent of such concerns , and the work here applies regardless of how these issues are

handled. The important point is that there are processes executing in parallel that

concurrentl y access the shared object. Consequently constraints must be put on the time

ordering of accesses to the data object, and this is the purpose of the synchronization.

A basic assumption in the approach of the thesis is that the units upon which

synchronization should be performed are the basic operations of the abstract data type. It is

felt that the type’s operations are the right level at which to impose synchronization V

V 

constraints. Only these operations are allowed to access and manipulate the more concrete 
V

data representation of the abstract object , and so it is here that decisions by the implementer

of the abstraction as to what pattern of accesses is necessary to maintain internal consistency

-I

_ _  - V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _



- 20 -

make sense. The centralization of these operations in a type module (such as a CLU

cluster) permits a single ex pression of constraints to cover all accesses of the object. Since

the language ensures that all accesses to the object are made through the basic type

operations, the discipline required for synchronization can be enforced universally, which

would not be true necessarily if higrier-level procedures were chosen for synchronizing. On

the other hand, to the user of an abstraction these operations are basic and the details of

their implementation are unknown (and in fact can be changed without his/her knowledge).

Synchronization constraints at any lower level, i.e. involving code internal to these

• operations, therefore would not be meaningful to the user. It is exactl y at the level of the

basic operations of a data abstraction that the two viewpoints of the implementer and of the

user can and should be resolved in a smooth interfaL~. This is true for the synchronization

component of the interface just as much as for the data component.

A very strict division is assumed between the synchronization and data accessing

functions involved in accessing a shared data object. This is based on the philosophy that

the task of synchronization belongs in a separate language construct, whose sole function is

synchronization. The operations of the abstract data type, on the other hand, should be

completely unconcerned with this synchronization, and written assuming that

synchronization exists that is sufficient to prevent any conflicts between concurrent

operation act ivations. Synchronization is taken to be uniform across all objects of the same

type, reflecting the belief that a type consists not only of data accessing operations but the

synchronization on them as well. That is, all objects of a given type are synchronized in the V

sa me way. This means that the same (sequential) implementation of a data type and Its

L ~~~~~~~~~~~~~~~~~ V • V •~ - —- ____________ ______ VVr . ~ •~~~~~~ 
V~~~~~~ • V V _~~ _____



~~~~~~~~~ 
_ V V ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ •i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 21 -

operations can be used with different synchronization constraints, perhaps embodying

alternative scheduling policies or maintainin g different levels of consistency, to create V

different data V
types.

2.3 The guardian model of synchronization

The model of synchronization that I use assumes there to be an abstract protection

• mechanism that conceptually surrounds each abstract data object on which accesses must be

synchronized. (Recall the picture given in Figure 1.1.) This mechanism ensures that the

enca psulated synchronization mechanism, which I call the gua rdian of the data abstraction,

monitors all communicat ion with the object, in a similar manner to the “secretar y” concept

proposed in [Dij72b). Through this monitoring, the guardian is able to maintain the

sy nc hronization state of the resource , an abstract representation of the history of accesses to

the object . (This is to be contrasted with the “data state” of the abstract object , which is the

state ex plicitly manipulated by the operations accessing the object .) The guardian uses the

synchronization state information to temporarily block any process attempting an access that

the guardian deems to be unsafe given its current state . The blocked process is allowed to

proceed when the synchronization state has changed in such a way that the access can safely

occur.

Accessing an abstract data object consists of invoking a procedure implementing one

of the operations of the type to which the object belongs. A given procedure activation

generates three distinct events that the guardian includes in the synchronization history of

the abstract object. The first event occurs when the guardian first receives notice of the

_ _ _ _

•:~~~~~~~~~~~~~~~~~~~~~~~
V
~~~~E

- 22-

invocation of the given procedure by the user process. I term this the request event for the

given procedure activation. A request event can be likened to the act of “taking a number”

in a crowded baker y, and represents the very first externally visible occurrence associated

with the particular procedure activation.

The next event occurs when the process actually gains access to the object by

beginning execution of the invoked procedure. I call this the enter event for the activation.

• It is this event that often must be delayed by the guardian until it can sa fely occur. Once it

has occurred, the process may be assumed to be executing the body of the procedure. No V

assumptions can be made as to the relative execution speeds of different activations.

When the process has completed execution of the procedure, it indicates this fact to the

• guardian and exits from the resource. This is the exit event, the last event involved in the

activation . Frequently it is the exit event for one activation that triggers a delayed enter

event for some other activation. V

This model of synchronization, of course, was not conceived in a vacuum. It is the

result of a ca reful study of the kinds of synchronization properties that appear in the

literature, which presumably reflect the nature of real-world concerns. Procedure entry and

exit are natural concepts to use, V since the basis of many synchronization problems is
V 

specifying which combinations of procedure activations can be allowed to execute

concurrently. Clearly the solution of such problems requires that a record be kept of which V

procedure activations are currently executing, that is to say, which activations have entered

but not exited. Another large class of synchronization properties, constituting what are



- 2 3 -

usually regarded as “scheduling” properties , involve decisions as to which of a collection of

processes each waiting to execute some procedure is allowed to proceed first. In order to

- deal with such properties , it is important to keep track of what activations have been

requested, hence the need for request events. My investigation of synchronization problems

has failed to discover any other distinguished events associated with operation activations

that are as fundamental as these three. Since this model appears adequate for capturing

synchronization properties of interest , there seems to be no need for using a more

• complicated one. The examples at the end of this chapter , written in the problem

specification language that is based on the guardian model, testif y to its generality.

The guardian model assumes that the set of all events concerning a particular data

object is totally ordered . That is to say, while many. procedure activations can be executing

concurrently, only one request , enter , or exit event associated with a given object can occur
V at a time. This total ordering property is comparable to the fact that the “arrival ordering”

• for any particular actor in [Hew73] is total , and relies ultimately on some sort of “arbiter”

mechanism for each data object. 
V

2.4 Overview of the language

The purpose of the problem specification is to express, in a clear and concise manner ,

an imposed constraint on the temporal order of accesses to abstract data objects of a

particu lar type. To facilitate this goal, the language for expressing the specification has

been designed to be as general as possible, subject to the requirement that it be compatible

with the guardian synchronization model. That is, the guardian model paradigm of

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- 24-

request - enter - procedure body execution - exit forms the basis of the language, but
V beyond this, the complete freedom of first-order predicate calculus with equality and

ordering among integers is available. Because of the power of predicate calculus, any V

meaningful synchronization constraint that operates on the level of the time ordering of

individual events can be expressed.

This power . in fact , permits specifications to be written that must be judged erroneous.

• Such an invalid specification may, for instance, place a constraint on the Circumstances

• under which a particular request event can occur, which would be incompatible with the

guardian model . For certain kinds of erroneous specifications, the invalidity can be
V

discovered in attempting to apply the synthesis algorithm presented in Chapter 4. The

detection of other undesirable properties, namely deadlock and starvation, can take place

after the synthesis is performed , and this is the subject of Chapter 7.

A specification is written for an abstract data type, and is intended to apply

independently to every object of that type. The specification expresses a constraint on the

• ordering of accesses to the object , and represents the only such constraint. This means that

any ordering of events that is consistent with the specification is valid, and in particular

that procedure activations are allowed to execute in parallel unless constrained otherwise by

the speciiication.

- -~~~- ~~

V

-25 -

The distinctive elements of the specification language concern events and their

ordering in time. Time ordering between events is embodied in the “temporally precedes”

relation, which is denoted by the infix symbol “ =~
“
, and which is adapted from (Gre75].

This relation is a strict partial order, transitive and anti-symmetric. The parallelism in a

computation prevents the ordering from being total, but the set of events associated with

accesses of a particular abstract data object is assumed to be totally ordered, as ex plained

previously.

Each activation of a basic operation on a given abstract data object is identified by

the name of the procedure being called and the activation number. Procedure activations

are numbered uniquely for each data object according to the (total) ordering of the req uest

V events associated with the activat ions. The convention used here is that activation numbers

• are written as subscri pts to the procedure name. The sixth activation of procedure p (i.e.

V the activation associated with the sixth request for p) therefore is denoted “P6”
~

A particular event associated with an access is denoted by adjoining to the procedure

• activation formula the event type (request , enter , or ex it) as a superscript. For example, the

exit event associated with procedure activation P6 is denoted “p6’~~
’.

” Ever) event belongs

to an ev nt class , e.g. the p
ent .r event class consists of the events pet”, P2~

”
~ ’ etc. V

Activation numbers appearing in a specification can be any integer expressions, with

important special cases being integer constants and variables. Constant activation numbers
V

V can be used to refer to a specific event of a particular class, such as the first one in a

history. Variable activation numbers are more generally useful, though, since they allow

~~~~~~~~~~~~~~~~~~~~~~~~~~~

. V V.V V VV V:

~~~~~~ 

V VV V V V~~~~~~~~~~


~~~~IV I~~~~~~ V1TI ~~~~~~~~~~~~~~~~~~~~ :~~~~~~ IV~~~~~~~~~~~TTI ~~~~~~~~~~~~

- 26 -

reference to a general member of an event class. In the absence of explicit quantification.

activation number variables are ass umed to be universally quantified. This is a useful

• convention, permitting a specificatibn that refers to event p~”~”, for example, to represent a

constraint on the enter event of any activation of procedure p. The use of expressions as

activation numbers allows a specification to deal with related activations, such as p
~ 

and

• Pi,i~

It is possible, but not necessary, to include the arguments to procedure activations. If

not mcluded, they are assumed to be unimportant, and the specification applies to any

activation of the particular procedure. including the arguments to an activation can be

useful for constraining these arguments in some way, and thereby limiting the applicability

of the specification to those activations whose arguments meet the constraint. The identifier

of the process making the procedure activation can be used as one of the arguments of the

procedure , so that if the identity of the particular process is important, it can be included in

V •~ V this way.

The actual abstract data object on w hich the synchronization is being performed is not

included as an explicit argument to any of the procedures operating on it. In this respect, 
V

this kind of specification resembles the “state machine” specifications used by Parnas for

specif ying the behavior of the operations of an abstract data type (see [Par72], e.g.). It can

be assumed that operations are called by a mechanism such as the “dot” notation of Simula

• ([Dah72)), by which operation p on abstract object x with arguments a and b is called ~ia

the statement “ xV p(a ,b)” . A specification referring to operation p might list arguments a and

b ex plicitly, but no reference would be made to object x. The specification would implicitly

_ _ _ _  _ _ _ _



~~~~T~ TTIT :VTTT~__T~~’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

F, ’
- 27 -

apply independently to each object x of the given type.

V As an example of a specification expressed in this language, consider the following

ex pression, which also appears as example I in Section 2.7:

(P~
entev

~~
qffliI~) D (Piuht ~~~~~

q~•fl tSI)

V
This specification refers to two procedure activations ,

~~
(the i-th activation of procedure p)

and q
~

(the j-th activation of procedure q). Variables i and j appear free in the expression

and therefore are universally quantified, and since no constraints are placed on the

• arguments to the procedure activat ions, the specification in fact applies to any activations of

procedures p and q. The specification states that if the enter event for q
~

is preceded by the

enter event for p1. then it is also preceded by the exit event for the same activation of p.

That is, a curr ently executing activation of procedure p (on a given object) excludes a

subsequent activation of procedure q (on the same object) until the activation of p is

V completed. Notice, though, that concurrent activations of p and q are allowed, as long as

the activation of q begins (i.e. enterS) first.

2.5 Syntax of the language

This section presents the syntactic rules for well-formed specifications. The notions

identifie r and arithmetic exp ression are assumed to be basic. An arithmeti c exp ression is a

series of o~ie or more identifiers and/or integer Constants separated by the usual arithmetic

operations. The other notions are defined in terms of these two and each other. In each

rule the concept being defined a ppears in italics:

(I) A procedure name is an identifier.

(2) A term is an arithmetic expression.

• ~~ --~~~~~~~~~~~~~~~ •~~~~~~~- — ~~ V~~~V V~~~~~~~~ V~~~~~~~

-—-W V

T ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

-2 8-
.

V

(3) An activation number is a term.
(4) An activation name is a procedure name, subscripted with an activation

number.

(5) An activation expression is either an activation name, or an activation name

followed by a left parenthesis , followed by one or more terms separated by

commas , followed by a right parenthesis.
(6) An event type is one of the elements of the set (request , enter , exit} .

(7) An event expression is an activation expression superscripted with an event

-:
ty pe.

V (8) An ordering clause is an event expression followed by the symbol

followed by another event expression.

(9) An arithmetic relation is one of the elements of the set

Rel~~ {.. , � , c , > , � , �}
(10) An ar gument cons traint is a term followed by an arithmetic relation followed

by another term.
(II) A clause is either an ordering clause or an argument constraint.

(12) A specification is defined by:

(a) A clause is a specification.

(b) If S is a specification, then (—‘ S) is a specification.

(c) If S1 and S2 are specifications and op is an element of the set

then (S1 op S2) is a specification.
(d) If S is a specification and I is an identifier, then V i CS) and 3 i CS) are

specifications.

The “argument constraints ” defined in rule (10) may refer to the activation pumbers

and/or to the arguments to the activations (which are the “terms” in rule (5)). They may not

refer to the actual abstract data object in question, however, since it does not appear as an

explicit argument to any of the procedures. In fact , a general rule is that the arguments of

V-V
_

_ _ _

V
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V~~~~~~~~~~~~~~~~~~~~~~~~~~

-29 -

• procedure activations to which predicates may refer are limited to immutable objects. such

as integers. The interpretation of a relation on a mutable object would depend upon the

V point in time at which the relation is taken to apply, and might itself require 
• 

V

synchronization on the given object . Rather than becoming involved in questions such as

these , I choose to limit the predicates on activation arguments to immutable objects. This

restriction does not appear to be severe.

V V 2.6 Semantics of the language

V 
The definition of the language whose syntax has been formally defined in the

previous section can now be completed by means of a formal definition of its semantics.

The purpose of the language is to express synchronization properties, that is , to constrain

the order of accesses on an abstract data object. The semantics of the language therefore

can be defined by specif ying the collection of access histories that are valid with respec t to

any given specification in the language. This is accomplished by defining a predicate

Va lid(h , s), which decides for any history h and specification s whether h is a valid history

• w ith respect to the constraint expressed in s. First, however , it is necessary to define the

concept of a history, and to restrict the concept to histories that are physically possible.

The first step in this process is to define the notion of “event”. An event is a 5-tuple

<p. t. x , n, a>, suc h that: 
V

(I) p E P. the set of basic operations of all types.

• (2) t € ET, the set of event types, where ET — (request, enter, exit).
(P”  

~ c Ob. the set of all data objects in the system, and p is a basic operation for

the type of x . x is the data object on which the access is taking place.

- _



_ _ _  - V~~~~~~~:~~~~~~~~~~~~~~~~~~~~~~~~~~~ - j

-30 -

V 
(4) n € N , the set of positive integers. n represents the activation number.

(5) a is a vector (a1, ... , am], where each element a1 € Ob. a is the vector of

arguments to p.

The types of the objects a1, ... , am must match the types of the parameters to

operation p.

A partially ordered set of events forms a computation history, provided that the partial

order fulfills the condition that each object history is totally ordered. An object his tory for

data object z is a subset of a computation history, consisting of all events <p. t, x, fl a> in

the computation history such that x — i. All events in an object history are on the same

data object, so that the third component x of each event tuple can be eliminated, and each

element of an object history is simply a 4-tuple <p, t, n, a>. Throughout the rest of this

section, we will be concerned exclusively with object histories, though the simple term

“history” will be used.

Since the events in a history are totally ordered, the history may be considered to be a

sequence of events. A sequence over a domain D can be defined as either the empty

sequence [3 ,  or else the result of adding an element d € D to the end of a sequence s, which

is given by the expression “add(s, d)”. .

Not all histories are actually possible. In order to define what class of histories are

possible, some further definitions are required. An event class for a data type dt is a pair

<p, t> , w here p € P and t € ET, and p is a basic operation of data type dt. The set of

occurrences of an event class <p, t> in a history h is a set of pairs of the form .cn, a>, where

n is an activation number and a is a vector of arguments, such that an event of the form 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V _ V ~~~~V V V
~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-3 1 -

<p. t, n, a> occurs in history h. Formally, this is given by Occurrences(h, <p. t~), where:

Occurrences([ ), <p. t>) —

Occurrences(add(h , <P1 ~1. n, a>), <p. t>) —

V if (p — A t — t 1) then Occurrences(h, <p. t>) U {<n, a>)

else Occurrences(h, <p. t>)

With the aid of these definitions, we can now define when an history is possible. The

predicate Possible requires a request event to precede the corresponding enter event, which •

• in turn must precede the corresponding exit event. Also the ordering of request events for

a given proceduiVe must determine the numbering of invocations.

Possible([ ]) = TRUE 
V

V 

PossEble(add(h, <p, t, n, a>)) —

Possible(h) A

((t = request A Occurrences(h, <p, request>) {<i, a
~> I I ~ I < n)) V

(t enter A <n, a> € Occurrences(h, <p. request>)) V

(t = exit A ~n, a> c Occurrences(h, <p. enter>)))

A few more definitions are required before the validity of a possible history with

respect to a specification s can be defined. An event exp ression is a 4-tuple <p. t, exp, v>.

where p € P. t € ET, exp is an arithmetic expression, and v is a vector of arithmetic

ex pressions , possibly empty. (The concept of arithmetic expression can be defined formally

in the obvious manner.) Let the set of arithmetic relations Rd — (— , �, <, >, �, �) and the set

of logical binary operators Op — (A, v, D, ..}. Then the set of event ex pressions in a

specification s is given by Evexp(s), which is defined in the obvious manner:

L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~~~~~ 

V 

•~~~~~~ V V V~~~~~~~~~~~~~~~~~ V~~~~~~~~~~ V~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- ~V~~~ V ~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~ ~~~~~~~~ ~~~~~~~~~ 
V

_ _ _  _ _ _ _  - -

- 32 - V

Evex p(e1 =~e2) — ( e 1, e2 }

Evexp(exp1 rd exp2) — I I, for rd € Rd
Evexp(- s) = Evexp(s)
Evexp(s 1 op 

~~ 
- Eve~p(s1) U Evexp(s2), for op E Op

• Evex p(3 x (s)) — Evexp(s)

Evexp(V x (s)) — Evexp(s)

An interp retation is a mapping f from expressions to data objects that preserves the
V meaning of all constants and operations. That is:

(I) f maps every constant expression to the corresponding constant object,
e.g. f(I) — I.

(2) f is consistent with every operation,

e.g. f(exp1 + exp 2) — f (exp1) . f(exp2).
(3) f maps a vector of expressions into the corresponding vector of objects,

e.g. f(<exp1, ... , expm>) — <f(exp1), ... . f(exp~~)>.

- 

. 
An event e and an event expression ee match under an interpretation f if e and ee are

of the same event class, and f maps the activation number expression and parameter vector

expression (unless the latter is empty) of cc to the corresponding components of e. Formally,

Match(e, ee, 1) is defined as:

Match(.cp1, t1, n, a>, <P2~ 
t2, exp, v>, f) —

~PI = P2~ 
A (t1 — t 2) A (f(exp) - n) A (v — ( 3  V f(v) — a). V

The validity of a history with respect to a specification s can now be defined by a

predicate Valid . The definition of Valid recursively determines when a history is valid

with respect to a specification. For a history to be valid, the previous history consisting of V

all but the last event must first be valid. Furthermore the last event in the history must

___ ___ _  -~~~~ V --~~~~~~~~~-~~ —-~-



V V - V -~~~~~~~_~~~ Z - ._-

—3 3 -

satisfy the specif ication for all interpretations under which the event matches some event

ex pression in the specification.

Whether or not an event added onto a valid history satis fies a specification under an

interpretation is defined by another predicate Sat. The definition of Sat for a complicated

specification is basically j ust a matter of breaking down the structure of the specification. by

• removing each logical operator and applying it to the recursive applications of the

- V • definition, until one reac hes the level of a simple clause. Satisfaction of an argument

V constraint is determined solely by how the components of the clause are embodied by the

given inter pretation , not by the event in question. Whether an event satisfies an ordering

clause depends upon whether the event matches one of the event expressions in the clause

under the interpretation. If the event matches the first event expression under the given

interpretation, then it is necessary that no event matching the second event expression

occurs in the previous history. If the event matches the second event expression, though.

t hen some event matching the first event expression must occur in the history.

FOrmally, if h is a possible history and s is a specification, then h is valid with respect

to s if and only if Valid(h, s), where:

Valicl([ 3, s) — TRUE

Valid(add(h, e), s) = Valid(h, s) A

V (cc, 1) (ee € Evexp(s) A I is an interpretation

A Match(e, cc, f) D Sat(h, e, s, f))

The predicate Sat(h, e, s , f) determines whether event e added to history h satisfies

specification s under interpretation f. It is defined by the following equations, giving all

possible cases for specification 5: 
V



- -- V.. ~~~~~~ 
V.V.V_ -VV. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - ----4--’--.- ~~~~~~~~~ - •.~~~ . .

- 34 -

Sat(h, e, (<Pi. t1. exp1, v1> ~~~ 
<P2’ ~2, exp2, v2>). 1) —

(Match(e, <P1’ ~1. ex p1, v1>, I) ~
((v2 � ( 3  A <f(exp2), 1(v2)> ~ Occurrences(h, <P2~ 

t2>)) V

(v2 = ( 3  A V a (4(exp2), a> ~ Occurrences(h, <P2~ 
t2>)))))

A (Match(e, <P2’ t2~ exp2, V 2>, f) ~
((v 1 � [3 ~ <f(ex p1), f(v 1)> c Occurrences(h, <P2k t2>)) V

(v 1 = (]  A 3 a (<f(exp1). a> € Occurrences(h, <P1’ Cl>)))))

• Sat(h. e, exp1 rel ex p2, f) = (f(exp1) rd flexp2)), for rd € Rd

Sat(h, e, s, f) — —‘ Sat(h, e, 
~i’ 

f)

Sat(h, e, 
~i 

op s2, f) — Sat(h, e, s1, f) op Sat(h, e, 
~~ 

f), for op € °P
Sat(h, e, 3 1 (s), f) — 3 m Sat(h, e, s(mli) , f)

Sat(h, e, V i(s), 1) — V m Sat(h, e, s(mJi3, I)

The notation s[mli] in the last two equations represents the expression resulting from

substituting m for all free occurrences of i in s.

2.7 Examp les

This section presents a series of examples of the use of the problem specification

language. These examples have been chosen with two criteria in mind. First, together they

illustrate the range of features that the language offers. Second, they specify realistic and

representative, properties, covering a significant portion of the classic synchroniaation

• problems that appear In the literature.

Examp le 1: Exclusion

~~ q ’~”
) 

~ (PI”’ ~~ q~’~~’)

This specification has been discussed previously in Section 2.4. It states that an activation

of procedure p excludes a subsequent activation of procedure q until the activation of p is

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

_V~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~

- 35 -

completed. -

Example 2: Mutual exclusion

(pi~~
t qf’~

t
~

) v (qf~
t ~~ p1

Sflt sF)

This specification is similar to example I, except that it is symmetric between procedures p

and q. That is, an activation of either p or q excludes any concurrent activation of the

other. V

Ex am ple 3: Readers-writers property

((write
~”~ ~~ wr ite,~’~

t
~) D (write1°’”t ~~ writefnt~)) A

((write
~~’~ V’ readk ”t”) V (read~~

vt
~~ write~~

t
~

))

The so-called readers-writers property concerns two operations, “read” and “write”. It states

that activations of “read” exclude those of “write”, and that an activation of “write” excludes

all other activations of either operation. This has been re-shaped into an instance of

example~ (an activation of “write” excludes all other activations of “write”), and an instance

of example 2 (activations of “read” and “write” mutually exclude one another). By

combining this specification with an instance of example 4, giving one of the operations

priority over the other , or of example 5, requiring an equal-priority first-come-first-served

discipline, one can obtain any of the classic versions of the readers-writers problem (as

found, for example, in [Gre7S)).

Example 4: Priority

~~ q~IfltSI)
~ ~

p
~
•
~
1” ~~ q,1

Sfl111)

This specification gives priority to activations of procedure p over those of procedure q. It

L ~~~~~~~~~~~~~~~~~~~~~~~~~ V .. - -- .~~~~ ~~~~~~~~ - - ~~~ V .. . ~~~~ - •

-36 -

does this by requiring that so long as the activation of q has not yet entered, then any

activation of p that has been requested must enter first, regardless of whether the request

event for p came after the request event for the activation of q. This is an example of a

scheduling property making use of a request event.

Example 5: FCFS scheduling

(~1
request ~~~ q,

~re~ Usst
) .. (~~

1
Sflt er . q~SflISr)

This specification represents an alternative to giving either of a pair of operations priority

over the other. Instead it requires a strict first-come-f irst-served discipline between them, by

stating that whichever activation is requested first is the one to enter first.

Example 6: LCFS scheduling

~~ ~ reque st) A (~~ r.qUSSt
~~~ ~ 

efltCr) D (p enter 
~~~ pi~

ter)

Here another alternative scheduling policy, though probably a less likely one, is specified.

This “last -come-first-served ” property requires that of all the requested and pending

activations of a given operation p, the one most recently requested is allowed to enter.

Example 7: Operation pairing

(a1~
t ’ ~~ b,1

e
~

t
~) (ci

e
~

t
~ ~~ d~’~”)

This specification requires that whichever order occurs between the entry of an activation of

“a” and one of “b”, the same order must hold for the corresponding activations of “c” and

“d”, respectively. Illustrated is the use of the same activation number for activations of

different procedures, i for procedures “a” and “c”. and ,j for procedures “b” and “ci”. The

specification could be used for a data type In which operations a and b conflict, In the sense

- .~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV V - V~~~


~~~~~~~‘~ii: ~T~~~~: ~~~~~~~~~~~~~ T~T’~

- 37 -

of updating the sa me part of the object’s state, as do operations c and d. If operations a

and c, taken as a pair , update thç state consistently, and operations b and d do likewise,

then the constraint specified here might be necessary to prevent an inconsistent update. 
V

For example, in [Esw76), an example is given for which the operations have the

following meanings:

• a: x :— x+1O;

b: x :—

c: y := y+lO;

• d: y := y~’2;

If the predicate (x — y) is the criterion for consistency o the data object, then this would be

part of the specification required. (Other constraints also would be necessary.) 
V

Exa nip Ic 8: Producer-consu iner (single buffer)

(depi~~t 
~~ rem

~’~
”) A (rem1~~’ -

~ 
dep1~1~ ’~ )

The “producer -consumer ” problem is that producers and consumers must alternate in

depositing and removing messages, respectively, in a shared buffer. This means that each

deposit , represented here by an activation of procedure “dep”, must ‘ precede the

corres ponding removal , or activation of procedure “rem”. On the other hand, the removal

must take place before the next deposit can occur . This specification again illustrates the

use of the same activation number for activations of two different procedures. as well as the

use of an expression (“i.l”) as an activation number. Notice that this specification could be

rewritten so as to make the relationshi ps between activation numbers more explicit by

means of predicates on the activation numbers: 
-

- _ _

~~~~~~~~~~~~~~~~~~~

• - - V - V ~~~~~~~~

:
~~ ~~~

-38 -

(I — j) D (depi~
hi : remJ~

te
~) A (remf~’ ~~ depi.l~~

ter)

• This specification is exactly equivalent to the original; it makes no difference whether such

relationships are represented explicitly or implicitly.

Example 9: Bounded buffer

(dep~~
It : rem

~’~’~
) A (rem1

e
~

t
~~ depi.Ns

~
te
~) A

(dep,~
It .

~ dep1~1~ t r) A (rem1~ ” ~~ rem1~3~ ”)

•
V This example is a generalization of the previous one, in that the activation number of the

depdI
~
t
~ event has been changed from i.l to i.N. for some integer N. The specification is

for the same problem, except that the size of the buffer is now N. This means that up to N

messages can be deposited in the buffer before filling it, so that up to N successive “dep”

operations can be allowed before one has to wait for a “rem ” operation. The last two

clauses state that the individual “dep” activations must be mutually exclusive and execute in

first -come-first-served order, as must the individual “rem” activations.

Exam ple 10: Intervening activation
V

(pi~~
It ~, P~~~’) ~ (

~ k (pi1Kt ~, q~Sfl tC~ A q~ekit : p~entsr))

This specification represents a weaker property that is implied by the producer-consumer

• constraint of example 8. It requires that between any two activations of procedure “p there

must be an activation of procedure “q”. This shows the use of an existential quantifier in a

specification to require a particular kind of event to occur at a given point in the history.

Example II: Threshold of requests

V i ((k � i) A (i < keN) ~~ (~~~requeet
~~~

- - ~~~_ ~~~~~~~~~~~~~~ V-V .~~~, _ _
~ V • V ~~~~~~ . ~~~~~~ . _ •  • - V



_ _ _ _ _  _ _ _  _ _  -

This specification places a threshold of N request events for activations of procedure p

before the first one can execute . Since this applies to any value of k, the result is that

whenever an activation of proced(lre “p” is currently executing, there must be at least N

processes that are waiting on requests to execute “p”.

Example 12: Exclusion on a restricted class of accesses

(pi(a)~
t
~ : q~(a)~ t1T) 

~ (p1(a)~ ” ~~ q~(a)~
te

~)
• 

This specification is identical to example I, except that a parameter has been given to each

of the two procedure activations. By providing the same identifier as the argument to both

activations , this specification conveys the information that the arguments to the two

procedure activations are equal. Therefore the exclusion constraint expressed by this

V specification is restricted to activations with equal parameters.

Example 13: Predicate locks

C(a ,b) A (pi(a)~
t
~ ~~~ q~(b)~~

te
~) D (p1(a)~

it 
~~ qj(b)~

t
~ )

This specification again represents a restriction of the exclusion constraint of example I.

Here, though, the restriction is represented by a general predicates C on the parameters to

activations p1 and q
~• This suggests how a simple version of the concept of “predicate locks”

might be specified. A specification of this form can be used to state the synchronization

constraint, as long as the predicate C for which exclusion is required is known ahead of

time. 



~~~~~~
V - —

~~~
-

~
- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 

_ _  - ~—-V- V
- V~~~~: • V V ~~~~~~~~~~~~~~~~~~~~ __:. V V ~~~~

F . 

V

-40 -

V 

For examp le, suppose. that the abstract data object on which procedures “p and “q”

operate is a hierarchically organized database. The database consists of a collection of files,

each of which in turn consists of a collection of records. The predicate C might express the

relation that records a and b are elements of the same file. Therefore, procedure “p” would

exclude procedure “q” only when they were operating on records in the same file.

The general notion of “predicate locks” was introduced in [Esw76). The more

complicated versions . of the concept discussed there would require more complex

specifications.

Example 14: Disk head scheduling

((a2~
t r  

~~ af~’) D (a1~
1t 

~~ af ~t1r)) A 
• 

-

((a~(x2)~~~’~
t 

~~ 
aJ~(xl)~ ’ ~~ ai(x2)~~

tev) A

(a
~
(x3)r

~

L

~

e5t ,
~ a~(xI)e~

1 a~(x3)~”) A

(am(xO)dhlt 
~~ a~(xl)e~ )) A

V 
—, 3(n) ((am(x0)~ ’~ a~

U
~ ~~ ak(xfl”)) A

((xO <x l <x2 A (x2 c x3 v x3 < xl)) v

(xO > xI >x2 A (x2 > x3 v x3 > xl)))
V D (a1(x2)d1~

t
~ ~~

The final exam ple is the “disk head scheduler” problem , which appears in tHoa743, amon g

other places. The problem is to schedule disk accesses so as to minimize average waiting

time. The way this is done is to have the disk head sweep in one direction, accessing each

track it encounters for which an access has been requested, until no more requested tracks

remain iii the direction in which it is sweeping. The head then reverses direction and



- - T7~~~~~~~~~~~~~~~~~~~~~~ i~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~-~ ~~~~~~~~~~~~~~~~~~~~~~~~~

-4 1 - 
V 

V

sweeps back , again accessing requested tracks as it encounters them. The essential idea is

that at any given point , the next track to be accessed is the one closest to the currently

accessed track in the direction currently being swept.

The specification for this problem concerns four activations of an access procedure “a”

on a disk , with the parameter (xO, x l , x2, or x3) representing the number of the track being

accessed . The constraint expressed is that of the two activations (ai and a~) requested

during the time that another activation (ak) is executing, the activation allowed to execute

first is the one accessing the track nearest to the track currently being accessed (track xl) in

the direction currently being swept. The direction is indicated by the inequality between xO,

the track that most recently accessed , and xl. Track x2 is accessed before track x3 either

because it is closer to track xl (either xl < ,c2 < x3 or xl > x2 > x3), or else because it is in the
V rig ht direction arid x3 is not (x3 < xl <x2 or x3 > xl > x2).

r 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • •~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . • ~~~~~~~~~~~~~~~ . . •~~~~•. •• 


- 42 -

Chapter 3

The Solution Specification

3.1 Introduction

There is a vast conceptual distance separating, on the one hand, a problem

specification written in the language described in Chapter 2, and on the other, the

V
V synchronization code that implements the specification. This is because the specification is

- a non-procedura l, requirements-oriented expression of what should happen with no

indication of the means by which this behavior should be realized. Determination of the

procedura l mechanism, that is how to accomplish the desired constraint on the time order of

accesses , re quires a fundamental transformation in concepts. Once this determination has
‘

been made, there are still a number of details that need to be worked out, but the remaining
-

• work is basically that of the back end of a compiler, translating from an intermediate

• language into actual code (though the target code in this case is still in a high-level

language, not machine language).

I have chosen to split the derivation process into two stages. The first stage is the

transformation from procedural to nonprocedural form. It can be described without

reference to the exact details of particular source language constructs. The second stage

constructs an actual implementation. The intermediate form into which the problem

specification is transformed by the first stage is called the solution speci fication. This

chapter presents an informal description of solution specifications, followed by a formal

definition of their semantics. The method for transforming a problem specification into an

V V _i V V ~~VV_ V ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V’_ V __ _ _)_•_____

~~~~~~~~~~~~~~ - ~~~~~~~~~~ -_ - - - - ____

I
-43 -

equivalent solution specification is the subject of Chapter 4. The translation of the solution

specification into synchronization code is treated in Chapter 5.

Section 3.2 presents the “basic ” structure of the solution specification. which is only a

first approximation to the actual structure. The basic structure described is quite simple

and elegant , and in fact the solutions to many synchronization problems can be expressed

within it. Unfortunately, this simple structure lacks sufficient expressive power for certain

important classes of problems. For this reason, it is necessary to augment the basic structure

V with additional features, which are described in Section 3.3. The formal semantic definition

of the solution specification appears in Section 3.4.

3.2 The basic solution specification str ucture

The structure of the solution specification, as of the problem specification, is dictated
V 

to some extent by the guardian synchronization model. That is, the solution specification

must contain features corresponding to those events associated with procedure activations

that the guardian model distinguishes. Beyond this, there is some choice as to how rigid a

structure to impose on the solution specification. ‘ Since the solution specification is an

intermediate form between the problem specification and the generated code, the degree of

flexibility represents to some extent where it lies on the spectrum between these two

structures . A very general solution specification structure, corresponding to the generality of

the problem specification language, would represent a decision that the solution specification

be relatively close to the problem specification. The price paid for this generality would lie

in the difficulty of translating such a solution specification into target code.

_ _ - _ •-  V - V~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ -V - - V V -V V V V~~J



V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -
V

-
,

The alternative choice made here is for the solution specification to have a rather

rigid structure. This means that , as indicated in the introduction to this chapter. the
V fundamental transformat ion ta kes place in deriving the solution specification from the

problem specification. V

The basic structure of the solution specification is for each guardian to consist of a

collection of gates through which processes accessing the abstract data object must pass.

The use of the term “gate” is takeu from ERob 75), though the concept as used in this thesis

differs
V
somewhat fr om the one introduced there. Specifically, the guardian for an object of

abstract data type t cont3ins a gate for each event class of t. This means that for each

operation p of the abstraction, there are gates p’~~~’, p~ ’’, and p~~
t. Each event

associated with an object corresponds to the passage through a gate in its guardian. For a

process to access the data object by activating procedure p. the process first must pass
V through the p’~ ’~~ gate, then through the p’~~’ gate. At this point it executes the body of

-
• procedure p. after which it must pass through the p’~

’t gate.

Each passage through a gate by a process produces a (conceptually instantaneous)

change in the state of
V
t hC guardian. Because of the total ordering on the events associated

with an object , the gate passages for a particular guardian are totally ordered . The

ordering of processes passing through any single gate is first -come-first-served . This means

that unless a specification explicitly requires a particular scheduling policy for activations of

a given operation, the default policy assumed is fi rst-come-first-served. The order of service

among different gates of a guardian is assumed to be fair, in the sense that processes at

different gates have equal chances of being chosen for service. That is, a requirement in

V
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 45 -

the Amplenwntation is that a process cannot starve because of lack of attention from the

scheduling mechanism.

V 

- Gates for request and exit event classes are unconditional, so that processes cannot be

blocked in passing through these gates. A gate for an enter event class is conditional,

however . Associated with each enter gate there is some condition on the guardian state.

This condition must be satisfied in order for the process making the activation to pass

through the gate . If a process attempts to pass through an enter gate whose condition is

not satisf ied, then the process is blocked, and must wait until the condition becomes true

before proceeding through the gate.

Schematicall y, then, an activation of operationS 
p on a data object is implemented by

the abstract program below. Since gate passages represent events, which are totally ordered.
V the abstract code representing each gate can be considered an indivisible operation.

p
re~ U•st

: update guardian state

p’~”: wait until entry condition is satisfied,

then update guardian state
execute body of operation p

p•flt: update guardian state

It would appear that to represent a given solution specification, it would be necessar y to

- r specify for each operation p the specific entry condition on gate p”~’. and the particular

updates to the guardian state accomplished in each of the three gates. In fact, the form

chosen for the synchronization state of a data object defines a priori the nature of the

updates within all gates.

_ _ _ _ _ _ _ _  _ _ _ _  _ _ _  _ _ _ _ _  V _ _ _ _ _



- 46 -

The history of a data object, and of the guardian for the object, Consists of the totally

ordered sequence of events associated with all accesses of the object in the entire

computation. The state of the object represents some abstraction from the history that is

sufficient for predicting its future behavior. An alternative way of saying this is the

definition in [Gre75) that a state is an abbreviation for a class of histories. The

syn chr onizat ion state of the object is the synchronization component of the state, which is

sufficient for the prediction of its future synchronization behavior.

The decision made here is to ex press the synchronization state of an object as the

number of events that have occurred at each gate of its guardian. The notation used is

- that count(g) denotes the number of events at gate g. So cou ,It(p~~~
? 8 t ) is the number of

V activations of procedure p that have been requested , whether or not those requests have

been granted; count(p~ t ’ )  is the number of activations of p that have entered, whether or 
V

V not they have exited ; and couii t( p~~
t ) is the number that have exited .

This decision has a number of ramifications. The implications for the expressive

power of the solution specification are discussed in the next section. The decision to use

counts forms the basis for the method of deriving a solution specification from a problem

specification , as will be apparent in the description of the derivation algorithm in Cha pter

4. With respect to the basic structure of the solution specif ication, it means that in the

schematic abstract program representing an activation of operation p, each update to the

guardian state now can be defined to be simply incrementing the proper count. The

abstract program therefore becomes:

- —-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 47 -

p’’~
”5t: increment count(p”~’’) by I

p ”’: wait until entry condition is satisfied, V

then increment COunt(p~~
t ’ )  by I

execute body of operation p

p X
~
t : increment count(p”’t) by I

That is, the update to the synchronization state within each gate consists simply of

incrementing the count of events at that gate by I. (The quantity count(g) is similar to, and

in fact can be implemented by, the eventcount ” notion introduced in (Ree77]). 
V

This means that the representation of a particular solution specification can consist

simply of the entry condition on gate p~~ r, for each operation p of the abstract type. Each

entry condition on the synchronization state must take the form of a predicate on the counts

of gates. The other (non-enter) gates in the solution specification are indicated implicitly by

the a ppearance of quantities of the form count(g) within the entry conditions.

For example, consider an abstraction with one operation “op~. Suppose that the

synchronization constraint for this abstraction requires activations of op to be mutually

exclusive, that is, at most one activation is allowed to be executing at a time. Then the

solution specification for the abstraction can be ex pressed by stating the condition for gate

0p~flt~ to be

count(op ’~ ’) — count(op~ ”).

This is a shorthand way of saying that the abstract program for accessing an abstract data

object via operation op is:

_  V V~~~~~~~~~~~~~~~~~~~~~~~~~~ - V~~~~~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ V 
V V V ~~~~~~~~



- 18 -
V 

op re~uPst: increment count(opn1~~ t ) by I

V 
op~

t F  wait until couIlt(op~ t1r) = couiit(op’~’t),

then increment count(op l%t r) by I V

execute body of operation op

op Mt : increment count(op xIt ) by 1

• As a second example, consider an abstraction with two operations f and g. Assume

that an activation of operation I’ is allowed to begin execution only if no activations of g

have been requested and are waiting. Also, let an activation of g be able to enter only if

exactly one activation of f is actively being executed. Then the solution specification for

V 

this abstraction consists of the two entry conditions:

For gate f~ ’’: couiit(gre
~~

Si) = count(g~ t”)

For gate gents r
: count(feI

~tsr) - count(f xIt ) — I

In other words, the following are the abstract programs for activations of f and g:

Abstract program for f:
fr.qusst . increment ~~~~~~~~~~~ by I
fPflII? : wait until count(g~~t~$t ) count(g ”t”),

then increment count(f”t”) by I V

execute body of operation f
V rKht : increment count(f’~ ) by I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —---~~~ - -~~~~~~~~~-~~~~~~-


r~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-49 -

Abstract program for g:

g
re~Ues t: increment count(gT~~~t) by I

g
enteF : wait until Coiiiit(f’~1’) - count(r~ ) — I,

then increment count(g ’t ’) by I

execute body of operation g

g
OXIt

: increment couut(g~ ’t) by I

3.3 Additional features of the solution specification

V 
As indicated in the introduction to this chapter, the basic structure presented thus far

for the solution specification lacks sufficient power for expressing solutions to a wide class of

synchronization problems. Two new features must be added to this basic structure in order

to achieve the required expressive power. These additional features, which are the subject

of this section, provide the ability to save and use previous state information, and the

ability to use properties of parameters to operation activations. The first to be discussed is

the use of previous state information.

In the previous section, the synchronization state was defined as some abstraction from

the history of a data object containing sufficient information for the prediction of the future

synchronization behavior of the object. Unfortunately, the counts of all event classes do not

provide sufficient information. Sometimes it is necessary to know not only how many events

of each class have taken place previously, but In what order certain of these events occurred.

r=V.. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V~~~V V ~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~ V -V

—‘--V.--
~~

VV
-•

V_ ~ ~~ -~
— - — - - _ .

,- -7.•
-

-50 -

Thei•e are a number of advantages to using integer-valued counts to represent the

synchronization state. As illustrated in the previous section, it makes the abstract state

update within each gate of the guardian particularl y simple. As a result, the actual

implementation of a solution specification in terms of a source language synchronization

mechanism, which is the subject of Chapter 5, can be both simple and efficient. This

efficiency is important in ensuring that the synchronization code itself does not significantly V
affect the concurrency of the computation . The use of counts is also important in terms of

the algorithm presented in Chapter 4 for deriving a solution specification from a problem

specification. For these reasons, it is desirable to remedy the lack of expressive power in a

way that does not sacrifice the advantages of using counts of events as the basic form of the

synchronization state.

The way to accomplish this is to add to the basic solution specification structure the

ability to save the synchronization state at the time of an event. The state of the guardian

then includes not only the current synchronization state, but also each previous state that

has been saved . Conditions on enter gates can be expressed in terms of both the current

synchronization state and any information saved from previous states. All the information

that is lost by abstracting from the complete sequence of events within the history to the

counts of event classes can be regained by using the state at the time of prior events as well

as the current state. Basically the reason for this is that when it is necessary to know

whether some particular event e1 has preceded some other event e2 in the preceding V

sub-history, this information can be obtained by comparing information in the states When V

and e2 occurred with the current state and/or each other. In Chapter 4 it is explained

~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V _ V V V — -  — 



7
•

V 

-51 - 
V 

I

how previous state information is derived to express properties for which the current state

is insufficient.

A notational extension is needed to represent previous state information. Unless

indicated otherwise, quantities appearing in a condition represent current state values.

When a quantity is meant to represent a value in the state at some previous event, the

notation “a g” appended to the quantity is employed, where g is the name of some gate.

This means that the quantity refers to the state saved just prior to the most recent event

occurring at gate g. For example, the number of activations of p that had been requested at

the point at which the most recent exit event for procedure q has occurred is denoted

(couint(p~e~t/~ t) a q~
’tJ. Notice that since the state is saved just before the indicated event, a

quantity such as [coun1(q~ ’t) ~ q
CX~t] does not include the q~ It event actually occurring at the

point at which the state is saved. 
V

V 
As an example of a solution specification that uses previous state information, consider

an abstraction with two operations u and v. Suppose that it is desired not only that

activations of operation u be mutually exclusive, but that between any two successive

activations of ti , an enter event for operation v must occur. This can be expressed by the

condition

V 
couiit (u ’~”) — count(ue*it ) A [count(v~

te
~) • u

Hhuj < count(v t
~t r)

for gate u’~”. The second conjunct of the condition says that count(v~ t r )  must increase

between the exit event for the most recent activation of u and the time the next activation

of ti is allowed ~o enter. The corresponding abstract program for an activation of u iS: 
V



j

- 52 - V

V ~~~~~~~ increment couiit(u ~~8t) by I

wait until count(u~’~’) = count(u~
It) A

[count(v~ t r )  • u~~’) < count(v~ t”),

then increment count(u~ t r )  by I 
V

execute body of operation u
(liXit

: save the guardian state , iii particular the quantity count(v’~~’),

and increment count(u~~
t) by I

Each event at gate ~~~ uses the value of count(v ”t ’) saved at the most recent u’~
’t event

in its entry condition. V

As befor e, a solution specification is represented simply by the entry conditions that

apply to all enter gates in the guardian. The state information that must be saved is not

listed explicitl y. Instead it is indicated implicitly by the appearance of quantities of the form

[count(ec) a g). where ec is an event class and g is a gate, within entry conditions.

There is another aspect of information that is lost by abstracting from the history of

an object to simply the count of events in each event class. The history is a sequence of

events , each of which is described not only by its event class , which is to say the operation

name and event type , but also by the vector of parameters passed to the operation. All

information concerning the values of these parameters is lost when considering only the

counts of event classes. For instance, it may be necessa ry for activations of an operation to

be mutually exclusive only if an integer parameter of each activation is non-negative. Such

a property can be expressed in the problem specification language of Chapter 2, but not in —

V 
a solution specification with the structure presented thus far.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


_ _ _

V

VI

V

V
-53 -

The solution is to “qualif y” gates in the solution specification. A gate is qualified by

the attachment of some predicate on the parameters of the associated procedure activation.

Only if the parameters of an activation satisfy the predicate does the process making the

activation pass through that gate. An unqualified gate, which applies to all activations of

the given procedure, may be considered to be simply’ a special case of a qualified gate, with

a qualifying predicate that is identically TRUE for all parameter values.

V
Some new notation is needed in order to refer to gates. An unqualified gate, as before,

is indicated simply by the event class it is in, such as the ~.M. gate. A qualified gate is
V

denoted by appending the qualifying predicate to the procedure activation expression. The

notation used is similar to that employed in set theory, with a vertical bar used to separate

the predicate from the activation ex pression. Therefore, [p(v) I C(v)rnt.r denotes a gate in

the ~~~~ event class that is qualified by the predicate C on the vector of parameters v to

procedure p.

As an example, consider the following situation. Let an abstraction have one

operation h, taking a single integer parameter x. Let all activations of h with non-negative

parameter values be mutually exclusive. Then the solution specification contains the

condition

V count([h(x) I (x ~ 0)]mnt r) — count((h(x) I (x > 0)]”)

for gate Ih(x) I (x � 0)]’nt r. This means that the gates for both the h’~” and h ” event

classes are qualified with the predicate (x > 0), and that any activation of Ii whose

pa rameter does not satisf y this predicate need not pass through these gates. That is, the

abstract program for an activation of h with parameter x is:

V ~~~~~


~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ V • ~ ~~~~~~~~~~~~~~~~~~ V V~~~~:
V ~~~ - VV

-54 -

V 

increment ~~~~~~~~~~~~~ by I

h’~”: if x 2 0 then
wait until coiint((h(x) I (x 2 0)]’””) — count([h(x) I (x 2 0)]SX~t),

and then increment coiint([h(x) I (x 2 o)rtsr) by I

execute body of operation h with parameter x

if x 2 0 then 
V

V increment count([h(x) I (x 2 0)]”) by I

Since gate hIe~
J st  is not qualified, all activations must pass through it, regardless of their 

V

parameters .

Allowing only one qualifying predicate for an event class would be overly restrictive.

It may be necessary to maintain counts of several different subsets of events in an event

class , where each subset is distinguished by a different predicate on the operation

paiVamete rs. These subsets may either be disjoint or overla p. Also, different entry

conditions may be required for different subsets of the total set of activations of an

operation, and again these subsets may be disjoint or overla p. It is therefore necessary to

generalize the above structure by allowing more than one gate for each event class . Each

gate in an event class is distinguished by a different qualifying predicate, and each gate of

an enter class may have a different entry condition as well. When there is more than one

gate for an event class , a process passes through exactly that set of gates whose qualifying

predicates are satisfied by the parameters of the activation it is making. These gate

passages ar assumed to all occur in parallel. It is this simultaneous passage through a

subset of ~he gates in an event class that implements the abstract notion of an event. 

-‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _



~V_ ~~~~~~ Ti.,~~ _ V~~ V VV~~_. -~~ — ~~~~~~~~~~~ —
- - _ _-  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-55 -

The implementation of each event class by a whole set of gates is a fundamental

change in the structure of the solution specification. It is perhaps best understood by

looking at the new abstract program for an activation of operation p with parameter vector

V:

p
re~ Uest : in parallel for all gates g in event class p’~~~’.

if v satisfies the qualifying predicate of g,

then increment couut(g) by 1

p
eflt sr : in parallel for all gates g in event class p’”

if v satisfies the qualifying predicate of g,

V 
then wait until the entry condition of g is satisfied,

arid then increment count(g) by 1

execute body of operation 
~ 

V

p
Ult : in parallel for all gates g in event class p”. 

V

if v satisfies the qualifying predicate of g.

then increment count(p”t) by I

Since the events in an object history are totally ordered, each event must be an

indivisible operation. This means that all gate passages making up an event occur, at least

in a conceptual sense, in parallel and simultaneously. In particular, it means that a process

may not pass through an cuter gate unless it can pass through all of the enter gates for the

given event class whose qualifying predicates are satisfied by its parameters. Only when all

the entry conditions on these gates are satisfied may the enter event, in the form of the

parallel passage through all these gates, take place.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V—.V. - - ~~~~~~~~~~~~~~~~~ - - V


V : V ~~~~~~~~~~~~~~~~ - -

~~~~~~~~~~~~~~~ I

V -56 -

As before, the processes that are blocked at a given enter event class are queued up in

FIFO order. However, they need not be unblocked in this same order. Each process in the

queue is waiting on one or more conditions, depending upon which qualifying predicates on

gates apply to the activation. The process that proceeds first is the one closest to the front

of the queue for which all entry conditions are satisfied. This may not be the one at the

head of the queue, since that process may be waiting at a different set of gates than other

V processes further back in the queue.

It is important that the distinction between qualifying predicates and conditions on

gates be clear . A qualifying predicate can be attached to a gate of any event class, and

represents a constraint on the parameters of the associated procedure activation. if the

predicate is satisfied for a particular activation , then the process making the activation

passes through the gate, while if it is not satisfied , the process bypasses the gate. A

condition, on the other hand, applies only to an enter gate. This condition is on

synchronization states , the current state and perhaps also one or more previous states. If the

condition is true, then the process may pass through the gate. If it is not, then the process

becomes blocked , and must wait in a queue for the condition to be true.

As an example of a solution specification employing multiple gates, consider the

abstraction discussed above with one operation h. Assume now, though, that h takes two

integer parameters x and y. As before, activations of h for which parameter x is

non-negative must be mutuall y exclusive . In addition, though, we want activations ’for

which para meter y — 5 to be excluded whenever there is an activation currently executing

for which y > x. The solution specification for this example consists of the following two 



~ 1Z ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V~~~~~~~~~~~~~~~~~~~ V 

~T iii~~:~~: 1 T I ~~~~

- 57 -

V conditions:
V 

For gate Eh(x ,y) I (x 2 0)]”~”:

couut([h(x,y) (x 2 0)]’~”) — count([h(x ,y) I (x 2 0)]”)

For gate (h(x ,y) I (y = 5))’~”:

cou nt ((h( x,y) I (y > x)]”~”) — count((h(x,y) I (y > x)Txit )

These conditions require two gates with entry conditions for event class h’~”, with

qualifying predicates (x 2 0) and (y - 5). There must be gates in both the h”~” and h~~
t

V event classes to maintain counts for the qualifying predicates (x 2 0) and (y > x). The

abstract program for an activation of h with parameters x and y consists of:

- A 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~



-58 -

~roquest . increment ~~~~~~~~~~~~ by I

h”~”: in parallel. 
V

if (x > 0), wait until

V 

couiit((h(x ,y) I (x > O)]’~”) — count((h(x,y) I (x 2 0)]”~)

and if (y — 5), wait until

count (th(x ,y) I (y > x)3’~”) — count((h(x,y) I (y > x)]”t),

and then in parallel,

if (x � 0),

increment count((h(x,y) I (x 2 0)]”””) by I

and if (y > x),

increment count(lh(x,y) I (y > x)]”~”) by 1

execute body of operation h
V 

h x ~
t : in parallel,

if (x � 0), -

increment couut([h(x,y) I (x 2 0)] k~t) by I

and if (y > x), 
V

increment count([h(x,y) I (y > x)]”) by I

That is . if both qualifying predicates (x 2 0) and (y 5) are satisfied for an activation, then

both entry conditions must be simultaneously satisfied before its enter event. If only one

qualifying predicate is satisfied, then only the entry condition corresponding to that

qualified gate must be true. If neither predicate is satisfied, then the enter event can occur

without delay. In any of these casçs , count((h(x.y) I (y > x)]’~”) is incremented if and only

if (y > x).

j  — - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .~~~~~~~~-~~~--—--- ~~-



F ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r
-V - -  - 

V~~~~~~~~~

- 

-59 - V

3.4 Semantics of t h e  solution specification

Thus far , the discussion in this chapter has relied on an informal, intuitive idea of the

ilwaning of the solution specification. This section presents the formal definition of the V

semantics of solution specifications. As was the case for the problem specification language,

whose formal definition was presented in Section 2.6, the semantics of the solution

specification structure are defined by specifying which histories are valid with respect to any

particular solution specification.

A qual if ication is a predicate on a vector of parameters. The domain of qualifications

is denoted Q~ One particular element of Q~is the predicate that always returns TRUE. By

considering this special predicate to be the qualification associated with what until now has

been called an “wnqualified” gate, we are able to consider all gates to be qualified. So, a

g ue is a pair <ec. q>, whose first component ec is an event class and whose second

component q is a qualification.
.

A state is a function from gates to non-negative integers. A state maps each gate into

the count cf the number of passages through it. A condition is a predicate on a set of states.

If the coiidition refers only to the current state, then the argument to the condition is a

singleton set containing only the current state. When a condition refers to previous states as

well, each of these states must a lso be in the set.



~~~~~~~~~~~V

V V V
~~~~~~TTJT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- V

V 

-60 -

A solution specificatton consists of a set of gates, and a condition on each one of these

gates. (It is simplest to take the view that a solution specification assigns each request and

exit gate, and every enter gate not explicitly given an entry condition, the condition that is

identically TRU E.) The set of gates in solution specification ss is given by the expression

Gaces(ss) . For every gate g E Gates(ss) , the condition assigned to g in ss is given by

Cond(ss, g). The set of previous states that the condition on gate g in solution specification

ss refers to is given by PrevStates(ss , g).

A history is valid with respect to a solution specification if. for each event in the

history, every solution specification condition that applies to the event is satisfied at the

point in the history at which the event occurs. (Actually, only enter events have non-trivial

conditions, but for the sake of uniformity, it is easier to define the concept in terms of all

events in the history.) To define t’~iis formally, it is necessary to have functions that map

histories into states , iVe. into functions from gates into counts. The function CurSt maps an

object history, the sequence of events associated with a given object, into the current State of

that object. Recall that an object history is either the empty sequence I 1, or else is obtained

by adding an event onto some other history . An event is represented by a four-tuple of the

form <p, t , n, a>, where p is the operation name, t is the event ty pe. n is the activation

number, and a is the vector of arguments. The definition of CurSt is:

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~V _



~

- 61 -

Cu rSt(( 3) - A (ec, q). 0

CwSt(add(h, <p, t, n, a~) — A (ec, q). (if <p. t> — ec A q(a)

then (CurSt(hXec, q) • I)

else CurSt(hXec, q))

The notation used here is taken from A-calculus. The formula “A (x, y). F” represents the

function of arguments x and y whose body is given by F. V

The function MosRecSt (Most Recent State) maps an object history and a gate into the

state of an object at the time of the most recent event at that gate:

MosRecSt(( ], <ec, q>) — A (ec, q). 0

MosRecSt(add(h, <p. t, n, a .), <ec, q>) — if <p. t> — ec A q(a)

then CurSt(h)

else MosRecSt(h, <ec, q>)

The current state after history h becomes the most recent state for any gate that applies to

the event added onto h.

It is now possible to formally define the validity of a history h with respect to a

solution specification ss . This is given by ValidSS(h, ss), where:

ValidSS(( 3, ss) — TRUE

ValidSS(add(h, <p. t, n, a>), ss) — ValidSS(h, ss) n

V (ec, q) (cec, q> E Gates(ss) A ec — <p, I> A q(a)

D SatSS(h, ss, ccc, q>)

SatSS(h, ss, ccc, p), defined below, is a predicate that determines whether the state

V 
represented by history ii satisfies the condition in solution specification U for gate ccc, q>.

L~.  
_ _ _ _ _  _ _  _ _  _

-

~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---—-~~~ V . ~V ~~~~~~~~ V . 

_ _ _ _

V
V

VV V •

.
I

- 62 -

Therefore , the definition of ValidSS simply states that a history is valid with respect to a

solution specification if it was valid before the last event occurred, and if the history
V

satisfies the conditions for all gates that apply to the last event .

The p1~edicate SatSS is easy to define. A history satis fies a condition simply if the

current state p1 15 (lie relevant most recent states of the history satisfy the condition. Recall

V that the condition on gate g in solution specification ss is given by Cond(ss, g). and that this

condition is simply a predicate on a set of states. Formally, then,

SatSS(h , ss, g) = C(States),

where C — Cond(ss, g)

and States — (CurSt(h)} U (MosRecSt(h , g’) I g’ € PrevStates(ss. gfl

The subject of the next chapter is the method for deriving an equivalent solution

specification from a problem specification. Section 4.6 justifies the method presented. This V

justif ication relies on both the formal definition of the problem specification language given

V in Section 2.6. and the formal definition of the solution specification in this section.
V

V

LI

V VV . . _ V_ VV V _~V_ V ~~~~~~~~~~~~~~~~~~~~~~~~ V~~ __VV~~ V__~V~ VV~~~~~~~~~V_ .V~ VVV ~~ VV ~~~~~~~~~~~~~~~ V _ V V ~VV~ VVVVV V V V V VV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~V VV VVVVVV V VVV~~~~_ V_ VV V VVVVVVVVV ~VVVV_~il~Vlll ~~

___ T~~~~~~~~i~ i ~~~~~~~~~~ ~~~~~~~~~

-63 -

Chapter 4

Derivation of the Solution Specification

4.1 Introduction
.

V

The subject of this chapter is the algorithm for analyzing a problem specification and

- deriving from it an equivalent solution specification. There are two aspects to the

V construction of a solution specification. identifying the gates required in the solution

specification is relatively straightforward. This simply involves identifying the event classes

appearing in the problem specification. For qualified gates to be identified correctly,

however , this must be done after all argument constraints have been incorporated into the

order ing clauses of the specification, as ex plained in Section 4.5. V

Constructing appropriate conditions to attach to the gates associated with enter event

classes is the formidable task. The algorithm for constructing these entry conditions is the

subject of this chapter . As explained in Chapter 3, the set of conditions on all enter gates is

sufficient to represent the complete solution specification. The other gates in the solution

specification and the saving of previous state information are indicated implicitly by the

quantities appearing in the entr y conditions.

In constructing a condition for an enter gate, the basic strategy employed is to

determine, in terms of the synchronization state , what distinguishes points in a computation

at which an event at that gate should or should not occur. “Should occur” here can be

interpreted formally as satisfying the predicate Sat , which was defined in Chapter 2, relative

~~~~~~~~~
J .V .V~~~~~~~~~~~~~~~~ V~~~~V -~~~~--~~~~~~~~

--
~~~~- —- -~~~~- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


r I -

-6 1 -
V

-

to the given specification . In making this determination, it is necessary to consider all

relevant subsequences of histories, specifically those subsequences containing the events

rnentioi,ed explicitly in the specification. Each of these subsequences, or “orderings”, can be

classified as either valid or invalid with respect to the specification. At each point in an

ordering at which an event occurs at the gate in question, it is possible to characterize the V 1
synchronization state . These individual characterizations can then be combined

approj~riately, based on the validity of the orderings, to form an overall condition for the
V

gate.

V The paragraph above summarizes the main phase of the derivation algorithm. The
V result of this phase, which is presented fully in Section 4.2, is the derivation for each gate of

a “preliminary condition”. For cases where the correct condition for a gate can be expressed

solely in terms of the current state , the preliminary condition is correct. When this is not so,

the preliminary condition can be refined by iterating over another phase of the algorithm.

This phase, which is presented in Section 4.3, uses information saved at previous states in

the orderings as well as the current state. Section 4.4 contains an example of applying the

algorithm of Sections 4.2 and 4.3. The one other aspect of the algorithm is some initial
V

processing designed to make the specification suitable for analysis. Section 4.5 describes this

processing, in which argument constraints are incorporated into the specification so that the

transformed specification Consists entirely of ordering clauses. The algorithm is summarized

in its entirety in Section 4.6, and there a justification is presented for why it works. The last V

section of this chapter, Section 4.7, discusses the class of specifications for which the

algorithm fails.

V ~~ ~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~VV

-

~~~~~~~~~~~~ 

— ~~~~~~~~ 

~iI TV i ~~~~T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

V • V 
V

- 65 - 
. 

-

An important feature of the a pproach to be presented is a property that I call

ex tensibilit y . This means that the algorithm can be applied to each conjunct in a problem

specification individually. If the specification s is of the form V

V 51 A 5 2 A ... A S m.

then for each conjunct s~ of the specification, the algorithm derives one or more conditions V

for gates in the solution specif icati,on. For each gate, the condition required for the entire

specification s is simply the conjunction of the conditions obtained separately from the

conjuncts s
~
. This property can be proved in terms of the formal semantic definitions of the

problem specification language and the solution specification . Informally, it is true because

each conjunct in a specification represents a separate constraint that must be met by any

valid history, so that the overall specification represents a set of constraints , all of which

must be met. If each constraint is implemented by a different set of solution specification

conditions, then the joint overall constraint must be implemented by conjoining all these

conditions. This is because an event may validly occur only if it does not violate any of the V

individual constraints. For this reason, the analysis of specification s can take place on each

relativel y simple conjunct separately, rather than on 
V
the entire, more complex specification.

With regard to any reference in this chapter to specification s, the reader should understand

- that s can represent a single conjunct that is being analyzed individually.



_ _ _ _ _  ~~~~~~ _ _ _

4.2 The derivation algorithm

This section describes the essence of the derivation algorithm. It is assumed that the

problem specification consists exclusively of ordering information, in that all clauses, as

defined in Section 2.5, are ordering clauses of the form (e1 ~~ e2), where events e1 and e2
refer to procedure activations for which arguments are not listed. That is to say, there are

no argument constraint clauses, nor are arguments explicitly given for any procedure

activations . The conditions derived for the solution specification in this phase of the V

algorithm refer only to the current synchronization, state, and not to any previous states.

When any of the preliminary conditions derived-by this phase is inadequate, then - previous

state information must be used in order to refine it. The method for doing so is presented

in the section following this one.

The algorithm is presented here on a step-by-step basis. Each step first is described as

it works on a general specification s, and then illustrated on a particular specification. The V

specific examp le used for illustration purposes is example 4 from Section 2.7, which will be

denoted here as specification 51:

p1
rSqU St ~~~~ 

q
~ SfltSV 

~~ p1
eflter ~~~ q~SfltSY .

As discussed in Chapter 2, the effect of this specification is to give executions of procedure

p priority over those of procedure q.

_ _ _



- 67 -

Given a problem specification s, the first step in deriving the equivalent solution

specification is to identify Evex p(s), the set of event ex pressions appearing in s. informally,

this set can be constructed simply by noting which event expressions are contained in the

specification. The recursive definition of Evexp(s), which wa s presented in Section 2.6 and

is repeated in Figure 4.1 below, can be used to formally construct Evexp(s) for any

specification. For the example specification,

Evex p(sj) = ~~~reqUSSt ~ ..M.r 
q~ent sr } .

Once Evexp(s) has been constructed, the next step is to construct the set of possible

time orderings among the events represented by these expressions. Suppose a history

contains events that correspond to the event expressions in the specification. Formally, 
V

using the definitions of Section 2.6, this means that there As some interpretation mapping V

the event expressions in Evexp(s) into a subset of the events in the history. Then whether

or not the history satisfies the specification under this interpretation depends upon the

order among exactl y these events . To analyze all possible histories that involve events

corresponding to the expressions in the specification, it is sufficient to analyze all possible

subsequences of these events. A subsequence of events in a history is called a sub-history. V

-

‘ 
- Figure 4.1. Defini t ion of Evex p(s)

Evexp(e j e2) — { e1 , e2 )
Evexp(exp1 rel exp2) — { }, for rd € Rd

V Evex p(-’ s) — Evexp(s)
Evexp(s 1 op 

~~ 
“ Evexp(s 1) U Evex p(s2), for op € Op

V Evexp(3 x (s)) — Evexp(s)
Evexp(Y x (s)) — Evexp(s)

LV L.~
z

~~~~~~~. ~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~ _ V V ~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~V ~~~~~~ ~~~~~~~~~~~~~~~~~~~~



_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 

-

-68 -

Since each relevant event is represented by an event expression appearing in

specification s, the sub-histories of interest correspond to the possible sequences of the

ex pressions in Evexp(s). Each sequence of event expressions that represents a possible

sub-history is called an orderin g. Every history containing events represented by the event

expressions of Evexp(s) corresponds to exactly one of the orderings.

V If the size of Evexp(s) is n, then there are n! permutations of these n events, but not all

V of the corresponding sequences are necessarily possible time orderings. To be a possible

ordering, a sequence must obey the basic constraint

___ 
~~~~~

for every procedure activation Urn. For example, consider a case where

V v ~‘ , request enter •xit request inter •~it
~vex p~s, — t X a X a , Xa ‘Y b ‘Y b • Yb

While there are 720 permutations of these six events, only 20 sequences represent possible

time orderings. An additional constraint that must be met by any ordering is that
V

(m < n) ~ (u m~~
i5t

~~

since the numbering of procedure activations is based on the order of the respective request

events. Thus, for a specification in which ~~~~~ and ~~~~~~ both appear, x
~”~”~

must

precede x~ 1
Ts~ue5t in every ordering. These constraints are exactly the ones embodied in the

predicate Possible defined in Section 2.6. Ruling out all orderings that are impossible

corresponds to restricting attention to object histories that are possible according to that

definition.

-. V V V -- V

-

- 69 -

Formally, the construction of the possible orderings among the elements of Evexp(s)

can be carried out in two stages. The first stage consists of generating all permutations of

the elements of Evexp(s). Then every permutation that violates one of these basic

constraints is eliminated.

For the example specification s
~
, Evexp(s 1) contains three events, as already noted.

Although there are six permutations of these three events, only three are possible time

orderings, since the other three violate the constraint that P~
”

~
’1’ ,~ p1iflhi?~ These three

l)osSible orderings are:

(I) ~~ request ; 1,~efl ter : q~entsr

(2) p~re~uest
q~enter ~ 1

ent.r

(3) q~enter : p~re~uest ..
~~ eflter

V

That is, in any possible history in which there are events corresponding to the three event

expressions in Evexp(s 1), these events must occur in exactly one of these three orders.

Once the possible orderings of the events associated with specification s have been

constructed , it is necessary to separate them into two classes. Those that satisfy the

specification s are termed valid orderings, while the rest are invalid. Validity of an

ordering with respect to a specification s can be determined by simply evaluating the

V formula s. In this evaluation, either TRUE or FALSE is substituted for each expression of

the form (e 1 e2), depending upon whether or not event e1 precedes event e2 in the given

oldering. Since it is assumed that by this point the specification consists entirely of

ordering information, the result of this evaluation must equal either TRUE or FALSE.

V

~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~_ V V  ________



- 70 -

The ordering is valid when the formula evaluates to TRUE, and invalid when it is FALSE.

In terms of the formal semantics of the problem specification language presented in Chapter

2, this corresponds to evaluating the predicate Sat for an otherwise valid history that

contains the given ordering as a sub-history under an arbitrary -interpretation.

For the example, substitution of ordering (I) into specification s1 yields the formula 
V

TRUE D TRUE,

which evaluates to TRUE. Substituting ordering (3) into s
~ 

results in the formula

FALSE D FALSE, 
V

which also evaluates to TRUE. Orderings (I) and (3) are therefore both valid with respect

to s
~
. Substituting ordering (2) into 

~~ 
however, yields

V 

• TRUE D FALSE,

which is FALSE, so ordering (2) is invalid.

V In describing the next step of the algorithm, some definitions are needed. A prefix of

a sequence is simply any initial subsequence. A special case is the empty sequence, which is
V a prefix of every sequence. Any two sequences have a unique longest matching prefix which

the y share. Given two different orderings of n events, there is a unique k, where 0 c k c n,

such that each of the first (k - 1) events in the two orderings are identical, and the k-th

events differ. The shared prefix of length (K - I) is the longest matching prefix of the two

orderings. 

- ~~~~~~~~~~~~~~~~~~~~~ ~~~ _V —— ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~~~~~ — _~ V~~~V — —



‘ V~~~~V -~~~ V~~~~~~~~~~~~~~~~~~~ i1T~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~ 1~~2~~~~~~~~~~~~~~~ V~~~~~

- 71 -

It is necessary to compare each invalid ordering with all of the valid orderings in turn.

In each case, there will be a longest matching prefix that the two orderings, share, which
V

may be the empty sequence. Of all these longest matching prefixes, we choose the one with

the greatest length. If this prefix is of length (k - 1), then the k-th event (more precisely, the
V

k-th event expression) in the invalid ordering is the offending event of that ordering. The

offending event is the one at which the invalid ordering first “goes wrong” in the sense of

violating the specification . That is, it is at this point in the history that the Sat predicate is

first violated for the specification. Assuming that the offending event is in an enter event

V class, a condition must be attached to the gate for that event class in the solution

specification , so that the SatSS predicate for the solution specification is also violated at this

point.

If the offending event in the invalid ordering is not an enter event , then the

specification is illegal, in that it does not agree with the basic guardian model being

employed here. According to the model, only enter events can be conditional and so be

delayed from immediately taking place. If a specification implies that some request or exit

event should be delayed, then it represents a property that is incompatible with this model.
V

Such a specification cannot be analyzed by the method presented here. (These cases are

discussed in section 4 .7.)

Returning to the exam ple specification s
~
, orderings (I) and (3) have already been

shown to be valid, and ordering (2) to be invalid. For orderings (I) and (2), the longest

matching prefix consists of the sequence of length one whose only element is p~~~i*t ; for

orderings (2) and (3), the longest matching prefix is the empty sequence. The longest prefix
V

~~~~~~~~~~~~~~~~~~~~~~~~

V .

~ ~~~~

—-  
~~~~

- -
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ _ _



TJ TT 
V~~~~~~~~~~~~~~~~~~~~~~~ VV ~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~ V - ~~~~~~~~~~~~~~~~ V

of ordering (2) that matches some valid ordering is therefore the one-element sequence

(p requeSt] The offending event in (2) is the event immediately following this prefix , namely

q~enter . Thus a condition is required on the gate for the q~ t~ event class to prevent this

invalid ordering.

In the general case, a condition must be derived for each event class that contains an

offending event in one or more invalid orderings. When this condition is placed on the

gate for that event class in the solution specification, it must prevent any sub-history

corresponding to one of these invalid orderings, but allow any of the valid orderings as

sub-histories. The derivation of the condition requires the state, i.e. the synchronization

state of the object, to be characterized for each invalid ordering at the point at which the

offending event occurs, so long as the offending event belongs to the given event class. The

V method for characterizing the state is explained below. A disjunction of these state

characterizations is formed, to be denoted here as D1. D
~ 

represents a general state

V characterization of when the occurrence of an event in the given event class WOUld fail to

satisfy the specification . Similarly, the state must be characterized for each valid ordering at

V the point at which an event in the class occurs. The disjunction of these characterizations is 
V

denoted D
~
, which is a general characterization of when the occurrence of such an event

would satisfy the specification. 
V

The expression given by the formula (D~ A (-‘ D1)) represents a preliminary possibility

for the condition required in the solution specification. The term ( ‘  D1) guarantees that the

expression is strong enough to exclude every invalid ordering. Conjoining the term

aids in the simplification of the formula. Since any conditions that are trivially true En all

_  L



~~~~~~~~~~~~~~~~ V~~~VV ~~~~~~~~~~~~~~~~~~~ V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

I1
tV~~~~~~

V

~~~~

V

~~

orderings of interest appear both in Dv and in D
~
, such conditions cancel out in the

conjunction of D~ 
with the negation of D1. These conditions may arise from the fact , for

instance, that at the point just before an event in the pC~~ class occurs, it is always true that

coui1~(p~~uest ) > ~~~~~~~~~~~~ since there is at least one activation (the one under

consideration) for which the request event , but not the enter event , has occurred . Thus,

this clause is a component of every state characterization, whether the ordering is valid or

invalid. The conjunct D
~ 

guarantees that the negation of this clause is eliminated from the

condition.

The preliminary condition given by (D~ 
A (-‘ D1)) is known to be at least as strong as

the condition required, since the term (~‘ D1) excludes all invalid orderings, i.e. all histories

w ith sub-histories corresponding to an invalid ordering. The condition must be tested

against all the valid orderings, howe~’er, to check that it is weak enough to allow all of them

V as sub-histories . This checking is accomplished by determining that the condition is

satisfied at the point at which the appropriate event occurs in each valid ordering, If the

condition is satisfied at all these points, then the condition is correct , and the task is

completed. If this is not so, then the condition is too strong, in that it rules out some

orderings that are va lid according to the specification. When this happens. steps must be

taken to refine the condition by weakening it appropriately. This weakening process will be

described in the next section.

_
~~~~~~~~~“~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ V V~ -


-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~

- - - ___ ~~ — - -

- 74 -

In characterizing the synchronization state of the object at a point in an ordering, the

ordering must be considered to represent a sub-history that is embedded within some

possible history. Except for what can be deduced from the ordering itself, nothing can be

assumed about the history or about the interpretation by which the event expressions in the

ordering are mapped into the events in the history. There may be an arbitrary number of

events in the history preceding the sub-history, and between any two events in the

sub-history. It is known, however, that the history is possible. Also, the history can be

assumed to be compatible with the solution specification structure, since if it is not, then the
V

algorithm cannot succeed in any case (see Section 4.7).

The characterization of the state therefore relies entirely on the other events in the

sub-history represented by event expressions in the ordering. Since the characterization

involves actual events in a history, rather than the event expressions in an ordering, each

event ex pression conceptually is replaced by a real event , so that every variable within an

expression is replaced by an actual value. Since the interpretation for making these
—

replacements is arbitrary, however, nothing can be assumed about the values. All that is

known As that for any given history and interpretation, there is some particular value for

each variable. For this reason, in the state characterization each variable is existentially

quantified. That is, every state characterization formula is of the form

3(i i,...,im) (S),
V

where (Ig , ... , im} is the set of variables appearing free in formula S.

.1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ _ _~~~~~~~~~ V _V ~~~_V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


— . — ~ —- W~’ ~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~ V ~~~~~ r,r —. V~V V~~ V —

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 75 -

The body S of the state characterization formula consists of placing bounds on the

counts of event classes, based on which of these events occur before and after the point at

which the characterization is being made. It is assumed that the characterization is made

j ust before the enter event of interest occurs, so that this event itself has not yet taken place,

but every preceding event has occurred. The characterization contains a clause

corresponding to each event in the ordering, that is, to each element of Evex p(s). For each

e € Evexp(s), the count of the event class containing e is given either a lower bound if’ e

occurs prior to this point in the ordering, or an upper bound if e occurs subsequent to this

V point. The bound in either case is the invocation number of e.

For example, let e be the event expression xm
d1

~~~
r
. If event xm~

t
~ occurs prior to the

enter event in the ordering being considered, then the state characterization contains the

conjunct

count(xmnts) > m.

The reasoning is that if X m~~
t ’ has already occurred, then so have each of x k ’ for (I < K

< m), so that coui lt(x ~~t1T) is at least as great as m. The count may be greater than m, as

other events in the x1M
~ class may have taken place in between event xm

f l t Y and the

current point, but it is not less than m. On the other hand, if x m
t
~~ occurs after the point

at which the characterization is made, then the clause becomes instead

COUIit (X~~tCr)
< m.

If xm~
t0? has not yet occurred, then neither has x k~

t r for any K > m, so thai count(x~
ter)

must be less than m. Again, other x ’~” events may occur in between the point of the

characterization and X m’~
1
~
, so that the count may be less than (m - El. but it is certainly

J

V V~~ VV ~~~~ _ _ _- — ~~~~~~~ — — V~ V~ ~~~~~~~ — — - —

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 76 -

less than m. 
V

V This method of state characterization relies on a first-come-first-served scheduling

discipline at each gate. That is, it assumes that any histor y occurring prior to event x m
I t !

contains exactly

r ente r enter enterLX 1 ,x2 ,... ,xml -

as the subsequence of events occurring at the ~~~~~ gate. This scheduling policy is built V

- 
V into the structure of the solution specification, and so it may be assumed that if a correct

solution specification can be derived for a specification, then it must fit this structure.

There are specifications with which this first -come-first-served scheduling policy is not

compatible, and the derivation algorithm fails to derive a solution specification in such

cases. This point is discussed more fully in Section 4.7.

Since every state characterization formula is of the form

the construction and manipulation of the formulas D~ 
and D

~ 
must make use of logical

properties of existentiall y quantified expressions. Because of the negation of D~ 
in the 

V

preliminary condition, universally, quantified expressions must also be manipulated. A

summary of the important logical properties used for simplifying these formulas appears in

Figure 4.2V Properties (El) through (E6) are equivalences applicable to existentially

quantified expressions, and properties (Al) through (A6) are their dual forms for universally

quantified expressions. (Qj) and (Q,2) apply to formulas involving both types of quantifiers,

and (DI) and (D2) are the distributive laws for A and V.

_ _ _ _ _ _ _ _ _ _ _ _  ____________________ ~~~~~~~~~~~~~~~~~~~~



V ’

-77 -

Figure 4.2. Logical properties of quantified expressions

(E l) 3 i(S 1) v 3 i(S 2) H ~ (Si v S2)
(E2) 3 (i,j) (A(i) A B(j)) H 3 i (A(i)) A 2 j (B(j))
( E3) 3 (i.j) (A(i)) 4.. 3 i (A(i))
(E4) — (3 i (S)) H ~ i (-‘ S)
(E5) 3 i ( x 2 i  A y < i )  .. (x > y)
(EG) 3 i (x < i )  H TRUE

(Al) V I(S 1) A V i(S2) +. V i (S1 A S2)
(A2) V (I.J) (A(i) V B~j)) 

H V i (A(i)) V V j (B~Vj))

(A3) V (q) (A(i)) H V i (A(i))
(A4) — (V i (S)) H 3 i (-‘ S) 

V

(A5) V i ( x < i  V y � i )  .4 (x~~ y) V

(A6) V i (x > i) ~4 FALSE V

(01) 3 i (S) A V I (-‘ S) FALSE
(q2)3 i( P A S ) A V E ( q v - ’ S) H 3 i ( P A Q ~ A S )

(Di) ((x A y) V z) .. ((x V z) A (y V z))
(D2) ((x v y) A z) ((x A z) V (y A z)) V

Let us return to the exam ple for an illustration of the above discussion. Recall that

the offending event in the invalid ordering is qf~
ter,and so a condition must be derived for

the q
enter gate . In ordering (I), the event qJ~

tC~ is preceded by events ~~~~~ and p~’’~’.

and has no events following it. Therefore, the state characterization c1 is:

3 (i.j) (couut(p ’~~’~
t) � i A cOUiit(p~~td1) � I A cou nt(q~~td1) < j),

where the first two terms in the body are obtained from the events preceding qj ’t
~ ’ and the

last term from the fact that ~~~~ itself has not yet occurred at the point at which the V

character ization is made. In ordering (2), the event qj
fl~ is preceded by p~~~~~

1e5t and

• followed by p~”~”~ so the state characterization c2 is:

3 (i ,j ) (couflt(pr5~~$t ) > i A CoUnt p
efu1

~i < i A count(q~ t’~) .c j).

In ordering (3). qf~” 
precedes both p~re~ueSt and p.Sflta~ and the state characterization c3 is:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~


V

-78 -

3 (i,j) (couilt(p guest) i A COU11t(p.flt .r) I A count(q”~t”) < j).

These individual characterizations can now be combined to form the terms D~ and

- I D1. The disjunction for the valid orderings D~
is equal to (c1 V c3), or

3 (i.j) (count(q~
’t ’) c j A

V ((count(p’~’’~
t) � i A COU,It(p~~t .r) > i) v

(couut(p~~~~
t) < i A count(p~

t
~) < i))).

-
V - The disjunction for the invalid orderings D~ is simply c2, so that (—‘ D~) becomes

V

V (i .j) (count(p’~ ”~
t) < I ~ couii t(psrlter) > a v count(q~ t ’) � 0.

The formula for the preliminar y condition is therefore given by D~
A (-‘ D1), or

3 (ij) (count(q~ ter) <j A

((couIlt(pr
~~~

t) � i A Co~ ii t(ph
~t r )  � El v

(count(p” (l’J St ) a A couut(p~ tsr) 
< a))) A

V (i.j) (count(p equest ) < v count(p~ t ’ )  > 

V

• V cou nt(q~~t e )  � j). V

This formula can he simplified. Since the terms involving i and j are independent in

both of the quantified expressions, they can be separated, using logical properties (E2) and

(A2) from Figure 4.2. This yields the formula:

V 
3 i ((couut(p’~ ”~~) � i A CouIlt( p )t

~~) � I) v

(cou nI(pr
~~

1
~~

t ) < I A count(p~ ter) 
< i)) A 

V

3 j (count(q~ t”) <j) A 

, 
V V

(V j (count(q~ ’’) � j ) V

V (Couitt(p”~”~
t) < a V count(p ”) ~ i)). V

_ _  _ _ _ _ _ _  -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ _ _ _



V -79 -

By distributivity property (D2), this is equivalent to

(3 i ((count(p~~’~ ’) 2 i A coU n1(pSflt~?) 2 El V V

(count(p”~~
t) < a n coui)t(p~ ter) 

< I)) A 

V

3 j  (couut(q~ t1 <j ) A
V 

V j (count(q~ t ”) > j))

V

(3 a ~~~~~~~~~~ 2 i A count(p’~~) > a) v

V (count(p’~~~
t) < i A COUIlt<p~~

t
~~) < i)) A

3 j (count(q~~”) <j )  A

V I (~0~fl,(pr0~ 4st) < i V COUl)t(p~~
te

~) � 0).

V The first disjunct is simply FALSE, since it contains the conjunction of

~ j  (count(q~
te
~) < j)

and

V j (count(qeflt
~ ) 2 j).

This means that the formula reduces to the second disjunct,

3 i ((count(p’~~”~) > i A count(p~ ter) 2 i) V

(count(p~ t~
8t ) < i A couilt(p~ td)  < I)) A

3 j (count(q~’t”) <J )

‘
~
‘ I (coun t( p n1Q

~*~ ) < i V count(pd1
~~) 2 1).

- Each of the first two conj urcts simplifies to TRUE, so the entire formula reduces to

V 

V i (coun t (p’~~”~~’) < i v COunt(p~
ie
~) ~~ i),

which is equivalent to V

couiit (p~~”~~
t ) < cou1 (pe

~~?) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~VV :-_~~~~VV ~~~~~~~~ V~~~~~~~~~~~~ - _ _ _


-

j

-80 -

by proj~erty (AS). Using the a priori fact that couut(p~~~~
t) 2 COUfl t(p~~

tS
~), the preliminary

condition can be simplified finally to:

count(pr
~~est)

To determine whether the preliminary condition is indeed correct and not overly

strong, it is necessary to test it at the appropriate point in each of the valid orderings. The

valid orderings are (I) and (3). At the point of event q~~~htC~ in each of these orderings, the

condition ,
V

V

coun~(pt0~0~ t) couiit(pefher)

is satisfied , showing that it is weak enough to permit both valid orderings. Because of the

conj unct (D~) in the condition, it is guaranteed to be strong enough to prevent the invalid

ordering. TheiVefore , it is exactly the condition required for gate qs~ er, and a correct

solution specification has been constructed.

4.3 Use of previous states

in the example presented in the last section, the current state alone was sufficient to

dei lve the condition required in the solution specification. The purpose of this section is to

exp lain the method employed when this is not the case, and one or more previous states

must be used as well. Information from previous states is used to refine a preliminary

r,,~r1it,on that is too strong so that one or more valid orderings do not satisfy it.

- — — —~~~~~~~~~~ ~~~ ~~~~~~~~~ V_ - - LA~~


~~~~~~~~TIi iT T~~ ~~~~ V

H
An overly strong preliminary condition is weakened by disjoining one or more terms

to it. The new condition that results is strictly weaker than the preliminary condition, since

it is the disjunction of the preliminary condition and other terms. All valid orderings that

satisf y the preliminary condition therefore automatically satisfy the new condition. The

purpose of the weakening terms is to include the remaining valid orderings as well. For

this reason the analysis for constructing a weakening term can disregard the valid orderings

satisf ying the preliminary condition. Only the remaining valid orderings not permitted by

the preliminary condition need be considered, along with all invalid orderings for which the

event in question is the offending event. V

Each weakening term shares the property with the preliminary condition that it is at

least strong enough to exclude every invalid ordering. Therefore, all that need be checked

V for each weakening term is which valid orderings that have thus far been excluded are

permitted by the given term. The method terminates when the condition is weakened so

that all valid orderings are allowed , or else when no further weakening terms can be

constructed. V

In deriving a weakening term, it is necessary first to find some event that V precedes the

enter event in question in each ordering being considered, i.e. all of the valid orderings not

satisfying the preliminary condition plus all of the invalid orderings in which the enter

event is the offending event. This event may be in any event class, and is not limited to

enter events. Once such an event is found, the weakening term is constructed in much the

same way as the preliminary condition, but using state characterizations at this previous V

event . The state is characterized at the point of the preceding event in each of these



rV ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 82 -

orderings (but not in any of the other valid orderings). Notice that each of these

V characte r zations, rather than involving ordinary counts of event classes , concerns quantities V

of the form [cou nt(ec) @ g), i.e. counts of event classes saved at the event at gate g.

At this point the characterization s from the valid orderings are dtsjoined to form a

new ex pression Dy’, and the characterizations from the invalid orderings are disjoined to

form Da’. The formula (Dy’ A (-‘ D1’)) is constructed and used as a weakening term by

disjoining it to the preliminary condition to form a new condition. This new condition is

tested to determine whether the valid orderings excluded by the preliminary condition are

allowed as a result of the weakening term. If all these orderings are permitted by the

weakening term, then the new condition constitutes the solution specification condition.

If there are still some valid orderings not allowed , then the process is repeated on the

valid orderings still excluded. Here, however , each characterization refers to both the

current state and the previous state. That is, each characterization involves both current

counts and counts in the previous state. The weakening term (Dv’ A (—‘ D1’)) is formed in

the same way . This term is again tested on the excluded valid orderings, and disjoined to

the condition if it is satisfied by any of the excluded orderings.

V For example, consider the specification

(pi~~
1t ~~ p~ents r) ~

3 k (p~ Xht ~~ q~ snter ~~ p~enter).

When the preliminary condition is formed for gate p flt , it is found not to satisf y the valid

- ordering



- 83 - V

(1) P1 ~~ q~ efl tsr 
~~ p~~~~

.

A weakenin g term must therefore be constructed for this ordering. The two invalid

orderin gs are

(2) 
~~~ 

•‘ p~eflt er ~~ q~ efl ter

(3) ~~~~~~ : ~~~ ~~ p~eflteY

in both of which the offending event is
pf

~ t1Y
. The one event that precedes

~f~ ’ in each

of t hese three orderin gs is p
~~

t . The state characterization at this event in each of the

V three orderings is:

C1: 3 (a, j , k) ([count(p~
4) ~ p

X~] < i A (count(q~ ter)
~ peel1] < k

V

A (cou,fl(psfhe) ~ ~~exit
j <j)

V C~ : 3 (a , j . k) ([count(p tdlt) @ pCKII) < i A [count(q~ t”) ~~ ~ex •t j < k

A [couii t(p~
ter) ~ ~~eX it] <j)

-

V

c3: 3 t~~,
~
, k) ((coun1(p~~’) ~ p

•XIt] < t A (count(q~
td1) ~ pCXII] 2 k

A [coU ut(psnter) ® p~ Xlt) < j) V

However, t he formula (Dv’ I’ (-‘ Di’)) given by

c1 A (— ’(c 2 V c 3))

is equivalent to FALSE , which is obviously useless as a weakening term.

Therefore , it is necessary to form new characterizations of both the current and

previous states. These are given by:
V

C1
’: 3 (i, J, k) (count(p~~

t) 2 i A cou nt(q~ ter) 2 k A co UIit(pent
~~ j

A (cou nt(p~
’t) ~p p

e nt
) < I A [count (q~ ter) • p•

~
’t) < k

A 1COUilt(p~~
td1) • ~~ee,t

3 < j)

-~ ~~V~~~V — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- ----- V -~~ — ~~ ~~~~~~~~~~~~

c2’: 3 (i, J, k) (coui1t(p~~
t) 2 A couIlt(qe

~
ter) < k A cou n~~p

e
~

t
~~) <j

A [cou ilt (p ed t) • p
eed] < i A tcou nI(q~

ter) • peed] k

A tcount(p~ ter) • ~eelt] < j)

V
C3’: 3 (I, j. k) (count(p~

1t) 2 1 I’ cou,,t(q~~ter) 2 k A COUflt(peflt er) <J

V A (count(p~
1t) • peed]

< i A ~coun t(qe
~~r) • p~Xlt] 2 k

A [count(pe
~~r) • p

eed] <J)

The new weakening term (Dy’ A (‘ Di’)) is equal to

A (-‘ (c2’ V c3)),

V which simplifies to

coun t(q~~
t
~~) > [coun t(q~

te) • peelt],

which does satisf y ordering (I). As a result, the solution specification condition is given by

disjoining this term to the preliminary condition.

If neither of the weakening terms obtained as a result of a given previous state is

sufficient to include all of the remaining orderings, then another previous event must be

found and the entire weakening process is repeated using the state at that event. Since this

may involve using the next-to-most recent , etc. event at a particular gate, a notational

extension is needed to refer to such quantities, such as [count(ec) oo g], etc.

The idea behind the method is to find some property that distinguishes the valid

orderings from the invalid ones. Unless the specification is one that violates the underlying -:

model, it is always possible to find such a property. A valid ordering that cannot be

distinguished on the basis of the preliminary condition must differ from an invalid

V~~~~~~
__

~V

-- ~~‘~~~ r ~~~~~~~~~~
-

-- ~V - - - - - V -- ~~~~~~~~~~~~~~ - V - V V V • V

V

V

V

-85 -

V

oidei ing by the exact orderin g of prev ious events , rather than by their absolute number

V At some previous event , then, certain other events must have occurred in the valid ordering

but not in the invalid one, or vice versa. Using the state at that point allows the two to be

distinguished from each other. Usijig only the previous state allows a weakening term to be

constructed that involves only the relationships among quantities at that previous event.

When this is not sufficient to distinguish all valid orderings, then characterizing both the

current and the previous state permits relations to be formed between current and previous

quantities.

The weakening process is repeated until one of two things happens. If every valid

ordering is allowed, by either the preliminary condition involving the current state or else

by a weakening term involving some previous state as well, then a correct solution

specification condition is thereby obtained. If instead, one or more valid orderings are still

disallowed, and no event can be found that precedes the enter event in question in both the

disallowed valid ordering(s) and all the invalid orderings , then the algorithm fails in

construct ing a condition. A discussion of situations in which the method fai ls wi ll be

post poned until Section 4.7.

4.4 An example using a previous state

This section contains an exam ple of applying the algorithm as it has been presented in

Sections 4.2 and 4.3. The examp le chosen is one for which the current state is insufficient

V for expressing the solution specification conditions, and previous states must be used. The

L specification to be analyzed here is example 7 from Section 2.7, to be denoted 52:

__
~_

~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V VV~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- ~~V V~~V ~~~~~~~~~~~~~~ ~~~~ V

r - ---

~~~~~~~

-- .

~~~~

- _ _ _ _  _ _ _

-86 -

(ai~
ter 

~~ b;
te

~) ~ ~~ ~~~~

V The first step in the derivation process is to identify the set of event expressions in the

specification. The set of event expressions in this case is given by

Evex p(s2) {a i~
tev , b~~

hh1r. ~~~~ d~~ten).

The next step is to construct all possible orderings among these event expressions. In this

V 
examp le there are no two events associated with the same procedure activation (such as

1)~re~ueSt and 
~~~~~ 

nor are there two request events for the same procedure (such as

and Pi+l”~
’°
~~

Therefore any of the 24 permutations of the four events in

Evex p(s2) represents a possible ordering among them. These 24 orderings are listed in
V

Figure 4.3 and numbered for the sake of future reference.

Each of the constructed orderings is tested against the specification to determine

whether it satisfies the specification and is therefore valid, or fails to satisfy it and is V

invalid. For examp le. in ordering (6), (a1
eAt r : bffher) and (ci

sfher .. df~~’) are both
V

FALSE, so that specification
~2 eva iuates to the expression

V

FALSE FALSE,

which is equal to TRUE. Ordering (6) therefore satisfies the specification. When the

specification is evaluated for each of the first 12 orderings, it evaluates to TRUE, showing

V each of these orderings to be valid. Each of the last 12 orderings causes s to evaluate to V

V FALSE, though. so that these orderings are invalid.

_ _ _ _ _ _ _ _ -~ - L~~.

TLi~JL.
- ~~~~~~~~~~~

~~~~~~~ V 

V

Figure 4.3, Possible orderings for specification 
~2 

V

(I) 
~~~~ 

. ,. ..

V (2) a 1
PM? c~~~’ bf’~~ ~~

(3)
~~~~ 

: ~~~~~ =~ dfnte~ ~~ bf~”

(4) b~’~1” : a i~
teT ; dfl~

t
~ ; c~ ”~ ’

(5) ~~~~ =~ d~~ °’ ~. a 1~’~~’ :
V 

(6) bf~
t
~’ 

V~ d~~t” ~~ c~~~ ’ ~~ ~~~~~

(7) ci~
t
~ =~ d~

e
~

teT : a i~~
t eT 

~~

(8) c
~
’
~
1” 

~ a~~
1
~
er ; df~” ~~ b;~

1
~’

(~) c~~~~’ 
.
. a~~~’ 

; bf~~’ : d~
nter

(10) df~
t
~’ : c1~~~ : b~~

t
~ :

(I I) d~” =~ be” ,
, c i

Pnt•
~ ~~

V (12) d~
fher V b~~

te
~ ~~ ~~~~~ ~~ ~~~~

(13) a
~
”

~
” .

. bf”~ ~~~~ ~~
(14) a 1’~

1 ’  -
. df’~

t
~ ; bf~°’ ~~

(IS) a 1
enhte ; df~~ ~~ ~~~~~~~~ ~~~~ bf’~ ’

(16). bftd r : a
~~’’ 

,‘ cr1” ~~ dffher

(17) b~~” 
V c1’~~’ =~ ~~~~ ~~

(18) b~’~
1’
~ 

‘. c~
M
~ ,. a i~

ter 
~~

(19) c 1~~” : d;~’~ b~ ”t” 
~~

(20) c~”~~’ 
. 

bf
Mer V

. d!~” 
: a 1

eM
~~

(21) c1”’ 
- b~’~’t” : a 1~~

1’ : d.’~
’,

(22) drter V c~’~’~ ~~ a 1’~~’ 
V 

bfM
~

(23) d~~
ter V a 1~~

te
~ ,. c~ ’~’ ~~~~~ b~~

t ’
~ 

V

(24) : a1~~
e
~ ~~~~~ bfn1~r ~~ 

~~~~ V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V V _~~~~~_ V _ V V~~~~~~~~~~~~~~~~~ V 

-



!

~~~~~

VV

V V

_ _ _

V

-88 -

The offending event in each invalid ordering can be identified by comparing the

ordering with. all the valid orderings to determine at what point the invalid ordering first

fails to satisfy the specification. For example, invalid ordering (13) matches valid ordering

V
(I) as far as the first two events are concerned. Since this is the longest prefix that does

match the prefix of some valid ordering, the next event in (13), namely df~
te

~, is the

offending event. When this is done for each of the 12 invalid orderings, it is found that the

offending event is df”~~ in orderings (13) through (15), ~~~~ in (IS) t.. ough (18), bf~
ter in

(19) through (21), and ai~
ier in (22) through (24).

A condition is needed for each of the four enter gates mentioned in the specification.

Here the condttion for the a~
t
~ gate will be derived. To determine the condition for this

V gate . it is necessar y to characterize the state at event ai
e
~

t
~ in each of the 12 valid orderings

as well as in each of the orderings in which it is the offending event, namely (22), (23), and

(24). The characterizations one obtains for all of these orderings, using the characterization

method described in the previous section, are listed in Figure 4.4, with characterization c1

applying to ordering i.

The formula that is obtained from disjoining the characterizations c1 through c12 is

given by

3 (ij) (count (a~ t~) < ~ A .

((Cou,i t (bsfh er) < J n CoUflt(c~ ter) > i) V

(couI,t(b~ t r) > j A coUnt(deflt er) > j) v V

(COUt)t(cefh.r)
< i A count (defler) < j)))

This formula is D
~.

which represents a characterization of when the occurrence of such an

_ __ _
V~~~V V ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

T
~~~~~

V

~~~~

VV

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- V

~~~~

’

-89 -

Fi gure 4.4. State characterizations at event

Valid orderings

c1: 3 (i,j) (count(a t)t r) < i A count(b~ t”) <j A couut(c~
t
~) < i A COUI,t(dent .r) <J)

V

c2: 3 (i,j) (count(a~ t1r) < i A count(bd1~
te
~) <j A couut(c~ ter)

< I A cOUilt den t eY < j)

C3: 3 (i,j) (count(a ” ’) < i A co unt (bert r) <j A couIit(c~~
ter) ~ A Cou,,t(d~~t r) <

c4: 3 (i,j) (count (a~~
t
~) < i A count(b~

t
~) 2 j A count(cmnter)

< a A count (d~~ter) < j)

c5: 3 (i,j) (couii1(a~~ ’) < ~ A coUIIt(b.nter) 2 A COUflt(Cenher) < A co unt (d~~
t
~~) 2

V -
V C6: 3 (i,j) (couiit(a”~

t ’) < i A co unt(b e~ts ’) � ~j A COUilt (Cert
~) > i A COUI1t(d0~

t
~~) 2 j)

c7: 3 (i,j) (count(a~ ter) < i A count(be~~T) < j A count(c~ ter) > i A COUIlt (d.nter) 2 j)

C8: 3 (i,j) (COUi1 t (a~~
te

~) < A COUIit(b e~ter) < j A count cs
~

te
~ > I A COUI1t (dsflte r) < ~

) V

c9~ 3 (i,j) (couiit(a~ ter) i A cou,1t(b~~t1r) <j A cou,i ,~~
.fher � a n C0uflt(d~ ter) <j)

V

c10: 3 (i,j) (count(ae
~t e) < I A cou nt(bent~) > j A count(c~

t r) > i A count(d’~1”) 2 j)

d l: 3 (i,j) (count(a~
te
~) < i A COUI t(b e1~

t
~~) 2 j A count(c~ t r) 2 i A count(dent~) 2 ,j)

C12: 3 (i,j) (count(a~ ter) < i A count(b~
t
~) > A count(c~

t
~) < i A count(d~~

t
~) 2 J)

Invalid orderings
V

c22: 3 (i,j) (cou ut(a~~”) < I A couII t(befher) <j A count(c~
t
~) 2 i A count(d’~1’) 2 .j)

C23: 3 (i,j) (cou nt(a snte
~) < i A co uil t (bmnter) <j A coui1t (Cent

~) < t . cou nt(d~~ter) 2 J)

C24: 3 (i,j) (count (a1
~ter) < i A COUIit(benter) <

~~
A Cou~ t~~

ente
~ < A COUflt(de t) 2 j)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-90 -

event satisfies the specification. The disjunction of c22, c~~, and c24 is D1, representing a

general characterization of when occurrence would not satisfy the specification. This

formula is equal to:

3 (i,j) (count(a ’~ ’) < A A COunt(b rt
~) <j  A couiit(d’~1’) 2 j).

The body of this expression contains the three conjuncts that appear In all three

characterizations , whereas cou nt(c~~t r )  is greater than or equal to i in c~~, but less than i in

the other two, so that these terms cancel out.

The preliminary condition that one obtains then is given by (D
~ 

A (-‘ D1)), which

çquals

3 (i,j) (count(a~~-”) < i A

((count(b”~ ’) <j  A count(c”~ ’) _  0 V

(count(b~ t”) 2 j A count (d’~” ) 2 ~
) v 

V

(couHt (C~ u1r) c i A count(d ’”) < j))) A

V V (i,j) (count (a1
~t r )  > I V count(b~~ ’) 2 V Count(dmnt r) c i).

The terms involving i and j in the universally quantified expression can be separated,

applying logical property (A2) from Section 4.2. This results in the formula

- —
---- - -— - - --- - -. -- ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 



-9 1 -

3 (i,j) (count(amnt r) <1 n

V 

((count(b~”) <j A count(c~ t1r) � i) v

V (count(b~
t”) > j A count(d’~’’) 2 j ) v

(count(c~
t
~) < i A coui~t(d’ ’t”) .c j))) A

(V i (count(a”~ ’)  _  i) V

V j (count( b’~ ”) 2 j v con nt(dsnt r) < j)).

Using distributivit y, this can be ex panded into

V 
(3 (i,j) (count(a~

t
~ ) < i A

((count(b’~
1’ ) < j  A cou nt(c~ t1r) 2 i) V

(count(b~ t’~) 2 j A count(d’~’’) 2 j) V
V 

(cou nt(c~~”) < i A count(d~
t
~ ) < j))) A

V 

V i (count(a~”~) > i))

V

(3 (i,j) (count(a~ u1r) < i n

((count(b’~’’) < j A coUIIt(c nt r) 2 1) V

(count(b~
’t ’) 2 A count(d~

t ’ )  2 j ) v

(count(c’~’~ ) < i A count(d~’t”) c i))) A

V j (count(b nt r) > j V count(d1M~) < j)).

The first disjunct reduces to FALSE, due to the conjunction of

V 
3 i (count (a~~*r) < i)

and its negation. This leaves the formula 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


V ~~~ ‘T ~~“TIT TTT ~~~~~~~~~~~~~~~~~~ V V Vi _~~~~~~~~~~~~~~~_
V

- 92 -

V

3 (i,j) (count(a ’~”) < i A

((couiit(b’~”) cj A count(c ’~ ’) > i)
V

V

(count(b nt
~) 2 j A count(d’~1’) 2 j) V V

V
(couut(c~ t ’) < I A count(d”~t”) < j))) A

V
~

(coun t(b’~~ ’) 2 j V COUnt(d~~
ts ’) c j).

This can be simplified to
V

V j (couut(b~t”) 2 j V count(d~
t”) <

~j),

or simply V

count(b~ t ’) 2 count(d ”)

using logical property (AS). This i~ the preliminary condition in simplified form. However,

when one checks this condition against each of the valid orderings, one finds that there is

one ordering, namely (7), that violates the condition. This means that the preliminary

condition is too. strong, and must be weakened sufficiently so as to permit ordering (7).

V V It is at this point that the weakening method described in Section 4.3 must be

employed. An event must be found that precedes a
~ ’~ ’

, the enter event in question, in

orderin g (7) as well as in each of the invalid orderings for which ai
t t
~ is the offending

-

V

event, those being (22), (23), and (24). The single event that occurs before ai~
t r in all these

orderings is ~~~~ Thus , an attempt is made to find a condition at this event that

distinguishes the valid from the Invalid orderings.

-~~~~~~~~ - — - — -
_ _ _ _ _ _ _ _-- _ _ _ _

I
_ _ _ _ _ _ _ _ _ _ _ _

V . V V V V . VT~~~ V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~~
V~~~~~ I~~~~~~ T~~~~~~~~~~~~~ V

-93 -

V

The state character ization at in ordering (7) is given by:

3 (i,j) ([count(a~’t’~) e d~~”) c i A [count(b ” t ’) e d1nt~] <j A

(COUi1t(d~~ter) a d~ ’~) 2 i A [count(d~~”) s d’~1”] <

Since all quantities refer to the state at the d~ ’’ event , the notation “e d~ t ” is used on all

counts. This becomes the term Dy’, the disjunction of previous state characterizations for

valid orderings. The characterization for each of orderings (22), (23), and (24) is the same,

namely V

3 (i,j) ([count(a~ t”) a d~~
e
~) < i A [count (b~~

t r a d~
1
~’) < j A V

[count(c ’~
t’) ~ ~~~~ < I A [count (d’~”) • d~ ter) ci)

so the disjunction of characte rizations D
~’

is equal to this as well. The proposed weakening

ter m is given by (Dv’ A (— ‘ Di’)), which equals V

3 (i,j) ([count(a~ t’~) a ~~~~ < ~ A [coul~t(bnt t) ~ denter] <J A

[count(c”~’) a d’~~’1 2 1 A (count(d’~
1
~) • < j) A

V (i,j) ([count(a~’~~) •
denteTl 2 I V [count(b~ t T) • d”~ ’] �

. v

(count(C~ t T) a d~ ’~) 2 i v (count(d~
t
~) e d’~~) 2 j).

V

Simplifying, this formula becomes

3 i ((count(a ’~ ’) • < i) A [count(c~ t T) • d~
t
~] >

which reduces to

V (count(a nt r) • d~~ ’) < (count(c ’~”) •
dh1~

tsT]

by logical property (E5).

~~~~~~~~
V J

~~~~~~~~~~~~~~ V V V~~~~~~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


1~’— -
~~~~~~~AD—A 058 aaa MASSACI4JS€TTS INST OF TECH CAMBRIOGE LAB FOR COMPUTE—— ETC FIG 9/2

SYNTHESIS OF SYNCIUWNIZATION CODE FOR DATA ABSTRACT IONS.( U)
JUN 78 H S LAVENTHAL. N00014 75 C—0661

UNCLASSIFIED MIT/ LCS/TR—203

2~~3

.



F- • . -~~~
_
~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~ r ~~~~~r,, - ~~~~~~~~~~~~~~~~~~~r -
~

— —

I

-94 -

When this condition Es tested in ordering (7), it is found to be satisfied. Therefore,

this term is disjoined to the preliminary condition to obtain the final solution specification

condition:

count(b”~”)
> count(d~~”) v (cou ut(a mnt Ir) s d’~’ ’ 1 < (count (c~ t Y) e ds~

d
~],

The method illustrated in deriving the condition for gate a~
t
~ must be applied again

for each of the other gates b~
t0r, ~

en1s’ and d~~
t
~

?. Due to the symmetry of the specification,

these derivations are completely isomorphic.

4.5 Incorporating argument constraints

The l revious sections have presented the method for deriving a solution specification

from the problem specification, under the assumption that each clause in the specification is

an ordering clause of the for m e1 e2, for some events e1 and e2. When a specification

also contains other clauses in the form of argument constraints, these constraints must first

be incorporated into the ordering clauses of the specification before the algorithm described

previously can be used.

To simplify the discussion, it will be assumed that argument constraint clauses appea r

only as conj uncts in the hypothesis of an implication. A specification that does not satisfy

this condition can be transformed into an equivalent one that does as follows: Any

specification can be put into conjunctive normal form (CNF) by well-known techniques of

Iirst-oider logic. Each conjunct (which is analyzed separately, as explained previously) then

consists of a series of disj uncts, some of which may be argument constraint clauses and at

least one of which must be an ordering clause. The general form of such a conjunct is

~~1i~: T ~~~T~~ ~~~~~~~~~ _ _ _ _ _

-95 -

ther efore:

Nlv N2 V ... V N~ V 01 v ... V

wher e each N1 As a (possibly negated) argument constraint clause and each O
~

is a (possibly

negated) ordering clause, and j � 0 and k? I. This can be transformed, using the tautology

(x D y) ‘ (-‘ x v y). into:

((-‘ N1
) A (-‘ N2) A ... A (‘ Ni)) D (0~ V ... V

In this way, all of the argument constraint clauses of the specification, some in negated form,

a e brought into the hypothesis of the implication, while all ordering clauses are in the

conclusion of the implication.

An argument constraint clause can involve either invocation number variables or

arguments to procedure activations. When a clause involves invocation number variables,

it simply represents a constraint on those variables appearing in the specification. This

constraint must be incorporated into every state characterization. Otherwise, the clause can

be ignored in the other steps of the derivation process.

As an example, consider the first conjunct of the alternative producer-consumer

specification of exam ple 8 in Chapter 2:

(I • j) D (dep~extt
~~

The clause (I j) is ignored for the moment, and the ordering clause is analyzed by the

regular method. Of the two orderings possible on the two events in the conjunct, the

ordering (dep1’~” ~~ rem~’~”) is valid, while the other ordering (remfnt r l~ dep~~~) is

not . The offending event is clearly rem~’~~ and a condition must be constructed for the

rem~
t ’ gate. The state characterization at event rem~

1t
~ in the valid ordering would be


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ T~~~~~~~~~~~~~~

3 (i,j) (count(rem~’t”) .cj A count(dep ”) � 0.

except that here the clause (a — j ) must be added as a conjunct of the characterization.

giving:

3 (i,j) (count(rem~ tsr ) c j  A count (dep~ ” ) > A A (i — j)).

This expression represents Dv.

For the invalid ordering, the state characterization at event rem~” also must include

the clause (I = j). This formula is:

3 (i ,j) (count(rem~ t ’ )  <j  A count(dep’~ ) < i A (i —

which constitutes the formula Dt. The preliminary condition is D
~ 

A (—. D.), or:

3 (i.j) (count(rem ’~ ’) <j  A count(dephhui) � I n (& — j)) A

V (ij) (count(rem~ t r )  > j V count(dep~ ’1) > I V (i � J)).

When this condition is simplified, it reduces to:

count(rem~ lsr) c count (dep~~’).

which is the condition on the remh1t
~ gate required in the solution specification. This same

condition is obtained when analyzing the specification

dep1~
it 

~~

An which the same property is specified, with the equality between the invocation numbers

of the two activations indicated implicitly.

This illustrates the general technique for handling relational clauses that involve

invocation numbers. As it shows, such clauses are integrated In a relatively simple manner

Into the method previously given (or constructing a solution specification, since they sim ply



-

~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~ TI~ 1 T T T~~T7~ ~L~~ T~TI~ ~~~~

- 97 -

represent additional information that must be included in each state characterization. For

predicates on arguments to procedure activations, the matter is not quite so simple. The rest

of this section is devoted to discussing how to handle such clauses.

An additional assumption that will be made concerning relations involving the

a guments to procedure activations is that all such relations are made explicit. An example

of an implicit relationship is a specification involving two procedure activations p1(x) and

qj(x) . Here the implicit relationship is that of equality of the arguments to the two

activations. This can be made ex plicit by changing the argument of qj to some new

identifier y, and adding the predicate (x — y) as a hypothesis of the specification. The

situation would be handled in a similar manner if the argument to q
~

were not x but

instead (x.l) or any other function of x.

Argument constraint clauses are incorporated into the ordering clauses of a

specification by qualifying all a ffected procedure activations. Once a clause has been

incorporated by means of qualification, it can be eliminated from the specification. so that

the result of the qualification phase of the algorithm is to transform the specification into

one involving only ordering clauses. After this transformation has been accomplished, the

specification contains some procedure activations that are qualified. O,,ualified activations in

a specificat ion result in a solution specification containing qualified gates. Specifically, a

qualified gate is required in an event class for each event expression in that class appearing

in the specification and involving a qualified activation. The conditions required on all

enter gates in the solution specification , qualified or unqualified, can be derived by the

method already presented. In the derivation of these conditions, the qualifying predicates

I
-98 -

on procedure activations are transferred to the associated gates. Both the enter gates for

which conditions are constructed, and the gates on which counts are taken, may be

• qualified.

The general form of a qualified procedure activation is:

~~~~ 
I C(v, t1. ... ,

where v is the vector of parameters to procedure activation Pt’ and C is some predicate

involving these parameters and also possibly some new variables t1 through tm that do not

appear in the specification. (The use of these elnew N variables is explained below.) The

qualifying predicate C represents an implicit restriction on the universal quantification of

the invocation number i in the ex pression, restricting i to those invocation numbers for

which the corresponding activations satisfy condition C. This means that this event

expression can only represent events whose arguments satisfy predicate C.

Each clause that involves only the argument to a single procedure activation is

incorporated into the specification by attaching the clause to the given activation as a

qualif ying predicate. For example, let be the vector of arguments to procedure p. and V
2

be the vector of arguments to procedure q. Consider the following specification, where C1 is

a predicate only involving v 1 and C2 is a predicate only involving v2:

(C1(v 1) A C2(v2)) ~

((Pi (V I)”~’~
t =~~ qj(v2)~ t”) ~ (pi(~i)~~

” ~~ q~(v 2)’~
t ’)).

Predicate C1 can be incorporated into the specification by qualifying procedure activation

so that p~(v 1) becomes

(Pi(V I) C1(v 1)].

_ 
_ _  _ _ _ _ _ _



_ _ _ _ _  _ _ _  _ _ _ _ _ _ _ _ _  
_____ T’T~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 99 -

Predicate C2 can be incorporated by qualifying activation qj to

(qJ
(v 2) I C2(v 2)].

This transforms the specification itself to:

([Pi(V l) I ~~
1(

~~
1)]

r.~ u$Si 

~~ (q~(v~) I C2(v 2)]~
t1r) D

I C1(v~) r~” ~~ (q~(v 2) I C2(v 2)rnt.r).

The meaning of this specification is that any activation of p satisfying qualifying predicate

C1 and any activation of q satisf ying C2 must obey the ordering constraint given, but other

activations of these operations need not. This is exactly the meaning of the original

specification: If C1(v 1) and C2(v 2) are both true, then the events must satisf y the ordering

constraint in order for the history containing those events to be valid. If either of the

qualifying predicates is not true, then the histor y is valid according to the specification

regardless of the order among the events .

In deriving a solution specification for this specification, there must be gates with

qualifying predicate C1(v 1) in the p’~~’”~ and p~~
t
~~ 

event classes , and a gate with qualifying

predicate C2(v 2) in the q
enter event class. The entr y conditions in the solution specification

are derived just as if the activations were unqualified, except that the enter gates for which

the conditions are derived, and the gates on which counts are taken, must be qualified

appropriately. Without the argument constraint predicates, this specification would be s
~
,

the example analyzed in Section 4.2, where the conQition

couiit (p”~ ’~
t ) — count(p~”~ ),

was derived for gate q”~’’. With the predicates included in the specification, the same

analysis results in the condition



- 100 -

couut((p(v 1) I C1(v 1)]” ”t ) — coun t((p(v 1) I C1(v 1)]”~ ’),

for the qualified gate (q(v2) I C2(v 2)rt T. That is, the qualification C1(v1) on activation

Pi(V l) results in qualifying the gates ~~~~~ and p ”~~, on which the counts are taken, with

this sa me predicate. The qualification C2(v2) on activation qj(v~) is attached to the q t~

gate for which the condition is derived.

A predicate involving arguments to more than one procedure activation is converted

into a conjunction of different predicates , each of which only involves the arguments to a

single act ivation . This is accomplished by parameterizing the original predicate in terms of

some new variable t. Once this is done, then the same method of qualification as discussed

above can be used. For example, the predicate (x — y). where x and y are arguments to

different procedure activations , is transformed into the two predicates (x — 0 and (y — 0.

Each of these two predicates is then incorporated into the specification by using it to qualify

the appropriate activation.

As a result, the specification

( x — y) ~

: q~(y)•flI•Y) D (p~(
X)1At.r ~~~ q~(y)•fl ISF))

is transformed into

((x — t) A (y — t)) 
.

((Pi(xY~~
l
~

t ~~~ q~(y)Sfl tS! ) 
~ (p1(x) ” ~~ q~(y)1fl*1~))

by parameterizing the predicate (x y). Incorporating the two predicates (x — t) and (y — 0
into the appropriate procedure activations further transforms the specification into

—.-.-—

~

-•

~

-———— -.----.--———.— --• -.- --— —, -. .—-~~
-
~ 

_ .._ _.i___•_~.1__ .. -- 
-~ - - - —~---~-



_ _ _  _ _  r1T ~T~ . T ~~~TI~T1~~~~TTT T~~TT

- 101 -

((P~
(x) $ ( ~~_~)]r~~~u18t 

~~ (q~(y) I (y=t))eflt r) D

([Pi(X) I (x—0J ’~” “ [qJ(y) I (y_t)rnt~)

Since this is again simply specification s~ with qualifying predicates on the procedure

activations, the resulting solution specification contains condition

count((p(x) I (x_t)]r~~
t$t) — couiit(Ep(x) I (x=t)]~~~),

for the qualified gate [q(y) I (y=t)]~
t
~ .

The meaning of this solution specification is the following: For whatever value of t is

equal to parameter y of an act ivatiOn of operation q. the enter event for that activation

passes through the gate tq(y) I (y=t)]~
t r . The condition for that gate is given by

count([p(x) I. (~ ~)]re~ est) = count ff p(x) I (x—t)3 ” ’),

for this same value of t. Therefore, the “gate” (q(y) I (y=0) actually represents an entire set

of gates, one for each value of t , which is to say each possible value of y.

An argument constraint predicate can always be parameterized into several predicates,

each of which involves only the arguments to one procedure activation. In fact , many such

ways of parameterizating a given predicate are possible. For reasons having to do with the

implementation that are discussed in Chapter 5, it is desirable that at most one of the new

parameterized predicates be a non-functional relation between the activation parameters

and the parameterizing variable(s), and furthermore that this possibly non-functional

relation apply to the arguments of the activation whose enter event is the offending event.

This restriction can alwa ys be followed in practice.

_ _  : . . -- .
~~~~~~—~~~~~~~~~~.—-~~~~~~~~ --~~~


~~ T - ~~~~~~~~~_-__I z..-~~ ~~~~~~~~~~~~~~~~~~~~ T1

- 102 -

Once a predicate has been parameterized, the resulting predicates then can be used to

qualify the corresponding procedure activations. When all predicates have been so

incorporated , the specification consists entirely of ordering clauses involving qualified

procedure activations. This specification can be analyzed by the method presented

previously, resulting in a solution specification containing qualified gates.

4,6 Justification of th e derivation method

Both the problem specification language and the solution specification structure have

been defined formally in terms of a common basis, the validity of histories. This means

that the equivalence of a problem specification and the solution specification that is derived

from it can be discussed in terms of the same set of histories being valid with respect to

each. Rather than attempt a formal proof of correctness for the derivation method, this

section will present an informal justification of the method. The justification will rely,

however , on the formal definitions given for validity of histories. The complete derivation

algorithm is presented in Figure 4.5, with the individual steps numbered for ease of

reference throughout this section.

In discussing the validity of histories with respect to both problem specification s and

solution specification ss, we can refer to the definitions of the predicates Valid from Chapter

2 and ValidSS from Chapter 3. They are repeated here:

-

~

- . .—-~~—--.-- , ----~~---- — -.- — -—-—---- ~ .---..- -

-— ~~~~~~~~~~~ ~~~~~~~~

~T~TTi ~~~~~~~~~~

-

~~

- -

~~~~~~

- 103 -

Figure 4.5. Derivation of solution specification as from problem specification a

(I) Transform s into a logically equivalent specification in which all argument constraint
clauses are in the hypothesis of an implication and all ordering clauses are in the
conclusion.

(2) Pararneterize each predicate on the arguments to more than one procedure activation
into two or more predicates , each of which applies only to the arguments of a single
activation .

(3) Incor porate each argument constraint clause that applies to the arguments to a
proced ure activation by qualifying each appearance of that activation using the given
clause as the qualifying predicate. The result is a transformed specification, to be denoted
s . Specification s’ consists entirely of ordering clauses on qualified events, except possibly
for clauses involving invocation number variables only, appearing in the hypothesis of the
implication. These clauses are ignored until step (8).

(4) Construct the set Evex p(s’) consisting of all event expressions , including qualif ying
predicates , that appea r in s’. The set of (possibly qualified) event classes associated with
these event expressions represents the set of gates required in solution specification ss.

(5) Construct all possible orderings of the elements of Evexp(s ’), by generating all
Per mu1tations of this set and then eliminating all those that are not possible.

(6) Evaluate specification s’ for each ordering, denoting each ordering that evaluates s’ to
T R U E  as val id , and each that evaluates it to IALSE as invalid.

(7) For each invalid ordering, find the longest matching prefix that it shares with some
valid ordering, and identify the event following this prefix in the ordering as the offending
event. If the offending event is not an enter event , then the specification is regarded as
erroneous, and the algorithm terminates without being able to derive a solution
specification.

(8) For each enter gate (either qualified or unqualified) that app lies to the offending event
in at lea st one invalid ordering, characterize the state at each event to which the gate
applies that appears in a valid ordering, and disjoin these characterizations to form D

~
.

Also, characterize the state at each offending event in an invalid ordering to which the gate
applies , and disjoin these characterizations to form D1. Any clauses in s’ constraining
invocation number variables must be included in each state characterization .

(9) For each enter gate for which step (8) is carried out , form the preliminar y condition
given by (Dv A —.(D

~
)). Test whether this condition is satisfied at every event to which the

gate a pplies that appears in a valid ordering, If so, then the preliminary condition is the
condition for that gate in solution specification ss. If not, then proceed to step (tO).

1.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •— ,..~~~~~~~~


~

- 104 -

(10) Find an event that precedes the given enter event in every valid ordering that is
excluded by the condition so far , and also in every invalid ordering whose offending event
applies to the given gate.

(II) Characterize the state at each of these points, and form disjunctions Dv’ and D
~
’ of these

characterizations analogous to those formed in step (8).

(12) Test all valid orderings still excluded to determine which satisf y the term (Dv’ A
If at least one such ordering does satisfy this term, disjoin the term to the current condition.

(13) If some orderings still do not satisfy the condition, then repeat steps (II) and (12) but
using the characterizations both for the current state~and at the previous event.

(14) Repeat steps (10) through (13) until either all valid orderings satisfy the condition or the
weakening term in step (12), or no previous event can be found in step (10). If the former ,
then the condition formed by disjoining the preliminary condition and all the weakening
terms from step (12) is correct and is attached to the gate in solution specification ss. If the
latter , then the method fails to derive a solution specification for problem specification s.

.-~~~~~~~~~~~~~~~~~ -.

- 105 -

Valid([], s) — TRUE

Valid(add(h, e), s) — Valid(h, s) n

V (ee, f) (cc € Evexp(s) A f is an interpretation
A Match(e, ee, f) D Sat(h, e, s, f)

ValidSS((], ss) - TRUE
ValidSS(add(h, <p. t, n, a>), ss) — ValidSS(h, ss) A

V (cc, q) (<cc, q> € Gates(ss) A ec — <p. t> A q(a)

D SatSS(h, ss, <ec, q>)
It is straightforward to compare these two definitions. They are both recursive formulas in

which the basis case is the empty history [1 and yields a value of TRUE. Also, both of the

terms for the inductive case, which is add(h, e), are a conjunction of the given predicate

applied to history h, and some term involving h and the last event e. Therefore, by

recursion induction ([McC62]), the two definitions are equivalent if and only if these last

terms are equivalent for all histories h and all events e — <p, t, n, a>. That is, it must be the

case that

V (cc, I) (cc E Evexp(s) A f is an interpretation n Match(<p, t, n, a>, ee, f)

D Sat(h, <p, t, n, a>, s, f)

if and only if

V (cc, q) (<cc , q> E Gates(ss) A cc — <p. t> A q(a)

D SatSS(h, ss, <cc, q>).

The first term requires predicate Sat to be true for all interpretations under which the event

matches an ex pression in the specification. The second one states that for all gates in the

solution specification “matched” by the event , predicate SatSS is true. These two terms must

be equivalent for problem specification s and solution specification ss to be equivalent, in

- 106 -

the sense that they allow the exact same subset of possible object histories to be valid.

Steps (1) through (3) of the derivation method transform the original specification s

into a new specification s’. To justify this transformation, it must be shown that

specifications s and 5’ are equivalent with respect to the validity predicate Valid, which

really means with respect to the satisfaction predicate Sat. Step (I), in which all argument

constraint clauses are brought into the hypothesis of an implication simply involves

properties of first-order logic. Step (2), in which predicates involving arguments to different

activations are parameterized, is also mathematically straightforward.

To justify step (3), let us look at the transformation that it accomplishes. We start

from a specification of the form 04v) D s1, where O~, is a qualifying predicate on some

parameter vector v and s1 is some specification involving only ordering clauses. According

to the definition of Sat,

Sat(h, e, Q4v) D
~

f) — (Sat(h, e, 04v), D Sat(h, e,
~

f)).

Furthermore, O~ must be some combination of arithmetic relations, which are invariant

under the Sat predicate, since

Sat(h, e, exp1 rd ex p2, 0 — (f(exp1) rd f(exp2)).

This means that if the interpretation of v by f satisfies the qualifying predicate Q~ then the

ordering specification
~i

must be satisfied by event e and history h under interpretation f.

If Q, is not satisfied by the interpretation of v by f. then It does not matter whether s
~

is

satisfied under f, since the overall specification is satisfied regardless. This is exactly the

result of qualifying the appropriate procedure activation in s
~

with predicate Q,on v. The

constraint represented by s
~

must be satisfied onl y if the qualifying predicate itself is

_
~~~. .~~~ 



-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 107 -

satisfied. Therefore, the transformation resulting from step (3) is consistent with preserving

the meaning of the specification. and the value returned by the Sat predicate is the same

when applied to the transformed specification s’ as to the original s.

The next steps of the algorithm construct the possible orderings of the events for

which the specification contains expressions. These orderings represent sub-sequences

within general histories. The history in which each ordering is embedded is assumed to be

otherwise valid with respect to the specification. For this reason, an invalid orderings

- rr’~..1 ‘ $iictnry that is not valid, while a valid ordering maintains the validity of the

overall history. Therefore, a condition that distinguishes the valid from the invalid

orderings is required to distinguish all valid histories from invalid ones.

Step (4) of the derivation algorithm consists of the construction of the set Evexp(s ’) of

event ex pressions in the specification. This can be accomplished by using the formal

definition -of this set in Chapter 2. The gates required in the solution specification are

exactly the gates associated with this set of event expressions. If the specification refers to a

certain set of qualified event classes, the solution specification must contain exactly this set of

gates. since it is these classes of events that the guardian must keep track of in order to

implement the specified constraint.

In step (5) all possible orderings among the elements of Evexp(s’) are constructed .

Each ordering actually represents a sub-sequence of a history, containing exactly those

events that are represented by the event expressions in a’ under some interpretation. Since

there is no restriction at all on the quantification, the range of the interpretation is the

..— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .



_ _ _ _  
__I~~I~~~~~~~~’.T~ T~~~T~ T IT T~T~~~ T~~~~T -

. 

- 108 -

comp1el.~ set of all interpretations. This means that the orderings together constitute the

entire class of possible sub-histories that consist of the events represented in the specification

under any interpretation.

An ordering is considered possible unless (a) there is some procedure activation whose

enter event precedes its request event, or whose exit event precedes its enter event; or (b)

there are two request events for the same procedure such that the invocation number of the

earlier one is greater than the invocation number of the later one under all interpretations.

This step corresponds to the restriction of the domain of Valid to histories satisf ying

predicate Possible, which embodies these same restrictions.

In Step (6), each ordering is used to evaluate specification s’, resulting in a

classification of each ordering as either valid or invalid. Since the implicit interpretation by

which the event ex pressions correspond to actual events is unrestricted, an ordering is valid

only if, under any interpretation whatsoever, each event in it satisfies the specification. An

invalid ordering, on the other hand, represents a sub-history which under some

interpretation does not satisfy the specification. This is equivalent to the definition of the

Valid predicate, where for a history to be valid, each event in it must satisfy the

specification for all interpretations.

- - The identification of the offending event for each invalid ordering in step (7) is

straightforward. The validity of a history with respect to a specification is defined in terms

of each successive event in the history satisfying the specification. Since the history in 
-

which the ordering Is embedded Is valid otherwise, the first event at which an invalid

.—

~ 

~
—.-— 

~
-..-- . . _

~~~~
._

~~
.

~~

_ _ _ _ ~~ T 1T. 7T.TT ~~~~~~~~~~~~~~~~~~~~~~~ ~~- ---_-- - -~~

- l og-

ordering fails to match some valid ordering is the “offending” one. All events preceding

this one must satisf y the specification according to the predicate Sat. The definition of the

validity of a history with respect to a solution specification similarly is in terms of each

event satisfying the solution specification conditions. This means that the offending event

must be the point at which SatSS is first not satisfied, and therefore a condition must exist

that is violated here .

Step (8) requires the state to be characterized at each point representing either a valid

or offending occurrence of an event of the given (qualified) event class. As described in

Section 4.2, this characterization is made by existentially quantifying all variables and

putting bounds on the counts of aH gates involved in an ordering. The existential

quantification of variables signifies the fact that the event expressions correspond to actual

events under some unknown interpretation, and that every variable is therefore replaced by

some unknown value. Each bound on the count of passages through a gate is either a

lower or upper bound depending upon whether the event at that gate precedes or follows

the point at which the characterization is made. If event xm
E
~
t F precedes this point, then

cnsi iit(x ’~”~) is presumed to be at least m, while if X
m~~~~

iSV follows this point, then

couiit(x ’~~’) is presumed to be less than m. For an event involving a qualified activation, it

is the count of the appropriately qualified event class that is bounded.

This characterizatio n is accurate because the scheduling at each gate is

first-come-first-served . According to the solution specification structure, two activations

whose parameters satisf y the same set of qualifying predicates must pass through exactly the

same set of gates. Since the queue for each event class is FIFO, these activations must

——- . --------—.~- .~~--- —-—-— - ——-------- — - -- -.-- .-.--— -.———--- -— ~~~

F T TI~TTr~ :~~ ~~~~~~~~~~
—

,

~~

---- -

..::“~~

- 110 -

proceed in first -come-first~served order. The rest of the state characterization method

simp ly involves introducing the existential quantification on invocation number values

explicitly, and including any explicit constraints on these values that may appear as clauses

in s’. -

The characterization that is formed for each ordering represents the most general

expression possible of the current state following the occurrence of a sub-history

corres ponding to the given orderibg. Nothing is assumed about the rest of the history

except what can be deduced directly from the events in the ordering itself. All unknown

values in the formula are existentially quantified, so the formula simply states that there

exist some values for which its body is true. That is to say, there exists some interpretation

causing a sub-history to correspond to this ordering. Therefore, D~
, the disjunction of the

characterizations from all the valid orderings, represents the most general expression of

when an event in the given qualified class can validly occur. Using the formal semantic

definitions of Sections 2.6 and 3.4, it is the most general characterization of CurSt(h) for

histories h which, when followed by some event e in the given class, satisfies the

specification a’ (by the definition of Sat) for any interpretation f. Similarly, D
~.

the

disjunction of the characterizations from all the invalid orderings, represents the most

general expression of when such an event cannot validly occur. This means that it is the

most general characterization of CurSt(h) for histories that under some interpretation do not

satisf y the specification when followed by an event in the class.

T T :T~~~~~~~ :TT~~~~ITT~ ____
.

~~~~~~~~

— ill —

The preliminary condition formed by (D
~ 

A —‘(Di)) in step (9) represents an attempt to

incorporate all histories with which an event of the given class satisfies the specification for

all inter pretations, and to rule out all those with w hich it does not. It is the conjunction of

two terms , one of which is the negation of D
~
, the ex pression of when the event cannot

occur . For this reason , it is guaranteed to be a strong enough condition to exclude all

invalid orderings, and therefore all histories that do not satisfy the Sat predicate for the

specification. Therefore, no history that does not satisf y Sat will satisf y SatSS for the

solution specification containing this condition for the given gate. Testing the condition

against all valid orderings determines whether or not it is weak enough to allow all histories

- 
satisf ying Sat . If so, then it is the correct condition, in that it causes exactl y the correct set

of histories to satisf y the SatSS predicate as well. If not, then there are some histories that

satisf y Sat but would not satisfy SatSS if ss contains the given condition.

Progressivel y weakening the condition allows more histories to satisfy SatSS. This

weakenin g is accomp lished by repeating steps (10) through (13) using previous states , each

time disjoining the resulting terms to the previous condition if they allow more valid

orderings to satisfy the condition. The weakenin g term constructed from the first

application of steps (II) and (12) involves only quantities in the previous state. If this is

found in ste p (13) to be not suff icient , then repeating steps (II) and (12) allows a term to be

constructed that involves relations between quantities in the previous state and those in the

current state . Since each weakening term is of the form (Dy’ A —‘(Di’)), just as the

preliminary condition is, no invalid orderings can become allowed as a result of this process.

By choosing each time an event that precedes the given point in all remaining valid

_  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r~T1

- 112 -

orderings still not allowed by the condition, the weakening terms constructed have a good

chance of including most if not all of the remaining valid orderings. Therefore, steps (10)

through (13) in practice rarely need to be repeated more than once or twice. Eventually, all

valid orderings must be included, unless the algorithm fails due to an inability to find a

previous state in step (10) to use in constructing new weakening terms. Specifications for

which this the algorithm fails are the subject of the last section of this chapter.

4.7 Failure of the derivation algorithm

The structure of the solution specification is flexible enough to express the solutions to

a large class of synchronization problems. However, certain features do limit somewhat the

range of synchronization constraints that can be ex pressed. The solution specification

structure is less general than the problem specification language, so that for some

specifications the derivation algorithm is unable to construct equivalent solution

specifications . As noted in Section 4.2, this sometimes is manifested by finding the

offending event in an ordering to be other than an enter event. Since this would imply a

condition on a request or exit gate, such a specification is incompatible with the solution

specification structure that only places conditions on enter gates. The algorithm therefore

fails whenever an invalid ordering is found for which the offending event is not an enter

event.

_ _ _  
_  _ _ _ _  _ _ _



- 113 -

The other manifestation o~ incompatibility with the structure of the solution

specification is an inability to find sufficient previous states at which terms can be

constructed to weaken conditions. An example of such an incompatible specification is the

“last-come-first -served” (LCFS) scheduling specification of Example 6 in Section 2.7:

- 
(pi~~~~~

t 
.
. 

~~~~ i’i~~~
) D (p~SfltSr : p~

snt.r).

When the derivation algorithm is applied to this specification, the following preliminary

condition is first constructed for gate penter:

couilI(p~~
0s5t) count(p’~’’) • I

This condition is found not to be satisfied by one of the events occurring in a valid

ordering, however , namely Pj ’
~~

in the valid ordering

~ 1
reaueSt ~~~ ~~requ.St ~~ ~~enI.r

~~

This must be distinguished from the offending event p~
”
~
’ ’ in the invalid ordering

.

~~ p;e~usst ~~~ r
enter ~~~ ~~enhsr

on the basis of previous state information. Since these orderings differ only in the identity

of which of the two pe~~r events occurs first , and the identity is not reflected in any

predicate on the parameters of the two activations , it is obvious that the two cannot be

distinguished. In applying the algorithm, there are two previous events at which possible

weakening terms can be constructed: the most recent, and next -to-most recent , pr~~ uh1St events.

However , the state characterizations for the two orderings are identical in each case,

resulting in potential weakening terms that are identically FALSE and thus not useful. As a

result , the derivation ends in failure, since no other possible weakening terms are available.

~A . ~~~~~~ . --- ~~~~~~~~~~~~~ --~~~~~~~~~~~~~~- ~~- --- . - -~~~~~~~~~~~~ --~~~~~~~ --

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -~~ - .~ —---

~~~

- .. -

~~~~
--.,

~~

--.

- 114 -

The reason for the failure of the algorithm on this specification is that the property

specified requires two different activations to be distinguished, not on the basis of their

parameters , but simply by their identity. A solution specification condition for this

- constraint would have to depend on not only the number of previous events, which would

involve the current synchronization state, or even the order of these events, since this

information can alwa ys be obtained from previous state information, as ex plained in Section

3.3. Instead , the constraint relies on distinguishing the identity of two different activations.

However , since there is no parameter-related property by which to distinguish the two

activations , the structure of the solution specification requires that the activations pass

through the same gate or set of gates for the p ”~ event class in FIFO order. The

requirement in the specification of non-FIFO scheduling is in direct contradiction with the

solution specification structure. This is why the derivation algorithm cannot possibly

succeed in deriving a solution specification for this specification.

Synchronization constraints such as the LCFS specification that rely on the identity of

particular events are rather unusual in practice, and their incompatibility with the solution

specification structure is not terribly distressing. A second kind of incompatibility, though,

is demonstrated by a very commonly desired property, the first -come-first-served (FCFS)

specification of Example 5 in Section 2.7:

(pi~~~~~~
t

~~~ q~P~~~ 19t
) H 

~Pi”~
t ’  ~~ q~SflICT).

This specification , somewhat surprisingly, is also one for which the derivation of a solution

specification fails. The reason is that this synchronization constraint cannot be implemented

using one queue for each event class and one entry condition for each queue. An

_ _ _  .
~~~~- . - - - -.~~- - -- ...- ~~~~- .—— -.,-- — -,, - ~~~--— - -.


_ _ I1~T ~~~~~E1~~~~: _ _ _

- 115 -

implementation using the serializer construct appears in (Hew77] for a FCFS scheduling -

property on two operations “read” and “write”, but this relies on the two operations sharing

the same queue, though with different entry conditions. A monitor implementation was

devised in an unpublished note IBro76), but here again the two operations shared a single

queue, with one of the operations using a second auxiliary queue as well.

The reason that a solution specification cannot be constructed for this property is that

it would be necessary to save information at a previous state that is arbitrarily far back in

the history. The solution specification structure allows states to be saved at the most recent

event at a gate , and by extension, at the next -to-most recent, etc. However, the FCFS

constraint requires that each enter event use information from the point in the history at

which the corresponding request event took place, which may be arbitrarily far back . That

is, the condition for enter events by different processes must involve information saved at

previous states individually applicable to each process. Specifically, let

tcount(ec) private , ~~reqvSSt]

be a quantity that for any particular activation of operation7 p represents
•
the value of

count(ec) sa ved at its request event . Then the conditions on gates pu”’ and q~ t~ could be

cx pressed as: -

p’~
’•’: [count(q”~”~’) private e ~~rsquest] • count(q”t”)

q ’~”: ~count(prs~uest) private • qn1~~~St) — couist(p~ t ’)

That is, there must be as many q ’t” events at the time of a p”
~~~

’ event as there were

q
requ•St events when the given activation of p was requested.

_  — -— . ---— 



r~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 116 -

The use of this kind of information that is “private” to each process appears in

(0wi76] to specify solutions to synchronization problems. Interestingly. the LCFS property

can also be ex pressed with the use of private information. The condition on gate p~~ ’

becomes:

(couilt(p~~
Ie5t ) - (coun t(p

n1
~~

1St
) private @ ~ rsqu.St ]) —

(couiit(p ’~t ’)  - CoUiit(psnter) private • ~r.qu.st ))

In other words, all requests for p since this activation of p was requested must first be

fulfilled.

The solution specification can only save states at a “fixed” distance back from the

current state, where “fixed ” is relative to the number of events at a gate. Information

privately saved by each process must be saved at states arbitrarily far back in the history.

Without such privately saved information, the solution specification structure is unable to

express certain properties, including the rather straightforward FCFS property. This must

be considered a weakness of the solution specification and therefore of the synthesis method.

However , it is nevertheless true that most specifications are compatible with the solution

specification structure, so that the derivation algorithm does succeed in constructing

equivalent solution specifications in most cases. The next chapter describes the last step in

the synthesis for these cases, the implementation of the solution specification in actual code. 

~~~~~~~


_____ ‘ I T ~~~~T - -

- Ill -

Chapter 5

The Source Langua ge Imp lementation

4
5.1 Introduction

The derivation of an equivalent solution specification from a problem specification.

using the algorithm presented in chapter 4, constitutes the major conceptual task Envolved

in synthesizing actual synchronization code. The derived solution specification is a

procedural representation of the same ordering constraint that is expressed non-procedurally

by the problem specification. The final step in the synthesis is implementing the solution

specification in terms of an appropriate source language synchronization mechanism. The

translation fr om solution specification to source language is the subject of this chapter , and

while relatively straig htforward , it is not completely obvious for all cases .

The structure of the solution specification As general enough for it to be translated into

any one of a wide range of source language synchronization mechanisms. For purposes of

ex plaining and illustrating the translation technique, the monitor construct of Hoare

([Hoa74)) will be used throughout the thesis. An implementation using an alternative

high-level synchronization mechanism such as conditional critical regions ([Bri72)) or

serializers ([Hew77)) would be quite similar. If a lower-level mechanism such as semaphores

([DijGS)) is preferable , then an algorithm given in (Hoa74) can be used to further translate

the monitor implementation given here into semaphore code.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~ 

.

- 118 -

A fundamental assumption of the model used here is that all synchronization for a

data object takes place through a single centralized mechanism associated with that object.

This does not cause any problems with an implementation in terms of monitors, or any of

the other constructs cited above. However, it does make the solution specification structure

somewhat incompatible with situations in which a data object is distributed throughout

some decentralized system, and where it is desirable for the synchronization control similarly

to be distributed. The structure of the solution specification does not give much aid in

deciding how to perform the message passing required in a distributed system to implement

the synchronization constraint . For centralized synchronization mechanisms such as

monitors, though. the implementation is not too difficult, as will be demonstrated once the

monitor construct itself has been introduced in the next section.

5.2 Monitors

The monitor is a synchronization mechanism that was first described by Brinch

Hansen in [8ri73) and defined more formally by Hoare in [Hoa74). It grew out of the

“secretary ” concept proposed by Dijks tra in [Dij72b). A monitor is an extension of the class

construct of Simula [Dah723, with one important difference. A monitor, like a Simula class,

consists of some local data and a collection of procedures for manipulating that data. The

major difference is that executions of the procedures of a monitor are mutually exclusive, in

order to protect the integrity of the local data. Processes attempting concurrent executions

of a monitor ’s p~rocedures must wait to gain exclusive access to the monitor. This waiting is

defined by Hoare to be fair , and can be assumed to follow a first-come-first-served

discipline.

_ _ _ _ T~TT~~~_T~T T T~~.T T T

- 119 -

-

Monitors also contain features for ex plicit process synchronization. As defined by

Hoare, this takes the form of a condition data type, which represents a FIFO queue of

waiting processes. Two operations are defined on a condition for queuing and dequeuing

processes: “wait ”, whic h causes the process executing the operation to enter the queue; and

“signal”, which dequeues the process at the head of the queue, if any. Both operations cause

the process executing the operation to relinquish possession of the monitor. A process on a

queue that is dequeued via a “signal” operation by some other process regains possession of

the monitor . It resumes execution of the monitor procedure it was executing at the point

immediately following the “wait ” operation that it~ performed . An additional operation

“queue” returns a boolean value, indicating whether any processes are on the queue.-

The notation used here will be based on the language CLLJ [Lis76) rather than the

Simula-based notation introduced by Hoare. Thus, a “wait” operation on condition variable

c is written -

conditionSwait(c);

rather than

c.wait;

as in [Hoa74).

Hoa re advocates associating informally with each condition variable a boolean

predicate on the local data of the monitor. This predicate indicates what condition on the

- monitor state a process on the queue is awaiting. Making this association aids in proving

properties of monitors. As indicated in the next section, this association makes cofldition

variables suitable for representing the entry conditions in the solution specification being

_ _
7 _ _ _ _ _ _ _

~

__

-

~~~~~~~~~~~~

- 120 -

implemented.

5.3 The basic monitor implementation

S

A comparison of monitors with the solution specification structure discussed in

Chapter 3 reveals a close correspondence between features of one and the other . The local

data of a monitor is sufficient for representing the state information required in a solution

specification. since this state information can be represented by a collection of integer-valued

quantities. A condition var iable in a monitor is a FIFO queue of waiting processes, and as

advocated by Hoare, has associated with it informally a boolean predicate on the monitor

data. These are exactly the features required for conditions associated with enter gates in a

solution specification . Passage through a set of gates associated with a given event class

- 
must be indivisible and produce a state change in the system. Monitor procedures are ideal

for implementing gates, in that they manipulate the local data of the monitor, and because

the enforced mutual exclusion on their executions makes them indivisible operations.

Monitor procedures can take parameters , which is important since the behavior of gates

sometimes depends on the arguments to the associated procedure activation.

It should be emphasized here that the monitor is being used to implement only the

synchronization code, not the abstract data type as a whole. The monitor wis originally

conceived in (Hoa741 to implement a shared data abstraction itself. Criticism of the monitor

construct has appeared in some recent technical literature (e.g. tHew77), (Hadll), (Jam77]).

The basis of this criticism has been that the use of monitors to implement abstract data

types leads to such problems as reduced concurrency, lack of modularity, and a potential for

~ 

— — — ~~~~~~—. -.-- - —~-—--~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ —~ - - - - -- .-—---—----. -..-------—- —-—-——~~~~~~



T~T ITT . -

~~~~~~~~~

121 -

deadlock through hierarchica l monitor calling. As used here, however, the monitor is

employed within a data abstraction, for the sole purpose of implementing the

synchronization code required by the operations of the abstraction. The monitor procedures

are kept small in size, so that their use does not significantly affect the degree of

concurrency possible. Modularity is enhanced by implementing the synchronization code -

separatel y from the abstract data operations. Since lower-level abstractions are called from

the bodies of the operations, not from the synchronization code, the problem of hierarchical

use of monitors is avoided. (See [Blo78) for the advocacy of a similar discipline in the use

of monitors.)

The monitor for a data type contains three procedures for each operation p of the

type. These I)i~ocedures represent the three event classes associated with p. and are named
S

p_ request , p_ enter , and p_ exit . It is necessary that the procedures of the derived monitor be

called at the proper points within the data abstraction operations. in order to ensure that

the monitor is used properly and the synchronization constraint is embodied in the data

abstraction . The form that operation p must take is illustrated below in Figure 5.1. The

identifier “rn” is the name of the constructed monitor, and v is the vector of parameters to

operation p. This vector of parameters actuall y must be passed to the monitor procedures

only for implementations involving qualified gates, as ex plained in Section 5.5.

The monitor implementation of a “basic” solution specification that involves neither

previous state information nor qualified gates is straightforward . Recall that the abstract

program for an activation of operation p of the data abstraction in such cases is given by:

~~~~~~~~~~~~~~~~~~~ -.-- -.-. ~~~~~~~~~~~~~ ---- - 



Figure 5.1. Monitor calls within operation p

p - frroc ... ;
call m.~)JequeSt(v);
call m.p_enter(v)

(body of p)

call m.p_eYit (v)~,
end p;

p’
~~~’~~~: increment count(pr~ h1~ t) by I

p’”: wait until entry condition is satisfied,
then increment count(p~ ’’) by I

execute body of operation p

p~
XIt : increment count(puIt) by I

- For each quantity of the form count(ec) that appears in one or more entry conditions

in the solution specification , there is a corresponding variable of type integer in the monitor.

This variable is initialized to 0, and is incremented by I in the procedure that represents

- event class ec.

An alternative implementation could employ instead a separate variable for each

quantity of the form (count(ec 1) - coun t(ec2)), since a condition almost always concerns the -

difference between two counts. The implementation chosen here is somewhat simpler for

purposes of explanation. It does, however, incur the possibility of integer overflow, since

each variable is constantly increasing over time. Although techniques can be used to avoid

overflow by dynamically extending the precision of integers, the alternative might be

preferable in practice.

_ _ — -~~~~~~- - -~~- --- -— -~~~ - .-. -~~~~~~ -— -- -—

~ -

~~~~~~~~

-

- 123 -

For each enter gate with an entry condition in the solution specification, the monitor

contains a condition variable. The boolean predicate informally associated with this

variable is exactly the same as the entry condition, with each quantity of the form count(ec)

replaced by the corresponding variable. Let the condition variable corresponding to gate

p
enter be pentry, and denote the predicate a ssociated with it as Ci,. Then the first statement

- in procedure p_enter is

if (— ‘ C~) then condition~wait(pentry); end;

Whenever control of the monitor is relinquished, it is necessary to check the predicates

associated with all condition variables on which processes are queued. If one or more of

these predica tes are satisfied, then a “sign a l ” op era tion is performed on one of the

conditions. The condition to be signalled must be chosen in a fair manner , so that no

process starves because the condition on which it is queued is never chosen for signalling.

This can be accomplished by using a variation of Dijkstra’s “guarded commands” [Dij75) to

L implement a new kind of statement called a “choice” statement. Changing Dijkstra’s

notation so as to distinguish choice statements from ordinary If statements, a choice

statement looks like:

choose

B i: ~
B2:

8n ~ri
end;

where the number of guarded commands n > I. The meaning of this statement is the

following: The “guards” B
~ 

are simply boolean expressions. If one or more of these guards 

-~~~ -~~~~~-~~~~~~~~
.-— --—-~~~~~~~ -~~~- --., ,—.- ,-- —.-—--~~~~~~~ _ _ _ _ _ _ _ _  _ _



1
I

- 124 -

are true, then one of the true guards B~ is (non-determinately) selected and the

corresponding statement s~ is executed. There are two important differences between this

statement and Dijksrra’s version. The method for making the selection between several true

guards is unspecified but must be fair. Also, if none of the guards is true, then the

statement is simply skipped.

S

IC the condition variables in the monitor are pentry, qentry, etc. with corresponding

boolean predicates C~. C~. etc., then the following choice statement must appear at the end

of every monitor procedure:

choose

cond itio n~queue(pentry) A Cp: condicion$s igna l(pen try) ;

condition~queue(qentry) A Cq: conditionlsignal(qencry);

end;

This ensures that whenever one or more waiting processes can be dequeued, due to the

satisfaction of the predicates on which they are waiting, one of them will in fact be

dequeued. The fact that the predicates in the guards include the conjunct of the form

con ((z tzon~queue(p entry) ensures that the condition that is signalled does in fact have a

waiting process. As long as the selection is made fairly, the monitor will be a faithful

implementation of the solution specification.

A property of the monitor construct that is used here is that a process that is dequeued

from a condition variable via a “signal” operation gains possession of the monitor ahead of

any process that is attempting to call a monitor procedure. This ensures that a process that

has been waiting for an entry condition to become satisfied is allowed to proceed as soon as

1~~~~~~ IJ -.— ~~~~~--— -- -- ——~~
-—

~~~~
- - -

~
----“ _ _ _

_ _ _

- 125 -

the condition is in fact satisfied, and is not overtaken by a later-arriving process. This

property is necessary for the faithful implementation of the FIFO scheduling that is part of

the solution specification structure.

In practice , it is often possible to optimize the signalling statement by eliminating some

of the options in the choice statement. The basis for such eliminations is that the

corresponding guards cannot possibly be satisfied at the given point in the monitor, due to

- - the rest of the monitor code. In fact, for many simple examp les, at most one guard in the

-
choose statement can ever be true at any given point. However , in general the analysis

required to perform this optimization is difficult. Rather than becoming involved in the

details of when a given option can or cannot be eliminated, the simple-minded -

implementation of always testing all conditions will be used here. (In practice, it might be

simpler to make a separate procedure internal to the monitor for this signalling code. Each

of the regular monitor procedures could then call on this internal procedure.)

An optimization that can be made easily is the elimination of unnecessary monitor

procedures. If no reference is ever made to the quantity count(pT.~~~t) or count(p~ ”). then

the body of the corresponding procedure is empty. The procedure itself, along with the call
S

to it within the data abstraction operation p. then can be eliminated. Similarly, if there is

no entry condition a ssociated with gate p~
t”, and no reference to the quantity count(p~ t r),

then procedure p_enter can be eliminated.

_ _ _ --—-- -~~~~~~~~~~-—----_~~~~~ ——~~~~~-- _ _ _ _ _ _ _

- 126 -

As a concrete exam ple of a monitor implementation, consider the following

specification:

~~ q,~
•flt•P) D

~
p

~
•’

~
” ,1

q~•A tSP)) A

~~~ r~”~~
’) ~~ (q~SNit ~~~ p1

SflhSr)).

There are two clauses, one giving operation p priority over operation q. the other excluding

new activations of operation p during active executions of operation q. The solution

specification for this example consists of the conditions

For gate q~”~ : couast(p’~ ”~ ’) — count(p fltsr)

For gate p~”: count(q ”) — count(q 11)

The monitor implementation of this solution specif ication contains fou r integer

variables , representing con in(p re~ i~~t ), count(p ’””), count(qefl t~~) and cou iit(qshi t ). These

variables are named pi, pn, qn, and qx, respectively. Each variable must be initialized to 0.

and incremented by I in the corresponding monitor procedure. There are two condition

variables, pentry and qentry, for the entr y conditions on gates p~ ’’ and q~ tSr. The

predicates associated with these condition variables are the analogues in terms of monitor

variables to the solution specification entry conditions: (pr — pn) for qentry, and (qn — qx)

for pentry. The monitor “cx ” that is obtained for this example appears in Figure 5.2. The

monitor procedures p_exit and q_request have been eliminated as unnecessary. Operation p

of the data abstract ion must ca ll monitor procedures ex.p_.request and ex.p_enter (in that
- order) before executing its body, while operation q must call procedure ex.q_enter before

executing its body, and ex .q_exit afterwards. - 



_____ — - ___ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
-

- 127 -

Figure 5.2. Monitor for examp le
ex — monitor;

pr, pn. qn~ qx: integer;
pentry. qentry: condition;

p_ request — procedure;
pr~~ pr .l;
choose

condition~queue (pentry ) A qn — qx: condltion$signal(pentry);
conditionBqueue(qentry) n pr — pn: condition$signal (qentry);

end;
end p_ request;

p_enter — procedure;
if qn � qx then cond i tion$wai t (pentry); end; -

pn := pn .1;
choose

condition~queue(pentry) A qn — qx: cond ieionkigna l(pen try) ;
condition~queue(qentry) A pr — pn: condition$signal(qentry);

end;
end p_enter;

q_enrer = procedure;
if pr � pn (hen conduion*wait(qentry); end;
qn :- qn • I;
choose

conditionSqueue(pentry) n qn — qx: condirionSsignal(pentry);
condition~queue(qentry) A pr = pn: conditionkignal(qentry);

end;
end q_ enter;

q_exit — p rocedure;
qx :— qx + I;
choose

condition2queue(pentry) A qn — qx: conduion~signal(pentry);
condition$queue(qentry) A pr — pn: condition$signal(qentry);

end;
end q_exit;

pr, pn, qn, qx :- 0, 0, 0, 0;
end cx; 

-



F’ -~~~~~~~~~~~~~

-

~~~~~~~~~ 

-

~~~~~~~ ~~~~~~~~~~~~~~~

- 128 -

5.4 Previous state information

When a solution specification contains references to quantities not only in the current

state but also in previous states , these quantities must be maintained in the monitor in a

different manner . Specifically, a separate monitor variable is required for each quantity of 
-

the form “(count(ec) @ g]”, where g is some gate. This variable of type Integer saves the

current value of the variable representing count(ec) in the monitor procedure corresponding

to gate g. That is, it is set in the procedure representing gate g- by assigning to it the

current value of the variable representing couut(ec). It can be used in the boolean

predicates associated with condition variables in the same way as a variable that represents

a quantity in the current state .

Consider exam ple 7 from Chapter 2, the specification for “operation pairing”:

(a1~
ter -. b~~’’) 

.. (c~’~’’ =~ d~~
t T).

The dei-ivation of the solution specification for this example was started in Section 4.2. The

overall solution specification is:

For gate a’~~’:

(cou i.t(b~ ’ ’ ) > count(d”~ ’)) v ([count(a ”) • d~
t ] < [count(c hlt r) • de ter])

For gate b~~
t r :

(count(a e
~t r )  � count(cmfh r)) V ((coun t(b ”~” ) • c’~~’i < Ecount(dshlter) •

For gate C’~~~
” :

(count(d M? ) > count(b’~”)) v ((count(c”) • b”~”J < (count(a”~’’) • b”~’])

- For gate d’~~ :

_ _ _ _ _  _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _



_______________________ - -

- 129 -

(con nt(c efl t r ) � count(aeflt r)) V ( ount(d”) • acMe?]) < (cou nt(beMer) •

Since the entr y conditions do not involve any request or exit gates, only four procedures are

needed in the monitor , one for each enter event class. Each of’ the operations a, b, c, and d

must call the appropriate monitor procedure prior to executing its body. The variables an,

bn. cn, and dn can be used to represent the current counts of the four enter event classes.

In addition, eight other variables are- needed to save the values of counts in previous states.

Variable amrd, for example, represents the count of gate a f l t ?  saved at the most recent

d’~” event. This variable is set in monitor procedure d_enter to the value of an, which

represents the current value of count(asflt r). Similarly, variable cmrd represents the count

of gate c’~” saved at the most recent d1~~
t .T event . The predicate for the condition variable

aentr y on which procedure a _enter performs a wait operation is:

bn �dn v amrd < cmrcl.

The predicates for the other condition variables bentry, centry, and dentry are analogous.

The complete monitor appears in Figure 5.3. -

5.5 Qualifie d gates

The remaining issue to be handled is the implementation of qualified gates, which

arise in a solution specification from the presence in the problem specification of predicates

on the arguments to procedure activations. Recall from Chapter 3 the abstract program for

an activation of operation p in a situation involving qualified gates:

_ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
_ _ _



___ ~~~~~~~~~~~~~~~~~~~~~ ~~~~T ITT .

- 130 -

Figure 5.3. Monitor for operation pairing example

pairs = monitor; -

an. bn. cn, dn: integer;
amrd, cmrd, bmrc, drnrc: integer;
amrb, cmrb, bmra. dmra: integer;
aentry, bentry, centry. dentry: condition;

a enter = p rocedure;
if (bn <dn A amrd � cmrd) Men condition$wait(aentry); end;
an := an . I;
hmra := bn;
dmra := dn;
choose

con dzrzon ~queue (a entry) A (bn � dn V amrd < cmrd): conditionSsignal(aentry);
conditiont queue (ben try) A (an � cn v bmrc < dmrc): condition$sigñal(bentry);
cond:tion~queue(centry) A (dn > bn v cmrb < amrb): conditionSsignal(centry);
condition~queue(dentry) A (cn � an v dmra < bmra): conditionkignal(dentry);

end;
end a_enter;

b_enter = procedure; .

if (an <cn A bmrc � dmrc) Men cond ition$wait(bentry); end;
bn := bn + I;
amr b := an;

cmrb :— cn;
choose

conditionltqueue(aencry) A (bn � dn V amrd < cmrd): conditionSsignal(aentry);
conditioni~queue(bentry) A (an � cn V bmrc < dmrc): condition$signal(bentry);
condition~queue(centry) A (dn � bn V cmrb .c amrb): conditionSsignal(centry);
condition~queue(dentry) A (cn � an V dmra c bmra): condition$signal(dentry);

end;
end b_enter;

c_enter — p rocedure; -
U (dn < bn A cmrb ? amrb) Men condition$wait(centry); end;
cn := cn • I;
bmrc :- bn;
dmrc := dn;
choose

conditionSqueue(aentry) A (bn 2 dn V amrd < cmrd~. conditionSsignal(aentry);
condition~queue(bentry) A (an > cn V bmrc < dmrc): condition~signal(bentry);
condaion~queue(centry) A (dn 2 bn v cmrb < amrb): conditionSsignal(centry);
conditionSqueue(dentry) A (cn 2 an V dmra < bmra): condltionSsignal(dentry);

end;

-

~

—

~ 

-~~~~~~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~- ~~
_-.



V~T I~ i:~~~~ IT~~~~.T~T~TI~~~ 
- ,

~~~~~~~~~~
—— -..

I

- 131 -

end c_enter;

d._enter p rocedure;
if (cn <an A dmra > bmra) (lien condwon$wait(dentry) end;
dn := dn + l; -

amrd := an;
cmrd := cn;
choose

conditionE queu e(aen try) A (bn 2 dn V amrd < cmrd) : condiziontsigna l(aen try) ;
conditiontqueue(bentry) A (an 2 cn V bmrc < dmrc): conditiontsignal(bentry);
conditionBqueue(centry) A (dn > bn v cmrb < amrb) conditlonSsignal(centry);
con(lition~queue(clentry) A (cn 2 an V dmra < bmra) conditlonlsignal(dentry);

end;
end d_enter;

an , bn, cn, dn := 0, 0. 0. ~amrd, crnrd, bmrc, dmrc := 0, 0, 0. 0;
amrb, cmrb, bmra, dmra := 0, 0. 0, 0;

end pairs;

—-_-~~~~~~~~~~ - - - . - - -~~~~~~~~~~~ --~~~~~ -~~~-- _ _


~~~~~~~~~~~~~

- -—-

~~~~~

-

~~~~

- --= —

~~~-- -

-

~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ 

-

- 132 -

p
rs~USst

: in parallel for all gates g in event class ~~~~~
if v satisfies the qualifying predicate of g.

then increment count(g) by I

in parallel for all gates g in event class p’~”,

if v satisfies the qualifying predicate of g.

then wait until the entry condition of g is satisfied,

and then increment count(g) by I

execute body of operation p

p
•*Ii

: in parallel for all gates g in event class p’~”,

if v satisfies the qualifying predicate of g.

then increment Count(pex t) by I
-

How this abstract program is implemented in a monitor depends to some extent upon the

nature of the qualif yi ng predicates. In all cases, though, it is necessary that each of the

monitor Procedures -p_ request , p_ enter , and p_exit ta ke the same vector of arguments as the

data abstractio n operation p itself does. This allows the monitor , procedures to test the

qualif ying predicates on the arguments, thereby determining which gates apply to an

operation activation. Each monitor procedure implements the entire set of gates for the

given event class.

O~ialified request and exit gates are easier to implement than qualified cuter gates.

Since these gates consist only of incrementing integer variables, it is merely necessary to test

the qualif ying predicate before incrementing. The simplest case involves a predicate

concerning only the arguments to the associated data type operation. A qualified count , like

an unqualified one, is represented by an integer variable initialized to 0. The update to this

/~i’ Iable is preceded by a test of the qualifying condition, and is only made if the condition

-—~~~~~~~~~~~~~~~~~~~~~~~ —-~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -,

- 133 -

is true. For examp le, let the qualifying predicate be 04v), i.e. the quantity to be updated is

something like couut([p(v) I Q,~v)~~
1’). If x is the monitor variable representing this -

qualified count, then the update statement in procedure p_exit is

if QJv) then x:=x•l; end; -

There ma y be more than one qualified gate for an event class, in which case a

separate state variable is required for each gate. The update of each state variable x 1 must

be preceded by a test of its corresponding condition Q,~
. Because more than one of these

conditions may be simultaneously satisfied, it is important that the tests be made in a series

of statements of the form

zf Q~(v) Men xi:~
x1 • l end;

rather than in one statement such as

if Q4(v) then x 1 := x1. I

elseif Q~(v) then x2 :— x2 • I

elseif ... end;

that could only increment one variable at most.

-

A qualifying predicate may be parameterized, and so involve not only the arguments

to the associated operation. but also a parameterizing variable t. (There actually may be

several parameterizing variables t1.
but they can be combined into one composite variable t

-

= <t1 t ,~>.) For each possibk value of t there is conceptually a separate gate, which means

there must be a separate quantity in the state. For example, suppose that a solution

‘
~~~

•. ii i~~it i~~i contains a quantity of the form count([p(v) I 04v. t)]” ). If the parameterizing

variable t were of ty pe integer and could only take values from a restricted range , say I to

.1~-.
_ _ _  _ - - -m--- - - - - ’-~~~~~~~~~~~~~~~~~~~-~~~~~~~-~-



T’i~~~~~~~~~’~ T~~T

- 134 -

100, then this quantity could be implemented by an array with that subscript range. The

n-th element in the array would represent the quantity count(Ep(v) I QJv, n)]1x1t).

In general, of course , variable t is not necessarily an integer, and it is impossible to

know ahead of time all possible values for t. The same idea can be used in the

implementation , though, by employing an abstraction that captures this same effect. The

par ameterized type “counts[TT’, where T represents the type of t , contains counts for all

possible values of t , at least conceptually. These counts are all set to 0 initially when a new

ob ject of type countslT] is created , and the count corresponding to a particular value t
0 

is

incremented by the operation “incr ” with t0 as argument.

In the actua l implementation of the type countslTj , the count for any particular value

of t is created and added to the object of type counts(T] only as it becomes needed. The

implementation of this type in a language with dynamic arrays such as CLU is

straig htforward. However , the dynamic creation of counts as they are needed is an

implemen tation detail; users of the ty pe can ignore this and use the abstract conception of

all counts that are needed being cieated as part of the object initially.

For the purpose of translating a solution specification into a monitor , each state

variable representing a qualified count whose predicate is parameterized by variable t must

be implemented by an object of type countstT]. A “create ” operation for this object is

required in the initialization code of the monitor. The qualifying predicate must take the

form of a functional relation between variable t and the arguments of the procedure

activation , i.e. the qualified quantity must be of the form count([p(v) I t — flv)) x~t ). It is

~~l~iiit&. -- -~~~~~- -- —--_---- .—. -- - - - - —- - -~~~~-- -~~—. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -. .—._--- - --— - --- -- —



_ _ _ _ _  _ _ _  1

- 

- 135 - 

-always possible to parameterize a predicate so that at most one activation is non functionally
- related to the parameterizing variable t. This activation should be chosen to be the one for

whose enter event the condition is derived. This means that only one value of t can apply

to any given activation, and so only one count needs to be incremented. Incrementing the

proper count is accomplished by the statement

counts[T]lincr(cou, 1(v))

where T is the type of t and cou refers to the object of type counts[T].

There must also be an operation “get”, analogous to the “fetch” operation on arrays, by

which the count for any particular value of t can be retrieved. This operation is used

within the predicates for conditions associated with parameterized enter gates, as explained

below. 
- 

The quantity

couut([p(v) I (t —

in a solution specification entry condition is implemented by the operation call

- counts[T]$get(pexitcounts, 1(v)),

where the object referred to by variable pexitcounts represents count([p(v) I (t — f(v))]”).

- . 
Oj ialified euler gates are more complicated to implement than other types of gates.

Not only must a quantity of the form count([p(v) I Q.(v))r~~’) be updated, but first some

entry condition must be satisfied, which means that waiting must be implemented. The

simplest case is when there is a single qualified gate for the event class, and where the

qualifying predicate is only on the parameters to operation p. Then there is a single

condition variable “cond”, just as for an unqualified enter gate. The wait operation on

“cond” is preceded by a test of the qualifying predicate 04v) as well as the associated 



- 136 -

predicate C:

if QJv) A (-‘ C) then conduion$wait(cond) ; end;

When an enter event class contains more than one gate, each with a different

q ua l ifyin g predicate and entry condition, then there must be a separate condition variable

for each possible subset of gates whose qualifying predicates may be satisfied by an

activation. The boolean predicate associated with each condition variable consists of the

conjunction of the entry conditions on all gates in the subset of gates to which the condition

variable cor responds . An unqualified gate, of course, applies to every activation, so if there

is an unqualified gate, its condition must be part of every predicate. In cases where two

qualifying predicates are contradictory, or where one implies another, some subsets of gates

will be impossible and can be eliminated from considerauGr~.

For exam p le, a ssume a solution specification contains the following entry conditions:

For gate p
enter : count(a~ ’’) — count(b~ ’’)

For gate [p(v) I Oj(v)1’~’’: ~ 0~~1~~(~~
requsst

) count(a~~ ’)

For gate [p(v) I Q2(v)l~
1
~’~ count(b’~’t ) COUfl t(C

ht
~t r )

Assuming that predicates Oj and O~2 are not contradictory, and that neither one implies the

other , then there must be four separate condition variables. These must cover the

activations satisfying neither Oj nor Q2. both Oj and Q2, and either one but not the other.

The unqualified gate applies to all four cases , of course- Let variables ar, an, bn, bx. and cn

represent the quantities cou ~~~~~~~~~~~ cou nt(a’~1’~), cou iit(b~ ”), cou ii t(b~ ”), and

couiIt(c ” ’), respectively . The predicates associated with the condition variables are then

/ cO: a n - b n

j ~. ~~~~~~~~~~ _~~~~ . . —.~~~--~ .- -- -_ . ,—. - . —- ~~~~~~~~~~~~~~~~ ~-.-—.—~ - -~~~~ —~~ -~~- 
-



______ TTIT. ~~~~~~~~~~~~~~~~~~~~~~~ TT~~

- 137 -

ci: an — bn A ar — an

c2: an = bn A bx - cn

c3: an = bn A ar — an A bx — cn

TI~te code involving these variables at the beginning of monitor procedure p_enter(v) is:

if Q2(v) A Q,j( v) A (an � bn V ar � an V bx � cn)

then condttionlwait(c3) ;

elseif Q2(v) A (-. Qj (v)) A (an � bn V bx � cn)

then condition~wait(c2)~, .

elseif (— ‘ Q2(v)) A Oj (v) A (an � bn V ar � an)

then condillon$wait(cl) ;

elseif (an � bn)

(lien condiaon$wait (cO) ; end;

It qj and t)J~ are contradictory, then condition c3 may be eliminated, while if one implies

the other, then either ci or c2 is not needed.

A qualif ying predicate on an enter gate that involves a parameterizing variable t

presents the most difficult implementation problem. Since this construct actually represents

a separate gate for each possible value of t. a separate condition variable is needed for each

possible value of variable t. To implement this , what is required is something like an arra y

of conditions, but with a dynamic range, so that new conditions can be created and added to

it.

The implementation uses a type called “conditionsiT]”. An object of this type contains

an object of type condition for each value in its domain. The initial domain of the object

returned by the “create” operation is empty. In general, the domain consists of the set of

values of t that have been explicitly added by means of the “add operation. The “add”

__ - ~~~~~~~~_—-~~- - -~~~~~~~~~~~~~ —~~~~~~~~--.- - - ~~~_~.rn .1_,_ ._~~~~_ 



- - - 138 - 

.

operation creates a new condition only if one does not yet exist for the given - value of t , so

that subsequent calls on “add” with the same value of t have no effect . The predicate

associated with each condition is parameterized by the associated value of t. and so is of the

form C~(t). Notice that while the exact set of conditions is determined dynamically by the

“add” operations, the form of the predicate for each one is fixed, except for the value of the

parameterizing variable t .

The first ste p in implementing parameterized enter gates is to combine all the enter

gates in the event class into all possible combinations of satisfiable qualifying predicates. If

there is an unqualified gate for the event class, then its entry condition becomes a conjunct

of the parameterized condition C~(t). When there are individual (non-parameterized)

qualified gates , then the same analysis as to possible subsets of satisfied gates must be made

as was discussed above and illustrated by the example involving predicates Q~ and O~. As

before, there must be a condition representing each possible subset of gates through which a

given procedure activation may pass. Since there are parameterized gates, this requires a

separate object of type conditionsiT] for each combination of gates including a

parameterized gate . The remaining discussion focuses on a single object of type

conditions[T), but notes how to generalize to cases involving many such objects .

Given an enter gate qualified by some predicate parameterized by variable t , the

relation R between variable t and parameter vector v of the operation being qualified may

or may not be a function. If it is a function, the qualifying predicate takes the form t — 1(v).

The condition on which to possibly wait is then found by calling the “get” operation on the

object conds of type conditionsiT] with argument 1(v). The “get” operation, similar to the

____ 
~~--—-- -- - -—  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



____ ~~~~~~~~~~ ___

“get” operation on counts[T), retrieves the condition corresponding to the value of its second

argument. The code for waiting in the monitor “enter” procedure is therefore:

if 
(-‘ C~(f ( v))) then condition$wait(conditions(T]$get(conds, 1(v))), end;

To guarantee that rhe object conds does in fact contain a condition for the associated value

of t , the statement

conditions[T]Iadd(conds, f (v)) ;

- 
is used to add the appropriate condition to the set of conditions in object conds if it is not

- - already there. This operation must precede the waiting statement, a fact that can be

ensured by placing it at the beginning of the “enter” procedure.

An optimization that is possible is to only add the condition to conds if a “wait is

actually performed. That is, instead of locating the “add” operation at the beginning of the

monitor procedure, instead it can be placed inside the then clause of the if statement

immediately preceding the wait”. In addition, after the process finishes waiting on the

condition, i.e. after being signalled, the condition created may no longer be needed. If no

other processes are waiting on the condition, then it could be deleted from object conds.

These .optimizations would increase efficiency by keeping the size of conds as small as

possible. However, they will not be performed in the examples here.

Note that in certain situations, the range of possible values of the parameterizing

variable t may be quite limited. If this is so, then it might be more efficient to add all

possible values to the domain of conds initially, and eliminate the need for adding (and

deleting) new conditions dynamically. This optimization, however, relies on extra

information that is not contained in the specification but would have to be supplied in

~



- - ---

~~~~~~~~~~

.

~~~~

----

~~

- - - — - - - ---.

~~

----

- 140 -

addition by the specifier. In an actual system, this might be accomplished by having the

system interact with the user to find out about the range of values of a given parameter.

In oidei- to signal the conditions contained in an object of type conditionsET]. the type

must have an iteiator “domain” for accessing one by one (in an unspecified order) all values

of t for which conditions exist. By iterating through these values, all conditions on which

l rocecses may be waiting are tested . The code for signalling that appears at the end of

each monitor procedure is: -

for t:T in conditions[T]~domain(conds) do

if conditionSqueue(conditionslT)Sget(conds, t)) A C~(t)

then conditioi4signal (cond itions[T]Sget(conds, t)); end;

This serves to signal a process on any of the condition queues in conds whose predicates are

true. Where there are several different objects of type conditionsiTi due to different

combiiiations of gates with satisfiable qualifying predicates, then this must be generalized so

that the conditions contained in all of them are tested and signalled. (Notice that if the

opt imization mentioned earlier of deleting unneeded conditions were applied, then the

implementation of the “domain” iterator would have to function correctly in a situation in

which conditions could be deleted while the iterator was suspended due to a “signal”

- 
operation.)

For ai. example to illustrate the above discussion, suppose that the solution

specification consists of the following parameterized entry condition:

For gate (p(y) I (y • I — t))~~~~
” :

count((q(x) I (x — t)r~”) — count([q(x) I (x — t)r~t)

_ _ _ _ _ _  --- - - -~~~~~~~~~~~~ - --- -~~--~~~~ - -.~~~~~~~~~ --~~~~~~~~



T 1 ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 141 -

where variable t is an integer. Then the parameterized quantities count((q(x) I (x —

and count([q(x) I (x = t)rit) would be implemented by objects of type counts[lntegerl as

explained previously, named qentercounts and qexitcounts. They are created conceptually

containing counts for all possible values of t, with all counts initialized to 0, and are

updated by “incr” operations in procedures q_enter and q_exit. respectively.

An object pentry of type conditions(integer] can be used to hold the conditions

required. The predicate corresponding to the conditi9n for any t0 is given by

counts~integer)Sget(qentercounts, t0) — counts[integer]Iget(qexitcounts, t0)

Conditions are added to pentry by the statement

cond itions[inleger]tadd(pentry. y.l) -

appearing at the start of monitor procedure p_enter, which takes the same parameter y as

operation p. The wait ing in procedure p_enter then is accomplished by a wait on the

appropriate condition, retrieved via a “get” operation:

if counts[integer]Sget(qentercounts. y.l) ~ counts(inzeger]$get(qexitcounts, y.l)

(hen condttionlwait(conditions(integer]$get(pentry, y.1) end;

The signalling code at the end of each monitor procedure Is:

for t:in teger in conditions(integer)~domain(pentry) do

if conditionSqueue(conditionstinteger]$get(pentry. 0) A

counts[integer)Zget(qentercounts, t) — counts[integer)tget(qexitcounts. 0
(hen condiaonlsignal(conditionsUnteger]$get(pentry. t)) end;

end;

The overall monitor for this example appears in Figure 5.4.



- 142 -

- Figure 5.4. Mo nitor for functional paraineterized example 
-

pa rafun = monitor;

qentercounts , qexitcounts: counts[integer];
I)entry; conditions[enteger);

q_enter = procedure(x :in tcger);
counts[integer)~incr(qentercounts, x);
for t:intege r in conditions[inzegcr)IJdoma in(pentry) do

if conditionl~queue(conditions[in:eger)l~get(pentry, 0) A
counts[integer]1~get(qentercounts, 0 counts[integer]Sget(qexitcounts, 0

then conditionkignal(conditions[integer]~get(pentry, 0); end;
end;

• end q_enter;

q_exit ~r ocedur e(x:znteg er) ;
counts[in:eger]llincr(qexitcounts, x);
for t:in teger in conditions[integer]lldomain(pentry) do

- if condition~queue(conditions[T)Sget(pentry, t)) A
countsEinteger]llget(qentercounts, 0 = counts [i n eger]~get (qexitcoun ts , 0

(lien conditionkignal(conditions(integer]~get(pentry, 0); end;
C fl(l ;

end q_exit :

p_ enter = p roc edu rc(y: in t ege r);
conditions[intege i ]iadd(pentry. y+1);
if counts1integer)~get(qentercounts, p1) � counts[inzegerJ~get(qexitcounts, y•l)

then cond ition~wait(condit ions[integerJ~get(pentry, ysi); end;
for t:inlc ge r in conditions(integer]Idomain(pentry) do

if condizion~queue(conditions(integer]~get(pentry, 0) A
counts(integer]1~get(qentercounts, t) counts(integer)~get(qexitcounts, t)

hen conditionkignal(conditions(integer]Sget(pentry, t)); end;
end;

end p_enter;

qentercounts :— counts(integer)kreateØ;
qexitcounts :— counts[inuger]ScreateØ;
pentry := cond itions(integer]kreateØ;

end parafun; 

- -- ~~~~~~—- -~~~~~~~~~~~~~~~~ --~~-,~ ~~- -~~~ - - -~~~~~ -~~~~~~~~- ~~~~~ 



~ 

‘ :i2 -.~~~~~~~ ~~~~~~~~~~~~~~~ ~‘

- 143 -

If the relation R(t , v) that qualifies an enter gate is not functional, then the enter event

must wait until the entry condition represented by predicate C~(t) is satisfied for all values

of t such that R(t , v) is true. That is, the entry condition for an activation of p with

argument vector v is given by the formula

V t  (R(t, v) D C~(t)).

This is considerably more complex than the entry condition C~(f(v)) for t he i.ise where the

relation between t and v wa s of the functional form t — 1(v), as discussed above.

As discussed above in connection with parameterized qualifying predicates that are

functions, information about the range of possible values of the parameters could be used to

optimize the implementation. Such information would make a much greater difference here

where the predicate is a nonfunctional relation. In the absence of such information, which

would have to be supplied by the user in addition to the specification, the implementation

to be presented here must work under the assumption that the. range of possible values of

each parameter is infinite. The result is a severe penalty in both complexity and efficiency.

It will be noted where user-supplied range information could be used to simplify and

optimiz e the ~uipk~e’irntation.

An assumption is made here that the predicate C~(t) is initially true for all values of t.

That is, it is assumed to be something like

co unt ([q(x ) (x — t)]’~”) — count([q(x) I (x =

rat her than

count((q(x) I (x — t)]’~”) > count([q(x) I (x —

If this were not the case, and assuming there are an infinite number of possible values of t

_____ - .  ~~.-.- -•~ — ~~~~~~~~ - -~~~~-•- - ________ ___



- 144 -

satisfying predicate R(t , v), then the entry condition

- V t (R(t , v) D C~(t))

could never be satisfied , since there would alwa ys be some values of t (in fact , an infinite

number) not satisf ying the body of the quantified formula. Here is one example of where

information as to the range of possible values of t would be helpful. since in fact t might

assume only a small number of possible values. In the absence of an explicit range,

however , the range must be assumed to be infinite. Analysis to determine what subset of

the range could satisfy the relation R is clearly beyond the scope of this work. The

assum ption made here appears to be satisfied for all cases of interest , such as the disk head

scheduler d iscussed in Chapter 6, and therefore not to be limiting.

In implementing a solution specification in which an enter gate is qualified with a

nonfunctional parameterized predicate, we again use the type conditionsiT]. The type T by

which this type is parameterized , however, is not the type of the parameterizing variable t ,

but rather the type of the argument vector v , or more precisely of some sub-vector of v.

The specific sub-vector chosen consists of exactl y those components of v that are involved

in relation R, which can be determined by syntactic inspection of R. The type of this

sub-vector will be denoted “vty pe”.

Because of the solution specification structure , there must be a separate condition

variable for each subset of gates that could apply to a given activation . If processes making

different activations pass through the same subset of gates, then they must do so in FIFO

order . This is implemented by having the processes wait on the same condition, thus

ensuring FIFO order . In general, two activations p(v 1) and p(v2) wait on the same subset of

. _•  —---.- - .— .- -—.—•...-- -———.—. •—-.-_..-•--. -—.-•-- -. •~~~ — -—-— -- ~~~~~~~ -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 145 - 
•

gates when 
-

V t (R(t , v 1) +‘ R(t, v2)).

Ideally. this formula should determine whether two activations wait on the same condition

variable. However , the logical power necessary to perform this analysis in general is beyond

the scope of this thesis. Here again, information about the range of parameter values could

overcome the problem.

The implementation therefore makes a simplifying assumption, which is that two

activations of an operation pass through the same set of gates only if the sub-vector of

components involved in relation R are equal for the two activations. When the argument

vectors to different activations share the sub-vector to which R refers, though possibly

differing in other components, then they must pass through the exact same set of gates.

This means that in the implementation they must wait on the same condition. For this

reason, there is one condition for each value of the sub-vector of arguments involved in

relation R. What is assumed here is that two activations with different sub-vectors always

pass through different, through possibly overlapping, subsets of gates, so that in the

implementation they can wait on different conditions. This assumption is true for the disk

head scheduler of Chapter 6, for instance, and where the relation R is something like

t < x , 
.

where x is one of the arguments in v . This is because if two values of x are unequal, then

there exists some value of that is less than one but not the other. An example of where

the assumption breaks down is if R is of the form

t - absolute_value(x), 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
L _ . _ ~~~_~~ . .—~~~~~~~— — ~~~~~~~--~~~~~~~~~ - - -

*

-:
~~~~~~~~~~

-
~
- 

~~~~~~~~~~~~~~~~~~

- 146 -

since x and (-x) satisf y this relation for the exact same set of values of t.

The object conds of type conditions[vtype) is different from the corresponding object

of type conditions[T] in the case of a functional relation. As before, the object is created

initially empty, and conditions are added to it dynamically in the monitor “enter” procedure

prior to the code for waiting. However , since the predicate associated with each condition

in conds is of the form

V t (R(t, v) D C~(t)).

it is necessary also to maintain a record of those values of the parameterizing variable t that

have occurred , since these are the values for which C~(t). which by assumption is initially

true . may have become false. This is accomplished by saving the set of all relevant values

of t in an object “tset ” of type set(T) (where T is again the type Of 0. The object tset is

initially created as the empty set . Elements are added to the set by the “insert” operation.

An “insert ” operation must be performed in each monitor procedure in which quantities

• involved in the predicate C~(t) are updated. There is also an iterator “elements” for

accessin g the elements of the set.

As was the case mentioned earlier for type conditions[T], information from the user as

to the range of possible values of t would permit an optimization to be performed with

respect to the object tset. If the range is relatively small, then all relevant values can be

inserted into the set beforehand. This would eliminate the need to dynamically insert

values. Note that another optimization mentioned -in connection with conditions(T), that of

deleting elements when no longer needed, cannot be applied to tset, since any value of t that

has occurred may be relevant and must therefore be saved.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



T1_____ ~T-~~ ~~~~~~~~~~~~~~~~~~~~~~~~

-

, 

-

- 147 -

• 
The code in procedure p_enter(v) for testing and waiting on the condition in objec t

conds is given by:

for t:T in set[T)klements(tset) do

if R(t , v) A (-. C~(0) (lien

condi:ion~wait(conditions(vtype]1get(conds, v)); end;
end; -

This code implements waiting on the er’try condition.

V t (R(t, v) D C~(t)).

The required condition is added to conds by the statement

conditionstvtype]$add(pentry, ~);

at the start of the monitor procedure.

Notice that the “elements” iterator may be suspended in the middle of execution due to

the execution of a “wait ”. While it is suspended, new values of t may be added to tset by

other monitor procedures. The iterator must be implemented so as to function correctly in

such a situation.

Signalling at the end of each monitor procedure is complicated. The signalling code

must iterate through all values of z (a sub-vector of v) in conds , for each one testing

whether its predicate is true by iterating through all values of t in tset. This code involves

an iterative loop within an iterative loop, with a “signal” operation performed at the

completion of the inner loop if all values of t for which R(t, z) are true satisfy the predicate

C~(t). (We take the liberty of saying “R(t, z)” rather than “R(t, v)”, since z contains all the

components of v that are involved in R.) The code is of the form:

I—

-

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —--..------ .-- ~-- -- - -


- 148 -

for z:vty pe in cond itionsEvtypei9domain(conds) do

if conditLoni~queue(conditions(vtype)tget(conds, z)) then

ok:boolean := true;

for t:T in set[T)$elements(tset) do

if R(t, z) A (-‘ C~(t)) then —

ok :— false; end;
end; -

if ok then conditiontsignal(conditions[vtype]Sget(conds. z)); end;

end; -

end;

The boolean variable ok keeps track of whether the predicate C~(t) is true for all values of

t for which R(t , z) is satisfied. If ok is still true after the end of the inner loop, then

V t (R(t , z) D C~(t)).

is true for the given value of z, and therefore the condition should be signalled. Notice that

if there is a process waiting on the condition queue for z, there must be at least one value of

t for which R(t, z) is true, because otherwise there would have been no reason for the

process to have performed a “wait”. As before, in a situation in which there is more than

one object of type conditionstT], the conditions in each such object must be tested and

signalled by code of the above form.

As an example, consider a solution specification consisting of the condition:

For gate tp(y) I (y <

count([q(x) I (x — t)]mfu r) “ cou nt([q(x) I (x — t)rx t)

where variable t is an integer. Then as in the previous example, count((q(x) I (x — 0)~~ t1~)

and count([q(x) (x — t) r”) are implemented by objects of type counts(integer). named

qentercounts and qexitcounts. respectively. An object pentry of type conditionsllnteger) is

_
_ _

- 149 -

used to hold the conditions required, the single argument y serving as the sub-vector of v

involved in relation R. An object tset of type set(Lnteger] holds the values of t. to which

values are added by the statement

- setlinteger]linsert(pentry. x)

in monitor procedures q_enter and q_exit. The code for waiting in procedure p_enter is

given by

for t integer in set(integer]telements(tset) do

if y < t A counts(integer]tget(qenterCouflts, t) �

counts[integer]$get(qexitcountS. t)

then

~0~d~jon$wait(conditioflsI fltegeT]$get(PentrY. v)). end;

end;

As before, the required condition is added to pentry at the start of the p....enter procedure by

the operation

conditionstintegerltadd(peflti’Y. y)

The signalling code at the end of each monitor procedure is:

~~~~~~~~~~~ 1__ __~~~~~~ . _ _ _ _ _ _  .~~ 
_~~~~~~~ - — -- -- — ~~~~~~~~~- -—- -—~~~~~~~ -- - -~~~~~~~ - _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- I50 -

for z:inte ger in conditions(integer]$domain(pentry) do

if condition~queue(cond itions[in eger)Sget(pentry, z)) then

ok:boolean := true;

-

•

for t:integer in set(integer)Selements(tset) do

if z < t A counts(integer)~get(qentercounts, t) �

counts[integer)tget(qexetcounts, 0
then ok —f alse; end;

end;

if ok then condition~signal(condiuons(integer]$get(pentry, z)); end;
end;

end;

The monitor for this example appears in Figure 5.5.

A number of exam ples of the translation techniques discussed here appear in Chapter

• 6. These examples actually illustrate the entire synthesis process. starting with problem

specifications of the type described in Chapter 2, proceeding to the construction of

equivalent solution specifications via the method presented in Chapter 4, and finally -

translating these solution specifications into monitors as discussed in this chapter. In

particular , the last example of Chapter 6, the “disk head scheduler”, illustrates the

implementation of qualified gates involving parameterized predicates-.

~~~~~~ _ -~~~~~~ —— -~~~~ - -~~~~ --- —• - ~~~~~~~~~~~ -- _~~~~~~~.—— ~~~~~~- - -



_ _ _ _- -- - -____ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .J

- 15! -

Figure 5.5. Monitor for nonfunctional parameterized example

paranon — monitor;

- - - qentercounts, qexitcounts: counts[integeri
pentry: conditions(integer)
tset :— set(integer)

q_enter - pr ocedure (x integer) .
counts[integer)$incr(qentercounts, x)
set [inte ger)$inser t(tset . x)
for z:inte ger in conditionsEinteger]$domain(pentry) do

if condition$queue(conditions[integer]~get(pentry, z)) (lien
ok:boolean :— (rue;
for t:integer in set(integer]klements(tset) do

if z <t A counts[in:eger)$get(qentercounts, 0
countdinteger]lget(qexitcounts, 0

then ok :~false; end;
end;
i/ok then condiionSsignaKconditions[lnteger] lget(pentry. z)); end;

end;
end;

end q_enter;

q_exit — procedure(x:integer);
countstinteger]tincr(qexitcounts. x)
sethnteger]Sinsert(tset, x)

• for z:inte ger In conditions(integerl$domain(pentry) do
if condition$queue(conditionstinteger]tget(pentry. z)) then

ok boolean := true;
for t3nuger in setl.integer)klements(tset) do

If z <t A counts[integer$get(qentercounts. 0 —
countstin:eger]Iget(qexitcounts, 0

then Ok :.f alse; end;
end;
if ok Men condiuonlsignaKconditionslinteger]$get(pentry, z)); end;

end;
end;

end q_exit;

p_enter - procedure(yinteger),
conditions(integer]Sadd(.pentry. y)’.
for t.zntegeT in set[integer)telements(tset) do

if y c t A countsiinteger~get(qentercounts, 0
councstinuger$get(qexitcounts. 0

- ~~~ • -—---•— -~~~~“•~~ .~~~~~~~~~-•-~~~~~~~~~~ - -~~~~~~ -~~~~~- - ~~~~~~~ - _

-

~~~~~

- 152 -

then condition$wa it(cond itions[in eger)~get(pentry. v)); end;
end;
for z:inte ger in conditions(integer]$domain(pentry) do

if condaion~queue(conditions[in:eger]Sget(pentry, z)) then
ok:boolean :— true;

• for t:integer in set[integer]Selements(tset) do
if z <t  A counts[integer]~get(qentercounts, 0 —

counts[integer]~get(qexitcounts, 0
then ok :~false; end;

end;
if ok then condition~signal(conditions[integer]$get(pentry, z)); end;

end;
end;

- e end p_enter;

qentercounts := countslinteger)kreateO;
qexitcounts := counts[integer)ScreateO;
pentry :— conditions[integer]ScreateO;
tset := set[in:eger)$createO~.

end paranon;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- -

- 153 -

Chapter 6

Comp lete Examples of Synthesis

6.1 Introduction

This cha pter presents a series of examples of the complete synthesis method. Each

example starts with a problem specification, and derives an equivalent solution specification

via the method presented in Chapter 4. This solution specification is then translated into a

monitor implementation in the manner outlined in Chapter 5. The examples chosen for

this chapter are problems that commonly are addressed in technical literature on

synchronization. These are the bounded buffer, two different versions of the readers-writers

problem, with writers’ priority and alternating priority, and the disk head scheduler.

6.2 Bounded buffer

The first example in this chapter is the specification of example 9 from Section 2.7, the

“bounded buffer”. The problem specification given in Chapter 2 is repeated here, to be

denoted bb:

(dep~~”
‘, rem

~’~”
) A (rem1s*~ ~~ depl,N vhI) A

(dep~u~ ., dep~,i’~
t ’) A (rem1

hlt
~~ rem

~,j~
’ ’).

The specification bb consists of four conjuncts, and the solution specification is constructed

by analyzing each conjunct separately. Since each individual conjunct is quite simple, the

anilysis is straightforward. For purposes of reference, the four conjuncts are denoted bb1,

bb2, bb3, and bb4.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _



,r T11 ~~T _ _  TT TT

7

- 154 -

• 

I 
The first conjunct to be analyzed is bb1,

(depie~
t 

~~ remiefhe).

This conjunct specifies that the i-tb “deposit” activation must finish before the i-th “remove”

activation can start. This constraint ensures that no attempt is ever made to remove a

message from the buffer before it has been deposited in. Since there are no argument

constraints in the conjunct , the first step in the analysis is the identification of which event

expressions are mentioned. The set of event expressions in the conjunct is given by

Evexp(bb1) — (depi~~
t, rem1~~ ’).

The next step is to construct the possible orderings among the events represented in

the set Evexp(bb1). With just two such events, only two orderings are possible:

(I) (dep~’~ ~~ 
rem

~
”t”)

(2) (rem
~’~

1” ~~ dep1’~’~)

In evaluating whether each is valid or invalid, it is obvious that the first is valid, while the

• second is not. Equally obvious is the fact the the offending event in ordering (2) must be -

the first event , namely rem1~~”. This means that a solution specification condition must be

derived for the rem~ t ’  gate.

Characterizing the state at each event in the rem v
~
tsr event class, one obtains

characterizations c1 and c2 for event rem1’~1” in orderings (I) and (2). respectively:

C1: ] i (count(dep’~ ) � i A couut(rem ft r) < i)

3 i (couist(dep~
4) < i A couiit(rem’~”) < 0

With only one valid ordering, the disjunction of valid ordering characterizations D~ is

simply c1. Similarly, the disjunction of invalid ordering characterizations is c2. The

k~~~~ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



_ _ _ _  _ _ _ _ _ _  TT:1~~ ’~~~~~~T:T~~~

- 155 -

preliminary condition, given by (D~ A (‘ Di)), then becomes

3 i (count(dep~
4) ~ i A count(rem”~ ’) < i) A

V i (count(dep’~ ) � i v count(rem’~1”) � i),

which reduces to

3 i (count(dep ’4) ~ i 
. count(rem hlt )).

The quantified variable i can be eliminated, resulting in the simplified formula

count(dep *~) > count(remS
~u1c).

When tested, this condition is found to satisfy the single valid ordering, ordering (1),

showing it to be the correct condition obtainable from conjunct bb1.

Each of the other three conjuncts can also be analyzed quite easily. The second

conjunct is bb2,

(remi”4 =~

This prohibits more than N consecutive “deposit” operations without at least one “remove”

operation, preventing overflow of the buffer. The set of event expressions for this conjunct

is

Evexp(bb2) - (rem1”, 
~lePi,N”1

The two possible orderings are - -

(I) (rem1’~ ~~ dep~.N’~~
’)

(2) (depI,N”'” ~~

Of these, the first is valid, while the second is invalid, with the offending event in (2) being

depi,N”. A condition must be derived for gate dep ”’.

_



- 156 -

The state character izations for event depl,N’~” 
in orderings (1) and (2), respectively,

are given by c3 and C2:

- C1: 3 i (couilt(rem”11) � I A COUnt(dep ”t ’) < i+N)

C2: 3 I (count(rem ’11) <I A count (dep” ) < i.N)

The preliminary condition, (Dv A (—‘ Di)), is equal to (c1 A (-‘ c2)):

3 I (count(rem”~) � i A count(dep’~”) < i~N) A

V i (count(remshit) ~ I V count(dep~” ) � i.N),

which simplifies to
• 

count(rem”) > Count(dep”t”) - N.

This is the correct solution specification condition for conjunct bb2. Notice that variable N

in the above formulas is treated as a constant, since it is the parameter to the abstract data

type itself. For this reason, it is not quantified and cannot be eliminated as variable i is.

The last two conjunCts are identical, except that bb3 applies to operation “dep” and

bb4 to operation “rem”. Therefore, w hatever condition is obtained from bb3 for gate

dep’~”~ applies in corresponding form for rem1M 1’ due to bb4. The constraint specified by

each is that activations of the given operation must be mutually exclusive and must proceed

in first-come-first-served order. This prevents interference by concurrent activations of the

same operation manipulating the same local data, and guarantees that messages are

- 
deposited and removed in the proper order. For conjunct bb3,

Evexp(bb3) — (dep1 ”, dep1~1”}.

The two possible orderings are:

(I) (dep1”~ ~~ dep~,j’~”
) 

.



_ _ _ _ _ _  ~~~~~~~~~~~~ ~~~~~~~~

,.— -

- 157 -

(2) (depi.I mnt r 
~~ dep1”')

Ordering (1) is-valid , but (2) is not. The offending event in (2) is dep~,i~”
, so a condition

is required for gate dep~”.

The state characterizations for event dep141~ t” in orderings (I) and (2), respectively.

are given by c1 and C2:

C1: 3 I (couiit(dep ’’) ? I A count~dep’~~’) < I.!)

C2: 3 i (count(dep ’~) < i A count(dep’~’~) < 1.1)

The preliminary condition, (D~ A (-‘ Di)), is given by (c1 A (-‘ c2W~

3 i (count(dep”) > I A count(dep”) c 1.1) A

V I (count(dep”4) � i v count(dep”~”) � iii) .

This reduces to simply

count(dep’~~’) - count(dep”4).

which is the correct solution specification condition for conjunct bb3. Analogously, the

correct condition for bb4 is

count(rem~~’) - count(rem”)

for gate rem”~t ’ .

The overall solution specification for specification bb is constructed by conjoining for

each gate the conditions obtained separately from the individual conjuncis. This obtains

the following overall conditions:

For gate dep~
t V :

count(rem”1t) > count~dep’M”) - N A count~dep’~”) - c unt~dep”) 

- •• • -•-
~~~~~~~~

-
~~~~~~~~~•~~~~~ •~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ~~~~~~~~~~~~~~~~~~~~

- 158 -

For gate rem’~1”:
• 

count(dep”~’) > count(rem’~”) A cou nt( rem’~” ) — cou nt(rem” )

• The monitor to implement this solution specification must have four integer variables,

depn, depx, remn, and remx, to represent the quantities count(dep ”’), count(dep”t),

couiIt(rems1
~
ts ), and count(rem”t ). There also must be two condition variables, depentry

and rementr y, corresponding to the entry conditions for gates dep’~’’ and rem~
t
~ ,

respectively. The boolean predicates associated with these conditions are

depentry: remx > depn - N A depn - depx

rementry: depx > remn A remn — remx

Since the request events for the two operations are not used in the specification, there is no

need for procedures to implement the corresponding gates. The monitor for the bounded

buffer is presented in Figure 6.1. Since the intention is for the monitor to be contained

within the ty pe module for the abstract type buffer(N), the variable N inside the monitor is

bound to the pa rameter of the type.

8.3 Writers’ priority database

The second example in this chapter is a problem that was introduced in [Cou7l). The

data abstraction in question is a database, on which two operations are defined: “read”

accesses the database wit hout changing it at all, and “write” updates the database. In order

to ensure consistent accessing and updating. these two operations must obey the

“readers-writers” property embodied in example 3 of Section 2.7. In addition, the scheduling

• policy desired is for activations of operation “write” to have absolute priority over those of



___ 
- --~~~~

_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~---~~~~-- 

-

~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

“

~~~~~~

- 159 -

Figure 6.1. Monitor for bounded buffer

bb — monitor;
depn, depx. remn, remx: integer;
depentry, rementry: condition;

dep_enter = procedure;
if (remx � depn - N V depn � depx) then condition$wait(depentry); end;
depn :— depn + I;
choose

condition tqueue(depentry) n remx > depn - N A depn — depx:
-

condition~signal(depentry)~,condition$queue(rementry) A depx > remn A remn — r e m X :

condition$signa1(rementry~end;
end dep_enter;

• dep_exit = procedure;
depx :— depx • 1;
choose

conditionlqueue(depentry) A remx > depn - N A depn - depx:
condiziontsignal(depentry);

conditionlqueue(rementry) A depx > remn A remn — remX:
condition$signal(rementry),

end;
end dep_exit;

rem_enter = procedure;
• if (depx � remn V remn — remx) then condition$wait(rementry) end;

remn := remn • I;
choose

condition$queue(depentry) A remx > depn - N A depn — depx:
conditiontsignal(depentry)~,conditiontqueue(rementry) A depx > remn A remn — remx:
conditiontsignaKrementry)

end;
end rem _enter;

rem_exit — procedure;
remx :— remx • I;
choose

condition$queue(d epentry) A remx > depn - N A depn — depx:
condition$signaKdepentry),

condition$queue(rementry) A depx > remn A remn — remx:
condluonlsignal(rementry),

_ _ -~~~~~~-• - - . --~~~~~~—•-—. _

- ___

• - 160 -

end;
•

end rem_exit;

depn, depx, remn, remx :— 0, 0, 0, 0;
end bb; -

_ _ _ _ _ _
_ _ _ _ _ _ _ _ _ A4— ~~~~~~~~~ — - _____ —

--- .- -_ -

~~~~~~~

-

~~~~~~~~~~~~~~~~~

—
_ _ _

_ _ _

- 16! -

operation “read”, in order to ensure that each “read” operation accesses the most current

version of the database. Therefore, to the “readers-writers” specification of example 3 must

be added an instantiation of the priority specification embodied in example 4 of Section 2.7.

The overall specification is the following, to be denoted wpdb:

((write
~
1
~~

T
~~ writej’~”) ~ (write1”' ~~ write~

sr
~
t)) A

((writei”~
t

~~
readk ”) v (readk”~ ~~ write

~’~”
)) A

•
((writei’

~
I.1e8t : read~’~”) D (writei”t” ~~ read~”~

te’)).

• The specification contains three conjuncts to be analyzed. Of these, the third conjunct

has already been treated in detail in Section 4.2, with the names p” and “q” used for the
-

• operations instead of “write” and “read”. By the analysis in that section, this conj unct

• contributes the condition

count(write”t) — count(write~1’)

to the gate read”~”.

The other two conjuncts of the specification remain to be analyzed. They will be

referred to as wpdb1 and wpdb2, respectively. The first conjunct wpdb1 As

((write1~ t ’
~~ writef”) D (write1”~ ~~ write~”t)).

As with the bounded buffer example~ there are no argument constraints in this or any other

conjunct. The set of event expressions contained in the conjunct is

Evexp(wpdb1) — {writei”'” , write
~

’4, write~’~”i.

There are three possible orderings among these three events:

(I) (writei~
1d1v

~~
write1”~ ~~ writefTM”)

(2) (write~
1M1

~ =
~ ~~~~~~ ~~ write1”~)

-

~TI~~TI T~~~~
-
~TI ~~~~~~~~~~~ :T~~~~~~~~~ •

• -

- - 162 -

(3) (write1”~” ~~ wr ites ~~ write1’~)

When ordering (1) is substituted into the conjunct wpdb1, the result is the formula (TRUE D

TRUE), or simply TRUE , so that ordering (I) is valid. Ordering (2) is also valid, since it

evaluates wpdb1 to the formula (FALSE D FALSE), which similarly reduces to TRUE.

Ordering (3) substituted into wpdb1 evaluates to (TRUE ~ FALSE), or FALSE, so that

ordering (3) is invalid.

Comparing invalid ordering (3) with the valid orderings (1) and (2), the longest

matching prefix is the one-element sequence [wr ite1”J, matching ordering (I). The

offending event in (3) is therefore the event following this prefix, which is write~”'”. This

means that a condition must be derived for the write”~ ’ gate.

The state must be characterized at the point of each event in the write”~t” class that

either occurs within a valid ordering or is the offending event in an invalid ordering.

There are five such events , write
~’~” and wr ite~’~” in each of the two valid orderings (1)

and (2), and wr ite~” in invalid ordering (3), where it is the offending event. Denoting the

characterization at event wr ite1 ”t ’ in ordering (1) asc 11, etc.:

Cli: 3 (i, j) (count(wrste’~”) < A A count(write”t”) < j A couni(write x t)
~
)

clj : 3 (i~ j) (count(write’~”) ? i A count(write’~”) < j A count(write”~’) > i)

c2~: 3 (I, j) (couiit(write’~”) < I A couut(write’~”) < ,j A count(write”~’) < i)

c2i: 3 (i, j) (couI1t(writeI~
lt r) < .i A count(write’~”) > j A count(write hlt) < i)

c3J: 3 (i, j) (count(write’~”) 2 I A couiit(write~ t”) < j A count(write”t) < i)

- 163 -

The four characterizations from the valid orderings are disjoined to form Dv:

3 (I, ,j) ((count(write~
hL r) < i A couut(wr ite~ ”) < I) v count(write~ t r) < j)

Since there is only one invalid ordering, the disjunction of the invalid ordering

characterizations is simply c3~. The preliminary condition is given by (D~ A (Di)):

• 3 (I. j) ((count(write flt r) < i A count(write ’~’) < i) V count(write1
~t 1) <j) A

•
-

V (i, j) (count(write~~”) < I V count(write~
t
~r) 2 j V count(write”~) 2 i).

This reduces to •

V i (count(write’~~’) < i v count(write~
x
~) 2 i).

which in turn simplifies to

count(write’~1’) — count(write xit).

When this condition is tested for both write’~’~ events in each of the two valid orderings, it

is found to be satisfied in all cases, showing that it is the correct condition.

• The other conjunct in the specification is wpdb2:

• ((write1”t ~~
readk’~”

) V (readj~”'” ~~ write1”t”)).

The set of event expressions contained within wpdb2 is given by

Evexp(wpdb2) — (wr itei
I
~
t r , writei ””, readk’~”

, readk”'}.

There are six possible orderings of these four events:

(I) write~” ~~ write1”'’t ~~
readk’~” ~~

readk x’t

• (2) readk~
nt r

~~
readk”'1’ ~~ writes”'” ~~ write1 X’t

(3) write
~
”t” ~~ readk”~” ~~ writej1~’t ~~

readk”

(4) write1’M’~ ~~ readk
lt r

~~
readk”'’t ~~ write1”t

(5) readk”t” ~~ write1”~” ~~
read1~”'’t ~~ wr ite1”'’ t

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I 
-

- 164 -

(6) readk
nt r 

~~ wrate ”~’~ =* write1”t ~~ 
readk”'’t

When wpdb2 is evaluated for each of these orderings, the results for orderings (I) and

(2) are (TRUE V FALSE) and (FALSE v TRUE), respectively, each of which equals

TRUE. This means that orderings (I) and (2) are valid. For each of the other four

orderings, the resulting formula is (FALSE v FALSE), which equals FALSE, showing each

of these orderings to be invalid.

The next step is to identify the offending event in each of the four invalid orderings.

Both orderings (3) and (4) match valid ordering (I) as far as the first event, write1”~”. The

offending event in each is the second event, which in both cases is read k”t ’ . Similarly ,

orderings (5) and (6) both match ordering (2) as far as the first event, readk~
nt
~

r, so that the

offending event in each case is wr ite1
flt
~, the second event in the ordering. Solution

specification conditions must be derived for two gates, read”~” and write~
nt
~

r.

In order to derive the condition for gate read flt r, it is necessary to characterize the

state at certain events in the read’~” class. The events in the class occurring in valid

orderings are the readk”~
t” events in orderings (1) and (2). The offending events in the

class are the occurrences of readk’~” 
in orderings (3) and (4). Denoting these

characterizations as d r. C2r, etc., they are:

• dIr: 3 (I, k) (count(write~
l
~tIr) > i A count(writes

~
it ) i A

count(read’~”) < k A count(readshit) < k)

C2r 3 (i, k) (count(write flt
~r) i A count(write *it) < i A

count(read”t”) < k A count(read”t) < k) 

~~ —--- —.~.-— --•-- -~~~ ••—-—-- ‘—-- .—~ —-—--~ -—.-•---—-—-— - ••—------_ •---- -—-- 



- 165 -

• 

• c3r: 3 (I, k) (count(write flt r) 2 I A count(write~x’t) — i A

- count(read’~1”) <k A counl(read”'1t) <k)

c4r: 3 (I, k) (count(write~’1”) 2 i A count(write”t) < I A

count(read I
~t1r) < k A count(read”'’t) < k)

The two disjunctions are given by D
~ 

— (C1,. V C2r), and — (C3r V

Dv: 3 (I, k) (((count(write’~”) 2 1 A count(write”'’t) 2 i) V

(count(write~
I
~t~r) < a A count(write l’t) < i)) A

count(read’~”) < k A count(readlk’t) k)

Di: 3 (i, k) (count(writem0t1
~) 2 i A count(write xit) < i A

count(read”'”) <k A count(read ”’t) c k)

The preliminary condition is formed by the expression (D1, A (-‘ Di)),

3 (i, k) (((count(write’~”) 2 A A count(write”'11) 2 i) V

• (count(write Mr) I n count(write”'~) < i)) A

count(read’~”) < k A count(read”~) < k) A

V (I, k) (count(write’~”) < a v count(write”'~) 2 V

count(read’~”) 2 k v count(read~ ’t) 2 k).

This can be simplified to

• V i (count(write~l’t I) < I V count(write”~) 2 i).

which in turn is equivalent to

couut(write l’tsr) — count(write”'~).

This condition satisfies b~ h valid orderings (1) and (2), and so is correct.

~~~~~ - —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


T T ~~~T~~~~ ~~~~~~

-- —•- -- -,, -- ---.-•. .•.
-

~~~~~~~

- - --

~~~

• ---

~~~~~~~~

• -  

-~~~~~~~~~~~~~~~

- 166 -

• Because of the symmetry of ~he specification wpdb2, and therefore of the orderings,

the derivation of the condition for gate write~
I
~
tI? is completely isomorphic to the above

derivation. Rather than repeat essentially the same derivation, I will simply state the result,

that the condition for gate write”~t” as a result of this conjunct is

count(read’~”) — couht(read”t).

The overall solution specification for specification wpdb is constructed by conjoining

the conditions from the individual conjuncts. The composite conditions are:

For gate read nt r:

coui,,(writere~ust ) — count(writesAt
~Y) A count(writesfh r) — count(write x’t)

For gate write 1
~
t r :

• count(write~
t
~r) — count(write~~

t) A count(reads~t r )  — count(read xit )

In the monitor into which this solution specification is translated, there must be integer

variables wr , wn, wx , rn, and rx, representing ~~~~~~~~~~~~~~~ count(write~
t
~r),

count(write”1), count(read’~”), and count(read”'~
t), respectively. There must also be

condition variables writeentry and readentry corresponding to the conditions ih the solution

specification. Their associated boolean predicates are

readentry: wr — wn A wn - wx

writeentry: Wn — Wx A rn — rx

Notice that count(readn1~~*t) does not appear in the solution specification, so that no

variable is needed for it, and thus a procedure read_request is not required. The resulting

monitor appears in Figure 6.2. -

________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ——• - -— — • •  - - - -
~~~~

- - -

v -

_ _ _ _ _ _
T T ~ I

- 167 -

Figure 6.2. Monitor for writers’ priority database

wpdb monitor;
wr , wn, wx, rn, rx: integer;
readentry, writeentry: condition;

• write_request — procedure;
wr := wr + 1;
choose

conditiontqueue(readentry) A wr - wn A wn - wx:
condition$signal(readentry);

condition$queue(writeentry) A wn - wx A rn • rx:
condition$signal(writeentry);

end;
end write_request;

write_enter procedure;
if wn � nix V rn � rx then conditionlwait(writeentry) end;
wn :— wn .I;
choose

conditionlqueue(readentry) A wr - wn A wfl - wx:
condition$signaKreadentry)~,condition$queue(writeentry) A wn - wx A rn — rX:
conditioi~$signaKwriteentry)

end;
end write_enter;

• write_exit procedu re;
wx :— wx + l;
choose

condition$queue(readentry) A wr - wn A wn - wx:
conditiontsignaKreadentry)

condition$queue(writeentry) A wn - wx A rn — rx:
condition$signaKwriteentry)

end;
end write_exit;

read_enter - procedure~,
if wr � w n V wn � wx then condltion *wait(readentry) end;
rn :— rn + I;
choose -

cond1tton~queue(readentry) n wr — wn A wn — wX:
condition$signaKr eadentry)

conditionlqueue(writeentry) n wn - wx A rn — rx:
condition$signaKwriteentryk

r T T
~~~~

I

~~~~ 

- _ _ _

- 168 -

• end;
end read_enter;

read_exit — procedure;
rx :— rx + l;
choose

condieion$queue(readentry) A wr — wn A wn - WX:
condieion*signal(readentry);

conditlontqueue(writeencry) A wn — wx A rn — rx:
condizlon$signal(writeentry)

end;
end read_exit;

wr, wn, wx , rn, rx :— 0, 0, 0, 0, 0;
end wpdb;

~~~~~~ _



~~~~~~~~~~~~ .~~~~~~~~~~~~~~~~~~~~~~~~~~ TTTI ITT~~~~~

- 169 -

6.4 Alternating priority database

The next example is a variation of the previous one. Again the data abstraction is a

database, with operations “read” and “write” obeying the “readers-writers” property. In this

case, though, the relative priority of the two operations is to alternate, so that in a situation

in which activations of both operations are being continually requested, the result is that

• first a single “write” activation executes, then all waiting read” activations, then the next

-
• “ wri t e” , etc. This scheduling policy is the one followed by the readers-writers example in

• [Hoa74], and is referred to as the “fair database” in [Grel5].

The specification for the “alternating priority” database is given by:

• ((write1’~1” ~~ writef~
d
~) ~ (write1”'’t ~~ write~’~”)) A

((write1”'4
~~

read~”~”) V (read~”'4 ~~ write1””)) A

((write1~f ’ tv I read~’~”~ : write1”'4) D (readj~
I
~

T
~~~ 

write
~,i”~”

)) A

• 
~~~~~~~~~~~~ ~~ readf’~’~ ~~ wr ite1~

d
~) ~

3 m (read~”~” ~
WTitC~ ” '4 ~~ readfflt t)).

The first two conjuncts express the “readers-writers” property and are the same as for the

previous example wpdb. The analysis of the previous section need not be repeated here.

The last two conjuncts state the “alternating priority” property. The third conjunct apdb3

• requires a “write” activation to wait to enter until all “read” activations that were requested

during the execution of the previous “write” have done so first. The fourth conjunct apdb4

prevents an activation of “read” from entering until an activation of “write” has exited,

assuming that there is at least one “write” that is waiting at the point at which the “read” is

requested. This prevents new “read” activations from continually entering. Solution

- •.
~~~~~~~~~ _ _ _



~ T~~~~~~~~T~~ T .1:TT T

- 170 -

specification conditions must be derived for these two conjuncts.

• 

- 

The first conjunct to be analyzed is apdb3: -

I l ((write
~’~” ~~~~~~~~~ : write1”'”) D (reads”

The set of event expressions in the conjunct is

Evexp(apdb3) • {write1”~”~, write1”'’t, write1~1”t”, read~”I”t~ read~’~”}.

With these five events to be ordered, there are eighteen possible orderings. They appear in

Figure 6.3.

When each of these orderings is used to evaluate the specification apdb3, orderings (I)

through (15) are found to be vahd, whtle ordertngs (16) through (18) a~e invahd. Srnce

• ordering (16) matches ordering (I) through the first three events in each, the offending event

in (16) is the fourth event write1~1”t”. Each of the other two invalid orderings (17) and (18)

matches orderings (I) through (3) as far as the first two events, so the offending event in

each is the third event, also write
~.i”~”

. This means that a condition must be found for

gate write’~”.

The characterization of the state at the point 
•
of the offending event writei.j~

t
~

r in

ordering (16) is given by:

3 (I, j ) (count(write’~”) > I A count(writeIntsr ) < (i + I) A count(write”'’t) � i A

count(read”~”~
t) 2 j A couiit(read’~”) < j).

The characterizations for orderings (17) and (18) are identical, namely

3 (i, j ) (count(write”~t”) 2 i A count(write’~”~) < (i • I) A count(writesl’t) < I A

count(readrs~I~
1t) 2 j A count(read’~”) c j).

_ _ _ _ _  -. -~~~~~~ — - • • ~~~~~~~~~~~~~~~~~ —-• •



-171-

Figure 6.3. Possible orderings for apdb3

(I) write
~”‘” ~~ read~’~~”t ~~ write1”4 ~~ read~”'” ~~ write1,1”‘t”

(2) write1”‘t” ~~ ~~~~~~~ ~~ read,~”'t” ~~ write1”'4 I write1,1”‘t”

(3) write1”'t” ~~ read~’ ’~’ ~~ read1”'t” ~~ write
~,i” ~~ write1”~

(4) write1”'~” ~~ 
write1”4 ‘. ~~~~~~~ ~~ read~”'t” ~~ write

~,l
”‘t”

(5) write1”‘t” write1”'’t ~~ ~~~~~~~ write
~,i”'” read~”‘t”

• (6) write1”‘t” ~~ write1”'4 ~~ write1,1”t” ~~ readj’~”’ I read1”‘”

(7) read~”'~” ~~ read~
nt
~ ~~ write

~”'” ~~ 
write1”'4 : write

~,i”‘”

(8) ~~~~~~~ ~~ reac5”'” ~~ 
write

~”'” ~~ write141”'t” ~~ write1”'’t

• (9) ~~~~~~~~~~~~ write1”'t” ~~ readj”'” write
~
”4 write141”’t”

(10) read j ”~ ” ,• write1”'t” ~~ read1”'” ~~~~~ write14 1”'t” I write~”'’t

(Ii) read~”~” ~~ write1”'” ~~ write
~,i”'” 

.‘ read1”‘t” write1”4

(12) read~”~” write1”'t” ~~ write1,1”‘t” ~~ 
write1”'4 I read1”'”

(13) read~”~ ’S’ =
~ 

write1”'t” ~~ write1”4 ~~ read1”'t” ~~ write141”‘t”

(14) read~”~”t ,‘ write1”'t” ~~ write1”'4 ~~ write141”‘1” ~~ read1”'t”

(15) write1”‘t” I write141”t” ~~ write1”4 ~~ read~r~~~t 
~~ read1’~

1”

(16) write1”‘t” ~~ readj~~Iust 
~~ write1”'4 

~~ 
write

~,i
”'t” ~~ read1”'”

(17) write1”‘” ; readj”i”t 
~~ 

write
~,i
”'t” ~~ write1”t : read1”'t”

(18) write1”'t” I readj”~ ” I write1,1”'t” ~~ readf~’t~ I write1”'4

-~~~~~ -~~~~~~~~~~~~~~~~ • • —~~~~~~~~



i

~
’

~

— I :  __

- 172 - -

The disjunction of these two characterizations is equal to D1:

Di: 3 (i, j ) (count(write flt r) — i A count(read”~
”t) 2 j A count(read”‘t”) c i).

The state also must be characterized for events write
~”‘” and write141”‘t” in each of

the IS valid orderings. This means that 30 separate characterizations must be formed.

However , many of the characterizations for different orderings are identical. In fact there

are only nine distinct characterizations , which are listed here:

(a) 3 (i, j ) (count(write~
nt
~r) 2 I A count(write”' t” ) < (i 4 I) A count(write”'1t) 2 i A

count(read”~”) 2 j A count(read”'”) 2 j )

(b) 3 (I, j ) (count(write°”t”) 2 I A count(writeI~
t
~r) < (i + 1) A count(write~

’1t) 2 I A

couflt(rea~ r~~*st) 2 j A count(read”‘”) <j)

(c) 3 (I, j ) (count(write”‘’ ’) 2 1 A count(write”‘”') < (I • I) A count(write”'1t) 2 I A

c j ~ count(read nt r) <j) -

(d) 3 (I, j ) (count(write~
t
~T) < 1 A count(writeefltIr) < (i • I) A count(write”'~’) < i A

couiit(read”~”) <j A count(read”‘”) <j )
(e) 3 (i, j ) (count(write”‘t”) < i ~ count(write~

flt
~ ) < (i • I) A count(write”'’t) < I A

couu (re~drI~( J t ) 2 j A count(read”‘”) cj )

(f) 3 (i, j ) (count(write”‘t”) < I A countXwr ite”‘”) < (I + I) A count(write~
x1t ) < i A

count(read”~’~”~) 2 j A couut(read”'”) 2 j )

(g) 3 (i. j ) (count(wr ite nt
~r) 2 i A count(write”‘t”) < (i + I) A count(write~

xit ) < 1 A

count(read”~l’~’8’) 2 A count(read”‘”') 2 j )

(Ii ) 3 (i , j ) (count(write”’t”) 2 I A count(write”‘t”) < (i • I) A count(write”) < I A

count(read”~”) 2 j A count(read”‘”) < j )

_ _  _ _



_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T 1 T~’~T~ T~~

- 173 -

(I) 3 (i, j) (count(write”'t”) > i A count(write~
ts
~) < (I • I) A count(write”'4) < i A

• count(read”~”) <j  A count(read~
nt
~ ) <j)

The disjunction of these nine characterizations IS Dv, which reduces to:

Dv: 3 (I, j) ((count(write”'t”) 2 i V count(write~
it) < I) A

(couiit(read”~”t) 2 j  V count(read”'”) c j)).

The preliminary condition is (Dv A (‘ D1)),

3 (I, j ) ((count(write”‘”) 2 I V count(write”1t) < I) A

~~~~~~~~~~~~~~~~~~~~~~ 2 j V count(read”‘”) c j)) A

V (I, j) (count(write”'t”) � I v count(read”~”) <j V count(read”‘”) — j).

which when simplified reduces to:

~~~~~~~~~~~~~~~~~~ — count(read~
nt
~ ).

This condition must be tested for both write~
t
~ events in each of the fifteen valid

orderings. In doing so, it is discovered that the condition is not satisfied for the following

events:

write1”'t” in orderings 13 and 14

write
~,1”'” in orderings 5, II, 12 and 13

An event must be found that precedes each of these events, as well as the offending

event in each of the invalid orderings. The only such event is read1’~
l~”t. The state is

therefore characterized at this event in each of the orderings in question. In ordering (5),

the characterization at event read~” IS:

_ _  _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~ •—•~~~~~~_— - -~



11T1 T I~~~i1i~~~~~ 
-_ 

_ _  Z~~~~~~~~T i ~~~~ 1~T~~

- 174 -

3 (i,j) ((count(writeI1
~
t
~r) ~ ~~~~jr•qusst] � A

(count(write”'t”) ‘a ~~~~~~~~~~~ < (I • I) A

• [couiit(write”t) • read~ 1h1 8tJ > i A

~~~~~~~~~~~~ ‘a read”'’~”~J cj  A

(count(read”‘”) ‘a read’~I’~’~’) c i).

In each of the other valid orderings in question, it IS:

•
• 3 (I, j) ([cóunt(write”'t”) ‘a < A

• (couiit(write”‘”) ‘a read”'~”] < (1 • 1) A • -

[count(wri te”'’t) • ~~~~~~~~~~~ < i A

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ <
~~~ 

A

[couiit(read”'”) • ~~~~~~~~~~~ c j).

This means that the formula Dv’ is given by the disjunction of these two, or:

•
Dv’: 3 (I, j) ((fcount(write”‘”') ‘a read”~ ”~) 2 1 A

• (count(write”'’t) • ~~~~requsst] > I) V

((count(write”‘t”) • ~~~~~requ St
] < i A

- (count(write”t) • read”'~”~
t] < I) A

[count(write”‘t”) ~
~~~~~~~~~~~~~ < (I + I) A

• ~~~~~~~~~~~~~ <~~ A

(coul,t(readsflt r) • read”~”~’] c j).

The characterization at read~’~
ht
~’tt in each of the three invalid orderings is the same,

_ _ _



_ _ _ _

- 175 -

3 (I, j ) (((count(write~
nt
~r) • read”~”I 2 1 A

(count(write~*1t) • read”] < i) A

[couiit(write”‘t”) • read”] < (i ‘ I) A

(count(read”~
l’1SSt) e read”'”~] cj A

[count(read”'”) • read”~”] < j).

This formula is therefore D’. The weakening term is formed by D~’ A (
~
‘ Dv’>

3 (1, j) (((count(writes
~

t
~r) 

‘a read”'”] 2 I A

• (count(write”~) • read’~l”9t] 2 I) V

([count(write~’t~) • ~~~~~~~~~~~~~~~~~~~~ < I A

[count(write”'4) • read”~ ”t] < I) A

• (count(write”'t”) • ~~~~~~~~~ c (j • I) A

[count(read’~l’1’h’) • read~~~s$t] <j A

(count(read”'”) • readr~
l%I St] cj) A

V (i, j) (([count(write”'t”) • read”~I”$t1 < I v

(count(write”'tt) • read”~”) > I) V

(count(writ e”'”) • y~~~r~~usSt) 2 (I • I) V

(count (read ”~lt1’$’) • read”~lL”$’] 2 j v

[count(read”'t”) • read~
1
~

11t] 2 J) .

When simplified, this reduces to:

(count(write”'t”) • read~”a1’$I] — [count(write”t) • read”a”$’J.

_ _ _• ____________- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~•-_ -~~~•- ~~~~~~~~~~—•_.



- 176 -

This weakening term is tested in each of the six events in valid orderings for which

the preliminary condition is not satisfied. It is found that the weakening term is satisfied in

each case. Therefore, disjoining the weakening term to the preliminary condition obtains

the correct condition. The condition for gate wrIte~
t
~ from conjunct apdb3 IS:

— count(read”‘”) v

• [count(write”‘”) • ~~~~~~~~~~~ [count(write”'1t) • read”~”J.

This condition makes sense intuitively. The first disjunct states that there are no

unfulfilled requests for activations of “read”. The second says that the most recent request

event for “read” took place at a point at which no activation of “write” was active.

Therefore, a “read” activation is allowed to proceed ahead of the next waiting “write”

activation if it was requested during the previous “write” activation.

There remains conjunct apdb4 to analyze:

,‘ read1’~1”~’ ~~ write1”t”) ~

3 m (read~”Q” 
~~ Write~.,.,”'’~ ~~ read1’~”)).

Unfortunately, the analysis of this conjunct is ven more complicated than that of the

previous conjunct, owing to the fact that there are 30 possible orderings of the 5 events

contained within it. These 30 orderings are listed in Figure 6.4.

Rather than go through the details of the derivation, the complete process will simply

b. iummarized. Of the 30 orderings, the orderings numbered (I) through (23) are found to

•I.d Orderings (24) through (30) are invalid, with the offending event in each being

. A ondit,on must therefore be derived for gate read”‘t”. When the preliminary



liT iTT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

-In -

Figure 6.4. Possible orderings for apdb4

(I) ~~~~~~~~~~~~ wr ite1
reqt)eSt 

~ write1”‘t” : writem”'4 2 read1”'t”
(2) ~~~~~

1
r ques t ~~~j~~~Ieque St 

~~~ write1”‘t” ~~ read1”‘” ~~ writem
(3) ~~~~~ request write i

r
~~~

st read1”‘t” write1”'t” writem
“'4(4) read1”~ ”'’ 2 readf”” -~~~~ ~~~~~~~~~~ 

~~ 
write1”'t” ~~ 

write~
(5) read1’ write1’”~ ’~ 2 write~ ”'1’ write~”‘t” read~

“‘ I’,

enter(6) read1”~
t 

~~~ 
write~ °’”t wr ite1”~”t ~~ write1”‘t” ~~ read1

(7) ~~~~~~~requsSt
2 writ e~ °”4 write1”~”t .‘ read1”‘” write

~”‘”
• (8) read~e~Iest ~~~ request writem~

dit read1”'t” write~~
t
~

(9) read1
”(1”~ 2 readf”~” =~ write

i
re
~
WS

~ ~~
write~ ”'4 ~~ write.Cflt

~
T

I
(10) read1’~

l’~’8i
~~ read~

nt
~ =~

wr item”'” ~~ ~~~~~~~~~~
~~

write1”‘t”
(II) read

1
re

~
0St =~ wr ite,~”t ~~ reads”'” ~~ write1”~”'t ~~

write1”‘”
(12) read~

re
~1~

1e8t =~ wr1te1
re

~
weSt 2 readf”” ~~

writem”'1’ 2 write ”‘~”I
(13) writem°” ~~~ request read1”t” write1”~i1’5t wr ite1”‘t”
(14) writem”'4 2 read~”~”~ 2 write~”~”t ~~ read1

’TM”
~~

write
~”‘”

~j5) write~ ”'’t 2 read1”~ ”t write
~”~” write1”‘t” ~~ read1”‘”

(16) writem” 2 ~~~~~~~~~~~~ ~~ write1”‘t” ~~ read1”~”t =~~ read~”‘”
(17) ~~~~~~~~~~~~~~~ 2 write~ ”'’t =~ ~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~ •‘ read1”‘t”
(18) writei

r
~
l
~
1
~

t
~~

write1”‘”' 2 write~ ”'4 ~~ read~r~ (1stt
~~ read1”‘t”

(19) write~re~*1e~~ 2 write1”‘t” ~~ read1”~”t ~~ write~ ”4
~~ read1”‘”

(20) write~
re

~
we5t I write1”'t” ~~~ ~~~~~~~~~~~ ~~ read~”'t” ~~ Write ~~m

(21) ~~~~~~~~ 2 readj”~”t =~ write1”‘t” 2 write~ ”t 2 read~”‘t’
en”(22) ~~~~~~~~~~~~~ I read1”~” ~~

write~ ”'1t ~~ write1”'1” ~~ read1
(23) ~~~~~~~~~~~ ~~ read1”' ”~ : writem”4 ~~ reac5”'” ~~ wr ite nt

~I
(24) ~~~~~~~~~~~~~ =~ read

1
”~’’~ 2 reads”'” ~~

writem”'4 2

(25) write1’~l’15t =~ readj’~l”S
t

~~ read1”‘t” write1”'t” writem
(26) write

~” ~~~ read r.q~u,st
~~ write1”'t” ~~ read1”'t” write ~~m

(27) write1”~ ”t ‘
~

write~ ”'’t ~~ read1
”lh”

~~ write1”'t” •‘ read1
Sn”

(28) ~~~~~~~~~~~~~ I write~ ”'’t ~~ read1”'”t ~~ read1”'t” ~~ write.5~
t1

~I
Silt”(29) writem”'’t =~ ~~~~~~~~~~~ ~~~ read1

”t =~~ write1”4” ~~ read1
(30) writem”1’ ~~~~ write~”’4 =

~~ read1”~”t ~~~ read1”t” ~ write1”t”

_ _ —•~~~~~~~~~~.—- -•- --——~~~~~~~~~~--- ~~~~~~ _

- 178 -

condition is formed, it reduces to FALSE. This is the extreme case of an overly strong

condition, in that none of the 23 valid orderings is allowed.

The only event that precedes read1”‘t” in all 30 orderings is read1”'~”t. The

weakening term obtained by considering the state at event read~e~ 55t alone is:

• [count(writeTe~tI 8t) • readr eQusst] (count(writee
~

t5
~) • read~ ’a~

s1t).

This condition is satisfied by valid orderings (I) through (20), but not (21) through (23).

This means that the characterizations of both the current state and the previous state at

- ~~~~~~~~~~~~ must be used at the same time to obtain another weakening term for these three

orderings. The weakening term obtained is:

(count(writeext) • read”~”t] c count(write”'4)

which is satisfied by each of the orderings (21) through (23).

The solution specification condition for gate read~
t
~ from this conjunct is therefore

• the disjunction of the two weakening terms: -

~~~~~~~~~~~~~ ~~ 
,.~~~re~uSt ) — [count(write~

nt
~r) • read”~”] V

((count(write”t) ‘a ~~~~requeSt] c count(write”t)).

Again this condition makes intuitive sense. The first disjunct states that no activations

of “write ” were requested but waiting at the point at which the “read” under consideration

was requested. The second says that some activation of “write” has exited since the point at

which this “read” was requested . One of these must be true before the “read” can enter.

_  _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



F~~~~~~~~~
TlIl::iT -1 ~~~~iTTIT li~~~~ ~~~~~~~~~~~~

_ 

- 179 -

The overall solution specification for specification apdb is given by the conjunction of

the individual conditions obtained for each of the four conjuncts:

For gate read”4”:

(count(write”t”) — count(write”'”)) A

‘a read”a”~
t] — (count(write”'t”) • read”~h1’t]) V

((COUfl t( Write”4) • readn1~1s*t] c count(write”'4)))

For gate write~
t
~:

(count(write”‘t”) — count(wrate”~’)) A

(count(read”'t”) — count(read”4)) A -

• ((count(readr5~l~
h1$t) — count(read”'”)) V

([count(write”‘t”) • read’U~l~
1S$’] — (count(write”t) •

The monitor implementation of this solution specification requires three variables wr,

wn, and wx , to - represent the current values of count(write’””), count(write”'t”). and

count(write *it), and three variables rr, rn, and rx , to represent the values of

count(re~d~*~ 1*t), count(readdntSr), and count(read”'4). In addition, three variables are

required to save values at a previous state: wrrr for (count(write”~I”*’) • read”~I”**), wnrr

for (count(write~
t
~r) 

‘a read”~’~’], and wxrr for tcount(write”) • ~~~~~~~~~~~~ The values

of these variables are set in the monitor procedure readjequest corresponding to gate

• ~~~~~~~~ by saving the values of the variables representing the corresponding current

quantities. For instance, variable wrrr, representing (count(wr~eI5~ mI) • read”~I”l], saves

the value of wr, which represents ~~~~~~~~~~~~~~~~~ The two condition variables, and their

associated predicates, areS.

~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~—• • — • —~~~ --~~~~~~~~~~~~~ •• ~~~~—— - - —_ •~~———~~•—~~~— - -


• •- — -,-.

~
- ,,.-- •-.

. • . _... _ L~~~ •~~~~~~ • — —

- 180 -

• readentry: wn — wx A (wrrr~ wnrr V wxrr c wx)

writeentry: wn — wx A rn — rx A (rr — rn v wnrr — wxrr)

• The monitor that is obtained appears in 1’igure 6.5.

6.5 Disk head scheduler

The final example of this chapter is the “disk head scheduler” problem. Actually, the

-

~
i specification used here is a simplification of the actual disk head scheduling specification

• that appears as Example 14 in Section 2.7. The real disk head scheduler keeps the disk

head sweeping in one direction until all requested accesses in that direction have been

made, then reverses the direction and repeats. Accesses are made as the requested tracks are

- encountered In the sweep, so that the next track to be accessed is the one that is closest to

the currently accessed track in the direction being swept. The simplification here involves

disregarding the direction in which the disk head is sweeping. We simply wish that the

next track to be accessed is closest to the currently accessed track of all requested tracks in a

given direction. The requirement that the disk head sweep continuously in one direction

until no further accesses have been requested in that direction is omitted. This allows the

specification to be considerably simplified (though it also introduces the possibility of

starvation, as noted in Chapter 7).

We assume here that accessing a disk track is accomplished by means of an operation

named “a” on the “disk ” data type. This operation takes a single parameter x of type

“track _no”, giving the value of the track number being accessed . Activations of “a” must be

mutually exclusive, since only one access can occur at a time. The first conjunct of

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _  _ _  - I

- 181 -

Figure 6.5. Monitor for alternating priority database

apdb = monitor;
wr , wn, wx , rr, rn, rx: integer;
wrrr , wnrr , wxrr: integer;
readentry, writeentry: condition;

write _request procedure;
Wr := wr + 1;
choose

• con(Ueion~queue(readentry) A
wn = wx n (wrrr — wnrr V wxrr c wx).

conditionkignal(readentry) 
. -

condirionSqueue(writeentry) A
wn - wx A rn — rx A (rr — in V wnrr — wxrr):

condition$signal(writeentry);
end;

end write _request;

write_enter — procedure;
if wn � wx v rn � rx ~.i (rr � rn A wnrr � wxrr)

then condltiontwait(writeentry) ~, end;
Wfl := Wfl 4 1;

choose
condition lqueue(readentry) A

wn - wX A (wrrr — wnrr V wxrr c wx)
condition lsignal(readentry),

• conditiontqueue(writeentry) A

• wn — wx A rn - rx A (rr - rn v wnrr — wxrr).
condition$signaXwriteentry)

end;
end write_enter;

write_exit — prxedure~
WX :— wx . 1;
choose

conditiontqueue(readentry) A
wn — wx A (wrrr - wnrr V wxrr c wx)

conditionlsignaKreadentry)
condition$queue(wriceentry) A

wn — wx A rn - rx A (rr - rn v wnrr — wxrr)
condition$signaKwrlteentrj)~,end;

end write_exic 

• . .



• -182-

read _request - procedurt,
rr :— rr + I;
wrrr :— wr;
wnrr :- wn;
wxrr :— WX;
choose

conditlontqueue(readentry) A
wn - wx A (wrrr - wnrr v wxrr c wx)

condition$signal(readentry);
conditionSqueue(writeentry) A

wn - wx A rn~ rx A (rr = rn v wnrr — wxrr)
condltion$signal(writeentry)

end;
end read_request;

read_enter = procedure;
if wn � wx V (wrrr � wnrr A wxrr > wx)

then condition$wait(readen try) ; end;
rn :— rn .l;
choose

condition~queue(readentry) A
wn — wx A (wrrr — wnrr V wxrr .c WX)

conditionSsignal(readentry);
condition$queue(writeentry) A

wn — wx A rn = rx A (rr — rn V wnrr wxrr~condition$signal(writeentry);
• end;

end read_enter;

read_exit — procedure; -

rx :— rx .l;
choose

conditionSqueue(readentry) A
wn - wX A (wrrr = wnrr V wxrr < wx)

conditionSsignal(readentry);
condition$queue(writeentry) A

L wn = wx A rn = rx A (ri — rn V wrirr — wxrr)
conditionSsignal(writeentry);

end;
end read_exit;

wr, wn, wx , rr, in, rx :— 0, 0, 0, 0, 0, 0;
wrrr, wnrr, wxrr, :— 0, 0, 0;

end apdb;

_ _ _  _ _ _ _ _ _ _ _ _ _ _  _ _ _  _ _ _



:

- 183 -

specification dh specifies this mutual exclusion, and the second specifies the scheduling

policy desired: -

((arn
5nt

~ =* a~~
t
~) 

~ ~~~~ ~~ 
an”'”)) A

((a1(x2)~
5
~*5I 

~~ 
aJ~(xI>”4 ~~ a1(x2)”'t”) A

~~~~~~~~ ~~ 
a~(xI)”4 ~~ a~(x3)”'”) A

(xl c x2 < x3 V xl > x2 > x3) ~

(a1(x2)”'t” ~~ a1(x3r””)).

The analysis of the first conjunct has been carried out already in Section 6.3, where the

same property was specified for operation “write” as part of the “readers-writers” property.

Here we will consider the scheduling property conjunct dh2.

First, the argument constraint predicate (xl < x2 c x3 V xl > x2 > x3) must be

incorporated into the conjunct. The predicate already appears in the hypothesis of an

• implication. It can be incorporated by parameterizing it and then qualifying the

appropriate procedure activations. The parameterized form of the predicate is

(xl = u) A (x2 — t) n (u c t <x 3 V u>t >x3) .

This means that activation ak(xl) must be qualified with the pr.~dicate (xl — u), activation

ai(x2) with the predicate (x2 — t), and activation a1(x3) with the predicate (u c t c x3 V u >

t > x3). The transformed specification then becomes

~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~ -•- •• -



- -

~~~~~~~~~~~

-- - -

~~~

.

- 184 -

((a1(x2) I (x2 — t)] ’5~~
h15dt 

~ (a~(xl) I (xl — u)]”1’ ~~ (a1(x2) I (x2 = t)]”'’ ’) A

([a
1(x3) I (u <t  <x3  V U > t > ~3)yI~USSt =

~~ 
[a~(xi) I (xl = u)]”4

(a1(x3) I (u c t cx3  V u > t > x3)3”'t”)

D ((a~(x2) I (x2 = t)]”‘” ~~ (a1(x3) I (u <t  < x3 V u > t >

Now that the argument constraint information has been incorporated into the conjunct

by means of qualification, the analysis can proceed normally. There . rc five events

mentioned in the conjunct :

• 
Evexp(dh2) — ((a

~
(x2) I (x2 — ~)] requS$I (a1(x2) I (x2 = t)]”'”), (ak(xl) I (xl =

(ajx3) I (u <t  <x3 v u > t > x3)Y5~
5st, (ajx3) (u < t  cx3 v u > t >

There are 30 possible orderings among these five events. Rather than list all 30 of them,

only the two invalid ones are given here:

(I) [a1(x2) (x2 — ~))“~~
(i’dt (a~(x3) (u < t cx3 V u > t > x3)]rS~USst

(ak(xl) I (xl — u)]”4 
~~ [a~(x3) I (u <t  x3 V u t > x3)]”'”

(a1(x2) I (x2 —

(2) (a
1(x3) I (u < t  < x3 V u ~ t > x3)]”~”t ~~ 

[a~(x2) I (x2 - t)]”~~”]
• 

(ak(xl) I (xl = u)]’~
it 

~~ [a1(x3) I (u <t  < x3 v u > t > x3)]”'” I

(a1(x2) $ (x2 . t)]”'”.

* 
The offending event in each is (a~(x3) I (u t < x3 V u > t > x3)]5nt~ . This means that a

condition must be derived for gate (a(x) I (u < t < x V u > t > x)]”‘”. Since the state

characterization is the same at the point of the offending event in both orderings, this

characterization becomes the term 

~~• _ - • ~~~~~~~~ - . .-—— L



~~~~~~-W 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 185 -

3 (i, J, k) (count([a(x) I (x = u)]”4)?  k A

count((a(x) I (u < t < x V u > I > x)]”~ ”t ) ? j A count((a(x) I (x — ~))r.~usst) ? i A

count((a(x) I (u < t  <x  V u > t > x)]snt~) <j A count((a(x) I (x — t)]”‘”)) < 1)

The term Dv, being the disjunction of 23 characterizations, is quite complicated.

However, when the expression (D~ 
A (-‘ D1)) is constructed, the formula can be simplified

considerably. The result of the simplification is to arrive at the following preliminary

condition:

V 1 (count( [a(x) I (x = t)]”~’~ ’) < i V count([a(x) I (x — t)Tnt~r)) ? 1).

This is equivalent to the even simpler

count((a(x) $ (x — t)]~1~~s$t) = count((a(x) I (x =

This condition is found to satisfy all the valid orderings, and therefore is correct as it

stands.

The overall solution specification for specification dh consists of t~ ~ following gate

conditions:

For gate a~
t
~

V: count(a”~”) — count(a”4)

For gate (a(x) I( u c t c x V u > t > x ) ] M V :

count([a(x) I (x t)]r~~
1
~*t) = count([a(x) I (x = t)] M~~)

where u is the parameter of the activation corresponding to

the most recent a”4 event.

A monitor must now be constructed to implement this solution specification.



T T T ~~~~~TiTT~~~~~ ~~~~~~~~

- 186 -

The monitor must contain three procedures a_request, a_enter, and a_exit, to

correspond to the three event classes. Since there are qualified gates in the solution

specification, each of the monitor procedures must take the same parameter x as operation a.

There must be variables an and ax to represent count(a~ t r )  and count(a~
xht ), respectively.

In addition, there must be a local variable u of type track _no, the same type as • parameter t,

representing the value of the parameter of the most recent call on procedure a_exit. This

variable should be initialized to an appropriate value, such as the minimum possible track

number. - -

In order to implement the parameterized counts, there must be two objects atreq and

atent of type counts[t rack_no) to hold the values of count((a(x) I (x 1))r,qu.sI) and

count([a(x) I (x = 1)].nt.T) for all values of x. Procedure a_request increments a count in

atreq, and procedure a_enter increments a count in atent. Each of these objects mus~ be

created in the initialization code for the monitor.

The qualifying predicate on the p MS~ gate

(u <t  <x  V u > t > x)

is a non-functional relation. The entry conditions must be implemented by an object aentry

of type conditionsitrack _no], that holds the conditions for all relevant values of x . A

• condition for a given value of x is added to aentr y by an “add” operation at the start of

procedure a_enter. The predicate associated with the condition for value t is given by

an — ax A cntslget(atreq, t) a cnts$get(atent, t),

combining the predicates associated with the unqualified and qualified gates. It is also

necessary to have an object “tracks ” of type set[track...no) to maintain the set of relevant 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 
_
~~~~ —-— — - -~~~~- —~~• ~~~~--~~



ITIi~~ ~~~~~~~~~~ ___

• - 187 -

• track numbers. Elements are added to track by “insert” operations within procedures

a_request and a_enter. The resulting monitor appears in Figure 6.6.

_ _ _  _ _ _ _  _ _ _ _ __



1~ 
- 188 - 

• - • - 

-

Figure 6.6. Monitor for disk head scheduler

dli — moni tor ;

an, ax: integer;
U: track_no;
atreq, atent: counts[track _no];
aentry: conditions(track _noi
tracks := set[track _no];

a_request procedurc (x:track _no);
counts(track _no)Sincr(atreq, x);
set(track _no]$insert(tracks , x);
for z:track_no in conditions[track_no)~domain(aentry) do

• if conditionSqueue(conditions[track...no)Bget(aentry, z)) then
ok:boolean := true;
fo r  t:track _no in set(trackjio]Selements(tracks) do

if (u <t  <z  v U > t > z) A

• (an � ax V counts(track_no)$get(atreq, t) �
counts(track _no]$get(atent, t))

• (lien ok —false; end;
end;
if ok then condiuonkignal(conditions(track_no)~get(aentry, z)); end;

end;
end;

end a_request;

• a_enter = p ro cedure(x: track _no) ;
cond icions[track _noJSadd(pentry, x);
for t:track_no in set[track _no)klements(tracks) do

if condition~queue(conditions[track _no)Sget(aentry, x)) A
(an � ax v counts[trackjio]~get(atreq, 0 � counts[track _no)Bget(atent, 0)

then condilionSwa it(conciitions(track _no]~get(conds, v)); end;
end;
an := an . I;
cou nts(track _no]Sincr(atent, x);

• set[track _no]Sinsert(tracks , x);
for z:track _no in cond itions[track _no)~doma in(aentry) do

if conditioncqueue(conditions(track_no]Sget(aentry, z)) then
ok:boolean := true;
for t:track _no in set(track _no]klements(tracks) do

• if ( u c t . c z V u > t > z )  A
(an � ax V counts[track _no]~get(atreq, t) �

countsttrack_no]$get(atent, t))
then ok := false; end;



_Ii_
.•~ •i —

_ _ _  

~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~ ~~~~~~~~~~~

; -
~~~~~~~~~~~~~~~~~~~~~~~ • -~~~~

-
~~~~~~~~~~~~~~~

-- -—-

- 189 -

end;
if ok then condition$signal(conditions(t rackj io)Sget(aentry, z)); end;

end;
end;

end a_enter;

a_exit = procedure(x:track _no);
ax := ax + 1;
U:= X;
for z:track _no in cond itionsItrack _no)~doma in(aentry) do

if conditiontqueue(conditions[track_no]Sget(aentry, z)) then
ok:boolean := true;
for t:track _no in set[track_no]~elements(tracks) do

if ( u < t < z  V u > t > z )  A
(an � ax v counts[track _no)Sget(atreq. 0

counts[track_no]~get(atent, 0)
- then ok := f alse; end;

end;
if ok then condi ion$signal(conditions[track _no)*get(aentry, z)); end;

end;
end;

end a_exit;

• an,ax := O ,O;
U := track _riogmino;
atreq := counts(track _no]ScreateO;
atent := countsttrack _no]~createO
aentry := conditions(track_no]$create~,tracks := set[track _no)$createQ;

end dh;



•

AO—AO58 232 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE——ETC FIG 9/2 
•SYNTHESIS OF SYNCHRONIZATION CODE FOR DATA ABSTRACT IONSaU)

.JUN 78 M S LAVENTHAL N000lk—75—C— 0661
UNCLASSIFIED MIT/LCS/TR—2O3 NL

30F3

0

END
DATE

0- 78
DEC



_ _ _ _  

-

~~~~~~~ ~I ITT _ _  ~~~~~~~~~~

- -

~~~~~~~~~~~~~~ -:
~T~:

--’
~~

~l9o..

Chapter 7

Detecting Erroneous Specifications

7.1 Introd uction

The flexibility of the problem specification language makes it possible to specify a

wide variety of synchronization constraints. Unfortunately, this flexibility also permits

erroneous specifications to be constructed. Certain kinds of errors in specifications can be

detected in attempting to derive equivalent solution specifications. As noted in Chapter 4, ii

a specification constrains when in a history, say, a request event can occur, this results in an

invalid ordering being found in the derivation algorithm for which the offending event is

of type request. Since this is erroneous, in that the underlying model requires events other

than enter events to be unconditional, the derivation algorithm detects this error and fails

to construct an equivalent solution specification.

There are other kinds of erroneous specifications, however, for which equivalent

solution specifications can be derived. These specifications are compatible with the

underlying model, but the synchronization constraints they specify display certain forms of

undesirable behavior. Two such forms of behavior are the potential for deadlock and

starvation. Deadlock results from a situation being overcongrained, so that each of a set of

wait ing processes is prevented from proceeding by the presence of all the rest. Starvation

means that the constraint that is specified may be too rigid, in that certain processes are

prevented from proceeding indefinitely.

~~~~~~~~~~~~~~~~~~~~~~~~~ -— -~~ — ~~~~~~~ - .- -.--- -~~~~~~~~~~--— ~~- - - -


____ ~~~~~~~ TT~~TI~~ ~T TiTTTTT~~~~TE IT~ T~~TT ~~~

- 191 -

A problem specification that manifests one of these forms of behavior results in the

derivation of a solution specification that does likewise. However, the form of the solution

specification makes the analysis required to detect these erroneous behaviors much more

tractable than for the problem specification itself. This chapter presents algorithms for

performing such analysis. They can be used, once a solution specification has been derived

from a problem specification, as a check on the soundness of the original specification.

By the argument in Chapter 4 justifying the derivation algorithm, the set of histories

allowed by a derived solution specification is exactly equal to the set allowed by the original

problem specification. This means that a potential for deadlock or starvation cannot be

introduced into the solution specification by the derivation itself, since if this were possible.

then there would have to be one or more histories valid with respect to the problem

specification but not to the solution specification. Rather, since the solution specification

corresponds exactly to the problem specification in history-theoretic terms, any potential for

deadlock or starvation in the problem specification is mirrored in the solution specification.

For exam ple, a potential for deadlock would be reflected by the existence in a valid

history of request events for which the corresponding enter events could never satisf y the

specification. Assume the existence of such a history and its validity with respect to a

solution specification. Then this same history must be valid with respect to the problem

specification, and the enter events must fail to satisfy the problem specification, as well. Of

course, the reverse is similar ly true. Thus the solution specification must contain exactly the

same potential for deadlock as the problem specification. In a similar way, starvation

implies that there are valid histories in which the request and enter events for a particular

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _



_ _ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

—--

~~~~~~~~~~~ 
‘~~~~~~~~~1T~~~~~ ::~~~

- 192 -

operation activation are separated by an arbitrary number of other request -enter event

pairs. For a problem specification and a solution specification that are valid with respect to

exactly the same set of histories, starvation in one implies starvation in the other.

Since the solution specification is state-oriented, it is a convenient form on which to

perform the analysis for these properties. ‘Fhe solution specification can be used to

determine under what conditions, if any, deadlock and starvation are possible. Such a

possibility, though, arises due to the original problem specification, and it is there that a

correction must be made.

7.2 Deadlock detection

In a survey paper ([Holl2]) on the subject, deadlock Is defined as the situation in

which one or more processes in a system are blocked forever because of requirements that

can never be satisfied. In the context of this thesis, deadlock arises when a problem

specification overconstrains the order of events in certain situations so as to prevent any of

a group of requested accesses from ever occurring. The entry conditions in the derived

solution specification form a basis for characterizing possible deadlock situations in terms of

the synchronization state of the object . If deadlock is impossible, then each such

characterization can be proved to lead to a contradiction.

The problem of deadlock detection has been studied fairly extensively, particularly for

operating systems (e.g. (Hav68), (Hab69]) and database systems ((Cha74]). The bulk of this

work has used a common scenario for deadlock: Each process in a collection of concurrently

executing processes holds exclusive access to one or more scarce resources, and is blocked



~~~ T : :~~~~~~~~TLTT~ 
~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~ T1.~~~~

I
- 193 -

because of a request for resources held by other processes in the collection. The scarce

resources are commonly viewed as devices in the case of operating systems, and locks in

database systems. Unfortunately, shared abstract data objects are not really similar to

peripheral devices, which are serially reusable and must be TMowned” by one process at a

time. Nor is the database paradigm of setting and releasing locks on parts of the database

very applicable to most situations involving data abstractions. Blocking of processes

competing for access to an abstract data object more often results from calls on particular

operations of the abstraction, rather than the subcomponents of the data object they access.

Closer to the mark , from this point of view, is the work by Holt ((Hol7l]. IRob75)).

Using a Petri net-based model, Holt views a system as a set of states with transitions

between them. With this approach, a process is Nblockedw in a state when there is no

transition it can make to another state. Deadlock results from a process being blocked in all

reachable states of the system. The approach to be described in this section is similar.

The solution specification into which the specLflcation is transformed is a convenient

form on which to perform deadlock analysts. The control points at which processes can be

blocked are the enter gates, and the conditions the processes are awaiting to become

unblocked are the corresponding entry conditions. A deadlock corresponds to one or more

processes waiting at each of one or more gates, on conditions that can never become true.

(It is assumed throughout that all operation activations terminate, so that processes can

deadlock only via the synchronization code Itself.)

~ T~~~~~~~~~~~~~
—-

~~~~I.T

- 194 -

For example, consider a data abstraction with two operations p and q. Suppose that

in deriving the solution specification from the problem specification, it is discovered that a

condition for passing through the ~~~~~ gate is

count(q’””~’) — count(q~”).

Now suppose also that a condition for the q’~~’ gate is

count(pr
~~

e3t) — count(p~ t”).

Obviously then, whenever there is a process waiting at each of the two gates p ’~ ’ and

q ”. these two processes are deadlocked. Each prevents the other from proceeding and

thereby enabling the condition that it itself is awaiting. This means that the original

problem specification is in error, in that the constraint it expresses prevents either activation

in the given situation from ever proceeding.

In the general case, a necessary but not sufficient condition for a collection of processes

to deadlock over access to a shared data object is for each of these processes to be waiting at

an enter gate for a condition to be satisfied. Whether or not this situation is a potential

deadlock depends on whether the conditions on which the processes are waiting can be

enabled by subsequent events associated with the shared object caused by other active

processes. The idea behind the deadlock analysis technique to be described here is to

characterize the synchronization state of the object at a potential deadlock point, a point at

which processes are waiting at enter gates. This characterization then contains sufficient

information for determining whether the entry conditions can be enabled by other active

processes, or whether the waiting processes themselves prevent the conditions from ever

becoming satisfied, in which case the situation represents a deadlock.



~~~~~~~~~~~~~~~~~~~~~~ 1T~~~ TT~~T~ ~~~

- 195 -

Each potential deadlock situation is distinguished by the subset of enter gates in the

system at which one or more processes are waiting. The terminology used here is that an

operation is blocked if there are processes waiting at the associated enter gate to execute it.

If there are n operations defined on an abstract data type, then there are (2fl - I) potential

deadlock situations, since any subset of the operations may be blocked, except the empty

subset. An empty set of blocked operations could not, of course, represent a deadlock

situation.

A complication arises from the use of qualified gates in solution specifications. When

there are two or more enter gates for a particular operation. with a different qualifying

predicate on each, the easiest point of view to take is that they behave like gates controlling

completely different operations. In the context of deadlock analysis, it is simplest to consider

two qualifications of an operation p. (p(v) I Q4(v)) and [p(v) I Q~(v)], as if they were

separate operations P1 and P2. since each distinct qualification of p can independently be

blocked, just as different operations can. The catch is that the qualifying predicates Q~ and

~,2 may not be independent, and if, for example, O~ ~ O~, then whenever (p(v) I Q~(v)] is

blocked, [p(v) O~(v)] must be as well. In general, however, it is not always possible to

determine when one qualified class is a subset of another. Always treating different

qualifications of an operation as separate operations is a conservative approach which is

guaranteed not to overlook any potential case of deadlock. Throughout this chapter,

therefore, when reference is made to a data abstraction having n operations, the reader

should understand that the intention is for different qualifications of an actual operation to

be treated as separate operations.


~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T T ~~~~~~~T~~~~~~~~~~ T T T ~~~~~

- l96 -~~~

It is straightforward to characterize a situation in which an operation is blocked. If

C(p) is the condition for gate p~~”, then the condition of operation p being blocked is

ex pressed by the formula B(p)

(—‘ C(p)) A count(p’~~’~
t) ~~~~~~~~~~~ A count(p’~~’) — count(p ”).

That is, when p is blocked, there are no active executions of p, but one or more activations

have been requested and are waiting because the entry condition C(p) is not satisfied.

1: Assume that the potential deadlock situations are numbered I, 2, ... , (2
fl - I), and let W

be the set of blocked operations in situation i. Formula U1 will denote the characterization

of the synchronization state of an object in situation i, by expressing the fact that all

operations in W 1 are blocked.

U1 - A (B(p) I p € W 1).

If U1 is equivalent to FALSE, then there is a contradiction in the information in the

formula. This means that the potential deadlock situation is impossible, and that a

condition on which an activation of one of the blocked operations is waiting must be

satisfied. If U1 is not equivalent to FALSE, then it represents a characterization of the

circumstances under which the situation can occur. 
.

For a potential deadlock situation that is possible, the formula U1 can be used to

determine whether or not the situation in fact represents an actual deadlock. This

determinatjon can be made by checking whether any of the conditions on which blocked

operations are waiting involve operations that are not blocked in the given situation. If

not, then the conditions can never become satisfied, and the situation In fact does represent

a deadlock. If one or more conditions involve non-blocked operations, however, then there



~ 
_ _ _

- 197 -

is not a deadlock, since a subsequent event involving one of these operations can “unblock”

the situation and enable one of the waiting processes. At the very worst, such an event may

change the situation to a different potential deadlock situation, to be analyzed separately.

Therefore, it is sufficient to find a single non-blocked operation that is involved in the

waiting conditions to disprove deadlock for a given situation.

As an example of deadlock analysis, consider the solution specification for a writers’

priority database given in Section 6.3. Since there are two operations, “read” and “write”,

there are three potential deadlock situations--processes waiting only at the read’~” gate.

only at the wri te~~
tSF gate, and at both gates. In the first situation, W(l) — { read }. The

description of this situation U1 is given by the “blocked” condition on the “read” operation,

B(read)

(count(write~~”t) � count(write~~~) v count(write~ t r )  � count(write~~
t)) A

count(read?1~l~
mSt) > count(read~”) A count(r eadhhl t r) — cou nt(read *4).

The condition on which “read” activations are waiting involves events associated with

the non-blocked operation “write”. This is not an actual deadlock situation, since the “read”

activations themselves are not causing the blocking. This does not necessarily mean that

the processes blocked at the readlfltsr gate will eventually proceed. There may exist histories

in which these processes are blocked forever, i.e. they may face the possibility of starvation

(see the next section). What the analysis here shows is that circumstances exist , involving

possible future events associated with operation “write”, that make unblocking of these

pr~cesses possible. Their being blocked need not be a permanent condition for all possible

histories.



- 198 -

The second situation is when only “write” is blocked, i.e. W(2) - wr ite }. The

description here is U2 B(write)

(count(read~ t T )  � count(read~~) V count(write~ t’) � count(write’~
t)) A

> count(write Mf) A count(write~ t ’)  — co unt (wri te~
1t),

which can be simplified to

count(read~~ ’) � cosrnt(read~~) A

count(write’~~’~~) > count(write~t”) A count(write~~~) — count(write ltlt ).

Since the blocking condition involves the non-blocked operation “read”, this is also not an

actual deadlock.

The third potential deadlock situation for the abstract object involves waiting readers

and writers, so that W(3) — { read, write }. This situation is characterized by U3 (B(write)

A B(read))

(count(read’~1”) � count(read~~) v cossnt(write~~~) � count(write~~)) A

count(write”l’h1’) > eount(writehhh1
~~1) A count(writehlhIth f) a eount(write’~ ) A

(cuunt(write1
~~

1$t) ~~~~~~~~~~~ v count(write’~~’) • count(write’~ )) A

count(readFU~’ I) > count(read”~ ’) A couut(read ”’) - cosmnt(read~
4).

(-lere there is a contradiction, between the first disjunctive clause on the one hand, and the

third and last conjuncti on the other. This reduces the formula to FALSE, proving the

situation to be impossible. Since this disposes of all three potential deadlock situations,

deadlock is proved to be impossible for this abstraction.



- 199 -

As a second example, consider the bounded buffer example analyzed in Section 6.2.

Once again, there are two operations, and therefore three potential deadlock situations for

this abstraction. The first is when only operation “rem” is blocked, so that W(l) — { rem

This is described by the formula U
~ 

— B(rem):

(count(dep~~
t) < count(rem l

~t1r) V count(rem~ t ’ )  � count(rem’~ )) A

cou nt(rem flthl) A COUilt (rem~ tur) — count(rem~~
t ),

which reduces slightly to:

count(dep’~ ) � count(rem nt
~) A

> count(rem’~”) A count(rem ”~) — count( rem x
~t).

Since the formula is not equivalent to FALSE, the situation is possible. However, the

condition on which “rem” activations are waiting, namely

count(dep~~’) ~ count(rem~~”),

involves operation “dep” that is not blocked in the situation. This means that the condition

need not be prevented from ever being satisfied, and so this does not represent an actual

deadlock.

The second situation is when only “dep” is blocked, and W(2) — dep 1. The

characterization of this situation is given by U2 — B(dep):

(count(rem hul) < coun t(dep~
t ’ )  - N v count(dep~ ’’) • count(dep xut )) A

cou nt(dep r~~~~ ) > count(dep~ ’’) A count(dep”) — counl(dep kht ),

which simplifies to:



:~~~ ~~~~~~~~~~~~~~~~~~~~~ 1

I
- 200 -

count(rem °t)~ count(dep~~ ’) - N A

coun1(dep”~~) > count (dep~~ ’) A count(dep~’t~) — count(dep~~ ).

This formula also is satisfiable, but once again, the waiting condition , involves a

non-blocked operation, in this case “rem”. This means that the potential for deadlock is

averted.

The third inactive situation involves both “dep” and “rem” being blocked. W 3 — {

dep, rem }, and U3 - (B(rem) A B(dep))~

(count(dep’~ ) < count(rem’~~’) V count(rem~
ts

~) • count(rem~~ )) A

count(remT
~~~

t) > count(rem’~~’) A count(rem M0
~) — count(rem~ it) A

(count(rem~ ’t) � count(dep ”) - N v count(dep~
t
~) • count(dep~ ’t)) A

count(depr~~~t) > count(dep’M”) A count(dep ”t”) count(dep~~).

For any value of N > 1, this formula reduces to FALSE, since it implies that

count(dep~~”) - count(dep~
4) � count(rem ”t ’) —

count(rem’~) < count(dep 1
~
hP

~) - N.

Therefore, the situation is impossible. In conjunction with the previous analysis of the

other two situations, this means that no deadlock is possible for the “buffer ” type.

7.3 Starvation detection

A related problem to deadlock is the notion of starvation. Starvation means that while

a prccess that is waiting to access an object is not necessarily blocked permanently, a pattern

of accesses exists that prevents the process indefinitely from proceeding. The opposite of

starvation is fai rnes s, which indicates that every process is guaranteed eventually to have its

___ -

S

- 201 -

request for access fulfilled. A method analogous to that used for deadlocks can indicate a

large class of possible starvation situations, specifically those that are independent of

parameter values.

Unfortunately, not all starvation possibilities can be easily detected. For example, the

disk head scheduler example of Example II in Section 2.7 is starvation-free , but the

simplified version analyzed in Section 6.5 is not. The fairness of the former specification

depends upon (I) the range of track numbers being bounded, and (2) the set of track

numbers being well-ordered. The proof that these are sufficient conditions for fairness

involves non-trivial properties of well-ordered sets. In general, properties related to

activation parameters , specifically to predicates qualifying gates in the solution specification,

involve anal ysis that is too complex for the relatively simple starvation detection method

outlined here. Such properties do not cause similar problems for deadlock analjsis, since

there th~ issue is simply whether any activations of an operation can proceed under any

circumstances . Starvation analysis must determine whether an arbitrary activation

eventually can proceed under all circumstances. This means that interactions among

different activations of an operation become more important . For those starvation

possibilities that can be detected by the method to be presented, the same approach to

qualified gates is taken as for deadlocks. Different qualifications of an operation are treated

as distinct operations, and each is analyzed independently for starvation.

_

~

-.

~

- -

~

~~~-~~~~~~~
_ S-- S,— -~~~— ~~~~~~ -~~ _ --_ 



_ _ _  I . TT~~~~~~~~ T

I,
- 202 - 

H

The motivation for the starvation analysis presented below is as follows: For a process

to starve, it must be kept waiting indefinitely at the enter gate for some operation. Since

the synchronization mechanism itself is fair in scheduling activations whose entry conditions

are satisfied, this can only happen if the condition on which the process is waiting is never

allowed to be satisfied, due to the presence of other operation activations. (As before, all

operation activations are assumed to terminate.) Therefore, it must be possible for processes

S 
executing other operations of the data abstraction to overtake the waiting process.

S 
“Overtaking” refers to the fact that even though the given process is waiting at an enter

gate, processes making other activations whose request events occur later proceed through

their respective enter gates ahead of it.

If operation q cannot overtake operation p, then whenever an activation of p is

blocked, eventually all activations if q that were requested prior to the request for p must be

completed. Under circumstances in which the activation of p starves, therefore, no

subsequent activation of q can proceed either. Thus the first step in the starvation analysis

for a particular operation is to determine which other operations of the abstract data type

can and cannot overtake it. The characterization of a starvation situation then states that

the given operation is blocked, and that no “non-overtaking” operations are currently active.

This characterization reduces to FALSE if there is a contradiction in the situation, meaning

that starvation is impossible.
L 

,

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .,~~~~~~~~~



~~~ITT :~~
’
~~~~ 1iiTI IT~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 203 -

Formally, the method of analysis for each operation p is the following: As before, B(p)

denotes that ~ is blocked:

(—‘ C(p)) A couilt(pT
~

h1s9t) > COUflt (p ”~ ’) A cou I1t(p ”t
~~) a count(p’~”).

For all q � p. construct the formula 1~(q. p) given by

B(p) A C(q) A (count(q~ ”t) > count(q~”)).

This formula indicates under what circumstances a process executing operation q can

overtake the process blocked at gate p ”~, i.e. when there are requested activations of q and

the entry condition for q is satisfied. It T(q, p) is other than false, then it is possible for an

activation of q to overtake the waiting activation of p. Therefore nothing can be assumed

about operation q in a starvation situation for p. If T(q, p) reduces to FALSE, however,

then this overtaking cannot occur, and a process waiting at p’~~’ will cause a process

subsequently arriving at q~ ’~ to be blocked as well. This means that no activations of q

can be active in a starvation situation for p. The starvation condition S(p) is constructed by

conjoining to B(p) the formula

couut(q~ ’”) — count(q xut )

for each q for which T(q, p) is FALSE. That is,

S(p) — A (count(q~’t ’) count(qSxui ) I T(q, p) — FALSE) A B(p).

This indicates that since q cannot overtake p, eventually no executions of q will be active.
S 

If S(p) is FALSE, then starvation of processes attempting to execute p is impossible, in that

the hypothesized starvation situation for p contains a contradiction. Otherwise, S(p)

characterizes a possible starvation situation.

S S S -~~~~~~~~~



— ~~~~~~~~~~~~~~~~~~~~~~~ 
‘
~~ ~- T ~~~~ ’T~~~~~~~~T.~~~~ ~~‘T~~~ ~1

- 204 -

S 
Again, consider che•writers’ priority database as an example. The condition for gate

wr ite”~
t
~ I~ 

-

(count(read ntsr) count(readu4) A count(write”~’’) — count(writeut )),

so the blocked condition for operation “write” is B(write)

(count(read”t ’) • count(read~~’) v count(write~’~) • count(write Xt )) A

count(write’~ ”) > count(wrEte~ t1f) A count(write 1t
~) — count(write1X

~
t).

The condition C(read) is given by

count(write~~~~
t) a count(write~

ts
~) A count(write~t”) — count(write~

’t).

This makes the overtaking condition T(read, write)-.

(count(read~
t ’)  • count(read ht ) V count(write Mt) • count(write Xd)) A

count(write~~””t) > count(write~’~’) A count(write~~h) — count(write”~) A

count(write’~ ’~~
t) — count(write~~’) A count(write~~”) — count(write *S) y~

count(read’ ”~’) > count(read’~~’).

Since the second and fourth clauses contradict each other, the formula reduces to FALSE.

This means that the clause

count(read’~~) - count(read~~’}

is conjoined to B(write) to form S(write), the starvation condition for operation “write”:

t (count(read’M”) • count(read””’) v ~~unt(wrlte flt1
~ • count(write ”)) A

count(write~~~~
t) > count(write1f

~lV) A count(write”~’) — count(writeu~*) A

count(read ”’) — count(read’~ ).

This formula in turn is FALSE, since the last two conjuncts together contradict the first

disjunctive clause. Starvation of writers Is therefore impossible.



r . T  ~i~~ TTT _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~

- 205 -

• If a similar analysis is performed for the “read” operation. B(read) is constructed as:
- 

~~~~~~~~~~~~~~~~~~~~~ � count(write~ t r )  v count(write’~1”) • count(write”t)) A

count(readn1~
15t) > count(read’~”) A count(read nt v) — count(read~

’t).

The condition of “write” overtaking “read”, T(write, read), is then formed:

~~~~~~~~~~~~~~~~~~ • couiit(write ”t ’) V count(write~
t
~ ) • count(write x t )) A

~~~~~~~~~~~~ > count(read ”) A count(read~ ’~ ) count(read xut ) A

count(read~
t ”)=count(read~~

t) A couiit(write’~”~) — count(write’~) A

couiit(write ’~ ’) > count(write’”~).

This formula is not identically FALSE, however, so that operation “write” can indeed

overta ke “read ” This means that the starvation condition S(read) is simply equal to the

blocked condition B(read). Since S(read) is not FALSE, starvation of readers is indeed a

possibility, as ex pected, and can take place under the circumstances given by:
-

(count(write’~~’~
t) • count(write ”t ’) v count(write~~ ’) • count(write hst)) A

-

. count(readr~
1 s$t) > count(read’~”) A count(read~ tsr) — count(read ”).

S

That is, as long as there are activations of “write” that are either requested and pending, or

active, then requested activations of “read” may starve.

L

_ _ _ _ _ _ ~~~~~~~~~~

- 206 -

• Cha pter 8

Summary and Evaluation

8.1 Summar y of the thesis

This thesis has explored one approach to the problem of specifying synchronization

properties and synthesizing source language code to implement them. The approach taken

• has depended on a basic model of abstract data objects and synchronization, which was

described in Chapter 2. The principal features of this model are:

(I) Every data object is strongly typed, and any access of the object must be via a

basic operation of the ty pe of the object.
.

-

(2) Certain points in time, called events, are distinguished in a computation

• history involving accesses of a given data object. In particular, there are

three types of events: request events, which denote processes making known

their wish to gain access to the object enter events, which denote successfully

gaining access; and exit events, which denote relinquishing access.

(3) The temporal precedence relation among events associated with a given data

object is a total ordering relation.

(4) The function of synchronization is to constrain in certain ways the time

ordering relation on a data object, In particular the occurrence of enter events

within the total ordering. This function Is orthogonal to the meaning of the

operations by which processes access the object, and therefore can and should

be implemented separately from those operations

____ -. IIT1J~1~~ T - .~~~~ ~~~~TTTJ -

- -

- 207 -

(5) Individual synchronization constraints exist for each object in the system.

Furthermore, a synchronization constraint is associated with a data type, and

applies independently to each objec t of that type.

Using this model as a basis, a specification language was described in Chapter 2 for

ex pressing synchronization properties of abstract data types. A notation was devised for

denoting events, and the infix symbol “
~~~~~~

“ introduced for the time ordering relation.

- 
S Specifications express constraints on this relation via predicate calculus formulas involving

the time ordering between universally quantified event expressions. The quantification

causes the constraint to apply to all events of a given class in a history. By explicitly stating

the arguments to procedure invocations involved in a specification and using predicates to

constrain these arguments, a constraint on the ; relation can be made to selectively apply

to a sub-class of events. The formal semantics of this specification language consisted of

defining the validity of histories with respect to a given specification. A number of

examples of the use of the language to express synchronization constraints appeared at the

end of Chapter 2. 
-

To synthesize source language code implementing the specifications, it wa s found to be

desirable to use an intermediate form. This form, called the solution specif ication , was

described in Chapter 3. It is an abstract representation of the solution to a specification that

is procedural in nature but independent of the particular construct used for implementation.

A solution specification consists of a collection of gates , which are abstract implementations

of event classes . Synchronization constraints are implemented by attaching conditions on

the synchronization state to gates for enter event classes. Processes are only allowed to pass

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ __ _



-- 

~~~~~~~~~ :~~~~T TIJT~ 
‘~T~~TJ. ‘ TST~~T TI -

- 208 -

through gates when the corresponding conditions are satisfied. The semantics of a solution

specification, as of the problem specification, were defined in terms of the validity of

• histories. Translating a solution specification into an implementation using a

synchronization construct such as a monitor is quite straightforward, as explained in

Chapter 5. Therefore, the difficulty in synthesis is deriving the solution specification from

the problem specification.

. This derivation was the subject of Chapter 4. Besides simply identifying which gates

are needed for a specification, this consists of constructing appropriate conditions on the

synchronization state to associate with enter gates in order to implement the specified

constraint . The construction of these conditions is accomplished by an algorithm that can

be broken into several phases. First, constraints on the arguments to activations are

incorporated into the rest of the specification by a technique called “qualification”. Once

this has been done, all possible orderings of relevant events are formed, and each ordering

is identified as either valid or invalid with respect to the specification. The synchronization

sta te at particular events in both valid and invalid orderings is characterized, and these

characterizations are combined to form a preliminary condition. This condition is tested

among the valid or~erings; it either succeeds In satisfying them all and is therefore correct,

or else it fails in one or more cases, and must be weakened by disjoining to it one or more

other terms. These weakening terms are derived in much the same way as the prelimi nary

condition, except that a smaller class of orderings is used, and the characterizations involve

synchronization states saved at previous points In the orderings.

_ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-- -—- - -- •
~~

- 209 -

Chapter 6 presented several examples of commonly addressed synchronization

problems, which are specified and then synthesized by the approach described. These

examples certainly do not constitute a complete test of an approach, but they do represent a

fairly broad range of the kinds of synchronization properties found to be of real interest.

The topic of Chapter 7 was the analysis of a synchronization constraint for possible

deadlock and starvation . The solution specification is a convenient form on which to

S perform this analysis. Algorithms were presented that for any given specification can

disprove the possibility of certain finds of deadlock or starvation, or derive the conditions

under which they can take place.

8.2 The specification language

There are a number of ways of evaluating the specification language described in

Chapter 2. The example specifications in Section 2.7 attest to its power to express a wide

range of synchronization properties. The derivation method discussed in Chapter 4 and

further illustrated by the examples of Chapter 6 demonstrates its suitability as an input

language for the synthesis algorithm. Two other related criteria are especially important,

though subjective in nature: the constructab ility of the language, how easy is it to write

specifications; and its corn p reile nsibllity, how easy is it to understand specifications.

Within the framework of the model of synchronization upon which the language is S

based, the language itself Is quite convenient for writing synchronization specifications.

Since all of the standard logical operators of predicate calculus can be used, and formulas of

arbitrary complexity constructed, any constraint on time ordering can be expressed. These

_ _ _
_ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~—-—~~~~~~~~~

S - - - - S S
~~

_

- • _______ TI~~ _________ ________

- - 210 -

S specifications are relatively easy to write and to understand, since each logical operator has

a natural interpretation. The extensibility of the language permits a complex specification

involving many constraints to be expressed as a conjunct ion of individual clauses, each one

specifying a single constraint. This feature, illustrated by the different versions of the

readers-writers problem considered in Chapter 6, enhances both constructability and

comprehensibility.
-

S

-
There may exist grounds for criticizing the language based on disagreements with the

S underlying model. For example, consider the choice of which points in time to be

S designated as events. Each of the three event types request, enter, and exit has a uniform

S meaning. and each is necessary for expressing a wide class of synchronization properties. -

S
Properties concerning exclusion of operations involve enter and exit events, and scheduling

properti es use request and enter events.

Disagreement may exist , however, over whether these three types constitute a sufficient

set. In particular, assume that some operation p may be blocked from proceeding, not

initially before the activation begins, but rather at some point in the middle of execution.

That is, suppose p performs a certain amount of computation, then must wait for some S

synchronization condition to be satisfied, after which it completes execution with some

further com putation . There is no straightforward mechanism in the model (and therefore

the language) for denoting this “intermediate” event. Such a situation must be handled by
S

splitting operat ion p into two subsidiary operations p1 and pZ which when executed serially

constitute the whole of operation p. The intermediate point within p Is represented by the S

exit event for p1 and request event for p2. The condition on which It may be blocked is an

-- —4

T~ ~ I1. ~~~~~~~~~~~~~ • - T1I~~~~

entry condition for gate p2~ ’’.

S While this may not be considered an aesthetically satisfying solution to the problem. it

can be justified. The event types request, enter, and exit were chosen in part because they S

possess a uniform interpretation independent of the meaning of the particular operation. If

a new event type intermediate were employed, its meaning (the intermediate point at which

the operation may pause) necessarily would be operation-dependent. Moreover, a single

intermediate event type would not be sufficient for handling operations that may be
S

blocked at more than one intermediate point. For the sake of generality, then, it would be S

necessary to have an unbounded number of event types intermediate-i, interinediate-2

Whatever such an approach might gain in constructability of the language would surely be S

lost in reduced comprehensibility. The solution chosen instead of splitting the operation p
S

into component segments p1, p2, etc. seems at least as satisfactory. S

There is another important aspect of the specification language used here. That is the

ability to use synchronization specifications, along with the bodies of the operations. to

prove properties of the data abstractions. One kind of proof is of the (serial) correctness of

an operation, with the synchronization specification used to show that all possibly

interfering operation activations are excluded from concurrent execution. The

synchronization specification also can be used to demonstrate that certain types of exception

handling are unnecessary. An example is the bounded buffer specification analyzed in

Section 6.2, by which it can be shown that an activation of the “rem” operation never

- operates on an empty buffer.

~~~~~~~~~~~~~~~-~~~~~~~~~~~~~~ -~~~~~~~~~~~~---- S



1TI 

— 

S

- 212 - 
- 

-

One limitation of the specification language is an inability to refer to the state of the S

abstract data object to which a specification applies. There are good reasons for restricting

the language in this way, as explained in Chapter 2. It Is also true , at least theoretically,

that any state information can be expressed .UL~erms of events in - the history. However,

capturing state information via histories can make the specification of certain properties

rather awkward. For example, the disk head scheduling specification of Example 14 in

Section 2.7 could be simplified significantly If reference could be made to whether the disk

head is moving up or down (at the point at which a certain event occurs). This limitation,

however, does serve the purpose of maintaining a clean separation between the

synchronization aspect of the data abstraction and the actual operat ions.

8.3 The synthesis method

The method for synthesizing synchronization code from specifications was presented in

Chapters 4 and 5. The justification of the algorithm for deriving a solution specification,

and a discussion of cases for which it fails, is presented at the end of Chapter 4. Failures of

the algori thm really reflect an inability of the relatively rigid solution specification, to

capture certain synchronization properties of interest. For example, the algorithm fails on

the first -come-first-served specification because this property cannot be implemented using a

separa te queue for each operation of the abstraction. On the whole , thou gh, and

particularly with the use of qualified gates to capture parameter-related properties , the

solution specification structure is able to express the solutions to almost all synchronization

problems that can be specified An the problem specification language 
. 

S

I 
S 

- - — “ — --~~~~~~~~ ~~~~~~~~~~~~ S S ~~~~~~~~~~ - •~~~~~~ -S- S -~~~~~~~~ S -  - • -. -~~~~~~



- 

~~~IT~~~~’ i~~~~~~~~~~~~~~i: _ S~~ S~~~~~~~~~~~ -

- -,

-

- 213 -

The monitor implementation of the solution specification is relatively straightforward

in most cases . The exception to this is the handling of parameterized gates using the types

counts(T] and conditions(T). The implementation of parameterized enter gates in

particular , especially where the qualifying predicate is not a functional relation, becomes

quite complicated. As noted in Chapter 5, a certain amount of simplification would be

possible if the user were to supply the range of values that each parameter could assume. S

This information could also be used to prevent the decrease in expressive power that results

from having to make certain assumptions about the solution specification conditions in

order to construct a correct implementation.

Chapter 6 contains a small set of examples in which implementations are completely

synthesized from problem specifications. In fact, a considerably larger number of examples

have been worked out, including all of the specifications presented as examples in Section

2.7, with the exception of those explicitly cited in Chapter 4 as failures. The method

appears to satisfactorily synthesize implementations for a wide class of specifications, except

for those properties for which solution specifications cannot be obtained, as noted above.

Two other measures of the synthesis method are important to discuss here. The first

of these, the practicality of the synthesis algorithm, appears open to question. In the

derivation of the solution specification, all possible orderings of the event expressions

contained in the specification must be considered, and since n events may have as many as

n! orderings, the algorithm is necessarily exponential. In a less formal sense, the practicality

is weakened by the complexity of some of the steps of the algorithm, particularly those

requiring a logical simplification of formulas. Compensating somewhat is the fact that the

- _

1’TT _ _ _ _

- 214 -

formulas involved are of a restricted form. Therefore, a small collection of special-case

simplifications, such as those appearing in Figure 4.2, rather than the power of a

general-purpose logical simplifier, would probably be sufficient for implementing a system

based on the method proposed here. Also, the ability to analyze each conjunct of the

specification separately helps reduce the overall complexity. -

Still, improvements in the algorithm are required to make it practical in, say, a

compiler. The algorithm as it stands can be used manuall y by a person to implement a

• synchronization constraint expressed in the specification language, or to informally check a

hand-coded implementation. Further work, as discussed at the end of this chapter , is

needed to automate the algorithm.

With respect to the other measure of evaluation, the efficiency of the synthesized

source code, the method can be judged to be quite respectable. There are certain

inefficiencies that necessarily result from the use of a relatively fixed structure. Two aspects

of the fixed structure here are particularly restrictive. One is the use of separate condition

var iables for different enter gates , which prevents the queuing of processes waiting to S

execute different operations on a common queue. The other is the derivation of a single

entry condition applicable both initially when a process first attempts an access and

subse quentl y when testin g whether to allow the deferred access.

_ _ _
- - -5 - - ~~~~~~~~~~~~~~ -—-~~~~~~~~~~~~ ——

F ~iI~TT~~~ _ _ _ ~~~~~~~~~~ ~~~~~~~~~~~~~

- 215 -

As a result, the synthesized monitor for the “alternating priority database” example of

Section 6.4 is awkward compared to the rather elegant monitor coded by hand to solve the

same problem in [Hoa74]. Much of this awkwardness , however, is due to the simple-minded

implementation of testing for possible signalling all condition variables at the end of each

monitor procedure. As indicated in Chapter 5, optimization of the signalling statements by

eliminating provably unsatisfiable options is often possible.

On the whole, synthesized implementations approach hand-coded ones in terms of

efficiency for a large class of problems. The fact that all synchronization code manipulates

only integer -valued quantities, and that entry conditions always consist of linear equalities or

inequalities of such quantities, keeps the implementations efficient. The efficiency can be

enhanced if other obvious optimizations are applied to the results of the straightforward

synthesis, such as using a single variable for a quantity of the form

count(ecl) - count(ec2),

rather than two separate variables for the two different counts.

Where the efficiency of the synthesized code becomes unacceptable is in cases

involving parameterized gates, such as the disk head scheduler of Section 6.5. In order to

accommodate the structure of the solution specification, the parameterized types counts[T)

and conditionstT] must be employed to implement what amount to entire arrays of counts

and conditions. Here, the fixed structure of the synthesized implementations becomes a real

barrier to an efficient implementation, since “good” implementations of such properties make

use of special mechanisms such as priority queues. With the exception of parameter-related

properties , though, the performance penalties paid for most specifications seem to be within

.

- — ~~~--~~—- - - - - - - - -~~~~~~~—- — — -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _

_ _ _ _ _ -

- 216 -

the limits of what can be reasonably expected from an automatic synthesis system.

8.4 Comparison with path expressions

As noted in the introductory chapter, the work on path expressions ([Cam741 [Hab75),

[Flo76]) most nearly matches this thesis in terms of overall goals. In evaluating the thesis,

then, it is instructive to compare it with the path expression work to see to what extent each

meets these shared goals. In terms of this comparison, the path expression language is

restricted to its original description in (Cam74]. Later versions have added successively

more features to the language, with questionable results. The original language simply

contains the basic features that make path expressions analogous to regular expressions,

namel y the sequencing operator “ ; “. the alternation operator “
,

“
. and the repetition

operators “{ ... J” and “path ... end”. The analogy with regular expressions embodies the

basic philosophy underlying path expressions.

The approach both of this thesis and of path expressions is to constrain the ordering

relation on accesses to some shared abstract data object. Access of the abstract object is

limited to a collection of basic operations associated with the ty pe of the object, and so each

language specifies a subset of possible object histories involving these operations to be

valid. For path expressions, activations of the operations are treated as units, while this

thesis has denoted three particular points In time associated with each activation as events,

and dealt with these events rather than the activation itself.

IIIIILJlIillIliIIIr _IL ~~~~~ ~~~~~~~~~~~~~~ ‘~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ S - s~~~~~~~~~~~~~ . . ~~~ -_ .-~—--‘-- .- -—. i1jiil

~~II II~J~

- 217 -

S The path expression approach is to specify a global constraint for the complete

sequence of accesses represented by the overall history. The specifications of this thesis, on

S the other hand, represent local constraints for individual operation activations; because the

activations involved in a specification are quantified, the constraints apply individually to

each activation in the histor y. My intuition is that local constraints are inherently simpler,

both to construct and to comprehend, and that people must translate global constraints into

local ones to understand them. This is a subjective judgement, however.

The path expression language uses as basic notions the concepts of mutual exclusion,

S sequencing, and concurrent repetition. These are at a higher level than the more primitive

temporal ordering relation ~~~~~ . Use of such higher-level concepts facilitates the expression

of properties that are based closely on them. For example, the readers-writers property,

appearing as Example 3 in Section 2.7 in the form

((write~~t ’ ; writef’~’’) D (write~~
it

~~ write~ ’t’~)) A

S ((writei
$., read~~’~”) v (read k *~ ~~

can be specified by the path expression

path { read }, write end.

The gain in comprehensibility and constructability is obvious.

However, the same result can be achieved by using some sort of macro facility with the

langw’ge of this thesis. For example, MUTEX(p, q) could be employed as a shorthand

• abbreviation for the mutual exclusion specification of Example 2 in Section 2.7:

S (pi
uit ~~ qf ’~~

’) V (q~SXIt
~~~~~ Pi~

t ’). S

and the readers-writers property then could be expressed as

_  _ _



~ 
_ _ _  

5 

‘l

- 218 -

• 

MUTEX(write, read) A MUTEX(write, write).

S Such a macro facility would also be useful in identifying specifications for which
- 

• 

implementations have already been derived in the past, thus eliminating replication of

previous effort.

The use of higher-level concepts as basic to the path expression language has the

disadvantage that properties not closely related to these basic ones can be rather difficult to

specify. For example, consider the writers’ priority database example analyzed in Section

6.3. There the property was specified by adding to the readers-writers specification above

the following conjunct, giving priority to operation “write” over “read”:

(write1~~”~
t =~~ readf”) ~ (write1~~~ ~~ readf”).

The~path expression specification for the same example appears in (Cam74] as:

p ath readattempt end

path requestread, ( requestwrite } end

p a th { openread; read ). write end

where

readattempt - begin requestread end

request read - begin openread end

requestwrite begin write end

READ begin readattempt, read end

. 
WRITE = begin requestwrite end

• There is quite a lot of extra effort involved in adding the single property of priority to the

readers-writers specification, and in terms of comprehensibility it leaves much to be desired.

Even more discouraging as the fact that giving priority to “read” over “write” Is done in a —

slightly different manner. Little wonder, then, that in the next version of path expressions.

appearing in (Habib). priority becomes another pre-defined operator In the specification

_ _ _  - S”- -~~~~--- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • S ~~5 •~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 219 -

language.

S The languages of both this thesis and path expressions claim the virtue of

extensibility, meaning that further constraints simply can be added onto previous ones

without changing the existing specification. As the above example illustrates, this is not

quite true of path expressions, since the addition of the writers’ priority property requires a

change in the expression of the readers-writers property as well. In this thesis, new

constraints can always be conjoined to existing ones.

The writers’ priority database example also illustrates the fact that with path

expressions new operations sometimes must be invented for the specification of desired

properties. In this thesis, this is also true, but here it is limited to the single category of

breaking an operation into serial sections of code in between which the process executing

the operation may be blocked, as explained in Section 8.2. With path expressions, blocking

within operations must be handled in the same way, in fact. However, it may also be

necessary to construct a new operation whose only purpose is to call an existing one, such as S

“requestwr ite” in the example. Other examples in both (Cam74) and (Habi5] contain

numerous other such “hidden” operations used in various ways. In general, a clean

separation of synchronization code from the data abstraction operations themselves seems S

less . feasible with path expressions.

_ -j

- - -~~~- . - --
______ — ____ — —

- 220 -

~ —~~~~~~~~ — W F

The final comparison with, respect to the specification languages themselves is that

path expressions contain no facility for expressing properties that involve the parameters of

I operation activations. The only way to handle such properties would appear to be for the

- operation body to call different hidden procedures based on the satisfaction of different

• predicates by the parameters. Path expressions could then express synchronization

S constraints on these hidden procedures. There is no straightforward mechanism, however,

as there is in the language of the thesis.

S - The main thrust of the discussion in this section so far has been that the specification

language of this thesis Es superior, particularly in terms of criteria such as constructability

S and comprehensibility, to the path expression language. With respect to synthesis, however,

there is no question that the path expression approach is better. A simple recursive

algorithm in [Cam74] can automatically implement any constraint specified by path

S expressions in terms of semaphores and integer counters.

In general, there is ~ tradeoff between expressive power of a specification language.

• and relative ease of synthesizing implementations from it. Because the path expression

- language is designed around a few built-in properties such as mutual exclusion, “canned”

implementations of these properties can simplify the task of synthesis. The greater

generality of the language of this thesis results in a far more difficult synthesis problem. It

-~ is interesting that in later versions of the path expression language ((Hab75), (Floi6]).

additional features are added to increase the expressive power. These later papers do not

include automatic implementation algorithms, and the problem of synthesis would appear

far more difficult for these more complicated versions of the language.

__ 11 - - 1

- 221-

8.5 Future work

There are a number of areas in which the work of this thesis could be extended in the

future. Generally, the specification language itseff seems sound as it stands, with the

possible exception of the inability to refer to the data state of the resource, which is an issue

that should be investigated. Further work is also needed on using specifications in proving

properties of data abstractions.

S As noted in Chapter 5. information about the range of values of certain parameters

would be ver y helpful in constructing implementations of argument-related properties. An

automated system could interactively ask for this information from the user. However, it

could also be supplied as part of the original specification, if the specification language were

extended to handle it.

The synthesis method described here can only be viewed as a starting point for

pursuing this general approach. The synthesis a lgorithm is very complicated, and while
-

this is dictated to some extent by the generality of the specification language, the complexity

almost certainly could be reduced, perhaps dramatically, by looking at alternative strategies.

One area that could particularly benefit from a different approach is the use of

qualified gates for argument-related properties. As indicated above in Section 8.3, the

implementations resulting from such cases are unacceptably inefficient. It is unreasonable to

have to perform a detailed search in determining the state variable to be updated or the

condition on which to wait. A change in the basic solution specification structure would S

probably be necessary to achieve acceptably efficient implementations of argument-related S

_ _ _ _ _ _ _ -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ --~ S ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~

•

~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 222 -

properties. Unless some alternative were found, it might be better to eliminate

argument-related predicates from the specification language entirely, even at the Cost of

reducing the power of the language. -

S The use of information private to each process as discussed in Section 4.7, represents

one possible direction for extending the power of the solution specification. Private

information would permit each process to look back in the history to a point whose state is

-

-
S important only to that process. This would increase the range of applicability of the

derivation algorithm. Of course, adding this feature to the solution specification requires

modification of the algorithm so that such information can be derived. This issue would

have to be investigated.

An alternative to private information would be a more flexible solution specification

structure. As noted in Section 8.3, the ability to employ different queuing strategies and to

S have different entry conditions for a gate depending upon context would add expressive

power to the solution specification. Again, the impact on the derivation algorithm would

S have to be considered.

Another idea that might bear exploring is the use of more powerful data types than

simple integers in both .~he solution specification structure and the source code

implementation. Specifically. sequences of events may be a more natural concept by which

to translate properties from history-theoretic to state-theoretic terms. One potential difficulty

is the fact that there is no theory of sequences as rich as number theory, and no good

analogue for sequences to the .c relation on integers, which is so basic to the synthesis

_ _ _ - 5~~ -~~~~~~~~~~~~~~~~~
_ _ _ _ _ _

:E ’~ T . ~~~ IT~~ . I

- 223 -

algorithm. Also, the problem of source-level optimizations, which has been addressed

briefly in the thesis, would become much more serious.

A limitation of the work here that has been mentioned earlier is its dependence on a

centralized synchronization mechanism for each data object. This limits its applicability in

situations where data objects may be distributed widely around a system of geographically

distant processors. It would be inthresting to explore to what extent this centralized-control

bias is built into the underlying model, and see what problems have to be overcome in

devising an implementation suitable for distributed systems.

An interesting problem growir~g out of the approach here is whether or not

synchronization constraints for an abstract data type can be derived automatically from the

implementation of the type. Obviously, questions such as whether one operation should

have priority over another can only be decided by a person, since there is no inherent

reason to choose one priority scheme over another. However, the code implementing the

operations of a type, possibly augmented by some internal consistency requirement for the

lower -level representation of objects of the type, -can provide enough information to

determine many classes of synchronization constraints. Which operations must be mutually

S
- exclusive of each other can often be determined by analyzing the manipulation of’ shared

variables used in the implementation of the type. A number of techniques employed in

S optimizing compilers can also be used: Heuristics such as dead code elimination and

requiring a variable to be initialized before being used can reveal certain required

S dependencies in the ordering of operations. Success in investigating this area could lead to S

the partial elimination of the need for synchronization code itself.

T~~ _ _ _ _ _

-•

- 224 -

S

Of all the areas open for future work, however, the most obvious is the need to

implement in an actual system a method such as the one described in this thesis. Many
S

- ideas look good on paper, only to founder when actually put into practice. A certain

amount of system design has been done on paper, in order to help determine the feasibility

• of the system. Nothing has been actually run and tested, however, and only an actual

implementation ultimately can be convincing as to the feasibility of automatic synthesis of

S synchronization code.

—- - ~~~~S - -~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5 —-— — ——•~~~—~~~~~~~~~— --—-- ~~~~~~~~~~~~~~~~~~~ —~~~~ - —~~~~~~~ SS


~~~~ - . ITTI T i ~~~ _ _ _ _ _  _ _ _

- 225 -

Bibliography

(Blo78] Bloom, T., “Synchronization Mechanisms for Data Abstractions”, M. S. thesis
S (forthcoming), M. I. T., 1978.

(Bri72] Brinch Hansen, P., “A Comparison of Two Synchronizing Concepts”, ~iaInformatica I, pp. 190-199.

(8ri73] Brinch Hansen, P., Operating system Principles. Prentice-Hall, Englewood Cliffs,
N.J .. 1973. 

. 

S

[Piro76) Brock , J. D., and Laventhal, M. S., unpublished note.

5 (Cam74] Campbell. R. H.. and Habermann, A. N., “The Specification of Process
S Synchronization by Path Expressions”, Lecture Notes in Computer Science. 12!. ~~, Springer

Verlag, Heidelberg, 1974.

S [Cha74) Chamberlin, D. D., Boyce, R. F., and Traiger, I. L., “A Deadlock-Free Scheme for 
-Resource Locking in a Data-Base Environment”, Information Processing 

~f, 
North-Holland ,

Amsterdam, 1974, pp. 340-343.

(Cou7IJ Courtois, P. J.. Heymans, F., and Parnas, D. L., “Concurrent Control with ‘Readers’
and ‘Writers”', Comm. ACM 14, 10, pp. 667-668.

(Dah723 DahI, 0. J., “Hierarchical Program Structures”, Structured Programming.
Academic Press, New York , 1972.

[Dij68] Dijstra, E. W., “Cooperating Sequential Processes”, Programming Language s,
Academic Press, New York , 1968.

[Dij72a1 Dijstra, E. W., “Notes on Structured Programming”, Structured Programming.
Academic Press, New York . 1972.

tDij72b] Dijstra, E. W., “Hierarchical Ordering of Sequential Processes”, Operating Systems
Techniques. Academic Press, New York, 1972.

(Dij75] Dij kstra, E. W., “Guarded Commands, Nondeterminacy and Formal Derivation of
Programs”, Comm. ACM 18, 8, pp. 453-457.

[Esw76] Eswa ran, K. P., Gray, J. N., Lon e, R. A.. and Traiger. I. L., “The Notions of
Consistency and Predicate Locks in a Database System ”, Comm., ACM 19, II, pp. 624-633.

(Flo76] Hon, L., and Habermann , A. N., “Towards the Construction of Verifiable Software
Systems”, Proc. ACM Conference on Data, SIGPLAN Notices 8,2, pp. 141-148.

_ _ _ _ _  _ _  - ,  — - . -~~~~~ • .



~~~T~~~T T ~~T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- 226 -

(Ges77) Ceschke. C. M., Morris, J. I-I., arid Satterthwaite, E. H., “Early Experience with
Mesa”, Comm. ACM 20, 8, pp. 540-553.

S
(Gre75] Greif , I., “Semantics of Communicating Parallel Processes”, MAC-TR-154, M.I.T. S

S

Project MAC, 1975.

[Gri76J Griff iths, P., “SYNVER: An Automatic System for the Synthesis and Verification
• of Synchronous Processes”, Ph. D. thesis, Harvard University, 1976.

(Hab69] Habermann, A. N.. “Prevention of System Deadlocks” Comm. ACM 12, 7, pp.
373-377.

S [Hab72) Habermann, A. N., “Synchronization of Communicating Processes”, Comm. ACM
IS, 3, pp. 171-176.

S (Hab7S) Habermann, A. N., “Path Expressions”, Carnegie-Mellon University, 1975.

[Had77] Haddon, B. K., “Nested Monitor Calls”, Operating System Review Il, 4, pp. 18-23.

(Hav68J Havender, J. W., “Avoiding Deadlock in Multi-Tasking Systems”. J.~hj Systems J..
7, 2, pp. 74-84.

- [Hew73] Hewitt, C., Bishop, P., and Steiger, R., “A Universal Modular Actor Formalism for
Artificial Intelligence”. EJ2c~ IJCAl~ 1973.

(Hew77] Hewitt , C., and Atkinson, R., “Parallelism and Synchronization in Actor Systems”,
Proc. ACM Conference ~~ Principles ~ Programming Languages, 1977.

[Hoa74] “Monitors: An Operating System Structuring Concept”, Comm. ACM 17. 10. pp.
549-557.

(Hol7l) Holt, R. C., “On Deadlock in Computer Systems”, CSRG Technical Report 6,
Department of Computer Science, University of Toronto, 1971.

(Ho172] Holt, R. C., “Some Deadlock Properties of Computer Systems”. ACM Computing
Surveys 4, 3, pp. 179-196.

(Jam77) Jammel, A. J., and Stiegler, H. C., “Managers versus Monitors”, Information
Proces~ ig fl, North-Holland, Amsterdam, 1977, pp. 827-830.

(LDRS77] Proceedings of ACM Conference on Language Design for Reliable Software”,
SIC PLAN Notices 12, 3.

(Lis74) Liskov, B., and .~Ies, S.. “Programming with Abstract Data Types”, SIGPLAN S

S

Notices 9, 4, pp. 50-59.


~~~~~~~~~~~‘iT’:~~~~T

- - 227 -

[Lis77] Liskov, B., Snyder.. A., Atkinson, R., and Schaffert, C.. “Abstraction Mechanisms in
CLU”. Comm. ACM 20. 8, pp. 564-576.

[McC62] McCarthy, J., “A Basis for a Mathematical Theory of Computation”, Computer
Programming and Formal Systems. North-Holland, Amsterdam, pp. 33-70.

[0wi75] Owicki, S. S., “Axiomatic Proof Techniques for Parallel Programs”. TR75-25l.
Cornell University, 1975.

[0wi76J Owicki, S. S., “An Axiomatic Proof Technique for Parallel Programs H: Shared
Data Abstractions”, Stanford University, 1976.

- (Par72] Parnas, D. L., “A Technique for Software Module Specification with Examples”,
Comm. ACM 15,5, pp. 330-336.

(Ree77] Reed, D. P., and Kanodia, R. K., “Synchronization with Eventcounts and
Sequencers”. M.I.T., 1977.

[Rob75] Robinson, L., and Holt, R. C., “Formal Specifications for Solutions to
Synchronization Problems”, Stanford Research Institute, 1975.

[Sch78) Schaffert, J. C., “A Formal Definition of CLU”, MITILCS/TR-193, M.I.T.
Laboratory for Computer Science, 1978.

(Shall] Shaw, M., WuIf, W. A., and London, R. L., “Abstraction and V~rification in
Alphard”, Comm. ACM 20,8, pp. 553-564.



-
~ - --- - , , -~ 

~~~~~~~~~~~ 

-

~~~~~

- 228 - 
- 

. 

-

Biograph ic Note

Mark Steven Laventhal was born on November 14, 1950, in Englewood, New Jersey. S
- He grew up in Bergenfield, New Jersey, in Detroit, Michigan, and in Broomall. 

5

Pennsylvania . He graduated from Marple Newtown High School in Newtown Square.
— 1 Pennsy lvania , in 1968. From 1968 to 1978, Mr. Laventha) has attended the Massachusetts

Institute of Technology. He received the S. B. and S. M. degrees in the Department of
Electrical Engineering and Computer Science in February, 1974. His S. M. thesis was
entitled “Verification of Programs Operating on Structured Data”. From 1972 through 1975,
Mr. Laventhal received a National Science Foundation Graduate Fellowship. He served as

S a teaching assistant in the Department of Electrical Engineering and Computer Science
from September, 1975, through January, 1977, and as a research assistant under Professor
aarbara Liskov from January, 197T through June, 1978.

Mr. Lave rnhal worked at the Thomas J. Watson Research Center of I. B. M. S

Corporation in Yorktown Heights, New York , during the summers of 1976 and 1977. He is a S

member of the Association for Computing Machinery, including its Special Interest Groups
on Programming Languages and Software Engineering. He is also a member of the Tau S

Beta Pi engineering honorary society, and the Eta Kappa Nu electrical engineering
honarary society.

In August, 1978, Mr. Laventhal will assume a position with the Data Systems Division
of Hewlett-Packard Corporation in Cupertino, California. He is married to Carol J.
Goodman.

- ~~~~~~~~~~~~~~~



_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~

Official Distribution List

Defense Documentation Center Dr. A. L. Slafkosky
Cameron Station Scientific Advisor
Alexandria, Va 22314 - Coimsandant of the Mar ine Corps 

S

12 copies (Code RD—i)
Washington , D . C. 20380

Office of Naval Research 1 copy
Information Systems Program
Code 437 Office of Naval Research
Arlington, Va 22217 Code 455

2 copies Arlington , Va 22217
1 copy

Office of Naval Research
5 - Code 458

Arlington, Va 22217
l c opy

Office of Naval Research
Branch Off ice/Boston Naval Electronics Lab Center
495 Su~ iier Street Advanced Software Technology
Boston, Ma 02210 Division — Code 5200

1 copy San Diego, Ca 92152
i copy

Office of Naval Research
Branch Office/Chicago Mr. E. H. Gleissner
536 South Clark Street Naval Ship Research & Develc~pment Ctr . 

5 5

Chicago, 11 60605 Computation & Math Department
1 copy Bethesda , Md 20084

1 copy
Office of Naval Research
Branch Office/Pasadena Captain Grace M. Hopper
1030 East Green Street NA ICOM/MIS Planning Branch

S Pasadena , Ca 91106 (OP—916D )
1 copy Office of Chief of Naval Operations

Washington, D . C. 20350
New York Area Office 1 copy
715 Broadway — 5th floor
New York, N. Y. 10003 Mr. Kin B. Thompson

1 copy Technical Director
Information Systems Division

Naval Research Laboratory (OP—9lT)
Technical Information Division Office of Chief of Naval Operations
Code 2627 Washington, D. C. 20350 5
Washington, D. C. 20375 1 copy

6 copies S

Assistant Chief for Technology S

Office of Naval Research
Code 200
Arling ton, Va 22217

1 copy

_ _  _ _ _  - 5 - 5 5-5 - - 1 S S ~~~~~~~~~


