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ABSTRACT

r\
~5 Efficient algorithms for 11 and 13-point DFT's are presented. A more
efficient algorithm, compared to earlier published versions, for the computa-
tion of 9-point DFT is also included. The effect of arithmetic roundoff in

implementing the prime factor and the nested algorithms for computing DFT with

fixed point arithmetic is analyzed using a statistical model. Various aspects
of the prime fac’ =, the nested and the radix-2 FFT algorithms are compared.
1 A processor-based hardware implementation of the prime factor algorithm is

discussed.
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CHAPTER 1
INTRODUCTION

The discrete Fourier transform (DFT) of a sequence Xy s k=0,1, ...,

N -1, is defined as [1]

>~
n
o

where wN = exp (-j2n/N) . It is an invertible transformation and the sequence

X, can be recovered using the following inverse DFT (IDFT) relation:

N-1

=1 -nk -

"k‘NZOXn“N , k=0,1, ..., N-1 (1-2)
n:

Many digital signal processing systems employ the DFT for a variety of
applications. The design and implementation of digital filters, spectral ana-
lysis of signals, and detection of targets from radar echoes are a few examples.
As a result, there is a continued interest in finding increasingly sophisticated
algorithms for computing the DFT.

The direct evaluation of X in Eqation (1+1) requires about N2 multi-
plications and additions (hereafter these two arithmetic operations are referred

to simply as "operations"). If N 1is a composite number, however, the compu-

tational burden can be reduced by employing one of the three following algorithms:

(a) Fast Fourier transform (FFT) algorithm
(b) Prime factor algorithm (PFA)

(c) Nested or Winograd Fourier transform algorithm (WFTA)




The factors of N have to be relatively prime for the PFA and the WFTA,
while no such constraint is imposed in the case of the FFi. These algo-
rithms are briefly discussed in Chapter II.

Efficient algorithms to find the DFT of short sequences are needed to
obtain the transform of longer sequences by the PFA and the WFTA. An
efficient procedure for deriving the Short length DFT algorithms, when the
transform length is a prime or a prime power, is discussed in [2]. Algo-
rithms for several short length transforms derived using this method, are
given in [3] and [4]. In Chapter III this procedure is briefly explained,
and efficient algorithms for 9, 11 and 13-point DFT's are presented. The
short length DFT algorithms given in [3] are also listed.

The DFT algorithms can be either programmed on general purpose digital
computers or implemented directly by special purpose hardware. In either
case, finite word Tength arithmetic is used. This introduces error in the
computation of the DFT. It is difficult to evaluate precisely the magnitude
of this error. However, by making certain assumptions about the nature of
errors introduced, a simple statistical model can be developed, and error
bounds can be obtained. The derivation of such bounds in the case of the FFT
has been studied extensively and is discussed in [1] and [5]. Error bounds
for the prime factor and the nested methods of computing the DFT, when fixed-
point arithmetic is employed, are derived in Chapter IV.

Various aspects of the FFT, the PFA and the WFTA are compared in Chapter
V. A processor-based hardware implementation of the PFA is discussed in

Chapter VI. The results are summarized in Chapter VII.




CHAPTER II
DFT ALGORITHMS FOR COMPOSITE N

1. Fast Fourier Transform Algorithm [6]
Let N = rc T

Expressing the indices n and k in Eq. (1-1) as

n=mr, + N, 5 M= 0,1,...,r2-]

, n, = 0,1,...,r]-1

3 (2.1)
k = k“r + k ’ k = 0,1,...,?"-‘ - ]

k2 = 0,],...,?‘2 - ]

and representing the sequences Xn and X as two dimensional arrays. Eq.
(1-1) can be rewritten as

rz -1 r,-1

1
nk, nk.r
: Kinpomgd = D Dy Py 8 kg oky) (2-2)
‘ k2=0 k1=0
Since

wnk]r2 _ wk]n2 (2-3]

N r

)

Eq. (2+2) can be simplified to yield

r,-1

(nyry + n,)k
- [ 2'72
X(n],nz) = E : Wy A(nz,kz) (2.4)

kz-




oo

R ol a oy otad

e b

TR

R L S A A s i n i B

X
x , 2-point °
0 .
3-point DFT
Xy = G X3
2
DFT
et
%4
2-point | X
| DFT
1 —————-—~X4
3-point
X ]
3 DFT
5 1 2-point -—-———-X2
DFT
__“XS

= X(0,0) ———= ] 2-point X(0,0) = Xo
3-point D
= x(0,1) — =1 FT ——X(0,1) = X3
DFT
= x(0,2)
(1,0) = X2
2-point
1,0) ———u DFT —X(1,1) = X5
3-point
= x(1,1) ==
DFT
2) ~ . ——X(2,0) = X
— 2-point (2,0) 4
DF
T X(2,1) = X]

Figure 2. A flow graph of 6-point DFT computation using PFA



where
ry -1
1
kyn,
A(ny.k,) = Z ! x(ky ok,) (2-5)
k] = (

The A array can be obtained in rfrz operations and from this, the sequence

Xn can be calculated in rgr] operations. Therefore, the N-point DFT can
] be computed in N(r] + rz) operations. In general, if N = Py Xy X e X
this method requires H(r1 + ro + ...t rL) operations to compute the N-point
DFT. A flow graph for a 6-point DFT computation by this method is shown in
] Fig. 1. The terms of the form wg (i =1,2,3) in Fig. 1 are called
"twiddle factors."

2. Prime Factor Algorithm [7]

let N = ' Ty and assume that g and ry are mutually prime (that
is, the greatest common divisor of g and ros denoted by GCD(r],rZ), is
equal to 1).

Then, the indices n and k of Eq. (1-1) can be expressed as

1 k = kyry + k,r, (mod N), k, = 0,1,...,r, = 1
11 2'2 1 2 (2+6)
k2= OJ,.“,rl- 1
f nzn‘rzs] + nzrlszimod N), n=20,1,...,N-1 (2:7)
where
ny 2 n(mod r]), n, = 0,1,...,r1 -1
] (2-8)
# nz = Tl(ﬂlOd rz), ﬂ2 = 0,]....,7‘2-1




2l

2k
g

and 51’52 are solutions of

$1T9 1 (mod r])

(2-9)
Spry = 1 (mod r2)

Again, representing the sequences Xk and X, as two dimensional arrays, Eq.

(1:1) can be rewritten as

ry-1 -1
]
(kyr, +k,r,) (n,r,s,. +n,r,s,)
k2-0 k "0
(2:30)
Since r,r,k.n.s r.r,k.s
Eq. (2:10) can be simplified to get
ry -1
]
n]k2
X(n] ,nz) = Z wr] A(n?_,kz) (2_]2)
k2=0
where
r2-] k.n
172 .
Aln, k) = Z W, © Kk oky) (2:13)
k]= 0

That is, the N-point DFT can be viewed as r, r,-point DFT's followed by

12
ro r]-point DFT's. If the g and rz—point DFT computations require M] and M2

Amre— T T




M M
operations respectively, the N-point DFT can be obtained in N(Fl-+ ng
'l n

operations.
The essential difference between the PFA and the FFT are the following:
a. The factors of N must be mutually prime in the PFA
b. There are no twiddle factors in the PFA
c. The index mapping which converts the one-dimensional arrays in Eq. (1-1)
into two-dimensional (in general, multidimensional) arrays is different
for the two cases.

Fig. 2 depicts the computation of a 6-point DFT using the PFA.

(%)
.

Nested Algorithm [3]

The DFT relation in Eq. (1-1) can oe represented in the matrix form

X = Wx (2-14)
where
r—Xo ] (x|
M &
X = , X =
N XN -1
LT L

ij

and W is th2 N-point DFT matrix, the (i,j)th element of which is equal to NN

Let
N = r]rz




GCD(Y‘],Y‘ =]

o)

=
n

ry - point DFT matrix

=
"

2 r2 - point DFT matrix

Then, Eq. (2:14) can be rewritten as

¢ X= P g (W *W,) P

2 (2:15)

ou in X

where Pout and Pin are two NxN permutation matrices, and * denotes the

"Kronecker product" operation.

' -1

t
Furthermore, let X =°¢__ X and x =P, x. (2:16)

in

Then Eq. (2 15), in terms of X and 5' , becomes

X = (N] * Nz) - X (2-17;

It is possible to decompose W as

W= SCT {2:18)
where
T = M x N incidence matrix (that is, a matrix which has
its elements taking values -1, 0 or 1 only)
C=Mx M diagonal matrix
= N x M incidence matrix




T RO T AT T TR L 3 xR

It is easy to see that multiplication of a column vector by Sor T
requires only additions, whereas M multiplications are required to obtain
the product of an arbitrary vector and C. Therefore, M multiplications are
sufficient to evaluate an N-point DFT. It should be noted that for small
values of N, M is approximately equal to N.

Decomposing w] and w2 in a similar manner, Eq. (2-17) can be rewritten as

X = (S]C]T] * SZCZTZ) X (2:19)
where .
wi = SiciTi , 1=1,2 (2-20)
Since
AB * CD = (A*C) (B*D) (2-21)

Eq. (2 19) becomes

X o= (Sy % 5)) - (€ *Cy) - Ty *Ty) - x (2-22)

If the r]-point DFT requires M] multiplications and A] additions, and the

-point DFT requires M

ry , multiplications and A2 additions, the N-point DFT

can be obtained in M]M? multiplications and A]N2 + MZAl additions. Since
the Kronecker product operat.un is not commutative, the number of additions
required depends on the order in which " and r2 are chosen. Therefore,
the order that minimizes the number of additions should be used.

In general, if N has STLPTTREE] as factors, which are relatively

prime, the N-point DFT matrix can be represented as in Eq. (2:13)

S$=35
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If Ai = number of additions required for an r; -point DFT, 1 = 1,2,...,L
Mi = number of multiplications required for an ri-point DFT, i = 1,2,...,L
L
Using this algorithm, the N-point DFT can be obtained in II Mi multiplications
i=1
and

additions.
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CHAPTER I11
SHORT LENGTH DFT ALGORITHMS

The cencral idea behind deriving efficient algorithms for computing the
DFT of short length sequences is to reduce the problem to one of evaluating
cyclic convolutions. It was shown by Rader [8] that if N is a prime, the
N-point DFT can be viewed as an (N-1)-pcint circular convolution. When N
is a prime power (i.e., N = pr, p#2), the N-point DFT can be obtained by
computing a (P—])-pr'] point convolution and two pr'] point convolutions [9].
Efficient algorithms exist for performing circular convolution. These can
in turn be employed to compute the DFT, after replacing it with a convolution
problem. In order to derive these algorithms it is best to employ polynomial
multiplication techniques. To this end, consider the problem of obtaining
the circular convolution of two sequences 3 N = 0,1,...,N-1 and bn'

n=20,1,...,N-1, defined by

N-

1
Cn ) Z akbn“k ’ n= 0)]!0’-gN"‘1 (3.])
k=0

where the indices are evaluated modulo N. Eq. (3:1) can be viewed as a poly-

nomial multiplication problem. That is, if

N- .
p(x) = aix1

1
i=0
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and ;
yv(x) = Z Cix
=Q

then
¥(x) = p(x; - q(x) mod (x"-1) (3-2)

For small values of N, the coefficients of the polynomial y(x) can be com-

puted efficiently as explained below:

k
Let T(x) = N II Ti(x) be the decomposition of T(x) into its
i=l

irreducibles. By the Chinese Remainder Theorem, the coefficients of r(x)
can be obtained from those of ri(x) = p(x) + q(x) mod Ti(x), i=1,2,...,k.
It is shown in [10] that the minimum number of multiplications needed to
compute the coefficients of r(x) in this way is 2N-k. When N is small,
it is possible to achieve this minimum, but for large values of N , the
number of additions required will be very large and this method becomes
inefficient.

Algorithms for finding the DFT of short sequences have been derived and
are given in [3] and [4]. Efficient algorithms for 11 and 13-point DFT's
are presented here. A more efficient algorithm for 9-point DFT than those
in [3] and [4] is also presented. Other known short transforms [3] are also

listed.
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ALGORITHMS

In the algorithms given below, x(i), i=0, 1, ..., N-1, represents input
data for N-point DFT, X(i), i=0, 1, ..., N-1, represents N-point DFT output,

and aps M Cps etc., are variables used for storing intermediate results.

2 Point DFT Algorithm

m]=x(0) + x(1)
m2=x(0) - x(1)

X(0) =m, X(1) =m,

2 adds

3 Point DFT Algorithm

1

a]=x(1)+x(2) m]=é—a\ c]=x(0)-m]
a2=x(1)-x(2) m2=0.86603a2

a, = x(0) + a,

X(0)=a3 X(I)=c] -jm2 )((2)='c1+3m2

1 multiply, 6 adds, 1 shift

4 Point DFT Algorithm

m, = x(0) +x(2)
m, = x{0) - x(2)
my=x(1) +x(3)
My = x(1) - x(3)

X(0} =m, +m X(1) = m, - jm, X(2)=m -m, X(3) =m, +m,

3
8 adds




5 Point DFT Algorithm

a, = x(1) +x(4)
a, = x(1) - x(4)
a3 = x(2) +x(3)
3, = x(2) - x(3)

53 *a

6 91723
a7°3; *+ a4

4
a

ag = x(0) + a,
X(0) =ag

X(4) = c, +jc4

X(l)=c2-jc4

14

m] =0.95106 a

5
m, =1.52884 a,

mg = 0.36327 ay

m4 = 0.55902 a6

=1
Ms =7 9y

4 multiplies, 17 adds, 2 shifts

7 Point DFT Algorithm

a = x(1) +x(6)
a, = x(1) - x(6)
a3=x(2) +x(5)
a, = x(2) - x(5)
a = x(3) +x(4)
6 =x(3) - x(4)

a,=a, +a, +
73 ta, +a

37 %
R
3g=-a3 + a,
No™ " * oy

M Tptra -y
N2t g

379, - 4,

m = 0.16667 3y

m, = 0.79016 ag

mq = 0.05585 a

m, = 0.73430 g
11

12
m, = 0.53397 a3

mg = 0.44096 a
m6 =(.34087 a

mg = 0.87484 a4

X(2) = c3- jc5

X(3) = C3 +jc

L—
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15—x\0)+a7

X(O)=a]5 X(1)=c2-jc5 X(2)=c3--jc6 X(3)=c4-jc7
X(4) =Cy+icy X(5) = c5+jcg X(6) = c, + jc,

8 multiplies, 36 adds

& Point DFT Algorithm

a) = x{0) +x(4) my = x(0) - x(4) Cy=m +m,
a2=x(2)+x(6) m2=x(2) - x(6) Cy=my -,
a3=x(1)+x(5) my=a, ta, Cy =M, +mg
a4=x(3! +x(7) my=a - a, Cq =My - mg
a5=x(l)-x(5) me=as+a,

a6=x(3) - x(7) Mg = a3 -3,

m, = 0.707 (a5 - a6)

mg = 0.7071(a5 + a6)

X(0)=m3+m5 X(])=c] -jc3 X(2)=m4-jm6 X(3)=c2+jc4

X(4)=m3-m5 X(5)=c2-jc4 X(6)=m4+jm6 X(7)=c]+jc3

2 multiplies and 26 adds

9 Point DFT Algorithm

a, = x(1) +x(8)
a, = x(2) +x(7)
ay = x(3) +x(6)
3, = x(4) +x(5)
f ag = x(1) - x(8)

M =3g*3,
m2=x0-‘;—a3

my = 0.86602500 3

1
my=7dg * 2y,

mg = 0.86602500 3,

€=M Mo "My
€1 =My =g+
Ca=Mmy+Mptmg
C3=Mg+my +mg

€4 = Mg +mg +mg




i e Ak A A bt b e

a6=x(2) - x(7)
a7=x(3) - x(6)
ag = x(4) - x(5)
3g=a; +ta,+a,
1073 "% "3
a3 =x(0)+a3

X(0) =,
X(4) = C, - jc5

X(8) = <o +jc3

o T R B Sk et G Lan
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Me = 0.3420200 (a5 + a6)

m, = 0.9848080 (a6 + a8)

g)
mg = 0.9396930 (a2 - a])

mg = 0.6427880 (a5 -a

Mo = 0.1736480 (a4 - a2)

My =0.7660440 (a4-a])
~(1) =c0—jc3
X(5) =c,2+jc5

8 multiplies, 2 shifts and 42 adds

11 _Point DFT Algorithm

a = x(1} +x(10)
a, = x(2) +x(9)
2= x(3) +x(8)

a, = x(4) +x(7)
a = x(5) +x(6)
3 = x(1) - x(10)
a, = x(2) - x(9)
ag = x(3) - x{8)
ag = x(4) - x(7)
a1 = x(5) - x(6)

a +a

n-N"tay,
272313

1373ty

ta,

m,=x(0) +a

0 13
m=1.10 (a4)
m, = 0.33166250
(a14 - 245 - 3g)
my = 0.51541500 (a, - a,)
m4= 0.941253500 (a] -a
mg = 1.41435370 (a, - a,)
Mg = 0.85949300 (ag - a,)
m, =0.04231480 (a - a,)
Mg = 0.3863928C (ag - a,)
Mg =0.51254590 (a, - a;)
Mg = 1.07027569 (a, - aj)
m,, = 0.55486070 (

M =1.24129440 (a, +ay)

X(2) = c - jc

X(6) = m, +jm3

a)

PRIy

c5=m5+m -m7

a X(3)=m3-jm4

X(7) = ¢y +jc4

1 Me* M7
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31473, 3 m, 3 - 0.20897830 (a6-a9) €13 Mg+ My

315=8g+ay, m, , = 0.37415717 (a6+a7) C1q=Mg " Moy
my g = 0.04992992 (ag-am) C15=C5*cytcy
My = 0.65815896 (aa—ag) C16=Cp-Cp~C7
m, 5 = 0.63396543 (a8-aw) Cy7=Cp*Cstcy

Mg = 1.08224607 (a, +a,,)

m]9=0.81720738 (a6-a8) c19=c0+c] -

15 CppTMpteyytegy
€217 37 %M

M, = 0.42408709 (a]4 +a

€227 M Cq7 %
237 %27 %10™™
247 20" 21" S22~ C23
x(0) =m,
K1) =19 dcy X2)=epgticyy  XB)=cigricy  X@)=cyy-icy,
K(5) =g ticy; KO)=crg-dog  KTh=cpptdcy,  X(8)=cpq-dcy,
X(9)=c.|5-jc20 X(10) =c]9-jc24
20 multiplies and 83 adds
13 Point DFT Algorithm
3 =x(1) +(12) m0=x(0)+a]5 o= My- ™
a2=x(2)+x(11) m]=1.08333333a-I5 c]=m7+m6-m2
a3 =x(3) +x(10) my = 0.30046261 (a; s a]3) Cy = My +mg +m,
a4=x(4) +x(9) m3=0.74927933 a6 Cy = Mg = M - m,
a5=x(5)+x(8) m4=0.40113213 a5 c4=c0-m9+m10
a6=x(6)+x(7) m5=0.57514073 (a]6+a]7) C5=Co Mo~ My

L



a, =x(1) - x(12)
a8=x(2) -x(11)
ag = x(3) - x(10)
LIPS x(4) - x(9)
a1y = x(5) - x(8)
ay, = x(6) - x(7)

a,,*a,+a

1373 gt ag
g7 tazta,

+a

R RV
A"t Ty,
di7787 392y
2187227 %
29733- 3
320791 "9
3217358
322718~ %9
3237303y
32047 318% 319
8257320 % 2

26 28712
3277273
%2873
29”237 % 8
3071172
3177391y

a

a

a

me = 0.52422664 a,

18

2

my = 0.51652078 353
mg = 0.00770586 (a22 + a23)
Mg = 0.42763400 a5,

m](,=0.

mzo 3 00

57944000 (a
15439500 a
9065220 a

.10915485 (a28 +a
.04274140 33,
.04524049 637

15180600 3y

24~ 335)
26
27

+81857030 (a2, +a,,)
.19713680 a,,,
86131170 a,,

29)

29058500 (ay +a5,)

6= Co Mg * My
€75 M2 "My
€g=M3~My

€9 " M5~ My

“10* ™6~ M7

11" Mg~ My
€127 Mg ¥ My
C13%M3 - Mg
€147 My = Mg
C15%C1% ¢4

€16~ C2* %
©“17%%-¢

1= 3% C

Clg‘ C4 - C<|
207 % "3

Ca1 = €4+ 3(cy - )
€22°%2"%3 %0
C23" 1% 1+,
€24"C9* 1= Cyy4
25" € %123
€26 ¢3*3(cg-¢yp)
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X(0) =My

X(1) =cqg+cyy X(2) = cqg*3cyy
X(5)=c]9+jc25 X(6)=c20-c26
X(9)=c]8+jc24 X(10)=c]7+jc23

20 multiplies and 94 adds

X(3) = ¢z +jc23 X(4) = Cig - jc24

X(7)=c,,*C X(8)

20 * €26 = C1g - Cys
X(M) =cqg-dey, X12)=¢ g -cy
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CHAPTER IV
FIXED POINT PFA AND WFTA ERROR ANALYSIS

The DFT algoritnms are often implemented by special purpose digital hard-
ware using fixed point arithmetic. Accuracy requirement is one of the impor-
tant factors which influences the decision about the word size of such implemen-
tations. Therefore, it is desirable to ectimate the roundoff noise generated
in the DFT computation. The eff~ct of fixed point arithmetic on the roundoff
noise in FFT computations has been studied in [11] and [12]. An estimate of
the roundoff noise in the case of the PFA and the WFTA is obtained here using
a statistical modei.

Addition and multiplication by constants are the only two arithmetic
operations needed to implcment the DFT algorithms. If the input data is
properly scaled to avoid overflow during additions, no error will be introduced
in the DFT output due to addition operations. However, when two fixed point
numbers are multiplied, the result has to be rounded. This introduces roundoff
error in the DFT output. To model the effect of rounding, an additive noise
source is associated with each real multiplication. The model for fixed-point
multiplication is shown in Fig. 3. Each roundoff noise (error) sample e is

e

+
X y=xk + e

Fig. 3 A model for fixed-point multiplication operation.

modelled as a random variable with probability density function as shown in
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Fig. 4. Furthermore, it is assumed that the error introduced by each multi-

Po(n)
b=word size (in bits) -1
p=2"P
’ %— Mean = ye = 0
F Variance = oé = Z'Zb/12

1
~of B>
N >

e{n)
Fig. 4 Probability density function for roundoff error.
plication operation is statistically independent of all other errors and of

the input.

Fig. 5 shows a roundoff noise model for an N-point short length DFT algo-

rithm. The error vector E is defined as

£
|
. My, multipTica- .
Input Additiong N L. Output addi-
Input{x S tions :
‘E“"L(?‘Qlﬁ“;“%ﬁ' S (Multiplica- — o e [Output(x)
| y Hon by 0 GRS

Fig. 5 Roundoff noise model for an N-point short length DFT algorithm.

£ = (e] e, ... ey) {4-1)

where ei(i = 1,2,...,M) represents roundoff error due to multiplication by the

S ————— R S

constant C{i,i). It should be roted that if iC(i,i)] = 1, then for all inputs
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e. = 0. Furthermore, if the input data is complex, the variance of non-zero

componeats of E is Zog .

1. WETA

In the WFTA, the N-point DFT relation is expressed as
X = S(CTx +E) (4-2)

where S, C, T, 5f, and xf are as defined in Eq. (2-18), and E is an (MX1)

error vector (See Fig. 5). Therefore
error in the DFT output = SE (4-3)
clearly
E[SE] =0 (4-4)

where E[.] 1is the statistical expectation, and total mean square error in

the DFT output (TMSE)

N M
- D D istial? - o (4-5)
=] j=1
|C(3,3)] #1

Let 1 AN 2
Py D DIt (4-6)

Table 1 1lists the values of P for several short iength transforms.

0 = e L
Furthermore, let N = "pX Ty X X T ard Fls “us eves Ty be relatively

prime. Since
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S=S %S, * ... xS (4-7)

N M
DD ISP = N, L (4-8)

where Pi is as defined in £q. (4.6) for N = rs- For all valuas of N, it
can be verified that

c(1,1) =1 (4-9)

and S(i,1) =1, i=1,2,...,N (4:10)

Using Eqs. (4 8) - (4 10), it can be shown that

THSE < 2 N2 o2 (fﬁ?ﬂ—i - 1) (4-11)
or, equivalently,
THSE < 2 K, N ol (4-12)
where
K = flfg_:;;_fL - (4-13)

It is intcresting to note that the roundoff noise does not depend on the
order in which short length transforms are combined to obtain Tonger length

transforms.
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N P q v
2 ] 0 0
7 4 2
3 3 3 3
6
4 7 0 0
21 16 4
5 5 5| 3
; 43 B 6
7 7 7
22 8 ]
8 El 3 7
61 42 7
9 £l g3 | 12
" m 100 | 10
R i B
13 157 144 | 12
| 13 3| 13
6 86 8| 7
T6 16 60

Table 1. Table of P, g and V for short length transforms
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2. PFA

To include the effect of rounding in the DFT computation by PFA, Eqs.(2-12)
and (2:13) have to be modified, and these modified equations can be expressed
in the matrix form as

-

x(0,0) x(0,1) .o x(0,r2- 1)
x(1,0) x(1,1) R x(],rz- 1)
x(r] -1,0) x(r] -1,1) C x(r] -1, rs- 1)
_ N
=5, ¢ T A H S [E (D) E(2) L. Ey(r,)] (4-14)
and
[ x(0,0) x(0,1) Co. . x(O,r]—l)
x(1,0) x(1,1) .. x(i,r,-1)
A= 5Ty
x(rZ-I,O) x(rz-l,]) o x(ry=Tory=1)
tS | EM E,(2) C E,y(ry) ] (4.15)
respectively, where At = transpose of matrix A, and E](i) (i=1,2,...,r2)

and E2 (i) (i=],2....,rl) are error vectors resulting from ry r]-point

DFT computations, and ry r]-point DFT computations respectively. It can be
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shown that

Expected error at the output = 0 (4.16)

Since the error vectors are uncorrelated,

oM
TMSE = {rz E . 15,13} ‘

i=1  j=1
£,y
r M
2
2 .oy 2 2
+ r :Ei |52(1,J)| } .20e (4.17)
i=1  j=1

i 2
= Mo, (gy + 1y q,) (4.18)
where
roo M,
B Con?
% w2 15, (3,614, i = 1,2 (4.19)
Vsl k=)

Table 1 shows the values of q for several short length OFT's.
If N has Pys Tos «oes T3S L mutually prime factors, Eq. (4.18)

can be generalized as

_ 2
TMSE = 2Ng, (q] MESTCPIAERTREE N S PURPRI qL) (4.20)
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_ 2 2
= 2K2 N o, (4.21)
where
q q q
L L-1 1
K, = — + + + (4.22)
2T TIPS IEER Y

It is clear from Eq. (4.20) that the roundoff noise depends on the

order in which the short length DFT's are performed. In Eq. (4.18) the

TMSE is minimized if rs and rz are selected such that

Py Gy * Gy STy Gt gy (4.23)
or
I (4.28)
r]—i h rz—l )

In general, the TMSE in Ea. (4.20) will be minimum, if

V] ) <V (4.25)

5 S e

where

q

_ 5 C
e 1,2, oo L (4.26)

For short length transforms, the value of V is listed in Table 1. The
factors of N should be ordered according to the size of V to minimize

the roundoff error.
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Similar results are obtained in [12] for the FFT case and are given below:

Expected error in the output = 0 (4.27)
and
2
- 2 (N . 4
TMSE = 2 a, ( 3 N + 3) (4.28)

where N is the transform size. For large values of N ,

TMSE = 2 ag k. N (where k., =

3 ) (4.29)

| —

3

Table 2 lists the values of k, and k, , defined in Egs. (4.13) and (4.22)
respectively, for several long length transforms. By referring to Table 2
and Eq. (4.29), it can be concluded that the fixed point roundoff noise in all

; the three algorithms will be of the same order of magnitude.

N K, ky
120 0.22 0.21
240 0.22 0.15
| 1,008 0.22 0.15
f 4,095 0.52 0.76
E 8,190 0.26 0.38
E 16,380 0.19 0.19
E 32,760 0.18 0.22
i 65,520 0.17 0.18

Table 2. Table of k.l and k2 for

several values of N.
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CHAPTER V
COMPARISON OF DFT ALGORITHMS

Let N = Fpalose el where PsTseeeslp  are mutually prime.

I
1t

number of additions required to compute ri—point DFT

Mi number of multiplications required to compute ri-point DFT

Table 3 lists the operation counts for several short length DFT's.

As discussed earlier, the number of additions required to compute the
DFT using the WFTA depends on the order in which short length transforms are
combined. In the following discussion, without loss of generality, it is
assumed that PpsTeneaosly (with ry as innermost factor) is an ordering which
minimizes the number of additions. Throughout the discussion, radix-2 FFT
algorithm is implied whenever reference is made to the FFT algorithm.

1. Number of arithmetic operations (for complex data)

(i) FFT [9]): Let N = 2™, for some positive integer m, and N >> 2

No. of real additions = 3N 1092 - 3N

(5.1)
No. of real multiplications = 2 N]ogg - 6N
(i1) WFTA
AL A M.)
No. of real additions = = Z - —l‘
I‘ r r.
J
j=itl
L
No. of real multiplications = 2 [] M,
i=1

| f
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No. ot No. of No. of

N Mults Adds Shifts

2 0 2 -

3 1 6 1

4 0 8 -

5 4 17 2

7 8 36 -

8 2 26 -

9 8 42 2
1 20 83 -
13 20 94 -
16 10 74 -
Table 3. Short Length DFT cperation count
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(iii) PFA )
No. of real additions = 2N Z A;

(5.3)

L
L M.
No. of real multiplications = 2N }E: Fl
i

Table 4 Tists the rumber of multi.lications and additions required to compute
several longer length transforms using these three algorithms. It is inter-
esting to note that some of the transform lengths listed for the PFA and WFTA
are close to powers of 2. It can be seen that the PFA requires fewer number
of arithmetic operations than the other two algorithms, for wide range of
values of N.

2. Memory Requirement

The memory required for implementing the DFT algorithms can be broadly
classified into the following three categories:
a. Data memory
b. Coefficient memory
c. Program memory
The FFT and the PFA are "in-place" algorithms; that is, new results
after each stage of computation can be restored over the data used to compute
the results. On the other hand, the WFTA is not an "in-place" algorithm and
requires more data space compared to the other two algorithms. In fact, the
memory size required is approximately equal to the number of multiplications
to be performed in the computation of the DFT (see Table 4).
Table 4 also lists the coefficient memory required for computing

several longer length transforms. It can be seen that the number of coefficients
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to be stored is significantly less for the PFL compared to the other two
algorithms. The sine-cosine values required in the FFT method can be computed
recursively as needed; thus savings in memory space can be achieved. The
disadvantage of such a scheme is that the computation time is increased by
about 15%. Similar savings in the memory requirements can be achieved in the
case of the WFTA. However, such implementations could be very inefficient in
terms of speed.

Of the three DFT algorithms being considered, the FFT program requires
minimum space. Besides this, input and output re-ordering is very systematic
for the FFT, where as they are less so and may require storage in the case of
the other two algorithms. The computation of the re-ordering vectors as they
are needed saves storage, but is less efficient. However, by using a different
input-output re-ordering scheme and adding a small amount of extra hardware,
in the case of special purpose hardware implementations, this storage space
can be saved. This is discussed further in Chepter VI.

3. Programming Complexity

Programming of the FFT is much simpler compared to the other two algorithms.
This is mainly because of the compiicated indexing scheme to be used in the
PFA and the WFTA. To illustrate this, a FORTRAN program for 120-point PFA is
listed in the Appendix. This can be compared with the FFT programs given in
[1]. 1t should be noted that the WFTA is not an ianplace algorithm. This
further complicates .he programming of WFTA.

4, Effect of finite word-length arithmetic

The use of finite precision arithmetic in the DFT computation introduces
error in the output. The effects of finite register length in FFT calculations

js discussed in [1, 5, 11, 12]. Because of the complicated structure of the
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PFA and the WFTA, it is difficult to analyze the effects in these algorithms.
The PFA and WFTA require fewer arithmetic operations compared to the FFT.

It is very likely that the floating-point DFT computation by these methods will
introduce smaller error than in the case of the FFT. By computing the coeffi-
cients needed using higher precision arithmetic, the effects of coefficient
quantization can be reduced in all the methods. The effects of fixed point

arithmetic in DFT computation was discussed in Chapter IV.
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CHAPTER VI
A HARDWARE IMPLEMENTATION OF PRIME FACTOR ALGORITHM

It is often necessary to build special purpose hardware for computing
the discrete Fourier trausform. With the availability of low cost micropro-
cessors, it is now economical to conceive of processor-based hardware struc-
ture. The WFTA is not suitable for this purpose if transforms of long
sequences are required. In such cases, a choice has to be made between the
FFT and the PFA. Multiplication is one of the slcwer arithmetic operations
in processor-based systems. The ratio of multiply to add times could be as
large as 10 to 15. Therefore, from the earlier discussion it is evident
that the PFA is better suited for this purpose than the FFT. Furthermore,
there are certain other advantages in using the PFA for hardware implementa-
tion, and this will be made clear soon.

A simple block diagram of PFA hardware is as shown in Fig. 6. The dia-
gram is self-explanatory. The coefficients are stored in the read only
memory (ROM). The initial and final reordering vectors are also stored in
the ROM. The DFT algorithm is implemenced at the microprogram level to
increase the speed of the system. The input-output section is not shown

in the diagram.

This system can be speeded up further by adding a few irexpensive hardware
blocks to it. By providing a small number of high speed storage registers
(a maximum of 64 words is sufficient for N as large as 720,720) it is pos-
sible to reducc the number of accesses tn the data memory. The intermediate
results during computation of short length DFT's can be stored in this fast

memory. If N has L factors, then each data point is accessed (for




Control Urit

Microprogramyzd !
i

Memery for storing

fficients and Arithmetic and Duta !
%0 reord 5.an > Logic Unit O Memory
/0 reordering ( RAM,;

vectors (ROM)

- — = — : ccntrol flow

e : data flow

Figure 6. A Block Diayram Of PFA Hardware

readirg and storing the result after each stage of computation) ZL times
and therefore, the duta memory is accessed only 2NL times. It shculd be
noted that the use of a fast memory like this will also reduce the number of
data memory accasses ‘n systems implementing the FFT [5] and the WFTA. By

using 2v4i—(or ZJEN if Jﬁd is not an integer) fast memory locations, the

number of data memory accesses in the FFT can be reduced from Zlogg to
24109y [os 1+logh if SQRT(N) is not an integer]. In the case of WFTA,

the number of Jata memory accesses required is given by the following expression
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L L
2+4 Z Z (/M) where N = Ni,N,,... N, and (6.1)

Mi = No. of multiplies required for
N-point DFT.

Table 5 shows a comparison of this. It is interesting to note that, for a

given transform size, the PFA requires the least numter of memory accesses.

)

N FFT PFA WITA
4K 14 8 19
8K 14 10 23

16K 16 10 23

32K 16 10 23

64K 18 10 26

Table 5. No. of data memory access per point in the three algorithms.

Sometimes the number of slow memory accesses can be further reduced by
using the WFTA to combine several shorter DFT algorithms. For example, a
120-point OFT can be implemented with 8 and 15 as factors of 120. The WFTA
can be used to obtain tne 15-point DFT algorithm from 3 and 5-point DFT
algorithms. By doing so, the number of arithmetic operations are not
increased, but the number of data memory accesses is reduced by about 30 per

cent (compared to the 120-puint DFT implementation with 3, 5, and 8 as factors).
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The coefficients in the PFA are either purely real or purely imaginary.
This fact can b2 used to speedup the system further by using an extra arith-
metic and Togic unit (ALU). The width of microinstruction will have to be
increased by a few bits to generate the additicnal control signals needed.

A modified block diagram is shown in Fig., 7. The real and imaginary parts

of the data are processed separately. Whenever the coefficient to be multi-

plied is real, there will not be any interaction between the two ALU's, but
if the coefficient is imaginary, the results after the multiplication are

exchanged between the two ALU's.

Two 1/0 registers IOREG] and IOREG2 are used for this purpose. The ALU1
and ALU2 can load registers IOREG) and [OREG2, and read from registers IOREG2
and I0REG] respectively. The system shown in Fig. 7 can be thought of as two
identical processors working in parallel and controlled by a single controller
(CCU). The addresses of IOREG] and IOREG2 for SYS1 are identical to the addres-
ses of registers IOREG2 and IOREGI respectively, for SYS2. The other blocks

in Fig. 7 are self-explanatory.
Let Xi be the number of multiplications by imaginary coefficients (in-
cluding coefficients +j1)in an N1-point DFT computation. Then the number of

a exchanges between the two ALU's is given by the expression

i(xi/Ni) {6.2)
i=1

The values of X's for different short length DFT's is shown in Table 6.
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As mentioned earlier, 2N ROM Tocations are needed to store input and output
reordering vectors in the PFA. However, by using a different scheme to con-

vert the sequences Xn and Xy s in Eq. (1.1), into multidimensional arrays,

N memory locations can be saved. To explain further let N = S1P) and

GCD(r],rz) = 1. The indices n and k in Eq. (1.1) can be expressed as:

3
Hit

N rosy + norys, (mod N) n=20,1,...,N-1 (6.3)
k = k]rzs1 + kzr]s2 (mod N) k = 0,1,...,N-1 (6.4)
where Nys Mo k], k2, 5 and s, are solutions of
ny =N (mod r])
n, =N (mod rz)
k] z k (mod rl)
k2 = k (mod rz) (6.5)
roSy = 1 (mod r])
and Sy = 1 {mod r2)
respectively. By the Chinese remainder theorem,
nk = n‘k]s]r2 + "2k252r1 (6.6)

Representing the sequences Xy and Xn in Eq. {1.1) as two dimensional arrays

and using Eqs. (6.4) - (6.6), the DFT relation in Eq. (1.1) can be rewritten as




TR

4

2 . s,Kk,n ryl S N, N
l\
X(nysn,) z:wzzz Z: w“‘ x(ky, ko) (6.7)
ro 17 72
k2=0 k“=0

r]"‘]

ro-1
iy ko

- Y "‘r P, Z w 1 ko) (6.8)
k=0

where P] and P2 are permutation matrices and the elements of P] ( or P2)
depend only on the numbers 54 and ro (or P and r]). A simple modification
of the short length DFT's can take care of these permutation matrices; thus a
saving of N memory locations can be achieved. These mapping vectors can also
be computed as and when needed, without affecting the system speed, by using
a few extra hardware blocks (such as, counters, adders) [13]. This scheme is

useful only when N is large.

N X
2 0
3 1
4 1
5 3
7 4
8 3
9 5
N 10
13 13
16 8

Table 6. No. of imaginary coefficients in short length DFT algorithms.
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CONCLUSION

Efficient algorithms exist for computing the DFT of long sequences, when
the sequence length is a composite number. The FFT, the PFA and the WFTA are
three such algorithms. In this report, various aspects of these algorithms
were discussed. Efficient algorithms for 11 and 13-point DFT's were pre-
sented. Using these and the other short length transforms, the DFT of very
long sequences can be obtained by the PFA and the WFTA, in fewer number of
multiplications than in the FFT,

In the PFA, the DFT of a long sequence is obtained by performing a number
of short length DFT's. This fact can be used to design high-speed dedicated
hardware for DFT computation. Moreover, the PFA requires fewer arithmetic
operations (i.e., combined additions and multiplications). Hence, it is
expected to introduce smaller error due to finite word length arithmetic.

The FFT requires fewer additions than the cther two algorithms, but the
number of multiplications needed is considerably greater. It is, however,
important to note that the FFT lends itself to more systematic programming.

The WFTA requires the least number of multiplications among the three
algorithms. However, the number of additions required is slightly more than
the others for transform sizes up to few thousands and becomes formidable
for very long transforms. Furthermore, it requires more data and program

memory than is required for the other two.
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APPENDIX

This Appendix lists a FORTRAN program for obtaining the DFT of 120-points,
by the PFA. By making minor modifications at the places indicated, this pro-

gram can be used to implement all the 3-factor PFA's.
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4
| msrmrsmnﬂltlggﬂmf/ 1oM
c FE0M O0FY FURNISHED
C 120-POINT DFT ALGGRITHM
C
c
C N ‘TRANSECRM SIZE
C N1, N2, N3 MUTUALLY RELATIVE FACTORS OF N
c Kl = N2»N3
C X COMPLEX ANRAY OF DIMENSION N
c
c
INTEGER Ni. N2, N3/ STADR, STEP, TSZE
C
C THE FOLLOWING 3 STATEMENTS ARE TO BE MODIFIED IF N IS MODIFIED
C
COMPLEX X(12G:
COMMON /STOREL/ X, STADR, STEP, TSZE /STORE2/N, N1, N2, N3, K1
DATA N, N1, N2, N3, K1,120.3, 5,8, 40/
c
C READ DATA rROM INFUT FILE 1N THE RESUIRED ORDER
C
PO 1t I = i,N
IND={
g K = IROM:« [ND)
g i READ (Z1,2) X(K)
: c
{ C FORMAT OF INPUT FILE
¢
t 2 FORMAT (2F )
, c
C STARTING OF THE PFA
c
c PERFORM N1#N2 N3-POINT DFTS
c
STEP = |
TSZE = N3
C
DO 3 STADR = 1. N-N3+1,N3
3 CALL SHORTR
‘ c
1 C PERFORM NL¥NI N2-POINT DFTS
i c
' STEP = N3
TSZE = NQ
ICNT = O
c
DO 4 I = 1,N1
DO %S U = |,STEP
STADR = [CNTey
‘ =
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!HISPQGEIBBEBTQUIUITYPRIGfUﬂﬁnm
L FRO0M COPY FURNLSHED 0 DDG e
CALL SHORTR
ICNT = ICNT+K1

PERFORM N2#N3 Ni-POINT DFTS

OO AWN

STEP
TSZE

0%

Ki

N1

DO & STADR = 1.4
CALL SHORTR

REDRDER THE RESULT anD OUTPUT

aAOO0 (g ]

DO 7 7T = 1.,H ]
IND=1I

K o= IROM{ING

WRITE (22.3! L, Xk}

, FORMAT( s fOx, "0¢ I3, 3*,5%X,F15.8, 7, *.F15. 8}

B STOP

‘ END

o~

THE FUNCTION ROM HAS T BE MODIFIED IF THE NUMBER OF FACTURS
ARE CHANGED.
INPUT/QUTPUT MAPPING ROM TABLE LOOK-UP SIMULATIGN

OO0

; INTEGER FUNCTIMN 1ROM(I) i
! COMMON /3TORE2/M, RL. R2, R3, ki

# . INTEGER R1 K2, R3, Ki
Il = I-1

Ni = MOD(IT,Ri}

N2 = MOD(II.R)

N3 = MOD(II,R3‘~1

| IROM = Niak1rNZeRI+ND
RETURN

i END

SHORT LENGTH DFT AL GORITHMS

s NeN el

SUBROUTINE SHORTR
IMPLICIT COMFLEX (A-H, J2)

THE FOLLOWING STATEMENT HAS TO BE MODIFIED IF N IS CHANGED

(s ReXe]

| COMMON /STOREL/X, JO, ISTP, ISZE
DIMENSION x(120)

THE FOLLOWING STATEMENT IS 70 DE CHANGCED IF OTHER SHORT
LENGTH TRANSFORME8 ARE ADDED

-
OO0

GO TO (1,1,3 L, %, 1,1, 8) IS2E
DATA J/7(0. 0,1 Q)/
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3-POINT DFT FHOM COPY ”

11 = [0+ISTP “
12 = I1+ISTP  °

INPUT ADDITIONS
X(I1)+X(I2)

X(I1)=X(I2)
X(I0)+Al

>
N
oUW

MULTIPLICATIONS

M1
M2

0. GxAL
0 B640GeA2

W

OUTPUT ADDITIGNS
OQUTPUT ORDERINM: HAS TO BE MODIFIED IF FACTORS OF 1 ARE CHANGED

C1 = X(I0)—Mi
X(I0) = AT

JM2 = —JTIMES(M2)
X(I1) = Ci+um2

X(I12) = Cl-JM2 L)
RETURN

5 — POINT DF1Y -
I1 = IC+ISTP

12 = T1+18TP

I3 = [2+I8TP

I4 = I3+I5TP

INPUT ADDITIONS

Al = X(I1)+(1&)
A2 = X(I1)-X(I4)
A3 = X(I2)+(I3)
A4 = X(I2}-X113)
A3 = A2+A4

A6 = Al-AJ

A7 = A1+A3

AB = X(10)+A7
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: c MULTIPLICATIONS 2

. 95106#A5 ~ ° YHIS PAGR TS BEST QUATLYY PRACSTCANIE -
S3684-A2 : mmmmm PTS
. 36327%#84 . - v
55902*[30& . - s ™
25#A7

X
W
auhue

SO0 Q

c . ) -
' ' C QUTPUT ADDIT (ONS - ; S
c

X¢10) M8 - \ .
€144 : - .
C1-64 ‘ '
MI""B - 4

JTIMES(Ca) ; .
M2-M1 .
STIMESICT . . . g

X(I0} = AR

Q)
4
W4 H U U«

0

INDICES 'OF x YO 8% WODRIFIFD IF FACTORS OF N ARE CHANGED

X{I1)
Xx([2)
' X(13)
| # X{i4}
RETURN

oy W
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8 - FOINT TRANSFORM

nMoaOO

{1 = 1Q+ISTP
1@ = I[1+787TP 4
k I3 = I2+[5TP :
14 = T3+157P
IS = [d4 [8TP ¢
16 = InDs 8w , ]
I7 = le+I3TF : . §
‘ C : ‘g
A C INPUT ADDITIONS ' %
Al = X{IQ)+X{14, i:
g A2 = X(I2)eNCT4 :
A3 = NI +X(TIH
Ad = X{T1)=~X{1%)
A8 = XIS +Ac D)
Ab = X{IN-X(I?)
A7 ® AL+AD “
2 AB = A3+AY o
B B . .
aE
3 Kl .
. :
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]
MULTIPLICATIONS ms?‘“;?ﬂ‘w
MO = A7+AS ﬂ"m
Ml = 47-48 '
M2 + AL-A2
M3 = X{TO)-Ktl4y
M4 = (Ad-AnI4G TO710
M5 = A3-AJ
M5 = ~JTIMES(M5)
Mb = X1 [2Y-2t1a)
ME > ~UTIMES (M&)
M7 = (Ad4+A&I=Q 707107
M? =  JTIMES (M7

QUTPUT AanL1TINHNS

C1l = M3+Md
C = M1 M4
C3 = Mé+M?
Cd = Mo--M7

QUTPUT ORDER [s ddag YO OF MODIVIED IF -AlTOR: OF

X(I0Y = MO
X(i1) ~ o1 -C
XOI2Y = M -MS
X(I3Y = Covlew
X(I4) = M1
XCI%) = C2-C4
X{(I6) = M+MY
¥(I?) = Ct+CJ
RETURN

RETURN

END

HULTIPLICATLON OF ~ COMPLEZ CUNSTANT v JI

COMPLEX FUNCTION JTYIMES(A)Y
COMPLEY A

B = REAL (A"

C = ~AlIMAGIA:

JTIMES = COwlave o7
RETURN

END

hoARE + HANGED
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