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INTRODUCTION

Optimal structural performance either in terms of cost
and/or weight is, or should be, the goal of structural de-
signers. Recent developments in optimization theory have
now allowed the solution to a substantial class of impor-
tant optimal problems making possible the achievement of
this goal for these cases. The mathematical programming
(MP) procedures, originally developed for use in operations
research to treat the optimal resource allocation problem,
have been applied to the design of submersed, stiffened, cy-
lindrical shells [1-4]. These earlier studies employed uni-
form stiffening rings or frames of equal size. The problem
that was addressed there was that of the most effective allo-
cation of material between stiffeners and the shell assuming
all stiffeners were of equal size.

The next resource allocation question that arises is;
what is the most effective allocation of material among the
stiffeners themselves? For example, if one wishes to sup-
press a buckling mode with one axial half-wave, and be effi-
cient in the use of stiffener material, one would make the
stiffeners largest near the center of the bay segment and
smallest near the bulkhead (see Figure 1).

The question of optimal stiffener material allocation
has been investigated by Kunoo and Yang [5] for aerospace
structures stiffened with both rings and stringers. They

obtain about a 5% saving in weight with the use of multiple
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rather than equal stiffener sizes for the example they -
studied. Their computationally demanding doubly reinforced
buckling problem, where the stiffeners are treated as dis-
crete, and the relatively ineffective conventional MP pro-
cedure they employ [6] require the use of approximation
methods to approach a solution in a reasonable period of
time (about 2,000 seconds on a CDC 6500).

The reliability of their optimization scheme,seems
questionable for two reasons. First, the basic approach
they employ produced designs with substantially different
weights using two different search schemes. Secondly,
no mention is made in their work of the coalescence of
buckling modes, a characteristics of optimal designs con-
trolled by buckling behavior, and their procedure appa-
rently does not treat this situation.

This report describes the solution to the simpler
singly reinforced discrete stiffener problem by direct
optimizatioﬁ without use of»aéérokiméﬁioné iike those used
in [5]. The optimization formulation and procedure used
here admit a large number of simultaneous buckling modes
thus allowing optimization under conditions of mode coales-
cence.

It should be noted that this is a éréiiﬁinary study,
the purposes of which are; to develop and evaluate metho-
dology’ for the treatment of this problem, to develop pre-

liminary insights into how multiple frame sizes may effi-
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ciently be employed in submersible structures, to examine

Gl .o

the nature of design improvement resulting from use of

multiple size frames, and to investigate the nature of

such optimal designs.
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PROCEDURE

Mathematical Programming (MP) methods are basically
search procedures that iteratively approach the solu-
tion to the problem: Find those values ii of the vari-
ables x; that minimize the objective function £ (xi) sub-
ject to constraining conditions (7]. The problem is usu-
ally stated; Find the ii such that

£(x;) = min [£(x;)] (1)
and such that all functional constraints
g; (x;) <0 (2)

and regional constraints

L2 u
Xy <®y <A (3)

are satisfied, where~x§ and xg are the upper and lower

regional limits respectively.

Variable Designation

The variables employed for this problem are the skin
or plating thickness and ring or frame dimensions and
spacing. Each frame size used introduces a variable set
associated with its dimensions. Thus the number of vari-
ables is dependent on the number of sizes employed. To
reduce problem dimensionally it is useful to introduce
several assumptions.

It will be assumed that the bay is symmetrical with
respect to a plane at mid-bay, normal to the cylinder
axis. Then, referring to Figure 1, if Nf is the number

of frames used in the structure (excluding the deep end

ull




frames which ére considered rigid simple supports for this
problem) then the number of problem variables I may be
taken as
I=[(N,+1)/2]T N, + [N_/2]T + 1 (4)
f d f

where [¢]T is ¢ truncated to an integer, and Nd is the
number of dimensions of an individual frame treated as
variables. Thus a shell problem with four variable quanti-
ties per frame utilizing 20 frames would have 51 variables.

In an earlier study of the characteristics of optimal
shells [1] it was found that all frame dimensions need
not be independent to achieve nearly optimum designs.
Thus in order to minimize the number of variables for
this preliminary study the frame dimensions will be pro-
portioned as follows (refer to Figure 1l): Let X be the
plating thickness and let there be K frames with X1 the
thickness of the kth frame, where the frames are numbered
from mid-~bay outward. Let the web height be dependent on

the frame thickness where

hk = h(xk+l) k=1,2...K (5)
where hk is a value of web height that will just produce
buckling in the web of frame k. For the preliminary study,
let hk = 18 Xpr1 for all frames [1]. This assumption
apparently carries no weight penalty since it was found

in earlier studies that the web buckling constraint is al-




ways active in optimal structural designs.

Also let the flange thickness

B = Zpp (6)
and the flange width be that which will just produce buckl-
ing of the flange. That is, let the flange width be de-
pendent on the flange thickness by

W = w(by) (7)
where for this study Wy = 12.6 b, for all k (13,

Such proportioning of the flange does produce slightly
heavier designs (less than 2% greater than optimum [1,2]).
The use of this simplification is however justified for
this preliminary work. Then for this study Nd is unity.

Now let the remaining variables represent the frame

spacing counting from the center of the bay outward. These

variables are

X. i

l K+2' K+ 3"..1

Objective Function

The objective funciton for this problem is the weight

displacement ratio, WD

weight of the deep end frames [l]. Thus

, of the hull segment excluding the

w/YwVD internal frames
W, = (8)

W/[Yw(vD + VD)] external frames

where Yo is the specific gravity of the immersion fluid,

VD and VF the volume displaced by the hull plating




and frames respectively and the weight of the hull W is

W=y (Vg + V) (9

where is the specific gravity of the hull material

and ¥ the volume of the hull plating. 1In this problem

K
2 il Vk 7 Nf even
) (10a)
VF =
K
Vl + 2 52 Vk . Nf odd
where
K= [0 + 1)/2]" (11)

and Vy is the volume of frame k.

Constraints

It is assumed that, since the plating thickness is
uniform only the smallest frame can be active in yield-
ing. Thus frame yielding is controlled by specifying
that

g9y = Wy =0 )/, £0 (12)

where Oé is the allowable frame stress and o_ is the

F
hoop stress in the smallest frame. This stress is com-
puted in the following fashion. Find the index c where

X, = min (xk+l) kal,2,..8 (13)

[1]

Then in the equations
gf = Q pR/(A+bt)
Q = bl + (1-u/2)8/B]1/(1+8)
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B = [28/(A + bE)T[1/3 (1-p )1Y/4 (me3)1/2
N = (cosh 8 - cos 6)/(sinh 6 + sin 6) (14)
6 = LI3 (1-u)/(re?)11/*
B = bt/ (A+bt)
let
t = Xy
b = Xq
A = 30.6 X (15)
L = max (x_,_;, X;), Np odd and c#2
L = max (xa, xa+1), N even
t = NF odd and ¢ = 2
where

a=c+K,
p is the hydrostatic pressure and u is Poisson's ratio.
If plating yield is active, as is often the case,
the optimization procedure will try to adjust the hull
dimensions so that several panels are simultaneously
active in yield. It is therefore necessary to check all
panels for yielding. Thus one has a series of constrain

9441 = (Opj - cpa)/cpa <0 j=1,2...3 (16)

where the number of different panels J is

J=K+ 1 Nf even
(17)
J =K Nf odd

and where ¢ is allowable plating stress and o_. is the

pa P3J

stress at the center of the jth

panel. This stress will

ts 3
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be estimated here by averaging.

Thus let

Gl ™ pj pj (18)

Equations (9-12) of [l1] are used to calculate cgj and ogj.

For these computations the quantities t and L in these

equations are replaced by

t = x1
: (19)
i B by = e

For j = 1,2...J-1 in computing cgj the quantities b and A

ﬁ . are replaced by

r=7j Nf even
b = . (20a)
r= 9+ 1, Nf odd
1
, A = 30.6Db
]
R
and for opJ
£ =g T Nf even
b (20b)
=xr
y r = 5 &2, Nf odd
A = 30.6 b

e

except when j = 1 and Nf is even then

e, gl
i cpl = °p1 cpl and b and A are replaced by
4
| - (20c)
b = Xy

A

30.6 b
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For the end panel j=J let cpJ opJ and replace
L=LJ
r=7Jd, N. even
T x_ (204)
r = J+1, N odd
A = 30.6Db

The other constraints used in Ref. [1] will not be used
here.

The above formulation may also be used to treat a form
of the problem employing equal size stiffeners. 1In this

case I = 2, K=1, and J = 1 and in the objective function

calculation
Vp = B Vg (10b)
: iy q L R
For the plating yield constraint cpl = cpl and
b=x
- (20e)
A = 30.6 b

To determine the minimum buckling pressure for the
range of parameters of interest in this preliminary study
one should examine all mode combinations where -n (the num-
ber of circumferential waves) ranges from 0 through 20
and m (the number of axial half-waves) from 1 through
40. Since a typical optimization run using even a rela-
tively efficient MP algorithm such as [7] typically re-
quires several hundred sets of functional éonstraint evalua-
tions it Qould be extremely costly to utilize the buckling

analysis of reference [8,9] employed here, for each buckling
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constraint evaluation if all modes are examined simultaneously.
This would involve the solution of €everal hundred eigen-
value problems of rank 840 (21x40) during a single optimi-
zation run. Such computational effort is impractical and
unnecessary in this problem.

It may be seen from an examination of the equations of
reference [8] that for the case of uniform stiffeners the
buckling modes are uncoupled with respect to n and interact
only with respect to even or odd m. Thus the 21 x 40 by
21 x 40 problem can be reduced to a series of forty two,

20 by 20 problems substantially reducing computational ef-
fort required. Furthermore, since most constraint function
evaluations are for very similar designs, computational ef-
fort may be again reduced by further restricting the range
of odd or even m terms included in the formulation of the
eigenvalue problem for a p;rticular n. This choice is
based on a knowledge of the range necessary to include all
m terms making a significant contribution. Likewise only
those n values which appear to be "critical" with respect
to buckling need be examined.

For this study the following procedure is used to de-
termine the buckling behavior of the shell.

Let v;n be the value of an element of the matrix of
eigenvectors which represents the buckling behavior of
the design xs, and m: be the value of m associated with

the largest value of the component v;n of wvector v:. Now
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using the procedure of [8] starting from n = noin where

Noin is the lowest n considered and setting an index i =1

set up and solve an M by M eigenvalue problem pz for dee

sign x° using terms associated with

m = mmin’ mmin + 2, Mmoin I A R mmax (21)
where all m are odd. Here
B ™ Mo + 2 (M-1) (22)

where M is the number of m terms used for the analysis,

And
s-1
1 ’ m <M (23)
.. =
min
s-1 s-1
m. -M, my 2 M
where m:-l is the largest m component of its associated
eigenvector for the last design xs=l . Now if
gis g =1 .
m., =m (24
or
s
m, <M (25)

it means that for a given number of terms M the range for

the above problem was properly placed and thus the prob-

lem Pn was the "best" problem. On the other hand if one

of these conditions is not met a new problem p; is formu-

lated per equations (21-23) where mﬁ replaces m:-l. If con-

*
ditions (24) or (25) are now satisfied where m_ replaces

o
S s s-1
m. and m_ replaces m.

p; is the "best" problem. If not, the process is repeated

in these equations then problem

St
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until conditions (24) or (25) are satisfied or oscillation
is detected whereupon that problem of the last three solved
producing the lowest eigenvalue is taken as the best prob-

*
lem. The m or mﬁ associated with the best problem which
S

is now called Pn

is then called m: and used at the next

design iteration xs+l.

s
tn

are the collapse pressures) of this problem are used to

The first T eigenvalues of 2 t=1,2....T (which

form r ~ constraints for this n where m are odd by letting
4 | S, = _tn P r=J+1+T (u-1) + t (26)
The index u is then increased by 1. This process is re-
peated for this n and even m. Constraints are then evalu-
ated in similar fashion for all n to be examined.

It should be notad that the treatment of buckling in
this formulation is substantially different than that used
g in earlier optimization studies using orthotropic shell
theory. These earlier studies required only two buckling
constraints, one for general and one for shell or panel
(interframe) buckling. Here all modes need to be examined
and constraints established for all those that may be ac-
tive. Thus this problem formulation considers a large num-

ber of buckling constraints. The earlier formulation was

Ty

at first attempted in this study. It was found, however,

that the search converged a design where more than 2 buck-

ling modes were active. The search terminated at such a
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design since-attempts made to lighten the design while
moving to avoid the constraints associated two buckling
modes produced a violation in some other mode. This situ-
ation is analagous to the frequency separation problem

discussed in [10].

Calculation of Buckling Constraint Derivatives

The MP procedures employed here require the use of
derivatives to the functions involved. These derivatives
are calculated by a simple forward difference method at
each point where the direction finding problem (a key ele-
ment of the procedure) is formulated. This problem is set
up each time, a direction change is indicated such as when
a new active constraint is encountered [7). It was found
that a number of constraints fluctuated between active
and inactive. 1In this situation the algorithm essentially
reduced to a series of moves of fixed step based on the direc-
tion indicated by the solution to this problem. The changes
in direction under these circumstances were primarily due
to changes in the active contraint set rather than as the
result of changes in the values of the derivatives. Thus
in order to reduce computational effort derivatives were
recalculated only after four moves were taken.

To calculate the buckling constraint derivatives at a
point x° for constraints derived from a particular eigen-
value problem P:, a similar problem Pﬁi is formed using

si s

m~ =m and solved using xSi =x% + Axi where Axi is a
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small change in i~ coordinate direction of vector x . The

lowest T eigenvalues of this problem are then used to com-

pute the ith

components of the T derivatives associated
with the constraints derived from Pi where the lowest eigen-

| : value of problem Pii is associated with the lowest of Pz

to estimate the derivative of the lowest eigenvalue. The :

second lowest eigenvalue of Pii is associated with the

second lowest of P; etc.

If there are L active constraints, one therefore must

b | solve LI eigenvalue problems at each point where derivatives

must be calculated. Thus the computation of buckling con-

straint derivatives requires substantial effort.
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RESULTS

A FORTRAN IV computer program was developed using
the methodology described above. The 1,000 foot immersion
depth study of [1l] was repeated here using steel with an
allowable hull and frame stress of 90,000 psi. For this
study R = 198 in, y = 0.0374 1b/in3, v, = 0.282 1b/in’,
E =30 x 106 psi and u = 0.25. Only configurations using
odd numbers of frames were studied. The n modes from
n =3 ton = 16 were investigated at all design points.
A single buckling constraint (T=1) was used for n modes
with odd m and n £ 5 with even n. The problem formulations
for these cases used seven m terms (M=7). For n > 5 with
even m terms two constraints (T=2) were generated for each
n mode and fifteen m terms were used (M=15). The use of
these conditions was based on experience gained during
early debugging runs. All optimal designs were however
checked for all 0.<n < 20. The range 3 < n £ 16 was
found to contain all active buckling constraints.

Three sets of two optimization runs were made using
3, 11 and 19 frames. 1In the first run, equally spaced
equal frame sizes were employed. The optimal equal size
frame configuration was then used to start the second run
where the frame sizes and spacing were allowed to vary.
The results of a given set of runs then allowed a direct
comparison between optimal designs using identical and

multiple frame sizes. Multiple starting points were used




to confirm optimality.

The results are summarized in Table 1. The 19 frame
problem required about 3,000 sec CPU time on an IBM 370/165
using the H level compiler. Consider first the hulls rein-
forced with only three frames. The design using identical
frames is, as expected [2], controlled by buckling modes
where m = 1 and 4, the general and shell buckling modes,
In the design using multiple frame sizes, it may be seen
that, as expected, the center frame is largest in order to
suppress the m = 1, mode. However, substantial frames
are still needed to suppress a mode where n = 6 and m = 2
which become active as the frames nearest the bulkheads
were reduced in size in an effort to improve frame effi-
ciency.

Plating thickness is controlled in both designs by
the n = 8, m = 4 modes. Thus the two designs have identi-
cal plating thicknesses since for this configuration the
torsional stiffness of the frames does not significantly
effect these modes. Now since the plating iepresents
most of the weight of the hull segment in these designs
the small improvement in frame efficiency produces a
negligable savings in overall weight (about 0.45%).

Thus it appears there is little to be gained from

multiple frame sizes in sparsely stiffened frames.
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W/D Ratio

Plating Thickness
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g

n valuss of

B\D@QmthN

W O NoOWM W N

. 0.220

2.683
.680
.680

148.500
148.500

active buckling nuhsr 4,8,9

Buckling Mcdes
m values of

active buckling
buckling modes

0.219 0.140 0.138 0.112 0.105
2.683 1.553 1.520 .13 1.061
0.802 0.582 0.642 0.538 0.611
0.521 0.615 0.312
—_— 0.515 0.667
0.516 0.308
_— 0.644 0.539
0.582 0.646 0.633
—_— — —_ 0.361
0.613
0.303
0.538 0.643
150.135 49.500 49.563 29.700 29.816
146.815 49.563 29.837
49.563 29.741
49.563 29.655
49.563 29.615
49.500 49.187 29.201
29.585
29.479
29.700 29.485
4,6,8,9 3,13,14,15 |3,12,13,14| 3,11 3,9,10,11
15
1,2,4 1,12 1,9,12 1,20,22 1,2,4,6,8,20




20.

Now consider the hulls using nineteen frames. Here
the use of multiple frame sizes saves about 5-1/2% in
weight. The design using identical frames is controlled,
as expected, by buckling modes where m = 1 and m = 20
are dominant. The use of multiple frame sizes allows re-
distribution of framing material to help suppress these
modes. This redistribution occurs until modes where
m=1,2,4,6,8, and 20 all control the design. Further
significant improvement in frame material distribution then
becomes impossible. In this case the plating thickness
is reduced significantly by framing material redistribution
because of the relatively short panel segments and the
relatively large frame to plating thickness ratio. The
torsional stiffness of the frames under such conditions
is important in the panel buckling mode behavior. Thus
redistribution of framing material can effectively be used
to suppress such modes where frames are closely spaced.

The plating thickness in such designs using multiple frame
sizes can therefore be significantly thinner than in opti-
mal designs using identical frame sizes. The combined
effects of savings in the weight of both frames and plating
then produces significant overall weight reduction.

Now finally consider the designs where eleven frames
are employed. The changes resulting from the optimal use
of multiple size stiffeners is, as expected, greater than

when three stiffeners are used but less than when nineteen
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are employed. There is, a slight but significant decrease
in weight and plating thickness but the reduction is
much less than for the case of nineteen frames.

It may be seen therefore in cases where buckling con-
trols hull design that the improvement possible through

use of multiple frame sizes increases as the number of

frames increases. This is fortunate since optimal designs
using identical frames have a relatively large number of
frames [1]. Thus the best designs are those that seem to
benefit the most from use of multiple frame sizes.

The situation where plating and/or frame yielding
controls the design has not been studied since it was
felt that the greatest benefit resulting from multiple
frame sizes occurs in cases where buckling is dominant
and it was felt that the preliminary study should first
explore those areas of greatest potential. One would ex-
pect negligable improvement in resistance to yielding
from use of multiple size frames. However, where both
buckling and yielding control desion multiple size stiffe-
ners may be of significant value.

Additional parametric studies are needed to more fully
determine where multiple frame sizes can effectively be
employed. Extrapolating the results of this work it ap-
pears where buckling alone controls the design weight
savings greater than those obtained here may be expected
from an optimal design using an optimal number of multiple

size frames since the‘'number of frames used in minimum
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weight designs tend to be substantially higher than the

cases studied here.
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CONCLUSION

It should be emphasized that this is a preliminary
study to investigate the problem of optimal design of cy-
lindrical structures reinforced with differing size frames
The program developed here is a research program and no
design capability is claimed.

Much, however, has been learned about such optimal
shells, particularly the fact that many buckling modes
are simultaneously active in these designs.

This mode coalesence has significant implications in
analysis since it raises the question of the adequacy of
design buckling criteria. Most failure criteria are based
on study of a single failure mode and thus ignore interac-
tion between modes. Their accuracy and safety under con-
ditions where several modes are active is therefore sus-
pect since one would expect interactions between failure
modes to produce a reduction in structural strength. Thus
for optimal designs to be used with confidence, existing
failure criteria must be validated under simultaneously
active mode conditions or, more likely, criteria consider-
ing mode interaction must be developed.

Long running time are required for the solution of
optimal design problem using uniform frames of differing
size. An attempt to use the above procedure for the more
realistic case of nonuniform frames would be impractical be-

cause of the large increase in computational effort needed

23.
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to solve the'required eigenvalue problems. Thus in ad-

dition to the parametric studies needed to more fully
examine the uniform stiffener problem a research effort

is needed to produce substantial improvements in the opti-
mization algorithm particularly in the method of calcu-
lating constraint derivatives if the more practical struc-
tures with nonuniform frames are to be studied from an
optimization viewpoint or if an optimal design capability

for such structures is to become practical.
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