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1.

INTRODUCTION

Optimal structural performance either in terms of cost

and/or weight is , or shoi4ld be , the goal of structural de-

signers. Recent developments in optimization theory have

now allowed the solution to a substantial class of impor-

tant optimal problems making possible the achievement of

this goal for these cases. The mathematical programming

(NP) procedures, originally developed for use in operations

research to treat the optimal resource allocation problem,

have been applied to the design of submersed, stiffened, cy-

lindrical shells [1-4]. These earlier studies employed uni-

form stiffening rings or frames of equal size. The problem

that was addressed there was that of the most effective allo-

cation of material between stiffeners and the shell assuming

all stiffeners were of equal size.

The next resource allocation question that arises is;

what is the most effective allocation of material among the

stiffeners themselves? For example, if one wishes to sup-

press a buckling mode with one axial half-wave, and be effi-

cient in the use of stiffener material, one would make the

stiffeners largest near the center of the bay segment and

smallest near the bulkhead (see Figure 1).

The question of optimal stiffener material a].i.ocation

has been investigated by Kunoo and Yang (5] for aerospace

structures stiffened with both rings and stringers. They

obtain about a 5% saving in weight with the use of multiple
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3.

rather than equal stiffener sizes for the example they

studied . Their computationally demanding doubly reinforced

S 
buckling problem , where the stiffeners are treated as dis-

crete , and the relatively ineffective conventional NP pro-

cedure they employ (6] require the use of approximation

methods to approach a solution in a reasonable period of

time (about 2 ,000 seconds on a CDC 6500) .

The reliability of their optimization scheme,seems

questionable for two reasons. First , the basic approach

they employ produced designs with substantially different

weights using two different search schemes. Secondly ,

no mention is made in their work of the coalescence of

buckling m odes, a characteristics of optimal designs con-

trolled by buckling behavior, and their procedure appa-

rently does not treat this situation.

This report describes the solution to the simpler

singly reinforced discrete stiffener problem by direct

optimization without use of approximations like those used

in [5]. The optimization formulation and procedure used

here admit a large number of simultaneous buckling modes

thus allowing optimization under conditions of mode coales—

cence.

It should be noted that this is a preliminary study,

the purposes of which are; to develop and evaluate metho—

dology for the treatment of this problem, to develop pre-

liminary insights into how multiple frame sizes may effi-
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ciently be employed in submersible structures, to examine

the nature of design improvement resulting from use of

multiple size frames, and to investigate the nature of

such. optimal designs.
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T~~~TT~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~1~T~~TT’ ~~~
i______ .- —

5.

PROCEDURE

Mathematical Programming (NP) methods are basically

search procedures that iteratively approach the solu-

tion to the problem: Find those values of the vari-

ables xL that minimize the objective function f (xi) sub-

r ject to constraining conditions (7]. The problem is usu-

ally stated; Find the such that

f (~~ ) = min ( f ( x ~ ) ]  (1)

and such that all functional constraints

g
~ 

(
~~

) ~, 0 (2)

and regional constraints

(3)

are satisfied , where x~ and x~ are the upper and lower

regional limits respectively.

Variable Designation

The variables employed for this problem are the skin

or plating thickness and ring or frame dimensions and

spacing. Each frame size used introduces a variable set

associated with its dimensions. Thus the number of van -

ables is dependent on the number of sizes employed. To

reduce problem dimensionally it is useful to introduce

several assumptions.

It will be assumed that the bay is symmetrical with

respect to a plane at mid-bay, normal to the cylinder

axis. Then, referring to Figure 1, if Nf is the number

of frames used in the structure (excluding the deep end
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6.

frames which are considered rigid simple supports for this

problem) then the number of problem variables I may be

taken as

I = [(Ne + 1)/2 ]T Nd + (Nf/2]
T 

+ 1 (4)

where 14,]T is ~ truncated to an integer, and Nd is the

number of dimensions of an individual frame treated as

variables. Thus a shell problem with four variable quanti-

ties per frame utilizing 20 frames would have 51 variables.

In an earlier study of the characteristics of optimal

shells [1] it was found that all frame dimensions need

not be independent to achieve nearly optimum designs.

Thus in order to minimize the number of variables for

this preliminary study the frame dimensions will be pro-

portioned as follows (refer to Figure 1): Let x1 be the

plating thickness and let there be K frames with Xk+1 the

thickness of the kth frame, where the frames are numbered

from mid-bay outward. Let the web height be dependent on

the frame thickness where

= h (xk+l) k = l,2...K (5)

where h.K is a value of web height that will just produce

buckling in the web of frame k. For the preliminary study,
let hk = 18 x~~~ for all frames (13. This assumption

apparently carries no weight penalty since it was found

in earlier studies that the web buckling constraint is al-
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ways active in optimal structural designs.

Also let the flange thickness

bk = xk+l (6)

and the flange width be that which will just produce buckl-

ing of the flange. That is, let the flange width be de-

pendent on the flange thickness by

= w(bk)

where for this study Wk = 12.6 bk for all k il].

Such proportioning of the flange does produce slightly

heavier designs (less than 2% greater than optimum (1,2]).

The use of this simplification is however justified for

this preliminary work. Then for this study Nd is unity.

Now let the remaining variables represent th~ frame

spacing counting from the center of the bay outward. These

variables are

xl i = K + 2 , K + 3 ,...I

Objective Function

The objective funciton for this problem is the weight

displacement ratio, WD, of the hull segment excluding the

weight of the deep end frames [1]. Thus

f W/y ,4VD internal frames

(8)

W/ [~,,(V~ + VD)] external frames

where is the specific gravity of the immersion fluid ,

VD and V~ the volume displaced by the hull plating
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and frames respectively and the weight of the hull W is

W = + VF)

where is the specific gravity of the hull material

and V5 the volume of the hull plating. In this problem

r K
2 E V , N even

k=l k f

v — (l0à)
F 1

K
• \ V 1 + 2 z  Vk l  Nf Odd

k=2

where

K = [(N f + 1)/2 ]T (11)

and Vk is the volume of frame k.

Constraints

It is assumed that, since the plating thickness is

uniform only the smallest frame can be active in yield-

ing. Thus frame yielding is controlled by specifying

that

= 
~~~ 

— aa)~
’aa £0 (12)

where ci is the allowable frame stress and is the

hoop stress in the smallest frame. This stress is com-

puted in the following fashion. Find the index c where

x
~ 

= mm (Xk+l) k = l,2...K (13)

Then in the equations

a f = Q pR/ (A+bt)

Q b (l + (l—~.i/2) 8/B]/( 1+~ )
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9.

8 = [2N/ (A + bt)] (1/3 (l~ p ) ]~~
’4 (Rt 3)112

N = (cosh 8 — cos 8)/(sinh 8 + sin 0) (14)

O = L[3

B = bt/(A+bt)

let

t = x 1
b = xc

A = 30.6 X~ (15)
L = max (x a_ l,  xa) ,  NF odd and c~2

L = max •(x , Xa+l)~ 
NF even

t = X , NF odd a n d c = 2

where

a = c + K,

p is the hydrostatic pressure and ~i is Poisson ’s ratio.

If plating yield is active , as is often the case,

the optimization procedure will try to adjust the hull

S 
dimens.ions so that several panels are simultaneously

active in yield. It is therefore necessary to check all

panels for yielding. Thus one has a series of constraints

— apa)
~

I’apa ~~0 j  = l,2...J (16)

where the number of different panels J is

J = K + 1 N even
(17)

J = K  N f odd

and where apa is allowable plating stress and is the

stress at the center of the ~th panel. This stress will
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be estimated here by averaging.

Thus let

a . = pj pj (18)
2

Equations (9—12) of [1] are used to calculate and a~~.

For these computations the quantities t and L in these

equations are replaced by

t = x 1
(19)

L = L~ =

For j  = l,2...J-l in computing the quantities b and A

are replaced by -

fr = j  Nf even
b = xr~ 

(20a)

~ r = j + i , Nf odd

A = 30.6 b

and for cr~~

r = j + l , Nf even
b = X~~~ 

(20b)

(~
r =~~~+ 2 i Nf odd

A = 30.6 b

except when j  = 1 and Nf is even then

= = api and b and A are replaced by

b — 
(20c)x2

A = 30.6 b
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For the end panel j=J let a~~ = and replace

S 
L = L ~

r = J , Nf even

b —  (20d )Xr
• r = J + lI Nf odd

A = 3 0 . 6 b

The other constraints used in Ref. (1] will not be used

here.

The above formulation may also be used to treat a form

• 
S of the problem employing equal size stiffeners. In this

case I = 2, K = 1, and J = 1 and in the objective function

calculation

VF = Nf V1 (lOb)

For the plating yield constraint a~1 = 
~~i 

and

(20e)
A = 30.6 b

• To determine the minimum buckling pressure for the

range of parameters of interest in this preliminary study

one should examine all mode combinations where -n (~the num-

ber of circumferential waves) ranges from 0 through 20

and m (the number of axial half-waves) from 1 through

40. Since a typical optimization run using even a rela—

tively efficient NP algorithm such as (7] typically re—

qoires several hundred sets of functional constraint evalua—

tions it would be extremely costly to utilize the buckling

analysis of reference (8,9] employed here, for each buckling
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constraint evaluation if all modes are examined simultaneously.

This would involve the solution of several hundred eigen-

value problems of rank 840 (21x40) during a single optimi-

zation run. Such computational effort is impractical and

• unnecessary in this problem.

It may be seen from an examination of the equations of

reference (8] that for the case of uniform stiffeners the

buckling modes are uncoupled with respect to n and interact

only with respect to even or odd m. Thus the 21 x 40 by

21 x 40 problem can be reduced to a series of forty two,

20 by 20 problems substantially reducing computational ef-

fort required. Furthermore, since most constraint function

evaluations are for very similar designs, computational ef-

fort may be again reduced by further restricting the range

of odd or even m terms included in the formulation of the

eigenvalue problem for a particular n. This choice is

based on a knowledge of the range necessary to include all

m terms making a significant contribution. Likewise only

those n values which appear to be “critical” with respect

to buckling need be examined.

For this study the following procedure is used to de-

termine the buckling behavior of the shell.

Let v~~ be the value of an element of the matrix of

eigenvectors which represents the buckling behavior of

the design x5, and m be the value of m associated with

the largest value of the component v~~ of vector v~. Now

_ _ _ _  --~ --- --—— •~~- -•~~~~~~~-- - -  
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13.

using the procedure of (8] starting from n = ninin where

is the lowest n considered and setting an index i = 1

set up and solve an M by N eigenvalue problem p~ for de.

sign x5 using terms associated with

- 

in = m 1~ , mmjn + 2, inmin + 4 , m
~à~ (21)

where all m are odd . Here

= inmin + 2 (M-l) (22 )

where M is the number of m terms used for the analysis,

And ( i , m~~’ ~~M (23 )
- 

J~m~~~ N m~~~ ~ N

• where ~~~~ is the largest in component of its associated

eigenvector for the last design x~~
1 
. Now if

= m~~~ (24’

or

(25)

it means that for a given number of terms M the range for

the above problem was properly placed and thus the prob—

1 $em 
~n was the “best” problem. On the other hand if one

of these conditions is not met a new problem p
~ 
is formu-

lated per equations (21-23) where m~ replaces m~~
1. If con-

ditions (24) or (25) are now satisfied where m replaces

and m replaces in these equations then problem

is the “best” problem. If not, the process is repeated



rT TI~~~~~~~~~’~~~~~~~JJIT ~~ ~~~~~

14.

until conditions (24) or (25) are satisfied or oscillation

is detected whereupon that problem of the last three solved

producing the lowest eigenvalue is taken as the best prob—
* Slem. The m~ or inn associated with the best problem which

is now called is then called m~ and used at the next

design iteration ~~~~
The first T eigenvalues of °X

~n 
t = l,2....T (which

are the collapse pressures) of this problem are used to

form r~ constraints for this n where in are odd by letting

gS = L~~~Fp r = J + l + T  (u-i) + t  (26)
Fp

~he index u is then increased by 1. This process is re—

• peated for this n and even m. Constraints are then evalu-

ated in similar fashion for all n to be examined.

It should be noted that the treatment of buckling in

this formulation is substantially different than that used

in earlier optimization studies using orthotropic shell

theory. These earlier studies required only two buckling

constraints, one for general and one for shell or panel

(interframe) buckling. Here all modes need to be examined

and constraints established for all those that may be ac-

tive. Thus this problem formulation considers a large num-

ber of buckling constraints. The earlier formulation was

at first attempted in this study. It was found, however,

that the search converged a design where more than 2 buck-

ling modes were active. The search terminated at such a 
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design Since attempts made to lighten the design while

moving to avoid the constraints associated two buckling

modes produced a violation in some other mode. This situ-

ation is analagous to the frequency separation problem
• 

discussed in [10].

Calculation of Buckling Constraint Derivatives

The NP procedures employed here require the use of

derivatives to the functions involved. These derivatives

are calculated by a simple forward difference method at

each point where the direction finding problem (a key ele-

ment of the procedure) is formulated . This problem is set

up each time, a direction change is indicated such as when

a new active constraint is encountered [7). It was found

that a number of constraints fluctuated between active

and inactive. In this situation the algorithm essentially

reduced to a series of moves of fixed step based on the direc—

tion indicated by the solution to this problem. The changes

in direction under these circumstances were primarily due

to changes in the active contraint set rather than as the

result of changes in the values of the derivatives. Thus

in order to reduce computational effort derivatives were

recalculated only after four moves were taken.

To calculate the buckling constraint derivatives at a

point x5 for constraints derived from a particular eigen-

value problem P , a similar problem P~~ is formed using

and solved using x~~ — x8 + ~Xj  where Ax~ is a

-i

~ 

-— -- —- --•- - -~~~~~~~~--~~--- -- • - •“~~~ ~~~~~~~~~ - - • -- •-~~~~~~---- ~~~~~~ ~~~- - - -
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small change in ~th coordinate direction of vector x8. The

lowest T eigenvalues of this problem are then used to coin-

• pute the ~th components of the T derivatives associated

• with the constraints derived from P~ where the lowest eigen—

value of problem P~~ is associated with the lowest of

to estimate the derivative of the lowest eigenvalue. The

second lowest eigenvalue of P~
1 is associated with the

second lowest of P~ etc.

If there are L active constraints, one therefore muèt

solve LI eigenvalue problems at each point where derivatives

must be calculated. Thus the computation of buckling con—

straint derivatives requires substantial effort.
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17.

RESULTS

A FORTRAN IV computer program was developed using

the methodology described above. The 1,000 foot immersion

depth study of (1] was repeated here using steel with an

allowable hull and frame stress of 90,000 psi. For this

study R = 198 in, y = 0.0374 lb/in3, y5 0.282 lb/in3,

E = 30 x io6 psi and ii = 0.25. Only configurations using

odd numbers of frames were studied. The n modes from

n = 3 to n = 16 were investigated at all design points.

A single buckling constraint (T=l) was used for n modes

with odd in and n ~~~. 5 with even n. The problem formulations

• for these cases used seven m terms (M—7) . For n > 5 with

even m terms two constraints (T=2) were generated for each

n mode and fifteen in terms were used (M=15) . The use of

these conditions was based on experience gained during

early debugging runs. All optimal designs were however

checked for all 0~~~n ~~20. The range 3 ~~n ~~l6 was

found to- contain all active buckling constraints.

Three sets of two optimization runs were made using

• 3, 11 and 19 frames. In the first run, equally spaced

equal frame sizes were employed. The optimal equal size

frame configuration was then used to start the second run

where the frame sizes and spacing were allowed to vary.
S 

The results of a given set of runs then allowed a direct

comparison between optimal designs using identical and

multiple frame sizes. Multiple starting points were used

~

---• -~~~-• • -  ~~~~-_ • ~~~~~~~~~~- -~~~~~ --•- --- - • - -~~~~- - - - - -~~~~~~~~~ _  _
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to confirm optimality.

The results are summnarized in Table 1. The 19 frame

• problem required about 3,000 sec CPU time on an IBM 370/165

using the H level compiler. Consider first the hulls rein-

forced with only three frames. The design using identical

frames is, as expected (2], controlled by buckling modes

where in = 1 and 4, the general and shell buckling modest

In the design using multiple frame sizes, it may be seen

that, as expected, the center frame is largest in order to
S suppress the in = 1, mode. However, substantial frames

• are still needed to suppress a mode where n = 6 and in = 2

which become active as the frames nearest the bulkheads

were reduced in size in an effort to improve frame effi-

ciency.

Plating thickness is controlled in both designs by

the n = 8, m = 4 modes, Thus the two designs have identi-

cal plating thicknesses since for this configuration the

torsional stiffness of the frames does not significantly

effect these modes. Now since the plating represents

most of the weight of the hull segment in these designs

the small improvement in frame efficiency produces a

negligable savings in overall weight (about 0.45%).

Thus it appears there is little to be gained from

multiple frame sizes in sparsely stiffened frames.

_ _ _  
~~ — -~~• - - - - - • -
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S 

rable 1. ~~t~~~1 Huil Designs

3 FRA~~~ 
- 

— UPRMES ].9 FR~�~~~

~~ ttica1 . )iilti ple Ide~tica1 P~1tip1e Lienti~~1 
)
~1tip1e

W/D i~ tio 0.220 0.219 0.140 0.138 0.112 0.105

P1atiz~ Thid~~~s 2.683 2.683 1.553 1.520 1.113 1.061

Thidaiess Fraie 1 .680 0.802 0.582 0.642 0.538 0.611

2 • .680 0.521 0.615 0.312

3 — — 0.515 0.667

4 0.516 0.308

5 — — 0.644 0.539

• 6 0.582 0.646 0.633

H 7 — — — — 0.361

8 0.613

• 9 0.303
• 10 0.538 0.643

• Spacing 1 48.500 150.135 49.500 49.563 29.700 29.816

2 .48.500 146.815 49.563 29.837

3 49.563 29.741

4 49.563 29.655
5 49.563 29.615
6 49.500 49 .187 29.201

7 29.585

8 29.479

9 29.700 29.485
fl va1i~~ of
acti~~ bdci ng ucd~~ 4 ,8,9 4 ,6, 8,9 3,23,14,15 3,12 ,13,14 3,11 3,9,10,11

ax*ling ?bies 15

in va1~~e of
acti~~ b~~ding ncde~ 1,4 1,2,4 1,12 1,9,12 1,20,22 1,2,4 ,6, 8 ,20

~~dU~~~~ ~~des
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Now consider the hulls using nineteen frames. Here

the use of multiple frame sizes saves about 5—1/2% in

weight. The design using identical frames is controlled,

as expected, by buckling modes where in = 1 and in = 20

are dominant. The use of multiple frame sizes allows re-

distribution of framing material to help suppress these

modes. This redistribution occurs until modes where

in = 1,2,4,6,8, and 20 all control the design. Further

significant improvement in frame material distribution then

becomes impossible. In this case the plating thickness

is reduced significantly by framing material redistribution

because of the relatively short panel segments and the ]
relatively large frame to plating thickness ratio. The

torsional stiffness of the frames under such conditions

is important in the panel buckling mode behavior. Thus

redistribution of framing material can effectively be used

to suppress such modes where frames are closely spaced.

The plating thickness in such designs using multiple frame

sizes can therefore be significantly thinner than in opt4.-

inal designs using identical frame sizes. The combined

effects of savings in the weight of both frames and plating

then produces significant overall weight reduction.

Now finally consider the designs where eleven frames

• . are employed. The changes resulting from the optimal use

of multiple size stiffeners is, as expected, greater than
- 

when three stiffeners are used but less than when nineteen
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are employed. There is, a slight but significant decrease 
-

in weight and plating thickness but the reduction is

much less than for the case of nineteen frames.

It may be seen therefore in cases where buckling con-

trols hull design that the improvement possible through

use of multiple frame sizes increases as the number of

frames increases. This is fortunate since optimal designs

using identical frames have a relatively large number of

frames [1]. Thus the best designs are those that seem to

• benefit the most from use of multiple frame sizes.

The situation where plating and/or frame yielding

controls the design has not been studied since it was

felt that the greatest benefit resulting from multiple

frame sizes occurs in cases where buckling is dominant

and it was felt that the preliminary study should first

explore those areas of greatest potential. One would ex-

pect negligable improvement in resistance to yielding

from use of multiple size frames. However, where both

buckling and yielding control design multiple size stiffe-

ners may be of significant value.

Additional parametric studies are needed to more fully

determine where multiple frame sizes can effectively be

employed. Extrapolating the results of this work it ap-

pears where buckling alone controls the design weight

savings greater than those obtained here may be expected

from an optimal design using an optimal number of multiple

size frames since the ~riumber of frames used in minimum
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weight designs tend to be substantially higher than the

cases studied here.
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23.

• CONCLUSION

It should be emphasized that this is a preliminary

study to investigate the problem of optimal design of cy—

lindrical structures reinforced with differing size frames

The program developed here is a research program and no

design capability is claimed.

Much, however, has been learned about such optimal

shells, particularly the fact that many buckling modes

are simultaneously active in these designs.

This mode coalesence has significant implications in

analysis since it raises the question of the adequacy of

design buckling criteria. Most failure criteria are based

on study of a single failure mode and thus ignore interac-

tion between modes. Their accuracy and safety under con-

ditions where several modes are active is therefore sus-

pect since one would expect interactions between failure

modes to produce a reduction in structural strength. Thus

for optimal designs to be used with confidence, existing

failure criteria must be validated under simultaneously

active mode conditions or, more likely, criteria consider-

ing mode interaction must be developed.

Long running time are required for the solution of

optimal design problem using uniform frames of differing

size. An attempt to use the above procedure for the more

realistic case of nonuniform frames would be impractical be—

cause of the large increase in computational effort needed

—--

~

--- • • - • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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to solve the required eigenvalue problems. Thus in ad-

dition to the parametric studies needed to more fully

• examine the uniform stiffener problem a research effort

is needed to produce substantial improvements in the opti—

mization algorithm particularly in the method of calcu-

lating constraint derivatives if the more practical struc-

tures with nonuniform frames are to be studied from an

optimization viewpoint or if an optimal design capability

for such structures is to become practical.

~
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