

.

ŧ

Report No. FAA-RD-77-175

LEVEL

EMISSION SAMPLE PROBE INVESTIGATION OF A MIXED FLOW JT8D-11 TURBOFAN ENGINE

Gerald R. Slusher

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research & Development Service Washington, D.C. 20590 21. 036

NOTICE

. .

1

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page Recipient's Catalog No. 1. Report No. C Gernme FAA-RD-77-175 Title and Subs EMISSION SAMPLE PROBE INVESTIGATION OF A MIXED July 1978 FLOW JT8D-11 TURBOFAN ENGINE rforming Organization Code erforming Organization Report No. 7. Author's) Gerald R. Slusher FAA-NA-77-40 9. Performing Organization Name and Addres WOR UNIT NO. (TRAIS) Federal Aviation Administration National Aviation Facilities Experimental Center 11. Contract or Grant No. Atlantic City, New Jersey 08405 201-521-100 Type of Report and Period Covered 13. 12. Sponsoring Agency Name and Address U.S. Department of Transportation Final Y Federal Aviation Administration January 1973-June 1977 Systems Research and Development Service Washington, D.C. 20590 15. Supplementary Notes 100 16. Abstrac An investigation of the emissions in the exhaust plume of a mixed flow JT8D-11 turbofan engine was conducted in order to optimize the shape, size, and location of fixed probes for acquiring representative emission samples. Traverse of 177 points over the exhaust nozzle were accomplished on a 2-inch-square grid. The average emission levels, contours, and profile distributions were determined. The predicted performance of area weighted cruciform and diamond probe designs were calculated from interpolations of the traverse contours. Exhaust emissions were measured with: (1) five mixing cruciform probes, (2) multihole averaging probes in the core, and (3) the engine turbine discharge pressure probes. Detailed traverses across engine power are considered necessary for representative emission measurement because of limitations existing in all fixed probing techniques investigated. 17. Key Words 18. Distribution Statement Turbofan Engine Document is available to the U.S. public Exhaust Gas through the National Technical Information Traverse Service, Springfield, Virgina 22161 Probing Emissions 21. No. of Pages 22. Price 20. Security Classif. (of this page) 19. Security Classif. (of this report) Unclassified Unclassified 60 For DOT F 1700.7 (8-72) Reproduction mpleted page authorize

METRIC CONVERSION FACTORS

	Symbol		.5	5 4	= 1	2.5					2	P.	, E						8 4	2					11 02	E 1				2				*0 *0			9F	212	
c Measures	To Find		inches	inches	Teet	yarus	-				square inche	square yards	square miles	acres					ounces	spunod	Short Trons				fluid ounces	pints	quarts	gallons	Cubic teet	CUDIC Yards					Fahrenheit temperatur				
ions from Metri	Multiply by	LENGTH	0.04	4.0	5.5		0.0		AREA		0.16	1.2	0.4	2.5			ISS (weight)		0.035	2.2	11		VOLUME		0.03	2.1	1.06	0.26	8	5.1		TAUTA INTER	HAIUNE (CXACT		3/5 (then add 32)			98.6	
Approximate Convers	When You Know		millimeters	centimeters	meters	meters	KIIGUGELS				square centimeters	square meters	square kilometers	hectares (10,000 m ²)			W		grams	kilograms	tonnes (1000 kg)				milliliters	liters	liters	liters	cubic meters	cubic meters			IEMT		Celsius temperature			oF 32	40 0 40
	Symbol		æ	cm	E	E 1	EN I				cm2	N.E.	km ²	ła					6	kg	-				Ē	-	-	-	je "	, E					°c				•
53 	52 	12 02		51 		B1		21		91 		ST		•	 	8	r 	21				0		6		8		2			•		s 		•	3		2	
» ' '		8 ' ' ' '	""	" '	('	'l' 7	'l''	"	'1'	'I'	' 6	'ľ	T	'I	ľ	"	' ' 5	'' '	"	ʻľ	"	' ' 4	'''	 '	'ľ'	"	' ' 3	[']	ľ	'l'	'I	'	' ' 2	"1"	ľ	'I'	' ,	יןי י	"
		Inder			cm	E	E	Ę				cm,	ν _E ΄	"E	km*	ha			e		-				le.	Ē	Ē	-	-	-	-	m _E	۳E			°c			
Measures					centimeters	centimeters	meters	kilometers				square centimeters	square meters	square meters	square kilometers	hectares			grams	kiloorams	tonnes				milliliters	milliliters	milliliters	liters	liters	liters	liters	cubic meters	cubic meters			Celsius	temperature		
ersions to Metric	Mathematical State		LENGTH		.2.5	30	6.0	1.6		AREA		6.5	60.0	0.8	2.6	0.4	ICC (mainho)	linihiant con	28	0.45	6.0		VOLUME		5	15	30	0.24	0.47	96.0	3.8	0.03	0.76	(PATIRE lavart)	Interest and the	5/9 (after	subtracting	32)	
Approximate Conv		MONA BOT ROMA			inches	feet	yards	miles		-		square inches	square feet	square yards	square miles	acres	A M		ounces	spunod	short tons	(2000 lb)			teaspoons	tablespoons	fluid ounces	cups	pints	quarts	gallons	cubic feet	cubic yards	TEMPE		Fahrenheit	temperature		
		Interior				#	pA	Ē				¥e "	#*	×42	, E				20						tsp	Thsp	fl oz	c	đ	đ	gal	ft3	rd ³			4 °			

TABLE OF CONTENTS

Page

INTRODUCTION	1
Purpose Background	1 1
DISCUSSION	1
Description of the P&W Aircraft JT8D-11 Turbofan Description of Traverse Probe Mechanism Description of Cruciform Sample Probes Description of Core Sample Probes Description of P _{T7} Sample Probes	Engine 1 1 1 2 2
RESULTS	2
Traverse Contours Traverse Profiles Cruciform and Diamond Probe Calculations Traverse Emission Indices and Efficiencies Cruciform Probe Test Results Core Probe Test Results PT7 Probe Test Results	2 4 5 9 12 12
SUMMARY OF RESULTS	12
CONCLUSIONS	14
REFERENCES	15
APPENDICES	

A - Traverse Emission Concentrations

- B Engine Performance and Traverse Average Emission Indices
- C Engine Performance and Cruciform Probe Emissions
- D Engine Performance and Core Probe Emissions E Engine Performance and P_{T7} Probe Emissions

WTIS DOC	White Section
UNANNOUNCED	
JUSTIFICATIO	L
W	
DISTRIBUTIO	N/AVAILABILITY CODES
BY DISTRIBUTIO Dist.	N/AVAILABILITY CODES Avail, and/or special

LIST OF ILLUSTRATIONS

Figure		Page
1	JT8D-11 Engine Test Installation	16
2	Traverse Probe Mechanism	17
3	Traverse Emission Sample Points	18
4	Cruciform Probe Installed in Mixer Pipe	19
5	Core Emission Sample Probes	20
6	Exhaust Emission Traverse MapsIdle Power	21
7	Exhaust Emission Traverse MapsHolding Power	22
8	Exhaust Emission Traverse MapsApproach Power	23
9	Exhaust Emission Traverse MapsMaximum Continuous Power	24
10	Mixer-Traverse MapsIdle Power	25
11	Emission Concentration Distribution45°, Run 119Idle Power	26
12	Emission Index Distribution45°, Run 119Idle Power	26
13	Emission Concentration Distribution90 ⁰ , Run 119Idle Power	27
14	Emission Index Distribution90°, Run 119Idle Power	27
15	Emission Concentration Distribution45 ⁰ , Run 124Idle Power	28
16	Emission Index Distribution45°, Run 124Idle Power	28
17	Emission Concentration Distribution90 ⁰ , Run 124Idle Power	29
18	Emission Index Distribution90°, Run 124Idle Power	29
19	Emission Concentration Distribution45 ⁰ Approach Power	30
20	Emission Index Distribution45 ⁰ Approach Power	30
21	Emission Concentration Distribution90 ⁰ Approach Power	31
22	Emission Index Distribution90 ⁰ Approach Power	31
23	Emission Concentration Distribution45 ⁰ Maximum Continuous Power	32
24	Emission Index Distribution45 ⁰ Maximum Continuous Power	32
25	Emission Concentration Distribution90 ⁰ Maximum Continuous Power	33
26	Emission Index Distribution90 ⁰ Maximum Continuous Power	33

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
27	Recommended Emission Sampling Probe	34
28	Comparison of Fuel-to-Air RatiosEngine Traverse, Mixer Traverse, and Core Probes	35
29	Effect of CO ₂ on the Pollutants	36
30	Core Probe PerformanceCO EI, THC EI, NO_X EI	37
31	Comparison of Fuel-to-Air RatiosP _{T7} Probes, Core Probes, and Traverse	38
32	P _{T7} Probe PerformanceC0 EILow Smoke Combustion Chambers	38
33	${\tt P}_{\rm T7}$ Probe PerformanceTHC EI and ${\tt N0}_{\rm X}$ EILow Smoke Combustion Chambers	39

LIST OF TABLES

v

lable		rage
1	Cruciform Probe Sample Velocity and Hole Location	3
2	Calculated Cruciform Probe Performance12 Points Area Weighted from the Traverse Maps for 30-Inch Diameter	6
3	Calculated Cruciform Probe Performance12 Points Area Weighted from the Traverse Maps for 26-Inch Diameter	7
4	Calculated Diamond Probe Performance12 Points Interpolated from Traverse Maps	8
5	Traverse Emission Indices and EfficienciesHigh Smoke Combustion Chambers	10
6	Cruciform Probe Test ResultsIdle PowerHigh Smoke Combustion Chambers	11
7	Core Probe Test ResultsIdle Power	13

INTRODUCTION

PURPOSE.

The purpose of this report is to define variability in aircraft turbine engine emission measurements as related to acquiring representative emission samples with fixed probes. The results of an exhaust emission probe investigation of the Pratt and Whitney (P&W) Aircraft JT8D-11 turbofan engine are reported.

BACKGROUND.

The Clean Air Amendments of 1970 (reference 1) specified that the United States (U.S.) Department of Transportation (DOT) and the Federal Aviation Administration (FAA) promulgate regulation enforcing the aircraft engine emission standards established by the Environmental Protection Agency (EPA). Emission measurements showed two major variability problems in data generated by industry and government study teams (reference 2). One problem area affecting emission measurements involved the effect of changes in ambient weather conditions, particularly temperature and humidity, on emission levels. The second problem involved acquiring a representative emission sample from the exhaust plume.

The FAA was commissioned to conduct an investigation of these variability problems at the National Aviation Facilities Experimental Center (NAFEC), Atlantic City, New Jersey. From this study, ambient temperature and humidity correction factors were developed for exhaust emissions from two classes of turbine engines (reference 3). Studies of traverse emission plots indicated that the use of fixed probing techniques to provide representative samples were feasible (reference 4). The results of that portion of the investigation designed to optimize probing techniques to acquire representative emission samples from a $\rm JT8D$ turbine engine exhaust are reported in this document. The TF30 and JT3D turbofan engines were also tested under this program, and the results are presented in separate reports.

DISCUSSION

DESCRIPTION OF THE P&W AIRCRAFT JT8D-11 TURBO-FAN ENGINE.

The mixed flow JT8D-11 engine is rated at 15,000 pounds thrust, has a compressor pressure ratio of 17.5 to 1, and features nine canannular combustion chambers with duplex fuel nozzles. The engine incorporates a front fan having a bypass-to-engine airflow ratio of approximately 1.06 to 1, with the fan air diverted through an annular duct that forms the outer shell of the engine. The bypass air duct terminates downstream of the turbine discharge. The bypass fan airflow forms a circular envelope of relatively cool air around the core exhaust gas stream in the tailpipe and exhaust nozzle. The JT8D-11 engine was modified during the investigation by the installation of high smoke combustion chambers and fuel nozzles in the engine for the purpose of comparing exhaust emissions of high smoke versus low smoke combustion chambers (reference 5). The engine incorporated high smoke combustion chambers for all testing reporting herein, with the exception that low smoke combustion chambers were installed in the engine for the PT7 probe testing.

Installation of the engine for test on a thrust measuring stand is illustrated in figure 1. Engine operation was essentially under free-air conditions as the inlet air and the exhaust gases were not restricted. Test equipment and instrumentation were typical of those required for experimental engine performance testing on a static sea level stand.

DESCRIPTION OF TRAVERSE PROBE MECHANISM.

A detailed traverse investigation of the exhaust plumes of the JT8D-11 engine was necessary to establish average emission levels and to generate the emission contours and profiles required for the development and evaluation of fixed probes. The traverse mechanism shown in figure 2 was constructed to remotely position the single-point sample probe at any desired location within the vertical plane behind the engine exhaust nozzle. Emission measurements were recorded on a 2-inch grid located in the vertical plane at an axial distance of 2 inches behind the engine exhaust nozzle. Emission levels were measured at the points identified in the traverse grid shown in figure 3.

DESCRIPTION OF CRUCIFORM SAMPLE PROBES. emission sampling probe in the shape of a cruciform (figure 4) was designed (area weighted) for an effective exhaust nozzle area diameter of 26 inches by an EPA contractor. The probe was area weighted by locating the sample orifices at centers of equal area. Although the exhaust nozzle utilized for test of the JT8D-11 engine was 30 inches in diameter, the 26-inch effective diameter had been used by EPA in previous JT8D engine emission investigations. The outer 2-inch area of the exhaust was considered to consist of undiluted fan bypass air, and representative emission sample requirements would preclude this area from the design. The sample

was acquired from the centerline cross of the four legs, each located 90 degrees (°) apart. The probe was installed and tested in the upstream end of a mixer pipe 3 feet (ft) in diameter by 20 ft in length (figure 4). The sample probe was tested at axial locations behind the engine nozzle of 2, 8, and 10 inches. The sample holes were 0.089 inch diameter which produced very low samples velocities in relation to the velocity of the exhaust gases. The probe was also tested with five configurations of sample points as listed in table 1. The calculated sample velocity for each probe orifice and its immersion depth is included in table 1. A complete description of the probe is included in (reference 6).

DESCRIPTION OF CORE SAMPLE PROBES.

In order to sample the undiluted core exhaust gas, four fixed sample probes were installed throught the engine tailpipe at the core fan duct splitter and through the fan bypass air. Each probe incorporated three sample orifices 0.030 inch in diameter. Average emissions were sampled from the core probes throught an externally heated manifold. The purpose of the core probes was to establish and maintain reference emission measurements to which all subsequent probing results, at the exhaust nozzle, could be compared and evaluated. The core probes are shown in figure 5.

A random integrated sampling pattern was achieved by installing the probes on varying chord angles. The chord angles and probe locations were selected to include sampling behind the bearing support struts, where high concentrations of hydrocarbons had been reported for other engines. These probes were utilized as a constant reference for all the candidate probes throughtout the investigations.

DESCRIPTION OF PT7 SAMPLE PROBES.

The P_{T7} probes are a standard part of the engine utilized for turbine discharge total pressure measurement. The P_{T7} probes are located in the primary or core exhaust, and are employed to sense engine power. The JT8D-11 engine incorporated six P_{T7} probes each with six small pressure sensing orifices. The probes are manifold together to provide an average pressure. A remotely operated valve was employed at the exit of the P_{T7} probe manifold for alternate pressure and emission measurement.

RESULTS

Emission measurements recorded from the JT8D-11

engine nozzle traverse and fixed probing tests have been previously reported in references 4, 6, and 7. Reference 4 presents emission concentrations from the 177-point traverses for idle, holding (low intermediate power used in the aircraft holding mode), approach, and maximum continuous power conditions. Reference 7 includes traverse maps, profile emission distributions, and probing results. Reference 6 covers traverse maps and probing test results. In addition to the emission measurements from the references, this report includes the complete data base corrected to standard ambient temperature $(59^\circ$ Fahrenheit (F)) and humidity (dry air) in accordance with refer-These results and additional probing ence 3. results are presented in appendices A through E. The complete JT8D-11 engine data base is offered in the appendices for further analysis and comparison with other sources and to aid in the developement of probe designs for acquiring representative emission samples.

TRAVERSE CONTOURS.

Traverse measurements were acquired at power settings corresponding to: idle, holding, approach, and maximum continuous. Emission concentration maps of carbon monoxide (CO), carbon dioxide (CO2), total hydrocarbons (THC), and nitrogen oxides (NO_X) are shown in figures 6 through 9. Wide variations in pollutant concentrations, steep gradients, and the resulting probing problems are apparent. The distorted diamond shape of the emission patterns are thought to be caused by the four bearing support struts located on the vertical and horizontal centerlines. Total hydrocarbon measurements at idle power are believed to be low as a result of traverse measurements with 1-minute stabilization time per point. The 1-minute period has since been determined to be insufficient for the measurement across steep THC gradients. Stabilization times of 3 to 4 minutes were required for subsequent THC measurements on another mixed flow engine with similar gradients.

In an effort to create a uniform profile for a more accurate assessment of the average emission levels, a series of tests were conducted with the pipe 36 inches in diameter and 20 feet in length, positioned behind the engine exhaust nozzle. A 3-inch clearance between the mixer pipe and the nozzle permitted the pipe to operate as an augmenter tube. Idle power traverses of 61 points were conducted at the exit of the pipe or mixer. Figure 10 is a map of the pollutant concentrations. Considerable mixing has taken place as shown by the change in patterns and the significant reduction in gradient.

Probe	Calculated Sample <u>Velocity</u> (ft/s)	Sample Orifice <u>Immersion Depth</u> (in.)
12 Points, Area Weighted for 26-inch Nozzle Diameter	140	9.70 5.80 3.15
8 Points, Combination of Two Inner 12-Point Holes	211	9.70 5.80
16 Points, Combination of Inner Points of 12- and 24-Point Probes	106	11.20 9.70 8.50 6.60
24 Points, Area Weighted for 26-inch Nozzle Diameter	70	11.20 8.50 6.60 5.05 3.75 2.55
24 Points, Combination of Area Weighted Inner Points of 12- and 24-Point Probes	70	11.20 9.70 8.50 6.60 5.80 5.05

TABLE 1. CRUCIFORM PROBE SAMPLE VELOCITY AND HOLE LOCATION

TRAVERSE PROFILES.

Traverse profiles were established by averaging four traverse emission measurements acquired from constant radius positions each separated by 900 Additional points were averaged by varying the radius or corresponding immersion depths. Traverse emission measurements on the four radii at 45°, 135°, 225°, and 315° were averaged for each of six (including the centerline measurement) immersion depths along the radii. A second group of traverse emissions measurements located along the four radii coinciding with the vertical and horizontal centerlines were averaged for each of eight (including the centerline measurement) immersion depths. Ratios were then established by dividing the four averaged emission concentrations at each immersion depth by the overall 177-point traverse average concentration. Ratios of emission concentrations were then plotted against immersion depth for 45° and for 90° (figures 11, 13, 15, 17, 19, 21, 23, and 25). The emission index was then calculated for each of the averaged concentrations as previously determined. Ratios of emission indices to the overall traverse average indices were determined at each immersion depth, and the ratios were plotted against immersion depth (figures 12, 14, 16, 18, 20, 22, 24, and 26). Two sets of idle profiles were included since this is a special case involving separating of the species.

The concentration profile plots show the steep emission gradients in the exhaust of the mixed flow JT8D-11 turbofan engine. At low power, the gradients show approximately 25 percent change in emission levels per inch immersion depth. Slopes were investigated in the area of traverse average levels where the average emission ratio is one. The gradients increased to 34 and 45 percent change in emission levels per inch immersion depth for NO_X and CO_2 , respectively, at maximum continuous power.

The figures also show that the average levels of the emission species are separated according to power level. In general, at low power, CO_2 and NO_X are separated from the CO and THC. The levels of CO and THC at a specific point are not in proportion to the levels of CO_2 and NO_X . CO and THC are generated in the combustion chamber as a result of flame quenching. Quenching of CO and THC may occur to a significant extent in the cooling film along the combustor inner surfaces, particularly at idle power with low temperatures and low fuel-to-air ratios. Carbon dioxide and NO_X , on the other hand, are generated in the primary combustion or flame front, and are located in

greater concentrations toward the center of the combustion chamber. The problems of acquiring a representative sample utilizing fixed probing is compounded by this separation of the emission species.

A trend is evident from examining the profile concentration plots. On the 45° radii, the immersion depth for average emissions remains approximately constant as power is increased, notwithstanding the separation of emissions at idle power. The immersion depth for average emissions on the vertical and horizontal centerlines decreases or moves outward approximately 2 inches as power is increased to maximum continuous. The emissions modulate outward along the centerlines as power is increased.

The profile illustrations of emission index ratio show that the rate of emission change with respect to immersion depth has signifiantly decreased from the high gradients of the concentrations profiles. Further, the slopes have changed direction and become negative. Under low engine power conditions, the CO EI, THC EI, and NO_X EI profile ratios are separated except at the immersion depth where the ratio was equal to 1 and the emission indices were representative of the traverse average. As previously discussed, this separation of the emission species compounds the problem of representative emission sampling with fixed probes. The immersion depth for emission index agreement with the traverse has increased, compared to the depth where the concentration agrees with the traverse average. Under high engine power conditions, the ratios of CO EI and NO_X EI remain fairly close together and constant with immersion depth. The THC EI ratio at high power is believed to be in error as the very-low levels are affected by background in the sample and measurement systems. The high THC EI ratios in the fan bypass areas (outer periphery) are produced by atmospheric methane and CO2. The carbon balance relationships produce emission indices of nine and above from atmospheric methane and CO₂. When these values are ratioed with low traverse average levels, high ratios are calculated and are not representative of the products of combustion emitted by the engine under test.

CRUCIFORM AND DIAMOND PROBE CALCULATIONS.

Two area weighted cruciform sample probe designs were investigated from interpolations of the traverse maps. The first cruciform probe design was area weighted for the full 30-inch diameter nozzle utilized for test of

the JT8D-11 engine. The calculated performance of the cruciform probe was based on 12 sample points, three in each leg. Calculations were completed for a probe sampling on the radii 450 , 135°, 225°, and 315°, identified as the 45° angular position. The second location was on radii of 0°, 90°, 180°, and 270°, and identified as the 90° angular location. The performance results, as related in percent to the traverse average on a concentration and emission index basis, are tabulated in table 2. Also included are sample efficiencies defined as the fuel-to-air ratio from the exhaust emission carbon balance to the measured fuel-to-air ratio expressed in percent. This parameter is a measure of representative emission sampling. As shown in table 2, calculated performance of the area weighted cruciform probe designed for a 30-inch diameter nozzle was considered excellent, based on the percent difference with the traverse average indices. However, the traverse average concentrations performance was poor and varied with engine power. On the 45-angular position, sample efficiency was good at low power and decreased to low values at high power.

The second cruciform probe design was area weighted for a 26-inch effective nozzle diameter. The outer 2-inch area in the exhaust plume consists of fan bypass air and because of representative sampling consideration, was precluded from the design. As previously discussed, cruciform probes of this design had been used by EPA in previous JT8D engine emission tests. Interpolations and calculations for this design were also completed for the 45° and 90° angular positions on the basis previously discussed. The results are presented in table 3. Calculated emission indices for the 26-inch diameter probe were also considered excellent, especially when located on the 45° angular position. The samples were rich when compared to the traverse average on a concentration and sample efficiency basis. As is evidenced by the differences in concentrations between the 45° and 90° angular positions, both cruciform probe designs are very sensitive to orinentation.

A diamond-shaped probe was recommended by the FAA in reference 7 for sampling exhaust emissions from mixed flow turbofan engines. The probe was designed to clear the exhaust centerbody which is common on a number of aircraft installed engines incorporating plug exhaust nozzle designs. The diamond probe design included 12 sample points, three in each nozzle quadrant, separated by the radius divided by nine. The diamond probe is depicted in figure 27. The first probe design investigated sampled at 62 percent of the nozzle radius, with the center points located on the 45° , 135° , 225° , and 315° radii, referred to as the 45° angular position. The results are tabulated in table 4.

The recommended diamond-shaped probe configured to sample at 62 percent of the nozzle radius will provide representative samples at power conditions of holding, approach, and maximum continuous. Because of the separation of the species at low power, the CO and NO_X concentrations will be low. A correction factor of 1.11 was recommended by reference 7 to bring the concentrations at idle power up to traverse average levels. This would also reduce the calculated CO EI to 99.2 percent of the traverse average and the THC EI to 105.0 percent.

To solve the problem at idle power, a second diamond probe design was investigated which sampled at 53 percent exhaust nozzle radius. Otherwise, the second probe design was similar to the first diamond probe. The results of interpolations and calculations of the traverse maps are presented in table 4. The results show good agreement with the traverse indices. The samples were rich; however, containing high volumetric concentrations and high sample efficiencies.

TRAVERSE EMISSION INDICES AND EFFICIENCIES.

Calculated indices corrected for ambient temperature and humidity for the 177-point nozzle traverse, the mixer traverse, and core probes are tabulated in table 5. Actual levels presented do not apply to current JT8D engines since the test vehicle had been modified to incorporate high smoke combustion chambers and fuel nozzles. Measurement or sample efficiency is defined as the ratio of carbon balance fuel-to-air ratio to the measured fuel-to-air ratio and the results expressed in percent. The efficiency parameter emphasizes the CO2 content of the sample. An error of 10 percent in CO2 measurement will also result in a 10 percent error in the carbon balance fuel-to-air ratio and will produce an error of 11.6 percent in the pollutant indices.

Sample efficiency is included in table 5 for the traverse and core measurement averages. Under low power, the efficiencies of the two nozzle traverses were 104.5 and 103.3 percent, slightly rich, and as power increased, sample efficiency decreased to 94.4 percent, slightly lean. The calculated efficiencies assumed correct measurement of the fuel and air.

Efficiencies of samples from the core probes were determined by using a nominal fan bypass

CALCULATED CRUCTFORM PROBE PERFORMANCE--12 POINTS AREA WEIGHTED FROM THE TRAVERSE MAPS FOR 30-INCH DIAMFTER TABLE 2.

	Aneliman								Sau	mple Efficiency
Mode	Position (Degrees)	Run No.	Percent <u>CO</u> 2	Traverse <u>CO</u>	Concent: <u>THC</u>	ration NO _X	Percent <u>CO</u>	Travers <u>THC</u>	e EI NQX	F/AM
Idle	115	124	94.9	96.3	97.8	93.7	101.3	102.8	6.96	99.2
Holding	45	125	4.79	9.66	98.2	92.5	102.5	101.3	95.1	104.4
Approach	45	121	90.3	90.3	91.7	8.68	100.6	100.0	101.6	92.0
MCP	415	123	80.9	84.3	1	85.0	104.3	1	105.0	76.3
Idle	60	124	114.2	4.711	112.1	110.9	102.8	98.0	95.3	119.4
Holding	06	125	113.7	115.9	122.3	114.0	102.2	108.0	100.3	121.9

121.9

103.9

|

103.9

134.4

1

124.1

129.4

123

60

MCP

133.2

9.66

88.6

6.99

127.3

115.2

129.7

130.5

121

90

Approach

CALCULATED CRUCTFORM PROBE PERFORMANCE--12 POINTS AREA WEIGHTED FROM THE TRAVERSE MAPS FOR 26-INCH DIAMETER TABLE 3.

ncy

	and lumb								Sa	mple Efficie
Mode	Position (Degrees)	Run No.	Percent <u>CO</u> 2	Traverse <u>CO</u>	Concent: <u>THC</u>	ration <u>NO</u> x	Percent <u>CO</u>	Travers THC	se EI NO _X	F/AM (\$)
Idle	45	124	120.1	122.2	121.2	115.9	101.7	101.1	94.9	125.6
Holding	45	125	122.7	119.5	120.5	118.8	7.76	98.7	0.79	131.6
Approact	1 45	121	119.9	116.7	7.76	117.9	6.76	80.0	100.5	122.3
MCP	tt5	123	109.7	1.1.1		109.0	101.4		99.3	103.6
Idle	06	124	143.8	146.4	133.8	133.9	101.9	93.0	91.4	150.4
Holding	06	125	145.4	147.9	141.5	141.2	101.9	9.76	4.79	156.1
Approact	06 L	121	168.5	164.7	127.0	161.3	98.2	74.3	6.79	172.3
MCP	06	123	164.5	156.0	1	165.6	95.0	1	100.7	155.8

TABLE 4. CALCULATED DIAMOND PROBE PERFORMANCE--12 POINTS INTERPOLATED FROM TRAVERSE MAPS

Le Efficiency 2/Arp X100	F/AM (\$)	89.3	100.7	90.1	99.5	143.7	149.3	150.9	138.8
Samp]	se EI NOx	99.2	90.2	9.66	98.6	97.3	96.1	100.3	98.5
	Traver: THC	115.9	106.5	97.5	1	97.8	101.7	1	I
	Percent <u>CO</u>	109.4	98.6	103.2	97.1	101.3	104.0	100.1	95.4
	cration <u>NO</u> x	86.3	84.6	86.2	104.0	135.4	114.1	145.1	145.3
	e Concent <u>THC</u>	99.3	1.99	99.2	1	134.1	140.9	106.7	1
	Travers <u>CO</u>	93.6	92.4	9.06	102.2	138.8	144.3	147.1	139.6
	Percent <u>CO</u> 2	85.1	0.46	88.5	105.4	137.0	137.5	147.7	146.7
	Percent <u>Radius</u>	62	62	62	62	53	53	53	53
	Run No.	124	125	121	123	124	125	121	123
Angular	Position (Degrees)	45	tt5	45	45	45	1t5	45	45
	Mode	Idle	Holding	Approach	MCP	Idle	Holding	Approach	MCP

ratio of 1.06:1 for calculating the fan airflow from the total airflow measured in the bellmouth. Under low power, the efficiency of the core probes was near ideal and decreased with the increased power. These results may be in error as the bypass ratio is expected to vary with engine power changes.

Mixer pipe traverse indices are included in table 5. Mixer THC EI is significantly greater than that of the engine traverse, and agrees with that of the core probes. The 1-minute stabilization time was sufficient for accurate measurement with the significant reduction in gradients across the mixer pipe. The THC EI from the mixer traverse is believed to be more representative of the engine because of accurate measurement resulting from less change in levels and significant reduction in gradients.

The fuel-to-air ratios calculated from the exhaust gas carbon balance are plotted versus the measured fuel-to-air ratios in figure 28 for the engine traverse and core probes. Sample efficiency of the engine traverse is also indicated in relation to the deviation from the ideal relationship.

The deviation shown in figure 28 of the carbon balance fuel-to-air ratio from the measured fuel-to-air ratio in the mixer traverse measurements is an indication of secondary air dilution in the mixer pipe. Secondary air dilution in the mixer pipe was not measured. Calculations using the ideal line as a reference indicated that secondary air dilution was 17.6 percent.

CRUCIFORM PROBE TEST RESULTS.

Sample efficiency and differences in performance of the cruciform probe configurations relative to the nozzle traverse are tabulated in table 6. The emission measurements were corrected to zero humidity and standard compressor inlet temperature in accordance with referrence 3. The traverse runs of 119 and 124 were selected for probe evaluation with the exception that the THC EI from the mixer traverse was utilized in the analysis since, as previously discussed, the measurements were actual emissions.

Sample efficiency of the 12-point probe was excellent when aligned with the vertical and horizontal centerlines. The comparison of the EI between the 12-point probe and the traverse was poor. The poor performance is disturbing, particularly in view of the high indicated sample efficiencies. Attention is directed to the CO_2 measurements, each 5.6 percent less than that of the traverse. The excess CO and THC must have balanced out the effect of the

low CO_2 on the calculation of the fuel-to-air ratios in the carbon balance relationship. A computer run was made to calculate emission indices with the traverse pollutant concentrations held constant and CO_2 varied at the following amounts: 5 percent low, 10 percent low, 5 percent high, and 10 percent high. The results are presented in figure 29. Entering the illustration at 5.6 percent low CO_2 (0.67 percent), the CO EI and THC EI have increased 6.4 and 6.8 percent, respectively.

The conclusion of this analysis is that the 12-point probe at 0° and at the 2-inch axial location sampled average concentrations of CO and hydrocarbons (in relation to the mixer traverse) and were deficient in CO_2 by 5.6 percent. Samples from the 12-point probe were low by 5.5 percent in NO_x . These results are not surprising in view of the separation of the species at idle power.

The eight-point cruciform probe consisted of the eight inner sample orifices of the 12-point probe. This probe was ranked number 1 in performance when positioned on the diagonals at 45° , and number 2 when positioned along the vertical and horizontal centerlines. The probe results are ranked in table 6, based on the difference of the three-pollutant EI's from the traverse average. Sample efficiency at 45° was 119.4, which indicates the sample was somewhat rich. When the probe was aligned with the vertical and horizontal centerlines, sample efficiency was 178.2, which indicates a very rich sample with the majority of the sample coming from the core.

Performance of the area weighed, 24-point probe was extremely poor. The errors of the 12-point probe were magnified several times. The 24-point combination probe acquired rich samples of THC and CO, but performed better than the 24-point area weighted probe.

The 16-point combination probe consisted of the inside points of both the 12- and 24-point probes. All of the probe points were inside the outer holes of the eight-point probe. The 16-point probe at 0° obtained 82 percent of the sample from the core. The THC EI essentially agreed with the traverse, CO EI and NO_X EI, however, were higher than the traverse levels. Performance of the 16-point probe when located at 22.5° and 45° was worse than when located at 0°.

The comparison of test results of the 12 point, 26-inch diameter cruciform probe (table 6) with the calculated results (table 3) was very poor. With the probe located at the 45° angular position, the calculated CO_2 at idle power was 120.1 percent of the traverse average or 0.85 percent CO_2 . This compares to the measured

TABLE 5. TRAVERSE EMISSION INDICES AND EFFICIENCIES--HIGH SMOKE COMBUSTION CHAMBERS

				harrad							C	orrecto	P
Mode	Probe	Run No.	Emis Ibs/ THC	stion In CO 1bs	dices Fuel NO _X	<u> 8</u> 9	F/A(M)	F/A(CB)	Sample . Efficiency (\$)	t2 (of)	Emis 1bs/1 THC	sion I 000 lb	Idices Fuel
Idle	Nozzle Traverse	124	18.7	62.9	2.56	0.71	ti #£00.	09£00	104.5	917	15.9	58.9	2.94
Idle	Nozzle Traverse	119	19.6	63.9	2.56	0.71	.00348	09£00	103.3	42	16.0	58.8	3.09
Idle	Mixer Traverse	136-139	23.6	62.8	2.28	0.55	.00343	0028		917	20.3	59.0	2.81
Idle	Core	124	23.0	64.8	2.42	1.39	44600.	00715	101.1	46	19.7	60.7	2.83
Holding	Nozzle Traverse	125	4.6	38.4	3.05	0.75	.00346	00370	107.0	μJ	3.0	35.0	3.66
Holding	Core	125	7.3	36.4	3.86	1	.00346			74	4.8	33.2	4.53
Approach	Nozzle Traverse	121	4.0	8.4	5.66	0.83	.00395	0400	101.8	36-54	04.	8.1	11.9
Approach	Core	121	0.0	7.6	5.59	1	.00395	00758	93.2	36-54	1	7.3	6.63
MCP	Nozzle Traverse	123	0.1	2.8	11.02	1.29	.00662	00625	4.49	29	1	2.1	14.20
MCP .	Core	123	0.0	2.7	11.37	2.50	.00662	0122	89.5	29	۱	2.0	14.65

TABLE 6. CRUCTFORM PROBE TEST RESULTS -- IDLE POWER--HIGH SMOKE COMBUSTION CHAMBERS

	1-1-1			3	rrected								
Probe	Distance (in.)	Angular Position (degrees)	Run No.	THC	THC	8 🖬	NOX	Sample Efficiency (1)	Nozzle	Erence Traver CO	rse NQx	Rank	58
Nozzle Traverse	2	1	124	20.3	15.9	58.9	2.94	104.5	1	1	1	1	11.
Nozzle Traverse	N	1	119	20.3	16.0	58.8	3.09	103.3	1	1	1	1	11.
12 Point	N	0	148	1	21.8	62.57	2.85	100.9	ħ.7+	+6.3	-5.5	80	.65
12 Point	2	22 1/2	147	1	23.2	61.4	3.28	40.9	+14.3	44.2	+8.8	10	.27
12 Point	8	45	146	1	21.9	63.1	2.95	60.3	6.7+	+7.3	-2.2	4	04.
12 Point	2	06	149	1	23.4	65.4	2.85	101.8	+15.3	+11.1	-5.5	30	.67
12 Point	8	0	137	1	23.1	63.8	2.95	100.0	+13.8	+8.4	-2.2	9	.67
12 Point	89	0	139	1	21.7	4.49	2.90	7.79	+6.9+	+6.4	-3.8	9	.67
12 Point	8	45	145	1	22.1	60.5	3.26	98.0	+8.9	+2.8	+8.1	5	.37
12 Point	12	0	150	ł	19.7	62.8	2.82	1.66	-3.0	+6.7	-6.5	ε.	.67
8 Point	8	0	011	1	18.2	58.8	3.01	178.1	-10.3	-0.1	-1.7	2	1.20
8 Point	80	0	141	1	18.6	60.5	2.87	178.4	-8.4	+2.8	-4.8	2	1.20
8 Point	80	45	143	1	19.1	61.5	2.91	118.1	-5.9	+4.5	-3.5	-	.80
8 Point	8	45	144	1	19.2	59.5	3.04	120.9	-5.4	+1.1	+0.8	-	11.
16 Point													
Combination 16 Point	12	0	153	1	20.2	63.9	2.60	169.4	-0.5	+8.6	-13.8	1	1.15
Combination 16 Point	12	22 1/2	155	1	22.1	66.2	2.63	116.5	+8.9	+12.5	-12.8	12	.77
Combination 24 Point	12	45 0	151	11	21.4	63.8 73.6	2.63	121.4 76.7	+5.4	+8.4	-12.8	9 E	1.40
24 Point Combination	12	0	152	1	21.8	63.8	2.53	122.1	4.7+	+8.4	-16.1	=	.82

values of 0.37 and 0.40 percent CO2 presented in table 6. When the cruciform probe was positioned at 90°, the calculated CO2 was 1.02 percent and the measured was 0.67 percent. Reference is made to table 1 and the sample orifice size of 0.089-inch diameter which produces velocities at the orfices of 140 feet per second for the 12-point probe. This compares to the engine exhaust velocity of approximately 400 feet per second at idle power. Test results of a similar mixed-flow turbofan engine has shown that the total pressure in the fan bypass area was greater than the total pressure in the core exhaust at idle power. Therefore, the sample quantity from the outer point (3.15 inch immersion) of the cruciform probe is considered to exceed the flow from the points located in the core exhaust, resulting in dilution of the sample. This problem is evident from the test results in table 6 which show that the performance of the cruciform probes improves as the number of sample orifices decreased. Testing the cruciform probes installed in the up-stream end of the mixer pipe is considered to have caused additional mixing of fan bypass air into the core exhaust. A properly designed cruciform probe positioned in the exhaust without augmented mixer air could be expected to perform better than the test results shown in table 6.

CORE PROBE TEST RESULTS.

The corrected EI measurements from the core probes installed through the tailpipe on chords to sample only the primary or core gasses are compared to the traverse average across engine power ranges in figure 30. The core probes provided representative samples of CO and NO_x . The variability of the THC measurements at idle power was determined by calculation to be one standard deviation of 1.08 for a mean of 15.84 or 6.8 percent experimental error. The core probes provided representative samples of THC at idle power.

The core probe measurements were acquired concurrently with the testing of the cruciform probes and are listed in table 7. These results are included to permit further analysis of the cruciform probes. The order of the core probe measurements in table 7 corresponds to the grouping of the cruciform probe runs in table 6. Thirteen measurements from the core probes were also recorded at intervals during the nozzle traverse. The results of averaging these measurements are tabulated under run 124. Sample efficiency of the core probes averaged 101.9 percent as calculated on an equivalent dilution basis by utilizing the nominal fan bypass ratio and the total airflow measured in the bellmouth.

PT7 PROBE TEST RESULTS.

Testing to evaluate emission samples from the P_{T7} probes, which are an integral part of the engine, was conducted with the low smoke combustion chambers installed in the engine. Since the traverses and other test results were conducted with high smoke combustion chambers in the engine, the P_{T7} emission measurements are not directly compared with the data of the traverse or the core probes previously discussed.

The PT7 probes were evaluated by comparing emission sampling performance with data recorded simultaneously from the core probes. Measurements recorded for the PT7 probes and the core probes are shown in figures 31, 32, and 33. The carbon balance fuel-to-air ratios are plotted versus the measured fuel-to-air ratios in figure 31. This relationship shows that the P_{T7} probes provide samples richer than samples from the core. By relating the core probe performance to the traverse shown in figure 30, samples from the P_{T7} probes are higher than the traverse average. Carbon monoxide EI from the PT7 probes (figure 32) was somewhat higher (approximately 6 percent) than that from the core probes and traverse. Total hydrocarbon EI from P_{T7} probes was significantly higher (approximately 47 percent) than the core probes and traverse. Nitrogen oxides EI were only 3.5 percent higher than that of the core probes and traverse.

SUMMARY OF RESULTS

Emissions were measured on a 2-inch grid in the exhaust plume of the mixed flow JT8D-11 engine at four engine power settings from idle through maximum continuous. The objective was to establish a data base required for calculating average emissions, and to generate the emission maps and profiles required to design and evaluate fixed probing for acquiring representative samples. The emission profiles or gradients were unusually steep, with changes in emission levels of 25 to 45 percent-per-inch. Measurement efficiency of the traverses were slightly high or rich (2.4 to 4.6 percent) at low power and lean by 5.6 percent at high power.

The emission species were separated in relation to immersion depth at low power with CO and THC separated from CO_2 and NO_X . Separation of emissions further complicates the problem of acquiring average emission samples with fixed probes. When engine power is increased, emissions move outward along the vertical and horizontal centerlines; however, average emission TABLE 7. CORE PROBE TEST RESULTS -- IDLE POWER

					Corrected	-		*) Differe	ence
			Mixer				Sample	to No	ozzle Tra	verse
	Run	C02	THC	THC	8	NOX	Efficiency	THC	8	NOX
Probe	No.	3	EI	EI	II	13	(1)	I	13	E
Nozzle Traverse	124	12.	20.3	15.9	58.9	2.94	104.5	;	1	1
Nozzle Traverse	119	12.	20.3	16.0	58.8	3.09	103.3	1	1	ł
Core Probe	124	1.39	1	19.8	60.8	2.83	101.1	-2.5	+3.31	-6.14
Core Probe	148	1.35	1	20.4	61.2	2.72	101.8	+0.5	+0.40	-9.78
Core Probe	147	1.40	1	21.2	58.7	2.77	102.8	+4.43	-0.26	-8.12
Core Probe	641	1.40	1	19.8	60.3	2.67	103.2	-2.46	+2.50	-11.14
Core Probe	145	1.40	1	20.5	58.5	2.77	100.8	+0.98	-0.60	-8.13
Core Probe	150	1.37	I	19.5	60.0	2.62	98.6	-3.45	+1.95	-13.1
Core Probe	140	1.42	1	20.5	60.9	2.90	102.9	+0.98	+3.48	-3.81
Core Probe	141	1.40	1	21.4	63.17	2.73	101.6	+5.42	+7.34	-9.45
Core Probe	153	1.40	1	23.2	62.50	2.55	101.4	+14.3	+6.20	-15.4
Core Probe	155	1.40	1	23.2	62.0	2.49	1	+14.3	+5.35	-17.4
Core Probe	154	1.40	1	22.8	62.5	2.42	103.1	+1.23	+6.20	-19.7
Core Probe	151	1.42	1	22.9	61.9	2.34	103.1	12.80	+5.18	-22.4
Core Probe	152	1.40	:	23.2	61.4	2.39	102.1	+14.3	+4.33	-20.7

levels remain essentially constant with immersion depth on the 45° radii.

Calculations based on the traverse maps indicate that area weighted (30-inch nozzle) cruciform probes provide emission samples indices within 5 percent of the traverse average. Under high engine power conditions, the sample efficiencies and volumetric concentrations from the cruciform probe calculations were low in relation to that of the traverse.

Calculations show that the FAA recommended diamond-shaped probe should provide representative emission samples at power conditions of holding, approach, and maximum continuous. The calculated concentrations would have to be increased by 11 percent at idle power to be representative of the traverse average concentrations and emission indices. Calculations indicate that a diamond probe designed to sample at 53 percent nozzle radius would provide representative emission indices across engine power. The samples, however, would be rich with high efficiencies and volumetric concentrations.

The exit of a 20 foot exhaust mixer pipe was traversed for emissions at idle power. Considerable mixing occurred as noted by the change in patterns and significant reduction in gradients. This improvement of conditions would be expected to deteriorate with increased engine power as the result of reduced mixing.

Five cruciform probe configurations were investigated and installed for test in the upstream or forward end of the mixer pipe. The probes consisted of two types: (1) 12 points based on equal areas for a 26-inch diameter nozzle, and (2) 24 points also based on equal areas for a 26-inch diameter nozzle. The remaining probes are combinations of (1) and (2). Measurement efficiency of the 12-point probe was excellent when located at 0° with values near 100 percent. Comparison of performance with that of the traverse was poor. The THC and CO registered 8.1 to 8.4 percent high, while the NO_x showed 2.2 to 6.5 percent low. The problem was brought about in part by low CO2 measurements which increases the calculated pollutant levels through the carbon balance relationship. The primary problem was attributed to low sample velocity of the cruciform probes.

The eight-point cruciform probe consisted of the two inner holes of the 12-point probe. This probe sampled 86 percent from the core. The THC were 5.4 to 10.3 percent less than that of the mixer traverse. The CO and NO_x were very close to that of the nozzle traverse. This probe was ranked number 1 in the cruciform family when aligned with the 45° radii, and

and was ranked number 2 when aligned with the centerlines. The 16-point probe consisting of the four inner holes from both the 12-point probe and the 24-point combination probe was good for THC but high for CO and low for NO_x . The cruciform probes that sampled to a large extent from the core came closest to the traverse average.

At idle power, performance of the core probes, installed to sample only primary or core gasses, was 99.0 percent efficient. The core probes provided representative samples of emissions across engine power ranges, except for THC which was low at holding power.

The P_{T7} probes provided samples richer than the traverse average by as much as 47 percent.

CONCLUSIONS

Based on the results of the emission sample probe investigation of the JT8D-11 turbofan engine, it is concluded that:

1. Detailed traverses across engine power are required for emission measurements which are representative of the entire exhaust because of limitations existing in all fixed probing techniques.

2. Based on interpolations and calculations from the traverse maps:

a. A cruciform sample probe which is area weighted for the full exhaust nozzle will provide representative emission indices and volumetric concentrations and good sample efficiencies at low engine power, but nonrepresentative volumetric concentrations and poor sample efficiencies under high engine power conditions.

b. The recommended diamond-shaped sample probe will provide representative volumetric concentrations, good sample efficiencies, and good emission indices at high engine power, but the performance of the sample probe will be compromised at idle power.

c. The recommended diamond probe which was specifically designed to measure representative volumetric concentrations, would require resizing for optimum emission index measurements, but would then have poor sample efficiencies.

3. The exhaust pattern of mixed flow turbofan engines is characterized by steep emission gradients which significantly affects the representativeness of the sample provided by fixed probing techniques. 4. Test results indicate that the most representative emission indices which can be obtained from cruciform probes with large sample orifices are those designed to sample essentially from the undiluted core exhaust.

5. Performance of the cruciform probes tested was significantly poorer than that predicted from interpolations of the traverse contours, because these probes were designed with large sample orifices. Probe performance improved as the number of orifices was decreased, due to the resultant increase in the sample velocity through each orifice.

6. Core probes designed to sample undiluted exhaust gasses will provide representative emission indices but very high volumetric concentrations which are not representative averages for the entire exhaust nozzle area.

REFERENCES

1. Clean Air Amendments of 1970, Public Law 91-604, 91st Congress, H. R. 17255, December 31, 1970.

2. McAdams, H. T., <u>Analysis of Aircraft</u> <u>Exhaust Emission Measurements Statistics</u>, EPA Technical Report NA-5007-K-2.

3. Allen, L. and Slusher, G. R., <u>Ambient</u> <u>Temperature and Humidity Correction Factors for</u> <u>Exhaust Emissions from Two Classes of Aircraft</u> <u>Turbine Engines</u>, FAA Technical Report FAA-RD-76-149, 1976.

4. Slusher, G. R., <u>Analytical Study of</u> <u>Mixed-Flow JT8D Exhaust Emissions Measurements</u> <u>for Fixed Probe Requirements</u>, Technical Report FAA-RD-76-140, 1976.

5. Imbrogno, S. L. and Rust, T., Jr., <u>Comparison of Exhaust Emission of a Low-Time JT8D-11</u> <u>Engine: High-Smoke versus Low-Smoke Combustion</u> <u>Chamber Configurations</u>, Technical Report FAA-RD-74-87, 1974.

6. Souza, F. and Reckner, L., <u>Variability in</u> <u>Aircraft Turbine Engine Emission Measurements</u>, Technical Report EPA 460/3-74-006.

7. Klueg, P. E. and Slusher, G. R., <u>Exhaust</u> <u>Emission Probe Investigation of a Mixed Flow</u> <u>Turbofan Engine</u>, Technical Paper Presented before October, 1974, Meeting of the Instrument Society of America, New York, New York.

FIGURE 1. JT8D-11 ENGINE TEST INSTALLATION

FIGURE 3. TRAVERSE EMISSION SAMPLE POINTS

FIGURE 11. EMISSION CONCENTRATION DISTRIBUTION--45°, RUN 119--IDLE POWER

FIGURE 14. EMISSION INDEX DISTRIBUTION -- 90°, RUN 119--IDLE POWER

FIGURE 15. EMISSION CONCENTRATION DISTRIBUTION--45°, RUN 124--IDLE POWER

FIGURE 16. EMISSION INDEX DISTRIBUTION--45°, RUN 124--IDLE POWER

FIGURE 20. EMISSION INDEX DISTR BUTION--450--APPROACH POWER

FIGURE 22. EMISSION INDEX DISTRIBUTION -- 900 -- APPROACH POWER

EMISSION INDEX DISTRIBUTION--450 -- MAXIMUM CONTINUOUS POWER FIGURE 24.

FIGURE 27. RECOMMENDED EMISSION SAMPLING PROBE

FIGURE 29. EFFECT OF CO2 ON THE POLLUTANTS

FIGURE 31. COMPARISON OF FUEL-TO-AIR RATIOS--PT7 PROBES, CORE PROBES, AND TRAVERSE

APPENDIX A

TRAVERSE EMISSION CONCENTRATIONS

FIGURE A-1. IDENTIFICATION OF TRAVERSE EMISSION SAMPLING POINTS

TABLE A-1. TRAVERSE EMISSIONS AT IDLE POWER--RUN 119

PT	THC	со	C02	NOx	PT	THC	со	C02	NOx	PT	THC	CO	C02	NOx
-	P/M-C	P/M		P/M_		P/M-C	P/M		P/M		P/M-C	P/M		P/M
1	28.6	29	0.10	1.0	60	18.0	52	0.05	0.6	119	236.1	527	1.82	15.0
2 .	82.7	153	0.46	3.6	61	37.6	171	0.12	1.0	120	305.0	551	1.75	14.0
3	129.3	280	0.80	6.0	62	82.7	245	0.46	3.8	121	335.5	555	1.75	14.0
4	183.7	352	1.05	7.8	63	164.0	367	1.10	8.9	122	222.5	465	1.60	12.9
5	201.6	473	1.55	11.5	64	195.7	456	1.40	11.6	123	141.2	290	0.90	7.3
0	207.0	520	1.70	10.0	05	174.3	410	1.27	10.1	124	12.0	109	0.40	3.3
8	192.8	501	1.65	12.5	67	192.0	263	0.72	6.1	125	27.6	94	0.05	0.6
9	204.5	517	1.75	13.7	68	88.8	110	0.27	2.4	127	24.6	9	0.02	0.6
10	218.1	534	1.75	14.0	69	82.7	107	0.27	2.3	128	49.1	61	0.15	1.5
11	224.1	480	1.57	12.2	70	37.6	29	0.07	0.8	129	125.9	218	0.51	4.1
12	192.8	367	1.05	8.0	71	21.0	4	0.02	0.4	130	222.0	413	1.10	8.6
13	159.5	280	0.72	6.0	72	39.2	47	0.12	1.1	131	289.7	567	1.72	13.7
14	143.0	228	0.62	4.8	73	72.2	114	0.27	2.3	132	200.5	584	1.90	15.2
16	33.1	14	0.20	0.6	74	146 0	273	0.50	5.5	135	289.7	203	1.42	11 1
17	54.1	49	0.15	1.4	76	112.8	234	0.65	4.9	135	228.5	387	1.20	9.3
18	114.2	154	0.45	3.7	· 77	108.2	223	0.60	4.5	136	156.7	290	0.88	7.2
19	177.6	304	0.92	11.7	78	144.3	280	0.75	6.1	137	113.7	176	0.50	4.1
20	218.1	461	1.50	11.9	79	69.2	114	0.32	2.6	138	70.6	110	0.20	1.9
21	233.2	526	1.70	13.9	80	39.2	40	0.10	1.1	139	35.3	19	0.07	0.8
22	207.7	506	1.70	13.9	81	39.2	40	0.10	1.0	140	30.8 67 E	25	0.07	0.8
24	301.0	576	1.75	13.0	83	37 6	40	0.12	1.1	141	116.8	168	0.42	3.3
25	270.8	534	1.70	13.4	84	49.6	88	0.25	1.8	143	181.1	316	0.80	6.4
26	225.9	444	1.35	10.4	85	48.1	81	0.22	1.8	144	297.4	576	1.57	12.7
27	176.0	263	0.72	5.5	86	34.6	47	0.12	1.1	145	305.0	610	1.75	14.0
28	90.3	135	0.37	2.7	87	48.1	74	0.20	1.7	146	282.0	508	1.40	10.8
29	111.2	167	0.46	3.2	88	42.1	56	0.15	1.3	147	188.8	305	0.82	6.4
30	10.7	94	0.27	2.0	89	25.6	16	0.00	0.5	148	72.1	176	0.47	3.8
32	13.5	3	0.02	0.3	90	18.0	6	0.02	0.3	150	47.6	68	0.20	1.8
33	21.1	25	0.06	0.7	92	12.0	10	0.02	0.4	151	32.2	31	0.10	1.0
34	48.1	88	0.22	2.1	93	10.5	4	0.02	0.3	152	21.5	9	0.06	0.6
35	108.3	234	0.65	5.4	94	13.5	9	0.02	0.4	153	53.7	61	0.15	1.4
36	186.4	489	1.50	12.0	95	12.0	6	0.02	0.3	154	69.1	94	0.25	2.1
37	192.8	526	1.75	14.0	96	10.5	1	0.02	0.2	155	116.8	216	0.51	4.2
38	188.0	513	1.70	13.5	97	23.0	14	0.00	0.7	150	264.0	462	1.20	9.2
40	255 9	546	1.65	12.8	90	118 1	187	0.21	3.9	158	244 0	331	0.86	9.9
41	221.0	422	1.25	9.5	100	164.2	273	0.72	5.6	159	144.3	174	0.45	3.4
42	155.0	253	0.70	5.2	101	236.1	437	1.32	10.3	160	81.3	71	0.17	1.7
43	69.2	74	0.20	1.5	102	245.9	534	1.72	13.7	161	44.5	29	0.10	0.9
44	67.6	74	0.17	1.6	103	216.4	526	1.75	14.2	162	29.2	11	0.05	0.6
45	55.7	56	0.15	1.4	104	207.3	521	1.72	14.0	163	24.6	9	0.05	0.6
46	16.5	1	0.02	0.4	105	259.7	585	1.82	14.7	164	36.8	25	0.10	1.2
47	55 6	59	0.05	1.6	100	320.0	551	1.82	14.5	165	189.0	201	0.21	2.3
49	124.9	210	0.60	4.5	108	259.3	461	1.47	11.9	167	234.8	346	0.82	6.4
50	201.6	464	1.45	12.5	109	201.2	315	0.88	7.0	168	136.7	203	0.46	3.6
51	216.5	539	1.77	14.5	110	125.9	160	0.42	3.9	169	61.4	81	0.71	1.8
52	201.6	521	1.72	13.5	111	58.3	99	0.15	1.3	170	26.1	19	0.05	0.8
53	216.5	538	1.72	13.5	112	21.5	4	0.05	0.4	171	18.4	6	0.02	0.4
54	192.8	402	1.25	9.6	113	38.4	25	0.10	0.9	172	18.4	4	0.02	0.4
55	118 0	109	0.60	4.7	114	150 1	216	0.20	2.2	173	101 3	16.1	0.22	1.6
57	48 1	56	0.15	1 4.2	115	251 7	415	1.22	9.8	175	107.6	160	0.42	3.3
58	37.6	25	0.10	0.8	117	274.2	530	1.77	14.5	176	70.6	94	0.26	2.1
59	16.0	30	0.02	0.4	118	236.1	525	1.87	15.6	177	29.2	19	0.07	0.8
								Wi	EIGHTED	AVERAGE	126.8	237	.71	5.8

233

120.9

0.71

5.7

NO_X P/M C02 THC CO C02 THC P/M-C CO P/M NOx P/M PT THC P/M-C CO P/M CO2 NO_x P/M PT PT P/M P/M-C # 2 % 0.11 0.05 13.3 44 60 17.8 9 0.5 119 1 0.8 245.9 548 1.80 14.5 60 0.15 2 67.7 180 0.51 61 38.8 1.6 120 557 3.4 296.0 1.70 13.2 104.3 205 0.55 143.0 0.82 62 4.4 3 237 121 543 5.4 301.9 1.70 12.7 63 177.8 421 1.25 10.3 4 183.0 367 1.10 122 200.9 434 1.50 7.3 11.5 217.9 64 195.1 486 1.50 12.9 5 436 1.55 123 121.0 254 0.82 11.4 6.2 65 167.3 478 1.35 11.9 217.9 540 1.75 14.0 124 64.4 117 0.35 2.8 U 508 178.3 448 1.45 12.4 189.6 1.70 66 125 28.8 7 14.5 35 0.10 1.1 501 67 131.0 244 0.70 5.8 8 189.6 1.65 126 0.02 14.0 18.9 5 0.5 217.9 540 1.77 68 88.8 120 0.30 2.6 9 14.7 127 18.9 10 0.05 0.6 120 83.2 0.30 217.9 545 69 2.5 10 1.7. 14.2 128 44.4 69 0.15 1.6 70 31 0.10 0.9 223.4 496 1.57 37.8 106.5 11 129 212 12.9 0.55 4.2 71 17.8 4 0.02 0.3 12 201.0 377 1.10 9.0 130 200.9 397 1.12 8.3 44 0.77 72 35.5 0.12 1.2 167.3 290 131 262.1 13.0 13 6.2 553 1.75 230 120 145.1 0.57 73 71.0 0.32 2.5 251.0 14 4.3 132 553 1.85 14.0 205 74 108.9 0.55 4.0 15 65.5 73 0.20 133 1.7 267.9 543 1.75 13.5 0.06 75 142.0 290 0.80 6.0 439 25.6 18 16 134 267.9 1.30 10.0 0.6 63 0.17 76 108.9 241 0.70 5.3 17 51.1 135 206.3 347 1.10 8.5 1.6 122.9 203 0.52 77 106.6 229 0.65 5.2 18 136 146.5 254 0.82 6.4 4.2 0.72 189.9 352 1.05 78 117.8 263 5./ 100.0 19 137 3.9 8.5 154 0.47 1.60 79 94 0.25 2.1 508 57.6 20 212.0 12.9 138 56.5 62 0.20 1.8 49 223.5 550 1.75 80 41.1 0.12 1.2 21 139 27.8 15 0.02 14.5 0.6 22 212.0 525 1.72 81 35.5 44 0.11 1.1 140 15.0 34.4 22 0.07 0.6 82 16.6 3 0.02 0.4 23 234.1 525 1.70 141 62.1 69 14.5 0.17 1.5 83 40.0 65 0.15 1.4 24 307.0 592 1.80 142 15.5 117.8 161 0.42 3.1 1.70 84 60.0 103 0.26 2.2 25 268.0 545 13.4 143 184.0 310 0.50 6.5 85 54.4 10 0.25 2.1 228.5 451 1.30 279.0 540 26 9.7 144 12.5 1.07 140.0 252 0.0 86 38.8 51 0.15 1.5 301.9 27 5.0 145 565 1.75 13.0 87 48.8 80 0.22 2.1 28 94.3 138 0.35 2.7 146 256.5 443 1.30 9.3 49 0.45 88 40.0 0.15 1.4 29 113.2 170 147 0.70 3.2 146.5 280 4.7 30 65.5 93 0.25 89 22.2 14 0.05 0.5 1.9 148 84.4 145 0.40 3.0 9 0.05 90 20.0 0.4 31 13.3 4 0.02 52.1 0.2 149 95 0.27 2.1 91 17.8 9 0.05 0.4 12.2 4 0.02 32 150 35.5 60 0.17 1.4 0.2 31 0.10 92 13.3 9 0.02 0.5 33 22.2 0.8 151 23.3 0.10 0.7 30 4 59.9 120 0.32 93 11.1 0.02 0.3 34 152 15.5 2 0.02 0.2 2.6 315 0.90 94 14.4 9 0.02 0.6 35 135.3 50 6.8 153 41.0 0.12 1.1 95 4 0.02 0.4 13.3 212.0 505 1.55 89 36 12.4 154 55.5 0.25 1.7 540 96 11.1 1 0.02 0.3 37 200.9 1. . . 107.5 0.51 155 200 3.7 16.3 195.1 535 1. 2 97 14.4 16 0.06 0. 38 156 234.0 431 1.20 8.0 15.0 0.27 103 2.2 592 1.77 15.0 98 46.6 39 -73.5 157 268.0 439 1.22 8.2 99 104.5 172 3.4 1.67 0.4/ 40 256.5 550 13.7 200.9 0.72 158 281 5.0 0. 2 153.2 269 5.3 41 212.0 444 1.30 100 10..5 2.4 10.3 159 128 0.34 252 101 223.1 1.40 10.4 57.6 135.3 0.67 436 42 5.7 160 50 0.15 1.1 102 245.5 534 1.75 13.4 74 0.20 43 62.1 161 36.6 20 0.07 0.5 1.8 525 65.4 81 0.20 103 212.0 1.80 14.7 44 1.7 162 24.4 10 0.06 0.3 200.9 525 1.80 47 0.12 104 14. 45 46.6 163 20.0 0.05 0.3 1.1 0.02 105 250.9 580 1.85 14. 16.6 1 164 32.2 20 0.07 0.5 46 0.3 9 0.05 106 301.0 601 1.90 14 . / 47 23.3 165 14.4 101 0.27 2.0 0.5 73 0.20 107 262.0 545 1.87 14.1 54.4 48 1.8 166 161.9 268 0.70 4.8 223.1 436 11.6 108 1.45 49 123.2 229 0.60 5.2 167 189.8 310 0.80 5.6 109 167.2 283 0.82 206.5 487 1.47 6.1 50 121.0 188 0.47 3.4 12.4 168 552 1.77 110 100.3 126 0.35 2.8 51 206.5 15.2 55.5 0.20 1.6 169 82 527 1.72 111 44.6 35 0.11 1.1 15 200.9 15.0 170 20.0 0.06 0.4 52 1.72 0.02 112 21.1 4 0.4 543 2 0.02 0.1 53 212.0 15.0 171 15.5 38.8 29 0.10 1.0 185.2 408 1.20 113 2 0.02 0.1 54 9.5 172 15.5 96 114 84.4 0.26 2.2 238 0.62 0.15 1.2 55 131.0 5.0 173 41.0 50 234 115 156.2 0.62 5.0 211 0.51 113.1 4.1 174 77.6 132 0.34 2.5 56 299 1.2 10.0 57 46.6 50 0.12 1.3 116 245.9 175 84.4 136 0.35 2.6 273.9 550 1.82 14.5 31 117 82 0.25 0.10 176 62.2 1.7 58 35.5 0.8 234.4 540 1.8 15.2 1 0.02 118 177 10 0,06 59 15.6 0.3 22.2 0.4

TABLE A-2. TRAVERSE EMISSIONS AT IDLE POWER--RUN 124

WEIGHTED AVERAGE

THIS PAGE IS BEST QUALITY PRACTICART

TABLE A-3. TRAVERSE EMISSIONS AT HOLDING POWER--RUN 125

PT #	THC P/M-C	CO P/M	CO2 %	NOx P/M	PT #	THC P/M-C	CO P/M	°CO2 %	NO _X P/M	PT #	THC P/M-C	CO P/M	CO2 %	NO _x P/M
1	11.6	16	0.11	1.2	. 60	6.4	Q.	0.06	0.5	119	55.5	346	1.87	18.5
2	26.2	96	0.51	4.9	61	11.8	40	0.20	1.8	120	75.8	356	1.75	16.9
3	38.8	175	0.86	7.9	62	26.7	130	0.60	5.6	121	79.0	337	1.72	16.3
4	45.6	233	1.22	11.0	63	43.8	268	1.32	12.4	122	54.4	286	1.62	15.8
5	53.3	325	1.75	15.6	64	44.8	303	1.52	14.5	123	29.9	169	0.90	8.9
6	50.4	344	1.85	17.2	65	38.4	271	1.37	13.2	124	17.1	76	0.40	3.9
7	47.5	329	1.82	17.7	66	44.8	296	1.52	14.5	125	8.5	21	0.11	1.2
8	48.5	325	1.77	16.9	67	20.0	130	0.60	5.8	126	5.3	4	0.02	0.2
9	54.3	355	1.90	18.3	68	20.3	68	0.30	2.9	127	11 9	6	0.02	0.3
10	60.1	370	1.92	16.1	70	10.7	61	0.27	0.9	120	27.8	122	0.15	5 1
12	51.4	233	1.20	10.8	71	6.4	19	0.02	0.2	130	57.7	272	1.17	10.3
13	42.6	173	0.84	7.7	72	8.5	31	0.15	1.5	131	79.0	3.74	1.80	16.3
14	34.9	126	0.60	5.5	73	17.1	77	0.37	3.5	132	72.6	373	1.87	18.0
15	15.5	25	0.15	1.5	74	23.5	120	0.57	5.3	133	77.9	371	1.75	16.3
16	8	4	0.06	0.5	75	28.8	170	0.82	7.7	134	77.9	279	1.27	11.7
17	11.6	25	0.15	1.6	76	23.5	134	0.65	6.3	135	60.8	215	1.15	9.8
18	25.2	106	0.51	4.9	77	25.6	146	0.71	7.0	136	38.4	166	1.01	8.7
19	35.9	209	1.10	10.5	78	29.9	163	0.77	7.6	137	26.7	106	0.55	5.7
20	43.6	307	1.65	15.6	79	13.9	49	0.22	2.2	138	17.1	49	0.26	2.6
21	50.4	351	1.85	17.5	80	9.5	25	0.11	1.2	139	8.5	11	0.07	0.8
22	46.5	340	1.82	17.5	81	6.4	16	0.07	0.8	140	13 0	14	0.06	0.5
23	52.4	344	1.82	1/./	02	8.5	4	0.02	1.6	141	24 6	3/	0.15	1.0
24	62 1	365	1.92	16.0	84	12.8	31	0.13	2.6	142	38.4	195	0.40	7.5
25	56.2	278	1.42	12.9	85	11.8	50	0.25	2.2	144	64.1	337	1.70	15.8
27	34.9	156	0.75	6.9	86	8.5	31	0.15	1.6	145	74.8	362	1.82	16.9
28	25.2	82	0.40	3.7	87	13.9	56	0.27	2.7	146	65.1	276	1.32	12.2
29	27.2	93	0.45	3.9	88	9.6	31	0.15	1.5	147	39.5	140	0.70	6.3
30	15.5	35	0.17	1.8	89	6.4	9	0.06	0.4	148	23.5	76	0.40	3.7
31	8.5	1	0.02	0.1	90	5.3	6	0.05	0.2	149	17.1	56	0.30	2.9
32	1.5	1	0.02	0.2	91	4.3	6	0.05	0.2	150	12.8	40	0.22	2.1
33	8.5	14	0.10	0.8	92	4.3	6	0.02	0.3	151	8.5	21	0.11	1.2
34	17.1	64	0.34	3.2	93	2.3	4	0.02	0.2	152	6.4	4	0.02	0.2
35	32.0	183	0.88	8.5	94	2.3	9	0.02	0.5	153	10.7	31	0.12	1.3
36	49.1	324	2.17	15.6	95	4.3	4	0.02	0.2	154	12.8	49	0.20	1.9
37	51.3	347	1.85	1/./	96	4.3	1	0.02	0.1	155	61 0	113	0.46	4.4
38	55.5	351	1.82	17.5	97	13.9	9	0.32	2.8	157	81.2	2//	1.15	10.2
29	15.0	351	1.77	16 4	90	21.4	50	0.51	4.6	158	63.0	197	0.75	6.5
40	59.8	286	1.42	12.9	100	29.9	100	0.77	6.8	159	33.1	88	0.32	2.8
42	40.6	163	0.77	7.0	101	47.0	276	1.50	13.6	160	18.2	29	0.12	1.0
43	21.4	52	0.25	4.6	102	53.4	329	1.80	17.4	161	9.6	14	0.07	0.5
44	19.2	47	0.22	2.1	103	44.8	329	1.85	18.0	162	7.4	9	0.05	0.3
45	12.8	21	0.11	1.1	104	49.2	340	1.85	17.7	163	6.4	6	0.05	0.2
46	6.4	4	0.02	0.1	105	51.9	281	1.92	18.5	164	8.5	9	0.06	0.4
47	8.5	9	0.02	0.4	106	15.8	389	1.95	18.3	165	17.1	52	0.25	2.2
48	13.9	44	0.20	1.9	107	08.4	355	1.92	18.5	166	39.5	159	0.71	6.2
49	28.8	146	0.70	6.8	108	33.5	282	1.57	14.7	167	51.3	202	0.88	7.8
50	50.2	322	1.60	15.1	109	21 4	172	0.86	8.1	168	10 2	134	0.57	5.1
51	51.3	351	1.82	17.5	110	9.6	70	0.35	3.2	109	7 /	63	0./1	2.0
52	53.4	344	1.80	17.2	112	6.4	14	0.07	0.2	171	5.3	16	0.10	0.0
53	38.1	2/4	1.17	10.8	112	10.7	4	0.10	0.9	172	5.3	4	0.02	0.1
55	43.9	140	0.60	5.8	114	19.2	10	0.25	2.5	173	10.7	31	0.15	1.4
56	31.0	130	0.55	5.4	115	37.4	1/6	0.62	5.8	174	19.2	83	0.37	3.4
57	15.0	40	0.15	1.8	116	58.7	278	1.35	12.5	175	22.4	93	0.42	3.8
58	9.6	16	0.07	0.9	117	63.0	355	1.90	18.5	176	17.1	59	0.27	2.6
59	5.3	4	0.02	0.2	118	51.3	343	1.92	19.1	177	8.5	11	0.07	0.7
								WEIGHT	ED AVE	RAGE	30.8	147	0.75	7.1

PT #	THC P/M-C	CO P/M	^{CO} 2 %	NO _X P/M ·	PT #	THC P/M-C	CO P/M	^{CO} 2 %	NOx P/M	PT #	THC P/M-C	CO P/M	CO2	NO _X P/M
1	2.64	7	0.15	2.9	60	2.31	2	0.02	0.6	119	3.41	79	1.95	34.4
2	4.29	40	0.95	16.3	61	2.42	7	0.12	2.8	120	2.75	77	1.97	34.2
3	4.18	53	1.32	22.4	64	2.75	20	0.47	8.0	121	2.75	86	2.05	34.2
4	4.29	0/	1.70	28.8	64	2.80	49	1.10	18.4	122	2.31	49	1.20	20.2
5	4.18	79	2.05	33 0	65	2.04	62	1.55	25.6	123	1.98	13	0.35	6.1
7	3.96	73	1.85	31.4	66	3.52	77	1.80	20.0	124	1.98	2	0.10	1.7
8	3.74	71	1.82	30.9	67	2.64	34	0.72	12.8	126	2.09	1	0.02	0.1
9	3.62	74	1.85	31.4	68	2.64	23	0.47	8.0	127	2.09	1	0.02	0.6
10	3.74	88	2.05	34.1	69	2.42	15	0.30	4.9	128	1.98	3	0.10	1.6
11	3.63	83	2.07	35.2	70	2.20	3	0.06	1.0	129	1.98	22	0.50	8.4
12	3.52	67	1.72	28.8	71	1.98	1	0.02	0.3	130	1.87	48	1.25	28.8
13	3.30	52	1.30	21.4	72	2.09	د	0.06	1.0	131	2.09	76	1.92	34.1
14	2.75	30	0.82	14.4	75	2.20	17	0.20	3.1	132	2.42	/8	2.02	37.2
15	1 09	6	0.10	1.9	75	2.31	35	0.42	12 0	133	2.20	70	1.05	36.2
17	2 64	23	0.45	7.7	76	2.09	38	0.80	15.0	134	2.20	72	1.95	34.1
18	3.41	47	0.95	16.7	77	1.98	44	1.10	18.4	136	1.98	41	1.01	17.6
19	3.41	72	1.65	28.2	78	1.98	45	1.10	18.4	137	1.98	17	0.40	7.2
20	2.75	80	1.95	33.0	79	1.98	10	0.25	4.1	138	1.87	4	0.07	1.4
21	2.97	79	1.90	33.0	80	2.09	5	0.11	1.9	139	1.65	ì	0.02	0.4
22	3.08	74	1.80	30.8	81	1.98	5	0.10	1.4	140	1.87	1	0.02	0.3
23	2.97	74	1.80	30.8	82	1.87	1	0.02	0.4	141	1.87	3	0.05	0.7
24	3.08	79	1.82	31.4	83	2.09	5	0.11	2.0	142	1.87	11	0.26	4.4
25	3.08	83	1.85	32.4	84	2.31	11	0.22	3.6	143	1.98	29	0.67	11.5
26	3.30	14	1.70	10 0	86	2.42	11	0.27	4.7	144	1.95	65	1.55	26.1
21	3.19	47	0.65	11 5	87	2.55	17	0.25	3.9	145	2.20	83	1.95	33.4
20	2.04	19	0.45	7.5	88	2.53	16	0.42	6.5	140	2.04	55	1.77	30.2
30	2 20	5	0.07	1.6	89	2.86	2	0.06	0.5	147	2.09	34	0 71	12.5
31	1.98	3	0.02	0.4	90	2.86	1	0.02	0.4	149	1.65	20	0.47	8 9
32	1.87	3	0.05	0.7	91	2.97	1	0.02	0.4	150	1.65	11	0.27	5.2
33	2.20	7	0.15	2.7	92	3.08	2	0.05	0.7	151	1.65	3	0.05	1.3
34	2.75	26	0.55	9.4	93	3.08	2	0.05	0.5	152	1.65	1	0.01	0.4
35	2.97	60	1.50	25.1	94	3.08	3	0.06	1.0	153	1.65	1	0.02	0.3
36	2.75	79	1.95	32.9	95	3.08	3	0.06	1.0	154	1.54	3	0.06	1.0
37	3.08	77	1.90	32.4	96	3.08	1	0.02	0.5	155	1.54	13	0.27	4.9
38	3.08	79	2.00	35.0	9/	3.52	20	0.07	1.9	156	1.56	56	1.15	18.8
39	3.08	19	2.00	33.0	90	3.74	20	0.51	9.8	157	2.42	74	1.65	27.2
40	2.9/	66	1.65	28.8	100	2.86	41	1.05	10 1	150	2.04	34	1.15	18.8
42	3.30	87	0.82	14.2	101	3.62	71	1.75	30.5	160	1.87	15	0.32	12.5
43	2 58	17	0.35	6.0	102	3.85	77	1.95	34.6	161	1.54	5	0.10	1.8
44	2.20	8	0.12	2.5	103	3.19	73	1.90	33.6	162	1.54	1	0.02	0.5
45	2.20	6	0.02	0.4	104	2.97	73	1.82	33.1	163	1.65	1	0.02	0.3
46	2.42	1	0.02	0.4	105	2.42	69	1.95	35.6	164	1.76	3	0.02	0.3
47	2.42	3	0.06	1.2	106	2.64	76	2.10	37.8	165	1.87	6	0.12	2.1
48	2.85	17	0.35	6.6	107	2.86	83	2.00	34.1	166	1.98	25	0.57	9.7
49	3.41	53	1.15	17.2	108	2.81	86	1.50	25.8	167	1.98	44	1.03	16.7
50	2.97	77	1.85	30.6	109	2.81	85	0.82	15.0	168	1.90	31	0.71	11.5
51	3.19	/8	1.85	31.1	110	2.09	17	0.40	1.2	169	1.76	12	0.30	4.8
52	3.85	88	2.00	34.2	112	1.98	1	0.02	0.6	171	1.76	2	0.00	1.1
54	3.74	67	1.60	26.4	113	2.20	5	0.12	2.3	172	1.76	1	0.01	0.4
55	3.52	55	1.32	22.3	114	2.20	29	0.67	4.4	173	1.98	6	0.12	12.0
56	3.30	29	0.60	10.4	115	2.31	30	0.71	12.4	174	1.87	14	0.32	27.2
57	3.08	5	0.15	2.6	116	2.53	62	1.65	27.9	175	1.98	14	0.32	26.7
58	2.42	1	0.05	0.6	117	3.08	77	2.00	35.2	176	1.98	7	0.12	11.0
59	2.31	1	0.02	0.3	118	3.08	79	1.95	34.2	177	1.98	2	0.02	1.7
								WEIGHTED	AVERA	AGE .	2.52	35	0.83	14.6

TABLE A-4. TRAVERSE EMISSIONS AT APPROACH POWER--RUN 121

1

TABLE A-5. TRAVERSE EMISSIONS AT MAXIMUM CONTINUOUS POWER--RUN 123

PT	THC	CO	C02	NOx	PT	THC	CO	CO2	NOx	PT	THC	CO P/M	C02	NO x
-	P/M-C	P/M	- 70	P/M ·	11	P/M-C	r/m	70	P/M	1 /	P/M-C	1/11	10	P/M
1	1.9	4	0.46	15.5	60	1.4	5	0.32	10.3 1	119	0.1	31	2.48	86.8
2	1.9	20	1.72	56.3	61	1.1	14	0.11	31.5 1	120	0.1	31	2.50	87.8
3	2.3	27	2.40	81.6	62	1.0	21	1.65	53.7 1	121	0.4	35	2.45	81.0
4	2.4	35	2.70	93.0	63	0.7	30	2.25	75.4 1	122	0.7	28	2.10	67.2
5	2.4	36	2.47	89.9	64	0.6	34	2.50	88.8 1	123	1.3	11	0.75	23.5
0	2.4	30	2.33	87.8	65	0.5	37	2.65	94.0	124	1.7	2	0.15	2.0
	2.1	31	2.30	80.8	67	0.5	31	2.33	75 / 1	125	2 6	2	0.01	0.3
9	1.7	31	2.35	80.6	68	1.0	19	1.40	45.4 1	127	1.4	2	0.06	1.9
10	1.5	35	2.50	83.7	69	1.4	7	0.47	16.0 1	128	1.4	3	0.15	4.6
11	1.2	38	2.65	87.8	70	1.5	4	0.11	3.6 1	129	1.2	10	0.72	24.2
12	1.2	34	2.57	82.6	71	1.7	2	0.02	0.6 1	130	0.6	21	1.75	56.8
13	1.4	25	1.97	64.0	72	1.7	2	0.06	1.3 1	131	0.4	31	2.50	86.8
14	1.8	11	0.75	23.7	13	1.4	5	0.30	9.8 1	132	0.2	32	2.55	89.9
15	1.3	3	0.05	0.7	14	1.2	12	0.97	31.7 1	133	0.2	32	2.58	90.9
16	1.9	6	0.46	14.4	.5	0.8	21	1.70	54.2 1	134	0.4	33	2.28	14.4
1/	1.4	1/	2 35	48.6	. 6	0.7	28	2.20	/2.8 1	135	0.4	32	1 55	47 5
10	0.6	34	2.70	80.6	70	0.2	30	2.08	93.0 1	137	1 2	11	0.65	20.1
20	0.7	34	2.68	95.0	10	0.9	24	1.97	44 9 1	138	1.5	4	0.06	1.9
21	0.8	31	2.80	87.8	80	1.1	12	0.95	30.4 1	139	1.4	i	0.02	0.3
22	1.1	31	2.45	84.7	81	1.3	5	0.25	7.3 1	140	1.7	1	0.02	0.1
23	1.2	32	2.40	81.6	82	1.4	1	0.02	0.5 1	41	1.8	4	0.10	3.0
24	1.1	38	2.42	79.5	83	1.5	3	0.15	6.2 1	142	1.4	9	0.55	18.6
25	1.0	38	2.52	83.7	84	1.2	9	0.65	21.7 1	143	1.0	17	1.35	43.4
26	1.1	33	2.38	77.5	85	1.2	14	1.10	36.1 1	144	0.2	28	2.33	79.5
27	1.4	21	1.65	51.6	86	1.0	21	1.72	55.8 1	145	0.1	32	2.63	93.0
28	1.5	18	1.32	41.8	8/	0.7	28	2.27	17.5 1	146	0.5	28	2.13	/0.2
29	1./	2	0.05	20.1	88	1.3	16	1.12	12 6 1	4/	1.0	16	1.45	31 5
31	1.5	3	0.12	0.8	09	1.5	5	0.37	8 5 1	140	1.0	9	0.52	1/.5
32	1.5	5	0.46	15.0	91	1.5	4	0.07	2.3 1	150	1.4	3	0.30	10.3
33	1.4	12	1.01	35.1	92	1.2	1	0.55	18.1 1	151	1.7	1	0.02	0.6
34	1.2	25	2.10	70.2	93	1.1	12	0.97	31.5 1	152	2.1	1	0.02	0.1
35	1.1	34	2.60	88.8	94	1.1	10	0.90	29.9 1	153	1.4	1	0.02	0.6
36	1.0	34	2.52	86.8	95	1.2	5	0.45	14.4 1	154	1.4	2	0.15	5./
37	1.0	34	2.42	83.7	96	1.7	2	0.05	1.0 1	155	1.2	9	1.65	20.1
38	0.8	35	2.35	78.5	97	1.7	6	0.42	14.7 1	156	0.8	18	1.55	50.6
39	0.8	3/	2.35	78.5	98	1.4	16	1.20	41.3 1	150	1.0	23	1 60	50.6
40	0.6	20	1 97	80.6	100	1.5	22	1.27	59 0 1	150	1.3	12	1.07	25.3
41	1.1	16	1.12	37 2	101	2.1	32	2.42	85.7 1	60	1.8	6	0.35	11.1
43	1.2	14	0.90	29.9	102	2.3	36	2.52	88.8 1	61	1.7	2	0.10	2.5
44	1.4	7	0.45	14.4	103	1.9	34	2.38	83.7 1	62	1.5	2	0.05	0.7
45	2.4	3	0.02	0.5	104	1.1	33	2.35	82.6 1	163	2.1	1	0.02	0.1
46	1.5	5	0.15	5.4	105	0.6	32	2.40	86.3 1	164	1.4	1	0.05	0.8
47	1.4	11	0.65	21.2	106	0.6	34	2.42	84.7 1	165	1.4	5	0.26	8.3
48	0.8	23	1.75	57.8	10/	0.5	36	2.42	80.6 1	166	1.1	13	0.82	27.1
49	0.5	32	2.45	83.7	108	0.7	25	1.65	52.7 1	61	0.6	21	1.55	49.0
50	0.4	32	2.50	86.8	109	1.2	28	1.01	12 0 1	60	0.0	10	0.51	16.5
52	0.5	37	2.53	80.8	110	2.6	10	0.43	0.5 1	70	1.3	3	0.10	2.7
53	0.6	36	2.45	83 7	112	1.4	4	0.12	4.1 1	71	1.5	1	0.02	0.2
54	0.8	33	2.30	77.5	113	1.2	7	0.46	14.4 1	72	2.1	î	0.02	0.1
55	0.8	18	1.55	50.1	114	1.1	8	0.50	16.0 1	173	1.8	3	0.20	6.9
56	1.3	9	0.65	21.7	115	0.8	34	0.97	31.5 1	74	1.5	6	0.42	13.9
57	1.1	5	0.32	10.8	116	0.2	23	1.87	61.0 1	75	1.2	6	0.42	13.4
58	1.8	1	0.10	3.2	117	0.1	31	2.43	82.6 1	76	1.4	3	0.15	5.0
59	1.6	1	0.02	0.9	118	0.1	33	2.45	84.7 1	77	2.3		0.02	0.2
								WEIGHTED	AVERAC	GE	1.2	18	1.29	43.1

A-6

	TABLE A-6. N	MIXER TRAVERSE	EMISSIONS A	T IDLE THROT	TLE POWER
PT	THC		со	C02	NOv
1	P/M-	c	P/M	1	P/M
1	59.6		77	0.22	1.5
2	. 73.2		103	0.27	1.9
3	99.0		143	0.37	2.6
4	140.7		238	0.65	4.5
5	196.9		267	1.07	7.6
6	208.0		283	1.12	8.0
7	166.5		273	0.77	5.6
8	126.0		191	0.52	3.8
9	101.2		146	0.40	2.9
10	52.9		88	0.22	1.6
11	70.9		96	0.27	2.0
12	90.0		126	0.37	2.8
13	123.8		203	0.60	4.5
14	172.1		315	0.95	6.9
15	1/0.0		323	0.95	0.9
10	140.2		253	0.72	5.3
10	119.2		191	0.51	3.9
10	103.5		105	0.42	3.0
20	09.0		100	0.30	2.2
20	106.6		130	0.37	2.0
27	100.0		228	0.51	5.0
22	124.0		220	0.05	4.0
23	120.1		18/1	0.02	4.0
25	104.0		150	0.51	3.0
25	68 0		103	0.40	3.2
27	85.0		134	0.30	2.8
28	89.6		140	0.37	3 1
20	95.2		156	0.42	3.3
30	90.5		143	0.40	3.1
31	90.5		134	0.35	2.7
32	92.9		134	0.35	2.6
33	77.1		116	0.32	2.4
34	74.8		109	0.32	2.4
35	70.3		96	0.27	2.3
36	62.4		91	0.26	1.9
37	77.1		120	0.34	2.4
38	106.6		159	0.46	3.3
39	147.3		145	0.71	4.9
40	193.0		134	1.01	7.2
41	174.6		297	0.90	6.5
42	137.2		213	0.62	4.6
43	110.0		156	0.46	3.3
44	86.1		120	0.35	2.7
45	97.5		143	0.42	3.1
46	122.5		187	0.55	3.9
47	152.0		253	0.72	5.3
48	165.6		280	0.84	6.1
49	145.1		234	0.70	4.9
50	111.1		173	0.50	3.8
51	88.4		130	0.40	2.8
52	106.8		167	0.47	3.4
53	132.8		213	0.60	4.4
54	148.6		245	0.72	5.2
55	149.8		245	0.72	5.2
56	137.2		205	0.62	4.4
57	112.3		159	0.50	3.5
58	87.3		120	0.40	2.7
59	153.1		234	0.70	4.8
60	153.1		230	0.70	4.7
61	135.0		205	0,60	4.2
	WEIGHTED 119.2		181.0	0.55	4.0

AVERAGE

\$

A-7

APPENDIX B

ENGINE PERFORMANCE AND TRAVERSE AVERAGE EMISSION INDICES

TABLE B-1. ENGINE PERFORMANCE AND TRAVERSE EMISSION

Mode	Engine <u>Traverse</u>	Run <u>No</u> -	^T ₂ •F	Specific Humidity Grains (H ₂ 0/1b)	Bar Press inHg A	EPR	Air Flow <u>(1b/S)</u>	Fuel Flow (1b/h)	Thrust (1b)	Observed T ₃ (°F)	P3 (inHg)
Idle	Exhaust Nozzle	119	42	19.5	30.2	1.041	78.75	987.7	834.6	175.8	197.9
Idle	Exhaust Nozzle	124	46	20.4	30.10	1.042	81.7	1012.7	849.2	175.0	
Idle	Mixer	136-139	46	40	30.19	1.040	81.2	1004	803.5	171.7	
Holding	Exhaust Nozzle	125	47	47	30.03	1.070	109.3	1360.6	1384.4	238.5	254.2
Approach Maximum	Exhaust Nozzle	121	54	43.5	29.50	1.303	212	3012.5	5235.7	451.4	460.6
Continuous	Exhaust Nozzle	123	29	15.4	29.38	1.873	303.8	7247.8	12697.0		373.4

--

MANCE AND TRAVERSE EMISSION INDICES--HIGH SMOKE COMBUSTION CHAMBERS

A DESCRIPTION OF A DESC

CALCULATION OF A DESCRIPTION OF A DESCRI

and the second second second

Thrust (1b)	Observed T ₃ (°F)	P3 (inHg)	CO EI	THC EI	NOx EI	^{CO} 2	CO EI <u>Corr.</u>	THC EI <u>Corr.</u>	NO _X EI <u>Corr.</u>	F/A (CB)	F/A Measured	Sample Efficiency <u>F/A_{CB} X100</u> F/A _M (\$)
834.6	175.8	197.9	63.87	19.60	2.56	0.71	58.80	16.04	3.09	.00360	.003484	103.3
849.2	175.0		62.95	18.70	2.56	0.71	58.90	15.90	2.94	.00360	.003443	104.5
803.5	171.7		62.76	23.64	2.28	0.55	58.97	20.31	2.81	.0028	.003435	
384.4	238.5	254.2	38.4	4.6	3.05	0.75	35.0	3.0	3.66	.00370	.003458	107.0
235.7	451.4	460.6	8.4	0.35	5.66	0.83	8.1	0.35	6.71	.00402	.003947	101.8
697.0		373.4	2.8	0.1	11.02	1.29	2.07		14.20	.00625	.006624	94.4

B-1

APPENDIX C

ENGINE PERFORMANCE AND CRUCIFORM PROBE EMISSIONS

TABLE C-1. ENGINE PERFORMANCE AND CRUCIFORM PROBE EMISS

Probe	Probe Ang. Pos. (Deg.)	Probe Axial Pos. (In.)	Run <u>No</u> .	.t₂ ≝	Specific Humidity Grains H ₂ O <u>lb</u>	Bar Press inHg	EPR	Air Flow <u>lbs/S</u>	Fuel Flow <u>lbs/h</u>	Thrust <u>lbs</u>	°F3	P3 inHg	CO EI	THC EI
Nozzle Traverse Nozzle			. 119 .	42.0	19.5	30.21	1.04	78.7	987.7	834	175.8	197.9	63.9	19.6
Traverse Mixer			124 136	46.0	20.4	30.10	1.04	81.7	1012.7	849	175.0		62.9	18.70
Traverse Average			139	46	40	30.10	1.04	81.7	1012.7	803	171.7		62.76	23.64
12 Point														
Crucifore	0	2	148	33	21	30.19	1.04	82.3	990	788	160		71.1	29.7
Crucifor	90	2	149	34	21	30.19	1.04	83.8	1013	787			73.9	31.5
12 Point	45	2	146	32	21	30, 18	1.04	83.8	1016	773	160		72.1	30.3
12 Point	,			5-	-	50.10				115			(0.0	
Crucifor	22 1/2	2	147	33	21	30.18	1.04	82	1015	698	160		69.8	31.7
12 Point		8	127	45	h 1	30 22	1.04	81	1000	804	170		68.2	27.2
12 Point		U	131	->		30.22	1.04		1000	004	110			
Crucifore	0	8	139	47	41	30.22	1.04	82	1021	798	175		68.3	25.0
Crucifor	45	8	145	34	22	30.23	1.04	84	1035	797	160		68.4	29.8
12 Point Cruciform	0	12	150	33	11	30.32	1.04	84	1034	814	160		71.4	26.8
8 Point													(2.2	
Crucifora 8 Point	0	8	140	44	44	30.20	1.04	82	1001	748	175		03.2	21.7
Crucifor	0	8	141	44	44	30.20	1.04	82	1001	772			65.0	22.0
8 Point Cruciform	45	8	143	33	19	30.24	1.04	82	1013	796	160		69.9	26.1
8 Point Crucifor	45	8	144	34	22	30.23	1.04	84	998	998	160		67.3	25.9

PERFORMANCE AND CRUCIFORM PROBE EMISSIONS -- HIGH SMOKE COMBUSTION CHAMBERS

• <u>•</u>	P3 inHg.	CO EI	THC El	NO _X El	CO EI <u>Corr.</u>	THC EI <u>Corr.</u>	NOx EI <u>Corr.</u>	CO S Trav. Avg.	THC \$ Trav. <u>Avg.</u>	NO S Trav. <u>Avg.</u>	<u>F/A(CB)</u>	F/A Measured	Sample Efficiency <u>F/A_{CB} X100</u> F/A _M X1.0 (\$)
175.8	197.9	63.9	19.6	2.56	58.8	16.04	3.09				.0036	.003484	103.3
175.0		62.9	18.70	2.56	58.9	15.90	2.94				.0036	.00344	104.5
171.7		62.76	23.64	2.28	58.97	20.31	2.81				.0028	.00343	81.6
					58.85	20.31	3.01						
160		71.1	29.7	2.19	62.57	21.75	2.85	106.3	107.1	94.7	.00334	.00331	100.9
		73.9	31.5	2.21	65.37	23.36	2.85	111.1	115.0	94.7	.00345	.00339	101.8
160		72.1	30.3	2.25	63.12	21.91	2.95	107.3	107.9	98.0		.0034	60.3
160		69.8	31.7	2.52	61.42	23.21	3.28	104.4	114.3	109.0		.0034	40.9
170		68.2	27.2	2.37	63.77	23.09	2.95	108.4	113.7	98.0	.00343	.00343	100.0
175		68.3	25.0	2.37	64.4	21.74	2.90	109.4	107.0	96.3	.00342	.0035	97.7
160		68.4	29.8	2.52	60.50	22.10	3.26	102.8	108.8	108.3		.00346	98.0
160		71.4	26.8	2.23	62.83	19.67	2.82	106.8	96.6	93.7	.00343	.00346	99.1
175		63.2	21.7	2.38	58.8	18.20	3.01	99.9	89.6	100.0	.00611	.00343	178.1
		65.0	22.0	2.27	60.48	18.62	2.87	102.8	91.7	95.3	.00612	.00343	178.4
160		69.9	26.1	2.25	61.51	19.11	2.91	104.5	94.1	96.7	.0041	.00347	118.1
160		67.3	25.9	2.35	59.53	19.21	3.04	101.2	94.6	101.0	.00394	.00326	120.9

8

C-1

APPENDIX D

ENGINE PERFORMANCE AND CORE PROBE EMISSIONS

:fficiency 1 x100 x2.06	0	7	1	2	6	4	1	2	4	0	80	5	4	4	7	7	6	1	4	0
F/ACE F/ACE F/AM	. 76	89.	91.	. 76	90.	.06	88.	89.	87.	87.	82.	85.	87.	86.	86.	87.	91.	101.	104.	112.
Sa F/A Measured	.00359	.00368	.003756	.00373	.00418	.00416	.00469	.00471	.00524	.00526	.00573	.00602	.00659	.00739	.00747	.00657	.00606	.00386	.00321	.00296
F/A CB	.00695	.00680	.00705	.00724	.00780	.00775	.00851	.00866	.00943	.00943	.00977	.01060	.01187	.01315	.01335	.01187	.01143	.00804	.00688	.00683
NO _X EI CORR	3.27	3.10	7.03	6.99	8.38	8.47	10.40	10.36	12.50	12.28	14.65	15.97	18.80	21.65	21.40	18.82	15.74	8.99	4.19	3.20
THC EI CORR	10.02	10.62	0.975	.837	.377	.405	.177	.123	1	١	1	1	1	1	I	1	ı	0.264	4.64	9.32
CO EI CORR	47.91	48.26	14.04	13.79.	9.02	9.16	5.47	5.37	2.98	3.05	2.22	1.62	0.92	0.64	0.61	0.93	1.31	8.68	29.50	46.01
× II	2.60	2.467	5.56	5.52	6.46	6.58	8.09	7.91	9.43	9.43	10.85	12.26	15.10	17.98	18.36	15.50	12.33	7.126	3.35	2.60
EI	13.68	14.50	2.54	2.18	1.101	1.137	67.	.374	.136	.113	.132	.026	.014	.089	.013	.005	.005	.687	6.34	1.241
EI CO	54.44	54.84	17.39	17.08	11.47	11.54	6.89	6.88	4.23	4.22	3.23	2.25	1.22	0.800	.728	1.197	1.77	10.75	33.52	51.75
P3 in4g	1	ı	143	143	179	177	222	222	265	265	285	323	380	427	431	380	334	185	ī	i.
E.	180	180	380	380	440	077	475	475	525	525	550	590	600	665	665	610	600	077	240	180
Thrust (1bs)	974	1,103	4,125	4,156	5,290	5,237	6,757	6,808	8,371	8,368	9,128	10,614	12,865	14,562	14,683	12,925	11,222	5,260	1,364	850
Fuel Flow 1bs/h	1020	1021	2407	2407	3068	3039	3898	3934	4846	4834	5368	6,222	7,189	8,489	8,575	7,192	6,259	3,032	1,317	980
Air Flow Ibs/S	62	11	178	179	204	203	231	232	257	255	260	287	303	319	319	304	287	218	114	92
EPR	1.04	1.04	1.208	1.208	1.285	1.282	1.394	1.397	1.512	1.512	1.577	1.680	1.885	2.048	2.049	1.887	1.738	1.303	1.070	1.059
Bar Press inH _g A	30.14	30.14	30.14	30.14	30.14	30.14	30.15	30.15	30.19	30.19	30.01	30.01	30.00	29.92	29.87	29.87	29.87	29.85	29.85	29.85
Specific Humidity Grain/lb of Air	80	89	80	30	80	20	80	89	8	30	80	80	80	80	7	7	7	1	7	7
°F	33	33	32	32	29	30	30	28	28	30	26	30	31	30	35	34	32	32	33	35
un .o	65	61	62	10	59	61	68	70	11	73	14	16	78	80	82	*8	86	06	92	76

TABLE D-1. ENGINE PERFORMANCE AND CORE PROBE BMISSIONS -- LOW SMOKE COMBUSTION CHAMBERS

the survey a strong the second strong

D-1

											TO	BL	2										
acy	TH FI	NOM	PAG	E I Y F	S BE	ISH	QUA ED I	LIT O D	y Ph DC	RAC													
ample Efficien <u>F/AcB_X100</u> F/AM_X2.06 (2)	93.4	96.0	95.3	91.8	9.66	87.4	77.3	82.3	84.1	82.3	78.9	78.4	83.9	80.2	64.3	80.3	80.6	80.8	82.6	87.1	95.3	89.3	96.3
S F/A Measured	.00355	.00358	.00385	.0042	.00332	.00369	.00523	.00551	.00561	.00624	.00688	.00781	.00744	.00691	.00370	.00789	.00747	.00719	.00622	.00542	.00418	.00362	.00354
F/A CB	.00683	.00708	.00756	.00794	.00681	.00664	.00833	46000.	.00972	.01058	.01119	.01261	.01286	.01141	.00719	.01306	.01241	76110.	.01058	.00972	.00821	.00666	.00702
NO _X EI CORR	.87	2.00	4.82	5.84	1.77	1.18	7.78	9.78	11.22	11.77	13.90	15.67	15.67	13.02	2.55	15.56	13.94	12.90	11.63	9.40	6.54	3.29	2.65
THC EI CORR	16.30	7.05	.19	.05	14.64	17.57	.07	•	1	ı	1	ı	•	•	14.61	1	1	•	١	ı	.09	6.54	15.52
CO EI CORR	49.82	36.39	10.61	8.32	49.94	53.53	4.20	3.38	2.88	2.16	1.71	1.34	1.09	1.46	51.75	1.45	1.21	1.37	2.06	3.02	28.50	39.19	57.10
NOX NOX	0.645	1.493	3.604	4.364	1.32	0.902	5.812	7.33	8.41	90.6	10.45	13.05	13.05	10.25	2.08	13.20	11.36	10.51	9.25	7.50	5.27	2.65	2.13
THC	24.66	10.67	.653	.183	22.16	25.57	.22	1	1	ı	ı	ı	1	1	18.98	ı	ı	•	ī	1	.21	8.71	20.67
EI CO	59.05	43.13	13.95	10.94	59.2	62.45	5.525	4.85	4.133	2.99	2.34	1.66	1.358	1.99	57.62	1.738	1.545	1.754	2.69	3.95	34.43	44.08	64.21
P3 inHg			144	176	•	ı	220	266	289	320	368	427	427	367	,	426	400	384	323	267	179		
C.F.	170	210	370	415	180	175	470	525	540	580	600	630	630	600	185	650	600	630	580	1	1	т	1
Thrust (1bs)	892	1317	3840	,	902	854	6591	8197	9103	10475	12070	14332	14311	12070	852	14270	13353	12844	10478	8164	4915	1262	845
Fuel Flow Ibs/h	1053	1317	2424	3004	1053	1076	3939	4890	5396	6228	7219	8898	8897	7238	985	8833	8131	7740	6228	4914	3041	1315	1057
Air Flow 1bs/S	82.5	102	175	198.5	88	81	209	246.5	267	277	291.5	316.5	332	291	74.0	311	302.5	567	278	252	202	101	83
EPR	1.043	1.065	1.209	1.281	1.043	1.043	1.397	1.518	1.585	1.690	1.833	2.025	2.022	1.819	1.041	2.012	1.934	1.887	1.690	1.513	1.284	1.064	1.041
Bar Press inHg A	30.17	30.17	30.17	30.17	30.17	30.10	30.10	30.10	30.10	30.10	30.18	30.18	30.18	30.18	30.37	30.38	30.38	30.38	30.38	30.41	30.41	30.41	30.41
Specific Humidity Grain/lb of Air	1	7	1	1	1	7	7	7	1	1	7	7	1	7	11	11	11	11	11	10	10	10	10
°F	25	25	25	25	25	28	27	27	27	30	28	30	30	28	37	35	34	34	35	35	35	35	35
Run No.	95	16	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118

TABLE D-2. ENGINE PERFORMANCE AND CORE PROBE EMISSIONS -- HIGH SMOKE COMBUSTION CHAMBERS

APPENDIX E

ENGINE PERFORMANCE AND PT7 PROBE EMISSIONS

le Effici /Acm X100 /Am X2.06 (2)	96.1	110.0	107.0	103.9	39.5	93.6	949	98.3	90.8	92.3	94.5	103.1	102.6	121.0	136.6	11.0 3
Samp F Sured	359	374	417	469	525	568	617	657	748	756	688	608	530	382	323	100
F/A Mea	00.	.00	.00	.00	.00	.00	.00	00.	.00	.00	00.	.00	00.	00.	.00	00
F/A CB	.00711	.00848	.00919	.01004	.01076	.01095	.01203	.0133	.01399	.01438	.0134	.01291	.0112	.00952	60600.	10000
NO _X EI CORR	2.91	7.02	8.33	10.27	12.57	14.69	16.40	18.97	22.18	22.43	19.85	17.02	13.76	8.79	4.28	
THC EI CORR	11.21	0.922	0.444	0.194	'	'	,	'	,	,	,	'	,	0.331	5.20	
CO EI CORR	50.78	14.47	9.81	6.14	3.52	2.69	1.76	0.92	0.70	0.62	0.95	1.35	2.72	9.52	32.07	
NO _x	2.318	5.55	6.42	7.98	9.65	11.48	12.59	15.24	18.69	18.90	16.11	13.45	10.78	6.97	3.47	
THC	20.63	2.404	1.296	.5467	.203	.112	.018	.004	.012	*00	700	700	0.12	0.863	6.919	
EI CO	57.7	17.92	12.46	7.731	4.88	3.73	2.44	1.21	0.855	0.755	1.25	1.809	3.675	11.80	36.07	
P3 inHg	ı	143	177	222	265	287	318	383	428	431	381	339	274	183	(
5°53	180	380	440	475	525	550	590	600	665	665	610	600	550	440	734	001
Thrust (1bs)	974	4126	5237	6808	8371	9170	10,566	12,920	14,602	14,708	12,981	11,217	8,782	5,190	1,364	010
Fuel Flow Ibs/h	1020	2408	3063	3921	4860	1075	6224	7215	8566	8684	7291	6307	4888	2985	1314	000
Air Flow 1bs/S	62	179	204	232	257	264	280	305	318	319	303	288	256	217	113	
EPR	1.04	1.208	1.285	1.395	1.512	1.577	1.681	1.885	2.047	2.049	1.888	1.738	1.551	1.303	1.070	1 050
Bar Press inHg A	30.14	30.14	30.14	30.15	30.19	30.01	30.01	30.00	29.92	29.87	29.87	29.87	29.87	29.85	29.85	30 00
Specific Humidity Grain/1b of Air	80	8	8	3	30	80	30	80	1	1	1	1	1	1	1	
C.S.	33	32	29	30	30	30	30	31	32	32	32	33	32	32	35	36
in in	09	59	99	69	72	15	11	61	81	83	85	81	68	16	6	50

TABLE E-1. ENCINE PERFORMANCE AND P_{T7} PROBE EMISSIONS -- LOW SMOKE COMBUSTION CHAMBERS

ncy

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC