. AD=A058 232 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE-=ETC F/6 9/2

SYNTHESIS OF SYNCHRONIZATION CODE FOR DATA ABSTRACTIONS. (V) =

JUN 78 M S LAVENTHAL NOOOI“-75-C-0661
UNCLASSIFIED MIT/LCS/TR=-203

o3

WE23

A

— e

e\

ADAOS5823

BBE FiLE CoPY,

LABORATORY FOR ﬁ% M%‘?%E%* Ln

COMPUTER SCIENCE

TECHNOLOGY

MIT/LCS/TR-203

SYNTHESIS OF
SYNCHRONIZATION CODE
FOR DATA ABSTRACTIONS

N

Mark S. Laventhal Y

This research was supported in part by the Advanced
Research Projects Agency of the Department of
Defense, monitored by the Office of Naval Research
under contract N00014-75-C-0661, and in part by the
National Science Foundation under grant DCR74-21892

DISTRIBUTION STATEMENT A U AUC S1 197
Appioved for publif: telonsq %n
Distribution Unlimited ,j UTLSLE)(_(:JU U
o A

—/

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

@ SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE DEECEE Contat = Teas ey
REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’'’S CATALOG NUMBER
MIT/Lcs/TR-zﬂ {
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Syhéhesis of Synchronization Code for Data Ph.D.Thesis - June 23, 1978

Abstractions, b‘ﬁ;; EEOSR 1{56208;. REPORT NUMBER
_ N EAR et] /5 f8. CONTRACT OR GRANT-NUMBER(s)
| [0 i St@ff f NBOO14-75-C-H661, :
Mar aventhal !
- a J 7 VS F4DCR74-21892
9. PERFORMING ORGANIZATION NAME AND ADDRESS . l::ggR.AonRLKEDG'E"NT PROBJECST TASK
MIT/Laboratory for Computer Science e L .
545 Technology Square ‘ / / A5 \Jun / g./
Cambridge, MA 02139 : sl !
1. CONTROLLING OFFICE NAME AND ADDRESS Director 2. REPORT DATE

Advanced Research Projects Agency/A June 1978

ociate P ram
Deparement of Defense /QLEice. CoRpUEins REELyIpELon Hune 1978

; Arlington, VA 22209 /Washington, D.C. 20550 231

14. MONITORING AGENCY NAME & ADDRES)H di tf; ontrolling Office) 15. SECURITY CLASS. (of this report)

Office of Naval Research 02
Department of the Navy fD// Unclassified
15a. DECLAS‘S‘IEFICA'NON/DOWNGRADING

Information Systems Program ,u ESE
Arlington, VA 22217 X e

16. DISTRIBUTION STATEMENT (of this Report) (J [ﬁ‘l
cjm '

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side if necessary and identify by block number) 1
synchronization interprocess communication

synthesis monitors

data abstractions deadlock

abstract data types starvation

concurrency

20. "ABSTRACT (Continue on reverse side If necessary and identify by block number)

QSynchronization code is necessary to control shared access of an abstract
data object in a parallel-processing environment. This thesis explores an
approach in which a synchronization property can be specified in a high-level
nonprocedural language, and an implementation for the specified property can be
synthesized algorithmically. A problem specification language is introduced in
which synchronization properties can be expressed in a structured but natural
manner. A method is then presented for synthesizing an implementation. An = Al

I; DD ":2:"” 1473 EOITION OF 1 NOV 65 1S OBSOLETE LB

’ - ¢ SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
- A A -

SESCPOSER MRS SERS I s it

SECUMTY CLrAWFICAT’ON OF THIS PAGR(When Date Entered)

ZOTNintermediate form, called a solution specification, is first derived,
representing an abstract solution to the problem. The derivation
of the solution specification accomplishes the transformation of the
| specification from nonprocedural to procedural form. The solution
¢ specification can be translated directly into a source language
synchronization mechanism, such as a monitor.

Specifications for common synchronization properties, such as the
readers-writers and bounded buffer problems, are expressed in the
problem specification language. Corresponding implementations are

then synthesized for these problems. In addition, the derived solution
specification can be used in analyzing the soundness of the original
problem specification with respect to criteria such as freedom from
deadlock and starvation. g

%

SECURITY CLASSIPICATION OF THIS PAGE(When Date Entered)

MIT/L.CS/TR-203

SYNTIHESIS OF SYNCHRONIZATION CODE FOR DATA ABSTRACTIONS

by

Mark Steven Laventhal

June, 1978

This research was supported in part by the Advanced Research Projects Agency of the
Department of Defense, monitored by the Oifice of Naval Research under contract

NOOOI4-75-C-0661, and in part by the National Science Foundation under grant
DCR74-21892. '

] atirion
assachusetts Institute of Technol e
Massac ts Instit ology = nie tete g/
& e et
; : e
Laboratory for Computer Science NS a

JUSTURCATION ... covs s e

Cambridge, Massachusetts
02139

eaesbesssssasmonserses]
easommerone phen R n

R it AL S8

-yt AN e SR
\
At

y Y

kit i Ll ik ST PR e

20

SYNTHESIS OF SYNCHRONIZATION CODE FOR DATA ABSTRACTIONS
by

Mark Steven Laventhal

Submitted to the Department of Electrical Engiheering and Computer Science on'_]une 23,
1978 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

ABSTRACT

Synchronization code is necessary to control shared access of an abstract data object in
a parallel-processing environment. This thesis explores an approach in which a
synchronization property can be specified in a high-level nonprocedural language, and an
implementation for the specified property can be synthesized algorithmically. A problem
s pecification language is introduced in which synchronization properties can be expressed in
a structured but natural manner. A method is then presented for synthesizing an
implementation. An intermediate form, called a solution specification, is first derived,
representing an abstract solution to the problem. The derivation of the solution
specification accomplishes the transformation of the specification from nonprocedural to
procedural form. The solution specification can be translated directly into a source
language synchronization mechanism, such as a monitor.

Specifications for common synchronization properties, such as the readers-writers and
bounded buffer problems, are expressed in the problem specification language.
Corresponding implementations are then synthesized for these problems. In addition, the

derived solution specification can be used in analyzing the soundness of the original
" problem specification with respect to criteria such as freedom from deadiock and starvation.

THESIS SUPERVISOR: Barbara H. Liskov
TITLE: Associate Professor of Electrical Engineering and Computer Science

Keywords: synchronization, synthesis, data abstractions, abstract data
types, concurrency, interprocess communication, monitors,
deadlock, starvation

ettt e Al e i s

-3 -

Acknowledgments

j I wish to thank a number of people who have contributed in various ways to my
3 completing this thesis. First of all, I want to express my appreciation to my thesis
supervisor, Barbara Liskov, for all the help she has given me. Not only has her technical

~ advice invariably been sound, but her patience, encouragement, and support during my

many years as a graduate student have been invaluable.

Each of my three readers, Irene Greif, Carl Hewitt, and Liba Svobodova, has
contributed important insights to different aspects of both the research and the presentation

of this thesis. My sincere gratitude goes to all three of them.

Many of the graduate students in the M. I. T. Laboratory for Computer Science have
helped to create an interesting, stimulating, often diverting, and always supportive
atmosphere in which to work. I want to thank in particular my officemates Dean Brock

and Toby Bloom.

Finally, 1 wish to thank my wife Carol for her deep and constant support and
encouragement. It is she who has enabled me to persevere throughout my graduate school

career, and from whom I derive my inspiration.

|
g
i
!
i
§

-4-

{ Table of Contents
ABSEPACE. .- .o coviioraivonrsusnsaniisassonsnssasransssnsassssmuosons srneaisasdenesnssesionesisssic s siosinssas ansosorinsis 2
Acknowledgements................... e Ll Al A o I A T s R A 3
TWADEE 6 CORIINIo iioiicruintoniiesonens Vi aisaininsrmans S s amns v ssps e e R b s S 4
L INErOdUCHIONcuoiiencrsvenmmeiennssenseasspmnserassasassansssnssoastnsssasiiaasasssasassosnsssassnsssne 6
f II Goals Of the thesis............coovuiiiiiiiiiiiiiiie ettt e e 6
1.2 Synchronization Mechamisms............oouuiiiiiiiiiiiiiiin e 8
1.3 Specifications and SYNEhESiS.............ooeiiiiiiiiniiiiiiiiii 12
1.4 Overview of the thesis...... e e oS et oo e Ul S o ST L e L vt b et 14
2. The Problem Specification Language.............c..cooeiiimiiiiiiiiiniiii e 17
L INWOAUCHION. ... cciv s ivansnainsiiinsissnmssrvonsiingsossesannssrusibolbe Fovnsne sumstaes vo shomonns 17
2.2 Data abstractions and synchronization..............c..ocoveuiiiniiniiiiniiiininieeene. 17
2.3 The guardian model of synchronization.............ccooooiiiie 21
2.4 Overview of the JaNGUaZeooouiiiiiiiiiiiiiiiiiiii e 23
2.5 Syntax of the JaNgUageoiiiiiiiiiiiiiiiiiiii 27
2.6 Semantics of the JANGUAGEcouuiiiiiiiiiiiiiiiie e 29
b B 03 1 T P REPLEY 34
3. The Solution SPecifiCationuuiiiiiiiiiiiiiiiiiiiii 42
31 INrOAUCHION.couiiuriiiniiiiiiiitiiieriiiiierenietaaesrresstensstastrestasressasesierenssasnss 42
3.2 The basic solution specification StrUCtUre...............oooviiiiiiiiiiiiiiiiiene 43
3.3 Additional features of the solution specificationccoeiiiiiiiiiin 49
3.4 Semantics of the solution SPecificationc.o.ooiiiiiiiiiiiiii 59
4. Derivation of the Solution Specification.............. e e 63
4.0 INtrOAUCHION.ocuuiiiiiiiiiiiiiiiiiiii ittt e s st s 63
4.2 The derivation algorithm...............coooiiiiiii 66
4.3 Use Of Previous SEAESoiieiiiiiiniiiiiiiiiii e 80
4.4 An example uSing a Previous SEateccovieiiiiiiiiiiiiiiiii e 85
4.5 Incorporating argument CONSLIAINTS.oiiiiiiiiniiinii e 94
4.6 Justification of the derivation methodccccoooiiiiiiiii 102
4.7 Failure of the derivation algorithm............c.oooooiiii 12

=B

5. The Source Language Implementation.......... Gy et i L R A ey 17
SN IORROIREEION.o s i e sins cxssn st iiensinsinns suisas smmRas oA R R A A RSN SN A S RS 3 17
L e R A O P oY Wl A WSR-S PO 118

5.3 The basic monitor implementation...............coeuuuuuiiriiiuinieiiniiiiiieiieiieennanes 120

5.4 Previous state infOrmationcccceuuiiiiiiiniiiiiiineiieciie e reieaans 128

SO CINBIIIO ERIEN ...« oo sinn saisconsins shssnsbbEmnn ammavasanens (U8 vHE Senlsns 129

6. Complete Examples of SYRERESISccococciimsississmmnnsssimmansiissanssransnnassesssssesbases 153
BN IR OAUCHION ... i ioniciciermnnneis snnmmmeasso st msbmnsss s iiashnsionnsesssnsad s onsmtensans 153

G2 BOUNARd DUBIEE. i vonnsnevnavnsgs svns onsns snhsnisns ssanassmime s svssnanson e sbmss 153

6.3 Writers’ priofity database.............cccovmensmnsismrenimssronseransssannssnsssapeossssnnnsse 158

6.4 Alternating priority database....................c.ceee. e 169

G5 DSk Head SehedUIREcooon.coivnouleninmiinsasamiicinins b ibanncnscinns dossinesisnnbinssme 180

7. Detecting Erroneous Specifications...............coeiiueuuuiiiiiuiiiiinnieniiininiieiencneennnes 190
W SRCORREIRION. ... co it shiagtinnr i s S s A G LIRS i b ey e 190

2.2 DEAORCK OCICHION - ..t o csninssnnonosseamssissinsisssonssrs s bnbe s s pia s st 192

E3 SRR VRUOE QRECHION. . . .« oo ihvvinnlinsovurnsiarmstevssanstnsonivsey sniunnins sinp b dirn b bk b o 200

- & Summary and EvValoation...........ccccoovvsecionsmiiiitoiimiiissnisnssosscenssrmsssvonsiosionos ves 206
8.1 Summary of the thesis.................cooevvuiiiiiniiiiiiniinnne. o e W R SE S B 206

8.2 The Specification RNGUREEo rsrmsssvavssensvsssnatosheisssspsasdsdisosisnssninavosnion 209

83 The SYntHESIMOIROUcconvnmmiorvivimmsicimmmiiovicasessssssesrassvionsosiidosssbnkonss 212

8.4 Comparison with path expressionscoceeeiiiieieiieniiiniininennnnnn... gHnc s 216

O FUCHDE WK . ..covevoeineisissuanvivasenivossnsssrisssmiimaasaionsesiinmmva b auven iwiosiioes O 221
Bibliography........ R R SRS ST R e et s SRR R v R iaeans 225
.Biographic B .o covaiinonsunmvassasmavisissavmsbresors e eonahdsantssiveid RS R R 228

3
&
5
¥
1
i
t

ol

Chapter 1

Introduction and Background

1.1 Goals of the thesis

This thesis is concerned with the problem of synchronizing accesses by concurrently
executing processes on a shared data object. Overall the thesis has two major goals. One is
to design a high-level language in which synchronization properties can be specified in a
nonprocedural form. The other is to devise a method for translating such specifications

into actual source language code that implements the specified properties.

The reliability of computer software has received a great deal of attention in recent
years. The reasons are both economic and intellectual. Rapid advances in hardware
technology have dramatically decreased the cost of hardware relative to software, as well as
expanded the range of complex computer applications for which new software is required.
As a result, the cost of producing and maintaining software has become more than ever a
major concern. Since testing and debugging incorrect programs consume a large share of
total software costs, methods for improving the reliability of software are increasingly
important from an economic viewpoint. At the same time, the intellectual difficulty of
producing high quality software has become more generally appreciated. The study of how

to produce complex yet reliable software systems represents a fertile area for research.

o

One productive approach in this area has been the study of language support to
enhance software reliability. The range of current work in the area is quite broad, as
illustrated by {LDRS77). A particular aspect of this approach that has received wide
attention has been the idea of abstract data types [Lis74). Language support for abstract
data types gives programmers a facility for implementing data abstractions analogous to the
capability provided by procedures for functional abstractions. Following a methodology
using data abstractions has been found to be a significant aid in producing reliable

software.

A number of languages have been developed, and in many cases implemented, that
include mechanisms supporting the concept of abstract data types (eg. {Lis?7], [Sha?77),
[Ges77)). Because of a lack of facilities in these languages for creation of multiple
concurrent processes and interprocess communication, their range of programs until recently
has been restricted to single-process computations. However, it is obvious that many of the
kinds of applications for which the reliability provided by data abstractions are needed,
such as operating systems, require such multiprocessing capabilities. In introducing facilities
for concurrency and interprocess communication into these languages, it is nec;essary to do
so in a manner that maintains the philosophy and methodology that such languages

support.

This thesis explores a particular approach to a key problem in this area. The issue is
the proper synchronization mechanism for a language that supports an abstract data type
mechanisrn. Specifically, it is assumed that objects of abstract types in the language are

shared among different processes and can be accessed concurrently. This means that some

T g T

-8-

sort of synchronization mechanism is required to regulate these concurrent accesses.
Synchronization may be required both to maintain the internal consistency of the objects

and to implement higher-level scheduling decisions.

The approach taken here involves specifying synchl;onization properties in a
high-level nonprocedural language, and obtaining automatically an implementation for the
specified property. Synchronizing concurrent accesses to data can be a complex, error-prone
task. Since the reliability of programs that access shared data depends upon the correctness
of the synchronization, it is highly desirable that the synchronization itself be implemented
as rehiably as possible. If a specification language can be developed that is powerful enough
to express synchronization properties of interest, and for which implementations can be
synthesized automatically without too much effort, then it can be incorporated into a source
language that supports data abstractions. Programs in the source language can specify
synchronization properties nonprocedurally at a high level, and the compiler can produce
the actual code using the synthesis algorithm. This would be a very attractive alternative to
the range of synchronization mechanisms currently available, some of which are surveyed in

the next section.
1.2 Synchronization mechanisms

Whenever concurrent processes share access to common resources, it is necessary that
accesses by different processes be coordinated. The purpose of synchronization code, in the
broadest sense, is to bring about this coordination. One kind of coordination involves

limiting the combinations of simultaneous accesses allowed on a resource. That is, it is

-

sometimes necessary for certain accesses to exclude others from taking place at the same
time. This may be because the resource can inherently support only a limited number of
concurrent accesses. For instance, a physical device such as a card reader must be devoted
to a single process at a time. Alternatively, the nature of the accesses may be such that
certain kinds of accesses performed concurrently would lead to inconsistent results, such as

the case of two simultaneous updates to a database.

When certain accesses are prevented from occurring immediately, provision must be
made for these deferred accesses eventually to take place. This is another aspect of
coordination that must be handled by the synchronization code. Not only must a
mechanism exist for deferring accesses. Decisions must be made as to when deferred

accesses should occur, and these accesses must be activated in some way.

In working on synchronization problems, it has been found that writing
synchronization code is a conceptually difﬁculi task, more difficult in general than writing
sequential programs. This difficulty arises from the non-intuitive nature of many problems
that arise in synchronization, and the combinatorial problem associated with different
possible sets of concurrent accesses on a resource. Therefore, several generations of
synchronization mechanisms have evolved, reacting to the increasing complexity of

concurrent programming applications, and to the resulting need for better, more

well-structured synchronization mechanisms.

Cob b

6 (b Lk

-10 -

Originally, concurrent processes commum’cat'ed through common shared storage.
Access to this common storage was usually controlled by "locks”, which were set prior to
accesses and reset afterwards. Setting a lock was accomplished by means of an indivisible
“test and set” instruction, usually implemented in hardware. This mechanism was quite
unstructured, and certainly did not provide great confidence in its reliability. In addition,
locking protocols involved "busy waiting”, so that a process prevented from performing an
access because of an already set lock was forced to perform essentially useless computation
while waiting for the lock to be reset. With the advent of multiprocess time-sharing

systems, this became unacceptable.

An important step forward was the development of the semaphore mechanism [Dij68),
on which two operations are possible. Operation P accomplishes a "test and decrement”
instruction, similar to setting a lock. However, the result of an unsuccessful "test” is to block
the given process and place it on a queue associated with the semaphore. This eliminates
the need for busy waiting. Operation V increments the semaphore and dequeues a process
from the associated queue. With processes communicating via semaphores and using just
these two operations, nearly all common synchronization problems can be solved. In
addition to solving the busy waiting problem, semaphores, unlike locks, can be required to
be fair. This means that service is granted in such a way that a given process is not kept

waiting indefinitely while an arbitrary number of other processes proceed.

T

e G

A complete generation of alternative mechanisms then appeared, all of them in some
way variations on the semaphore concept. The proposed alternatives were designed to
improve somewhat on the power of the semaphore mechanism. A difficulty common to
semaphores and these alternative mechanisms became apparent, however. They are at too

low a level, comparable to goto statements in the area of control structures. While

sufficiently powerful to solve synchronization problems, they do not provide the
programmer with enough structure to make these solutions easy to construct and reliable in

operation.

v

 Recent emphasis on “structured programming” [Dij72a] and language constructs
suitable for producing reliable software has resulted in a new generation of synchronization
mechanisms. Many of these new constructs attempt to internalize well-structured disciplines
developed for the use of semaphore-style mechanisms, in much the same way that the while
statement internalizes a structured style of writing Ioops originally developed using goto
statements. Among the noteworthy mechanisms in this group are conditional critical regions
(Bri72] and monitors [Hoa74], both of which embody'the idea of accessing shared data only
in indivisible segments of code. Both also seek to relate the scheduling mechanism for
deferred accesses directly to properties of the shared data as another step toward better
structure. More recent alternatives have attempted to improve further on these mechanisms.
For example, serializers (Hew77] have drawn on experience with the use of monitors to
build even more structure into the mechanism, and thereby correct certain perceived

deficiencies in the monitor construct.

i &

-12 -

It is certainly easier to program solutions to non-trivial synchronization problems
using these well-structured mechanisms than with. semaphores or the like. However,
schhronization remains an area of great complexity, and thus unreliability, in any large
concurrent system such as an operating system or database management system. There is
still a large conceptual gap between one’s understanding of a synchronization problem and
the code one must write to solve it. This has motivated recent work whose goal is to allow
the expression of synchronization problems in a more natural form, and in some cases, to
obtain automatically an implementation for the specified property. Some of this work, and

its relationship with this thesis, is discussed in the next section.
1.8 Specifications and synthesis

Originally, synchronization problems were expressed simply in natural language. The
informality of such descriptions was 2 contributing factor to the unreliability of the
"solutions” proposed, as well as a source of controversy over just what a problem description
“really” meant. After the widespread acceptance of semaphores, many problems were
expressed via a representative program using semaphores. The circularity inherent in such
a description is obvious, since the so.lutions to the synchronization problems also used code
involving semaphores, and the distinction between "problem” and “solution” bec;lme
negligible. More importantly, the expression of a synchronization problem at the level of
actual code, while bridging the gap between specification and program, left the same gap

between people's intuitive understanding and the specification. The “correctness™ of

specifications remained problematic.

s S et

13~

A number of informal arguments about the correctness of an algorithm or the
meaning of a mechanism have relied on the notion of "state” to reason indirectly about the
effect of synchronization code (e.g. [Hab72], [Bri72], [Owi75)). This approach. was used by
Hoare in constructing formal proof rules for monitors in [Hoa74). However, such an
approach does not really formalize the meaning of synchronization code and
synchronization problems themselves, but only in their relation to a program or system as a
whole. Issues of modularity make it desirable to formally specify synchronization behavior

in isolation from the procedures being synchronized..

Recent efforts to create structures through which to express synchronization problems
include (Rob75], [Owi76] and (Gri76]). {Gri76] contains in addition a system for synthesizing
solutions from the specification language automatically. However, in all these cases what
can be expressed is not a synchronization problem itself, but rather the abstract solution to
the problem. This is an improvement over a “specification” in the form of a concrete
program using semaphores, but it still does not allow the specification of a synchronization
problem independent of its solution. In order to do so, it is necessary to have a
nonprocedural language for describing synchronization behavior that is independent of

notions of how to implement that behavior.

Path expressions [Cam74] are a nonprocedural language for expressing
- synchronization problems. In addition, implementations can be derived direct]y from path
expression specifications. Path expressions represent the most:nearly comparable work to
this thesis, both in overall goals and in basic approach. A discussion and evaluation of

path expressions will be deferred until the approach of the thesis has been fully presented.

L W

-14 -
A comparison of this approach with that of path expressions is presented in Section 8.4.

[Gre75] introduces a theory and notation for describing system behavior, including
synchronization behavior. This theory involves the notion of events, over which a time
ordering relation is defined. The notation introduced in [Gre75) is very general, in keeping
with the abstract level at which events are discussed. The specification language used in

this thesis represents one approach toward refining and structuring that notation.
1.4 Overview of the thesis

The view of synchronization taken in this thesis is illustrated in Figure LI, which
illustrates the sequence of events involved in accessing a synchronized shared resource.
This view shares with a number of other recent approaches the importance of
encapsulation. The unsynchronized resource to be shared and the synchronization
mechanism for that resource are encapsulated into a .single "synchronized resource” module.
The details of the coordination between the two are hidden from the outside world, which

can only access the resource through this higher-level module.

The distinguishing features of the approach here concern the structure imposed on
synchronized accesses of the resource. As indicated in the figure, every access involves a
certain fixed sequence of events. The process wishing to make an access first communicates
this desire to the synchronization mechanism, and this is denoted as the "request” for the
access. When the synchronization mechanism permits the initiation of the access on the
actual resource, the "enter” event occurs. The termination of the access is communicated to

the synchronization mechanism in the “exit” event.

bt e A S S . 1

-15-

Figure L.I. Accessing a synchronized resource

synchronized resource module

unsynchronized synchronization ;
resource mechanism
i .
j &—request
.
“ enter
exit

-16 -

b | The specification language of this thesis is designed to describe properties concerning
the time order of these abstract events. Chapter 2 presents this language, both its syntax
and semantics, and includes a number of examples of its use. The synthesis of an

implementation for the specified property is described in Chapters 3 through 5. Chapter 3

describes the abstract solution specification structure, in which events are implemented by

abstract notions called "gates”. The algorithm .for deriving an equivalent solution

specification from a problem specification is presented in Chapter 4. Chapter 5 explains the
implementation of a solution specification in actual code, where the abstract gates are
replaced by procedures of a monitor. Several examples of complete synthesis for well-known
synchronization problems are preseqted in Chapter 6. The detection of certain types of
erroneous specifications, those that permit deadlock and starvation, is discussed in chaptgr 7.

A summary and evaluation of the thesis is contained in Chapter 8.

-17 -

Chapter 2

The Problem Specification Language

2.1 Introduction

The focus of this chapter is on the language used for expressing synchronization
constraints on accesses to an abstract data object. Before the language itself can be
presented, however, it is necessary to "set the scene” in terms of exactly what kind of data
objects are being treated, what the nature of accesses to these objects is, and What kind of
synchronization of these accesses is possible. These issues are discussed in the first two
sections of this chapter. Then an overview of the language is presented, including some
motivation. This overview should make it easier to understand the following two sections,
which formally define the syntax and semantics of the language, respectively. The chapter
concludes with some examples of using the language to express common synchronization

problems.
2.2 Data abstractions and synchronization

The data objects with which this thesis is concerned are of the sort that are handled
in a language supporting the notion of abstract data types, such as CLU([Lis77)) or
Simula((Dah72]). A data object in one of these languages is strongly typed, which is to say
that its data type is an integral part of the object, and represents a severe restriction on how
the object can be used. In particular, there is associated with the abstract data type a set of

basic procedures, or operations. An object of the type can only be accessed through these

-18 -

operations, or through higher-level procedures that themselves make use of the operations.
Furthermore, it is only these operations that are allowed to manipulate the lower-level

representation of the abstract object.

In general, an abstract object can be either mutable or immutable. An object is
mutable if it has state, so that its behavior can change over time. Immutable objects do not
have state, and once they are created they are fixed for all time. Thus they are not useful
for communication between parallel processes, and consequently are not of great interest
with regard to synchronization. The data objects treated throughout this thesis are

generally mutable.

An operation of a data type whose objects are mutable can have the function of
creating an object of the type with some (possibly parameterized) initial state, of accessing
the object’s state without modifying it, or of accessing and updating the state. Assignment
of the object to a variable is not considered to be an operation on the object, but instead
constitutes a (temporary) bindiﬁg of the variable to the object. See [Sch78] for a more

detailed discussion of the semantics of a language such as CLU.

Synchronization is considered here to impose a constraint on the otherwise
unconstrained time ordering of accesses to an individual data object. By this model, the
ordering among accesses to different objects is completely unconstrained, except for the
normal sequencing order within each individual process. This means that if

synchronization is required among accesses to several objects, then these objects must be

collected together into a single composite object, with the synchronization applying to this

=10 -

new higher-level object. It is important to keep in mind that it is the accesses on an object
itself, not on any particular variable that happens to be bound to that object, that are of
interest. Concurrent processes that share access to a data object presumably employ
different variables for the purpose of referring to it, but it is over the total set of all these

accesses that synchronization is required.

This thesis will not be concefned at all with the exact mechanism by which there come
to be concurrent processes, or with how such processes gain joint access to a shared data
object. It is not important whether the processes represent concurrent. users of a
time-sharing system, or are created from one process by some sort of fork-join mechanism in
the language. Nor does it matter if the shared object resides in some form of central library
to which all processes have access, or if a reference to the object must be explicitly passed to
each one. The issue of synchronizing accesses to an object by concurrent processes is
independent of such concerns, and the work here applies regardless of how these issues are
handled. The important point is that there are processes executing in parallel that
concurrently access the shared object. Consequently constraints must be put on the time

ordering of accesses to the data object, and this is the purpose of the synchronization.

A basic assumption in the approach of the thesis is that the units upon which
synchronization should be performed are the basic operations of the abstract data type. It is
felt that the type's operations are the right level at which to impose synchronization
constraints. dnly these operations are allowed to access and manipulate the more concrete
data representation of the abstract object, and so it is here that decisions by the implementer

of the abstraction as to what pattern of accesses is necessary to maintain internal consistency

-20 -

make sense. The centralization of these operations in a type module (such as a CLU
cluster) permits a single expression of constraints to cover all accesses of the object. Since
the language ensures that all accesses to the object are made through the basic type
operations, the discipline required for synchronization can be enforced universally, which
would not be true necessarily if higher-level procedures were chosen for synchronizing. On
the other hand, to the user of an abstraction these operations are basic and the details of
their implementation are unkn.own (and in fact can be changed without his/her knowledge).
Synchronization constraints at any lower level, ie. involving code internal to these
operations, therefore would not be meaningful to the user. It is exactly at the level of the
basic operations of a data abstraction that the two viewpoints of the implementer and of the
user can and should be resolved in a smooth interfac.. This is true for the synchronization

component of the interface just as much as for the data component.

A very strict division is assumed between the synchronization and data accessing
functions involved in accessing a shared data object. This is based on the philosophy that
the task of synchronization belongs in a separate language construct, whose sole function is
synchronization. The operations of the abstract data type, on the other hand, should be
completely unconcerned with this synchronization, and written assuming that
synchronization exists that is sufficient to prevent any conflicts between concurrent
operation activations. Synchronization is taken to be uniform across all objects of the same
type, reflecting the belief that a type consists not only of data accessing operations but the
synchronization on them as well. That is, all objects of a given type are synchronized in the

same way. This means that the same (sequential) implementation of a data type and its

35

operations can be used with different synchronization constraints, perhaps embodying
alternative scheduling policies or maintaining different levels of consistency, to create

different data types.
2.3 The guardian model of synchronization

The model of synchronization that I use assumes there to be an abstract protection
mechanism that conceptually surrounds each abstract data object on which accesses must be
synchronized. (Recall the picture given in Figure _l.l.) This mechanism ensures that the
encapsulated synchronization mechanism, which I call the guardian of the data abstraction,
monitors all communication with the object, in a similar manner to the "secretary” concept
proposed in [Dij72b). Through this monitoring, the guardian is able to maintain the
synchronization state of the resource, an abstract representation of the history of accesses to
the object. (This is to be contrasted with the "data state” of the abstract object, which ;s the
state explicitly manipulated by the operations accessing the object.) The guar&ian uses the
synchronization state information to temporarily block any process attempting an access that
the guardian deems to be unsafe given its current state. The blocked process is allowed to
proceed when the synchronization state has changed in such a way that the accéss can safely

occur.

Accessing an abstract data object consists of invoking a procedure implementing one
of the operations of the type to which the object belongs. A given procedure activation

generates three distinct events that the guardian includes in the synchronization history of

the abstract object. The first event occurs when the guardian first receives notice of the

-22-

invocation of the given procedure by the user pfocess. I term this the request event for the
given procedure activation. A request event can be likened to the act of “taking a number”
in a crowded bakery, and represents the very first externally visible occurrence associated

with the particular procedure activation.

The next event occurs when the process actually gains access to the object by
beginning execution of the invoked procedure. I call this the enter event for the activation.
It is this event that often must be delayed by the guardian until it can safely occur. Once it
has occurred, the process may be assumed to be executing the body of the procedure. No

assumptions can be made as to the relative execution speeds of different activations.

When the process has completed execution of the procedure, it indicates this fact to the
guardian and exits from the resource. This is the exit event, the last event involved in the
activation. Frequently it is the exit event for one activation that triggers a delayed enter

event for some other activation.

This model of synchronization, of course, was not conceived in a vacuum. It is the
result of a careful study of the kinds of synchronization properties that appear in the
literature, which presumably reflect the nature of real-world concerns. Procedure entry and
exit are natural concepts to use, since the basis of many synchronization problems is
specifying which combinations of procedure activations can be allowed to execute
concurrently. Clearly the solution of such problems requires that a record be kept of which
procedure activations are currently executing, that is to say, which activations have entered

but not exited. Another large class of synchronization properties, constituting what are

o

-93-

usually regarded as "scheduling” properties, involve decisions as to which of a collection of
processes each waiting to execute some procedure is allowed to proceed first. In order to
deél with such properties, it is important to keep track of what activations have been
requested, hence the need for request events. My investigation of synchronization problems
has failed to discover any other distinguished events associated with operation activations
that are as fundamental as these three. Since this model appears adequate for capturing
synchronization properties of interest, there seems to be no need for using a more
complicated one. The examples at the end of this chapter, written in the problem

specification language that is based on the guardian model, testify to its generality.

The guardian model assumes that the set of all events concerning a particular data
object is totally ordered. That is to say, while many-procedure activations can be executing
concurrently, only one request, enter, or exit event associated with a given object can occur
at a time. This total ordering property is comparable to the fact that the "arrival ordering”
for any particular actor in [Hew73] is total, and relies ultimately on some sort of “arbiter”

mechanism for each data object.
2.4 Overview of the language

The purpose of the problem specification is to express, in a clear and concise manner,
an imposed constraint on the temporal order of accesses to abstract data objects of a
particular type. To facilitate this goal, the language for expressing the specification has
been designed to be as general as possible, subject to the requirement that it be compatible

with the guardian synchronization model. That is, the guardian model paradigm of

- 94 -

request - enter - procedure body execution - exit forms the basis of the language, but
beyond this, the complete freedom of first-order predicate calculus with equality and
ordering among integers is available. Because of the power of predicate calculus, any
meaningful synchronization constraint that operates on the level of the time ordering of

individual events can be expressed.

This power, in fact, permits specifications to be written that must be judged erroneous.
Such an invalid specification may, for instance, place a constraint on the tircumstances
under which a particular request event can occur, which would be incompatible with the
guardian model. For certain kinds of erroneous specifications, the invalidity can be
discovered in attempting to apply the synthesis algorithm presented in Chapter 4. The
detection of other undesirable properties, namely deadlock and starvation, can take place

after the synthesis is performed, and this is the subject of Chapter 7.

A specification is written for an abstract data type, and is intended to apply
independently to every object of that type. The specification expresses a constraint on the
ordering of accesses to the object, and represents the only such constraint. This means that
any ordering of events that is consistent with the specification is valid, and in particular
that procedure activations are allowed to execute in parallel unless constrained otherwisg by

the speciiication.

T EETT—

—

- 95 -

The distinctive elements of the specification language concern events and their
ordering in time. Time ordering between events is embodied in the "temporally precedes”
relation, which is denoted by the infix symbol * => ", and which is adapted from [Gre75).
This relation is a strict partial order, transitive and anti-symmetric. The parallelism in a
computation prevents the ordering from being total, but the set of events associated with
accesses of a particular abstract data object is assumed to be totally ordered, as explained

previously.

Each activation of a basic operation on a given abstract data object is identified by
the name of the procedure being called and the activation number. Procedure activations
are numbered uniquely for each data object according to the (total) ordering of the request
events associated with the activations. The convention used here is that activation numbers
are written as subscripts to the procedure name. The sixth activation of procedure p (i.e.

the activation associated with the sixth request for p) therefore is denoted "pg".

A particular event associated with an access is denoted by adjoining to the procedure
activation formula the event type (request, enter, or exit) as a superscript. For example, the
exit event associated with procedure activation pg is denoted "ps"'"'." Every event belongs

enter enter

ene" event class consists of the events p,*™*", po®™'®', etc.

to an ewvent class, eg. the p

Activation numbers appearing in a specification can be any integer expressions, with
important special cases being integer constants and variables. Constant activation numbers
can be used to refer to a specific event of a particular class, such as the first one in a

history. Variable activation numbers are more generally useful, though, since they allow

e — A ——

-9 -

reference to a general member of 'an event class. In the absence of explicit quantification,
activation number variables are assumed to be universally quantified. This is a useful
convention, permitting a specification that refers to event pi"'"', for example, to represent a
constra.int on the enter event of any activation of procedure p. The use of expressions as

activation numbers allows a specification to deal with related activations, such as p; and

Pisl

It is possible, but not necessary, to include the arguments to procedure activations. If
not included, they are assumed to be unimportant, and the specification applies to any
activation of the particular procedure. Including the arguments to an activation can be
useful for constraining these arguments in some way, and thereby limiting the appiicability
of the specification to those activations whose arguments meet the constraint. The identifier
of the process making the procedure activation can be used as one of the arguments of the
procedure, so that if the identity of the particular process is important, it can be included in

this way.

The actual abstract data object on which the synchronization is being performed is not
included as an explicit argument to any of the procedures operating on it. In this respect,
this kind of specification resembles the "state machine” specifications used By Parnas for
specifying the behavior of the operations of an abstract data type (see [Par72], eg.). It can
be assumed that operations are called by a mechanism such as the "dot™ notation of Simula
([Dah72]), by which operation p on abstract object x with arguments a and b is called via

the statement "x.p(a,b)". A specification referring to operation p might list arguments a and

b explicitly, but no reference would be made to object x. The specification would implicitly

-927-

apply independently to each object x of the given type.

As an example of a specification expressed in this language, consider the following

expression, which also appears as example 1 in Section 2.7:
(pienm ‘=> qjonlu) 5 (Pioxil P, qjonlor)

This specification refers to two procedure activations, p; (the i-th activation of procedure p)
and q; (the j-th activation of procedure q). Variables i and j appear free in tﬁe expression
and therefore are universally quantified, and since no constraints are placed on the
arguments to the procedure activations, the specification in fact applies to any activations of
procedures p and q. The specification states that if the enter event for qj is preceded by the
enter event for p,, then it is also preceded by the exit event for the same activation of p.
That is, a currently executing activation of procedure p (on a given object) excludes a
subsequent activation of proceduré g (on the same object) until the activation of p is
completed. Notice, though, that concurrent activations of p and q are allowed, as long as

the activation of q begins (i.e. enters) first.
2.6 Syntax of the language

This section presents the syntactic rules for well-formed specifications. The notions
identifier and. arithmetic expression are assumed to be basic. An arithmetic expression is a
series of one or more identifiers and/or integer constants separated by the usual arithmetic
operations. The other notions are defined in terms of these two and each other. In each

rule the concept being defined appears in italics:
(1) A procedure name is an identifier.

(2) A term is an arithmetic expression.

!
|

£

-98 -

(3) An activation number is a term.
(4) An activation name is a procedure name, subscripted with an activation
number.
(5) An activation expression is either an activation name, or an acﬁvation name
followed by a left parenthesis, followed by one or more terms separated by
commas, followed by a right parenthesis.
(6) An event type is one of the elements of the set {request , enter , exit}.
(7) An event expression is an activation expression superscripted with an event
type.
(8) An ordering clause is an event expression followed by the symbol =
followed by another event expression.
(9) An arithmetic relation is one of the elements of the set
‘ Rel={=,=,<,>,<,2

(10) An argument constraint is a term followed by an arithmetic relation followed
by another term.
(11) A clause is either an ordering clause or an argument constraint.
(12) A specification is defined by:

(a) A clause is a specification.

(b) If S is a specification, then (= S) is a specification.

(c) If S| and Sq are specifications and op is an element of the set

OP‘{’\,V,D.“},
then (S; op So) is a specification.
(d) If S is a specification and i is an identifier, then V i (S) and 3 i (S) are

specifications. : |

The "argument constraints™ defined in rule (10) may refer to the activation pumbers
and/or to the arguments to the activations (which are the "terms” in rule (5)). They may not

refer to the actual abstract data object in question, however, since it does not appear as an

explicit argument to any of the procedures. In fact, a general rule is that the arguments of 3

-99 -

procedure activations to which predicates may refer are limited to immutable objects, such
as integers. The interpretation of a relation on a mutable object would depend upon the

pomnt in time at which the relation is taken to apply, and might itself require

RS & e s

synchronization on the given object. Rather than becoming involved in questions such as
these, I choose to limit the predicates on activation arguments to immutable objects. This

restriction does not appear to be severe.

2.6 Semantics of the language

The definition of the language whose syntax has been formally defined in the
previous section can now be com;.)leted by means of a formal definition of its semantics.
The purpose of the language is to express synchronization properties, that is, to constrain
the order of accesses on an abstract data object. The semantics of the language therefore
can be defined 'by specifying the collection of access histories that are valid with respect to
any given specification in the language. This is accomplished by defining a predicate
Valid(h, s), which decides for any history h and specification s whether h is a valid history
with respect to the constraint expressed in s. First, however, it is necessary to define the

concept of a history, and to restrict the concept to histories that are physically possible.

The first step in this process is to define the notion of "event”. An event is a 5-tuple |

<p, t. X, n, a>, such that:
(I) p € P, the set of basic operations of all types.
(2) t € ET, the set of event types, where ET = {request, enter, exit}.

(™ x € Ob, the set of all data objects in the system, and p is a basic operation for

L SO

the type of x. x is the data object on which the access is taking place.

- bt i _———*_‘4

Rl iy oy

-30-

(4) n € N, the set of positive integers. n represents the activation number.

(5) a is a vector [a, .., ag,], where each element a; € Ob. a is the vector of
arguments to p.

The types of the objects aj, ..., a,, must match the types of the parameters to

operation p.

A partially ordered set of events forms a computation history, provided that the partial
order fulfills the condition that each object history is totally ordered. An object history for
data objec.t z is a subset of a computation history, consisting of all events <p, t, x, n, a> in
the- computation history such that x = z. All events in an object history are on the same
data object, so that the third component x of each event tuple can be eliminated, and each
element of an object history is simply a 4-tuple <p, t, n, a>. Throughout the rest of this
section, we will be concerned exclusively with object histories, though the simple term

“history” will be used.

Since the events in a history are totally ordered, the history may be considered to be a
sequence of events. A sequence over a domain D can be defined as either the empty
sequence [], or else the result of adding an element d € D to the end of a sequence s, which

is given by the expression "add(s, d)".

Not all histories are actually possible. In order to define what class of histories are
possible, some further definitions are required. An event class for a data type dt is a pair
<p, t>, where p € P and t € ET, and p is a basic operation of data type dt. The set of

occurrences of an event class <p, t> in a history h is a set of pairs of the form <n, a>, where

n is an activation number and a is a vector of arguments, such that an event of the form

-3 -

<p. t. n, a> occurs in history h. Formally, this is given by Occurrences(h, <p, t>), where:
Occurrences([], <p, t>) = {}
Occurrences(add(h, <p), t;, n, a>), <p, t>) =
if (p = pj A t =t)) then Occurrences(h, <p, t>) U {<n, a>}
else Occurrences(h, <p, t>)

With the aid of these definitions, we can now define when an history is possible. The
predicate Possible requires a request event to precede the corresponding enter event, which
in turn must precede the corresponding exit event. Also the ordering of request events for
a given procedure must determine the humbering of invocations.

Possible([J) = TRUE
Possible(add(h, <p, t, n, a>)} =
Possible(h) A
((t = request N Occurrences(h, <p, request>) = {<i,a;> |1 € i <n}) v
(t = enter A <n,a> € Occurrences(h, <p, request>)) Vv
(t = exit A <n, a> € Occurrences(h, <p, enter>)))

A few more definitions are required before the validity of a possible history with
respect to a specification s can be defined. An event expression is a 4-tuple <p, t, exp, v>,
where p € P, t € ET, exp is an arithmetic expression, and v is a vector of arithmetic
expressions, possibly empty. (The concept of arithmetic expression can be defined fornmally
in the obvious manner.) Let the set of arithmetic relations Rel = {=, #, <, >, <, 2} and the set

of logical binary operators Op = {A, v, D, #}. Then the set of event expressions in a

specification s is given by Evexp(s), which is defined in the obvious manner:

|
,%_
|
g
%
|

Evexple; => e9) = {e/,e9}

Evexp(exp, rel expy) = { }, for rel € Rel

Evexp(—s) = Evexp(s)

Evexp(s| op 52) = Evexp(sl) U Evexp(sz), for op € Op
Evexp(3 x (s)) = Evexp(s)

Evexp(¥ x (s)) = Evexp(s)

An interpretation is a mapping f from expressions to data objects that preserves the

meaning of all constants and operations. That is:

(1) f maps every constant expression to the corresponding constant object,
eg. () = 1

(2) f is consistent with every operation,
eg. f(expl + expo) = flexpy) + flexpg).

(3) f maps a vector of expressions into the corresponding vector of objects,

eg. f{<expy, ... , exp,>) = <flexpy), ..., flexp,)>.

An event e and an event expression ee match under an interpretation f if e and ee are

of the same event class, and f maps the activation number expression and parameter vector

. expression (unless the latter is empty) of ee to the corresponding components of e. Formally,

Match(e, ee, f) is defined as:
Match(<py, t}, n, a>, <po, to, exp, v>, f) =
(P =pg) A (t=t9) A (flexp)=n) A (v=[] v fv)=a)
The validity of a history with respect to a specification s can now be defined by a
predicate Valid. The definition of Valid recursively determines when a history is valid
with respect to a specification. For a history to be valid, the previous history consisting of

all but the last event must first be valid. Furthermore the last event in the history must

T e

e

v T gy -

|
|
|
i

-3

satisfy the specification for all interpretations under which the event matches some event

expression in the specification.

Whether or not an event added onto a valid history satisfies a specification under an
interpretation is defined by another predicate Sat. The definition of Sat for a complicated
specification is basically just a matter of breaking down the structure of the specification, by
removing each logical operator and applying it to the recursive applications of the
definition, until one reaches the level of a simple clause. Satisfaction of an argument
constraint is determined solely by how the components of the clause are embodied by the
given interpretation, not by the event in éuestion. Whether an event satisfies an ordering
clause depends upon whether the event matches one of the event expressions in the clause
under the interpretation. If the event matches the first event expression under the given
interpretation, then it is necessary that no event matching the second event expression
occurs in the previous history. If the event matches the second event expression, though,

then some event matching the first event expression must occur in the history.

Formally, if h is a possible history and s is a specification, then h is valid with respect
to s if and only if Valid(h, s), where:

Valid([], s) = TRUE
Valid(add(h, e), s) = Valid(h,s) A
V (ee, f) (ee € Evexp(s) A f is an interpretation
A Match(e, ee, f) O Sat(h, e, s,)

The predicate Sat(h, e, s, f) determines whether event e added to history h satisfies
specification s under interpretation f. It is defined by the following equations, giving all

possible cases for specification s:

.31,-

Sat(h, e, (<p), t;, exp, V]> = <po, tg, €Xpy, Vo>), f) =
(Match(e, <pj, t;, expy, v>, f) 2
((vo # [1 A <fexpg), f(vo)> ¢ Occurrences(h, <po. to>)) V
(vg =[] A ¥ a(<flexpo), a> ¢ Occurrences(h, <po, to>))))
A (Match(e, <pg, to, €Xpo, Vo>, f) D
vy # [1 A <flexp), f(v})> € Occurrences(h, <p, ty>)) V
(vj =[] A 3a(<f(exp)), a> € Occurrences(h, <pj, t>)))
Sat(h, e, exp; rel expo, f) = (f(exp)) rel f(expz)), for rel € Rel
Sat(h, e, = s, f) = — Sat(h, e, 5, f) '
Sat(h, e, s; op so, f) = Sat(h, e,5;, f) op Sat(h, e, sy, f), for op € Op
Sat(h, e, 3i (s), f) = 3 m Sath, e, sim/i,)
Sat(h, e, Vi (s), f) = V m Sat(h, e, sIm/i), f)

The notation s[m/i] in the last two equations represents the expression resulting from

substituting m for all free occurrences of i in s.
2.7 Examples

This section presents a series of examples of the use of the problem specification
language. These examples have been chosen with two criteria in mind. First, together they
illustrate the range of features that the language offers. Second, they specify realistic and

representative properties, covering a significant portion of the classic synchronization

" problems that appear in the literature.

Example 1: Exclusion
(pion!u = qjon!u) oy (piniﬂ = qjonhr)
This specification has been discussed previously in Section 2.4. It states that an activation

of procedure p excludes a subsequent activation of procedure q until the activation of p is

completed.

Example 2: Mutual exclusion
it —y g ot it t
(pi.ll = qj'n .') v (qj.ll = Pi." .’)
This specification is similar to example 1, except that it is symmetric between procedures p

and q. That is, an activation of either p or q excludes any concurrent activation of the

other.

Example 3: Readers-wfiters property
((writei'""' = writej""") > (writei"" = writej"“")) n
((writei““ = read,*™*") v (read, ™" = write;*"*")

The so-called readers-writers property concerns two operations, "read” and "write”. It states
that activations of "read" exclude those of "write", and that an activation of "write" excludes
all other activations of either operation. This has been re-shaped into an instance of
example ’1 (an activation of "write” excludes all other activations of "write”), and an instance
of example 2 (activations of “read” and "write” mutually exclude one another). By
combining this specification with an instance of example 4, giving one of the operations
priority over the other, or of example 5, requiring an equal-priority first-come-first-served
discipline, one can obtain any of. the classic versions of the readers-writers problem (as

found, for example, in [Gre75]).

Example 4: Priority
(pircqucsl = qjonlov) S (pionlov = qjoniov)

This specification gives priority to activations of procedure p over those of procedure q. It

i
L
i
|
F
i
|

WP U

-36 -

does this by requiring that so long as the activation of q has not yet entered, then any

_ acttvation of p that has been requested must enter first, regardless of whether the request

event for p came after the request event for the activation of q. This is an example of a

scheduling property making use of a request event.

Example 5: FCFS scheduling
st st t !
(Pivequo = qj'!QUQ) '™ (Pi.ﬂ er = qu" .')
This specification represents an alternative to giving either of a pair of operations priority
over the other. Instead it requires a strict first-come-first-served discipline between them, by

stating that whichever activation is requested first is the one to enter first.

Example 6: LCFS scheduling
(pivequest = pjvequost) A (pjuquosl = piGM.V) o) (pjonhv = pion!or)
Here another alternative scheduling policy, though probably a less likely one, is specified.

This "last-come-first-served” property requires that of all the requested and pending

activations of a given operation p, the one most recently requested is allowed to enter.

Example 7: Operation pairing
nte nt nter ent
(a.-' "= bje ") » (ci. =°dj 01)
This specification requires that whichever order occurs between the entry of an activation of
"a" and one of "b", the same order must hold for the corresponding activations of "c” and
"d", respectively. Illustrated is the use of the same activation number for activations of

different procedures, i for procedures "a" and "c", and j for procedures "b" and "d". The

specification could be used for a data type in which operations a and b conflict, in the sense

“
e ——. = e e ——- i — e e e SESGRSE S SRS, S USRS 0 RS A S PR SRS SSISEEY - —

<97 -

of updating the same part of the object's state, as do operations ¢ and d. If operations a

and c, taken as a pair, update the state consistently, and operations b and d do likewise,

then the constraint specified here might be necessary to prevent an inconsistent update.

For example, in [Esw76), an example is given for which the operations have the
following meanings:
a: X := x+10;
b: X := x:2;
c: y := y+10;
d: y = y=2;
If the predicate (x = y) is the criterion for consistency of the data object, then this would be

part of the specification required. (Other constraints also would be necessary.)

Example 8: Producer-consumer (single buffer)
(depicx'ﬂ = remi'"‘") A (reml-”“ - depi,{""')

The "producer-consumer” problem is that producers and consumers must alternate in

depositing and removing messages, respectively, in a shared buffer. This means that each
deposit, represented here by an activation of procedure “"dep”, must 'precede the
corresponding removal, or activation of procedure "rem”. On the other hand, the removal

must take place before the next deposit can occur. This specification again illustrates the

use of the same activation number for activations of two different procedures, as well as the
use of an expression ("i+1”) as an activation number. Notice that this specification could be
rewritten so as to make the relationships between activation numbers more explicit by

means of predicates on the activation numbers:

p— T PRTVYS T

-38 -

(i=j) D (dep,"" = remj"“") n (remj"" = depiolm")
This specification is exactly equivalent to the original; it makes no difference whether such

relationships are represented explicitly or implicitly.

Example 9: Bounded buffer
(depi""" = remierﬂu) A (remioxil = deth.M") N
’xl (depiom = der.]'M") N (remj"‘" = remM""")
This example is a generalization of the previous one, in that the activation number of the
dep®™*" event has l:qe?n changed from i+l to i+N, for some integer N. The specification is
| for the same problem, except that the size of the buffer is now N. This means that up to N
messages can be deposited in the buffer before filling it, so that up to N successive "dep”
operations can be allowed before one has to wait for a "rem" operation. The last two
clauses state that the individual "dep” activations must be mutually exclusive and execute in

| first-come-first-served order, as must the individual "rem” activations.

Example 10: Intervening activation

(p, = pjonhv) 5 (ak(p™* = qk.nm e pjonlov»
This specification represents a weaker property that is implied by the producer-consumer
constraint of example 8. It requires that between any two activations of procedure "p" there
must be an activation of procedure "q". This shows the use of an existential quantifier in a

specification to require a particular kind of event to occur at a given point in the history.

Example L1: Threshold of requests

Vi «k < l) IA) (I < kON) o] (Piqu" = pkonhv»

T ST

-39 -

This specification places a threshold of N request events for activations of procedure "p”
before the first one can execute. Since this applies to any value of k, the result is that
whenever an activation of procediire "p” is currently executing, there must be at least N

processes that are waiting on requests to execute "p".

Example 12: E:fclusion on a restricted class of accesses

(Pi(a>mh' . qj(a)ornu) 5 (pi(a)nil = qj(a)onlu)
This specification is identical to example 1, except that a parameter has been given to each
of the two procedure activations. By providing the same identifier as the argument to both
activations, this specification conveys the information that the arguments to the two
procedure activati;ms are equal. Therefore the exclusion constraint expressed by this

specification is restricted to activations with equal parameters.

Example 13: Predicate locks

Cab) A (pj@)™ = qj(b)"‘"') > (pj@™ = qJ-(b)"‘"')
This specification again represents a restriction of the exclusion constraint of example 1.
Here, though, the restriction is represented by a general predicates C on the parameters to
activations p; and 9 This suggests how a simple version of the concept of "predicate iocks'
might be specified. A specification of this form can be used to state the syﬁchronization

constraint, as long as the predicate C for which exclusion is required is known ahead of

time.

-40 -

For example, suppose that the abstract data object on which procedures “p" and °q"
operate i1s a hierarchically organized database. The database consists of a collection of files,
each of which in turn consists of a collection of records. The predicate C might express the
relation that records a and b are elements of the same file. Therefore, procedure "p" would

exclude procedure "q" only when they were operating on records in the same file.

The general notion of “predicate locks” was introduced in [Esw76). The more

complicated versions. of the concept discussed there would require more complex

specifications.

Example 14: Disk héad sclnedulil;g
«azonhv = ay"’"') 5 (al.m — ay.m.,» -
((a;(x2) %! = a, (x1)™" => a,(x2)*™*") A
(aj(x3)"""'" = a (x)™ = aj(x?»)"'"') n
(ap(x0)™ = ak(xl)““)) N
= Xn) (@ (x0)*™* => a ™" = a; (x)*Y) A
((x0<xl <x2 AN(x2<x3 v x3<xl)) v
(x0 > xI >x2 A(x2>x3 v x3>xI)
5 (ai(x2)'“"' =5 aj(x3).ntov))
The final cxahple is the "disk head scheduler” problem, which appears in [Hoa74), among
other places. The problem is to schedule disk accesses so as to minimize average waiting
time. The way this is done is to have the disk head sweep in one direction, accessing each
track it encounters for which an access has been requested, until no more requested tracks

remain in the direction in which it is sweeping. The head then reverses direction and

- 4] -

sweeps back, again accessing requested tracks as it encounters them. The essential idea is
that at any given point, the next track to be accessed is the one closest to the currently

accessed track in the direction currently being swept.

The specification for this problem concerns four activations of an access procedure "a”
on a disk, with the parameter (x0, xI, x2, or x3) representing the number of the track being
accessed. The constraint expressed is that of the two activations (a; and aj) fequested
during the time that another activation (ak) is executing, the activation allowed to execute
first is the one accessing the track nearest to the track currently being accessed (track x1) in
the direction currently being swept. The direction is indicated by the inequality between x0,
the track that most recently accessed, and xl. Track x2 is accessed before track x3 either
because it is closer to track xl (either xl < x2 < x3 or x1 > X2 > x3), or else because it is in the

right direction and x3 is not (x3 < xl < x2 or x3 > xl > x2).

p. i 7 2 »
S I S M I B SRS e e ———— et BRSNS b S SR et e e e = 1

- 42 -

Chapter 3

The Solution Specification

3.1 Introduction

There is a vast conceptual distance separating, on the one hand, a problem

specification written in the language described in Chapter 2, and on the other, the
synchronization code that implements the specification. This is because the specification is
a ﬁon-procedural, requirements-oriented expression of what should happen with no
indication of the means by which this behavior should be realized. Determination of the
procedural mechanism, that is Aow to accomplish the desired constraint on the time order of
accesses, requires a fundamental transformation in concepts. Once this determination has
been made, there are still a number of details that need to be worked out, but the remaining
work is basically that of the back end of a compiler, translating from an intermediate
language into actual code (though the target code in this case is still in a high-level

language, not machine language).

1 have chosen to split the derivation process into two stages. The first stage is the

transformation from procedural to nonprocedural form. It can be described without

’ reference to the exact details of particular source language constructs. The second stage
constructs an actual implementation. The intermediate form into which the problem

specification is transformed by the first stage is called the solution specification. This

chapter presents an informal description of solution specifications, followed by a formal

definition of their semantics. The method for transforming a problem specification into an

-43 -

equivalent solution specification is the subject of Chapter 4. The translation of the solution

specification into synchronization code is treated in Chapter 5.

Section 3.2 presents the "basic” structure of the solution specification, which is only a
first approximation to the actual structure. The basic structure described is quite simple
and elegant, and in fact the solutions to many synchronization problems can be expressed
within it. Unfortunately, this simple structure lacks sufficient expressive power for certain
important classes of problems. For this reason, it is necessary to augment the basic structure
with additional features, which are described in Section 3.3. The formal semantic definition

of the solution specification appears in Section 3.4.
3.2 The basic solution specification structure

The structure of the solution specification, as of the problem specification, is dictated
to some extent by the guardian synchronization model. That is, the solution .specification
must contain features corresponding to those events associated with procedure activations
that the guardian model distinguishes. Beyond this, there is some choice as to how rigid a
structure to impose on the solution specification. ‘Since the solution specification is an
intermediate form between the problem specification and the generated code, the degree of
flexibility represents to some extent where it lies on the spectrum between these two
structures. A very general solution specification structure, corresponding to the generality of
the problem specification language, would represent a decision that the solution specification

be relatively close to the problem specification. The price paid for this generality would lie

in the difficulty of translating such a solution specification into target code.

- 44 -

The alternative choice made here is for the solution specification to have a rather
rigid structure. This means that, as indicated in the introduction to this chapter, the
fundamental transformation takes place in deriving the solution specification from the

problem specification.

The basic structure of the solution specification is for each guardian to consist of a

collection of gates through which processes accessing the abstract data object must pass.

|
t

The use of the term "gate” is taken from [Rob75), though the concept as used in this thesis
differs somewhat from the one introduced there. Specifically, the guardian for an object of
abstract data type t contains a gate for each event class of t. This means that for each
operation p of the abstraction, there are gates p™*®!, p*™* and p**'. Each event

associated with an object corresponds to the passage through a gate in its guardian. For a

process to access the data object by activating procedure p, the process first must pass
through the p3** gate, then through the p*™*' gate. At this point it executes the body of

procedure p, after which it must pass through the p*** gate.

Each passage through a gate by a process produces a (conceptually instantaneous)
change in the state of the guardian. Because of the total ordering on the events associated
with an object, the gate passages for a particular guardian are totally ordered. The
ordering of processes passing through any single gate is first-come-first-served. This means
that unless a specification explicitly requires a particular scheduling policy for activations of
a given operation, the default policy assumed is first-come-first-served. The order of service
among different gates of a guardian is assumed to be fair, in the sense that processes at

different gates have equal chances of being chosen for service. That is, a requirement in

- 45 -

the implementation is that a process cannot starve because of lack of attention from the

scheduling mechanism.

Gates for request and exit event classes are unconditional, so that processes cannot be
blocked in passing through these gates. A gate for an enter event class is conditional,
however. Associated with each enter gate there is some condition on the guardian state.
This condition must be satisfied in order for the process making the activation to pass
through the gate. If a process attempts to pass through an enter gate whose condition is
not satisfied, then the process is blocked, and must wait until the condition becomes true

before proceeding through the gate.

Schematically, then, an activation of operation p on a data object is implemented by
the abstract program below. Since gate passages represent events, which are totally ordered,

the abstract code representing each gate can be considered an indivisible operation.

preaUes. update guardian state

p

eer. wait until entry condition is satisfied,

then update guardian state

execute body of operation p

P

**!. update guardian state

It would appear that to represent a given solution specification, it would be necessary to
specify for each operation p the specific entry condition on gate p*™*', and the particular
upd'ates to the guardian state accomplished in each of the three gates. In fact, the form
chosen for the synchronization state of a data object defines a priori the nature of the

updates within all gates.

Raalec

- 46 -

The history of a data object, and of the guardian for the object, consists of the totally
ordered sequence of events associated with all accesses of the object in the entire
computation. The state of the object represents some abstraction from the history that is
sufficient for predicting its future behavior. An alternative way of saying this is the
definition in [Gre75] that a state is an abbreviation for a class of histories. The
synchronization state of the object is the synchronization component of the state, which is

sufficient for the prediction of its future synchronization behavior.

The decision made here is to express the synchronization state of an object as the
number of events that have occurred at each gate of its guardian. The notation used is
that count(g) denotes the number of events at gate g. So count(p"*®) is the number of
activations of procedure p that have been requested, whether or not those requests have
been granted; count(p®™*') is the number of activations of p that have entered, whether or

not they have exited; and count(p®™") is the number that have exited.

This decision has a number of ramifications. The implications for the expressive
power of the solution specification are discussed in the next section. The decision to use
counts forms the basis for the method of deriving a solution specification from a problem
specification, as will be apparent in the description of the derivation algorithm in Chapter
4. With respect to the basic strugture of the solution specification, it means that in the
schematic abstract program representing an activation of operation p, each update to the
guardian state now can be defined to be simply incrementing the proper count. The

abstract program therefore becomes:

o

- 47 -

Pt increment count(p*®**!) by |

p

ener. wait until entry condition is satisfied,

then increment count(p®™*") by 1

execute body of operation p

P

! increment count(p*™*) by 1

That is, the update to the synchronization state within each gate consists simply of
incrementing the count of events at that gate by I. (The quantity count(g) is similar to, and

in fact can be implemented by, the "eventcount™ notion introduced in [Ree77)).

This means that the representation of a particular solution specification can consist
simply of the entry condition on gate p*™*', for each operation p of the abstract type. Each
entry condition on the synchronization state must take the form of a predicate on the counts
of gates. The other (non-enter) gates in the solution specification are indicated implicitly by

the appearance of quantities of the form count(g) within the entry conditions.

For example, consider an abstraction with one operation "op”. Suppose that the
synchronization constraint for this abstraction requires activations of op to be mutually
exclusive, that is, at most one activation is allowed to be executing at a time. Then the
solution specification for the abstraction can be expressed by stating the condition for gate
op*™*’ to be

count(op®™*") = count(op**").
This is a shorthand way of saying that the abstract program for accessing an abstract data

object via operation op is:

...*‘,-(—,-‘w,,.«.—_“»_,r_.,.ﬁw-..g‘AAA_A,A.
.

I

—

T

- 48 -

op™®*s!. increment count(op"®”**!) by |

op®™®": wait until count(op*™*") = count(op®*"),

then increment count(op®™*') by 1
execute body of operation op

op®™": increment count(op®™") by 1

As a second example, consider an abstraction with two operations f and g. Assume

that an activation of operation f is allowed to begin execution only if no activations of g

have been requested and are waiting. Also, let an activation of g be able to enter only if

exactly one activation of f is actively being executed. Then the solution specification for
this abstraction consists of the two entry conditions:

For gate f*™*": count(g"™*®') = count(g*™*")

For gate g®™®": count(f*"*") - count(f*") = |

In other words, the following are the abstract programs for activations of f and g:

Abstract program for f:
£7°U*St. increment count(f*®**') by |
fe™e". wait until count(g"*®**') = count(g*™*"),

then increment count(f*™*) by 1

execute body of operation f

**. increment count(f*") by 1

- 49 -

Abstract program for g:

g

g’""’: wait until count(f*™*") - count(f**") = 1,

reavest. increment count(g"*®**") by 1

then increment count(g®*™*’) by |

execute body of operation g

g

. increment count(g®") by |

3.3 Additional features of the solution specification

As indicated in the introduction to this chapter, the basic structure presented thus far
for the solution specification lacks sufficient power for expressing solutions to a wide class of
synchronization problems. Two new features must be added to this basic structure in order
to achieve the required expressive power. These additional features, which are the subject
of this section, provide the ability to save and use previous state information, and the
ability to use properties of parameters to operation activations. The first to be discussed is

the use of previous state information.

In the previous section, the synchronization state was defined as some abstraction from
the history of a data object containing sufficient information for the prediction of the future
synchronization behavior of the object. Unfortunately, the counts of all event classes do not
provide sufficient information. Sometimes it is necessary to know not only how many events

of each class have taken place previously, but in what order certain of these events occurred.

-50 -

There are a number of advantages to using integer-valued counts to represent the
synchronization state. As illustrated in the previous section, it makes the abstract state
update within each gate of the guardian particularly simple. As a result, the actual
Aimplememation of a solution specification in terms of a source language synchronization
mechanism, which is the subject of Chapter 5, can be both simple and efficient. This
efficiency is important in ensuring that the synchronization code itself does not significantly
affect the concurrency of the computation. The use of counts is also important in terms of
the algorithm presented in Chapte.r 4 for deriving a solution specification from a problem
specification. For these reasons, it is desirable to remedy the lack of expressive power in a

‘ way that does not sacrifice the advantages of using counts of events as the basic form of the

synchronization state.

The way to accomplish this is to add to the basic solution specification structure the

ability to save the synchronization state at the time of an event. The state of the guardian

then includes not only the current synchronization state, but also each previous state that

has been saved. Conditions on enter gates can be expressed in terms of both the current

synchronization state and any information saved from previous states. All the information
I that is lost by abstracting from the complete sequeﬁce of events within the history to the
v’ counts of event classes can be regained by using the state at the time of prior events as well
as .the current state. Basically the reason for this is that when it is necessary to know
i whether some particular event e; has preceded some other event ey in the preceding

sub-history, this information can be obtained by comparing infermation in the states when

e; and eo occurred with the current state and/or each other. In Chapter 4 it is explained

{
|
|
|

-5 -

how previous state information is derived to express properties for which the current state

is insufficient.

A notational extension is needed to represent previous state information. Unless
indicated otherwise, quantities appearing in a condition represent current state values.
When a quantity is meant to represent a value in the state at some previous event, the
notation "e g" appended to the quantity is employed, where g is the name of some gate.
This means that the quantity refers to the state saved just prior to the most recent event
occurring at gate g. For example, the number of activations of p that had been requested at
the point at which the most recent exit event for procedure q has occurred is denoted
[count(pes!) @ q™"]. Notice that since the state is saved just before the indicated event, a
quantity such as [count(q®") @ q**] does not include the ¢**" event actually occurring at the

point at which the state is saved.

As an examplg of a solution specification that uses previous state information, consider
an abstraction with two operations u and v. Suppose that it is desired not only that
activations of operation u be mutually exclusive, but that between any two successive
activations of u, an enter event for operation v must occur. This can be expressed by the
condition i

count(u®™*") = count(u®™™) A [count(v*™*") @ u**"] < count(ve"*")

for gate u®"*".

The second conjunct of the condition says that count(v*™®') must increase
between the exit event for the most recent activation of u and the time the next activation

of u is allowed o enter. The corresponding abstract program for an activation of u is:

T

e e = e e —— S ————— =

-52 -

request,

u increment count(u"*!) by |

enter,

u™®". wait until count(u®™®") = count(u®") A

[count(ve"*") @ u™"] < count(v*"*"),
then increment count(u®™*") by 1

execute body of operation u

exit,

u®". save the guardian state, in particular the quantity count(v®"'*"),

and increment count(u®*") by 1

enter

Each event at gate u®™*" uses the value of count(v®™®") saved at the most recent u®*" event

in its entry condition.

As before, a solution specification is represented simply by the entry conditions that
apply to all enter gates in the guardian. The state information that must be saved is not
listed explicitly. Instead it is indicated implicitly by the appearance of quantities of the form

[count(ec) e g], where ec is an event class and g is a gate, within entry conditions.

There is another aspect of information that is lost by abstracting from the history of
an object to simply the count of eveﬁts in each event class. The history is a sequence of
events, each of which is described not only by its event class, which is to say the operat.ion
name and event type, but also by the vector of parameters passed to the operation. All
information concerning the values of these parameters is lost when considering only the
counts of event classes. For instance, it may be necessary for activations of an operation to

be mutually exclusive only if an integer parameter of each activation is non-negative. Such

a property can be expressed in the problem specification language of Chapter 2, but not in

a solution specification with the structure presented thus far.

-53 -

The solution is to "qualify” gates in the solution specification. A gate is qualified by
the attachment of some predicate on the parameters of the associated procedure activation.
Only if the parameters of an activation satisfy the predicate does the process making the
activation pass through that gate. An unqualified gale.. which applies to all activations of
the given procedure, may be considered to be simply a special case of a qualified gate, with

a qualifying predicate that is identically TRUE for all parameter values.

Some new notation is needed in order to refer to gates. An unqualified gate, as before,
is indicated simply by the event class it is in, such as the p*™* gate. A qualified gate is
denoted by appending the qualifying predicate to the procedure activation expression. The
notation used is similar to that employed in set theory, with a vertical bar uséd to separate
the predicate from the activation expression. Therefore, [p(v) | C(v)I*™*" denotes a gate in

enter

the p event class that is qualified by the predicate C on the vector of parameters v to

procedure p.

As an example, consider the following situation. Let an abstraction have one
operation h, taking a single integer parameter x. Le't all activations of h with non-negative
parameter values be mutually exclusive. Then the solution specification contains the
condition

count([h(x) | (x 2 0)1*™*") = count([h(x) | (x 2 0))***)
for gate [h(x) | (x 2 0))*"". This means that the gates for both the h*™*" and h**" event
classes are qualified with the predicate (x 2 0), and that any activation of h whose

parameter does not satisfy this predicate need not pass through these gates. That is, the

abstract program for an activation of h with parameter X is:

-54 -

h®*s. increment count(h"%**!) by |
h*™®". if x 2 0 then
wait until count((h(x) | (x 2 0)I*™*") = count([h(x) | (x 2 0)J*""),
i and then increment count([h(x) | (x 2 0)]*"*") by 1
execute body of operation h with parameter x
h®**: if x 2 0 then

increment count([h(x) | (x 2 0)**") by 1

' Since gate h™%*®! is not qualified, all activations must pass through it, regardless of their

parameters.

; Allowing only one qualifying predicate for an event class would be overly restrictive.
It may be necessary to maintain counts of severa) different subsets of events in an event
class, where each subset is disti'nguished by a different predicate on the operation
parameters. These subsets may either be disjoint or overlap. Also, different entry
conditions may be required for different subsets of the total set of activations of an
operation, and again these subsets may be disjoint or overlap. It is therefore necessary to
generalize the above structure by allowing more than one gate for each event class. Each
gate in an event class is distinguished by a different qualifying predicate, and each gate of
an enter class may have a different entry condition as well. When there is more than one
gate for an event class, a process passes through exactly that set of gates whose qualifying
predicates are satisfied by the parameters of the activation it is making. These gate

passages arr assumed to all occur in parallel. It is this simultaneous passage through a

subset of the gates in an event class that implements the abstract notion of an event.

-85 -

The implementation of each event class by a whole set of gates is a fundamental
change in the structure of the solution specification. It is perhaps best understood by
looking at the new abstract program for an activation of operation p with parameter vector

v:

preaUest. in parallel for all gates g in event class P

if v satisfies the qualifying predicate of g,
then increment count(g) by |
p°™*": in parallel for all gates g in event class g™,
if v satisfies the qualifying predicate of g,
then wait until the entry condition of g is satisfied,
and then increment count(g) by |
execute body of operation p
p™* in parallel for all gates g in event class g
if v satisfies the qualifying predicate of g,

then increment count(p®™") by 1

Since the events in an object history are totally ordered, each event must be an
indivisible operation. This means that all gate passages making up.an event occur, at least
in a conceptual sense, in parallel and simultaneously. In particular, it means that a process
may not pass through an enter gate unless it can pass through all of the enter gates for the
given event class whose qualifying predicates are satisfied by its parameters. Only when all
the entry conditions on these gates are satisfied may the enter event, in the form of the

parallel passage through all these gates, take place.

i o

~ 56

As before, the processes that are blocked at a given enter event class are queued up in
FIFO order. However, they need not be unblocked in this same order. Each process in the
queue is waiting on one or more conditions, depending upon which qualifying predicates on
gates apply to the activation. The process that proceed§ first is the one closest to the front
of the queue for which all entry conditions are satisfied. This may not be the one at the
head of the queue, since that process may be waiting at a different set of gates than other

processes further back in the queue.

It is important that the distinction between qualifying predicates and conditions on
gates be clear. A qualifying predicate can be attached to a gate of any event class, and
represents a constraint on the parameters of the associated procedure activétion. If the
predicate is satisfied for a particular activation, then the process making the activation
passes through the gate, while if it is not satisfied, the process bypasses the gate. A
condition, on the other hand, applies only to an enter gate. This condition is on
synchronization states, the current state and perhaps also one or more previous states. If the
condition is true, then the process may pass through the gate. If it is not, then the process

becomes blocked, and must wait in a queue for the condition to be true.

As an example of a solution specification employing multiple gates, consider the
abstraction discussed above with one operation h. Assume now, though, that h takes two
integer parameters x and y. As before, activations of h for which parameter x is
non-negative must be mutually exclusive. In addition, though, we want activations ‘for

which parameter y = 5 to be excluded whenever there is an activation currently executing

for which y > x. The solution specification for this example consists of the following two

-57-

conditions:
For gate [h(x,y) J (x 2 Q))enter.
count(lh(x,y) | (x 2 0))°™*) = count(lh(x,y) | (x 2 0)I"**")

For gate [h(x,y) | (y = 5)Jenter.
count([h(xy) | (y >)I*"*") = count(fh(x,y) | (y > x)1**)

These conditions require two gates with entry conditions for event class h*™*’, with
qualifying predicates (x 2 0) and (y = 5). There must be gates in both the h*™*" and h***

event classes to maintain counts for the qualifying predicates (x 2 0) and (y > x). The

abstract program for an activation of h with parameters x and y consists of:

A bt £ ST N Bl i o) BN

e ——e e e e et e st et MU RS 27 AR, SE ST,

- 58 -

h'eavest. increment count(h"%**') by 1
he™'*" in parallel, _
if (x 2 0), wait until
count((h(x,y) | (x 2 0)}°™*") = count([h(x,y) | (x 2 0)I***"),
and if (y = 5), wait until
. count([h(x,y) | (y > x)I°™*") = count(lh(x,y) | (y > x)I**"),
and then in parallel,
if (x 2 0),
increment count([h(x,y) | (x 2 0)1*™*") by 1
and if (y > x),
increment count(lh(x,y) | (y > x)I*"*") by 1
execute body of operation h
h* in parallel,
if (x 2 0),
increment count((h(x,y) | (x 2 0)}**") by I
and if (y > x), -
increment count((h(x,y) | (y > x)I**") by 1

That is, if both qualifying predicates (x 2 0) and (y = 5) are satisfied for an activation, then
both entry conditions must be simultaneously satisfied before its enter event. If only one
qualifying predicate is satisfied, then only the entry condition corresponding to that
qualified gate must be true. If neither predicate is satisfied, then the enter event can occur

without delay. In any of these casgs, count([h(x,y) | (y > x)I*™*") is incremented if and only

if (y > x).

-59 -
3.4 Semantics of the solution specification

Thus far, the discussion in this chapter has relied on an informal, intuitive idea of the
meaning of the solution specification. This section presents the formal definition of the
semantics of solution specifications. As was the case for the problem specification language,
whose formal definition was presented in Section 26, the semantics of the solution
specification structure are defined by specifying which histories are valid with respect to any

particular solution specification.

A qualification is a predicate on a vector of parameters. The domain of qualifications
is denoted Q. One particular element of Q is the predicate that always returns TRUE. By
considering this special predicate to be the qualification associated with what until now has
been called an "wnqualified” gate, we are able to consider all gates to be qualified. So, a
gate is a pair <ec, q>, whose first component ec is an event class and whose second

component q is a qualification.

A state is a function from gates to non-negative integers. A state maps each gate into
the count cf the number of passages through it. A condition is a predicate on a set of states.
If the condition refers only to the current state, then the argument to the condition is a

singleton set containing only the current state. When a condition refers to previous states as

well, each of these states must also be in the set.

-60 -

A solution specification consists of a set of gates, and a condition on each one of these
gates. (It is simplest to take the view that a solution specification assigns each request and
exit gate, and every enter gate not explicitly given an entry condition, the condition that is
identically TRUE.) The set of gates in solution specification ss is given by the expression
Gates(ss). For every gate g € Gates(ss), the condition assigﬁed to g in ss is given by
Cond(ss, g). The set of previous states that the condition on gate g in solution specification

ss refers to is given by PrevStates(ss, g).

A history is valid with respect to a solution specification if. for each event in the
history, every solution specification condition that applies to the event is satisfied at the
point in the history at which the e;fent occurs. (Actually, only enter events have non-trivial
conditions, but for the sake of uniformity, it is easier to define the concept in terms of all
events in the history.) To define this formally, it is necessary to have functions that map
historiés into states, i.e. into functions from gates into counts. The function CurSt maps an
object history, the sequence of events associated with a given object, into the current state of
that object. Recall that an object history is either the empty sequence [], or else is obtained
by adding an event onto some other history. An event is represented by a four-tuple of the
form <p, t, n, a>, where p is the operation name, t is the event type, n is the activation

number, and a is the vector of arguments. The definition of CurSt is:

|

iamaa e e i ——

S e —

-6l -

CurSt([]) = A(ec, q.0
CwiSt(add(h, <p, t, n, a3) = X (ec, q). (if <p, t> =ec A q(a)
then (CurSt(hXec, q) + 1)
else CurSt(h)ec, q))
The notation used here is taken from A-calculus. The formulg "M (x, y). F" represents the

function of arguments x and y whose body is given by F.

The function MosRecSt (Most Recent State) maps an object history and a gate into the
state of an object at the time of the most recent event at that gate:
MosRecSt([], <ec, g>) = A (ec, q). 0
MosRecSt(add(h, <p, t, n'. a>), <ec,q>) = if <p,t> =ec A q(a)
then CurSt(h)
4 else MosRecSt(h, <ec, q>)
The cu.rrent state after history h becomes the most recent state for any gate that applies to

the event added onto h.

It is now possible to formally define the validity of a history h with respect to a
solution specification ss. This is given by ValidSS(h, ss), where: 1
ValidSS([], ss) = TRUE |
ValidSS(add(h, <p, t, n, a5), ss) = ValidSS(h, ss) A

v (éc, q) (<ec, g> € Gates(ss) N ec = <p, t> A g(a)

D SatSS(h, ss, <ec, g>) |

SatSS(h, ss, <ec, g>), defined below, is a predicate that determines whether the state

represented by history h satisfies the condition in solution specification ss for gate <ec, g>.

e

TR

-62 -

Therefore, the definition of ValidSS simply states that a history is valid with respect to a
solution specification if it was valid before the last event occurred, and if the history

satisfies the conditions for all gates that apply to the last event.

The predicate SatSS is easy to define. A.history satisfies a condition simﬁly if the
current state plus the relevant most recent states of the history satisfy the condition. Recall
that the condition on gate g in solution specification ss is given by Cond(ss, g), and that this
condition is simply a predicate on a set of states. Formally, then,

SatSS(h, ss, g) = C(States),
where C = Cond(ss, g)

and States = {CurSt(h)} U {MosRecSt(h, g’) | g’ € PrevStates(ss, g)}

~ The subject of the next chapter is the method for deriving an equivalent solution
specification from a problem specification. Section 4.6 justifies the method presented. This
justification relies on both the formal definition of the problem specification language given

in Section 2.6, and the formal definition of the solution specification in this section.

.

-$3 -

Chapter 4

Derivation of the Solution Specification

4.1 Introduction

The subject of this chapter is the algorithm for analyzing a problem specification and
der.ivmg from it an equivalent solution specification. There are two aspects to the
construction of a solution specification. Identifying the gates required in the solution
specification is relatively straightforward. This simply involves identifying the event classes
appearing in the problem specification. For qualified gates to be identified correctly,
however, this must be done after all argument constraints have been incorporated into the

ordering clauses of the specification, as explained in Section 4.5.

Constructing appropriate conditions to attach to the gates associated with enter event
classes is the formidable task. The aigorithm for constructing these entry conditions is the
subject of this chapter. As explained in Chapter 3, the set of conditions on all enter gates is
sufficient to represent the complete solution speéiﬁcation. The other gates in the solution
specification and the saving of previous state information are indicated implicitly by the

quantities appearing in the entry conditions.

In constructing a condition for an enter gate, the basic strategy employed is to
determine, in terms of the synchronization state, what distinguishes points in a computation
at which an event at that gate should or should not occur. "Should occur” here can be

interpreted formally as satisfying the predicate Sat, which was defined in Chapter 2, relative

ke

-64 -

to the given specification. In making this determination, it is necessary to consider all
relevant subsequences of histories, specifically those subsequences containing the events
mentionied explicitly in the specification. Each of these subsequence;, or "orderings”, can be
classified as either valid or invalid with respect to the specification. At each point in an
ordering at which an event occurs at the gate in question, it is possible to characterize the
synchronization state. These individual characterizations can then be combined
appropriately, based on the validity of the orderings, to form an overall condition for the

gate.

The paragraph above summarizes the main phase of the derivation algorithm. The
result of this phase, which is presented fully in Section 4.2, is the derivation for each gate of
a "preliminary condition”. For cases where the correct condition for a gate can be expressed
solely in terms of the current state, the preliminary condition is correct. When this is not so,
the preliminary condition can be refined by iterating over another phase of the algorithm.
This phase, which is presented in Section 4.3, uses information saved at previous states in
the orderings as well as the current state. Section 1.‘4 contains an example of applying the
algorithm of Sections 4.2 and 43. The one other aspect of the algorithm is some initial
processing designed to make the specification suitable for analysis. Section 4.5 describes this
processing, in which argument constraints are incorporated into the specification so that the
transformed specification consists entirely of ordering clauses. The algorithm is summarized
in its entirety in Section 4.6, and there a justification is presented for why it works. The last
section of this chapter, Section 4.7, discusses the class of specifications fc;r which the

algorithm fails.

- 65 -

An important feature of the approach to be presented is a property that I call
extensibility. This means that the algorithm can be applied to each conjunct in a problem
specification individually. If the specification s is of the form

SN So A A s,
then for each conjunct s; of the specification, the algorithm derives one or more conditions
for gates in the solution specification. For each gate, the condition required for the entire
specification s is simply the conjunction of the conditions obtained separately from the
conjuncts s;. This property can be proved in terms of the formal semantic definitions of the
problem specification language and the solution specification. Informally, it is true because
each conjunct in a specification represents a separate constraint that must be met by any
valid history, so that the overall specification represents a set of constraints, all of which
must be met. If each constraint is implemented by a different set of solution specification
conditions, then the joint overall constraint must be implemented by conjoining all these
conditions. This is because an event may validly occur only if it does not violate any of the
individual constraints. For this reason, the analysis of specification s can take place on each
relatively simple conjunct separately, rather than on the entire, more complex specification.
With regard to any reference in this chapter to specification s, the reader should understand

that s can represent a single conjunct that is being analyzed individually.

S i cala lg oAk

SRR R T R DI T -

-66-
4.2 The derivation algorithm

This section describes the essence of the derivation algorithm. It is assumed that the
problem specification consists exclusively of ordering information, in that all clauses, as
defined in Section 2.5, are ordering clauses of the form (e = eg), where events e; and ey
refer to procedure activations for which arguments are not listed. That is to say, there are
no argument constraint clauses, nor are arguments explicitly given for any procedure
activations. The conditions derived for the solution specification in this phase of the
algorithm refer only to the current synchronization state, and not to any previous states.
When any of the preliminary conditions derived by this phase is inadequate, then previous
state information must be used in order to refine it. The method for doing so is presented

in the section following this one.

The algorithm is presented here on a step-by-step basis. Each step first is described as
it works on a general specification s, and then illustrated on a particular specification. The
specific example used for illustration purposes is example 4 from Section 2.7, which will be
denoted here as specification s:

pinqmst = qjonhv) Pionhr = qjontu.
As aiscussed in Chapter 2, the effect of this specification is to give executions of procedure

P priority over those of procedure q.

i, o 0 e ot I, it A1 5.

f
|
!
L

-67 -

Given a problem specification s, the first step in deriving the equivalent solution
specification is to identify Evexp(s), the set of event expressions appearing in s. Informally,
this set can be constructed simply by noting which event expressions are contained in the
specification. The recursive definition of Evexp(s), which was presented in Section 2.6 and
is repeated in Figure 4.1 below, can be used to formally construct Evexp(s) for any
specification. For the example specification,

Evexp(s)) = {piquﬂ, p‘_onhv' qj.nt.r}_

Once Evexp(s) has been constructed, the next step is to construct the set of possible
time orderings among the events represented by these expressions. Suppose a history
contains events that correspond to the event expressions in ihe specification. Formally,
using the definitions of Section 26, this means that there is some interpretation mapping
the event expressions in Evexp(s) into a subset of the events in the history. Then whether
or not the history satisfies the specification under this interpretation depends upon the
order among exactly these events. To analyze all possible histor.ies that involve events
corresponding to the expressions in the specification, it is sufficient to analyze all possible

subsequences of these events. A subsequence of events in a history is called a sub-history.

Figure 4.1. Definition of Evexp(s)
Evexple; => e5) = { e, e9}
Evexp(exp; rel expg) = { }, for rel € Rel
Evexp(—s) = Evexp(s)
Evexp(s; op so) = Evexp(s;) U Evexp(so), for op € Op
Evexp(3 x (s)) = Evexp(s)
Evexp(V x (s)) = Evexp(s)

povTere

- 68 -

Since each relevant event is represented by an event expression appearing in
specification s, the sub-histories of interest correspond to the possible sequences of the
expressions in Evexp(s). Each sequence of event expressions that represents a possible
sub-history is called an ordering. Every history containing events represented by the event

expressions of Evexp(s) corresponds to exactly one of the orderings.

If the size of Evexp(s) is n, then there are n! permutations of these n events, but not all
of the corresponding sequences are necessarily possible time orderings. To be a possible
ordering, a sequence must obey the basic constraint

umnqws| = umon'_or = umnit'
for every procedure activation u,,. For example, consider a case where

Evexp(s) i {xauqmsi’ X onter Xa"“- ybuquost' Yb'm" Yb"i'}-

e
While there are 720 permutations of these six events, only 20 sequences represent possible
time orderings. An additional constr:;lint that must be met by any ordering is that
(m<n) > (umuqms\ = unmwos!)'

since the numbering of procedure activations is based on the order of the respective request
events. Thus, for a specification in which x;*%**! and x;,,"*®** both appear, x,"*"**! must
precede xi.l"‘“"s' in every ordering. These constraints are exactly the ones embodied in the
predicate Possible defined in Section 26. Ruling out all orderings that are impossible
corresponds to restricting attention to object histories that are possible according to that

definition.

-69 -

Formally, the construction of the possible orderings among the elements of Evexp(s)
can be carried out in two stages. The first stage consists of generating all permutations of
the elements of Evexp(s). Then every permutation that violates one of these basic

constraints is eliminated.

For the example specification s, Evexp(s;) contains three events, as already noted.
Although there are six permutations of these three events, only three are possible time
orderings, since the other three violate the constraint that pi"““"’ = pi'""'. These three

possible orderings are:

(1 plvequesl = pientev = qjcntov
(2) pjrewvest = qjenhv = Pionlov
3) qjenhr = Pirequesi = pienhv
That is, in any possible history in which there are events corresponding to the three event

expressions in Evexp(s)), these events must occur in exactly one of these three orders.

Once the possible orderings of the events associated with specification s have been
constructed, it is necessary to separate them into two classes. Those that satisfy the
specification s are termed wvalid orderings, while the rest are invalid. Validity of an
ordering with respect to a specification s can be determined by simply evaluating the
formula s. In this evaluation, either TRUE or FALSE is substituted for each expression of
the form (e} = eo), depending upon whether or not event e precedes event ey in the given
ordering. Since it is assumed tl';at by this point the specification consists entirely of

ordering information, the result of this evaluation must equal either TRUE or FALSE.

TYRLES SR P e

sttt

« 70 -

The ordering is valid when the formula evaluates to TRUE, and invalid when it is FALSE.
In terms of the formal semantics of the problem specification language presented in Chapter
" 2, this corresponds to evaluating the predicate Sat for an otherwise valid history that

contains the given ordering as a sub-history under an arbitrary interpretation.

For the example, substitution of ordering (1) into specification s; yields the formula :
TRUE > TRUE,
which evaluates to TRUE. Substituting ordering (3) into s results in the formula
FALSE D FALSE,
which also evaluates to TRUE. Orderings (1) and (3) are therefore both valid with respect
to s;. Substituting ordering (2) into s, however, yields
« TRUE D FALSE,

which is FALSE, so ordering (2) is invalid.

In describing the next step of the algorithm, some definitions are needed. A prefix of
a sequence is si.mply any initial subsequence. A special case is the empty sequence, which is
a prefix of evéry sequence. Any two sequences have a unique longest matching prefix which
they share. Given two different orderings of n events, there is a unique k, where 0 <k < n,
such that each of the first (k - 1) events in the two orderings are identical, and the k-th
events differ. The shared prefix of length (k - 1) is the longest matching prefix of the two

orderings.

M -

It is necessary to compare each invalid ordering with all of the valid orderings in turn.
In each case, there will be a longest matching prefix that the two orderings share, which
may be the empty sequence. Of all these longest matching prefixes, we choose the one with
the greatest length. If this prefix is of length (k - 1), then the k-th event (more precisely, the
k-th event expression) in the invalid ordering is the offending event of that ordering. The
offending event is the one at whicix the invalid ordering first "goes wrong” in the sense of
violating the specification. That is, it is at this point in the history that the Sat predicate is
first violated for the specification. Assuming that the offending event is in an enter event
class, a condxt;on must be attached to the gate for that event class in the solution
specification, 50 that the SatSS predicate for the solution specification is also violated at this

point.

If the offending event in the invalid ordering is not an enter event, then the
specification is illegal, in that it does not agree with the basic guardian model being
employed here. According to the model, only enter events can be conditional and so be
delayed from immediately taking place. If a specifica;tion implies that some request or exit
event should be delayed, then it represents a property that is incompatible with this model.
~ Such a specification cannot be analyzed by the method presented here. (These cases are

discussed in section 4.7.)

Returning to the example specification s|, orderings (I) and (3) have already been
shown to be valid, and ordering (2) to be invalid. For orderings (I) and (2), the longest
matching prefix consists of the sequence of length one whose only element is pi"“"'"; for

orderings (2) and (3), the longest matching prefix is the empty sequence. The longest prefix

>

-72 -

of ordering (2) that matches some valid ordering is therefore the one-element sequence
[p;"****'). The offending event in (2) is the event immediately following this prefix, namely

qJ"‘"'. Thus a condition is required on the gate for the q*™*" event class to prevent this

invalid ordering.

In the general case, a condition must be derived for each event class that contains an
offending event in one or more invalid orderings. When this condition is placed on the
gate for that event class in the solution specification, it must prevent any sub-history
corresponding to one of these invalid orderings, but allow any of the valid orderings as
sub-histories. The derivation of the condition requires the state, i.e. the synchronization
state of the object, to be characterized for each invalid ordering at the point at which the
offending event occurs, so long as the offending event belongs to the given event class. The
method for characterizing the state is explained below. A disjunction of these state
characterizations is formed, to be denoted here as D, D; represents a general state
characterization of when the occurrence of an event in the given event class would fail to
satisfy the specification. Similarly, the state must be characterized for each valid ordering at
the point at which an event in the class occurs. The disjunction of these characterizations is

denoted D,, which is a general characterization of when the occurrence of such an event

v

would satisfy the specification.

The expression given by the formula (D, A (= D,)) represents a preliminary possibility
for the condition required in the solution specification. The term (~ D;) guarantees that the
expression is strong enough to exclude every invalid ordering. Conjoining the term D,

aids in the simplification of the formula. Since any conditions that are trivially true in all

ok,

G e

e S, e e ——— e i e e e et el et

-

orderings of interest appear both in D, and in D;, such conditions cancel out in the
conjunction of D, with the negation of D;. These conditions may arise from the fact, for
instance, that at the point just before an event in the p*™*" class occurs, it is alv;vays true that
count(p"®**!) > count(p®™*"), since there is at least one activation (the one under
consideration) for which the request event, but not the enter event, has occurred. Thus,
this clause is a component of every state characterization, whether the orderiné is valid or

invalid. The conjunct D, guarantees that the negation of this clause is eliminated from the

condition.

The preliminary condition given by (D, A (- D;)) is known to be at least as strong as
the condition required, since the term (— Di) excludes all invalid orderings, i.e. all histories
with sub-histories corresponding to an invalid ordering. The condition must be tested
against all the valid orderings, however, to check that it is weak enough to allow all of them
as sub-histories. This checking is accomplished by determining that the condition is
satisfied at the point at which the appropriate event occurs in each valid ordering. If the
condition is satisfied at all these points, then the condition is correct, and the task is
completed. If this is not so, then the condition is too strong, in that it rules out some
ord'ermgs that are valid according to the specification. When this happens, steps must be
taken to refine the condition by weakening it appropriately. This weakening process will be

described in the next section.

e e e ——— T L bl SR e T s o g A SIS SRR A (A S S

-74 -

In characterizing the synchronization state of the object at a point in an ordering, the
ordering must be considered to represent a sub-history that is embedded within some
possible history. Except for what can be deduced from the ordering itself, nothing can be
assumed about the history or about the interpretatioa by which the event expressions in the
ordering are mapped into the events in the history. There may be an arbitrary number of
events in the history preceding the sub-history, and between any two events in the
sub-history. It is known, however, that the history is possible. Also, the history can be
assumed to be compatible with the solution specification structure, since if it is not, then the

algorithm cannot succeed in any case (see Section 4.7).

The characterization of the state therefore relies entirely on the other events in the
sub-history represented by event expressions in the ordering. Since the characterization
involves actual events in a history, rather than the event expressions in an ordering, each
event expression conceptually is replaced by a real event, so that every variable within an
expiession is replaced by an actual value. Since the interpretation for making these
replacements is arbitrary, however, nothing can be assumed about the values. All that is
known is that for any given history and interpretation, there is some particular value for
each variable. For this reason, in the state characterization each variable is existentially
quantified. That is, every state characterization formula is of the form

3(ipy i) (S)

where {i, ..., ip,} is the set of variables appearing free in formula S.

-7%-

The body S o'f the state ct;aracterization formula consists of placing bounds on the
counts of event classes, based on which of these events occur before and after the point at
which the characterization is being made. It is assumed that the characterization is made
Jjust before the enter event of interest occurs, so that this event itself has not yet taken place,
but every preceding event has occurred. The characterization contains a clause
corresponding to each event in the ordering, that is, to each element of Evexp(s). For each
e € Evexp(s), the count of the event class containing e is given either a lower bound if e

occurs prior to this point in the ordering, or an upper bound if e occurs subsequent to this

point. The bound in either case is the invocation number of e.

For example, let e be the event expression x,*"*". If event Xm™"'®" occurs prior to the
enter event in the ordering being considered, then the state characterization contains the
conjunct

count(x*"*") > m.
The reasoning is that if X *"*" has already occurred, then so have each of x, *™*" for (I < k
< m), so that count(x*™®") is at least as great as m. .The count may be greater than m, as
other events in the x*™*" class may have taken place in between event x.°*™*" and the
current point, but it is not less than m. On the other hand, if x,*™*" occurs after the point
at which the characterization is made, then the clause becomes instead

count(x*™*') < m.
If X,"™*" has not yet occurred, then neither has x;*™*" for any k > m, so that count(x*™*")
must be less than m. Again, other x*™* events may occur in between the point of the

characterization and xm‘""'. s0 that the count may be less than (m - 1), but it is certainly

e

-76 -
less than m.

This method of state characterization relies on a first-come-first-served scheduling
discipline at each gate. That is, it assumes that any history occurring prior to event x,*™*"

contains exactly

[XI.M", xzontu‘ o xm_lonlor]

as the subsequence of events occurring at the x*™*" gate. This scheduling policy is built
into the structure of the solution specification, and so it may be assumed that if a correct
solution specification can be de<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>