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In this paper we discuss a probl em involving a project consisting
of a number of tasks , each of which must be performed in a sequential
manner. Any of the tasks Is subject to a potential delay of known dura-
tion beyond its scheduled starting time. The task delay times may be de-
creased with the addition of funding.

We seek to minimize the cost of completing the project, subject
to bounds on both the expectation and variance of the total delay time.

An algorithm is presented to solve the general problem. An ex—
ample illustrates the method.
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Introduction

We consider here a “project” consisting of a set of ordered

“tasks” numbered 1,... ,n . In this paper, we snake the simplifying as-

sumption that these tasks must be performed serially, and in the order in

which they are numbered. The results contained herein , however , can be

easily generalized to partially ordered tasks (see Falk [2D .

We suppose that each task j  may be delayed S units beyond ite

scheduled start time. A delay in any task will thus result in a delay of

the project completion t ime . The total project delay is therefore (see

Rose [4]):

S = max ( S I .
l~j<n

If each task will undergo a delay of S~ units with probability

P~ , the expected project delay , E (S) , can be computed. If we further

assume that each delay time S~ Is a variable which can be controlled at

a cost C (S ) , we may consider the problem
j j

TiI.

~ 

-
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n
minimize ~ C (S .)

j—1. ~

subject to E(S) < e

S~~~O

where e is a given, prescribed upper bound on the project delay. This

problem was solved by Falk and Rose [3], who showed that E(S) was rep-

resentable as the maximum of a set of linear functions of S1
,... ,S .

Thus E(S) Is convex. An efficient solution procedure was then realized

for infinitely constrained problems [1].

In this paper, an additional constraint of the form

V(S)<v

is imposed, where V(S) is the variance of the random variable S and

v is a given, prescribed upper bound on this variance. It will be shown

that V(S) can also be realized as the maximum of a set of convex func-

tions in a manner similar to the development of E(S) . It turns out

that V(S) is , therefore , convex. A modification of the previously de-

veloped algorithm is presented to treat the new constraint.

Background

A project consists of tasks 1,... ,n , which must be performed

in order. Each task may undergo a delay of S~ time units , with given

probability P~ . The project delay is then

S = max (SI .
l~j<n

Let a — (ci
1
,...a) denote a permutation of the set (1,... ,n} which

ranks the quantities S~ , i.e.s

Sa 
> S  > ... > S

0 
. (1)

1 a2 n

Then the expected project delay is derived to be [4]:

— 2 —
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fl l
~~ j-i —l

E(S) = ~ [p II f] . — p ijs (2)a. k—I ~ 
ak, o~

where

0
II ll~~~ P~y~~ ~~‘ 1.  (3)

k=l~~ kI

Note that the expression (2) depends on the ranking of the quantities

S~ . In particular, if the S~ are considered to be variables, the lin-

ear expression (2) representing E(S) changes whenever the ranking of

the S~ changes.

Define, for each permutation a of (1,... ,n}

~~~~ j-~
E (S) & 

~ n 11 — ~ ijs (4)a j =l a~ k—i ~ a~, a
~

where (3) holds. Thus E
a
(S) = E(S) if the ranking of the set {s.} is

that prescribed by a , i.e., if (1) holds. In any event, E
0
(S) is a

linear function of S
1
,... ,S , defined for all S~,....,S .

It was shown in [31 that

E(S) = max E (S) , (5)
acE a

where E is the set of all permutations of the integers 1,... ,n . This

result is important as it establishes the convexity of E , and also al-

lows the set {S: E(S) < e} to be represented as the intersection of a

finite (albeit very large) number of half spaces.

We now assume that there is given a cost function C~ (S~) , repre—

senting the cost of reducing the potential delay of task j to S~ units.
3

For applications, C~ would normally be decreasing, reflecting the fact

that long delays are cheap, but reduction in such delays would require
some expense, e.g., additional servers or service facilities.

L ~~~ 
. iIi~ ::. ~~~~ - ..
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The problem becomes

minimize C(S ) ~ c~(S~)
j=l

subject to E
a
(S) < e , for all acE

S~~~ O

This is the program solved in [3]. Because of the potentially large num-

ber of constraints (if n = 10 , E l  = 3,628,800), the Blankenship—Falk
method for infinitely constrained problems [1] is applied. As specialized

to the above problem, this algorithm becomes

Step 0: Set k = 0 , select a° C , set F
0 

= (a0)

Step 2: Given F
k 

= {aO,...,ak} , solve the problem

minimize C(S)

subject to E (S) < e , for all aeF
k

S .) 0 ,

to get a trial solution

Step 3: Test the trial solution S
k 

as a possible solution

of the desired problem. To do this, we generate a

permutation a1~~ by simply ranking the components

k k+l k
of S . If a c S , we are done, since then

E(S
k
) < 0 for all acE . Otherwise set

k+lU {a I and return to Step 2.

This method will converge in a finite number of steps , provided only that
C(S) is lower semlcontinuous. If C(S) is strictly convex, we can modi—

fy the rule for updating F
k 

by dropping constraints which are not bind-

ing at S~
’
~ , and then keep the total number of constraints imposed on the

subproblems manageable .

— 4 —
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The Variance

For a given set of task delays ordered by

S > S  > ... > s  , (6)
a = a =  = a
1 2 n

the variance V(S) may be written

V(S) = E((S — E(S))2)

= p Is = E(S)~
2

~~ ~~~~

where 5
a0 

= ~ ‘ = 
k=1 

(1 — 

~k )  , and

j—1
= II ~~~~~~~~~~ (j~~~0).j j k=1~~ kI

This expression for V(S) is, of course, only valid over the region de-

fined by (6). It is easy to show that V(5) is convex over that region.

To simplify notation in the following theorem, we shall assume a. = j

i.e., a is the identity permutation I

Theorem. The function

V
1
(S) 

~ ~~~ 
P~ (S~ 

— E1(S))2

is convex, where 
~ p. = 1 , p

~ ~ 
0

j—O ~

Proof. 
~~~~~~~ 

p~(s. — E
1
(S))2 = ~~ ~~~ — (

~ 
P~S~)2 . Therefore

VV
1
(s) = 

2 () 
- 

2(~ P~
5
~
)(

~~

)

I; ’
- 5 -
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so that

o ... 0 \ f
~~
\

(PQ~” . , p )

V2V1
(S) 2 (9  1 _ f :  )

o ... p J  \“n/

and this is positive semidefinite by the Cauchy—Schwartz Inequality.

Following the treatment of E(S) , define

V ( S) = E ( S 2
) — (ES )2

This expression is defined for all S , but gives the correct value for

V(S) only when the components of S are ordered as prescribed by a

We may write

V(S) = max Ea(S
2
) — max (Ea

(S))2

and, even though both of the above maxima are attained at the same a

we may not write V(S) = max V (S) . It is true, however, that
a

V(S) = max Ea (( S  — E(S))2)

as follows from the result (5). We now show that the function being

maximized is convex in S

Theorem. E
a((S 

— E(S))2) is convex for all S

Proof. E (IS — E(S))2) — 

~a 
fS 

— E(S)~
2 
, where =

j—O j
~~~

j 1 0

n j-l
fl (1 - “k y and p = P II fl — 

~a ~ 
Then

k—i a~ a~ k-l ~ kI

— 6 —  
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E ((S — E(S))2) = 
~~ 

P~y (5~ 
— 2S E(S) + E

2
(S))

j0 j  j  3

= E ( S 2) — 2E (S)E(S) + E2(S)

= E(S
2
) + (Es — E (S))2 — E~ (S)

Now E(S) — E
a
(S) is a convex, nonnegative function of S

2 2
Therefore, its square is convex. Also, E

0
(S ) — E

0
(S) is convex by

the previous theorem. The result is Immediate .

It follows innnediately that V(S) is convex.

The Problem

We now address a natural generalization of the problem outlined

in the introduction by adding a restriction on the variance of the project

delay time. The problem becomes

minimize C(S)

subject to E(S) < e
= Problem P,

V(S) < v

S > 0

where e and v are given upper bounds on the expectation and variance

of the project delay time.

Unfortunately , imposition of the family of constraints

E (s — E(S))
2 

< v , for all a

appears d i f f icul t  to work with. We therefore consider a related problem

minimize C(S)

subject to E
a
(S) < e

Problem P’.
V (S) < v

S > 0

— 7 —
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The feasible region of Problem P’ is contained in the feasible

region of Problem P. This follows since

V (S) < v , for all a

implies

< v

for that a agreeing with the order on S

The solution of Problem P’ follows the algorithm prescribed in

the preceding section. Step 3 is implemented in precisely the same man-

ner as before, i.e., a trial solution S~ is checked as the actual solu-

tion by ranking its components to get at . If both E
a
t(St) < e and

V t(St) < v , we are done. Otherwise we add a
t to the set F

k , 
thus

forming 
~H-1 

, and continue.

Note that there is some chance that a solution of P’ is not a

solution of F, since P is a relaxation of P’. If C(S) is convex, any

local solution of P is global. Therefore, a solution of P’ can be checked

for local (and thus global) optimality of P. Furthermore, it is possible

that the solution of P’ is sufficient for a decision maker. The variance

is simply a measure of distance from the mean, but so is the function

V(S) max{Va(S) : a c . Furthermore, in all of the problems which

we solved, V(S) = V(S) at a solution.

Example

minimize C(S) = —5S
1 

— lOS
2 

— 2S
3 

+ 138

subject to E(S) < 6

V(S) < 3

O < S
1
< lO P

1
— O.4

R 0 .~~S2~~ 
8 P

2 = O.5

0 < S
3~~ 

4 P
3
= O.8

— 8 —
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We select (arbitrarily) a° (1,2 ,3) , and form the problem

minimize C(S)

subject to 0.4S
1 + O.3S2 + 0.24S3 

< 6

O.4S~ + 0.3S~ + 0.24S~

— (0.4S
1 
+ O.3S2 + O.24S3

)
2 

< 3

8 C R .

The solution of this problem is S
0 

= (5.9584, 6.8779, 4) . This cannot

be the desired solution, as the ranking it implies is a1 ~~ (2 ,1,3) . We
therefore impose the additional constraints

0.2S
1 
+ 0.5S

2 + 0.24S
3 

< 6

O.2S~ + O.5S~ + 0.24S~

— (0.2S
1 
+ 0.555

2 
+ O.24S

3
)
2 

< ~

and obtain a solution S
1 (6.4601 , 6.4601, 4) with value 33.0985.

Since the ranking of S
1 

is either (2,1,3) or (1,2,3), both of which

have already been imposed , we are done.

— 9 —  
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To cope with the expanding technology, our society must
be assured of a continuing supply of rigorousl y trained
and educated engineers. The School of Engineering and
Applied Science is comp letely committe d to this ob-
jective.


