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• 1. Introduction

This paper studies the speed of a fast test car moving in a stream

of slow vehicles in a two—lane two—way highway. Let “our direc tion” des-
ignate the direction in which the test—car is traveling. We assume that

the highway consis ts of two alternat ing sec tions , sections of Type I in
which passing is possible and sections of Type II in which passing is im-

possible. The highway is assumed to begin with a Type I section. Let

x. and Y~ denote the length of the ith Type I and Type II sections,

respec ti vely. We assume that X~ ,X2
,... are i.i.d. distributed accord-

ing to a continuous c.d.f. C wi th an expectation E[X] . The random

variables Y
1
,Y21... are also assumed to be i.i.d.; they are distributed

according to a continuous c.d.f. H with an expectation E[Y] . The

func tions C and H depend on road conditions and on traffic moving in
the opposite direction. We assume that the slow vehicles moving in our

direction arrive at the highway accord ing to a Poisson process with param—

eter . These zero size vehicles always maintain their free speed v
1

The test car arrives at the highway independently of the slow vehicles , and
it has a f ree speed v

2 
(v
2 

> v
1
)

_ _ _ _ _  ___ —--• • • • • - • - • • • A
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• As the test car travels along the road it occasionally comes up

against slow vehicles. At these points the test car’s driver may decide

• to pass the slow vehicle or otherwise to reduce his speed iuunediately to

v
1 

and to follow the slow vehicle for a while. The decisions to pass

are made either at the points where the test car comes up against slow

vehicles in Type I sections, or at the beg innings of the Type I sec tions
to which the test car arrives traveling behind a slow vehicle. We assume

that the driver’s decision is dependent on the distance from the decision

point to the end of the Type I section and independent of the distance he

has already been following the slow vehicle. Two passing mechanisms are

studied. The first mechanism assumes that at each decision point the

test car ’s driver samples a required passing distance W
1 

from a c.d.f.

B . If the distance to the end of the Type I section exceeds W
1 

then

the pass ing will take place W
1 

units of distance from the decision

point; otherwise the test car continues following the slow vehicle at

least until the beginning of the next Type I section. In the second

passing mechanism, the driver samples a r.v. W
2 

from a c.d.f. C

He passes instantaneously at the decision point if the distance to the

end of the Type I section exceeds W
2 

; otherwise he follows the slow

vehicle at least until the beginning of the next Type I section .

In the present paper we use some of the results obtained by Barzily

and Rublnovitch [1] in 1977. Passing mechanism number one requires the

analysis of a model close to the one analyzed by Rubinovitch and Grinstein
[3] fri 1973 and by Sivazlian [4] in 1971. Some of the results in the pa-

per are extensions of results derived by Galin and Epstein [2] in 1974.

For more detailed information on models for traffic in two—lane roads,

see [2] and [1].

The paper is comprised of five sections. In Sections 2 and 3 we

• discuss the traveling of the test car in Type I sections under the first

— 2 —
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• and the second passing mechanisms , respectively. In Section 4 we deter-

mine the tes t car ’s average speed. Section 5 is a short summary .

2. The Movement of the Test Car in a
Type I Section Under Passing
Mechanism Number One

In this section we discuss the movement of the test car in the ith

Type I section under passing mechanism number one . Let us assume tempo-

rarily, for the convenience of the analysis, that this section is infi-

nitely long. Define that the test car is in state i (i=l ,2) at a point

along the road if it is moving there at speed v 1 . Deno te by Z . the

distance the test car travels at a speed V for the jth time since en-

tering the ith section. It was shown earlier in [1] that while moving at

a speed v
2 , the distance from the test car to the preceding slow vehicle

is an exponential random variable with a parameter A
1

/v
1 

• From this

result we obtain that Z7 1 , Z22 . ... are i.i.d. random variables dis-

tributed according to an exponential distribution function with parameter

= A
1

( l /v
1 

— l/v
2
) . The random variables Z11 , Z1 2 ~ Z1 3  are (by as-

sumption) i.i.d. random variables distributed according to a c.d.f. B

Let us now denote by T(x) the time it takes the test car to arrive at a

distance x from the beginning of the section ; let M
1
(x) denote the

state of the car at that point , and define U(x) = x/v
1 

— T(x) . A real-

ization of T(x) and the corresponding U(x) for M
1(O) 

= 2 is given in

Figure 1. It is easy to analyze T(x) using the analysis of U(x)

Denote

= P[U(x)<u , M
1
(x) j I M

1
(O)=2] , j=l ,2 ,

Q~ (O ,~~) = / / e 0’
~ e~~

’
~ d q 2 .(x ,u)dx

x O u O  U 3

and

— 3 —  

~~

--- •- ~, i’_
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T(x)

slope = 1/v
1

slope = lfv~~~2

I— ~~21 ~~~ 

~~~~~~~~~~~ 
z23 z13 

•
~

• U(x)

Figure 1. A typical realization of T(x) and U(x)
for M

1
(O) = 2
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q
2~
(~~~

) = P[M
1
(x) j M1(0)=21

Denoting ~ = 1/v
t 

— 1/v
2 , 

we ob ta in

u/ ~/ etc ~~ [1 — B(x—z)]dz +
0

- 
u/~3 x-z 

—

~r j  (t :e ~~ q 21 ( x — z — y ,  u—z ~ ) d B ( y ) d z  , 0 < u < xf3
z O  y=O

xt3 < u

hence ,

Q* (0 f)  = 
11 — B*(O) Jet (2 121 ‘ ‘  O [~t + O + F ~t 3_ etB* (8)]

where

B*(e) = e
OX dB(x)

To obtain Q~2
(O,~~) , we notice that

u/~ x—z 
-f  / cte 

(XZ 
q22 (x—z—y, u—z~ )dB(y)dz , 0 < u < x~z 0  y°~O

u/~ x—z
q22 (x ,u) = / I ete~~~ q22 (x—z—y , u—z~ )dB(y)dz + e~~

Z 
, ~~ 

=

z 0  y O

, u >

hence,

Q~2 (0 ,~ ) = [ct + 0 + E~~ — czB*(O)]~~’ . (2.2)

Now we denote

• 
P1~

(x~t) = P[T(x) <t , M1 (x) j I M1(O) i] , i,j = 1,2

and
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P~~.(O,~~) = I I e 0
~ e~~~ d~ p. .(x,t)dx , i , j  = 1,2; 0,~ > 0

x O t O  13

• To de termine P~~.(0 ,~~) we realize tha t

=

P [U(x) > — t , M~ (x) j  M1(O)=2] + P [U (x)  = — t , M
1

(x) j  I M1(O)=2]

hence we obtain from (2.1)

- B*(0 ÷
~~

-)]
= 

!~ + ~~~~~~ + 0 ÷ -~~
-- — czB*(O + -~-ii 

, (2.3)

~I 
V~~~~~_ 

V
2 !

i 
vlIJ

and from (2.2) we get

• 
P~ 2

(O ,~~) = [~ + ~ + 
_c_ 

— czB*(& + . (2.4)

Now we determine P~~.(0,~~) , j=l ,2 . For j=l we have

t~~~~ /v
2

(t—x/v )/~32 
p21 (x-y , t—y/v

1
)dB(y) , x/v

2 
< t < x/v 1

y=O

p (x,t)
ii- (t—x/v

2
)/ 13

p21(,~~y, t—y/v 1
)dB(y) + l—B(x) , t = x/v~

y 0

t > x/v
1

hence ,

1 — B*I0 + czll — B*(0 + -~--- V1 B*l0 +
* 0  - 

I vll L I v1,j i V
i

- 

0 + L~~ 
+ 

to + ~~~~ r~ + 0 ÷ - aB*f0 + ~flV
1 ~ 

Vl IL  V
2 I V

1J

• (2.5)

— 6 —
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and for j 2  we obtain

O , t < x/v
2

(t—x/v
2

)/ t3
p~,2

(x ,t) = 

~ =0 
p 22 (x—y , t—v fv

1
)dB(y) , x/v2 < t < x/v

1

p12()(,~~) , x/v
1 

< t

hence ,

B*(0 ÷ _
~
-)

2~°’~~ 
= 

1 
(2.6)

et + 0 + —i- - ctB’~ 0 + —s-V
2 

V
1

Let us now denote by T..(x) the time spent by the test car in a

Type I section of length x given that M
1
(O).i and M

1
(x) j . The

c.d.f. of T. .(x) satisfies
13

P~T(x)<t, M
1

(x) j I M1(O) iJ
P[T~~ (x)<t] = 

P[M
1
(x)o1 I M~(O)= i]

hence , denoting by R~ .(x ,~~) the inverse Laplace transform of P~~.(O,~~)

and letting r ..(x) P[M
1
(x) j I M

1( O ) = i ]  , we obtain

E[T ..(x) J = (-

~~ 
R~ .(x ,O)) / r..(x) . (2.7)

The probabilities r~ .(x) , i,j = 1,2 , satisfy r~ .(x) = R~ .(x ,O)• 13 13 1]

To invert P~~.(O,~~) we have to specify the c.d.f. B . We assume that

B is the exponential distribution function with parameter q . The in-

version can be carried out for other distribution functions, but the

expressions are likely to be very messy. Using tables of Laplace trans-

forms we obtain

r2l(x) = cz[l — exp (— (cz+n)x)}/(et+ri) , (2.8)

r11(x) = [ct + ~ exp (—(ct+fl)x)]/(et+fl) , (2.9)

— 7 —

______________ 4 1 
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r21
(x)E[T

21(x)] = cz[x(ct/v1 
+ r~/v2) + (~ —ct)~~(1 — exp (—(~cti.~)x))/(et+fl)

- x(ri/v
1 

+ a/v 2)exp(_ (a+fl)x)]/(a+fl)
2 
, (2.10)

r22
(x)E [T

22(x)] = [x(ct~ /v1 + ~
2/v2) + 2(1 - exp(—(et+fl)x))etfl~ ’(fl+ct)

+ x exp(-(ct+fl)x)(afl/v
1 
+ ct

2/v2)]/(ct+fl)
2 
, (2.11)

r11
(x )E[T

11
(x) ]  = [x(ct

2
/v1 

+ ct~/v 2 ) + 2(1 — exp (—(a+~)x))aflB/(ri+ct)

+ x exp (-(ct+rl)x)(fl
2/v

1 
+ flet/v

2)]/(et+fl)
2 
, (2.12)

r12(x )E [T 12(x)] = r21(x)E[T 21(x) ]~~/et . (2.13)

3. The Movement of the Test Car in a
• Type I Section under Passing

Mechanism Number Two

In this section we derive results similar to those of Section 2

when the passing is instantaneous upon the test car driver’s decision to
pass. We start with the analysis of the case where M

1
(O)=2 and assume

that X~ = x . The distribution of T22
(x) can easily be determined be-

cause M
1
(x) 2 means here that the test car is unimpeded in the ith Type

I section; hence,

T22 (x) = x/v2 , with probability one. (3.1)

Now we assume without loss of generality that the test car arrives at

the entrance of the ith Type I section at time zero. To obtain

{T21(x)~ t} , x/v
2 

t < x/v
1 , 

the tt~st car has to be unimpeded by slow

vehicles arriving at this section during (—( x Iv 1 — t), o] . Let J(x,t)

denote the number of slow vehicles arriving at the ith Type I section

during (— (x/v
1 

— t), 0] . It is known that given that J(x,t) — n
then the epochs of the arrivals are independent and uniformly distributed

on (— (x Iv 1 
— t), 0] . Consequently we obtain

— 8 —
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P[T(x)<t M
1

(0) 2 , J(x ,t)=n l = 
[

~~~~i~~
t 
C((t~~ -x/v2

)/ ~~)

where C((x+y—x/v
2
)/~ ) is the probability that the test car passes im-

mediately a slow vehicle that arrives at the section in (—(x/v
1 

— t) + y)

Since J(x,t) is a Poisson random variable with parameter X
1

(x/v
1 

— t)

we obtain

(x/v )—t
P[T(x)<t M

1
(O)=21 = exP[A 1(x/v i 

- - 
~ 

1 c((t+y-x/v2)/~ )dy~~

(3.2)

From (3.2) we obtain

r21(x) 
= P[T(x)>x/v7 I M

1
(O)=2J 1 - ex~[_A1(x0  - I C(y/~ )dy~~

(3.3)

r22 (x)E[T 22(x) 1 ex~[_Ai(x 0  - I C(y/0)dy~~x/v 2 , (3.4)

and

x/v
r21(x)E!T 21(x) ] = 1 ~ t d

~
(P[T(x)<t I M(O) 2]) . (3.5)

x/v 2

Now we turn to determine the results associated with M
1

(O) l . The

derivation is based on the fact that

C(x)P[T(x)<t I M1(0) 2] , x/v2 < t < x/v1
P[T(x)<t ( M

1
(0)=l] =

1 , t = x / v 1

from which we obtain

r11(x) — C (x) P [T(x) >x/v2 I M1(0) 2] + (1 — C(~c)) , (3.6)

r11(x)E (T 11(x)] = C(x)r21(x) E [T
21(x)] + (i 

— C(x))x/v1 , (3.7)

and

— 9 —

~~~~~~~~~~ . •~~~~~~~~~~~ -- . •‘
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r12(x )E [T 12(x) ] = C(x ) r 22 ( x ) E [T 22 (x) ] . (3.8)

4. The Test Car’s Average Speed

In this section we use the results of Sections 2 and 3 to obtain

the test car’s average speed under the two passing mechanisms. As we

follow the test car’s journey along the road we realize that its state

at the beginnings of the Type I sections forms a Markov chain. The anal-

ysis is based on this property.

To complement the results on the movement of the test car in a

Type I section we need to have similar results on the travel in Type II
sections. For this purpose we denote by S

k
(y) , k l ,2 , the time it

takes the test car to travel y units of length along a Type II section
given that M

2(O)=k [M2(u) designates the state of the test car u

units of length from the beginning of the Type II section]. We also

• denote

ai~
(Y) = P [M

2(y)=j I M2(0)=i]
Here again we use the property that while the test car is in state 2

the distance between it and its preceding slow vehicle is an exponential

random variable (parameter A
1
/v
1
) and obtain

S
1
(y) = y/v

1 
with probability one, (4.1)

a11
(y) = 1 , (4.2)

a22(y) = exp(—A 1y~) , (4.3)

• P[S
2

(y) <s] — exp [—X 1(y/ v1 
— s)] , y/v2 < s ~~ y/v1 . (4 . 4)

For a ~~re detailed derivation of (4.3) and (4.4), see [1]. From (4.4)

we obtain

E [S
2
(y) ] — y/v

1 — [1 — exp(—A1y$)}/A1 . (4.5)

- 10 —
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We are now in a position where we can sum up the results derived
so far to obtain the test car’s average speed. To this end , let Nik
be the number of Type I sections to which the test car arrives at a speed

k=1,2 , while traveling up to the end of the ith Type II section.

Denote by T~~(j )  , j=l,... ,N
ik , 

the time it takes the test car to travel

along a road section that consists of a Type I section and its following

Type II section , given that the Type I section is the jth to which it ar-

rives at speed V
k The average speed at the end of the jth Type II

section is given by

2
T
i

(k)
— 

— 
i=l k=l 4 6V

i
— j

~ (x+Y )
i=1

We will determine

u r n  V .
j 4~~~~J

From (4.6) we obtain

N .

2 T~ (k) 
N

lim V
1 

= lim 1 
~ lim 

k=l
N 1im __

~! . (4.7)

k=l ~~k~
T
k~ 

i=i j4~ ji

The RHS of (4.7) calls for the use of the strong law of large numbers.

Applying this law yields

lim = E [X] + E [Y] (4.8)

j k~~k~k—i

— 11 —

——-..- 
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*
N ..

T.(k) 
2k=]. = 

~~~~ 
{E~

Cr .j(X)EET .p.(X) ] }  + E [r
1~,(X) ] E

Y
{E[sL(Y)]}1

(4.9)

and

N ..
lim —~~ 

= ii . , (4.10)
j 403 3 1

where ¶ = (1T
1
,1r
2) is the invariant distribution for the Markov chain

of the state of the test car upon arrivals at Type I sections. The

vector It is obtained as follows. Define

y.. = E [r
i~~
(X)1 ; r =

and

~ij  
= E[a

1~
(Y) ] ; 4 = 1q~~

}

then ii satisfies

ir(F~~) =

and

2
=

i=l

5. Summary

In the present paper we determined the average speed of a fast

test car that is moving in a stream of slow vehicles. Two passing mech-

anisms were studied. The first mechanism assumes that after a driver

decides to pass he still spends some time before reaching his free speed.

The second mechanism, on the other hand , assumes instantaneous passing

upon making the decision to pass. The first mechanism seems more realis—

tic when the X’s are small with respect to the Y’s . Here the passirigs

occur mainly at the beginnings of Type I sections and the test car has to

accelerate before passing. The second mechanism seems more realistic

— 12 —
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when the X’s are large with respect to the Y ’ s and the test car

comes up against slower vehicles mainly in Type I sections. The realism

of the two mechanisms may also depend on road conditions and traffic con-
gestion. We could have easily added a third passing mechanism that is a

combination of the first two——instantaneous passing inside Type I sections

and passing according to mechanism number one upon arrival at the beginning

of a Type I section. However, we do not think that this addition makes a

substantia.j. contribution on top of the other two.

Finally , we would like to note that the current model cannot be
used in cases where traffic is heavy because in these cases the assump—

tion that slow vehicles arrive according to a Poisson process is not

suitable.

— 13 —
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