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Abstract
5 The work under ONR contract N00014-77-C-0511 is described.
é This work consists of the develoément of a number of statistical
gechniques useful in solving search problems. Among these are
the employment of Bayesian, minimax, and maximum likelihood
inferential techniques in the estimation of the position of a

| moving target during a search. An application of potential

%' theory to search problems is also considered.F This document
* summarizes the results detailed in Johns Hopkins Technical
E i Reports numbered 278, 280, 283, 286, 291, 295, 297, and 30l.
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FINAL REPORT

ONR CONTRACT NOOO14-77-C-0511

STATISTICAL METHODS IN SEARCH

1; Intr;duction

The work performed under ONR contract NO0014-77-C-0511 from
September 1, 1977 through June 30, 1978 has been addressed to de-
veloping new methods for planning and analyzing search for moving
targets. These methods were developed for application to ASW
search in the DS and SAI missions.

Recent work at various fleet locations, including COMSUBPAC
and COMSUBLANT, has centered around the development of programs
written for desk-top calculators such as the Wang 2200 and
Techtronix 4051 to addreas.the ASW search problem. In particular,
approaches have been developed for computing target location dis-
tributions, called probability maps, on these small calculators.
Previously such technology was.only available on large, high-speed
computers. These newly developed programs have been used at sea
and on shore for the solution of search problems inherent to the
DS and SAI missions.

These new calculator programs have made probability maps avail-

able for the first time to the at-sea commander. For example, the

neta




versions of the so-called 'analytic'® programs designed for use in
‘the D3 mission have been used successfully in both planning and real-
time analyais in many Pacific Pléet exercises since 1975. These

DS programs representea the first real access of a Commander ‘at sea
to a complex search information processing system.

The key to this new capability lies in the fact that the
‘analytic® programs are implemented on portable desk-top calculators,
rather than on large stationary computers, as are the so-called

+  ‘'Monte Car}o' programs. This portability has proved extremely use-
ful in many oﬁerational search problems. On the other hand, this
flexlbillﬁf has not been achieved without cost. In general terms, this
cost has bgen in the reduced versatility of the :analytic' programs
relative to the 'Monte carlo' programs.

The 'anélytic' search programs differ from the 'Monte Carlo'
search programs in the way in which probability maps are computed.

* 1Instead of obtginiﬁg a probhbility map from a complex sampling pro-
cedure, the 'analyti;;Aproqrams compute it diiectly. The céﬁplexity
of the sampling procedure inherent in the 'Monte Carlo' programs
has resulted in their implementation on large, high-speed computers.

Wﬁlle less demanding in terms of programming requirements, the
current 'analytic' programs rest on a highly specialized body of
mathematical assumptions. These have been shown to have wide appli-

cability in ASW search problems; however, they are still
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significanély more restrictive than those underlying the 'Monte

Carlo' programs. As a result, the ‘analytic' programs

are consildered less versatile tﬁan the 'Monte Carlo' programs.

?he work that has been performed under ONR Contract NOOO14-77-C-0511

has been addressed to enhancing the versatility 65 gearch program-

ming implement on small desk-top calculators. The sole purpose of

this enhancement is to make uaeful.tactical decision aids available

on portable computing systems for the use of the on-scene commander.
Two major cbjectives of the work have been:

1. Generalization of existing modeling and inferential
techniques in order that the desk-top ‘analytic' pro-
grams may be applied tg a wider range of search
problens; anq

2. Automation of a number of the features of the current
fanalytic' programs in an attempt to reduce the role
of the analyst in the solution of operational search
problémS.

These objectives have been addressed through technlcal progress
in three important areas:

1. Generallzation of the models for target motion and

models for sensor operation employed in the ‘'analytic'

programs;
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2. Development of statistical procedures for esti-
mating the position of the target without stipulating
a prior distribution for the target; and

3. Development'of statistical procedures for optiﬁal
real-time sensor allocation.

These technical advances have been made within the context of the
development of general statistical methods to address search problams;
The Bayesian statistical analysis which currently provides the inferential
structure of both the 'analytic' and 'Monte Carlo' programs is only
one of many possible statistical techniques for making inference
about the position of a target during a search. (In an attempt to
address the objectives of this contract, the application of other
known statistical techniques to the problem.;f target localization
was investigated. The result of this investigation is a body of
statistical tools for estimating the position of a target during a
search which significantly'beneralizes currently employed inferentigl
techniques, e .

These hew tools will be briefly described in sections 3, 4, 5
and 6. An introduction to the use of statistics in the theory of
gearch will be presented in section 2. A compendium of the abstracts
of the technical reports referred to in sections 3, 4, 5 and 6 will
be given in section 7. Fach statistical technique referred to in

sections 3, 4, 5 and 6 is in the form of an algorithm which may be




either incorporated into existing tanalytic! programs or written

into a new program for use on a desk-top calculator. 1In each case,

guggestions for the applicability of each technique will be made.




2. The Use of Statistics in the Theory of Search

The problem of target localization may be viewed as a sptatis-

tical estimation problem. In a typical search problem, & target is

assumed to be moving in a’region known as a search space. Urdcer-

tainties are typically associated with both the initial position
of the target and the maAner in which the target moves from the
initial position through the search space.

A searcher is one who choosas a sequence of random variables
to sampla in order to make inference about the position of the
target during the search. One fandom variable is chosen at each
stage of the search. For example, a random variable with outcomes
detection and non-detection may be associated wiéh the gearch of a
subregion of the search space called a gggl. Then, in choosing a
sequence of cells to be searched the searcher is really choosing
a sequence of binary random variables to be sampled. The sequence
of random variables chosen 'from time O through to time t |is

called the experimeﬁt associated with time (or stage) t.

At each time t the searcher may observe the outcomes of the
experiment assoclated with time t. This amounts to observing or
recollecting the outcomes of all the random variables chosen for
sampling between time 0 and time t . When a random variable is
asgociated with the search of a cell this is equivalent to observ-

ing either a detection or non-detection during the search of that cell.




Tha searcher then hasg two problems to address. His immedi~

ate problem is to usz the outcommes of the experiment assoclated

with time t to construct an estimate for the position of the

target at time t. This is & problem in statistical inference.

A more subtle problem, but one of equal importance, involves the
choice of the experiment assoclated with time ¢ . This is
actually a problem which must be addressed prior to the construc-

tion of the estimate, It is a problem in experimental design.

In point of fact, thes=z two problams are intimately con~
nacted. This is because the searcher must choose the experi-~
ﬁent assoclated with time t to optimize some property of the
target location estimator whlich he constructs at time ¢t. ‘This

criterion for optimality usually involves a payoff function

which places more value on estimates which are close to the
actual target positicn and less value on estimates which are
more distant., 'The objact of search planning then i3, for any
time t to choose a;‘experiment associated With time t and
an estimator for target location at time & which maximizes the
average payoff to the searcher.

To summarize, there are six basic components of the statis-
tical inferénce problem which confronts the searcher ut time ¢t.

1) @ = {8} - Search Space. This is the set of possible

locations for the target during the search. It is
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assumad that the target starts from one of the elements
of () and at any time during the search is still
locatad at some element of ® .

o {et} - Farily of Experiments. This is the collection

By
of all experiments associated with time ¢t , denoted by
» which the searcher may use in order to eatimate the

position of the target at time t. An element e, of

Et is just a sequence of random variables.

Z, = {zt} - Sample Space. This is the set of all possible
outcomes of the experiments assoclated with time t.

Having chosen an element e, of Et the searcher observes

an outcome Zt in Zt o 5

T8 @ X ®+1R - Payoff Function. The value p(8,a) is

the payoff to the searcher Lf he estimates the target's
position at time t to be a€() and it is actually 6e(d) .

G = @+ {0,11 -~ priox bDistribution. The value G(8) is

the prior pi‘dbability that the target starts at tin'\e 0
at location 6€® .

FtE X Z, % @ x () + [0,1] - Observation Distribution.

The valus P _ (% ,8 |6 ) is the probability of the event:
et t""to

target is located at 8t€® at time t and outcome 2

has been obtained, given the target started at location

eoe® at time O .
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The problems of statistical inference and experimental design
‘discunsed above involved in predicting target locatlion at time ¢t
may then belregarded as a ganie batwean the gearcher and the target.
The essential elements of, the game ara the slx basic components of

! the estimation problem listed abova., Different forms of statisti-~

et i S A

F cal inference amount to different rulaes by which ths tafqet and the
@ searcher are assumed to play this gamre. . !
E buring the work under this contract, three forms of statistical

! infarenca were congiderad: Bayeslian inference, minimax estimation,
;né taximum 1ikeilhood estimation. Within the context of the
f pearch problem,thess diffsrent forms of infersnce result £rom:
1) differgnt assumed mechanisms for the target's

cholece of ztarting position, and

11) different payoff functions.

The gyame batween tha ssarcher and the target at asny time t may be

representad graphloally as in Figure 1.

| P55
s ¥

-Elgurs 1

Tha Game Batwaen the Searcher and Target

Move #: 1 2 3 4 Payoff
tHove by: Targaet Searcher Target Searcher Referece
Cholces: GOEQD ' etﬁxf ztezt ae() u(Ot,Q
9t€()

1 Mechanism 1) 6{*) Free F (',‘160) Free Fixed

[‘ for t : .
Choice 11) Free

The gama may be consldered as a four move game, with the target
!
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and the searcher alternating moves.
.In the £irst move the target chooses an initial position. 1In
Bayaesian inference it is assumed that this choice is made randomly,
using the prior distributjon G as the randomization mechahism.
In both minima# estimation and maximum likelihood estimation, no
sncﬁ Assumption is made. Rather, it is assumed that the target's
initial QOﬂition is chosen complstely arbitrarily.

The second move is the searcher's. To address the problem of
estimating the target's position at time ¢t ,he chooses an experiment

assoclated with time t, denoted e Tha gearcher is free to

e *
choose any element of B, .
In the thrid move the target makes two cholces:
i) an outcoue ztezt, and
i1) a location Eté(:) .
Once again it is assumed that tha target is not free to choase any

pair (zt.ﬂ but rather must choose the pailr randomly from the dis-

&)
tribution Fet(','lﬂb).‘ Note that the distribution of (2,,8,) is’
conditioned upon the choices 90 and et. which were determined
earlier in the game.

The fouréh move 18 the searcher's. Having observed outcome
z, he must choose an element a of QD as his estimate for the
location of the targeé. The gearcher is free to choose any

element of C) .

-10~




After the target and searcher have completed two moves each ,

‘a referee pays the searcher an amount u(st,a). whare Ot is the

posltion of the target at time ¢ Xknown only to the refesree and =&
{8 tha searcher's estimate of that position. It 1s assumed that the
mechanism for calculating the payoff was fixed before the game
started.

In Bayesian inference and minima; estimatiog the‘payoff func-
tion is typleally a function which decreases with increasing dis-
tance between real and estimated target position. In maximum
likelihood estimation the payoff function is related to the
asymptotic variance of the estimaté of the target's position. These
ideas will be made precize in the next sections.

. In section 3 the Bayesian approach to this estimation prob-
lem will be discussed in greéter detail. In particular the
techniéal reports written to address speclific search problems
within the Bayesian context will be briefly discussed. Applica-
tions for which the,35§esian approach to estimation is apprépri—
ate will also be suggasted. f

In section 4 the minimax estimator for target location will
be addressed in greater detail. fTechnical reports using this
statistical technique to address specific search problems will be

discussed and apolications of this inferential technique mentioned.

wii=
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In section 5 the maximum likelihood approach to estimation of

target location will be further daveloped within the context pre-
sented hers. Discussion of material addressed to specific search
problems within this infe;antial framework will be presented'along
with suggestions for the applicability of this approach.

In section 6 an application of a different branch of mathe-
matics called potential theory. to the search problem is discussed.
Applications for this technique are mentioned. All technical re-

ports discussed in these four sections are abstracted in section 7.

-12-




3. Bayesian Secarch

Tn this section the Bayosian zolution to the estimation problem
introduced in section 2 will be discugsed in detail. Use of
Bayesian inference to address speclfic search problems has been
considerad in four technical reports. These reports will be
briefly discussed below. Applications for the results of these
reporﬁs will also be addragsed.

A. The Bayeslan Estimation Problem

As was mentioned in section 2, the general estimation problem
inherent to a seazch tmay he characterized as a four-move game with
a payoff at tha end. The differences in this game under different

- ‘
forms of statistical inforence are differences in the mechanisms
for choice in move #1 and in the characterization of the payoff.
Consider the Bayesian's version of the estimation game displayed
in Figure 2.
'Figure 2

The Game Between a Bayesian Searcher and a Target

Move #: 1 2 3 4 Payoff
Move by: Target . Saarcher Target Searcher Referee
Choices: 90€(> ethst ztezt a u(Bt,a)
Mechanisam et&C)
for G(*) Free Fe (',°l80) Free Fixed
Choica _ t
Knowledge G{*) G(+) 00 G(*) Bt
Fet(.'.lGO) ®t [ ~
F_ (*,*16,.)
et 0
Z¢




The Bayssian searcher assu@es that, in move #1, the target
‘chooses its initial position 8, using the prior distribution G.
In move #2 the Bayesian search mhst choose an experiment associated

with time ¢, e He does this asauming that he knows the '

"
prior distribution G with which the target has chosen its initial
poaition 00 . In the third move the target must choose a position
at time t,et and produce an cbservation z.. Tha target is assumed
to know both its initial position 0o and ;he form of the obser~
‘ya;ion distrigution #et('.'leo). in the fourth move the Bayesian
searcher must choosa an estimate a of Ot . He doea this with a
knowledge of the prior distribution G; the experiment which he

chose at move #2, e_.; the observaticn distribution Fe (',°|0°);

t

and the observation z, - The geferee, knowing both 9: and a
pays the searcher an amount u(et,a). The problem for the
Bayesian searcher is how to choose experiment e, and, glven
observatién Zy how to cHeoose estimate a , so as to maximize his

expected payoff.

B. The Solution to the Bayesian Estimation Problem.

The solution to the Bayesian's optimization problem is a two-~

step solution:
i) For any given experiment ctEEt , choose an estimator a(*)

to maximize the expected payoff under experiment e, -

~14-




This expected payoff, denoted by re (a) , 18 given by:
t

: r ta) = [a@e) [ [ r (dmaelednis,alz) .

3 e
E | t t
| ® ) ® zt v
If a* maximizes ¥, (*) , then a* i3 called a Bayes Estimator
t
for 8 under expesriment @, . The value r_ (a*) is known as
- . - -+ e,

i the Bayes payoff under experiment e
i1i) Once a Bayes estimator a* hag been selected for each experi-
pept etEEt , the optimal experiment is to be chosen. The

optimal experiment assocliated with time ¢t , denoted et*, is

that member of E_ which maximizes r, (a*) . The value r, ,l(a*)

¢ t t

is then called the Bayes payoff.

E C. ‘Technical Reports

Four technical reports were written under this contract to

employ this Bayesian solution to specific search problems. These
reports are aa follows: '

1. Search for'g_Moving_Target and the Exponential Formula.

2. Statistical Methods in the Theory of Search.

k 3. Parametrlc Search Modeling.

4. oOn Multiplicative Functionals on Diffusion Processes.
These technical reports are abstracted in section 7.

D. Discussion of Technical Reports

All four of these technical reports apply Bayesian inference




to the problem of search for a contihuously moving target in

“puciidean n-space. It iy assumed that the search is conducted by

“pany sensors moving continuocusly in. R, Methods for repreaenting the

Bayes estimator for the target's position at any time during the
search are developed. These representations are based upon parti-
cular methods for parametarizing the model for target motion and
the operation of the sensors conducting the search. The techni-
cal reports include examples of the use of the representations in
polving specific search problema. The algorithms presented in the
technical reports may be implemented on small desk-top calculators.

E. Applications of Bayesian Inference

T

1) General Considerations: The assumptions inherent to the

Bayesian solution of the target localization problem presented in
the technical reports listed above limit thils technique's useful-
ness in two important ways. First, in order to use Bayesian
inference successfully, the' assumption that the target chooses its
initial position fro;'; known prior distribuﬁion must hold. This
is a key assumption in the Bayesian framework and one which is
difficult to justify tactically.

Typlcally there is little reason to believe that a target has
chosen its initial position randomly from a particular distribution
and almost never a reason for the searcher to contend that hé knows
the form of this diptribution. Arguments can be made that the

prior distribution should reflect the searcher's knowledge rather

~16-
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than an objective selection mechanism ugsed by the target. These ar-
‘qumants result, however, in infarential models for the searcher's
spaculations rather than models for the target's actual location.
’ A second, more technical problem inherent in the representa-
tions developed in the tachnical reports involve thelr complexity.
What may realistically ba programmed on a small desk-top computer
are approximations to the Baysa estimators derived in the
technical reporfs. Practically, this means thét when impiemented
on small c;lculators,only aimple modelas for target motion--such as
diffusions--and simple models for sensor operatlon--such as ones
involving only direct path and one convergence zone--should be
employed. Of course, when implemented on larger computers,. more
complax modals of tha typo suggested in the technical reports

may be employed.

i1) Specific Considerationa. The results obtained in these

four technical reports genedalize the methodology underlying DS
and SAI ‘'aralytic! péoérams currently in use aé the SUBPAC TAG.
Specifically, thesze techaical reports significantly generalize the
types of modals for target motion and models for sensor operation
which ray be considered by progrems of the ‘analytic' type.
Improved procadures for represanting the 'analytic' solution to
the Bayes estimation problem have also been developed here. These

improvements could be incorporated {nto existing D5 and SAI

a1




'analytic' programs. Ior the specifics of these generalizations

‘the reader is referred to the technical reports.

-18-




4. Minimax S=arch

In this section the minimax‘solution to the estimation problem
introduced in section 2 will be discussed in detail., Use of
minimax estimation to udd}ess apecific search problems has b;en con-
sidered in two technical reports. These technical reports will be
briefly discussed below. Potential applications for these results
will also be discussed.

A. The Minimax Estimation Problem

Onca agaln we return to the general target localization problem
outlined in section 2. It was shown that this problem may be charac-
terized aas a four-move game with a payoff at the'end. Now consider
a version of this game bassd upon minimax estimation. Such a version
is dlsplayed in Figure 3.

The game proceed:s as in the case of thes Bayesian searcher, ex-
cept that at move #1 thae taryet chooses an initial po#ition 90 frealy,
without the aid of a pgior-histribution. Consequently, when the'
searchers choosaes an‘experiMent e, he doeé'so without.any infor-
mation regarding the choice of the initlal position which the target
has made. Thus, use of a minimax estimation philosophy may be em=-
ployad undar a relasation of tha assumptions used by the Bayesian to
generate his solutions to the zearch problem.

Yet, as in the case of tha Bayesian searcher, & searcher using

minimax estimation must still decids at move #4 how to choose an esti-

mate for the target's position at time t , and at move #2 decide

~19~
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Figure 3

The Game Between a Minimax Searcher And a Target

Move # 1 2 3 4 Payoff
Move by: Target Searcher ‘Parget Searcher Referee

Choices: Boe@ e EE 2,€2, a ALY

t

Mechanism . :
for Free Free Fe (e, | 8y - Free Fixed
| Choice t
gngwledga:. - - 90 e, ' Bt
B leovfng  mAvelay &
t
2y

upony, an experiment to be employed.
What makes his problem more difficult than the Bayesian's is that he
must make these decisions without the luxury of assuming he knows the

random machanism used by the target for generating his initial position.

B. The Minimax Solution to the Estimation Problem

As before, the minimax solution to this problem is a two-step
“solution.

i) For a given expexriment etent , thoose an estimator a(e)
to maximize the minimum expected payoff under experiment e, - The

minimum expected payoff ,» denoted by Re (a) 1is given by,
t

R (a) = min | i F_ (az,d8[0)u(é,a(z)) .

t 0 t
® z,

-20-
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If a maximizes R (*), then a is called a minimax estimator

t
for 8 under experiment e, . The value R_ (a) is known as the
— ~t =t e,
valus of the estimation game under expsriment & -

i1) Once a minimaz estimator a has been selected for.each

experiment e&ent , the optimal experiment iz to be chosen. The
optimal experiment assoclated with time t (in this case), denoted

E;, i3 that member of E,_ which maximizes 're'(;3 . The value

t
t
rg-(E)' is then called the value of the estimation game.
Pl

€. Technical Reports

Two technical reports were written under this contract to

-

enploy fhe minimax estimation technigques in the solution of speci-

T

fic search problems. These reportas are as follows:

1. Soarch for a Stationaty Target Under Minimax Estimation

2. search for a Moving Target Under Minimax Estimation.

Thesge technical reports are abstracted in section 7.
) )

D. Discussion of Technical Reports

Both of these technical reports apply minimax estimation to
rarticular search problams. In both cases the target is assumed to
choosa its inltial position at an unknown posiiton in the search
space. In these technical reports a discrete scarch space is con-
sidered. The case of a statlonary target (or a moving target which
moves very slowly wlth respect to changes in the search) is con-

sidared in the first technical report. In the second technical

~-21-




report the target le assumed to move dlscretely through the search
.apace according to a Markov process. Rapreszsentations for tha
minimax estimator for target position and the valite of the esti-
pation gamne ars dexived in each case.. As a part of the molufion in
pach-vase; A prioy-distribution for the targst is also darived which

would be.the most difficult for a Bayesisn searcher to consider.

This distribution i3 called the least favorable prior distribution.

E, Applications of the Minimax Estimator

“ . %) General Considarations: Tha minimax estimator may be used

undar & ralaxation of thes assumptiona used to derive the

Bayesian solution to the target location estimation problem. The
key assumption lacking in the derivation of the minimax estimator
) - is that of a prior distribution for the target's initial position

which 18 known to the searcher. However, as is pointed out in

the technical reports, thsre is a Bayeslan interpretation for the
; optimality of the minimax éstlmator. :

| ' The minimax esfiﬁator for a target's pobition at anf time
during a search is in fact a Bayes sstimator under a very speci-
fic prior distribution for the target's initial location. Since
no prior distribution is assumed by the minimax technique, it
automatically proposes a prilor distribution. The prior distri-
bution which it suggests i3 the one whlch minimizes the maximum
payoff to the searcher., This is the least favorable prior distri-

bution mentioned above. The minimax eatimator is then a




Bayesian estimator with respact to this prier distribution.

Since the minimax estimator chooses as its implied prior dis-
tribution for the target'sm initial position, the one which produces
ths most difficult estimation problem for the searchesr, the thini-
max estimator is inharently mora consarvative than the Bayes
eatimator. This conservatism neans that the estimator will admit

more possibilities for tha targat's position at any time ¢t

(and be consaquently less definitive) than a Bayes estimator in
the same mearch. This loss of precision is a direct consequence
of the relaxatién of assumptions.

Tha conclusion here is that the minimax estimator should be
used only when a prior distribution for the targét's initial posi-
tion i8 not indicated and then only 1f it is of interest to guard

assiduously against making mistakes in estimation. The minimax

estimator értificially creates a prior distribution to guard
against large mimtakes, The use of prior distributions in this
way tends to deempha;ise the 1mpcrﬁance of the observatiohs; We
shall see in tha next sectlon that another technique, called
maximum likelihood, may be used in similar search problems (onas
with no apparent prior) tc emphasise the role of the observations
rather than tha rola pf the real or inplied pricr assunptions in

making inference sbout target location.

~23-
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i11) Speciflc Considerations: The results obtained in these

.two technical reports are totally new results. However, the
modeling of ;arget notion and sensor operation employed therein
are of the same type as ié currently employed in the SUBPAC fAG's
Markov chain SAI program written for the Wang 2200. This program’
currently uses a Bayssian estimator for target position. The
algorithms provided in the technical reports could be written into
a subroutine and appended to the aforementioned SUBPAC program.

s+ . The benefit to be derived f£from such an addition would ba

in the expansion of the type of tactical SAT situation for which
the programmed techniques would be applicable. The current pro-
dgram, enmploying Bayegian techniques, requires detailed information
aboué the target's prior distribution. 1In many tactical situations
such information is unavailable. The algorithms provided by the
technical reports listed above do not require stipulatiocn of a
érior distribution fof the %arget. Yet they produce decisign aids
for the search plannér of the same éeneral tféa as the Ba}esian,

Markov chain €Al program,
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5. Maximum Likaelihood Search

In this section the maximum likelihood solution to the esti-
mation problém introduced in secticn 2 will be addressed in
Qeéail. Use of maximum likelihcod methods to address a specffic
saarch problem is addressed in one tecninical repoct. This taechnical
roport will be briefly discussed in subysction D, Potential applica-
tions for those results will also be discussed.

A. ‘The Maximum Likelihood Eatimation Problem

Raturn again to tﬁe four-rmove estimation gama described in
saction 2. Consider now a varslon of this game based upon maxi-
mum likelihood estimation. Such a version would appear identical
in its rules to the game depicted in Figure 3.

‘As in the case of minimax estimation, at move #1 the target
chooses an initial position Bo freely,without any enforced
randomization mechaniam. When the gearcher chooses an experiment
ei, ha does so without any {nformation regarding the target(s.
choice of GO ” Once.again, thin game is qne thch is much more
difficult for the searcher since he has less information upon
which to base his choices.

Yet, 85 in the cacse of minimax estimation and Bayesian esti-
mation, the searcher must declide at move #4 how to choose an

estimate for the tafget‘s position at time t, and at move #2 decide

upon an cxperiment to ba employed.
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B, Tha Maximum Likelihood Solution to the Estimation Problem

As in the previous two cases, the maximum likelihood solution
to this proﬁiam is a two-step soiution. i
i) PFor a given experiment e.€ Et and the observation zte zt ’

choose as an estimate of target position at time t the position ae®

which mm_timizes the likelihocd function. For e. € Et and zte zt ’ &
the likelihood function, for a stationary target, denoted fe (ztl )
t
is given by
fet(ztla) = Fet(zt,a[a) » for a€®. : |
If for atEEt and ztezt’ a maximizes fet(ztl-) A

then a 18 called tha maximum likelihood estimate for g_t wnder

e, for ohservation 2z .

i1) The optimal experiment associated with time t (in this

case) , denoted ét , 1s that member of E_ which maximizes the

t

minimun Fisher information.! Here for eteEt » the minimum Fisher

information, denoted:‘.n.(et) is given by
2
tie,) =mé.n I‘er (z]*) el F, (dz,8]0) .
z,! "t -

The rationale behind thig two-3tep solution is described in the

technical report described below.
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C. Tochnical Report

One technlcal report was writlen under this contract on the
employment of maximum likelihood methods in search. This report

is entitled Maximum Likelihood Search. This technical report is

abstracted in saction 7 .

D. Discpnasion of Technical Report

In tha above technical report the maximum likelihood estima-
tor for target position i1a examined in the case of a stationary
xa:gat; The gearch ls conducted by a set of mensors, each ona of :
which has associated with it an instantanaous probability of
detection functions. The asymptotic distributicn of the maximum
1ikalihoed estimator for the target's position is obtained in terms
of thass detevtion function Within this context, it is demon-
strated that Fisher information arlses as the natural criterion
for salection of the optimal experiment.

£. Applications of the Madimum Likelihood Estimator

/|

1) General Considerations: The maximun likelihood estima-

tor, like the minimax estimator nay ba used under a relaxation of
the asaumptions uéad to derive tha Baysslan solution to the sstima-
tion problem. This relaxation is that no prior distribution is
assumed for the target.

Like the minimax estimator for the target's location, the

maximum likelihood estimator also has a Bayesian interpretation.

e




b

T | When the mearch space hag finite slze (area or number of cells), the
E ‘maximum likelihood estimator is a Bayves estimator under a very
specific prior distribution for ths target. Since no prior distri-

bution is assumed by the traximum likelihood technique, like the

;inigax technique, it automatically proposes a prior distribution.
3 TheAprioF distribution which the maximum likelihood technique sug-
gests 13 one which represents a completely neutral prior opinion
about the location of the target. It should Se construed as repre~
senting complete ignorance about the location of the target.
Therefore, the maximum likelihood estimator strives to deempha-
size the role of the prior assumptions in making inference about the
| target's location. The role of the observationsfthen becomes
correspondingly more important. Consequsntly, while the
minimax cstimator is less smensitive to the observations than the
Bayes estimator, the maximum likelihood estimator is more sensitive.
E | Small changes in the observations may produce large changes in the

- ‘ estimated target position. This is due to the fact that the maxi-

-

‘ mum likelihood eatimator relies totally on the observations for its
conclusions. 1In the same vein, the Bayes estimator balances the
observations against specific prior assumptions; and the minimax
estimator balances the observations against the risks involved in
estimating the target's position incorrectly.

1 The conclusion here is that the maximum likelihood estimator

dids
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.should te uszed only when both of the following two conditiona are
met: 1) when a prior distribution for the target's location is
not juastified and ii) when objectivity in estimating the target's
position iz considarad to be moze iméortant than the penalties

involvad in incorzoct eatimation,

11)' svecific Considerations: The results obtained in the

abovs technical report arc totally new. Herver, the modeiing of
aensor‘operation used in the report arae of the same type as is
currently employed in the ‘analytic' SAI and DS programs. These
progrn&s currently use Bayves estimators for targst location.

The maximum 1ikelihood estimator discussed in the technical re-
port vould be writtan into a subrontine and appended to either
program. Such an additlon would be uzoful for dealing with
tactical situations in which tha targat moves signiflcantly more
slowly than the senzors and in which no prior diastribution is

5 )
indicated.

It ghould be noted thai‘thesa_techniqus; have much wider
applicability than 3ust as posaible add-ons to existing 'analytic!
programs, Ths maximum likelihood techniques d2zcribed in the
technical report refererced could be slightly generalized and appiied

to submarine ve. submdarine search problems. This is hecause in local

tactical problems, a prior distribution for the target's location is

rarely juatified. In such cases the data must provide all the




information about the targset's location. Maximum likelihood

‘methods are designed for this purpose.
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6. ‘The Bearch Potentlal

In this_aaction an application of a totally different branch
of mathematiéa to the search problem is discussed--namely poten-
tial theory. The methods'diacussad in the previous four aec&ians
have been addressed to developing an estimator for the location of
a ‘target: in a search space at any time during the search. These
methods have their primary usefulness in real-time search broblemsn
that ié,in problems of estimating the position of tha target dur-
ing the conduct of a search.

Methods such as these may also be used for the planning of a
search prior to its actually being performed. This is the problem
of choosing the optimal experiment discussed above. The optimal
axpéiiment asgoclated with time t i8, for any given inferential
technique, the set of random variables to be sampled (or search
plan) which makes the estimator for target location at time ¢t

most efficient. :

Other criteria for choice of search plan algo suggest them-
selves. Often a search involves an attempt on the part of the
target to achiave an objective. The role of the searcher is then

to detect and neiitralize the target before it achieves its

objective. Consider the tactical situation outlined in Figure 4.
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Figure 4

A Search Involving a Terminal Payoff
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A target begins a maneuver at position Pl. fThe goal of this

;anuuvar 18 to penetrate the screen of aearching units, locatad at .
_positien 81, 52, and 53, and to arrive at some position on the dotted'
véitcln su:réuﬁdlng the HVU, the high value unit. Upon arriving at the
dotted cifcla>€ho*tér§§t’recoivas a payoff. 1f the purpose of thﬁ )

target's penetration is to attack the IV, then the payoff might be the
probability with which.the attack is successful.

1t may be the case that some positions on the dotted circle are

advantageous positions from which to launch an attack. ‘These




positions would have a higher payoff than those from which an

.attack is more difficult. But we assume that the target's pri-
mary problemﬂis reaching the dotted circle and once on the
cirole, it takss the payok? associated with the point of initial
contact. '

The.penstrating targst may not reach ghe circle at all. We
assume that each of tha searching units 81, 82, and 83 remains
stationary relative to the HVU (vhich may move); but detects the
taxgbb{accptaing'ta a detaction rate which is a function of the
position of the target relative to tha sensor. Wo assume that if
ﬁho target is detected during penstration, it i& somehow heutralized
and . thersfors receives no payoff,

" From Figure 4 it seems apparent that some starting positions
for the target are better than others, For example, a target start-
ing from position Pl has more defenses to penetrate than a target
starting from position P2. tonsequently, this target has more of a !
chance of being neué;aiized<than a éarget stéiting from pbsition P2.
However, as was pointed out above, merely having a high probability
of successful penetration doss not guarantee a high payoff. This
is because a targst startingvfrom position P2, for example, may

arrive at a position on the dotted circlae with a low payoff.

Thevafore, the haast starting positions for a penatrating target
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dra thosa which balance the ponetration probability against

“the terminal payoff. Ths best initial positions are those which

give a reasé;ably high panetratisn probability and a good payoff.
_ One way to judge the' effectiveness of a defensive plan &s dis~
playsd in Fiqure 4 would be to determine where all the best initial
positions for a penetrating targa£ might be; and to design a defense
which makes the expected payoff to a tarqaf starting from one of |
these positions as low as possible. The solution of this prob-

Aem wiil bp discussed below. Ona tachnical report has been

written on this topic. Posaible applications for this technique

are alpo discussed below.

A. Computing the Search Potential

“ The problem of evaluating the expected pavoff to a penetrating
target may bae considered within the context of stochastic processes.
One of the prinociple sources of uncertainty in the payoff to
the target is the uncartairty involved in the target's motion. Only
one path for cach téééét was drawn in Figure'4. However, in an
actual tactical situation many paths are possible betwaeé a glven
starting position and the payoff circle about the HVU. Some possi-
ble penetration paths are drawn in Figure 5. This implies that a

stochastic model for target motion might be a realistic one.
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Figure 5

A Stochastic Mode} For Penetration
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As is indicated in Figure 5 , for a given starting position P ,
many penaetration paths are possible. Different penetration paths
have different values of expected payoff. This is due to the fact
that different pathd hiave different probabilities of being detected
and different payoffs.

The problem outlined in the previous section reduces to comput-
ing a particular kind of averaqé. For each possible starting posi-
tion P outside the defenses,the average payoff over all possible
paths originating at Ehat point and ending on the payoff circle must
be computed. 1If it is assumed that the target moves according to a

homogeneous Maxkov process and that the sensors are stationary relative
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to the HVU,this average is easily computed. If this average is

plotted against initial target poaition, a function called the

saarch potential results. This function gives the potential pay-

Qff to an undetected target as a function of initial po;ition.

B. .Technical Report

One-technical report was written under this contract on the
employment of the search potential. This téport is entitled

The Search Potential. It is abstracted in section 7.

€. - Discussion of Technical Report

In the above technical report a search for a target in dis-
crate Markov motion is considered. The search potential functionﬁ
is defined as a function defined on the states og the Markov
chaié with non-zero prior probability, which is the expected pay-
off to an undetected target upon being absorbed in the terminal
state; of the chain.. A method for computing this function is
presented and three ?fémple; are worked.

D. Application of the Search Potential

i) General Considerations: The two key assumptions in the

above technical report involve the homogeneity of the assumed

Markov motion for the target and the stationarity of the sensors
relative to the HVU. These assumptions restrict the usefulneas of

the technique to situations in which the sensora are scraeniﬁg'the
high value unit. In such situations the screening units and the high

’

value unit move in unison and the penetration tactics of the target are
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likely to depend on its position in the search space, but not on the

time of penetration.

Thus, the most fruitful area of application for these techniques
is in direct support. Thé search poﬁential would provide a ;ay of
evaluating the screen of a task force in terms of its ability to pre-
vent a penetrating target from carrying out its mission.

i1) specific Considerations: The algorithm presented in the

technidal report may be programmed on a desk top calculator. Programs
for direct support search planning ahd avaluation are currently imple-

mented on the Wang 2200. The program ASP developed at the SUBPAC TAG is

! written ppecifically for direct support applications. 'The algorithm
L 4
presented above could also be written for the Wang 2200 and

included as part of the ASP programs. This would provide the ASP

programs with a tool specifically designed to evaluate HVU screens--

& tool which ASP does not currently have.

| %
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7. BAbstracts of Technical Reports

1. Search for a Moving Target and The Exponential Formula

(JHU Technical Report No. 278)

Abstract

.A target is assumed to move according to a Wiener Process

in Hll . The probability of detecting the target is computed
: in terms of the search effort which accumulates along the tar-

. get's path. Under regularity assumptions this probability is

4 given by the expectation of an exponential functional of the

" procass. The problem treated here is that of determining the

probability of detecting the target in a givén cell of finite

'Lebesque measure. In stationary searches this probability is

often approximated usinhg the exponential formula evaluated at

T

the total accumulated search effort in the cell. It is shown

i here that. the cell failure probability in a search for a Wiener
e e ik

target is asymptotically proportional to’ T rather than

exp[-pT] , where T 1is accumulated time spent searching in the

cell. The asymptotic fallure probability is also shown to be a

function only of cell zize, not cell position in D?l. In a
similar fashion it is shown the cell failure probability in a
pearch for a Wiener tafqet in Hiz is independent of cell loca-

| tion and asymptotically proportional to (c log T + 1)—1. c > 0.
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2. Statlstical Methods in the Theory of Search

(JHU Technical Report No. 280)

‘'  Abstract’ g

A target is assumed to move according to a continuous

- stochastic process in Euclidean R". A Bearcﬁe; makes a
Belection of a search strateqgy from among a set of alter-
natives. The state of the searcher's knowledge during the

i ~ course of the search is modeled as a two-state continuous-

k time Markov chain, called the detection process. The two

f | states are assumed to be “out of contact" and "in contact".

The transition intensity of the detection process at any

time t 1is assumed to depend upon the search strategy

chosen, the target's position at time t , and t itself.

It is shown that the Bayes estimator for target location at

. any time during the sea¥ch is determined by a family of

probability measures derived from the seatch, called thé‘

coverage distributions. Techniques for approximating the

Bayes estimator based upon known properties of the coverage

distributions are discussed. The methodoloagy developed is

pe

discuygsed in terms of an example.
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3., Parametric Search Modeling

(JHU Technical Report No. 283)

Abstract’
A target moves according to a continuous stochastic pro-
cess, in Euclidean B" . A sasarch ig conduéted by chosing a
search strategy and by observing events of a detection pro-

cess. Methods for representing tha posterior distribution

. for taxgetilocatioh at any time during the search are dis-

cuased. The particular methods for parameterizing the
modals for target motion and the transition vector of the
detection process which yield tractable representations are
introduced. fThe methodology is discussed in terms of two

examples.
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4. On Multiplicative Functionals on Diffusion Procaases

(JHU Tochnical Raport No. 286)
: Abstract '

A clasy of Gaussian Diffugion processes is considered. A
. multiplicative functional is defined on such a process and gives
rise to a ganaralized transition function. This generélized
transition function satisfies a modified version of the Kolmogorov
- backward equation of the diffusion process. A constructive method
for generating a solution to this modified backward equation, ‘
with the required final condition, is presented. The methodology

L 4

is Adlacuassed in terms of an exampla.

v

5. Search For a Stationary Target Under Minimax Estimation

tonu rechnioal Report No, 201)

A target is assumed hidihg at an unknown position in a finite
search space. No prior probabllity distribution for target loca-
tion is assumed. A search is defined to be the cbsarvation of a
sequence of randem variables. Expressions for the minimax estli~
mator for target iocation, the leant favorable prior distribution
for target location, and thes value of the estimation game at any
stage of the search are derived. 'The methodology is illustrated

in term of an cxzample.
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6. Search for a Moving Target Under Minimax Estimation

(JHU Technical Report No. 295)

Abstract’

A target is assumed to choose its starting position in a
search at an unknown pesition in a finite search space. No.
prior probability distribution for the target's initial loca-
tion is assumed. During the search the target is assumea to
move from position to position in the search space according
to a Markov procass. A search is defined to be the observa-
tion of a sequence of random variables. Representations for
the minimax estimator for target location at ,any stage of the
search, the least favorable prior distribution for the target,

and the value of the estimation game are presented.
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7. ‘The Search Potential

(01U Tachnical Report Ne. 297)
Abstract
A search for a pa}ticla in discrete Markov motion 18’ con-
sldered. The states of the particle's motion are assumed to be
either transient or asbsorbing. An operator called the search
potential operator is defined. This operator maps real-valued
functions defined on the absorbing states into real-valued
. functions defined on the transient states. If a function de-
fined on the absorbing states is construed to be the payoff to
an undetected particle upon being absorbed, then the search
potential operator maps it into the conditional expectation of

bayoff as a function of starting state. Three axamples are

provided.
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8. Maximum Likalihood Search

(JHU Technical Report No. 301)
Abstract’ i
n
A target is assumed located at an unknown position in R
No prior probability distribution for the target is assumed.
A search 1s defined to be ths observation of a sequence of

Bernoulli random variables. The maximum likelihood estimator

. for target locaticn is examined. In particular,the asymp-

totic distribution of the maximum 1likelihood eatimatoe iu

: ‘Qezived and use of Fishar Information is made for the optimal

galaction of the~sequaﬁca of Barnoulli random variables to bs

Bampled.
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