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Abstract

The work under ONR contract N00014-71-C-05l1 is described.

This work consists of the development of a number of statistical

techniques useful in solving search problems. Among these ai~e

the employment of Bayesian, minimaz, and maximum likelihood

inferential techniques in the estimation of the position of a

moving target during a search. An application of potential

theory to search problems is also considered. This document

~un~narizes the results detailed in Johns Hopkins Technical

Reports numbered 278, 280, 283, 286, 291, 295, 297, and 301.
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FINAL REPORI’

ONR CONTRACT N00014-77-C-0511

STATISTICAL METHODS IN SEARCH

1. Introduction

The work performed under ONR contract N00014-17-C-O5ll from

September 1, 1977 through June 30, 1978 has been addressed to de-

veloping new methods for planning and analyzing search for moving

targets. These methods were developed for application to ASW

search in the bS and SAl missions.

Recent work at various fleet locations, including COMStJBPAC

and COMSUBLANT , has centered around the development of programs

written for desk—top calculators such as the Wang 2200 and

Techtronix 4051 to address the ASW search problem. In particular,

• approaches have been developed for computing target location dis-

tributions, called probability maps, on these small calculators.

Previously such technology was only available on large, high—speed

computers. These newly developed programs have been used at sea

and on shore for the solution of search problems inherent to the

DS and SAl missions.

These new calculator programs have made probability maps avail-

able for the first time to the at-sea commander. For example , the 
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versions of the so-called ‘analytic’ programs designed for use in

the D3 mission have been used successfully in both planning and real-

time analysis in many Pacific Fleet exercises since 1975. These

DS programs represented the first real access of a commander at sea

to a complex search information processing system.

The key to this new capability lies in the fact that the

‘analytic ’ programs are implemented on portable desk-top calculators,

rather than on large stationary computers, as are the so-called

‘Monte Carlo ’ programs . This portability has proved extremely use-

ful in many operational search problems. On the other hand , this

flexibility has not been achieved without cost. In general terms, this

coBt has been in the reduced versatility of the ‘analytic’ programs

relative to the ‘Monte Carlo ’ programs.

The ‘analytic’ search programs differ from the ‘Monte Carlo’

search programs in the way in which probability maps are computed.

-
• Instead of obtaining a prob~bt].ity map from a complex sampling pro-

cedure, the ‘analytic’ programs compute it directly. The complexity

of the sampling procedure inherent in the ‘Monte Carlo’ programs

has resulted in their implementation on large, high-speed computers.

While less demanding in terms of programming requirements, the

current ‘analytic’ programs rest on a highly specialized body of

mathematical assumptions. These have been shown to have wide appli-

cability in ASW search problems~ however, they are still

—2—
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significantly more restrictive than those underlying the ‘Monte

Carlo ’ programs. As a result, the ‘analytic ’ programs

ar e consider ed less versatil e than the ‘Monte Carlo’ programs.

The work that has been performed under ONR Contract N00014-71-C-0511

has been addressed to enhancing the versatility of search program-

ming imp~ement on small desk-top calculators. The sole purpose of

this enhancement is to make useful tactical decision aids available

on portable computing systems for the use of the on-scene commander.

Two major objectives of the work have been t

1. Generalization of existing modeling and inferential

techniques in order that the desk—top ‘analyti c’ pro-

grams may be applied t9 a wider range of search

problems; and

2. Autom,ition of a number of the features of the current

‘analytic ’ programs in an attempt to reduce the role

of the analyst In the solution of operational search

problems.

These objective~i have been addressed through technical progress

In three important areas:

1. Generalization of the models for target motion and

models for sensor operation employed in the ‘analytic’

programs:

—3—
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2. Development of statistical procedures for esti-

mating the position of the target without stipulating

a prior distribution for the target; and

3. Development of statistical procedures for optit*al

real—time sensor allocation.

These technical advances have been made within the context of the

development of general statistical methods to address • earch problems.

The Bayesian ~tatietioal analysis which currently provides the inferential

structure of bOth the ‘analytic ’ and ‘Monte Carlo’ progr ams is only

one of many possible statistical techniques for making Inference

about the position of a target during a search. ,In an attempt to

address the objectives of this contrac t, the application of other

known statistical techniques to the problem of target localization

wam investigated. The result of this investigation is a body of

statistical tools for estimatIng the position of a target during a

search which significan tly ‘generalizes currently employed inferential

techniques.

These new tools will be briefly described in sections 3, 4, 5

and 6. An introduction to the use of statistics in the theory of

search will be presented in section 2. A compendium of the abstracts

of the technical reports referred to in sections 3, 4, 5 and 6 will

be given in section 7. P~ach stat istical techn ique referred to in

sections 3, 4, 5 and 6 is in the form of an algorithm which may be

—4—
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either incorporated into existing ‘analytic’ programs or written

into a new program for use on a desk-top calculator. In each case,

suggestions for the applicability of each technique will be made.
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2. The Use of Statistics in the Theory of Search

The problem of target localization may be viewed as a statis-

tical estimation problem. In a typical search problem, a target is

assumed to be moving in a’ region known as a search space. tlricer—

taintia~ are typically associated with both the initial position

of the t~rget and the manner in which the target moves from the

initial position through the search space.

A searcher is one who cboosas a sequence of random variables

‘ to sample in order to make inference about th~ position of the

target during the search. One random variable is chosen at each

stage of the search. For example, a random variable with outcomes

detection and non-detection may be associated with the search of a

subregion of the search space called a cell. Then, in choosing a

sequence of cells to be searched the searcher is really choosing

a sequence of binary random variables to be sampled. The sequence

of random variables chosen ‘from time 0 through to time t is

called the experiment associated with time (o~ stage) t.

At each time t the searcher may observe the outcomes of the

experiment associated with time t. This amounts to observing or

recollecting the outcomes of all the random variables chosen for

sampling between time 0 and time t . When a random variable is

associated with the search of a cell this is equivalent to observ-

ing either a detection or non—detection during the search of that cell.

-6-
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The searcher then has two problems to address. lila immedi-

ate problem is to use the outcotnea of the experiment assocl&ed

with time t to construct an estimate for the position of the

target at time t. This is a problem in statistical inferertc~e.

A more subtle problem , but one of equal inportance, involves the

choice of the experiment associated with time t . This is

actually a problem which must be addressed prior to the construc-

tion of the estimate. It in a problem in ~~~~rimental desigp.~

• Irt point of fact, theas two problems are Intima tely con-

nected . This is because the searcher must choose the experi-

ment a~isocIated with time t to optimize some property of the

target location estimator which he constructs at time t. This

criterion for optirnaiity usually involves a ~~~~ function

which places more value on estimates which are close to the

actual target position and less value on estimates which are

more di~ ta~t. The object ~~ nenreb planning then is, for any

time t to choose an experiment associated with time t arid

an estimator for target location at time t which maximizes the

average payoff to the searcher.

To summarize , there are six basic components oI the statia—

tlcal inference problem which confronts the searcher :•t time t.

i) © {o }  — Search ~~ace. This is the set of possible

locations for the target during the search . It Is

- 
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assumed that the target starts from one of the elements

of ® and at any time during the search is still

located at some element of

ii) E
~ 

- Pawul~’~ of Experiments. This is the collection

of all experiments associated with time t , denoted by

~~~ 
which the searcher may use in order to eatimate the

position of the target at time t. An element e
~ 

of

is just a sequence of random variables.

~~~~~ {z~} — Sample Sp!ce. This is the set of all possible

outcomes of the experiments associated with time t.

Having chosen an element e
~ 

of the searcher observes

an outcome z~ in

iv) u t ®  ‘C ®+IR - ?ayaf~~Function. The value ~
(i3 ,a) is

the payoff to the searcher if he estimates the target’s

position at time t to be aE® and it is actually QE®

v) C = ®+ tO ,l) - Prior Distribution. The value 0(8) is

the prior probability that the target starts at time 0

at location OE®

vi) * x ® x ® + [0,lJ - Observation Distribution.

‘the valtie 
~
‘
e ~

,
~‘t1° 0) is the probability of the event:

t
target is located at at time t and outcome

has been obtained, given the target started at location

ODE® at time 0

-8-
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The problems of statistical inference and experimental design

‘discussed above involved in predicting target location at time t

may then be regarded as a game between the searcher and the target.

Thu es~entia]. elemer.ta of the game ai~e the six basic components of

the estimation problem listed above . Different form s of statisti—

cal inference amount to different rules by which the target and the

searcher are assumed to play this game.

During the work under thin contract, three forms of statistical

inference were considered: Bayesian inference, stinimax estimation,

and maximum likelihood estimation. Within the context of the

search probl ,th different farina of inference result from:

I) different a~sumed mac]ianIsma i~or the target’s

choice of starting position, arid

ii) different payof I functions.

The gam e between the searcher and the target at any time t may be

~5preaentad graphically as ~in P4jiire ~~~
.

• L~33&~!.2.
The Game 13et~4eefl the ~eareher and Target

Hove ~ : 1 2 3 4 Paypff

riove by: Target Searcher Target Se0rcher Referee

ChoIces: e ,~E® e~~ E4 li (Ot~
a)

8
tE®

Mechanism i) G( ~ ) Free F (‘ .10 ) Free Fixed
for t •.

Choice ii) Free

The game may be considered as a four move game, with the target

Li ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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— aM the iearal3eZ a1tar~atihg moves.

~Xn the first move the target chooses an initial position. In

Bayesian inference it is assumed that this choice is macis randomly ,

using the prior distribut~.on C as the randomization mechan~,sm.

In both minimax estimation and maximum likelihood estimation, no

etich assumption is made. Rather, it is asatimed that the target’s

initial position is chosen completely arbitrarily.

The second move is the searcher’s. To address the problem of

estimating the target’s position at - time t ,he chooses an experiment

associated with time t, denoted e
~ 

. The searcher is free to

choose any element of

In the thrid move the target makes two choicest

- 
i) an outcome ztEZt , and -

ii) a locatiori

Once again it is assumed that the target is not free to choose any

pair (zt~
O
t

) b~t rather mus~t choose the pair randomly from the die-

trthution F (.,l 1 f 3~ Y. I’7ote that the distribution of 
~~~~~~ 

is ’
C
t

conditioned upon the choices 0
~ and e

~ 
which were determined

earlier in the game.

The fourth move is the searcher ’s. Having observed outcome

he must choose an element a of  ® as his estimate for the

location of the target. The searcher in free to choose any

element of ®

-10- 
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Aftnr the target and searcher ha~.’e completed two moves each ,

• a referee pays the searcher an amount 
~
I(O

~~
.a)i where 0~ is the

poaltion of the target at time t known only to the referee and a

in the searcher ’s estimnath of that position. It is assumed that the

mechanism for calculating the payoff was fixed before the game

started.,

In Bayesian inference and minimax estimation the payoff func-

tion is typically a function which decreases with increasing die—

tance between real and estimated target position. In maximum

likelihood estimation the payoff function is related to the

asymptotic variance of the estimate of the target’s position. These

ideas will be made precise in the next sections.

• In section 3 the Bayesian approach to this estimation prob—

1cm will be discussed in greater detail. In particular the

technical reports written to address specific seatch problems

within the Bayesian contex’t~ will be briefly discussed. Applica-

4 tions for which the Bayesian approach to eati~iation is appropri-

ate will also be suggested.

In section 4 the minimax estimator for target location will

be addressed in greater detail. Technical reports using this

statistical technIque to address specific search problems will be

discuss.~d and applications of this inferential technique mentioned.

-.11—
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In section 5 the maximum likelihood approach to estimation of

target location will be further developed within the context pre-

• 
~ented here. Diecuesion of material addressed to apecific search

problems within this inferential framework will be presented along

with suggestions for the applicability of this approach.

tn ~ection 6 an application of a different branch of mathe-

matics called potential theory. to th~ search problem is discussed.

Applications for this technique are mentioned. All technical re—

porte discussed in these four sections are abstracted in section 7.

—12 —
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3. B~yenian Search

In this ~~ction the Bayesian solution to the estimation problem

introduced in section 2 will be discussed in detail. Use of

Bayesian inference to address specific search problems has been

considered in four technical reports. These reports will be

briefly discussed below . Appilcation3 for the results of these

reports will also be addressed.

A. The Bayesian Estimation Problem

• As was mentioned in section 2 ~ the general estimation problem

inherent to a search may ha characterized as a four-move game with

a payoff at the end . The differences in this game under different

forms of statistical inference are differences in the mechanisms

for choice In move ~i and in the characterization of the payoff.

Consider the Bayesian ’s version of the estimation game displayed

in Figure 2.

- 

. • -

The Game Between ~ ~~e~tan searcher and a Target

Move # : 1 a ______

Move by: Target - ~aarcher Target Searcher Referee

Choices: 0
0E® 

z
~
EZt a U (Ot~

a)

Mechanism
for G() Free F5 (~~

et 0~ ) Free Fixed
Choice t

Knowledge G(•) CC’) 00 
G ()

y C !0 ) et a
t Fe ‘‘~ ‘~ °o~t-

zt

_ _ _  ~~~~~~~_ 1•• •
.~~ 
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The bayesian -searcher assumes that, in move #1, the target

chooses its initial position B
~ 

using the prior distribution G.

In move *2 the Bayesian search must choose an experiment associated

with tim. t, ~~~~~~~~~ 1~e do~a this assuming that he knows the

prior distribution G with which the target has chosen its initial

position O
~ 

. In the third move the target must choose a position

at time t,ø~ and produce an observation z
~
. The target is assumed

to know both its initial position 00 and the form of the obser—

vation distribution P (
~‘ I °~,

). In the fourth move the Bayesian

searcher must choose an estimate a of • He does this with a

knowledge of the prior dIstribution C: the experiment which he

• chose at move *2 , e •~~~ the observation distribution F (‘,~~0 )~t 
- 

e
~ 

0

and the observation z~ . The referee, knowing both and a

pays the searcher an amount 31 (Ot.a). The problem for the

Bayesian searcher is how to choose experiment e
~ 

and , given

observation , how to choose estimate a , so as to maximize his

expected payoff. -
,

B. The Solution to the Ba~~.sian Estimation Problem .

The solution to the Bayesian’s optimization problem is a two-

step solution:

i) For any given experiment etEEt , 
choose an estimator a()

to waximize the expected payoff under experiment e
~

-14—
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This expected payoff, denoted by r (a) , is given byi

r (a) — 5 G (da ) 5 j F (dz,d4~J0)p (~~,a(z))
t ® z t ~

If a~ maximizes r C ’ )  , then a* is called a Bayes Estimatoret
for ~~ under ~~~ eriment e~ . The value re (a*) is known as

the Bayes ~~~~~~ under experiment ~~ .

ii) Once a Bayes estimator a~ has been selected for each expert—

mont e
~
EEt , the optimal experiment is to be chosen. The

2pt imal experiment associated with time t , denoted et*, i~

that member of which maximizes re (a *) . The value re ~ 
(a*)

t t
is then called the Bayes payoff.

C. Technical I~eports

Four technical reports were written under this contract to

employ this Bayeaian solution to specific search problems. These

reports are as follows~ i -

1. Search for e  Moving Target and the Exponential Formula.

2. Statistical Mothod~ in the Theory of Search.

3. Parametric Seatch Modeling.

4. On Multiplicative Functiorials on Diffusion Processes.

Those technical reports are abstracted in section 7.

D. Discussion of Technical Reportni

p11 four of these technical reports apply Bayesian inference
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to the problem of search for a continuously moving target in

~Btial~4ean n~space. . Xt is assumed that the search is Conducted by

• s~any- s~~sors moving conttritiottsly in. iR
n. MethocS~ for representing the

Baye% estimator for the t~ rget ’a position at any time durin~ the

search are deve1o~.ed. These representations are based upon parti-

cular ine~hods for parameterizing the model for target motion and

the operation of the sensors conducting the search. The techni-

cal reports include examples of the use of the representations in

~oi,ving specific search problems. The algorithms presented in the

technical reports may be implemented on small desk-top calculators.

E. Applications of Bayesian Inference

i) General Consideration9: The assumptions inherent to the

Bayesian solution of the target localization problem presented in

the technical reports listed above limit this technique’s useful—

ness in two important ways. First, in order to use Bayesian

inference successfully, thee assumption that the target chooses its

initial position from a known prior distribution must hold. This

is a key assumption in the Bayesian framework and one which is

difficult  to jus t i fy  tactically .

Typically there is l i t t le reason to believe that a target has

chosen its initial position randomly from a particular distribution

and almost never a reason for thn searcher to contend that he knows

the form of this distribution. Arguments can be made that the

prior distribution should reflect the searcher’s knowledge rather

-16—

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -- — - -~~~~~--- •-~~~~~~



than an objective selection inechanisni uced by the target . These ar—

•
giuaents result, however, in inferential tsodels for the searcher’s

speculations rather thzin models for the target’s actual location.

A second, more technical problem inherent in the representa-

tions developed in the technical reports involve their complexity.

What stay realistically be prograxnned on a small desk-top computer

are approximations to the Bayes estimators derived in the

technical reports. Practically, this means that when implemented

on email calculators, only simple models for target motion—-such as

diffusions——and simple models for sensor operation--such as ones

involving only direct path and one convergence zone——should be

I - 
employed. Of course, when implemented on larger computers , more

complex models of the type Buggeated ifl the technical reports

stay be estployed .

ii) Specific Consideration~t. The results obtained in these

• four technical reports gene~alize the methodology underlying DS

and SAT ‘analytic’ progrants currently itt use at the SU~PAC TAG.

Specifically, thens technical reports significantly generalize the

types of models for target motion and models for sensor operation

which r.tay be considered by pro~rems of the ‘analyt ic’ type.

Improved procedures for representing the ‘analyt ic’ solution to

the Bayes estimation problem have also been developed here. These

improvements could be incorporated into existing DS and SAt

—17—
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‘analytic’ programs. For the specific. of those generalizations

the reader is referred to the technical reports.

—18—
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4. Minintax Search

In this soctiott the niinimax solution to the estimation problem

introduced in section 2 will be discussed in detail. Use of

miniznax estiniation to address npecifjc search problems has been con-

sidered in two technical reports. These technical reports will be

briefly discussed below. Potential applications for these results

will also be discussed.

A. The Miniutax 1~st~ntat tort Pro~~.em

Once again we return to the general target localization problem

outlined in section 2. It was shown that this problem may be charac - f 
-

-

terized as a four-move game with a payoff at the end . Now consider

a version of this game based upon ninitnax estimation. Such a version

is displayed in Fi~~~~ 3.

‘the game proceeds as in the case of the Bayeoian searcher , ex—

cept that at move #1 the target chooes~ an initial position eo fr eely ,

without the aid of a prior distribution. Consequently, when the

searchers chooses an experitnent e~ , he doss so without any infor—

ination regarding the choice of the initial position which the target

ha. niade Thus, use of a miniinax estimation philosophy may be em-

ployed under a relaxation of the assu±nptions used by the Bayes!an to

generate his solutions to the search problem.

Yet , as in the case of the liayesian searcher, a searcher using

stinimax o.timation must .till decide at move #4 how to choo~s an eøti-

mate for the target’s position at time t , and at move #2 decide

— 19-



F ~~~TT1i ~ TT T  ~~ :iii ’~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~

• 
~~~ Game between a Minimax Searcher And a Target

Move * 1 2 3 4 Payoff

~ove by: Target Searcher Target Searcher Aeferee

choicest - 0
0E® etE}~ 

Z
tEZt 

a

O
tE®

Mechanism - -

for Free Free P (11 ,*iO o) Free Fixed
Choice at

Xnowledg.t —— -- 80
- F6 (. , 1° 0) F ( ’ ,* 10 0) a

t t

Up04 an experiment to be employed.

What makes his problem more difficult than the Bayesian ’s is that he

must malts these decisions without the luxury of assuming he knows the

random mechanism used by ti~e target for generating his initial position.

~~. The Minimax Solution to the Estimation Problem -

As before , the mininta* solution to this problem is a two-step

solutiott .

i) For a given experiment e
~~

E
~ 
, choose an estimator a(•)

to maximize the minimum expected payoff under experiment e~ . The

minimum expected payoff, denoted by R (a) is given by,
at

(a) mm J J F (dz ,d~ l 9 ) J ( ~ ,a ( z ) )
t o ® z t 

t •

-20-
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If maximizes 1~ C ’ ) ,  then a is called a minimax estimator
C
t

~~ ~~~ 
e~~erirnent ~~ 

. The value R (a) is known as the
t

value of the estimation ~a1ne under experiment ~~~~ .

• ii) Once a minimax estimator a has been selected for each

experiment etE
~ t 

, the optimal experiment is to be chosen. The

o~titnal experiment associated with tine t (in thiø caBe), denoted

e~ , is that member of which maximizes re (a) . The value
t

r— ( )  - is then called the value of the estimation game. -

t

C. 
- 

Technical ~~gorts

Two technical reports were written under this contract to

employ the ininimax estimation techniques in the solution of epeci—

ftc search problems. These reports are as follows:

1. Soarch for a Stationary Target Under Minintax ~stimation

2. Search for a Moving Target Under Minimax Estimation.

These technical reports ore abstracted in section 7.

D. Discussion of Technical ~eports - -

Both of these technical reports apply mirtimax estimation to

particular search problems. In both cases the target is assumed to

choose its initial position at ax-i unknown posiiton in the search

space. In these teehnical reports a discrete search space is con—

giderod. The case of a stationary target (or a moving target which

moves very slowly wi.th respect to changes tx-i the search) is con-

sidered in the first techrtical report. In the second technical

—21—
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report the target is assumed to move discretely through the search

apace according to a Ilarkov process. ~aprcsentationn for tho

mirtimax estimator for target position and tho value of the esti—

si~atipn game ~ra derived in each caas~ . ~s a pa rt of the solu~ion itt

~~~~~~~~~~~ priør~~i~tribution for the target is also derived whith

would be. the moat difficult for a Bayesian searcher to consider.

This distribution is called the least favorab~.e prigr~ dj strthution.

B. ~pp1ications of the Minimax Estimator

a - . j )~ (ieneral Consideratione x The initilmax estimator may be used

under a relc~xation of tha assumptions used to derive the -

Bayesian solution to the target location estimation problem. The

key assumption lacking in the derivation of the ininleax estimator

is that of a prior distribution for the target’s initial position

which is known to the searcher. Mowever, as is pointed out in

the technical reports, there is a flaye~ian interpretation for the

optimality of the uxinintax ~stimator. -

The minimax estimator -for a target’s po3ition at any time

during a search is in fact a Bayes estimator under a very speci—

fic prior distribution for the target’s initial location. Since

no prior distrIbution is assumed by the minimax technique, it

automatically proposes a prior di~ trib’ition. The prior distri-

bution which it suggests Ic the on’~ which minimizes the maximum

payDff to the searcher. This is the least f avorable prior distri-

bution mentioned above. The minirnax estimator is then a

-22-
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Bayesian estimator with respect to thin prior ~i~ tributioo.

Since the mthitnax vsttmator chooses as its implied prior die—

trthution for the target ’s initial position , the one which produces

the moSt difficult estimation problem for the searcher, the thini—

max estimator is it*.erently more conservative than the Bayes

estimator. This conservatism means that the estimator will admit

more pos~ibilitiea for the target’s position at any time t

(and be consequently less definitive) than a B-ayes estimator in

the same search. This loss of precision is a direct consequence

of the relaxation of assumptiona.

The conclusion here is that the ininixnax estimator should be -

used only when a prior distribution for the targ~t’s initial posi—

tion is not indicated and then only If it is of inthrest to guard

assiduously against making mIstakes in estimation. The ininimax

estimator artificially creates a prior distribution to guard

against large ntietake~ . Th~i use of prior distributions in this

way tends to deemphasise the irn~ortance of the ob:~ervations. We

shall see In the next section that another technique, called

maximum iike1ihoo~,ir.ay be used in ninilar search problems (ones

• with no apparent prior) to einphasise the role of the observations

rather than tha rol~ of the real or implied prier assumptiots in

• making thference about target location.

L•~_ _•~•_ _  - 
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ii) Specific Considerations; The results obtained in these

two technical reports are totally new results. !~owever, the
4.

modeling of target motion and sensor operation employed therein

~re of the same typo as is currently employed in the SUBPAC TAG’ S

Markov chain SAl program written for the Wang 2200. This program

ci~rrently uses a Bayesian estimator for target position. The

algorithms provided in the technical reports could be written into

a subroutine and appended to the aforementioned SUSPAC program.

The benefit to be derived from such an addition would be

- 

• 
in the expansion of the type of tactical SAX situation for which -

the proqren~ted techniques would be applicable. The current pro-

gram, employing Bayesian techniques, requires detailed information

about the target’s prior distribution . tn many tactical situations

such information is unavailable. The algorithms provided by the -

technical reports listed above do not require stipulation of a

prior distribut ion for the target. Yet they produce decision aids

for the search planner of the maria general type as the flayesian,

Markov chain SAX program.

— 24—
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5, Maximum Likelihood Search

- • In this section the maximum ltkolihood solution to the osti—

station problem introduced in se~tlon 2 will bt~ addre:ined in

detail. Use of maximum likelihood t~~thods to øcIdre~~ a specif ic

search p:oblem is addressed in one technical, report. This technical

report. wjli be brisi~ly di~ cus~ sd in nubsection D. Potential applica-

tions for these results will also be discussed.

• A. The Max imum Likelihood Estimation Problem

~etur n again to the four-move estimation gains described in

section 2. Consider now a version of this game based upon staxi—

mum likelihood estimation. Such a version would appear identical

in its rules to the game depicted in ~~~~~~ 3. ,

‘As in the case of minimax estimation, at move iii. the target

chooses an initial pu~ition 0~ freely,without any enforced

randomization mechanism. When the searcher chooses an experiment

e
~
, he does so without any Information regarding the target’s

choice of . Ones again, thIn game is one which is much more

difficult. for the searcher sInce he has less information upon

which to base his choices.

Yet, as in the case of minima~ estimation an~ Bayesian esti-

mation, the searcher must dec ide at nove 4t4 how to choose an

estimate for the target’s position at tine t, and at move ~2 decide

• upon an experiment to be employed .

—2!5—
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B. The Maximum Likelihood Solution to the Estimation Problem

As in the previous two cases, the maximum likelihood solution

to this problem is a two-atop solution.

i) For a given exp~riment etEE~ and the observatiotS ZtEZt .

choose as an estimate of target position at time t the position aE®

v~ich maximizes the likelihood function. For otEEt and ztEZt~
the likelihood function, for a statIonary target, denoted f (ztj .)e

~
in given by • 

-

- 

~~~~~~~ 
F
~~
(zt,aJa) , for aEØ.

If for etEEt and ztEZt , ~t inaximi~es

then ~ is called the maximum likelihood estimate for i~nder

• 
~~~~, for observation z~

ii) The optiinal experiment associated with time t (in this

case), denoted is that member of which maximizes the

minimum Fisher informa tion.~ Here for etEE t ,  the minimum Fisher

information , denoted 
- 
H(e

~
) is given by

2
H(o~) ~~~ f ~~~ a Fe ~~~~~e z t , •t

The rationale behind this two-step solution is described in the

technic~t]. report described belot~.
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• C. Technical ~~~ort

• 

- 

One technical report was written under this contract on the

eaployinent of maximum likelihood stethods in search. This report

In entitled Maximum Likelihood Search . This technical report is

abstracted in section 7 . 
-

D. Dieqpssioti of Technical ~~po~t

In the above technical report the maximum likelihood estima-

tor for target position Ia examined in the case of a stationary

~ta gat . The search is conducted by a set of sensors, each one of -

which has associated with it an instantaneous probability of

detection functions. The asymptotic distrIbution of the m aximum

likelihood estimator-for the targst~a positIon i~ obtained in terma

of ~h~se detection function Within thin context, it is demon-

strated that Fisher information arises as the natural criterion

for selection of the optimal experiment.

E. ~~plications of the Ma~1.mum Likelihood Estimator

i) General Considerations: The maximum likelihood estimna—

tor, like the miniutax estimator nay be used under a relaxation of

the assumptions used to derive the l3ayesian solution to the estima-

tion problem. This rele~catIon is that no prior distribution is

asstsned for the target.

Like the minimax cstiinator for the target’s location, the

inaxim~m likelihood estimator else has a 
Rayeciian interpretation.

-27-
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When the search apace has finite size (area or number of cells), the

maximum likelihood estimator is a Bayes estimator under a very

specific pri’or distribution for the target. Since no prior distri—

bution is assumed by the maximum likelihood technique, like the

minimax technique, it automatically proposes a prior distribution.

The prior distribution which the maximum likelihood technique aug-

geste is one which reptesenta a completely neutr.~l prior opinion

about the location of the target. It should be construed as repre-

senting complete ignorance about the location of the target.

Therefore, the maximum likelihood estimator strives to deempha-

size the role of the prior assumptions in making inference about the

• target’s location. The role of the observatione’then becomes

correspondIngly more important. Com’nequently, while the

minimax estimator in less sensi tive to the observations than the

Bayes estimator, the maximum likelihood estimator is more sensitive.

Small changes in the observations may produce large changes in the

estimated target position. • This is due to the fact that the mnaxi-

mum likelihood estimator relies totally on the observations for its

conclusions. In the sante vein, the f3ayes estimator balances the

observations against specific prior assumptions; and the mninimax

estimator balances the observations against the risks involved in

estImating the target’s position incorrectly.

The conclusion here is that the maximum likelihood estimator

—28—
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- - should be used only whe.i both of the following two conditiorts are

metm i) when a prior dictributjo.i for the target’s location is

not ~ustifie6 and ii) w~en objectivity in estimating the target’s

position is considered to be more important than the penalties

irwolvad in Incorrect es-t~mation.

ii) ’ Specific Consideratjonem The results obtained in the

above technical report are totally neW . However , the modeling of

sensor operation used in the report are of the same type as is

~u~rontly employed in the ~anaiyti.c’ SP~I and DS programs . These

programs currently use hayes ostismatoru for target location.

The maximum likelihood estimator discussed in the technical re-

port could be written into a subroutine and appended to either

program. Such art addition would be usoful fat dealing with

tactical situations In which thu target stoves significantly store

slowly than the n~n~iors and in which no prior distrIbution is

indicated. - -
- ,

It should ha noted that these techniques have much bzider

applicability than ~‘ist et~ possible add-one to existing ‘analytic ’

programs. The n~aximum likelihood technIques d~~cribed in the

technical report referenced could be slightly generalized and applied

to submarine vs • subnarine search problems. This is because in local

tactical problems, a prior distribution for the target’s location is

rarely ju~tified. Itt such cases the d&a must provide all the

—29—
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information about the target’s location. Maximum likelihood

methods are designed for this purpose.
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6. The Search Potential

In this section an application of a totally different branch

of mathematics to the search problem is discussed-—namely poten-

tial . theory. The ntethoda discussed In the previous four sections

have been addressed to developing an estimator for the location of

a target~ in a search space at any time during the search . These

methods have their primary uaefulne~s in real-time search problems;

-

• that iø,in problems of estimating the position of the target dur—

4.ng the conduct of a search.

Methods such as these may also be used for the planning of a

search prior to its actually being performed. This lB the problem

of choosing the optimal experiment discussed abo’~’e. The optimal

• experiment associated with tints t is, for any given inferential

technique, the set of random variables to be sampled (or search

plan) which makes the estimator for target location at time t

moat efficient. 
I

Other criteria for choice of search plan a.l~o eugge!t them-

selves. Often a search involves an attempt on the part of the

target to achieve an objective. The role of the searcher is then

to detect and neutralize the target before it achieves its

objective. Consider the tactical situation outlined in rigure 4.
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Fiqure 4

A Search Xnv~,lving~ a Terminal Payoff

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

P2
• - - I

,

MV
/

/
/— — -.

A target begins a maneuver at position P1. The goal of this
I -

maneuver is to penotrate the screen of searching units, located at.

position ~1, 52 , and 53, and tO arrive a~ some pàsition on the dotted

àircl. surrounding the HVU , the high value unit. Upon arriving at the

~otta4 circle the- target receives a payoff. If the purpose of th.

target s enetration is to attack the fiVU , then the payoff nt.tght be the
probability with which the attack is successful.

It may be the case that some positions on the dotted circle are

advantageous positions from which to launch an attack. These

L -- _ 
-- -
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positions would have a higher payoff than those from which an

attack iv more difficult. t~ut we assume that the target’s pri—

mary problem is reaching the dotted circle and once on the

- it tekas the payo~f associated with the point of ini~ial

contact.

The .penetrating target may not reach the circle at all. We

assume tkrnt each of the searching units Si, 52,. and 53 remains

stationary relative to the IM (which may move) : but detects the

‘ targab aocordthg to a .detec~tion rat , which is a function of the

position o~ the target relative to the sensor. We assume that if -

the target is -detected during penetration, It is somehow neutralized

and therefore rscsive~ no payoff.

From Figure 4 it seems apparent that some starting positions

for the target are better than others. For example , a target start-

ing from position P1 has more defenass to penetrate than a target

fltarting from position P2. t onsequerttly, this target has more of a

chance of being neutralized- than a target starting from position P2.

Mowever , as was pointed out above, merely having a high probability

of successful penetration does not guarantee a high payoff. This

is because a target starting from position P2, for example, may

arrive at a position on the dotted circle with a low payoff.

Therefore , th. best starting positIons for a penetrating target

—33—



are those which balanc. the- penetration probability- against

the terminal payoff. The best initial positions are those which

give a reasonably high penetration probability and a good payoff.

One way to Judge the effectiveness of a defensive plan lie die—

p1a~ed in Pig~tre 4 would be to determine where all the beet initial

~o~itiofl ~ for a penetrating target might b.~ . and to design a defense

which makes the expected payoff to a target - starting from one of

these positions as low as possible. The solution of this prob— -

~.ern will be discussed below. One technical report has been

written on this topic. Possible applications for this technique

are also discussed below.

A. Computing the Search Potential

The problem of evaluating the expected payoff to a penetrating

target may be considered within the context of stochastic processes.

One of th. principle sources of uncertainty in the payoff to

the target is the uncertaii~ty involved in the target’s motion. Only

one path for each target~ was drawn in Fig~zre 4. However, in an

actual tactical situation many paths are possible between a given

starting position and the payoff circle about the Hvti. Some possi-

ble penetration paths are drawn in Figure 5. This implies that a

stochastic model for target motion might be a realistic one .

—34—
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Figure 5

A Stochastic Uodel For Penetration

P .

/
• V

As is indicated in ~~~~~ 5 , for a given starting position P

many penetration paths are possible. bifferent penetration paths

have different values of e~cpected payoff. This is due to the fact

that different path~ have different
- probabilities of being detected

and different payoffs.

The problem outlined in the previous section reduces to coinput-

ing a particular kind of average. For each possible starting poai—

tion P outside the defenees,the average payoff over all possible

paths originating at that point and ending on the payoff circle must

be computed. If it is assumed that the target moves according to a

hcs~ogeneo~%s Z4arkov process and that the sensors are stationary relative

—3 5 -- 
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to the HVU,this average is easily computed . If this average is

plotted against initial target position, a function called the

search potential results. This function gives the potential pay—

off to an undetected target as a function of initial position .

8. Technical Report

One~technical report was written under this contract on the

employment of the search potential . This report is entitled

The Search Potential. It is abstracted in section 7.

C. - - Discussion of Technical Report

In the above technical report a search for a target in dia-

crete Markov motion is considered. The search potential function

is defined as a function defined on the states of the Markov

chain with non-zero prior probability, which is the expected pay-

off to an undetected target upon being absorbed in the terminal

states of the chain. A method for computing this function is

presented and three examples are worked.

D. Application of the SearOh Potential

i) General Considerations: The two key assumptions in the

above technical report involve the homogeneity of the assumed

Markov motion for the target and the stationarity of the sensors

relative to the RVIJ . These assumptions restrict the usefulness of

the technique to situations in which the sensors are screening the

high value unit. In such situations the screening units and the high

value unit move in unison and the penetration tactics of the target are

—36—
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likely to depend on its position in the search space, but not on the

time of penetration.

Thuc, the most fruitful area of application for these techniques

is in direct support. The search potential would provide a way of

evaluating the screen of a task force in terms of its ability to pre-

vent a penetrating target from carrying out its mission. 
- •

ii) Specific Considerations: The algorithm presented in the

technical report may be progranmed on a desk top calculator. Progr~nis

Thr direct support search planning ahd evaluation are currently imple—

merited on the Wang 2200 . The program ASP developed at the SUBPAC TAG is

written specifically for direct support applical ions . The algorithm

presented above could also be writteh for the Wang 2200 and

included an part of the ASP programs. This would provide the ASP

programs with a tool specifically designed to evaluate HVU screens——

a tool which ASP does not currently have.
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7. Abstracts of Technical Reports

1. Search for a Movj~ j Target and The ~~~onential Formula

(JHU Technical Report No. 27B)

Abstract

• 
. A target is assumed to move according to a Wiener Process

in . The probability of detecting the target is computed

in terms of the search effort which accumulates along the tar-

. •- get’s path . Under regularity assumptions this probability is

given by the expectation of an exponential functional of the
- process . The problem treated here is that of determining the

probability of detecting the target In a given cell of finite

Lebesque measure. In stationary searches this probability is

often approximated using the exponential formula evaluated at

the total’ accumulated search effort in the cell. It is shown

here that, the cell faiture probability in a search for a Wiener

target is asymptotically proportional to’ P 1’2 rather than

exp 1-pT] , where P is accumulated time spent searching in the

cell. The asymptotic failure probability is also shown to be a

function only of cell siz e, not coil position in - In a

similar fashion it is shown the cell failure probability in a

search for a Wiener target in 1R2 is independent of cell loca-

tion and asymptotically proportional to Cc log P + 1) 1, c > 0.
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2. Statls~ical Methods in the Theor~y of Search

(JHtJ  Technical Report No. 280)

Abstract’

A target is assumed to move according to a continuous

stochastic process in ~uclidean fl~~ . A searcher makes a

selection of a search strategy from among a set of alter-

natives. The state of the searcher’s knowledge during the

course of the search is modeled as a two-state continuous-

time Markov chain, called the detection process. The two

states are assumed to be “out of contact” and “in contact”.

The transition intoriaity of the detection process at any

time t is assumed to depend upon the search strategy

chosen , the target’s position at time t , and t itself.

It Is shown that the ~ayes estimator for target
’ location at

any tini~ during the se*ch is determined by a family of

probability measures derived from the search, called the

coverage distributions. Techniques for approximating the

flayes estimator based upon kriovn properties of the coverage

distributions arc discussed . The motho’~o1ogy developed is

discussed In terms of an example.
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• 3. Parametric Search Modelinq~

- (314U Technical Report No. 283)

Abstract -

- A target moves according to a continuous stochastic pro-

- 
~ess. jn ~uclidean . A search is conducted by choaing a

search strategy and by observing events ‘of a detection pro-

ceas Methods for representing the posterior distribution

- • for target location at any ti*e during the search are die-

cussed. The particular methods for parameterizing the

• models for , target motion and the transition vector of the

detection process which yield tractable representations are

- 
Introduced. The methodology is discussed in terms of two

examples.

i

i 

~~

•
.

- ‘ 

•
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4. On Multiplicative Functional, on t iffusion Proc~aseg

(JHU Techalcel ~eport No. 286)

A class of Gaussian Diffusion processes is considered. A

- 
multiplicative functional is defined on such a process and gives

rise to a generalized trannition function. This generalized

transition function satisfies a modified version of the IColmogorov

backward equation of the dif fu sion process. A constructive method

for generating a solution to this modified backward equation, 
-

with the required final condition, is presented . The methodology

is discussed in terms of an example.

5. search Pot a ~t-attonary ‘rarget Undar Minimax ~atimation

~Thu Teohnioal. t~eport No. 291)

- Abstract

A target is assumed hiding at an unknown position in a finite

search space. No prior probability distribution for target loca-

tion is assumed. A search ts defined to be the observation of a

sequence of randem variables. t~xpressionc for the minimax ePtl—

mator for target location, the icant favorable prior distribution

for target location, and the value of the estthiation game at any

stage of the n ’arch are derived. The tncthodology is illustrated 
-

in term of an example.
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6. Search for a Moving ~~~~~~ Under Minimax Estimation

(JHU Technical Report No. 295)

Abstract’

A target is assumed to choose its starting position in a

iirph at an unknown position in a finite search space. No. 

prior probability distribution for the target’s initial loca-

tion is assumed . During the search the target is assumed to

move from position to position in the search space according

to a Markov process. A search is defined to be the observa-

tion of a sequence of random variables. Representations for

the minimax estimator for target location at,any stage of the

aearch , the least favorable prior distribution for the target.,

and the value of the estimation game are presented .

L
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7. The Search Potential

(~fl~U Technical Report No. 297)

Abstract

A search for a particle in discrete Markov motion is con-

sidered. The states of the particle’s motion are assumed to be

either transient or absorbing. An operator called the search

potential operator is defined. This operator maps real—valued

functions defined on the absorbing states into real-valued

- functions defined on the transient states. If a function de-

fined on the absorbing states is construed to be the payoff to

an undetected particle upon being absorbed, then the search

potential operator maps it into the conditional expectation of

payoff as a function of starting state . Three examples are

provided. 
-
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8. Maximum Likelihood Search -

WRU Technical Report No. 301)

Abstract

A target is assumed located at an unknown position in

No prior probability distribution for the target is assumed .

A search is defined to be th~ observation of a sequence of

tiernoulli random variables . The maximum likelihood estimator

- for target location is examined . In particular, the asyl!tp—

totic distribution of the muintum likelihood eatim*tO*’ is

derived and uae~ of ~ieber ~ziformation is made for the optima l.

selection of the - sequence of bernoulli random variables to be

‘sampled .
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