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ABSTRACT

Efficient algorithms for 11 and 13-point DFT's are presented. A more

efficient algorithm, compared to earlier published versions, for the computa-

tion of 9-point DFT is also included. The effect of arithmetic roundoff in

implementing the prime factor and the nested algorithms for computing DFT with

fixed point arithmetic is analyzed using a statistical model. Various aspects

of the prime facc -, the nested and the radix-2 FFT algorithms are compared.

A processor-based hardware implementation of the prime factor algorithm is

discussed.
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CHAPTER I

INTRODUCTION

The discrete Fourier transform (OFT) of a sequence xk$ k 0, 1, ... 9

N - 1, is defined as [1]

N-i

Xn XkWN , n = 0, 1, ... , N-i (1.1)
k=O

where WN = exp (-j 27T/N) . It is an invertible transformation and the sequence

xk can be recovered using the following inverse OFT (IDFT) relation:

N-i

Xk N j_ W1fl , k = 0, I, ... , N-l (1 .2)
n:O

Many digital signal processing systems employ the OFT for a variety of

applications. The design and implementation of digital filters, spectral ana-

lysis of signals, and detection of targets from radar echoes are a few examples.

As a result, there is a continued interest in finding increasingly sophisticated

algorithms for computing the DFT.

The direct evaluation of Xn in Eqation (1 1) requires about N2 multi-

plications and additions (hereafter these two arithmetic operations are referred

to simply as "operations"). If N is a composite number, however, the compu-

tational burden can be reduced by employing one of the three following algorithms:

(a) Fast Fourier transform (FFT) algorithm

(b) Prime factor algorithm (PFA)

(c) Nested or Winograd Fourier transform algorithm (WFTA)
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The factors of N have to be relatively prime for the PFA and the WFTA,

while no such constraint is imposed in the case of the FFT. These algo-

rithms are briefly discussed in Chapter II.

Efficient algorithms to find the DFT of short sequences are needed to

obtain the transform of longer sequences by the PFA and the WFTA. An

efficient procedure for deriving the Short length DFT algorithms, when the

transform length is a prime or a prime power, is discussed in [2]. Algo-

rithms for several short length transforms derived using this method, are

given in [3] and [4]. In Chapter III this procedure is briefly explained,

and efficient algorithms for 9, 11 and 13-point DFT's are presented. The

short length DFT algorithms given in [3] are also listed.

The DFT algorithms can be either programmed on general purpose digital

computers or implemented directly by special purpose hardware. In either

case, finite word length arithmetic is used. This introduces error in the

computation of the DFT. It is difficult to evaluate precisely the magnitude

of this error. However, by making certain assumptions about the nature of

errors introduced, a simple statistical model can be developed, and error

bounds can be obtained. The derivation of such bounds in the case of the FFT

has been studied extensively and is discussed in [1] and [5]. Error bounds

for the prime factor and the nested methods of computing the DFT, when fixed-

point arithmetic is employed, are derived in Chapter IV.

Various aspects of the FFT, the PFA and the WFTA are compared in Chapter

V. A processor-based hardware implementation of the PFA is discussed in

Chapter VI. The results are summarized in Chapter VII.
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CHAPTER II

DFT ALGORITHMS FOR COMPOSITE N

1. Fast Fourier Transform Algorithm [6]

Let N = r, * r 2

Expressing the indices n and k in Eq. (1.1) as

Sn n1 r1 + n2  n1 =O,,...,r2-1

n2= O,l,...,rl-1

(2.1)

k = klr 2 + k2 k I O,l,...,r, - 1

k 2 = O 1l ,... ,r 2 - 1

and representing the sequences Xn and xk as two dimensional arrays. Eq.

(1.1) can be rewritten as

r2 -1 r -1

X(nl,n 2 ) = E W W2 WNI 2 x(kl,k 2 ) (2.2)
k2 =0 kI1 = 0

Since

nkIr 2  kIn 2  (23)WN r2.1

Eq. (2'2) can be simplified to yield

r -lIr n~r r+ n2)k2

X(n ,n2 ) = WN 1 2 A(n2 ,k2 ) (2.4)
2 k2= 0



4

xx

x 
4

x3  W

5 2

Figure 1. A flow graph of 6-point OFT computation using FFT

X0=x (0 2-point X(010) = x0

x = x(0,2)

x~~l ~2-point X2O

Fiur 2.~l A flown graph) of 6-5n F optto sn F



5

where

A(n2 ,k 2 ) = 1 x(k1,k 2 ) (2.5)

The A array can be obtained in rjr2  operations and from this, the sequence
2

Xn can be calculated in r 2r operations. Therefore, the N-point DFT can

be computed in N(r1 + r 2 ) operations. In general, if N = rI x r 2 x ... x rL ,

this method requires '1(rI + r2 + ... + rL) operations to compute the N-point

DFT. A flow graph for a 6-point DFT computation by this method is shown in

Fig. 1. The terms of the form W (i = 1,2,3) in Fig. 1 are called
6

"twiddle factors."

2. Prime Factor Algorithm [7]

Let N = rI • r2  and assume that r1  and r2 are mutually prime (that

is, the greatest common divisor of r1 and r2, denoted by GCD(rl,r 2), is

equal to 1).

Then, the indices n and k of Eq. (1-1) can be expressed as

k =- kr1 + k2r 2 (mod N), k1 = O,1,...,r 2 - 1

k= O,l,...,r 1 - l

n:nIr2 Si + n2 r 1 s 2 (mod N), n = 0,1,...,N-1 (2.7)

where

n n(mod rl), n, = 0,1,...,r -r

(2.8)

n 2 - n(mod r 2 ), n2 = ... ,r 1
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and S,,S2 are solutions of

s r2 1 1 (mod r,)

(2-9)

s 2r, 1 (mod r 2 )

Again, representing the sequences Xk and xn as two dimensional arrays, Eq.

(1.1) can be rewritten as

r, - I r2 -1

X(nl,n 2 ) WN 21 212 x(kl,k 2 )

k2 = 0 k1 = 0

(2.1O)

Since r r 2 kln 1sI rIr 2 k k2 s 1
WN WN 2

Eq. (2"10) can be simplified to get

rI- 1
k~ nl k2

X(nln 2 ) = Wr A(n2,k2 ) (212)2 k2= 1 l2(-2

where
r -1

A(n2 ,k2 ) Wr2 x(kI ,k2) (2-13)

That is, the N-point DFT can be viewed as r1 r2-point DFT's followed by

r2 rl-point DFT's. If the r, and r2 -point DFT computations require M1 and M2
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M] M 2
operations respectively, the N-point DFT can be obtained in N( 1 +

operations.

The essential difference between the PFA and the FFT are the following:

a. The factors of N must be mutually prime in the PFA

b. There are no twiddle factors in the PFA

c. The index mapping which converts the one-dimensional arrays in Eq. (11)

into two-dimensional (in general, multidimensional) arrays is different

for the two cases.

Fig. 2 depicts the computation of a 6-point DFT using the PFA.

3. Nested Algorithm [3]

The DFT relation in Eq. (1l1) can oe represented in the matrix form

X Wx (2.14)

where

0 0

X x1

X xl
X =: , x

XN - LXN - 1

and W is the N-point DFT matrix, the (i,j)th element of which is equal to Wij

Let
N = r 1r 2
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GCD (rI,r 2 ) = 1

W= r - point DFT matrix

W2 r2 - point DFT matrix

Then, Eq, (2.14) can be rewritten as

X = Pout (W1 * W2) Pin (2.15)

where P out and Pin are two NxN permutation matrices, and * denotes the
min

"Kronecker product" operation.

Furthermore, let _X = P-out X and x = P x . (2'16)
a I

Then Eq. (2 15), in terms of X and x , becomes

X = (W1 * W2 ). x (2.17)

It is possible to decompose W as

W = SCT (2.18)

where

T = M x N incidence matrix (that is, a matrix which has

its elements taking values -1, 0 or 1 only)

C = M x M diagonal matrix

S = N x M incidence matrix
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It is easy to see that multiplication of a column vector by S or T

requires only additions, whereas M multiplications are required to obtain

the product of an arbitrary vector and C. Therefore, M multiplications are

sufficient to evaluate an N-point DFT. It should be noted that for small

values of N, M is approximately equal to N.

Decomposing W1 and W2 in a similar manner, Eq. (2.11) can be rewritten as

(SIC1 T1 * $2 C2T2 ) T (2-19)

where
Wi = SiC.T. , i = 1,2 (2.20)

Since

AB * CD = (A * C) (B * D) (2"21)

Eq. (2 19) becomes
I I

X = * $ S (C' * C2 ) (T1 * T2) x (2-22)

If the rl-point DFT requires M, multiplications and A1  additions, and the

r 2 -point DFT requires M. multiplications and A2 additions, the N-point DFT

can be obtainei in M1 M multiplications and AIN 2 + M2 Al additions. Since

the Kronecker product operaLun is not commutative, the number of additions

required depends on the order in which rI and r 2 are chosen. Therefore,

the order that minimizes the number of additions should be used.

In general, if N has rl,r 2,..., rL as factors, which are reldtively

prime, the N-point DFT matrix can be represented as in Eq. (2.18)

SSl * 2* ... SL

C=C *C * ... L

T T 1 T2 * L
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If A. : number of additions required for an ri -point DFT, i = 1,2,...,L

Mi = number of multiplications required for an ri -point DFT, i = 1,2,...,L
L

Using this algorithm, the N-point DFT can be obtained in i M, multiplications
i=l

and

A1  L Ai i-l MkllN +N L i Nk
i=2 k= k

additions.
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CHAPTER III

SHORT LENGTH DFT ALGORITHMS

The central idea behind deriving efficient algorithms for computing the

DFT of short length sequences is to reduce the problem to one of evaluating

cyclic convolutions. It was shown by Rader [8] that if N is a prime, the

N-point DFT can be viewed as an (N-l)-pcint circula•r convolution. When N

is a prime power (i.e., N = p r, p 2), the N-point DFT can be obtained by

computing a (P-l).pr-l point convolution and two pr-l point convolutions [9].

Efficient algorithms exist for performing circular convolution. These can

in turn be employed to compute the DFT, after replacing it with a convolution

problem. In order to derive these algorithms it is best to employ polynomial

multiplication techniques. To this end, consider the problem of obtaining

the circular convolution of two sequences a, n = 0,1,...,N-1 and bn,

n = O,l,...,N-l, defined by

N-1

c n akbn-k , n = O,1,...,N-1 (3.1)

k=O

where the indices are evaluated modulo N. Eq. (3"1) can be viewed as a poly-

nomial multiplication problem. That is, if

N-1

p(x) = 2 aiXi

i=O

N-1

q(x) = biXi

i=O



12

and N-Iy(x) = =0Cx

then

y(x) = p(x; q(x) mod (xN 1) (3.2)

For small values of N, the coefficients of the polynomial y(x) can be com-

puted efficiently as explained below:

k

Let T(x) = xN -_ = T Ti(x) be the decomposition of T(x) into its
i=l

irreducibles. By the Chinese Remainder Theorem, the coefficients of r(x)

can be obtained from those of ri(x) = p(x). q(x) mod Ti(x), i = 1,2,... ,k.

It is shown in [10] that the minimum number of multiplications needed to

compute the coefficients of r(x) in this way is 2N-k. When N is small,

it is possible to achieve this minimum, but for large values of N , the

number of additions required will be very large and this method becomes

inefficient.

Algorithms for finding the DFT of short sequences have been derived and

are given in [3] and [4], Efficient algorithms for 11 and 13-point DFT's

are presented here. A more efficient algorithm for 9-point DFT than those

in [3] and [4] is also presented. Other known short transforms [3] are also

listed.

I
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ALGORITHMS

In the algorithms given below, x(i), i =0, 1, ... , N-1, represents input

data for N-point DFT, X(i), i=0, 1, ... , N-1, represents N-point DFT output,

and al, mi, cl, etc., are variables used for storing intermediate results.

2 Point OFT Algorithm

mI = x(O) + x(l)

m2 = x(O) - x(l)

X(O) =mI X(1 m2

2 adds

3 Point DFT Algorithm
I

aI = x(l) + x(2) mI =yal cI =x(O) - m1

a2 = x(l)- x(2) m2 = 0.86603 a2

a3= x(O) + aI

X(O)=a 3  X(1)cI -jm 2  X(2) =cl+jm2

I multiply, 6 adds, 1 shift

4 Point DFT Algorithm

mI = x(O) + x(2)

m2 = x(O) - x(2)

mi3= x(l) +x(3)

m = x(l)- x(3)

X(O) =ml +im3  X(l) m2 -jm 4  X(2) =m -im3  X(3) m2 ++m4

8 adds
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5 Point DFT Algorithm

aI = x() + x(4) m1 = 0.95106 a5  c = x(O) - M5
a2 = x(l) - x(4) m2 = 1.53884 a2  c2 = c + M4

a3 = x(2) + x(3) m3 = 0.36327 a4  C3 = C -M4
a4 = x(2) - x(3) m4 = 0.55902 a6  c = m -m
a 5 a2 + a4  m5=47-a c5 m2-m1

a6 = aI - a3

a7= al + a3

a8 = x(O) + a7

X(O) =a 8  X(1)= c2 - jc 4  X(2) =c3 - jc 5  X(3) = c3 +jc 5

X(4) = c2 +jc 4

4 multiplies, 17 adds, 2 shifts

7 Point DFT Algorithm

a = x(1) + x(6) mI1 = 0. 16667 a7  c = x(O) - M
a2 =x(1) -x(6) m 2 =0. 7 9016a8 c2 =c1 +M2+M3
a3 =x(2) + x(5) m3 = 0.05585 a9  c3 = c1 m-2 - m4
a4 = x(2) - x(5) m4 = 0.73430 a 10 c4 = C 4 m-3 +M 4
a5 = x(3) + x(4) m5 = 0.44096 a11  c5 = m5 +M6 -n'7
a6 = x(3) - x(4) m6 = 0.34087 a12 c6 = m5 m-6 m-8
a7 =al + a3 + a5  m7 =0.53397a13 c7 =-m5 -m7 -m8

a8 = a , " a5  m8 = 0. 8 7484 a, 4

a9 =-a 3 + a5

al 0 = -al + a3

a11 =a2 +a4 -a 6

a12 =a 2 + a6

a1 3 =-a 4 - a6
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a14 -a2 + a4

a15 x(O) +a 7

X(O) = a15 X(l)= c 2 -jc 5  X(2) c3 - jc 6  X(3) = c4 jc7
X(4) = c4 +jc 7  X(5) c3 +jc 6  X(6) = c2 +jc 5

8 multiplies, 36 adds

8 Point DFT Algorithm

a, = x(O) +x(4) ml = x(O) - x(4) cI = mI +m7

a2 = x(2) + x(6) m2 = x(2) - x(6) c2 = ml _ m7

a3 =x(l)+x(5) m3 =al+a2 c3:m2+M8

a4  :x(3) +x(7) m4  :a, -a2  c4 m2 m8

a5 = x(1)- x(5) m5n = a3 + a4

a6 = x(3)- x(7) m6 = a3 - a4

m7 = 0.7071(a 5 -a 6 )

M8 = 0.7071(a5 +a 6 )

X(O)=m3 +m5  X(l):cl-jc 3  X(2)=m4 -jm 6  X(3)=c 2 +jc 4

X(4) = m3 - m5  X(5)= c2 - jc 4  X(6) = m4 +jm 6 X(7) c I + jc3

2 multiplies and 26 adds

9 Point DFT Algorithm

a,=x(l)+x(8) m1 =a 9 +a+ Ca =m2I -i 0m -Omin

a2 x(2)+x(2) m2 = x0--a 3  c1 =m2 -m9 +m11

a3 = x(3)+x(6) m3 = 0.86602500 a10  c2 =m2 +M10 +M9
a4 =x(4)+x(5) m Ia 9 + a c3 m +m7 +8
a5 = x(l)- x(8) m5 = 086602500 a7 c4 = _ms +m6 +M8
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a6 =x(2)-x(7) m6 =0.3420200 (a5+a6) c5 =m5 +m 6-m7

a7 = x(3) -x(6) m7 = 0.9848080 (a6 +a8 )

a8 = x(4) -x(5) m8 =0.6427880 (a5 - a8 )

a9 =a 1 +a 2 +a 4  m9 =0.9396930 (a2 -a 1 )

alo = a5 - a6 +a 7  m lo =0.1736480 (a4 - a2 )

a1 l = x(O) +a 3  m11 = 0.7660440 (a 4 - a,)

X(O)=m1  X(l)=c 0 -jc 3  X(2)=c 1 -jc 4  X(3)=im3 -jnm4

X(4)=c 2 -jc 5  X(5)=c 2 +jc 5  X(6)= m4 +jm 3  X(7)=c 1 +jc 4

X(8) = cO0 +jc 3

8 multiplies, 2 shifts and 42 adds

11 Point DFT Algorithm

a1 =x(1)+x(10) m=x(O)+a 1 3  c0 =m0 -m1a2 =x(2)+x(9) m1 =1.10 (a 13 ) c1 =m3+M4

a3 = x(3) +x(8) m 2 = 0.33166250 c2 = m4 +M 5
(a 14 - a1 5 - a9 )

a4 =x(4)+x(7) M 3=0.51541500 (a 2 -a 4) c3=fml3 -m 5

a5 = x(5) +x(6) m4 =0.941253500 (a1 -a 4 ) c 4an 6 +
a 6 =x()-x(lO) m 5= 1.41435370 (a2 .l 5=m7+M8

a7 = x(2) - x(9) m 6 = 0.85949300 (a5 - a4 ) c6 = m6 - m8

a8 = x(3) -xý8) m7= 0.04231480 (a 3 - a4 ) c7 = m +M

a9 =x(4)-x(7) m8=0.3863928C (a 5 -a 3 ) c8=m9+Mll

a10 =x(5)-x(6) mi9 =0.51254590 (a 2 -a 5 ) c=m+M
a11 =a +a 2  = 1.07027569 (a1 -a 3 ) c 10 m 12 -m14

a12=a 3 +a 5  mI1 1 = 0.55486070 (a 12 -a 11 ) C11 =ml16 +Ml7

a1 3 =a 4 +a11 +a 12 m12=1.24129440 (a7+a9) c12=mN5-mi 7
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a 14 a7 - a8  m13- 0.20897830 (a6 -a 9 ) c132m19 +m20

a15 a +alO m = 0.37415717 (a 6 +a 7 ) c 4 m1 8 -m20

mi5 = 0.04992992 (a 9 - a1 0 ) c1 5 =c 5 +c 7 +c 0

m16 = 0.65815896 (a 8 - a9 ) C161 cO- c 2 -c 7

m17 =0.63306543 (a8 -a 1 0 ) c17 = c 0 +c 6 +c 8

m18 =1.08224607 (a7 +a10 ) C18 =C 0 - c3 - c8

m 19 =0.81720738 (a 6 - a8 ) c19 =c 0 +c1 -c 4

m 20 - 0.42408709 (a 14 +a 15 ) c20 =m2 +C1 1 +c1 3

c2 1 = c1 3 -c9- m 2

c2 2 m2 +C 14 +c 1 2
c 23 = C12 -" cO- m 2

c24 c20- c 21 + c22- c23

x(O) =m0

X(1) = c19 +jc 24  X(2) = c1 5 +jc 20  X(3) = c16 +jc 2 1  X(4) = c17 -Jc 2 2

X(5) = c 18 + Jc23 X(6) = c1 8 - Jc 23  X(7) = c17 +jc 22  X(8) = c16 -Jc 2 1

X(9) = c 5 -jc 2 0  X(10) = c-Jc 2 4

20 multiplies and 83 adds

13 Point DFT Algorithm

a1 =x(1)+(12) m0 =x(O)+a 1 5  c0 =mn0 -MI

a2 = x(2) + x(l1) mI 1.08333333 a15  c1 = m7 4 M6 - m-2
a3 =x(3)+x(lO) m2 = 0.30046261 (al4-a 1 3 ) c2= m-7 +iM8 + m 2

a4 = x(4)+ x(9) m3 = 0.74927933 a16  c3 = m8 - m6 - m2

a5= x(5) + x(8) m4 = 0.40113213a 7  C4 = c 0 - m9 +m1 O

a6 = x(6) + x(7) m5 = 0.57514073 (a 16 +a 1 7 ) c5 = CO- mlO -mll
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a7 = x(1)- x(12) m6 = 0.52422664a 2 2  c6 = c0 - m9 +m11

a8 = x(2) - x(1) m7 =0.51652078 a2 3  c7 = m1 2 - m1 4
a9 = x(3) -x(iO) m8 =0.00770586 (a2 +a23) c8 m m-in 4

a10 = x(4) -x(9) m9 "0.42763400 a2 4  c9 ,m l 5 -ml7

a,, = x(5) - x(8) mIr = 0.15180600 a2 5  c 10 , m16 - m17

al12 = x(6) -x(7) ml ! 0.57944000 (a 2 4 -a 2 5 ) c11 ," 18 -m2 0

a 3 = a2 +a 5 +a 6  ml = 1 . 5439500 a2  C 2 =m +M
a = a +a+a4 m =0.9065220 a2 7  C2 m3"m
a14 a1 + 3 +4 27 13 m3 -i 5

al 5 =al 3 +1 a 4  m1  0.81857030 (a2+a27) c 1 4 =m 4 .i 5

8 11 +a12 mI =1. 19713680a 20  15 C1+C4
a16 a +a -a C +C7 a7 9 - 0 m16 ' 86131170a 2 9  16 2 5
a18 = a2 - a6  ml17 = 1.10915485 (a 2 8 +a 2 9 ) c1 7 c5 -c2

a19 = a3 - a4 mit; = 0.04274140 a3 0 c18, c3 + 6

a20 = aI - a4 m19 = 0.04524049 a3 . c19= c4. c1
a21 =a -a 6  m2 0 0.29058500 (a,, +a3 1 ) c 2 0 "c6 -c 3

a2 2 = a18 - a19 c2 1 ' c4 +R(c 7 - cg)

a2 3 = a 2 0 - a2 1  C2 2 ' c 1 2 - c 1 3 - c 1 0

a24 = a18 +a 19 c2 3 c7 +Cli +C1 4

a25 = a20 + 21 
c24 = c9 + C11 "14

a26 = a8 - a12 c2 5 c8- c12- c13
82 7 =a 7 -a 9  c2 6 ' c 3 + j(c 8 - c1 0 )

a2 8  a78 - aa28 :as" 11

a29 a 7 +a 10

a30 a 11 a812

a31 -a9 -10
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X(O) =m0

SX(1) = c 15 +c 2 1  X(2) = c16 +jc 22  X(3) = c 17 +jc 23  X(4) = c18 - jc 2 4

X(5) = c 19 +Jc25 X(6) = c20 -c26 X(7) = c20 +c 26  X(8) = c19 -Jc 2 5
X(9) = c18 +jc 24  X(1O) = c1 7 +jc 2 3  X(1)= c16 - jc 22 X(12) = c15 -c 2 1

20 multiplies and 94 adds
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CHAPTER IV

FIXED POINT PFA AND WFTA ERROR ANALYSIS

The DFT algorithms are often implemented by special purpose digital hard-

ware using fixed point arithmetic. Accuracy requirement is one of the impor-

tant factors which influences the decision about the word size of such implemen-

tations. Therefore, it is desirable to estimate the roundoff noise generated

in the DFT computation. The effrect of fixed point arithmetic on the roundoff

noise in FFT computations has been studied in [11] and [12]. An estimate of

the roundoff noise in the case of the PFA and the WFTA is obtained here using

a statistical model.

Addition and multiplication by constants are the only two arithmetic

operations needed to implkment the DFT algorithms. If the input data is

properly scaled to avoid overflow during additions, no error will be introduced

in the DFT output due to addition operations. However, when two fixed point

numbers are multiplied, the result has to be rounded. This introduces roundoff

error in the DFT output. To model the effect of rounding, an additive noise

source is associated with each real multiplication. The model for fixed-point

multiplication is shown in Fig. 3. Each roundoff noise (error) sample e is

xy y=xk + e

Fig. 3 A model for fixed-point multiplication operation.

modelled as a random variable with probability density function as shown in



21

Fig. 4. Furthermore, it is assumed that the error introduced by each multi-

Pe(n)
e b=word size (in bits)-1

=

-4" 1
A Mean = e :0

Variance = 2= 2-2/2

-2 e(n)

Fig. 4 Probability density function for roundoff error.

plication operation is statistically independent of all other errors and of

the input,

Fig. 5 shows a roundoff noise model for an N-point short length DFT algo-

rithm. The error vector E is defined as

E

S~MN multiplica-ut( nput Additions N tions Output addi-

Inu (Multiplica- __ (Multiplica- tions Output(x)

tion by T) tion by C) (Multitiplic
tion~ton by C)(uli )ia

Fig. 5 Roundoff noise model for an N-point short length DFT algorithm.

E (e e2 ... eM) (4.1)

where ei(i = 1,2,...,M) represents roundoff error due to multiplication by the

constant C(i,i). It should be noted that if jC(i,i)l 1, then for all inputs
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ei = 0 . Furthermore, if the input data is complex, the variance of non-zero

componeots of E is 2a2
e

1. WFTA

In the WFTA, the N-point DFT relation is expressed as

X. = S(CTx + E) (4"2)

where S, C, T, x , and X' are as defined in Eq. (2"18), and E is an (MXI)

error vector (See Fig. 5). Therefore

error in the DFT output = SE (4.3)

clearly

E [SE] = 0 (4.4)

where El ] is the statistical expectation, and total mean square error in

the DFT output (TMSE)

N M

- 'i~~l 2 202( -5

1=1 j=l

IC(Jj)I ý 1

Let N M

P = 12 E lS(i,j)I 2 (4-6)
i=l j=l

Table I list', the values of P for several short iength trarnsforms.

Furthermore, let N =I x r 2 x ._ x rLt ard r >, ... , L be relat'vely

prime. Since
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S = Sl * S2 *...* SL (4"7)

it follows that

N M
"E "E IS(ij)12 = N P1 P2 ... PL (4.8)

i~l j=1

where Pi is as defined in Eq. (4.6) for N = r. For all values of 11, it

can be verified that

C(ll) = 1 (4'9)

and S(i,l) = 1, i - 1,2,...,N (4'10)

Using Eqs. (4 8) (4 10), it can be shown that
22 P I P2 -' P L

TMSE < 2 N2 a 2 N - I) (4.11)

or, equivalently,

TMSE < 2 K1 N2 2  
(4212)I e ( '2

where

K 1 2 -L 1 (4.13)
N

It is interesting to note that the roundoff noise does not depend on the

order in which short length transforms are combined to obtain longer length

transforms.
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N P q V

2 1 0 0

37 4 23 3 3

4 0 04

21 16 4

7 43 36 6
7 T 7

8 22 8 1
T 9 7

61 42 7
T i-2

111 100 10

157 144 12",3 f 1--3- T 3

86 28 716 T 6 16 6-0

Table 1. Table of P, q and V for short length transforms
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2. PFA

To include the effect of rounding in the DFT computation by PFA, Eqs.(2.12)

and (2.13) have to be modified, and these modified equations can be expressed

in the matrix form as

x(0,O) x(Ol) . . . x(O,r 2 -1)

x(l,O) x(l,l) . . x(l,r 2 -1)

x(r 1 -1,0) x(r-1 -,l) . . . x(r -I , r 2 -I)

SI C1  T1  At + Sl'[El(1) E1 (2) ... El(r 2 )] (4.14)

and

x(0,O) x(0,1) . . . x(O,r 1-1)

x(1,0) x(1,1) .x(i ,r,-1)

A = $2 C2 T2 •

x(r 2 -1,0) x(r 2-",1) . . . x(r 2-1,r 1-1)

+ S2 E2 (l) E2 (2) . . E2 (rl) (4.15)

t
respectively, where A transpose of matrix A, and El(i) (i=1,2,...,r 2 )

and E2 (i) (i1,2,.. .,r) are error vectors resulting from r 2 ri-point

OFT computations, and r 2 r,-point OFT Lomputations respectively. It can be
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shown that

Expected error at the output = 0 (4.16)

Since the error vectors are uncorrelated,

rl M1

TMSE jr2 11 , jSl(ij)j 2

i=l j=l

+ r 2  1S2(i.)I 2 .2 (4.17)
i =l j=l

r2(j ")I•

2Nae2 (ql + rl q (4.18)
e (q 2)

where
Sr. M. 21 .2

q i E t. ISi(J,k)j, i = 1,2 (4.19)
j=1 k~l

ýl(k,k)I#l

Table 1 shows the values of q for several short length DFT's.

If N has rl, r 2, ... , rL as L mutually prime factors, Eq. (4.18)

can be generalized as

TMSE = 2No 2 (q, + r, q + rlr r (4.20)

Oe 2 + 2 L- qL•
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= 2K2 N2 G2 (4.21)2 e

where

K __ q l*

2 rL + rL-l + + r (4.22)K2 rL rL rL-l r L rL-1 - r1

It is clear from Eq. (4.20) that the roundoff noise depends on the

order in which the short length DFT's are performed. In Eq. (4.18) the

TMSE is minimized if rI and r2 are selected such that

r 2 q, + q2 1r q2 + ql (4.23)

or
q, q q2
q1  < q (4.24)
1 2

In general, the TMSE in Eq. (4.20) will be minimum, if

VI ý V2 < *... VL (4.25)

where

qiVi ri.1 ,i:1,2, ..... , L (4.26)

For short length transforms, the value of V is listed in Table 1. The

factors of N should be ordered according to the size of V to minimize

the roundoff error.
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Similar results are obtained in [12] for the FFT case and are given below:

Expected error in the output = 0 (4.27)

and

TMSE (2 N + 2 4 (4.28)

where N is the transform size. For large values of N

TMSE 2 k3 N2 (where k3 = 1) (4.29)

Table 2 lists the values of k1  and k2 , defined in Eqs. (4.13) and (4.22)

respectively, for several long length transforms. By referring to Table 2

and Eq. (4.29), it can be concluded that the fixed point roundoff noise in all

the three algorithms will be of the same order of magnitude.

N kI1 k 2

120 0.22 0.21

240 0.22 0.15

1,008 0.22 0.15

4,095 0.52 0.76

8,190 0.26 0.38

16,380 0.19 0.19

32,760 0.18 0.22

65,520 0.17 0.18

Table 2. Table of ki and k2 for

several values of N.
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CHAPTER V

COMPARISON OF OFT ALGORITHMS

Let N = rl,r 2 , ... ,rL, where rl,r 2 ,...,rL are mutually prime.

Ai = number of additions required to compute ri-point DFT

Mi = number of multiplications required to compute ri-point DFT

Table 3 lists the operation counts for several short length DFT's.

As discussed earlier, the number of additions required to compute the

DFT using the WFTA depends on the order in which short length transforms are

combined. In the following discussion, without loss of generality, it is

assumed that rl,r...,r. (with rI as innermost factor) is an ordering which

minimizes the number of additions. Throughout the discussion, radix-2 FFT

algorithm is implied whenever reference is made to the FFT algorithm.

1. Number of arithmetic operations (for complex data)

(i) FFT [9]: Let N = 2m, for some positive integer m, and N>> 2

No. of real additions = 3NlogN - 3N2 N (5.1)

No. o( real multiplications = 2 Nlog• - 6N

(ii) WFTA

ýA LL i=L-1 i A I M.)rj

No. of real additions = 2 N + -It

L

No. of real multiplications = 2 FjMi

i=l
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No. ot No. of No. of
N Mults Adds Shifts

2 0 2

3 1 6 1

4 0 8 -

5 4 17 2

7 8 36 -

8 2 26 -

9 8 42 2

11 20 83 -

13 20 94 -

16 10 74 -

Table 3. Short Length DFT operation count



31

(iii) PFA L

No. of real additions = 2 N Ai
i~ r.

(5.3)

No. of real multiplications = 2N r

Table 4 lists the number of multiilications and additions required to compute

several longer length transforms using these three algorithms. It is inter-

esting to note that some of the transform lengths listed for the PFA and WFTA

are close to powers of 2. It can be seen that the PFA requires fewer number

of arithmetic operations than the other two algorithms, for wide range of

values of N.

2. Memory Requirement

The memory required for implementing the DFT algorithms can be broadly

classified into the following three categories:

a. Data memory

b. Coefficient memory

c. Program memory

The FFT and the PFA are "in-place" algorithms; that is, new results

after each stage of computation can be restored over the data used to compute

the results. On the other hand, the WFTA is not an "in-place" algorithm and

requires more data space compared to the other two algorithms. In fact, the

memory size required is approximately equal to the number of multiplications

to be performed in the computation of the DFT (see Table 4).

Table 4 also lists the coefficient memory required for computing

several longer length transforms. It can be seen that the number of coefficients
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to be stored is significantly less for the PFA compared to the other two

algorithms. The sine-cosine values required in the FFT method can be computed

recursively as needed; thus savings in memory space can be achieved. The

disadvantage of such a scheme is that the computation time is increased by

about 15%. Similar savings in the memory requirements can be achieved in the

case of the WFTA. However, such implementations could be very inefficient in

terms of speed.

Of the three DFT algorithms being considered, the FFT program requires

minimum space. Besides this, input and output re-ordering is very systematic

for the FFT, where as they are less so and may require storage in the case of

the other two algorithms. The computation of the re-ordering vectors as they

are needed saves storage, but is less efficient. However, by using a different

input-output re-ordering scheme and adding a small amount of extra hardware,

in the case of special purpose hardware implementations, this storage space

can be saved. This is discussed further in Chapter VI.

3. Programming Complexity

Programming of the FFT is ifuch simpler compared to the other two algorithms.

This is mainly because of the complicated indexing scheme to be used in the

PFA and the WFTA. To illustrate this, a FORTRAN program for 120-point PFA is

listed in the Appendix. This can be compared with the FFT programs given in

[1]. It should be noted that the WFTA is not an inplace algorithm. This

further complicates Lhe programming of WFTA.

4. Effect of finite word-length arithmetic

The use of finite precision arithmetic in the DFT computation introduces

error in the output. The effects of finite register length in FFT calculations

is discussed in [1, 5, 11, 12]. Because of the complicated structure of the
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PFA and the WFTA, it is difficult to analyze the effects in these algorithms.

The PFA and WFTA require fewer arithmetic operations compared to the FFT.

It is very likely that the floating-point DFT computation by these methods will

introduce smaller error than in the case of the FFT. By computing the coeffi-

cients needed using higher precision arithmetic, the effects of coefficient

quantization can be reduced in all the methods. The effects of fixed point

arithmetic in DFT computation was discussed in Chapter IV.
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CHAPTER VI

A HARDWARE IMPLEMENTATION OF PRIME FACTOR ALGORITHM

It is often necessary to build special purpose hardware for computing

the discrete Fourier tra;isform. With the availability of low cost micropro-

cessors, it is now economical to conceive of processor-based hardware struc-

ture. The WFTA is not suitable for this purpose if transforms of long

sequences are required. In such cases, a choice has to be made between the

FFT and the PFA. Multiplication is one of the slcwer arithmetic operations

in processor-based systems. The ratio of multiply to add times could be as

large as 10 to 15. Therefore, from the earlier discussion it is eviderit

that the PFA is better suited for this purpose than the FFT. Furthermore,

there are certain other advantages in using the PFA for hardware implementa-

tion, and this will be made clear soon.

A simple block diagram of PFA hardware is as shown in Fig. 6. The dia-

gram is self-exDlanatory. The coefficients are stored in the read only

memory (ROM). The initial and final reordering vectors are also stored in

the ROM. The DFT algorithm is implemenced at the microprogram level to

increase the speed of the system. The input-output section is not shown

in the diagram.

This system can be speeded up further by adding a few inexpernsive hardware

blocks to it. By providing a small number of high speed storage registers

(a maximum of 64 words is sufficient for N as large as 720,720) it is pos-

sible to reducc the number, of accesses to the data memory. The intermediate

results during computation of short length DFT's can be stoted in this fast

memory. If N has L factors, then each data point is accessed (for



Mi croprograniT,-ai
Control Unit

r -
I I I

4emory for storing Arithmetic and Duta
coefficients andLogic Unit riemory
1/0 reordering Logic Uni P0Memor

vectors (ROM) j '

ccrtrol flow

data flow

Figure 6. A Block Diagram Of PFA Hardware

readirn and storing the result after each stage of computation) 2L times

and therefore, the dita memory is accessed only 2NL times. It shculd be

noted that the use of a fast memory like this will also reduce the number of

data memory accasses 4n systems implementing the FFT [5] and the WFTA. By

usirg 2A-(or 2V2N if F/N is not an integer) fast memory locations, the

number of data memory accesses in the FFT can be reduced from 2 log2  to

N 
N

2+ log2  Co.- 1 +109 2 if SQRT(N) is not an integer]. In the case of WFTA,

the number of data memory accesses required is given by the following expression
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2+4 • (M /N1 ), where N = Nl,N 2 ,...,NL and (6.1)

i=2 Mi = No. of multiplies required for

N-point DFT.

Table 5 shows a comparison of this. It is interesting to note that, for a

given transform size, the PFA requires the least numler of memory accesses.

N FFT PFA WFTA

4K 14 8 19

8K 14 10 23

16K 16 10 23

32K 16 10 23

64K 18 10 26

Table 5. No. of data memory access per point in the three algorithms.

Sometimes the number of slow memory accesses can be further reduced by

using the WFTA to combine several shorter DFT algorithms. For example, a

120-point DFT can be implemented with 8 and 15 as factors of 120. The WFTA

can be used to obtain tne 15-point DFT algorithm from 3 and 5-point DFT

algorithms. By doing so, the number of arithmetic operations are not

increased, but the number of data memory accesses is reduced by about 30 per

cent (compared to the 120-point DFT implementation with 3, 5, and 8 as factors).
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The coefficients in the PFA are either purely real or purely imaginary.

This fact can be used to speedup the system further by using an extra arith-

metic and logic unit (ALU). The width of microinstruction will have to be

increased by a few bits to generate the additional control signals needed.

A modified block diagram is shown in Fig. 7. The real and imaginary parts

of the data are processed separately. Whenever the coefficient to be multi-

plied is real, there will not be any interaction between the two ALU's, but

if the coefficient is imaginary, the results after the multiplication are

exchanged between the two ALU's.

Two I/O registers IOREGI and IOREG2 are used for this purpose. The ALUI

and ALU2 can load registers IOREGI and IOREG2, and read from registers IOREG2

and IOREGI respectively. The system shown in Fig. 7 can be thought of as two

identical processors working in parallel and controlled by a single controller

(CCU). The addresses of IOREGI and IOREG2 for SYSI are identical to the addres-

ses of registers IOREG2 and IOREGI respectively, for SYS2. The other blocks

in Pig. 7 are self-expldnatory.

Let Xi be the number of multiplications by imaginary coefficients (in-

cluding coefficients +jl)in an Ni-point DFT computation. Then the number of

d exchanges between the two ALU's is given by the expression

(Xi/N) d 6.2)

i=l

The values of X's for different short length DFT's is shown in Table 6.
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Fig. 7 MODIFIED BLOCK DIAGRAM OF OFT HARDWARE
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As mentioned earlier, 2N ROM locations are needed to store input and output

reordering vectors in the PFA. However, by using a different scheme to con-

vert the sequences Xn and xk , in Eq. (1.1), into multidimensional arrays,

N memory locations can be saved. To explain further let N = r 1 r 2 and

GCD(rl,r 2 ) = 1. The indices n and k in Eq. (1.1) can be expressed as:

2 n1 r2sI + n2rIs2 (mod N) n = O,l,...,N-1 (6.3)

k k klr 2sI + k2 r 1 s2 (mod N) k = 0,1,...,N-1 (6.4)

where nl, n2 , k1, k2, sI and s2 are solutions of

nI 1 n (mod r 1 )

n -n (mod r 2 )

kE 1 k (mod r1 )

k2 - k (mod r 2) (6.5)

2s 1 (mod r1 )

and rls 2  I (mod r 2 )

respectively. By the Chinese remainder theorem,

nk 7 n kIsIr 2 + n2k2s 2 r1  (6.6)

Representing the sequences xk and X in Eq. (1.1) as two dimensional arrays

and using Eqs. (6.4) - (6.6), the OFT relation in Eq. (1.1) can be rewritten as
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r2-1 rl-I

X~n1,2) =~ s2 k2n2 k wlg..O.lInl(67X(nlSn r2) -1 W s2k2n2r2=- Wrln x(kI, .k) (6.7)

k2=0 2 kI=xl0 kln

r2- kn ri1 k n

P2E Wr p, W 1 1 x(kI, k2 ) (6.8)

k2=0 2 k1=0

where P1  and P2 are permutation matrices and the elements of P1 ( or P2 )

depend only on the numbers sI and r 2  (or s2 and rl). A simple modification

of the short length DFT's can take care of these permutation matrices; thus a

saving of N memory locations can be achieved. These mapping vectors can also

be computed as and when needed, without affecting the system speed, by using

a few extra hardware blocks (such as, counters, adders) 03]. This scheme is

useful only when N is large.

N X

2 0

3 1

4 1

5 3

7 4

8 3

9 5

11 10

13 13

16 8

Table 6. No. of imaginary coefficients in short length DFT algorithms.
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CONCLUSION

Efficient algorithms exist for computing the DFT of long sequences, when

the sequence length is a composite number. The FFT, the PFA and the WFTA are

three such algorithms. In this report, various aspects of these algorithms

were discussed. Efficient algorithms for 11 and 13-point DFT's were pre-

sented. Using these and the other short length transforms, the DFT of very

long sequences can be obtained by the PFA and the WFTA, in fewer number of

multiplications than in the FFT.

In the PFA, the DFT of a long sequence is obtained by performing a number

of short length DFT's. This fact can be used to design high-speed dedicated

hardware for DFT computation. Moreover, the PFA requires fewer arithmetic

operations (i.e., combined additions and multiplications). Hence, it is

expected to introduce smaller error due to finite word length arithmetic.

The FFT requires fewer additions than the other two algorithms, but the

number of multiplications needed is considerably greater. It is, however,

important to note that the FFT lends itself to more systematic programming.

The WFTA requires the least number of multiplications among the three

algorithms. However, the number of additions required is slightly more than

the others for transform sizes up to few thousands and becomes formidable

for very long transforms. Furthermore, it requires more data and program

memory than is required for the other two.



43

REFERENCES

1. A. V. Oppenheini and R. W. Schafer, Digital Signal Processing, Englewood

Cliffs, NJ: Prentice Hall, 1975, pp. 285-328.

2. S. Winograd, "A new method for computing DFT", Proc. of IEEE Int. Conf.

on ASSP, May 1977, pp. 366-368.

3. H. F. Silverman, "An Introduction to Programming the Winograd Fourier

Transform Algorithms (WFTA)", IEEE Trans. on ASSP, May 1977, pp. 152-165.

4. D P. Kolba and T. W. Parks, "A Prime Factor FFT Algorithm using High

Speed convolutions", IEEE Trans. on ASSP, Aug. 1977, pp. 281-291.

5. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Proces-

sing, Englewood Cliffs, NJ: Prentice Hall, 1975.

6. J. W. Cooley and J. W. Tuckey, "An Algorithm for machine calculation of

Complex Fouier Series," Math. of Comput., Vol 19, April 1965, pp. 297-301.

7. I, J. Good, "The interaction algorithm and practical Fourier analysis",

J. Royal Statistical Society, Ser. B. Vol. 20, 1958, pp. 361-372.

8. C. Rader, "Discrete Fourier Transform when the number of data samples is

prime", Prec. of the IEEE, Vol 56, June 1968, pp. 1107-1108.

9. S. Winograd, "On Computing the discrete Fourier transform", Proc. Nat.

Acad. Sci., USA, Vol 73, No. 4, April 1976, pp. 1005-1006.

00. S. Winograd, "Some bilinear forms whose multiplicative complexity depends

on the field of constants", IBM Research Report, RC 5669, Walson Research

Center, N.Y., Oct. 1975.

11. P.D. Welch, "A fixed point fast Fourier transform error analysis", IEEE

Trans. on Audio Electro Acoust., Vol. AV-17, June 1969, pp. 151-157.



44

12. Tan-Thoung and Bede Liu, "Fixed Point fast Fourier transform analysis",

IEEE Trans. on ASSP, Vol. 24, Dec. 1976, pp. 563-573.

13. W.K. Jenkins and B.J. Leon, "The use of Residue Number Systems in the

design of finite impulse response digital filters", IEEE Trans. on

Circuits and Systems, Vol. CAS-24, April 1977, pp. 191-200.



45

APPENDIX

This Appendix lists a FORTRAN program for obtaining the DFT of 120-points,

by the PFA. By making minor modifications at the places indicated, this pro-

gram can be used to implement all the 3-factor PFA's.
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C P15 rPAU~ to DDA
C 120-POINT DFT ALGORITHM
C
C
C N "TRANSFORM SIZE
C N1, N2, N3 MUTUALLY RELATIVE FACTORS OF N
C K1 = N2*N3
C X COMPLEX ARRAY OF DIMENSION N
C
C

INTEGER Ni, N2, N3, STADR, STEP. TSZE
C
C THE FOLLOWING 3i STATEM4ENTS ARE TO HE MODIFIED IF N IS MODIFIED
C

COMPLEX X(120)
COMMON /STC,,EI/X STADR,. STEP, TSZE /STORE2/N, Ni, N2, N3, fK1
DATA N, N1, t42, N3, K1iI 210, 3,5,E,40/

C READ DATA FROM INPUT' FILE IN THE REUIRED ORDER
C

DO I i = i,N

IND-.'
K 6ý ROMi LND)

I READ (201,2) X(K,)

C
C FORMAT OF INPUT FILE

C
2 FORMAT(2F)
C
C STARTING OF THE PFA
C
C PERFORM NI*N2 143-POINT DFTS
C

STEP w I

TSZE w N3
C

DO 3 STADR = 1.N-N3+1.N3
3 CALL SHORTR
C
C PERFORM NI*N3 N2-POTNT DFTS
c

STEP - N3

TSZE - N2
ICNT - 0

DO 4 1 . 1,NI

DO 5 J a 1,STEP
STADR a ICNT+J
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"5 CALL SHORTR

4 ICNT = ICNT+KI
C
"C PERFORM N2.N3 N1-POI1T DFTS

STEP = K1

TSZE = NI
C

DO 6 STADR = 1,Ki
6 CALL SHORTR
C
C REORDER THE RESULT AND OUTPUT
C

DO 7T -= 1,N
IND=II P~K = %RttNi7 WRITE (226,8) I,Xtk)

8 FORMAT(/OX, .. •( ,I', ,",3x,F,5.8, ', '.F15.8)
STOP
END

C

C THE FUNCTION ROM HASS TlO BE MODIFIED IF THE NUMBER OF FACTLRS
c ARE CHANGED.

C INPUT/OUTPUT MAPPING ROM TABLE LOOK-VP SIMULATION
w C

INTEGER FUN-CTION IROM(I)

COMMON /STQ)RE2/N, RI, R2o R3, Kl1
INTEGER Rl $•2,R3,Kl
II I-1

Ni - MOD(IT,RIl
N2 - MOD(II..?
N3 - MOD(TI,P3ý"I
IROII = NI*KleIJ2*R3+H2.N2
RETURN
END

C
C SHORT LENGTH EM-T Al. GOPITHMS
C

SUBROUTINE SHORTR
IMPLICIT COMPLE'X (A-H,.J"Z)

C THE FOLLOWING STATEMENT HAS TO BE MODIFILD IF N IS CHANGED

C
COMMON /STOREl/Y, ,I, TP. ISZE
DIMENSION X(120)

c
C THE FOLLOWING STATEMENT IS 10 BE CHANOED IF OTHER SHORT
C LENGTH TRANSFORMS ARE ADDED
C

GO TO (1,1,3 1, ,1,1, 8) ISZE
DATA J/(O,O, 1 0)#

____ __ ______ _ __ ___
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C Ins PAgs Is an ckuwA mama

C 3-POINT DFT OW t

C
3 I1 = IO+ISTP

12 = I1+ISTP
C
C INPUT ADDITIONS
C

At a X(11)+X(I2)
A2 = X(Il)-X(12)
A3 - X(IO)+A1

C
C MULTIPLICATIONS
C

M1 = 0. 5*Al
M2 = 0 86603A2

C
C OUTPUT ADDITIONS
C
C OUTPUT ORDERIN:1i HAS TO BE MODIFIED IF FACTORS OF 14 ARE OHANOED
C

Cl = X(IO)-M1
X(lO) - A'JM2 = -JTIMES(M2)
X(ll) z C I +-J2w

X(12) = CI-JM2
RETURN

C
C 5 - POINT DFT
C
5 It - IO÷ISTP

12 = II+ISTP
13 = 12+ISTP
14 = 13+12TP

C
C INPUT ADDITIONS
C

Al = X(I1)+x(14)
A2 - X(II)-X(14)

A3 = X(12)+X(13)
A4 - X(12)-Xt13)
A5 = A2+A4
A6 = Al-'A3
A7 a Al+A3

i AS w X(IO)+A7

Ov

i'I
r1
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C NULT-lPLICATXON.S

C M- 0. 95106*AS-

M12, I 53884*A2
143 - 0. 36327*A4'
M14 - 0 ~5S92*A6
M15 -0 2--*A7

C
C OUTPUT AMMITONS
C

Cl -X(270)-m5
C2= C I f M4

C3 =C1-1-'4
04 = M1-M3
C4 = TMct4

c INIE*FXT 5 WFF)I FACTORS OF N ARC CHANGED

RETURN

11 TO.YcVTP

14 TAJ+1CSTP
115 14- ITV3
16 - 1 t'1S

C INPUT ADDITIONS

A3 -
c ~A4 = - l-(5

AS *
A6 = X(13)-'X(17)
A7 - A1.A2
AS= A~3+A5~
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C ~MULTIPLICATIONS s"Tow

MO =A71AB
Hl = 7.-AB
M2 -Al -A2
M3= X(10)- i(14)

M4 - A4-Ab)*40 70-!1,')7
M5 lA
M5 =-JTIMESý'M5)

M6 - XIl )-xII?
Mw -JTlM*ES(M6)

M7 - A4i-Abi-tO ?OilOl~
M7 Vlq3 i7''

41
C OUTPUT AT tjTIfNW.
C

Cl M13+M4
C2 - l M'4
C~3- 6M
C4 -M6--M7

cIc OUTPUT O~. [I-!; OA.; Tij Bf3 olDo IE.D IF i-ACTOP*' OF W A4.T HANGED
C

X 'ol- MO

Y(11) ~-% '' q : I

X(17) -u C trC3
RETURN

I R~rURN
END

c
C KUL71PLICATION orV COMPLE& CUNSEANT Ov JI

COMPL.EX FU'NCT trN Jr IMLS(A)
CQMPLVY A
13 PCALfAl
C *-AJllAG:A,
JTIMEf) :. CF.LAU.,r-
RErURN
END


