

AFFDL-TR-78-38 PART 3

INTERACTIVE COMPOSITE JOINT DESIGN PROGRAMMING MANUAL

ADAU58024

M. K. Smith L. J. Hart-Smith C. G. Dietz

Douglas Aircraft Company McDonnell Douglas Corporation Long Beach, California 90846

300

APRIL 1978

TECHNICAL REPORT AFFDL-TR-78-38 Final Report for Period April 1976 to April 1978

08 21

099

Approved for public release; distribution unlimited

78

AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OT) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

H. SCHRADER.

Project Engineer

CHARLES A. BAIR, Maj, USAF Chief, Analysis and Optimization Branch Structural Mechanics Division

FOR THE COMMANDER:

RALPH L. KUSTER, Jr., Col, USAF Chief, Structural Mechanics Division AF Flight Dynamics Laboratory

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/23 June 1978 - 225

SECURITY CKASSIFICATION OF THIS PAGE (When Date Entered)	· · · · · · · · · · · · · · · · · · ·	-
(19 REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
AFFDL-TR-78-38	NO. 3. RECIPIENT'S CATALOG NUMBER]
4. TITLE (and Sublille)	A Final Jechnical Report	
INTERACTIVE COMPOSITE JOINT DESIGN Fact 2. X	April 76 - April 78	-
7. AUTHOR(e)	(11 MDC - J7908 - FT - 7	4
M. K. Smith, L. J./Hart-Smith C. G./Dietz	5 F33615-76-C-3058	
PERFORMING ORGANIZATION NAME AND ADDRESS Douglas Aircraft Co., McDonnell Douglas Corp. 3855 Lakewood Boulevard Long Beach, Ca. 90846	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADDRESS Analysis and Optimization Branch(AFFDL/FBR) Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base, Ohio 45433	Aprtme 78	
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office	15. SECURITY CLASS. (of this report) UNCLASSIFIED 15e. DECLASSIFICATION/DOWNDRADING SCHEDULE	1,7
16. DISTRIBUTION STATEMENT (of this Report)		1
Approved for public release, distribution unlin	nited.	
Approved for public release, distribution unlin		
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES	from Report) 	
17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, II different	from Report) 	
 17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block numb Graphics Bonded Joints Composites Computer Program Tektronix 20. Abstract (Continue on reverse elde if necessary and identify by block numb A computing technique was developed to det combining the several batch computer program ut Joints into one interactive computer program ut This approach proved successful and produced a of bolted or bonded composite joints. The produced a 	<pre>/rom Report) // // // // // // // // // //</pre>	
 17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse elde if necessary and identify by block numb Graphics Bonded Joints Composites Computer Program Tektronix 20. Abstract (Continue on reverse elde if necessary and identify by block numb A computing technique was developed to det combining the several batch computer program ut Joints into one interactive computer program ut This approach proved successful and produced a 	<pre>/rom Report) // // // // // // // // // //</pre>	
 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Graphics Bonded Joints Composites Computer Program Tektronix Bolted Joints 20. Abstract (Continue on reverse side if necessary and identify by block numb A computing technique was developed to det combining the several batch computer program of joints into one interactive computer program of This approach proved successful and produced a of bolted or bonded composite joints. The prog- package provided by TEKTRONIX for the graphics 20. FORM 1473 EDITION OF 1 NOV 68 IS OBSOLETE SUM DIG2 DIAL 6401 	<pre>/rom Report) // // // // // // // // // //</pre>	

UNCLASSIFIED LUNITY CLASSIFICATION OF THIS PAGE(When Data Entered) Ces >the remote on-line graphics terminal in conjunction with the main computing facilities which contain the program. The final report discusses the summary, conclusion, and recommendations of the work performed. The User's Manual and Programming Manual discuss the input, output, and function of the program. UNCLASSIFIED

UNICLASSIFICATION OF THIS PAGE(When Data Entered)

FOREWORD

This report is one of a series that describes work performed by Douglas Aircraft Company, McDonnell Douglas Corporation, 3855 Lakewood Boulevard, Long Beach, California, 90846, under the Interactive Composite Joint Design Program. This work was sponsored by the U. S. Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, under contract F33615-76-C-3058.

This report is divided into three parts. Part 1 is entitled "Final Technical Report", part 2 is entitled "User's Manual", and part 3 is entitled "Programming Manual". The principle investigators and authors are M. K. Smith, C. G. Dietz and L. J. Hart-Smith.

Mr. James R. Johnson was the Air Force Project Manager during the conceptual phase of this project. During conduct of the program, Mr. Johnson was succeeded by Lt. K. Schrader (AFFDL/FBRA).

This report was submitted to the Air Force on 15 April 1978, and covers work performed during the period April 1976 through April 1978.

Dill for White Section Baff Section r ATENS £7 **METIFICATEDIS** RESERVED AND St. Sol Par

iii

TABLE OF CONTENTS

Section	Pay	ge
I	COMPUTER PROGRAM DESCRIPTION	1
	INTRODUCTION	1
	OPERATIONAL CONSIDERATIONS	1
	Hardware	1
	Scope	1
	Joint Types	1
	Materials	2
	PROGRAM CONSIDERATIONS	2
	Language	2
	Standards	2
	Data Files	2
	Save File	4
	Print File	5
	Graphics	6
	SYSTEM IMPLEMENTATION	6
	Update, Compile and Load Procedure	6
	Field Length Map	7
	On-Line Operation	7
	SYSTEM OVERVIEW	7
	Data Flow Description	7
	Save File	2
	Program Routine List	2
	Common Blocks	3
	Variable List and Description	3
	General	3
	Analysis Input/Output Variables	5
	Bolted Double and Single-Lap	5
	Bolted Stepped-Lap	6
	Bonded Double and Supported Single-Lap 1	7
	Bonded Unsupported Single-Lap	9
		21
	Bonded Stepped-Lap	22

, **V**

BORDENS BACK MOR FELSED

TABLE OF CONTENTS (Continued)

S	e	C	t	i	0	n	

Page

JO	INT	PRO	GR	AM	R	10U	ITI	NE	0	ES	CF	RI P	TI	ON	l	•	•	•	•				•		•	•	•	•	25
	ANAL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
	ANAL	11	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
	ANAL	.7	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30
	ANAL	8	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	32
	ANAL	9	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	34
	BOLT	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	35
	BOLT	4	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	37
	BOND	1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	40
	BOND	2	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	45
	BOND)5	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	48
	BOX	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	52
	BOXN	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	53
	сору	WΚ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	54
	DBLB	;.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	56
	DESI	GN	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	57
	EDSE	L	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	58
	ESCA	RF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	61
	FKB0)LT	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	62
	FKPR	ROP	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	63
	FPRO	P	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	64
	INIT	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	65
	MAIN	1.	•	•	•	•	•	٠	•	•	٠	•	٠	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	66
	NAME	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	68
	OPTI	ON	•	•	•	•	•	•	•	•	•	•	٠	•,	•	•	٠	•	•	•	•	•	•	•	•	•	.•	•	69
	0UT1	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	70
	OUT4	•	٠	•	•	٠	•	٠	•	•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	72
	0UT7																												73
	OUTS	3.	٠	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	٠	•	•	٠	•	٠	•	٠	٠	•	•	•	74
	0019																												75
	0UT1	1	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	76
	DCT																						•					•	79

TABLE OF CONTENTS (Continued)

Section

II

!

:

ł

Page

	PCTSTP	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	80
	PRINT	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	81
	PSCARF	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	85
	QUADMN	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	86
	READ1	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	87
	SAVE .	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•		•	•	•	88
	SELECT	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	89
	SID .	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	90
	STPLP	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	91
	ΤН	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	92
	WDMAX			•																							•	93
	WDMIN	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	94
	WT	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	95
	STSL .	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•]•	•	•	•	•	•	•	96
	WWT .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	97
	XYLOC	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	98
E	XAMPLES	•		•		•	•	•		•		•	. •	•	•		•		•	•		•	•	•			•	99
	Bolted																									•	•	99
	Bolted	St	ер	pe	d-	La	р	•		•	•	•			•		•		•	•	•	•			•	•	•	111
	Bonded	Do	ub	le	-La	ap	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	116
	Bonded	Un	su	pp	or	te	d	Si	ng	,]e	}−L	.ap)	•	•	•	•		•	•		•	•	•	•		•	122
	Bonded																											127
	Bonded																											129
	Bonded																					•	•	•	•	•	•	136
	Selecti																					•	•		•	•	•	140
	Consoli																											144
ΔΝΔ	LYTICAL	D Di	UB B	I FI	M	DF	۲N	D T	рт	<u>،</u>	N	FO	P	RU	ND	FD	1.1	INT	NT	2								145
	HYSICAL																			5	•	•	•	•	•	٠	•	145
	ATHEMATI											-		-						•	•	•	•	•	•	•	•	145
	ESCRIPTI																			•	•	•	•	•	•	•	•	149
														-		-				•	•	•	•	•	•	•	•	149
L	IMITATIC	лъ		•	•	•	•	•	٠	٠	٠	٠	•	•	•	•	٠	٠	٠	•	٠	٠	•	٠	٠	٠	٠	100

TABLE OF CONTENTS (Continued)

Section		Page
	SOLUTION ACCURACY	150
	DEFINITION OF NOTATION	150
III	ANALYTICAL PROBLEM DESCRIPTION FOR BOLTED JOINTS	151
	PHYSICAL PROBLEM DESCRIPTION	151
	MATHEMATICAL PROBLEM DESCRIPTION	153
	MATHEMATICAL DERIVATION OF SOLUTIONS	155
	DESCRIPTION OF NUMERICAL METHODS	161
	LIMITATIONS	162
	DOUBLE-LAP JOINT	163
	STEPPED-LAP JOINT	163
	SINGLE-LAP JOINT	164
	SOLUTION ACCURACY	165
	DEFINITION OF NOTATION	166

LIST OF ILLUSTRATIONS

the second state of the se

<u>Figure</u>	<u><u>P</u></u>	age
1	Routine Overlay Map	3
2	Update, Compile and Load Procedure	8
3	Full Compile Procedure	9
4	Filld Length Map	10
5	JOINT Execution Procedure	11
6	ANAL11 Flow Diagram	29
7	ANAL7 Flow Diagram	31
8	ANAL8 Flow Diagram	33
9	ANAL9 Flow Diagram	35
10	BOLT4 Flow Diagram	39
11	BOND1 Flow Diagram	43
12	BOND2 Flow Diagram	47
13	BOND5 Flow Diagram	50
14	EDSEL Flow Diagram	60
15	MAIN Flow Diagram	67
16	OUT1 Flow Diagram	71
17	OUT11 Flow Diagram • • • • • • • • • • • • • • • • • • •	78
18	PRINT Flow Diagram • • • • • • • • • • • • • • • • • • •	83
19	Bolted Double-Lap Input (Analysis) • • • • • • • • • • • • •	99
20	Bolted Double-Lap Output (Analysis)	100
21	Bolted Double-Lap Input (Optimization) • • • • • • • • • •	101
22	Bolted Double-Lap Output	102
23	Bolted Double-Lap Input	103
24	Bolted Double-Lap Output	104
25	Bolted Double-Lap Input (P \neq 0, N \neq 0)	105
26	Bolted Double-Lap Output (Margins of Safety)	106
27	Bolted Unsupported Single-Lap Input	107
28	Bolted Unsupported Single-Lap Output	108
29	Bolted Supported Single-Lap Input	109
30	Bolted Supported Single-Lap Output	110
31	Bolted Stepped-Lap Input	111
32	Bolted Stepped-Lap Editing	117

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
33	Bolted Stepped-Lap Output	. 113
34	Bolted Stepped-Lap Re-Analysis	. 114
35	Bolted Stepped-Lap Output	. 115
36	Bonded Double-Lap Selection	. 116
37	Bonded Double-Lap Input (All Constraints)	. 117
38	Bonded Double-Lap Output	. 118
39	Bonded Double-Lap Re-Analyze	. 119
40	Bonded Double-Lap Re-Display and Mods	• 120
41	Bonded Double-Lap Output	• 121
42	Bonded Unsupported Single-Lap Input	• 122
43	Bonded Unsupported Single-Lap Output (P = 0, OL \neq 0)	• 123
44	Bonded Unsupported Single-Lap Output (P \neq 0, OL \neq 0)	. 124
45	Bonded Unsupported Single-Lap Output (P = 0, OL = 0)	. 125
46	Bonded Unsupported Single-Lap Output (P \neq 0, OL = 0)	. 126
47	Bonded Supported Single-Lap Input	. 127
48	Bonded Supported Single-Lap Output	. 128
49	Bonded Stepped-Lap Joint Input	• 129
50	Bonded Stepped-Lap Joint Re-Input (Editing)	• 130
51	Bonded Stepped-Lap Joint Output-Input Data	• 131
52	Bonded Stepped-Lap Joint Output - Elastic Analysis	132
53	Bonded Stepped-Lap Joint Output - ElPl. Analysis	• 133
54	Bonded Stepped-Lap Joint Output - ElPl. Analysis	. 134
55	Bonded Stepped-Lap Joint Output - Display Summary	. 135
56	Bonded Scarf Joint Input	. 136
57	Bonded Scarf Joint Output (Load \neq 0, OL \neq 0)	. 137
58	Bonded Scarf Joint Output (Load = 0, OL = 0)	. 138
59	Bonded Scarf Joint Output (Load = 0, OL \neq 0)	. 139
60	Selective Output Processing Option	. 140
61	Selective Output of Solutions to PRINT File	. 141
62	Selective Output of Solutions to Display Screen	. 142
63	Display of Selected Solution	. 143
64	Consolidate Solutions on SAVE File	. 144
65	Bonded Joint Geometries	. 146
66	Bolted Joints	. 167

SECTION I

COMPUTER PROGRAM DESCRIPTION

INTRODUCTION

The programming manual describes the computer program and analytical description of the analysis routines. Section I covers all aspects of the program regarding hardware, software, files, system implementation and the program source.

The JOINT program is essentially a collection of composite joint analysis routines that have been interfaced with graphics input/output routines. Provisions have been made for the utilization of data files for saving solutions and printing on hardcopy.

OPERATIONAL CONSIDERATIONS

Hardware

The JOINT program utilizes the Tektronix PLOTIO software routines, and may be executed on a hardware that can emulate the Tektronix 4014/4015. The screen size must be sufficient to handle 132 characters/line and 64 lines/page.

The 4014 terminal may utilize a joystick or thumbscrews to position the screen crosshairs. If there is a graphics tablet available, the user is given the option to use that instead of the crosshairs. The above devices are used to locate and transmit screen coordinates for the selection of various options.

Scope

Joint Types

Bolted: Balanced Double-lap Unsupported Single-lap Supported Single-lap Stepped-lap

Bcnded: Double-lap Unsupported Single-lap Supported Single-lap Stepped-lap Scarfed

Materials

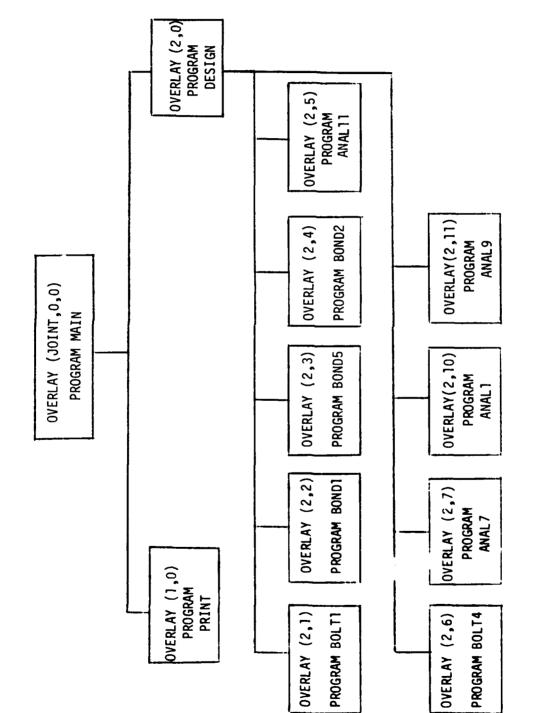
For the bolted joints, the user may use graphite-epoxy materials with either 25% or 37.5% zero-degree plies. Also, the user may choose either steel or titanium bolts.

For the bonded joints, the user inputs the properties of the adherend and the adhesive, thereby placing no restrictions on materials, including metal.

PROGRAM CONSIDERATIONS

Language

The source was developed using standard FORTRAN.


Standards

CDC standards were used. The availability of 60-bit words made the need for double-precision unnecessary. If this program is adapted to installation with a word size less than 60 bits, double-precision accuracy should be used, as explained in the analysis routines.

The overlay of program routines was accomplished through the use of CDC OVERLAY. Refer to figure 1 for the routine overlay map.

Data Files

The first two files identified on the CDC program card are for the SAVE and PRINT files, respectively. These on-line disk files have default local file names of TAPE1 and TAPE 2, which the user may change local equivalencing.

ł

Figure 1. Routine overlay map

Save File

The SAVE file is for the accumulation of user-designated solutions that may be used as input to a problem, or written t- either the PRINT file or the terminal screen. The solution input and output data is contained in the program's WORK array. When the user electes to save the solution, the program positions the SAVE file at the end of data, and the following data is output using unformatted write statements.

WRITE (1) NDT, TMPNAM, IT
WRITE (1) NENT, (WORK(I), I = 1, NENT)

where:

NDT = sequential solution number on the file TMPNAM = 8-character name IT = joint type NENT = number of items in the WORK array WORK = array containing solution I/O data

The end-of-data on the save file is indicated by NDT=999 in the first record.

The variable ND is used to indicate the position of the read/write disk head. ND is set equal to the solution number of the previous I/O operation. If a read of the save file is indicated, the desired solution number is compared with ND; if the desired number is not greater than ND, file 1 is rewound before the search is made. For a save, the file is positioned at the end of data.

The ANAME and ITYPE arrays contain the name and type of all solutions on the SAVE file, and are dimensioned at 100. Therefore a 100 solution limit to the number of solutions contained on the SAVE file is due to these array dimensions. A consolidation feature is available to the user to purge solutions from the SAVE file. All except the indicated solutions to be purged are copied to a temporary file then back to unit 1. The solution numbers are resequenced, and corresponding changes are made to the ANAME and ITYPE arrays. The user may elect to select a solution on the SAVE file to use as input for a problem. The ITYPE array is searched for types corresponding to the type of problem selected, and only those corresponding names from the ANAME array are displayed for user selection. After the selection is made, the SAVE file is searched for that solution, and the data read into the WORK array.

The user may also elect to output selected solutions contained on the SAVE file. The entire ANAME array is displayed for the user to make selections. During execution the SAVE file is searched for a solution, the data is read to the WORK array, and the appropriate output routine is called; this procedure is repeated for each selected solution name.

The user may wish to input a SAVE file that was constructed from a previous execution of the program. A file that has been cataloged on CDC can be read but not written on. Therefore a copy to a local file is usually required. When on old SAVE file is input to the program, the ANAME and ITYPE arrays are constructed from the data in the first record of each solution on the file. The user is then able to add new solutions, read input data from the file, and print from the file.

Print File

The PRINT file is for the formatted output of solutions. It is rewound and created new each session. The user may write the solution to a problem after execution and display; the appropriate output routine is called, and the input and output data contained in the WORK array is written to the PRINT file. If the solution is output to the SAVE file, the user may use the SELECTIVE OUTPUT mode to select desired solutions to be output to the PRINT file. During execution each solution indicated is read from the SAVE file to the WORK array and the appropriate output routine called to write the solution to the end of the PRINT file.

Standard ASA carriage control is used for the formatted writes. The maximum output to a page is 110 characters per line, and 64 lines per page.

After the user's session, the print file may be used for on-line viewing, or hardcopy printing via a batch job.

Graphics

In addition to the program being interactive, it is executable only on the Tektronix 4014/4015 hardware noted previously. The routines, from PLOT10 Terminal Control System User's Manual for release 2.0/3.0, are used to plot drawings, change character size, clear the page, and obtain screen coordinates.

Refer to the System Implementation subsection for the library used to supply the PLOT10 routines.

The use of both Terminal Control System (TCS) commands with Fortran I/O statements must be handled with care. TCS commands and Fortran WRITE's use different buffers which cannot be controlled. Care must be taken to follow these guidelines:

- Before calling a TCS command, call RECVR if any WRITE's precede it.
- Before calling Fortran WRITE's, call ANMODE if TCS commands precede it.

SYSTEM IMPLEMENTATION

Update, Compile, and Load Procedure

During development of the program, the procedure outlined in Figure 2 was used to facilitate updates. The three separate tasks are update, compile, and load. The absolute file JOINT is created through execution of this batch job; it then may be executed on-line (see Figure 5).

JOINTUPD is the update file used for the CDC UPDATE command. It contains the source and subsequent updates. The system-produced SOURCE file is not saved. JOINTLGO is the LGO file output from COPYL. It contains the compilation of all previous routines, plus those compiled in the current run. It is cataloged only because it is required for input to COPYL.

JOINT is the absolute file for execution on-line.

When new routines are added that do not exist on the JOINTLGO file, a full compile is executed to create a new JOINTLGO file. Figure 3 shows a typical setup used for a full source compile. This batch run also produces a new JOINTUPD file from the source file.

Field Length Map

Figure 4 shows the size of the routines in the program. The name of each subroutine is included.

On-Line Operation

Figure 5 shows the procedure to execute the JOINT program. In this example, the user is assigning local files A and B to the SAVE and PRINT files.

SYSTEM OVERVIEW

Data Flow Description

The program has been structured so the WORK array is used for the temporary storage of all input and output data for an analysis. The input data is either read into the WORK array, or the values are equivalenced to WORK. The WORK array is common to all analysis routines where the input is received and output stored in the WORK array. All output (OUT) subroutines use data passed in the WORK array.

If re-analysis is selected, the user may edit entries in the existing WORK array, or copy a SAVE file solution to the WORK array for edit.

The bonded stepped-lap analysis routine reuses many of its variables. Therefore, it was necessary to use a temporary WK array to store the I/O items.

INSTRUCTION

ATTACH(OLOPL, JOINTUPO) REQUEST(NEWFILE,*PF) UPDATE(P,F,N=NEWFILE) RETURN(OLDPL,COMPILE) REWIND(NEWFILE) CATALOG(NEWFILE, JOINTUPD, RP=999) UPDATE(Q,P=NEWFILE) REWIND(COMPILE) REQUEST(LGO, *PF) FIN(I=COMPILE.OPT=2,R=3) RETURN(NEWFILE,COMPILE) ATTACH(OLDLGO, JOINTLGO) REQUEST (COPYLGO, *PF) REWIND(OLDLGO,COPYLGO) COPYL(OLDLGO,LGO,COPYLGO) CATALOG(COPYLGO, JOINTLGO, RP=999) RETURN(OLDLGO,LGO) REQUEST(ABS, *PF) REWIND(COPYLGO, ABS) ATTACH(L,TEKLIB,ID=654321,SN=AFIT) LIBRARY(L) MAP(ON) LOAD(COPYLGO) NOGO (ABS) REWIND(ABS) CATALOG(ABS, JOINT, RP=999) *EOR *IDENT MKS0109

COMMENTS

OLD UPDATE FILE FOR NEW UPDATE FILE FULL UPDATE FOR UPD FILE

COMPILE ONLY UPDATED DECKS

COMPILE NEW DECKS

PREVIOUS LGO FILE

REPLACE OBSOLETE DECKS NEW LGO FILE

FOR ABSOLUTE JOINT FILE

LIBRARY OF TEKTRONIX SUBR

CREATE ABSOLUTE FILE

**** DECK OF UPDATES TO FILE ****

*EOR

*COMPILE OUT9, PRINT, ANAL1, BOND1, ANAL9, ESCARF, PSCARF

Figure 2, Update, Compile, and Load Procedure

INSTRUCTION

COMMENTS

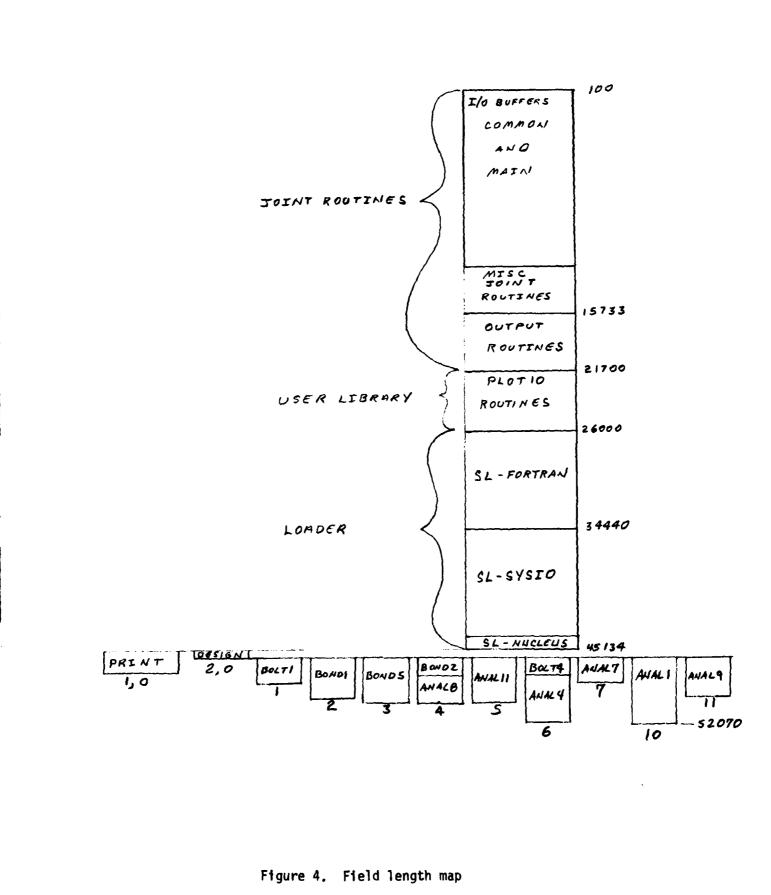
ATTACH(OLDPL, JOINTUPD) UPDATE(P,F,S) RETURN (COMPILE OLDPL) REQUEST(NEWFILE,*PF) UPDATE(F, I=SOURCE, N=NEWFILE) RETURN (SOURCE) REWIND(NEWFILE, COMPILE) CATALOG(NEWFILE, JOINTUPD, RP=999) REQUEST(LG0,*PF) FIN(I=COMPILE,OPT=2,B=LGO,R=3) RETURN(NEWFILE, COMPILE) CATALOG(LGO, JOINTLGO, PP=999) REQUEST(ABS, *PF) REWIND(LGO,ABS) ATTACH(L, TEKLIB, ID=654321, SN=AFIT) LIBRARY(L) MAP(ON) LOAD(LGO) NOGO(ABS) REWIND(ABS) CATALOG(ABS, JOINT, RP=999) *EOR *IDENT MKS0203

OLD UPDATE FILE FULL UPDATE, TO SOURCE FILE

FOR NEW UPDATE FILE OUTPUT NEW SOURCE FILE

FOR NEW LGO FILE COMPILE THE INPUT FILE

NEW LGO FILE FOR ABSOLUTE JOINT FILE


LIBRARY OF TEKTRONIX SUBR.

CREATE ABSOLUTE FILE

**** DECK OF UPDATES TO FILE ****

*E0F

Figure 3. Full Compile Procedure

10.

request execution of JOINT program. local file A equivalenced to TAPE1 default. local file B equivalenced to TAPE2 default. permanent print file for this session. copy file for use during this session. permanent save file for this session. a save file from a previous session. set screenlength to 132 char./line JOINT program to be executed. COMMAND- attach, joint, id=d700209. COMMAND- attach,x,mkstapel. COMMAND- request, a, %pf. COMMAND- request,b,%pf. COMMAND- screen,132. PFN IS Joint PF CVCLE NO. - 027 PF CYCLE NO. - 004 COMMAND- rewind, x, a COMMAND- joint,a,b. COMMAND- copy,x.a.

DOES SAVE FILE CONTAIN DATA? (1=YES, 0=NO): 1

16 SOLUTIONS ON SAVE FILE.

6 IS GRAPHICS TABLET TO BE USED FOR SCREEN LOCATIONS? (1-YES, 0-NO);

Figure 5. Joint Execution Procedure

Subroutine COPYWK copies the WK array to the WORK array before WK is reused or altered.

Save File

All data in the WORK array is written to the SAVE file in subroutine SAVE. The number of entries in the WORK array, NENT, is set in the analysis input routine. Whenever the user selects to SAVE the analysis, the file is positioned at the END record before writing the data, unformatted.

Reading data from the SAVE file to the WORK array for editing is accomplished in subroutine EDSEL (EDit SELection).

Subroutine PRINT also reads the SAVE file to WORK before calling the output routines, and before writing to TAPE 3 during consolidation.

Program Routine List

The following is an alphabetical list of the program routines.

ANAL	СОРУЖК	OUT1	READ1
ANAL11	DBLB	OUT4	SAVE
ANAL7	DESIGN	0UT 7	SELECT
ANAL8	EDSEL	0UT8	SID
ANAL9	ESCARF	0UT9	STPLP
BOLT1	FKBOLT	OUT11	ТН
BOLT4	FKPROP	OPTION	WDMAX
BOND1	FPROP	РСТ	WDMIN
BOND2	INIT	PCTSTP	WT
BOND5	MAIN	PRINT	WTSL
BOX	NAME	PSCARF	WWT
BOXNO		QUADMN	XYLOC

Common Blocks

The common blocks used throughout this program are summarized below with the variables which comprise them.

Unlabeled	NDT, NC, NCT, ITYPE(100), IUNIT2
/BLK1/	TMPNAM(2), ANAME(100,2)
/BLK2/	ND
/BLK3/	NOCONV
/BLOCK/	PROP(6), FBOLT(4)
/CONSOL/	ICON
/COPY/	KSTART(4)
/DBLBLT/	MAT, PROP(6), FBOLT(4), TNOM, DD, MM, FX, ED, FTUO, FSTN, LLF(9), FFS(9)
/IANAL/	IA
/TABFLG/	ITAB
/WK/	WK(800)
/WORK/	WORK(2500)

Variable List and Description

General

Below is a list and description of frequently used variables. Since the variable names used in the various analysis routines are unique, the variables and their equivalance location in the WORK array are listed separately. The description of the routines covers the variables particular to each.

ANAME	Array of analysis names contained on SAVE file.
IA	/IANAL/ common flag for input routines which are overlaid by analysis routines.
ICØN	/CONSOL/ common flag for PRINT routine.

IDVGT	Flag to denote divergent analysis for bonded stepped lap solution.
IEND	999 flag signifying end of data on SAVE file.
IT	Analysis type.
ITAB	/TABFLG/ flag used in XYLOC for use of tablet or crosshair.
ITYPE	Array of analysis types contained on SAVE file.
IUNIT2	Set = 1 to print message upon EXIT that PRINT file contains data.
IX	Integer X screen coordinate.
IY	Integer Y screen coordinate.
кс	Denotes column number of detected name on screen (from 1 - 10).
KD	Denotes row number of detected name on screen (from 1 - 10).
кт	Analysis type read from SAVE file.
KN	Analysis number.
KSTART	Array of starting locations within WORK for bonded stepped-lap data.
NC	Current analysis type being processed.
ND	/BLK2/last analysis number processed on SAVE file for tracking file position.
NDT	Total number of solutions on SAVE file.
NENT	Number of entries in WORK array.
NU	Unit number.
TMPNAM	Temporary contents for current analysis name.
WK	Temporary work array for bonded stepped-lap routines.
WØRK	Array for all input and output data for a given solution.

Analysis Input/Output Variables

The following subsections list and describe the various I/O variables used for each analysis, and their equivalent location in the WORK array. The number in parentheses is the dimension.

Bolted Double- and Single-Lap Joints

variable	work location	description
NX	١	input joint load (lb./in.)
MATL	2	joint material code
KBØLT	3	bolt type code
FSTN	4	tension failure factor of safety
TEMP	5	joint temperature (F.)
W	6	bolt spacing within a row (in.)
D	7	bolt diameter (in.)
Т	8	composite plate thickness (1/2 joint thickness)
Μ	9	number of bolt rows (output)
WX	10	joint weight (lb./in.)
MM	11	absolute value of M
PB(9), IPB(9)	12	decimal and % values of load trans- ferred
FS(9)	21	margins of safety
LF(9)	30	failure mode codes
FX	39	computed joint load if NX = 0
MO	40	input number of bolt rows

Bolted Stepped-lap Joint

variable	work location	description
M	1	number of steps
FX	2	applied joint load
TEMP	3	joint temperature
FSTN	4	tension failure factor of safety
KBØLT	5	bolt type code
MATLI	6	inner material code
MATLØ	7	outer material code
B(9)	8	step lengths
D(9)	17	bolt diameters
W(9)	26	bolt spacing
WD(9)	35	W/D ratios
TI(9)	44	for each inner material thickness
TØ(9)	53	bolt row outer material thickness
PB(9)	62	% of load transferred by bolts
PTI(9)	71	% of load retained by inner plate
PTØ(9)	80	% of load retained by outer plate
FS(9)	89	margins of safety
LF(9)	98	failure mode codes
F	107	critical load value
IRØW	108	critical row number

Bonded Double-Lap and Supported Single-Lap

and the second second

variable	work location	description
К	1	load type
PLØAD	2	input applied load
ØVRLAP	3	input overlap length
(ADHESIVE PROPERTIES	5)	
GAMMAX	4	max. shear strain
ETA	5	thickness
TEMP	6	operating temperature
TEMPC	7	cure temperature
TAUEL	16	elastic shear strength
GEL	17	linear elastic shear modulus
TAUP	18	elastic-plastic shear strength
GADHSV	19	non-linear elastic shear modulud
EPEEL	8	peel modulus
SGMAPL	20	peel strength
(ADHEREND PROPERTIES	5)	
THICKI	9	thickness (inner)
TH I CKØ	21	thickness (outer)
EINNER	10	Young's modulus (inner)
EØUTER	22	Young's modulus (outer)
GNUINR	11	Poisson's ratio (inner)
GNUØTR	23	Poisson's ratio (outer)
ALPHAI	12	coeff. of thermal expansion (inner)
ALPHAØ	24	coeff. of thermal expansion (outer)
FI	13	yield strength (inner)
FØ	25	yield strength (outer)

variable	work location	description
ETRNSI	14	transverse modulus (inner)
ETRNSØ	26	transverse modulus (outer)
SGTRNI	15	transverse strength (inner)
SGTRNØ	27	transverse strength (outer)
FCYINR	28	compressive yield strength (inner)
FCYØTR	31	compressive yield strenghh (outer)
FSYINR	29	shear yield strength (inner)
FSYØTR	32	shear yield strength (outer)
FTYINR	30	tensile yield strength (inner)
FTYØTR	33	tensile yield strength (outer)
(OUTPUT DATA)		
ØLAP	34	either optimum or specified overlap
ØVLAP	35	optimum overlap length
GAMEL	36	linear elastic adhesive shear strain
GAMMAE	37	non-linear elastic adhesive shear strain
GAMMAP	38	plastic adhesive shear strain
GAMMA	39	elastic-plastic adhesive shear strain
STRBND	40	elastic-plastic adhesive shear strength
ELBND	41	linear elastic adhesive shear strength
STRSAV	42	non-linear elastic adhesive shear strength
STRINR	43	inner adherend strength
STRØTR	44	outer adherend strength
BNDPL	45	limit load due to adhesive peel or interlaminar adherend tension

variable	work location	description
TAUMAX	46	maximum elastic adhesive shear stress
IPRNT	47	stress analysis print flag
JCRTND	48	critical end for strength computation
ICRTND	49	critical end for stress analysis
FACTØR	50	number of bond surfaces
TMPBND	51	adhesive shear strength for given overlap

į.

Bonded	Unsupported	Single-Lap	
variab	le	work location	

variable	location	description
PLØAD	1	input applied load
ØLAP	2	input overlap length
(ADHESIVE)		
ETA	3	thickness
GAMMAX	4	maximum shear strain
TAUEL	5	elastic shear strength
GEL	6	linear elastic shear modulus
TAUP	7	elastic-plastic shear strength
GADHSV	8	non-linear elastic shear modulus
SGMAPL	9	peel strength
EPEEL	10	peel modulus
(ADHEREND)		
THCKN	11	thickness
PØISSN	12	Poisson's ratio
SIGULT	13	ultimate yield strength

variable	work `location	description
EYØUNG	: 14	Young's modulus
STRTRN	15	transverse strength
ETRNSV	16	transverse modulus
АКВ	17	laminating factor
(OUTPUT DATA)		
STR	18	remote adherend tension strength
BNDGLD(7)	19	combined tension + bending
BNDSTE(7)	26	elastic shear strength of adhesive
STRBND(7)	33	plastic shear strength of adhesive
STRPL(7)	40	limit load due to peel or inter-
		laminar tension
SIGAVG	18	ave. applied stress remote from joint
SIGMAX(7)	19	max. induced adherend stress at edge

of overlap

of overlap

peak adhesive shear stress

peak adhesive shear strain

peak adhesive peel stress at edge

It is noted that the last two output groups occupy the same place in WORK. This is so because only one group of variables is computed, depending on PLOAD.

26

33

40

SIGBND(7)

GAMBND(7)

SIGBPL(7)

Bonded Scarf Joint

A CONTRACTOR OF A

فالإطراب والمنافقة والمراجعة والمراجع والمراوعين المتعاطية والمتلا المتعالية والمنافقة والمراجع والمتعالية

Since the same routine processes the input, refer to the bonded doublelap for input variable descriptions. The only differences are in the adherend variables below:

variable	work location	description
TI	9	thickness (left)
Т2	21	thickness (right)
El	10	Young's modulus (left)
E2	22	Young's modulus (right)
GNU1, G1	11	Poisson's ratio (left)
GNU2, G2	23	Poisson's ratio (right)
AL PHA1	12	coeff. of thermal expansion (left)
ALPHA2	24	coeff. of thermal expansion (right)
(OUTPUT DATA)		
STRNG1	34	remote strength of left adherend
STRNG2	35	remote strength of right adherend
STRI	36	remote stress in left adherend
STR2	37	remote stress in right adherend
ØVLAP(7)	38	array of overlap lengths
ELBND(7)	45	elastic adhesive shear strength
EEPBND(7)	52	transitional adhesive shear strength
EPBND(7)	59	plastic adhesive shear strength
BNDSTR(7)	66	peak adhesive shear stress
GAMBND(7)	73	peak adhesive shear strain
K1(7)	80	critical end - elastic
K2(7)	87	critical end - transitional
КЗ(7)	94	critical end - plastic
K4(7)	101	critical end - peak stress
SYM+2	108	code designating scarf joint for routine BØND1.

Bonded Stepped-Lap Variables

Due to the variable number of steps possible for the analyses performed, and the re-use of the various arrays after each analysis, a temporary WK array is used to equivalence the variables during analysis. Below is a description of all I/\emptyset variables, followed by tables showing their equivalent location in WK, and relative position in WØRK.

кт	no. of entries used in WØRK
SGNLD	load type (-1, 0, 1)
NSTEPS,NCHECK	number of steps
DELTMP	temperature differential
JTDBLR	joint or doubler flag
NSYM	flag for symmetrical stress distribution
I FACTR	single/double bond surface
ETA	adhesive thickness
TAUMAX	peak adhesive shear stress
G	elastic adhesive shear modulus
GAMMAX	maximum adhesive shear strain
GAMMAE	elastic adhesive shear strain
ALPHAØ	outer adherend coeff. of thermal expansion
ALPHAI	inner adherend coeff. of thermal expansion
NOUT	flag for CØPYWK
IDVGT	flag denoting divergent analysis
STEPL, STEP	step lengths
TAU	adhesive shear stresses
GAMMA	adhesive shear strains
DELTAØ	outer adherend displacement
DELTAI	inner adherend displacement
TØUTER	outer adherend load

TINNER	inner adherend load
THICKØ, THCKNØ	outer adherend thickness
THICKI, THICKNJ	inner adherend thickness
ETØTR	outer adherend extensional stiffness
ETINR	inner adherend extensional stiffness
ST RØ TR, STRGTR	outer adherend strength
STRINR, STRGNR	inner adherend strength

TABLE 1. BONDED STEPPED-LAP WK ARRAY

Variable	Dimension	WK Location
STEPL	20	1
THICKØ		21
ТНІСКІ		41
ETØTR		61
ETINR		81
STRØTR		101
STRINR		121
STEP	60	141
THCKNØ		201
THCKNI		261
TAU		321
GAMMA		381
DELTAØ		441
DELTAI		501
TØUTER		561
TINNER		621
STRGTR		681
STRGNR	↓	741

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	KT SGNLD NSTEPS DELTMP JTDBLR NSYM IFACTR ETA TAUMAX G GAMMAX GAMMAE ALPHAØ ALPHAI NØUT		Base values not dependent on step data.
	NSTEPS STEPL THICKØ THICKI ETØTR ETINR STRØTR STRINR	(a)	INPUT STEP DATA 7 arrays dimensioned at NSTEPS (a)
	NSTEPS IDVGT STEPL THICKØ THICKI TAU GAMMA DELTAØ DELTAI TOUTER TINNER STRØTR STRINR	(b)	ELASTIC ANALYSIS 11 arrays dimensioned at NSTEPS (b)
	NCHECK IDVGT STEP THCKNØ THCKNI TAU GAMMA DELTAØ DELTAI TOUTER TINNER STRGTR STRGNR	(c)	ELASTIC-PLASTIC ANALYSIS 11 arrays dimensioned at NCHECK (c)

TABLE 2. BONDED STEPPED-LAP WORK ARRAY

TABLE 2. BONDED STEPPED-LAP WORK ARRAY (Continued)

NCHECK (d) IDVGT STEP THCKNØ THCKNI TAU GAMMA DELTAØ DELTAI TØUTER TINNER	ELASTIC-PLASTIC ANALYSIS WITH INFINITE ADHEREND STRENGTH 9 arrays dimensioned at NCHECK (d)
---	---

JOINT PROGRAM ROUTINE DESCRIPTION

The following is a description of each of the JOINT routines which will include the following items:

- 1. Algorithm an overall description and purpose of the routine.
- 2. Argument List a list of the arguments passed to or from the calling routine.
- 3. Common a list of the common areas.
- 4. Length octal words
- 5. Subroutines Called a list of externals. (PLOT10 routines excluded)
- 6. Subroutines Called By a list of routines that call this routine.
- 7. Input/Output a description of reads and writes.
- 8 Error Handling a description of how this routine handles errors or error codes.
- 9. Flow Chart a functional diagram of the main portions of the routine.
- 10. Symbol List description of the unique variables used on this routine, not covered by the main variable list in the System Overview subsection.

- Algorithm This routine analyzes the design of a bolted double-lap joint.
- 2. Argument List X, F, FU, DFU, NF
- 3. Common DBLBLT
- 4. Length 341 Octal
- 5. Subroutines Called FKPROP, FPROP, PCT.
- 6. Subroutines Called by DBLB
- 7. Input/Output None
- 8. Error Handling None
- 9. Flow Chart None
- 10. Symbol List -

Α	FSU	GGMIN	MATL
BS	FTU	GMIN	MM
D	FTUO	I	NF
DD	FU	J	PB
DFU	FX	JMIN	PROP
ED	F2	KT1	Т
F	F3	KT2	TNOM
FBOLT	F4	LF	W
FBR	G	М	WD
FT	GG	MAT	Х
FSTN			

1. Algorithm - Bonded Stepped-lap analysis routine for joints and doublers.

This routine analyzes the input in the WORK and WK arrays and the output data passed back through WK.

There are two main analysis sections. The elastic analysis is from card 240 through card 490; the elastic-plastic analysis is from card 550

to card 960. To compute the potential bond strength of the elasticplastic case, it is re-analyzed with the inner and outer material strengths set very high.

The routine attempts to reverse joint geometry automatically when the basic load carrying assumptions are backwards.

The two analysis sections use the same variable names and re-analysis with reversed ends if possible. Therefore, it is necessary to use the WK work array to store data; when the end of an analysis is reached, the routine calls COPYWK to ∞ py the contents of the WK array to the WORK array for final disposition. ANAL11 keeps track of which analysis has been completed with NØUT.

NØUT

- 2 elastic solution
- 3 elastic-plastic solution
- 4 El.-Pl. solution for bond strength

This is a self contained analysis routine that has been adapted from the elastic and elastic-plastic programs contained in the NASA Technical Report CR-112237.

- 2. Argument List none
- 3. Common WØRK and WK
- 4. Length 2467 Octal
- 5. Subroutines Called CØPYWK
- 6. Subroutines Called By DESIGN (from BOND5)

7. I/Q - none

8. Error Handling - When the time interval for convergence exceeds the arbitrary value of 10 CP seconds, an error message,

INPUT ERROR. A STEP CONTAINS AN EXCESSIVELY HIGH G VALUE, AND/OR AN EXCESSIVELY LOW ET VALUE.

is displayed, the routine is exited with NØUT = 0.

9. Flow Chart - Figure 6.

10. Symbol List - Refer to the I/O variables for the bonded steppedlap routines. All others are unique to this routine and are contained in a compilation listing.



Figure 6. ANAL11 flow diagram

1. Algorithm - Bonded analysis for double-lap and supported singlelap joints, distinguished by the number of bond surfaces factor, ANBØND.

All I/O is passed through the WORK array. The re-use of the variable STRSAV has necessitated the storage of the original value in STRSA1, WORK(42).

This routine is the result of converting the non-dimensionalized version described in NASA Technical Report CR-112235.

Analysis of the joint automatically computes the adhesive and adherend strengths and the optimum overlap. If an overlap is specified by the user, the bond shear strength is computed. If the load is specified, the adhesive shear stress and strain is computed for either the specified overlap, or the optimum if the zero is specified.

2. Argument List - none.

- 3. Common WORK.
- 4. Length 1164 Octal.
- 5. Subroutines Called none.

6. Subroutines Called By - DESIGN (from BOND1).

7. I/Ø - none.

8. Error Handling - If the joint load exceeds the bond and adherend strengths, the joint is overloaded, and IPRNT - 4 is a flag.

9. Flow Diagram - see Figure 7.

10. Symbol List - The I/Ø symbols are covered under the Routine Variables for bonded double-lap and supported single-lap joints. All others are unique to this routine and contained in a compilation listing.

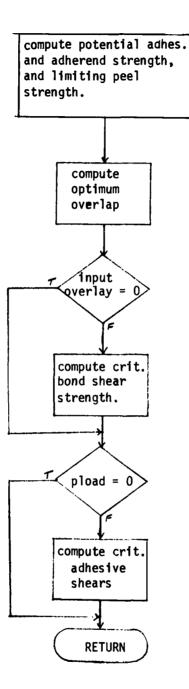


Figure 7. ANAL7 flow diagram

1. Algorithm - This is the analysis routine for the bonded unsupported single-lap joints.

If PLOAD is specified, this routine calculates the associated internal stresses; otherwise, the loads are determined at which various allowables are exceeded.

If an overlap is specified by the user, calculations are based on that overlap; otherwise, calculations are based on overlaps for a range of ℓ/t ratios for the given adherend thickness, t.

2. Argument List - none.

3. Common - WORK.

4. Length - 1216 Octal

5. Subroutines Called - none.

6. Subroutines Called By - BØND2.

7. I/\emptyset - none.

8. Error Handling - Failure to converge will print the appropriate message listing the iteration loops that were active. The flag NOCONV is set to 1 and returned to BOND2.

Asterisks are printed signifying strain failure.

9. Flow Diagram - see Figure 8.

10. Symbol List - Reference the subsection on the I/\emptyset variables for the bonded unsupported single-lap joint. All others unique to this routine are contained in the listing of variables for a compilation.

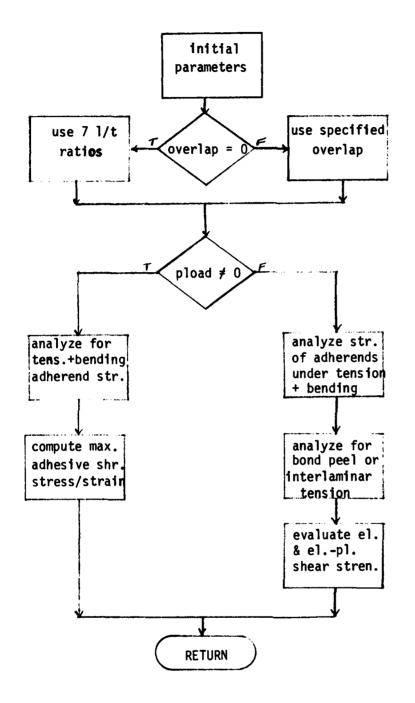


Figure 8. ANAL8 flow diagram

1. Algorithm - This routine analyzes a bonded scarfed joint with either two (symmetrical) or one (asymmetrical) bond lines.

If the overlap is zero, a range of 7 ℓ/t ratios are used for calculation.

For a specified load, maximum adhesive shear stresses and strains are calculated; otherwise, joint strengths are calculated.

If the extensional stiffness of the right end adherend is greater than the left, the ends are reversed and the user is so advised.

2. Argument List - FACTOR

3. Common - WORK

4. Length - 712 Octal

5. Subroutines Called - ESCARF; PSCARF

6. Subroutines Called By - BOND1

7. I/Ø - none.

8. Error Handling - If a joint is overloaded, output values are set high so as to print asterisks indicating failure cases.

9. Flow Diagram - See Figure 9.

10. Symbol List - Refer to the Routine Variables for the bonded scarf joint for I/\emptyset variables. The remainder are unique to this routine.

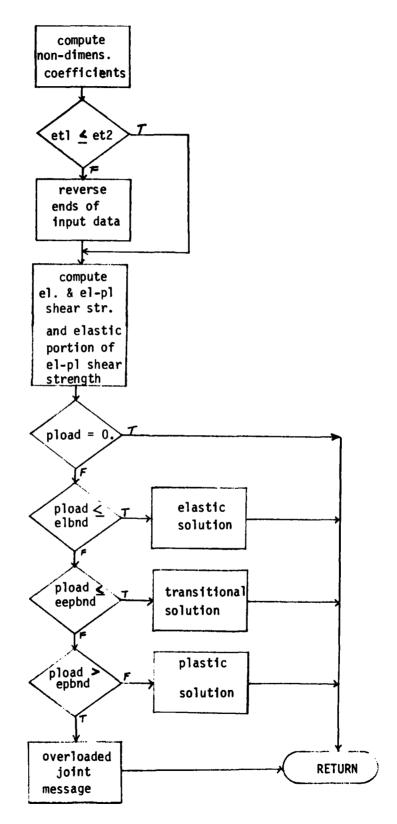


Figure 9. ANAL9 flow diagram

1

فأنتبح بمعيدها ومناقلة فأتنا ومشتبة الممرد بمنافر التمريك والتريين

BOLT1

1. Algorithm - This is the input interface for the bolted double-lap and single-lap joints. All input is requested from the uer and passed to the analysis routines in the WORK array.

The SAVE file is not utilized for input due to the small number of constraints.

2. Argument List - none.

3. Common - blank (NDT, NC); BLK1 (TMPNAM), BLK2 (ND), WORK

4. Length - 743 Octal.

5. Subroutines Called - DBLB, NAME, OPTION, OUT1, SELECT

6. Subroutines Called By - DESIGN

7. I/Q - Displays on unit 6 the header, typical drawing, constraint descriptions, and prompting messages. Reads from unit 5 the requested input data values.

8. Error Handling - none.

9. Flow Diagram - not necessary.

 Symbol List - The following is a description of unique variables for this routine. Refer to the previous subsection on Routine Variables for others.

DIS	overlap length of 2 inches for picture
IDEL	screen x width of option boxes
II	return code from SELECT
IX	starting x coord. of first box
IY	starting y coord. of first box (top)
РТ	(not used - argument from DBLB)
тні	.2 in. outer material thickness for picture
TH2	.5 in. outer material thickness for picture

BOLT4

1. Algorithm - This is the input interface for the bolted stepped-lap joint option.

An existing solution on the SAVE file may be used as basic input for the WORK array. Editing is accomplished the same way as the RE-INPUT option.

This routine describes the input data required, then prompts the user for that data by list-directed reads. Processing will not continue until the read list has been satisfied. After all input is read in, the user is given options to RETURN to DESIGN, EXECUTE, or RE-INPUT data.

The RE-INPUT option for editing prompts the user for viewing and updating the problem. All items that are requested must be entered, even if only one item is different from the original. When editing is complete, the three options are displayed again.

After EXECUTE has been selected, the STPLP analysis routine is called. Upon completion the output routine is called and selections processed by SELECT. If re-analysis is to be performed, II is returned unchanged; if the user does not wish to re-analyze a SAVE file solution or the existing input from the previous analysis, all new data is requested.

2. Argument List - none.

3. Common - blank, BLK1, WORK

4. Length - 1132 Octal

5. Subroutines Called - EDSEL, INIT, NAME, OPTION, OUT4, SELECT, STPLP

6. Subroutines Called By - DESIGN

7. I/\emptyset - Displays on unit 6 the header, picture, required constraint description, and prompting messages.

The read statements are all list directed for the problem constraint data. Answers to questions must be the integer equivalent of YES and NO as displayed. This simplifies the testing of valid responses.

8. Error Handling - A maximum of nine steps is allowed. A message will be displayed if an invalid step or number of steps is entered, and correction requested.

9. Flow Diagram - see Figure 10.

10. Symbol List - The list and description below excludes the I/\emptyset variables common to the bolted stepped-lap routines, described in the Routine Variable subsection.

- IDEL input to OPTION as box width; returned as option code 1, 2 or 3
 IE return code from EDSEL
 II return code from SELECT
 IREV set - 1 to review input data
 IX starting X location of first option box
 IY starting Y location of first option box
 - MI temporary storage of old no. of steps (M)

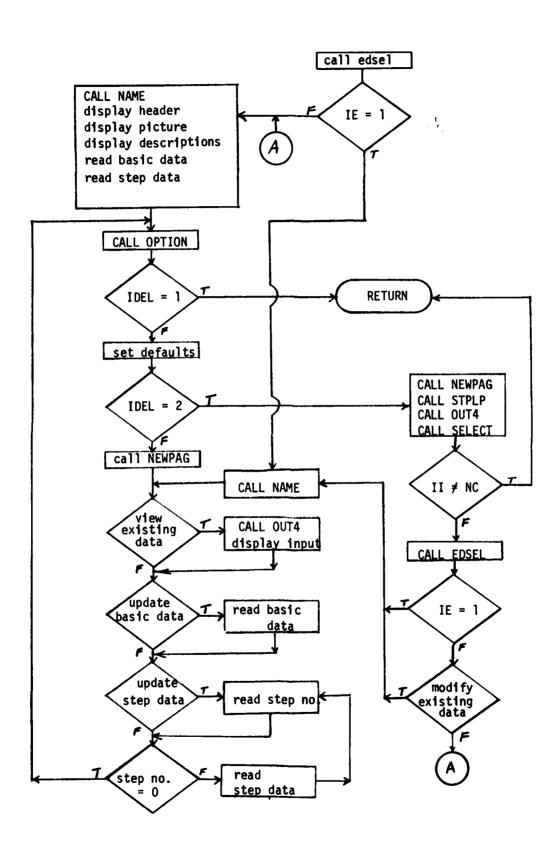


Figure 10. BOLT4 flow diagram

BOND1

1. Algorithm - This routine is the input interface for the analysis of bonded double-lap, supported single-lap, and scarfed joints.

The analyses are differentiated by setting the value of WORK(50) in DESIGN. ANAL7 uses WORK(50) for the number of bond surfaces (ANBOND), a value of 1 for the supported single-lap, and a value of 2 for the double-lap.

For the scarf joint, DESIGN sets WORK(50) equal to 3. The user is then asked to enter a 1 or 2 for the number of bond surfaces for the current scarf problem; this value, designated SYM, is passed to the analysis routine, ANAL9, through the argument list to flag the problem as asymmetrical (SYM = 1.), or symmetrical (SYM = 2.). A constant of 2 is added to SYM to give WORK(50) a value of 3 or 4 for use throughout BOND1. To simplify the analysis and output variable equivalencing, WORK(50) is copied to WORK(108) just prior to calling ANAL9.

If the variable LOOP is set equal to 1, this signifies that data exists in the WORK array, whether from a SAVE file solution or the previous problem. Therefore, the edit option is made available to the user.

Except for the scarf joint, a tension load type requires adhesive peel and adherend transverse properties. When all constraints are input (option = 1), the load type is entered first and is used to determine if prompting is required for the above properties. If option 2 is used to edit existing data, the current values are displayed before allowing editing; therefore, it is necessary to request the load type prior to displaying the values, so those properties may be omitted or included on the screen.

The routine displays the appropriate heading, analysis name, and picture on the screen.

If WORK already contains input data for editing (LOOP = 1), then the routine skips forward to display all the current parameters on the screen.

If all the constraints, or parameters, are to be input (LOOP = 0), then the routine displays and requests values for the three basic joint constraints. Then all the required adhesive properties are displayed and values requested for each by moving the screen cursor under the VALUE heading for each constraint. When complete, the process is repeated for the adherend properties, and LOOP is set equal to 1.

At this point, all required input values have been read into WORK. Boxes are drawn beside each constraint and the RETURN, EXECUTE, and RE-DISPLAY options are displayed. A screen coordinate is requested to modify a constraint or process one of the above options. If an edit box is selected, the screen cursor is moved under the MOD. column for that constraint, allowing the key-in of a modified value. This cycle of requesting a coordinate, selecting a small box, and entering a modified value is continued until the user selects one of the bottom option boxes.

If the user selects RE-DISPLAY, default values are set, the screen is cleared and re-displayed with current values. The boxes are displayed and screen coordinate requested.

RETURN branches the user back to the analysis options immediately.

EXECUTE sets allowed values to their defaults, clears the page and, for the scarf joint, calls ANAL9. For the other analyses, overlay restrictions required returning to DESIGN to call ANAL7; upon returning from ANAL7, BOND1 is re-entered with IA = 1 to branch to where it left for calling the output routine for displaying the solution.

If re-analysis is picked in SELECT, the page is cleared, and the program branches back to call EDSEL.

- 2. Argument List none
- 3. Common blank, BLK1, IANAL, WORK
- 4. Length 2455 Octal
- 5. Subroutines Called ANAL9, BOX, BOXNO, EDSEL, NAME, OUT7, OUT9, SELECT, XYLOC

6. Subroutines Called By - DESIGN

7. I/\emptyset - Read from unit 5 all required input data; write to unit 6 all input data values and problem headings.

8. Error Handling - If an invalid option, number of bond surfaces, or load type is entered, re-entry is requested.

9. Flow Diagram - see Figure 11.

10. Symbol List - The following symbols are not covered by the general list and description.

DIS	- length of picture overlap
IDEL	- delta screen width for square boxes
IDELY	- delta Y screen value for placing cursor IDELY down
	from JBOXTP coordinate
II	- return code from SELECT
IT	- return code from EDSEL
IX	- X screen coord.
IXX	- X screen coord. for MOD. cursor
IXI	- X screen coord. for left side VALUE cursor
I X2	- X screen coord. for right side VALUE cursor
IY	- Y screen coord.
ΙΥΥ	- Y screen coord. for MOD. cursor
Ĩ l	 starting box number for draws
JBOXTP	- array of Y coord. for top of small edit boxes
К	- load type
кк	- temporary values for new load type
К1	- X value for left side of left box
K2	- X value for right side of left box
LOOP	- set equal to 1 of WORK is full of input data
N,N2	- number of boxes for DO parameter
SYM	 number of bond surfaces for scarf joint
TH1,TH2	- picture display thicknesses; outer, inner

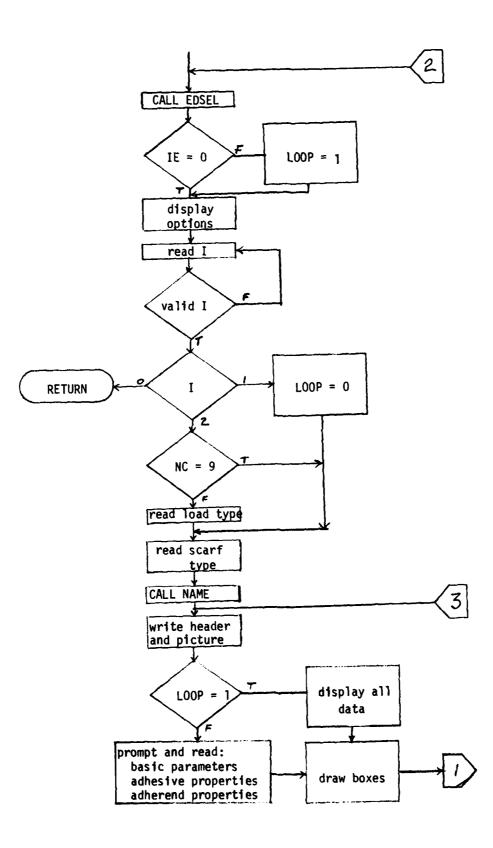


Figure 11. BOND1 flow diagram

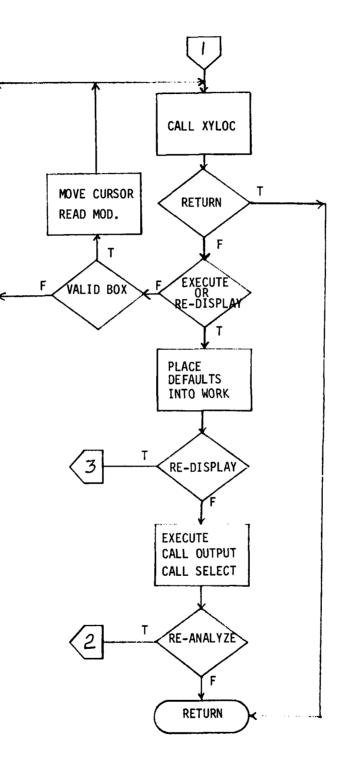


Figure 11. BOND1 Flow Diagram (continued)

BOND2

1. Algorithm - This routine is the interface to the bonded unsupported single-lap joint analysis.

The routine is basically similar to BOND1, except the differences were such that modifying BOND1 would not be as efficient as creating a new overlay program.

Since the BOND1 and BOND2 routines function so closely the same, this routine will cover only the differences.

There is no need to request a type, since only a tension load is analyzed, and the number of parameters required is constant.

The only additional property required is the adherend laminating factor. The temperature properties for the adhesive and the adherend thermal coefficients are not required for the analysis. Also, the adherend properties provide for a balanced joint.

2. Argument List - none

- 3. Common blank, BLK1, BLK3, WORK
- 4. Length 1231 Octal
- 5. Subroutines Called ANAL8, BOX, BOXNO, EDSEL, NAME, OUT8, SELECT, XYLOC

6. Subroutines Called By - DESIGN

7. I/Ø - same as BOND1

8. Error Handling - If an invalid option is keyed in, re-entry is requested. If the problem will not converge, ANAL8 displays a message, and returns NOCONV = 1. The program branches back and requests an option.

9. Flow Diagram - see Figure 12.

10. Symbol List - Refer to the general variable list and BOND1 except for the following:

IYLINI	- Y screen coord. of top line
12	- No. of boxes in column
К3	- X screen coord. of left side of right box
К4	- X screen coord. of right side of right box
NOCONV /	BLK3/ - flag that solution will not converge

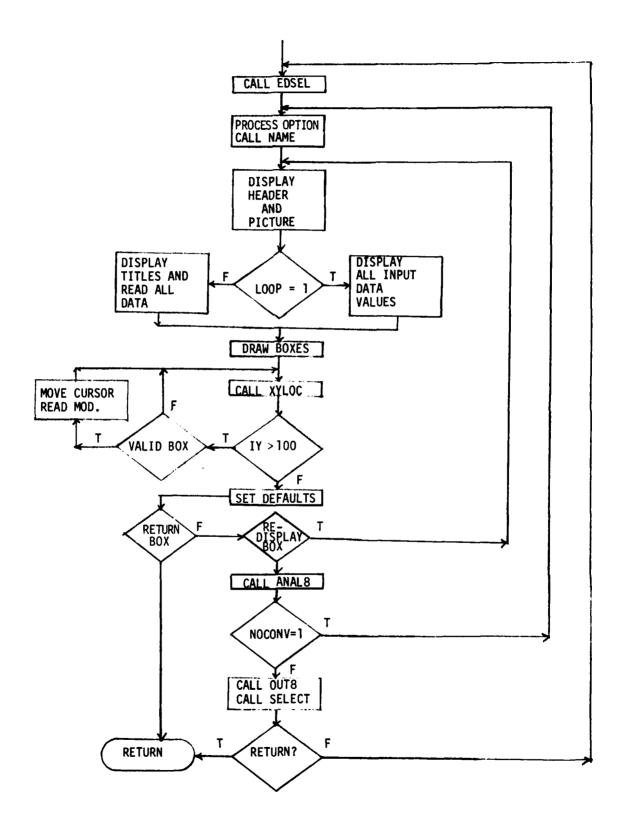


Figure 12. BOND2 Flow Diagram

BOND5

1. Algorithm - This is the input interface routine for the bonded stepped-lap analysis of joints or doublers. All input data values are equivalenced to either WORK or WK.

This is a routine that inputs the constraints by groups; basic, adhesive, and adherend. If editing is desired, the user must re-enter all the items of the group requested for update. Prior to execution the input data is copied from the temporary WK array to WORK by calling COPYWK.

When execution is selected, the analysis routine is initiated by returning to DESIGN and overlaying BOND5 with ANAL11. After execution BOND5 branches to display the analysis summary.

2. Argument List - none

3. Common - blank, BLK1, IANAL, COPY, WK, WORK

4. Length - 2254 Octal

5. Subroutines Called - COPYWK, EDSEL, INIT, NAME, OPTION, OUT11, SELECT

6. Subroutines Called By - DESIGN

7. I/\emptyset - Writes on unit 6 the display messages for input requests. Reads from unit 5 the parameters.

8. Error Handling - An error message will be printed if an invalid step number has been entered.

9. Flow Diagram - See Figure 13.

10. Symbol List - The following were not previously described under general program variables, and the bonded stepped-lap WORK array.

and a state of the

A	 actual strength value for stepped lap summary
В	- allowable strength
ID	- IDVGT flag
IDEL	- X
IDUM	- dummy argument
IE	- EDSEL return code
II	- SELECT return code
IP	- start location in WK (computed)
IS	- Y screen step depth
IX	- X screen coord.
IY	- Y screen coord.
11	<pre>- set = 1 for RE-INPUT to skip request for name & JTDBLR</pre>
KSTART/COPY/	- starting locations in WORK
N	- No. of steps in WK array output data
NOUT	- counter for KSTART and COPYWK
NS	 temporary storage for old NSTEPS value
R	- ratio of A/B
RIM	- minimum R value for inner material
RØM	- minimum R value for outer material
SI	- minimum inner B value
SØ	- minimum outer B value
TI	- minimum inner A value
тø	- minimum outer A value

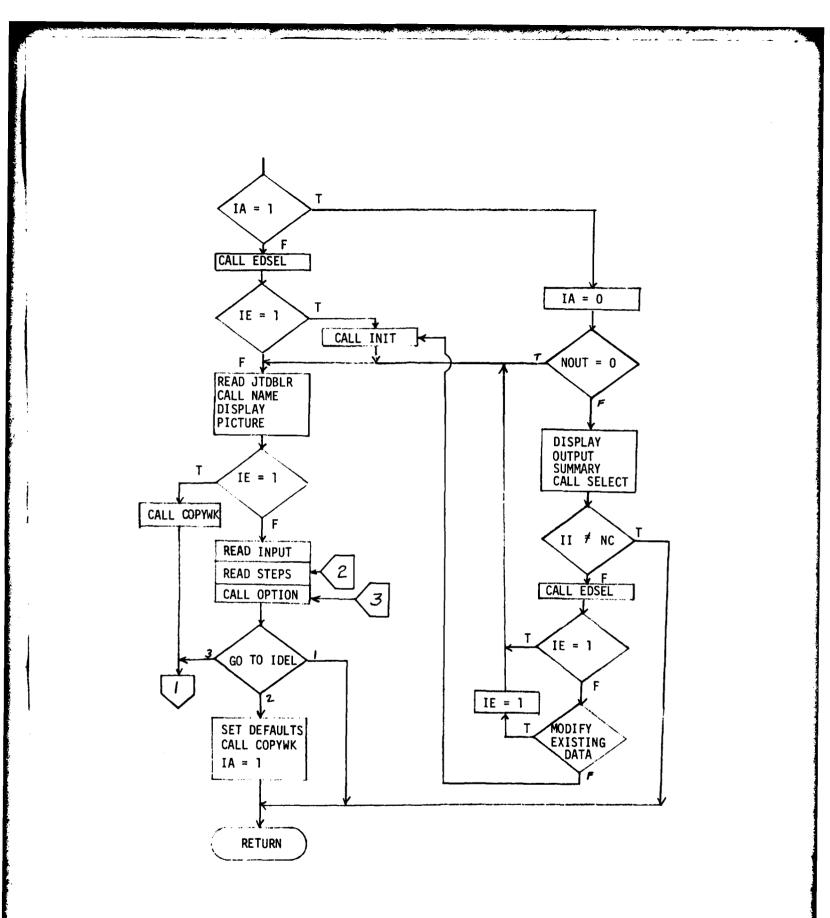


Figure 13. BOND5 Flow Diagram

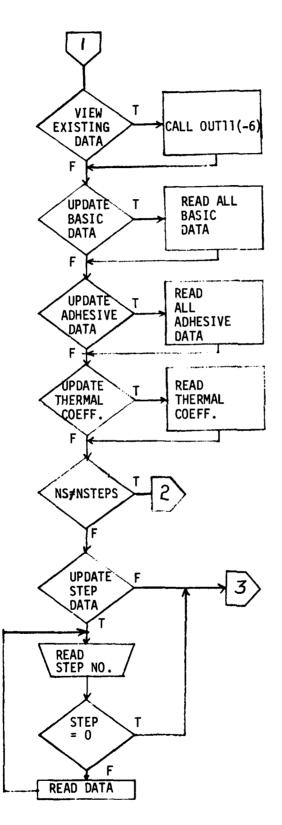


Figure 13. BOND5 Flow Diagram (continued)

1. Algorithm - This routine draws a square box on the screen given the top left corner coordinates.

2. Argument List - IX, IY, IDEL

- 3. Common none
- 4. Length 47 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By BOND1, BOND2
- 7. I/\emptyset draws a box
- 8. Error Handling none
- 9. Flow Diagram not required
- 10. Symbol List none

BOXNO

1. Algorithm - This routine determines the box number detected, if any, for editing. The routine takes the input Y coordinate, N, and returns the box value. If N is returned as zero, the IVAL number does not fall within a box.

- 2. Argument List NMAX, ITOP, IDEL, N
- 3. Common none
- 4. Length 51 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By BOND1, BOND2
- 7. I/Ø none
- 8. Error Handing none
- 9. Flow Diagram none

10. Symbol List

IDEL	 height of each box
ITP	 array of top coordinates of the boxes
I VAL	- value of N input
IYDIFF	- difference between middle box top and IVAL
N	<pre>- input = Y coordinate output = box number</pre>
NB	- bottom box number
NMAX	- number of boxes
NMID	- middle box number
NT	- top box number

COPYWK

1. Algorithm - This routine copies items from the WK array into WORK. If J is negative, items are copied from WORK to WK for editing in BOND5.

The KSTART array keeps track of the starting location of the data in WORK.

The WK array contains the data for several arrays; NITEMS indicates the number of arrays in WK for the input value of J. IWS is simply the starting location within WK for each if the items.

The simple method would be to copy all items of WK to WORK, but depending on the number of items in each array, MAX, much space could be wasted on the SAVE file when WORK is copied.

WORK(1) contains a running count of the number of items in the WORK array.

2. Argument List - J, MAX, IDVGT, WK

- 3. Common COPY, WORK
- 4. Length 145 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By BOND5, ANAL11
- 7. I/Ø none

8. Error Handling - none

9. Flow Diagram - none

10. Symbol List:

I	- absolute value of J
IDVGT	 divergent solution flag
IL	- last item in array
IS	- start item in array
IWS	- array of starting locations for WK
J	- flag denoting type of data
К	- loop counter
KSTART	- array of starting locations within WORK
KT	- counter for number of items in WORK
L	- loop counter
MAX	- no. of steps
NI	- no. of items
NITEMS	- array of number of items in IWS array

 Algorithm - Search routine for bolted double-lap joint to determine minimum wt.

- 2. Argument List NX, FST, TCMP, MATL, KBOLT, W, D, T, WX, M, PB, PT, LF, FS
- 3. Common LBLT
- 4. Length 573 Octal
- 5. Subroutines Called ANAL, FKBOLT, FPROP, PCT, QUADMN, TH, WDMAX, WDMIN, WT, WTSL, WWT
- 6. Subroutines Called By ANAL1
- 7. I/Ø none
- 8. Error Handling none
- 9. Flow Chart none
- 10. Symbol List none

DESIGN

1. Algorithm - This routine displays the types of joints available, prompts the user for a selection and branches to the appropriate routine.

- 2. Argument List none
- 3. Common blank, IANAL, WORK
- 4. Length 333 Octal
- 5. Subroutines Called OVERLAY
- 6. Subroutines Called By MAIN
- 7. I/0 Displays analysis option descriptions and reads option number.

8. Error Handling - Checks for a valid option number

- 9. Flow Diagram none
- 10. Symbol List
 - NGO option number

EDSEL

1. Algorithm - This routine allows the user to select a solution from the SAVE file for editing.

If there are no solutions on the SAVE file with a type the same as the current analysis type, a message stating such is displayed. Otherwise, all the names with a corresponding type are displayed on the screen.

If the user selects RETURN, IT is set equal to zero indicating no solution from the SAVE file was read.

Otherwise, the user selects a name by its screen coordinate. When a valid name has been picked, the screen coordinate is converted to a design number, KN, and the solution is read into WORK.

2. Argument List (IT)

- 3. Common blank, BLK1, BLK2, WORK
- 4. Length 1001 Octal
- 5. Subroutines Called INIT, READ1, XYLOC

6. Subroutines Called By - BOLT4, BOND1, BOND2, BOND5

7. I/\emptyset - The names of solutions are displayed on the screen. After the SAVE file has been positioned by READ1, the data is read from file 1.

- 8. Error Handling none
- 9. Flow Diagram See Figure 14

10. Symbol List - The following variables are not included in the general list:

IT	- set equal to l if a name picked
IXMIN	- min. X value of a name on screen
IXP	- array of starting X locations for up to 10 names per row
ΙΥΜΑΧ	- max. Y value of a name on screen
IYMIN	 min. Y value of a name on screen computed by 10 names per row
ΙΥΡ	- array of Y screen coordinates for each row of names
КС	- column no. of name (from 1-10)
KD	- row number of name (from 1-10)
KN	- design number of solution
TNAME	 copy of ANAME with blanks for names with non-correspond- ing types

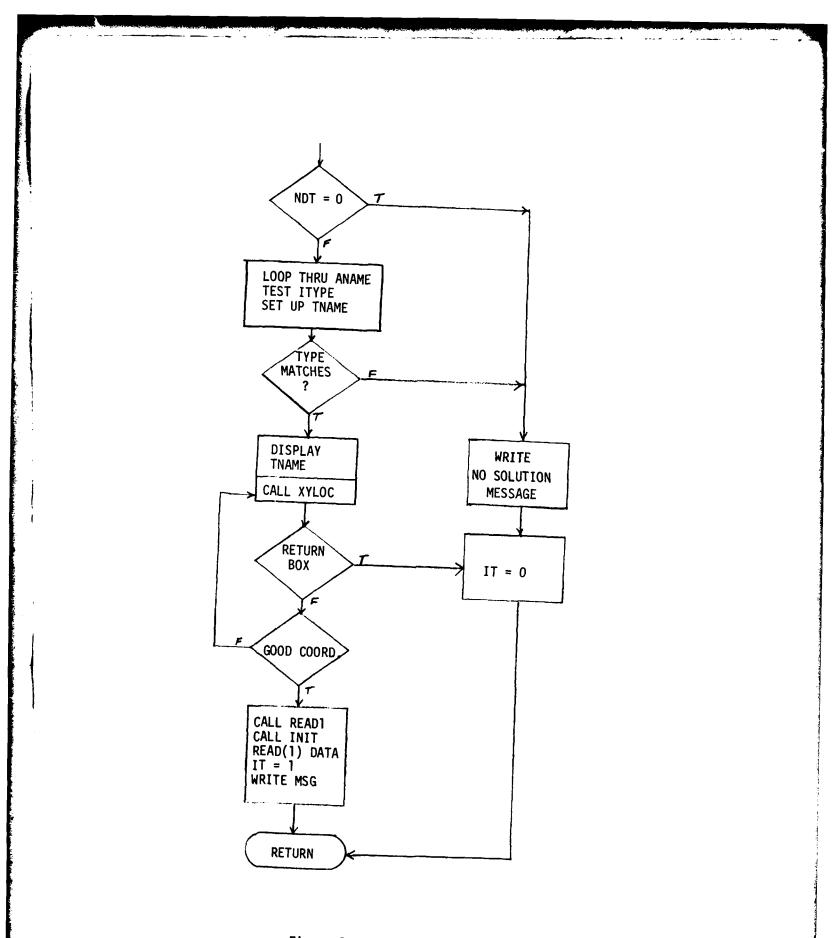


Figure 14. EDSEL Flow Diagram

ESCARF

1.	Algorithm - Elastic Analysis of shear in unbalanced scarf joints.
2.	Argument List - OL, ETR, THERMA, LCRTND, TAUAVG
3.	Common - none
4.	Length - 370 Octal
5.	Subroutine Called - none
6.	Subroutines Called By - ANAL9
7.	I/Ø – none
8.	Error Handling - Failure cases are flagged by setting TAUAVG = 10000,
so a	s to print asterisks.
9.	Flow Diagram - none

10. Symbol List - none

وليربد والمتكر والكريم فالمتعادية والمتراكر والمترا

FKBOLT

- 2. Argument List KBOLT
- 3. Common DBLBLT
- 4. Length 50 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By DBLB, STPLP
- 7. I/\emptyset none
- 8. Error Handling none
- 9. Flow Diagram none

10. Symbol List

- FT ultimate tensile strength
- FSS ultimate shear stress
- BK density factor
- BG shear modulus

FKPROP

1. Alg	orithm -	Determine	the	material	properties	as	a	function	of	W	and	D.
--------	----------	-----------	-----	----------	------------	----	---	----------	----	---	-----	----

2. Argument List - WD, D

- 3. Common DBLBLT
- 4. Length 125 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By DBLB, ANAL, TH, STPLP
- 7. I/Ø none
- 8. Error Handling none
- 9. Flow Diagram none
- 10. Symbol List none

FPROP

1.

2.	Argument List - MATL
3.	Common - DBLBLT
4.	Length - 52 Octal
5.	Subroutines Called - none
6.	Subroutines Called By - DBLB, ANAL, STPLP

Algorithm - Sets up graphite material properties that remain fixed.

7. I/Ø – none

8. Error Handling - none

9. Flow Diagram - none

10. Symbol List:

PROP (1) = Ultimate Tensile Strength

PROP (2) = Ultimate Bearing Strength

PROP (5) = Elastic Modulus

MATL = Material Code

INIT

1. Algorithm - Initiatizer WORK array to zero.	1.	Algorithm -	Initiatizer	WORK	array	to	zero.	
--	----	-------------	-------------	------	-------	----	-------	--

- 2. Argument List none
- 3. Common WORK
- 4. Length 6 Octal
- 5. Subroutine Called none
- 7. Subroutined Called By EDSEL, PRINT, BOLT4, BOND5
- 6. I/\emptyset none
- 8. Error Handling none
- 9. Flow Diagram none
- 10. Symbol List none

1. Algorithm - This is the main routine that initializes data, sets the tablet flag, displays the three main options and branches to the selected routine. Upon EXIT, user messages are displayed.

2. Arguments - none

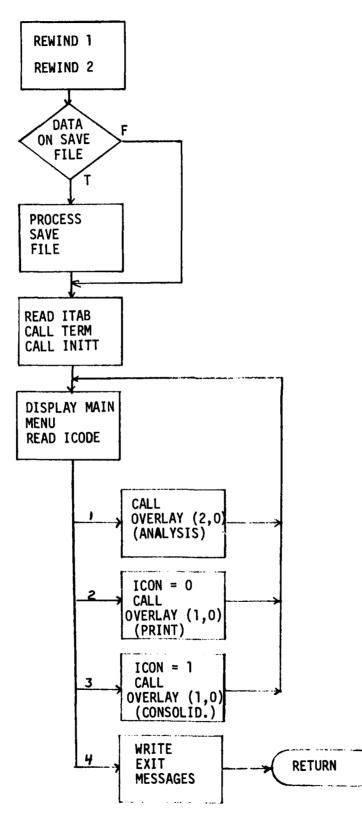
3. Common - blank, CONSOL, TABFLG, BLK1, BLK2, WK

4. Length - 417 Octal

5. Subroutines Called - OVERLAY (DESIGN, PRINT)

6. Subroutines Called By - none

7. I/\emptyset = If data exists on SAVE file, the file is read to initialize the ANAME and ITYPE arrays.


Files 1 and 2 are rewound.

The main option list is displayed on unit 6 and the option read.

8. Error Handling - An invalid code is re-entered.

If the user states that data exists on an empty file, reading that file will cause a system read error and abort.

9. Flow Diagram - see Figure 15.

فرمستان وتحديد فالمتعاد والمتقامين ومطلب والسير ومعركا فتعاولت

Figure 15. MAIN Flow Diagram

NAME

1. Algorithm - This routine prompts the user for, and reads the name assigned to each analysis problem, and displays elapsed time.

- 2. Argument List none
- 3. Common BLK1
- 4. Length 50 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By BOLT1, BOLT4, BOND1, BOND2, BOND5
- 7. I/\emptyset none
- 8. Error Handling none
- 9. Flow Diagram none
- 10. Symbol List none

OPTION

1. Algorithm - Draws the boxes for RETURN, EXECUTE, and RE-INPUT, requests a screen coorinate, and returns a code of 1, 2 or 3, respectively.

- 2. Argument List IX, IY, IDEL
- 3. Common none
- 4. Length 174 Octal
- 5. Subroutines Called XYLOC, BOX
- 6. Subroutines Called By BOLT1, BOLT4
- 7. I/\emptyset displays boxes with labels on screen.
- 8. Error Handling Keeps requesting a coordinate until one is within a box.
- 9. Flow Diagram none
- 10. Symbol List

IDEL	- delta Y coordinate of box
I DEL X	- delta X coordinate from left side of box for labels
IDEL2	- 2 * IDEL; delta X between box top left corners
IR	- return code
IX	 starting X coordinate for first box
IXX	- requested X coordinate
1 X 1	 starting X coordinate for first label
I X 2	 starting X coordinate for second label
I X 3	- starting X coordinate for third label
ΙΥΥ	- starting Y coord. for first box
IY	- requested Y coordinate

1. Algorithm - This is the output routine for the bolted double-lap and supported single-lap joints. The input argument is the unit number for the formatted writes.

The type of analysis is dependent on the original parameters MO and NX, as shown.

2. Argument List - NU

3. Common - BLK1, WORK

4. Length - 452 Octal

5. Subroutines Called - none

6. Subroutines Called By - PRINT, BOLT1, SELECT

7. I/\emptyset - Writes the formatted data onto either the display (Unit 6), or the PRINT file (Unit 2).

8. Error Handling - none

9. Flow Diagram - See Figure 16.

10. Symbol List - The following are not covered by either the general list or the WORK array for these types:

D6	- 6 * D
FAIL	- array of possible failure modes
IPB	- % equivalent of PB decimal array
TYPE	- bolt type array
WD	- W/D

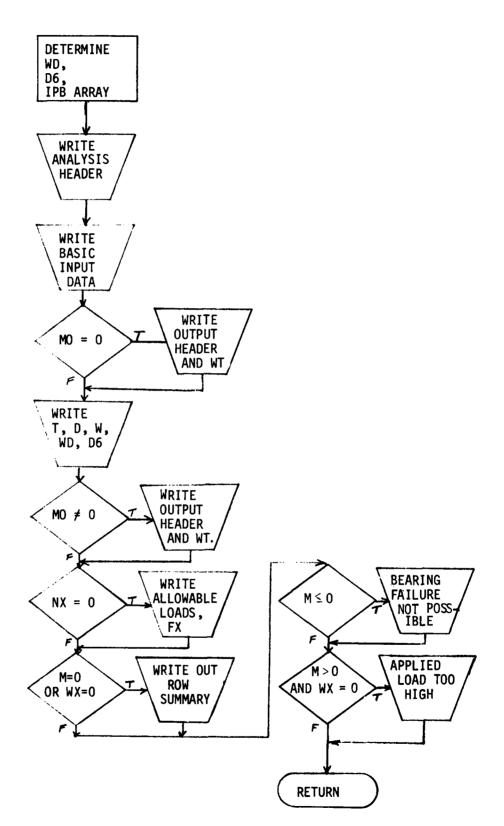


Figure 16. OUT1 Flow Diagram

1. Algorithm - Output routine for the bolted stepped-lap joint.

If NU = -6, the routine has been called to view only existing input data contained in the WORK array.

- 2. Argument List NU
- 3. Common BLK1, WORK
- 4. Length -370 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By PRINT, BOLT4, SELECT

7. I/\emptyset - Writes the formatted data to either the display (Unit 6), or the PRINT file (Unit 2).

8. Error Handling - none

9. Flow Diagram - none

10. Symbol List - The following are not covered by either the general list or the WORK array for bolted stepped-lap joints.

BOLT - bolt type array
FAIL - array of failure modes
INPUT - flag that only input is to be written
NU - unit number

1. Algorithm - Output routine for solutions of bonded double-lap and supported single-lap joints.

The variable NC selects the appropriate heading, and K the type of load and pertinent properties.

2. Argument List - none

- 3. Common blank, BLK1, WORK
- 4. Length 676 Octal
- 5. Subroutines Called none

6. Subroutines Called By - PRINT, BOND1, SELECT

7. I/\emptyset - Writes the formatted data to either the display (NU = 6) or the PRINT file (NU = 2).

8. Error Handling - none

9. Flow Diagram - none

10. Symbol List - See the appropriate WORK equivalence descriptions.

0UT8

1. Algorithm - Output routine for a bonded unsupported single-lap joint. After writing out the input data, the output formats are dependent on the input overlap length, WORK(2). If zero, seven £/t ratios are used, and each of the data arrays within WORK are written according to their respective formats.

If WORK(1) \neq 0, strengths are written; if WORK(1) = 0, stresses are written.

2. Argument List - NU

3. Common - BLK1, WORK

4. Length - 525 Octal

- 5. Subroutines Called none
- 6. Subroutines Called By PRINT, BOND2, SELECT
- 7. I/\emptyset Writes the formatted data to either the display (NU = 6), or PRINT file (NU = 2).

8. Error Handling - none

9. Flow Diagram - none

10. Symbol List - Reference the general list for variable descriptions.

 Algorithm - Output routine for bonded scarf joints, symmetrical and asymmetrical.

WORK(1) is the load type (-1,0,+1), and determines the value of K.

WORK(2) determines whether strengths or stresses were computed.

WORK(3) determines whether the specified overlap or a range of 7 overlaps were used.

2. Argument List - NU

3. Common - BLK1, WORK

4. Length - 440 Octal

5. Subroutines Called - none

6. Subroutines Called By - PRINT, BOND1, SELECT

7. I/\emptyset - Writes the formatted data to either the display (NU = 6), or the PRINT file (NU = 2).

8. Error Handling - none

9. Flow Diagram - none

10. Symbol List:

END	- critical end array (left, right)
к	<pre>- load type, IWORK(1) + 2</pre>
NUM	- number of items in each array
ТҮРЕ	- array of descriptive load types

0UT11

1. Algorithm - Output routine for bonded stepped-lap joints and doublers. If NU is negative, only the input data is to be displayed for the user.

The compressed format and variable length of the arrays within WORK is due to the variable number of steps for the different computations. Reference Table 2. for the typical layout of the WORK array.

IWORK(15) contains number of segments within WORK, from 1 to 4. The first is the input step data, and the others are up to 3 segments of computational output.

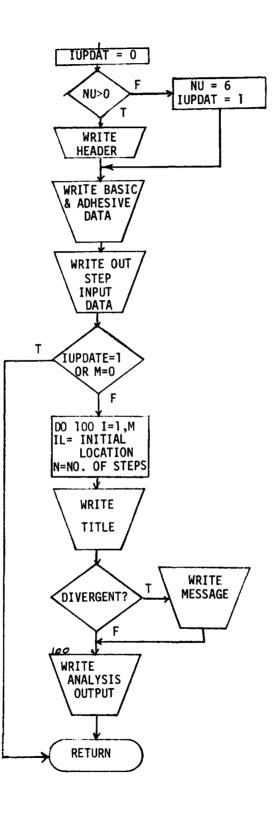
2. Argument List - NU

3. Common - BLK1, WORK

4. Length - 626 Octal

5. Subroutines Called - none

6. Subroutines Called By - PRINT, BOND5, SELECT


7. I/\emptyset = Writes formatted data to either the display (NU = 6), or the PRINT file (NU = 2).

8. Error Handling - none

9. Flow Diagram - Figure 17

10. Symbol List - The following describes the unique variables used. Refer to the general list and the WORK equivalence descriptions for the remainder:

CST	- array of load types
IL	- initial location in each WORK segment
IT	- load type pointer for CST
I UPDAT	<pre>- set = l if only input to be displayed</pre>
ка	- no. of arrays within WORK for previous segment
М	- no. of segments
N	- no. of steps analyzed for each segment

ووالقافة والفرد بقامتهم والأفار أرماس فالأكامير ومنافقات وفارتك فمترك فكالمتراس فمطر ومعتبها فكالاب كالمرغول كا

فترعلهم والإنتائة تحصلت أسطيت المتأسب والمتعا

Figure 17. OUT11 Flow Diagram

1. Algorithm - This routine determines the bolt load distribution for up to 6 rows of bolts of a double-lap joint.

- 2. Argument List M, WD, D, T, PB, A
- 3. Common DBLBLT
- 4. Length 317 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By DBLB, ANAL, WDMAX, WDMIN, TH
- 7. I/\emptyset none
- 8. Error Handling none
- 9. Flow Diagram none
- 10. Symbol List none

PCSTP

1. Algorithm - This routine calculates the amount of load transferred by each row of bolts in a stepped-lap joint.

- 2. Argument List EI, EO, G, M, S, D, W, TI, TØ, PCT
- 3. Common none
- 4. Length 452 Octal
- 5. Subroutines Called SID
- 6. Subroutines Called By STPLP
- 7. I/Ø none
- 8. Error Handling none
- 9. Flow Diagram none
- 10. Symbol List none

PRINT

1. Algorithm - This routine, so named because it originally contained only the option to print, also consolidates the SAVE file.

If the user has selected the selective output option (ICON = 0), he is asked whether the solution is to be displayed or output to the PRINT file.

After the appropriate title, all the names on the SAVE file, and option boxes displayed, the user is prompted to pick the names desired by their screen location.

Execution of the print option is accomplished by testing the IPRNT array, locating the solution on the SAVE file, reading the data into WORK, and calling the appropriate output routine. If the solution is displayed, XYLOC is called to interrupt the loop until the user is ready to continue.

Execution of the consolidation option consists of copying all solutions, except those flagged, from the SAVE file to a temporary file (TAPE3) then back to the SAVE file. The design numbers are resequenced in the process.

- 2. Argument List none
- 3. Common blank, BLK1, BLK2, CONSOL, WORK
- 4. Length 1251 Octal
- 5. Subroutines Called INIT, OUT1, OUT4, OUT7, OUT8, OUT9, OUT11, READ1, XYLOC

6. Subroutine Called By - MAIN

7. I/\emptyset - Units 5 and 6 are used to read and display data. For the consolidation option, the selected contents of Unit 1 are copies to Unit 3; Unit 3 is then copied back to Unit 1, to complete consolidation of the SAVE file.

8. Error Handling - If EXECUTE has been selected without any names picked, the user is requested to make another coordinate selection.

9. Flow Diagram - Figure 18

10. Symbol List:

IPRNT	 array for flagged solutions
IT	- solution type
IXMIN	- min. X coord. of a name on screen
IXP	 array of starting X locations for screen names
IYMAX	- max. (top) Y coordinate for name detects
IYMIN	- min. (bottom) Y coordinate for name detects
ΙΥΡ	- array of Y coordinate for up to 10 rows of names
кс	- column number of selected name (from 1-10)
KD	- row number of selected name (from 1-10)
KN	 design number selected (10*KD+KC)
KNEW	- counter for NDT during consolidation
KOUT	- output response for display
LOOP	- flag for consolidation
NA	- colsolidation read unit
NB	- consolidation write unit
NU	- print unit number

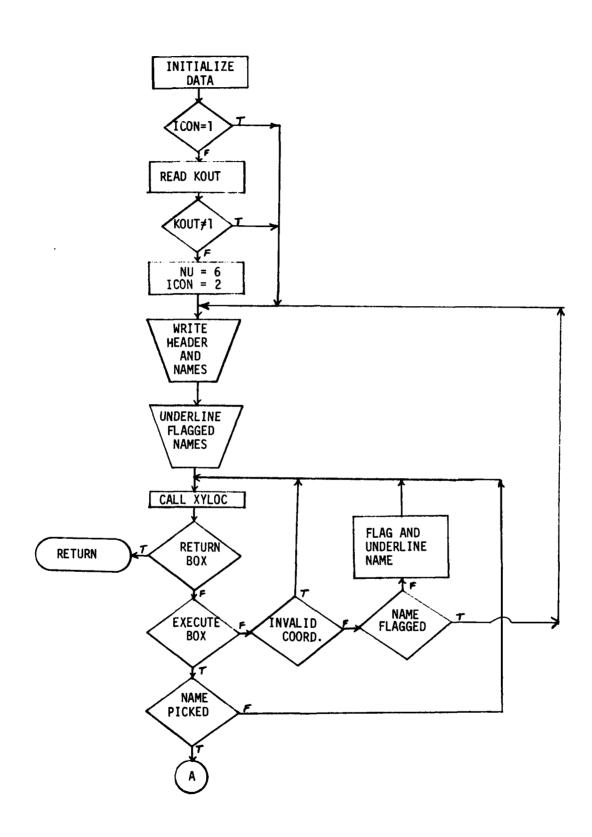


Figure 18. PRINT Flow Diagram

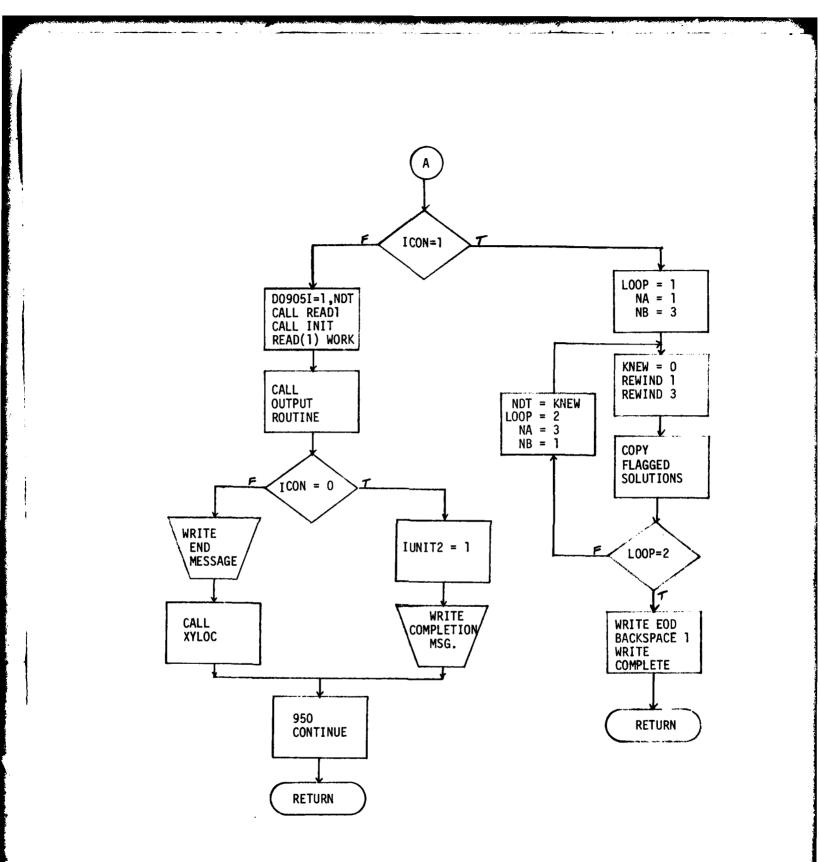


Figure 18 PRINT Flow Diagram (continued)

PSCARF

والمتقلي والمراد المتقاد فالمتعامين فالملكوم الاستكر المرامي

ومسترعمهما فالاستخلاص والمعالا فالمتقاط المعاقفا والالتفاقي والمعالية والمعالية

1. Algorithm - This routine is for the elastic-plastic analysis of unbalanced scarf joints.

2. Argument List - OL, ETR, THERMC, GAMMAR, LCRTND, TAUAVG

3. Common - none

4. Length - 1105 Octal

5. Subroutines Called - none

6. Subroutines Called By - ANAL9

7. I/\emptyset - none

8. Error Handling - If TAUAVG > 1, there is an error; TAUAVG is set equal to 1000 as a flag and control returned to the calling routine.

9. Flow Diagram - none

10. Symbol List - none

QUADMN

فالاستناد والمحارية والمحاركة والمحاركة

- 1. Algorithm This routine finds the X associated with the minimum
- f(x) by quadratic interpolation.
- 2. Argument List X, F, DX, XMAX, DDX, IERR
- 3. Common none
- 4. Length 525 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By DBLB
- 7. I/\emptyset none

8. Error Handling - The following error codes may be returned by IERR. 0 = no error 1 = $XO \ge (XMAX-DX)$ and DFO ≥ 0 . 2 = $XO \ge XMAX$

3 = iterations exceeded 200 max.

9. Flow Diagram - none

10. Symbol List - none

1. Algorithm - This routine searches the SAVE file for the requested design number. If greater than 100, the file is read to the end of data. If less than 100, the routine locates the solution, reads the name and type, and returns.

- 2. Argument List IDES
- 3. Common blank, BLK1, BLK2
- 4. Length 70 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By EDSEL, SAVE, PRINT

7. I/\emptyset - Reads Unit 1 for desired design number.

8. Error Handling - none

9. Flow Diagram - none

10. Symbol List:

IDES - requested analysis design number

- KD design number read from SAVE file
- KT design type read from SAVE file
- TEMP design name read from SAVE file.

SAVE

and the second second

1. Algorithm - When a solution is selected for saving on the SAVE file (Unit 1), this routine is called . It only allows 100 solutions to be output. After writing the WORK array data to the SAVE file, the end-of-data record is written and a backspace done to force a buffer dump, and position the file for the next save.

2. Argument List - IT, NENT

3. Common - blank, BLK1, BLK2, WORK

4. Length - 142 Octal

5. Subroutines Called - READ1

6. Subroutines Called By - SELECT

7. I/\emptyset - Writes 2 records to the SAVE file containing the design number, analysis name, analysis type, and the work array entries. A third record is then written containing the end-of-data flag.

8. Error Handling - If the number of solutions equals 100, a message is displayed that the save was aborted due to max. solutions.

9. Flow Diagram - none

10. Symbol List - none

SELECT

1. Algorithm - This routine processes the user options after display of an executed analysis.

The options to PRINT, SAVE, re-analyze, and return are displayed on a line, separated by asterisks. The user is requested to make selections by the horizontal screen location picked. The PRINT and SAVE options must be processed before a re-analysis or return option for obvious reasons. When either of the first two options is processed, a flag is set to prevent repeating that selection inadvertently.

If RETURN is selected, the value of N is returned as zero to the calling routine.

- 2. Argument List N, NENT
- 3. Common unlabeled
- 4. Length 174 Octal

5. Subroutines Called - OUT1, OUT11, OUT4, OUT7, OUT8, OUT9, SAVE, XYLOC

6. Subroutines Called By - BOLT1, BOLT4, BOND1, BOND2, BOND5

7. I/\emptyset - display of options

8. Error Handling - none

9. Flow Diagram - none

10. Symbol List

IP - set = 1 after PRINT selection

IS - set = 1 after SAVE selection

N - Input = analysis type
Output = return code (0 = RETURN)

A Contra a station

والمسلحين فالمتناقلات كالأعديد كمستحالكم متداللة ومعد

1. Algorithm - A single-precision simultaneous equation solver, inverse finder, and determinent routine.

 Argument List - A, N, NDROW, NDCOLA, B, M, NDCOLB, SIGDIG, IERROR, PIVOT, INDEX, SCALEB

- 3. Common none
- 4. Length 607 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By PCTSTP
- 7. I/\emptyset none
- 8. Error Handling IERROR returned to calling routine
- 9. Flow Diagram none
- 10. Symbol List none

STPLP

and a survey of the second second

1. Algorithm - Bolted stepped-lap joint analysis routine to determine the amount of load retained by the inner and outer adherends, and determine the margin of safety and failure mode.

- 2. Argument List none
- 3. Common WORK, BLOCK
- 4. Length 377 Octal
- 5. Subroutines Called FKPROP, FKBOLT, FPROP, PCTSTP
- 6. Subroutines Called By BOLT4
- 7. I/\emptyset none
- 8. Error Handling none
- 9. Flow Diagram none
- 10. Symbol List none

1. Algorithm - Function subprogram for determining the joint thickness of double-lap bolted joint.

2. Argument List - NX, M, WD, D

- 3. Common DBLBLT
- 4. Length 340 Octal
- 5. Subroutines Called FKPROP, PCT
- 6. Subroutines Called By DBLB, WDMAX, WDMIN, WWT
- 7. I/Ø none
- 8. Error Handling none
- 9. Flow Diagram none
- 10. Symbol List none

States of the second second second

 Algorithm - Determines a maximum W/D ratio for a bolted double-lap joint.

- 2. Argument List NX, M, WD, D
- 3. Common DBLBLT
- 4. Length 243 Octal
- 5. Subroutines Called PCT, TH
- 6. Subroutines Called By DBLB
- 7. I/Ø None
- 8. Error Handling none
- 9. Flow Diagram none
- 10. Symbol List none

 Algorithm - Determines a minimum W/D ratio for a bolted double-lap joint.

- 2. Argument List NX, M, WD, D
- 3. Common DBLBLT
- 4. Length 265 Octal
- 5. Subroutines Called PCT, TH
- 6. Subroutines Called By DBLB
- 7. I/Ø none
- 8. Error Handling none
- 9. Flow Diagram none
- 10. Symbol List none

1. Algorithm - Function subprogram that determines the weight penalty for a double-lap bolted splice.

- 2. Argument List X
- 3. Common DBLBLT
- 4. Length 66 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By DBLB
- 7. I/\emptyset none
- 8. Error Handling none
- 9. Flow Diagram none
- 10. Symbol List none

And the second second

- Algorithm Determines the weight penalties for single-lap bolted splice.
- 2. Argument List X
- 3. Common DBLBLT
- 4. Length 44 Octal
- 5. Subroutines Called none
- 6. Subroutines Called By DBLB, WWT
- 7. I/\emptyset none
- 8. Error Handling none
- 9. Flow Diagram none
- 10. Symbol List none

1. Algorithm - A function that sets up the X array for determining the weight penalty of a bolted splice.

- 2. Argument List WD
- 3. Common DBLBLT
- 4. Length 43 Octal
- 5. Subroutines Called WT, TH, WTSL
- 6. Subroutines Called By DBLB
- 7. I/\emptyset none
- 8. Error Handling none
- 9. Flow Diagram none
- 10. Symbol List none

XYLOC

 Algorithm - This routine calls PLOTIO routines for screen X & Y coordinates. If ITAB = 0, the routine calls DCURSR for the coordinates. If not, the user is notified that the tablet is on; the routine then loops to track the cursor position on the screen until the pen is depressed on the tablet.

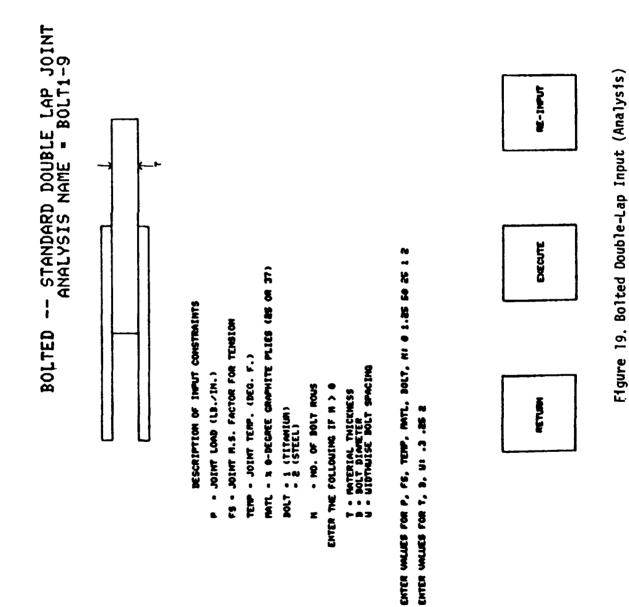
2. Argument List - IX, IY

3. Common - TABFLG

- 4. Length 76 Octal
- 5. Subroutines Called none

6. Subroutines Called By - SELECT, EDSEL, OPTION, PRINT

7. I/\emptyset - none


8. Error Handling - none

9. Flow Diagram - none

10. Symbol List -

- IC dummy ASCII character
- IH ASCII character
- IX X screen coord.

IY - Y screen coord.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

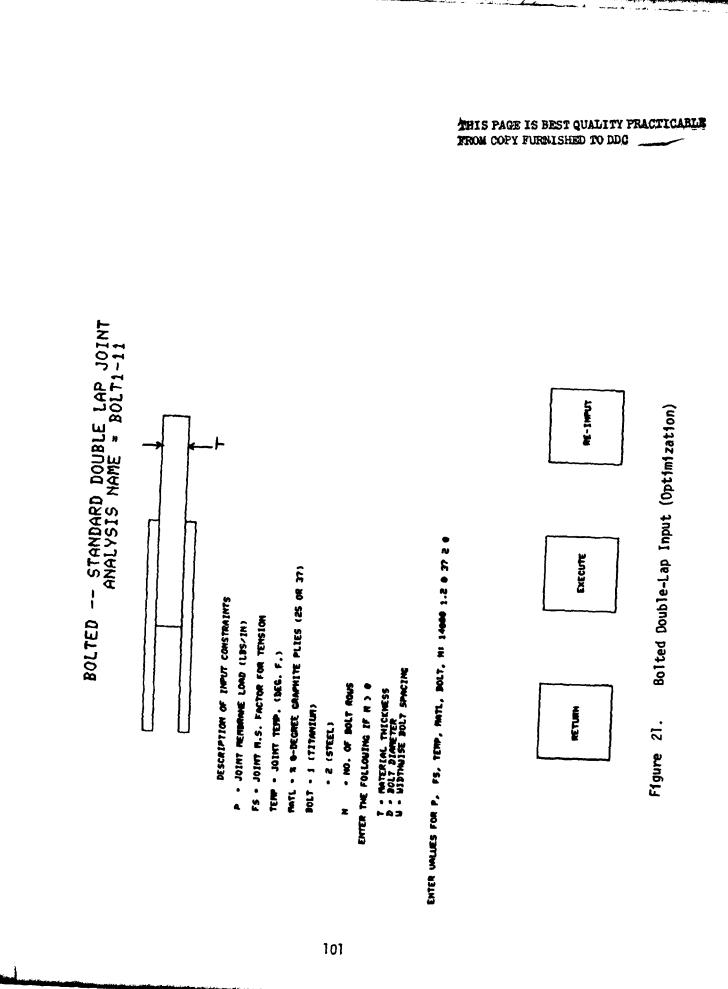
z

BALANCED BOLTED DOUBLE-LAP CONPOSITE JOINT AMALYSIS PRINTOUT AMALYSIS NAME - BOLTI-9

MULE	1.25 50. 25 1 (TITMIUN)		. 6858 - 1678 .	methis
INTUT DATA:	JOINT LOAD (LB./IN.) JOINT R.S. TENSION FACTOR JOINT TEAP (DEG. F.) & DEGREE CAMPHITE FLIES BOLT TYPE NO. OF BOLT ROUS	MATL THICKNESS (IM.) BOLT DIMETER (IM.) BOLT SPMEING (IM.) U/D RATIO 6-D ROU SPMEING	OUTPUT DATA: Joint Weight (LB/IN) Max, Joint Long (LB/IN)	SLIFFARY OF BOLT ROU STRENGTHS
CODE	NK FS Matl Nolt	6 03		

STREMETERS 5

FALLINE	TENSION TENSION
NNRDIN OF SAFETY	7 8
K OF LOAD TRANSFERRED	33
	- 0


S RE-MINLYZE & RETURN OUTPUT TO SAVE FILE * CUTPUT TO PRIMT FILE &

-

(COMPLETE)

3.236 CP SECONDS ELAPSED. ENTER AMILYSIS NAME! boll1-11

Bolted Double-Lap Output (Analysis) Figure 20.

ì

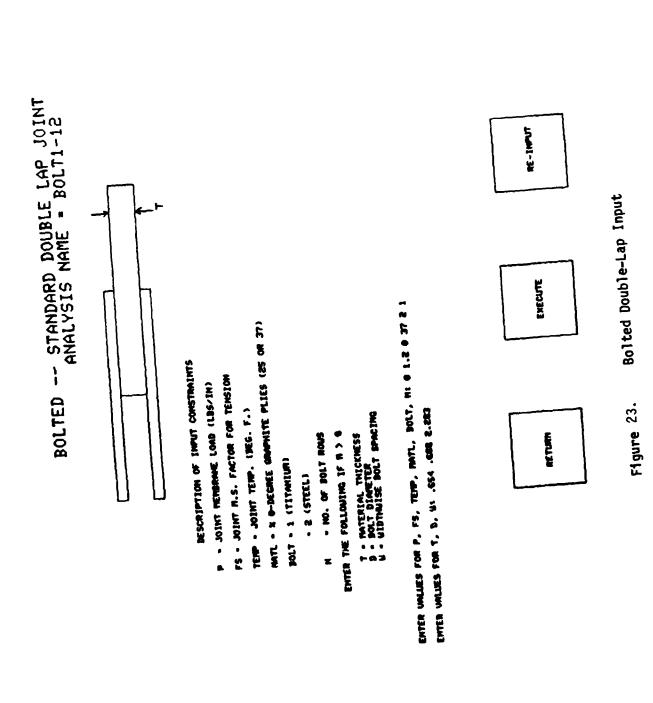
THIS PAGE IS BEST QUALITY PRACTICABLE

DALANCED BOLTED DOUBLE-LAP COMPOSITE JOINT ANALYSIS PRINTOUT Analysis NATE - Bolt1-11

MLLE	1400. 1.20 1.20 37 2 (STEL)	654 6 82 2.283 3.281 3.321 4.125
INTUT DATAS	JOINT LOAD (LB./IN.) JOINT M.S. TENSION FACTOR JOINT TENS (DEG. F.) & 0-DECREE CRAPHITE PLIES BOLT TYPE NO. OF BOLT ROUS	MATL THICKNESS (IN.) BOLT DIMETER (IN.) BOLT SPACING (IN.) U-D RATIO G-D ROU SPACING
CODE	MX FS TENP Bolt N	F83

OUTPUT DATAS

JOINT VEICHT (LB/IN) .3707


SUMMARY OF BOLT ROU STRENGTHS

BOLT & OF LOAD MARGIN OF FAILLINE ROU TRANSFERRED SAFETY FODE 1 100 -.00 TENSION

1 100 -... TENSION NO JOINT DESIGN BASED ON DEARING FAILURE IS POSSIBLE

S OUTPUT TO PRINT FILE & OUTPUT TO SAVE FILE & RE-MANLYZE & RETURN &

13.126 CP SECONDS ELAPSED. ENTER ANULYSIS NAME: bolt1-12 Figure 22. Bolted Double-Lap Output (Optimization)

103

ì

THIS PAGE IS BEST QUALITY PRACTICABLE

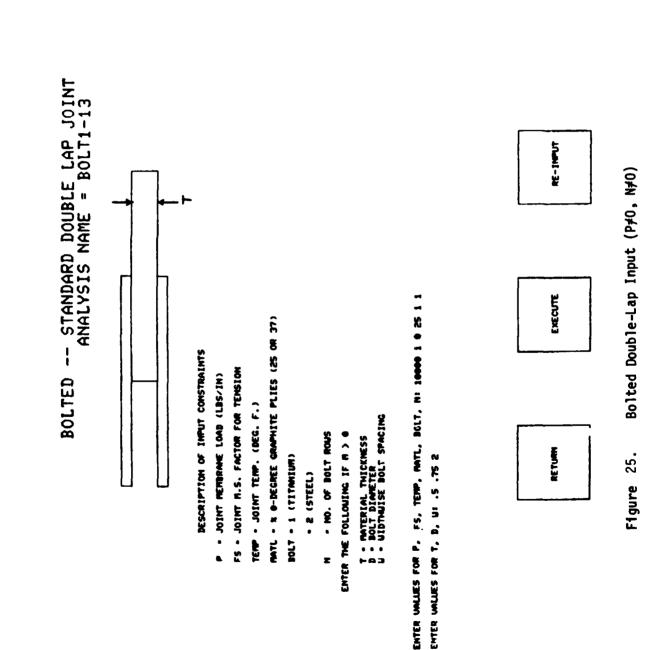
TE JOINT MMLVSIS PRINTOUT Ditti-12	milie	1.20 1.20 9. 27 2 (STEEL)	. 654 . 688 . 213 3. 318 4. 128	. 3712 1484.	Thes Failure Hode
BALANCED BOLTED DOUBLE-LAP COMPOSITE JOINT ANALYSIS PRINTOUT Availysis name - Bolti-iz	LIGUT DATA:	JOINT LOAD (LB./IN.) JOINT R.S. TENSION FACTOR JOINT TENP (DEG. F.) & 0-DEGREE GRAPHNITE PLIES BOLT TYPE NO. OF BOLT ROUS	MATL THICKNESS (IM.) BOLT DIAMETER (IM.) DOLT SPACING (IM.) U/D RATIO 6-D ROU SPACING	OUTPUT DATA: JOINT VEIGNT (LB/IN) MMX. JOINT LOAD (LB/IN)	SUMMARY OF BOLT ROU STRENGTHS BOLT & OF LOAD MARGIN OF I ROU TRANSFERRED SAFETY
-	CODE	NX 75 76 76 76 76 76 76 76 76 76 76 76 76 76	F93		

NO JOINT BESIGN BASED ON BEARING FAILURE IS POSSIBLE

TENSION

:

.


-4

2 OUTPUT TO PRINT FILE & OUTPUT TO SAVE FILE & RE-MALYZE & RETURN

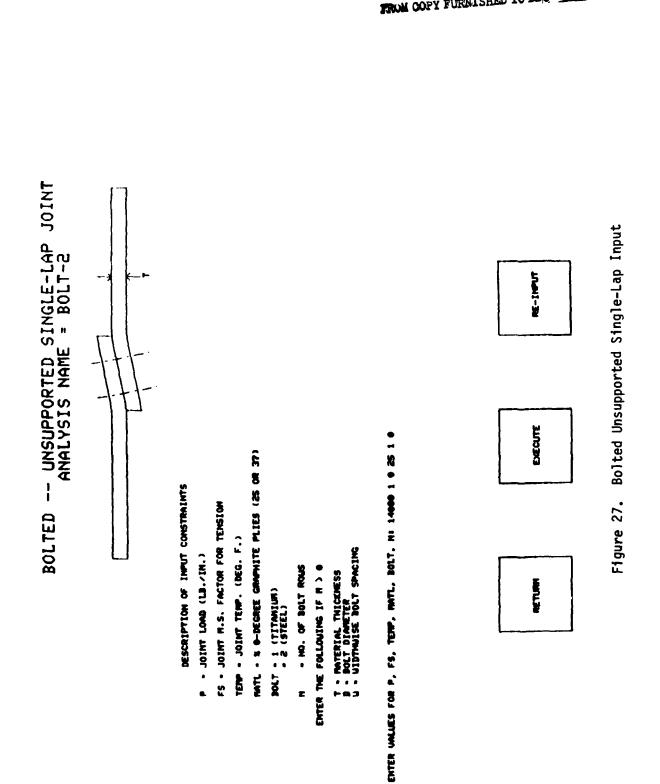
-

13.246 CP SECONDS ELAPSED. ENTER ANALYSIS MANE! belt1-13 Bolted Double-Lap Output

Figure 24.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

105


ŧ

BALANCED BOLTED DOUBLE-LAP CONPOSITE JOINT AMLYSIS PRINTOUT AMALYSIS MARE = BOLTI-13

MLUE	1.000. 1.00 1.01 1.01 1.01 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.00000 1.00000 1.00000 1.00000000	100 100 100 100 100 100 100 100 100 100	52	ngtus F Fallune Robe
INPUT DATAL	JOINT LOAD (LJ./JN.) JOINT R.S. TENSION FACTOR JOINT TENP (DEG. F.) R.D-DEGREE GRAPHITE PLIES BOUT TYPE MO. OF BOLT ROUS	MATL, THICKNESS (IN.) BOLT DIAMETER (IN.) BOLT SPACING (IN.) U/D RATIO 6-D ROU SPACING	OUTPUT DATA: Joint Veight (LB/IN)	SUPPARY OF BOLT ROU STRENGTHS BOLT & OF LOAD MARCIN OF ROU TRANSFERRED BAFETY
CODE	NK FS MATL BOLT	FBJ		

E CUTHUT TO PRINT FILE & OUTHUR TO SAVE FILE & RE-MMLYZE & RETURN

-

UALUE

INPUT DATA:

Sobe

JOINT LOAD (L3./IN.) JOINT M.S. TENSION FACTOR JOINT TEMP (DEG. F.) & -DECARE GRAPHITE PLIES BOLT TYPE NO. OF BOLT ROUS

P TEMP BOLT

BOLTED -- UNSUPPORTED SINGLE-LAP JOINT ANALYSIS NAME + BOLT-2 Figure 28. Bolted Unsupported Single-Lap Output

E OUTPUT TO PRINT FILE & OUTPUT TO SAVE FILE & RE-AMALYZE & RETURN

III BEARING CONTROLLED JOINT DESIGN NOT POSSIBLE III

FALLURE NODE TENSION TENSION

Xis

33

--∩

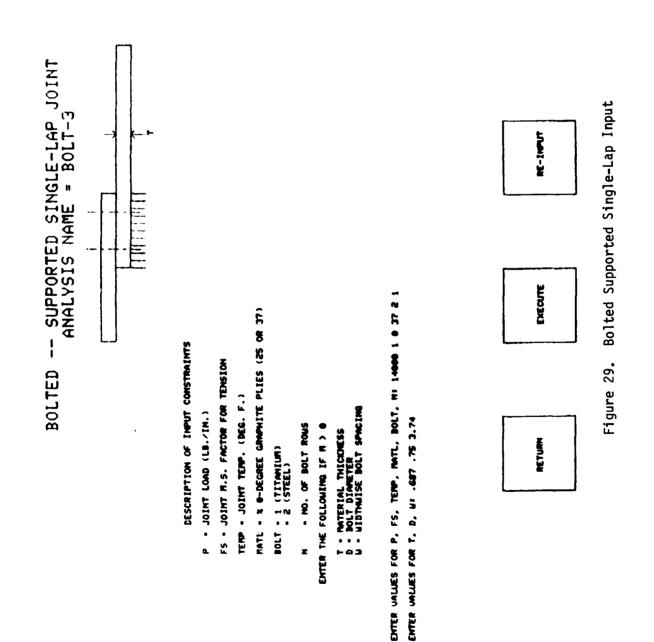
1.264 .813 3.520 4.333 4.333

MAT'L THICKNESS BOLT DIANETER BOLT SPACING U/D RATIO 6-D ROU SPACING

HA3

SUMMARY OF BOLT ROU STRENGTHS

MARGIN OF SAFETY


s of Load Transferred

POL 1

8450

(LEVIN)

OUTPUT DATA: JOINT WEICHT 64

THIS PAGE IS BEST QUALITY PRACTICABLE

1400. 1.00 0. 27 2 (STEEL)

JOINT LOAD (LB./IN.) JOINT R.S. TENSION FACTOR JOINT TERP (DEG. F.) & D-DEGRE CRAPHITE PLIES BOLT TYPE NO. OF BOLT ROUS

MAT'L THICKNESS (BOLT DIANETER (BOLT SPACING (U/D RATIO 6-D ROU SPACING

FO3

.2836

(LIL/IN)

JOINT WEIGHT

OUTPUT DATA!

SUMMARY OF BOLT ROU STRENGTHS

MARGIN OF SAFETY

X OF LOAD TRANSFERRED

HOL HOL

UALUE

INPUT DATAS

BODE

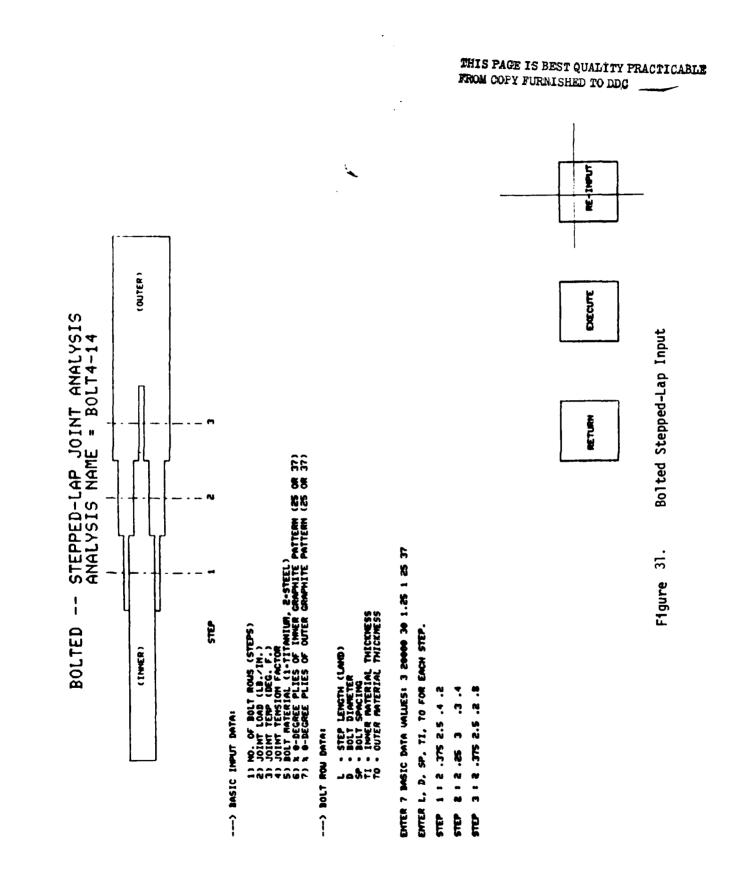
BOLTED -- SUPPORTED SIMGLE-LAP JOINT ANALYSIS NAME - BOLT-3

FROM COPY FURNISHED TO DDC

وتخلفوهم فتنقص فتناشط فالتحديدان ولإربي فالتقاهم فأصبع والتقويل وأستحد ومنازعا فمعمدهم والمسترك

Figure 30. Bolted Supported Single-Lap Output

(COMPLETE)


2 OUTPUT TO PRINT FILE 2 OUTPUT TO SAVE FILE 2 RE-AMALYZE 2 RETURN

FATLURE NODE TENSION

-.16

5

=

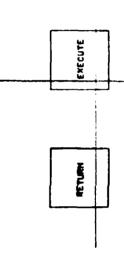
UIEU EXISTING INPUT DATA? (0-NO. 1-VES): 1

BASIC INPUT DATAL

MO. OF BOLT MAUS • 3 JOINT LOAD (LB.JN.) • 2000. JOINT TEMP.(DEG. F.) • 30. JOINT TEMP.(DEG. F.) • 30. JOINT TEMPION FACTOR • 1.25 BOLT MATERIAL • 1.111AMJUN) 25 % 0-DECREE PLIES FOR IMER CARMHIE PATTERN 37 % 0-DECREE PLIES FOR OUTER CARMHIE PATTERN

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

BOLT ROU DATA:


**		
THICKNESS OUTER		
E GRAPHITE LINER	₹ Ŗ Ŗ	
POLT V	•••	
BOLT	38 5 N N N	- 1(S31-1
BOLT DIAN.	ESE.	
STEP	888 N N N	BASIC DATA?
STEP NO.	W M	UPDATE

UPDATE STEP DATA? (0-ND, 1-YES): 1

ENTER STEP NO. (0 · END): 2

ENTER L. D. SP. 71, TO FOR STEP 2 2 .25 3 .3 .5

ENTER STEP NO. (0 - END)! 0

RE-INPUT

BOLTED -- STEPPED-LAP JOINT MMALVSIS AMALVSIS MARE - BOLT4-14

والمنعوبة وأستادهم والتسريان والم

كمنامح فالمتقاطع بماركم والمحادي

BASIC INPUT DATA!

MO. OF BOLT ROUS • 3 JOINT LOAD (LB./IM.) • 20000. JOINT TEMP.(DEC.F.) • 2000. JOINT TEMP.(DEC.F.) • 30. JOINT TEMPION FACTOR • 1.25 BOLT MATERIAL • 1 (TITANLUR) 25 % 0-DECREE PLIES FOR DUTER CAMPHITE PATTERN 37 % 0-DECREE PLIES FOR OUTER CAMPHITE PATTERN

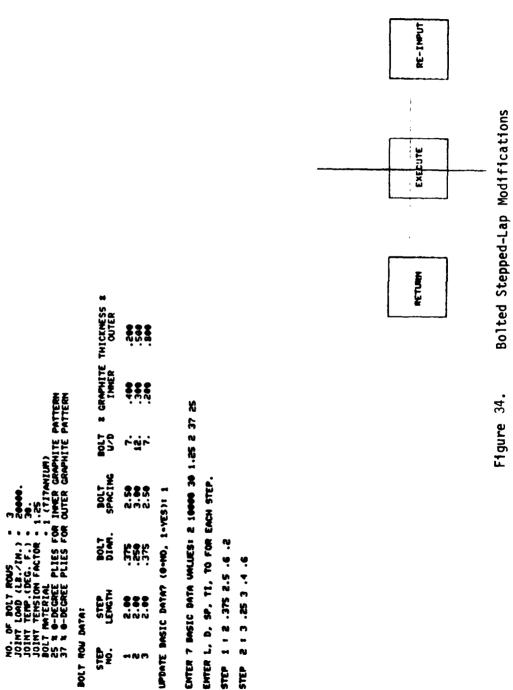
BOLT ROU DATA!

 STEP
 STEP
 STEP
 STEP
 BOLT
 BOLT
 BOLT
 BOLT
 BOLT
 CAMPHITE
 THICKNESS
 B

 NO.
 LENGTH
 DIAM.
 SPACING
 U/D
 IMMER
 OUTER
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 <

SUMMARY OF BOLT ROU STRENGTHS

S ATE	FATURE NODE	OUTER TENSION OUTER TENSION INNER BEARING
DUTER PL	n.s.	
 * OF LOAD TRANSFERRED BY BOLTS * OF LOAD RETAINED BY INNER PLATE * OF LOAD RETAINED BY OUTER PLATE * MARCIN OF SAFETY 	OUTER	• # 8
T COD T	IMMER	32.9
	BOLT	48 M
BOLTS INNER Outer M.S.	ROW	N M


OUTPUT TO PRINT FILE & OUTPUT TO SAVE FILE & RE-AMALYZE & RETURN &

-

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Figure 33. Bolted Stepped-Lap Output

وملارح والمرافق والمستخدم والمراجع والمراجع

BOLT ROU DATA:

INTUT DATA FROM A SOLUTION ON SAVE FILE? (1+YES, 0+NO): 0

MODIFY EXASTING IMPUT BATA? (1-YES, 0-ALL MEU): 1

VIEW EXISTING INPUT DATAP (0-NO, 1-VES): 1

BASIC INPUT BATA:

I.109 CP SECONDS ELAPSED. Evter Amalysis Mame: bolt4-d

THICKNE	505 505 505 505 505 505 505 505 505 505
t GRAPHITE INNER	
	r gr
BOLT	
BOLT DIAN.	
step LENGTH	***
STEP NO.	

UPDATE BASIC DATA? (0-ND, 1-YES): 1

ENTER 7 BASIC BATA UNLUES: 2 10000 30 1.25 2 37 25

2:3.253.4.6 STEP

BOLTED -- STEPPED-LAP JOINT ANALYSIS AMALYSIS MARE - BOLT4-D

والمتحافظات والمعالي والمحافظ والمعافلة المعالية

فالمشفية فالمستخدم ومعمدان فليستعد والمستعد والمستعد والمستعد والمشارك والمتعاد والمتحاف والمتعالية والمتكرية

BASIC INPUT DATA:

E GRAPHITE THICKNESS & INNER DUTER BOLT ROU DATA:

BOLT 38. 38 BOLT Ex STEP LENGTH **88** NM STE No. ----

3

2.2

SUMMRY OF BOLT ROU STRENGTHS

FAILURE NODE BOLTS & & OF LOAD THANSFERNED BY BOLTS INVER & & OF LOAD RETAINED BY INVER PLATE OUTER & & OF LOAD RETAINED BY OUTER PLATE A.S. - MARCIN OF SAFETY **A.S. NET20** POC 1 Ş

OUTER TENSION INVER TENSION 885 - I • 2 **F**• 36 -

RETURN E RE-ANALYZE OUTFUT TO SAVE FILE OUTPUT TO PRINT FILE & .

=

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Bolted Stepped-Lap Output Figure 35.

ANALYSIS OPTIONS

JOINT CODE BOLT BOND	า- - - - - - - - - - - - - - - - - - -	
CLASS	STANDARD DOUBLE-LAP UNSUPPORTED SINGLE-LAP SUPPORTED SINGLE-LAP STEPPED-LAP SCARFED	

ENTER NUMERIC CODE (0 = RETURN): 5

INPUT DATA FROM A SOLUTION ON SAVE FILE? (1=YES, 0=N0): 0

OPTIONS: 0 = RETURN TO ANALYSIS OPTIONS 1 = INPUT ALL CONSTRAINT DATA

ENTER OPTION NUMBER: 1

17.481 CP SECONDS ELAPSED. ENTER ANALYSIS NAME: bond5-15

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Bonded Double-Lap Selection

Figure ^{36.}

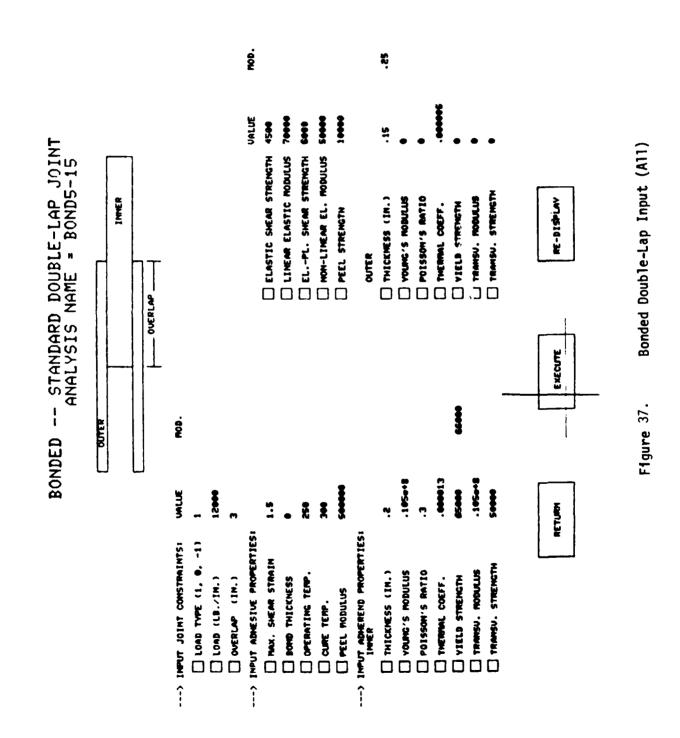


Figure 38. Bonded Double-Lap Output

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO LDC

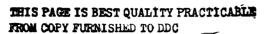
RE-AMALYZE T RETURN ITRENGTH CONPUTATION OVERLAP (1N.) 3.40 BOND SHEAR STRENGTH (13./1N.) 23269. BOND HONE CRITICAL WERE INNER ADMEREND EXTENDS FROM JOINT ELASTIC SHEAR LINEAR ELASTIC EL.-PL. SHEAR NON-LINEAR EL. PEEL STRENGTH APPLED LONG (LB./IN.) 12000. OUERLAP (IN.) 3.00 ELASTIC-PLASTIC SOLUTION, MXX. ADMESIVE SHEAR STRAIN .420 MXX. ADMESIVE SHEAR STRESS 6000. ADMESIVE MORE CRITICAL LARGE INNER ADMEREND EXTENDS FRON JOINT STRALH A UNA BONDED -- STANDARD DOUBLE-LAP JOINT ANALYSIS NAME + BOND5-15 STRENGTH(LJ/(N) 23275. 3651. 5336. OUTHOR TO SAVE FILE 1.50 250. 250. 250. 250. 250. 250. (INER) AZDES. LOAD TYPE - 1 (TENSION) LOAD (LD/IN) - 12800. OVERLAP (IN) - 3.000 MMLVSISI OPTIMUR OVERLAP (IN.) + 2.74 (IN.) (PSI) (15d) (15d) ADHESIVE SHEAR TYPE-ELASTIC-PLASTIC LINEAR ELASTIC NON-LINEAR ELASTIC PLASTIC LINIT DUE TO ADMESIVE PEEL OR INTERLANIMAR TENSION-ITTESS ANALYSIS APPLIED LOND (L3./IN.) 12000 Elastic-Plastic Solution, Ma PROPERTIES: PAX. SHEAR STRAIN AXX. SHEAR STRAIN AXX. SHEAR STRAIN CURE TEMP. CURE TEM PROFERTIES TOUNC'S RODULUS POISSON'S RATIO POISSON'S RATIO THERNAL COEFF. TELD STRENGTH TRANSU. STRENGTH ADHERENDS- INNER OUTER OUTPUT TO PRINT FILE & BASIC DATAL ADHESIVE ADHEREND THIOL #

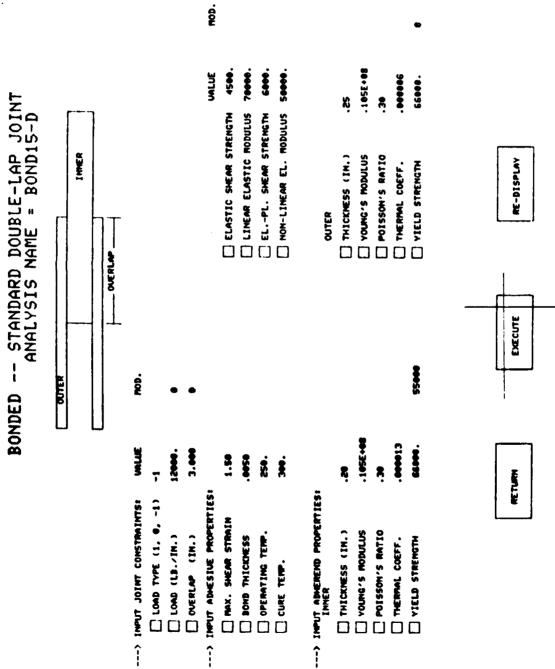
INPUT DATA FROM A SOLUTION ON SAVE FILE? (1-YES, 0-HO): 0

OPTIONS: 8 - RETURN TO ANALYSIS OPTIONS 1 - INPUT ALL CONSTRAINT DATA 2 - EDIT ANALLABLE DATA

ENTER OFTION MUNBER: 2

ENTER LOAD TYPE (1, 0, -1)1 -1


2.926 CP SECONDS ELAPSED. ENTER MALVSIS MARE: boadIS-d

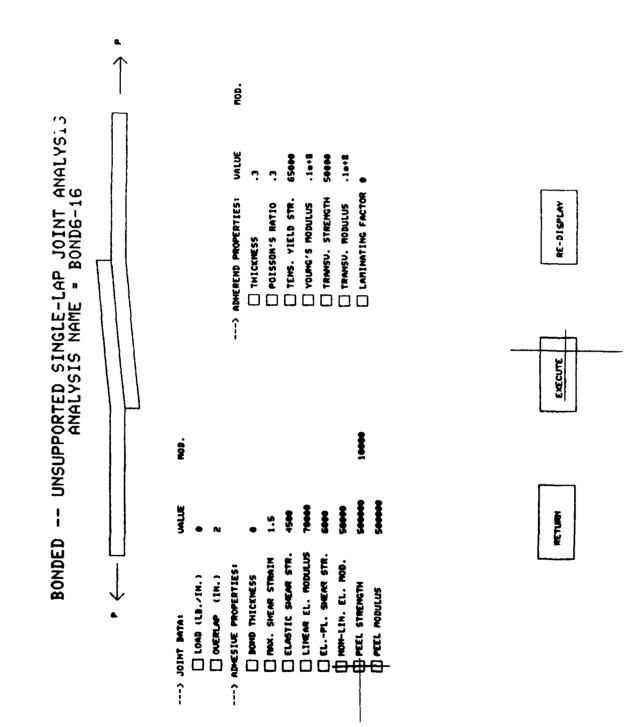

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Bonded Double-Lap Re-Display & Modify

Figure 40.

EXECUTE

ELASTIC SMEME STRENGTH (PSI) LINEAR ELASTIC NOULUS (PSI) EL.-PL. SMEME STRENGTH (PSI) NON-LINEAR EL. NOULUS (PSI) (OUTER) 25 30 55001. STRAIN 1.086 BONDED -- STANDARD DOUBLE-LAP JOINT ANALYSIS NAME + BONDIS-D STRENGTH(LB/IN) 21895. 2181. 3866. (IMCR) 20 .20 .1056+08 .30 .000130 .55000. LOAD TYPE - -: (COMPRESSION) LOAD (LD/IN) - 0. OUERLAP (IN) - 0.000 275.00. 2.56 (F.) (F.) JOINT ANALVSIS! OPTIMUR OVERLAP (IN.) -(IS4) (154) ADMESIVE SMEME TYPE-ELASTIC-PLASTIC LINEAR ELASTIC NON-LINEAR ELASTIC PLASTIC PROPERTIES: MAX. SHEAR STRAIN DOND THICKNESS OPERATING TEMP. (CURE TEMP. ADHERENDS- INNER OUTER PROPERTIES THICKNESS VOLNG'S NOBLIUS POISSON'S RATIO THERMAL COEFF. VIELD STRENGTH RASIC DATA: ADHEREND ADVESIVE


ξ,

A OUTPUT TO PRIME FILE & OUTPUT TO SAVE FILE & RE-AMALYZE & RETURN

86

THIS PAGE IS BEST QUALITY PRACTICABLE

Figure 41. Bonded Double-Lap Output

Bonded Unsupported Single-Lap Input

Figure 42.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

BONDED -- UNSUPPORTED SINGLE-LAP JOINT MULYSIS Analysis Name - Bonde-16

			ADMEREND PROPERTIES: VALUE	THICKNESS .30	POISSON'S RATIO .30	TENS. VIELD STR. 65000.	YOUNG'S MODULUS . 1885+88	TRANSU. STRENGTH SOCO.	TRANSU, MODULUS .100E+08	LANINATING FACTOR 1.0000						NE-MMILVZE & NETURN \$
MULUE	ė	2.8			1.500	15 40 .	70000.	600 .	5000	1000	50000.		N 19500. DING 6685.	1692. 12000 -	1011- 2182.	OUTPUT TO SAVE FILE 2 NE (COMPLETE)
	LOAD (LB./IN.).	OVERLAP (IN.). 2	ADMESTUE PROPERTIES:	5	MAX. SHEAR STRALN 1.		LINEAR EL. MODULUS 70		NOM-LIN. EL. NOD. Se	PEEL STRENGTH 10	PEEL MODULUS 500	JOINT STRENGTHS (LB./IN.)!	ADMEDICINDA REMOTE TEMSION TEMSION + BENDING	BOND SHEAR: ELASTIC PLASTIC	LIMIT DUE TO ADMESIVE PEEL OR INTERLAMINAR TENSION-	e output to peint file a outp (c

THIS PAGE IS BEST QUALITY FRACTICABLE FROM COPY FURNISHED TO DDC

VALUE

JOINT DATAL

4

والمتعاركة والمتحدث والمتحدث

LCAD (LB./IN.),	300.	
OVERLAP (IN.),	8.8	
ADHESIVE PROPERTIES:		ADVECTEND PROPERTIES: UAL
BOND THICKNESS		THICKNESS
MAX. SHEAR STRAIN	1.500	POISSON'S RATIO
ELASTIC SHEAR STR.	4500.	TENS. VIELD STR.
LINEAR EL. MODULUS	70000.	AOUNG 'S' MODULUS
ELPL. SHEAR STR.		TRANSU. STRENGTH
NOH-LIN. EL. NOD.	50000.	TRANSU. MODULUS
PEEL STRENGTH	10000.	LANIMATING FACTOR
PEEL MODULUS	Spaner	

STRESSES (PSI) INTERNAL

124

1900. 31921.	124 124 12969
D STRESS D STRESS	R STRESS R STRAIN STRESS
NUE. APPLIED MAX. INDUCED	PEAK SPEAN PEAK SHEAN PEAK PEEL
ADHEREND:	ADIESTUE

• RETURN S RE-AMLYZE OUTPUT TO PRINT FILE & OUTPUT TO SAVE FILE

Bonded Unsupported Single-Lap Output (P≠0, OL≠0)

Figure 44.

THIS PAGE IS BEST QUALITY PRACTICABLE KROM COPY FURNISHED TO DDC

.100E+08

65000.

8. 8.

UALUE

.100E+08

1.000

50000.

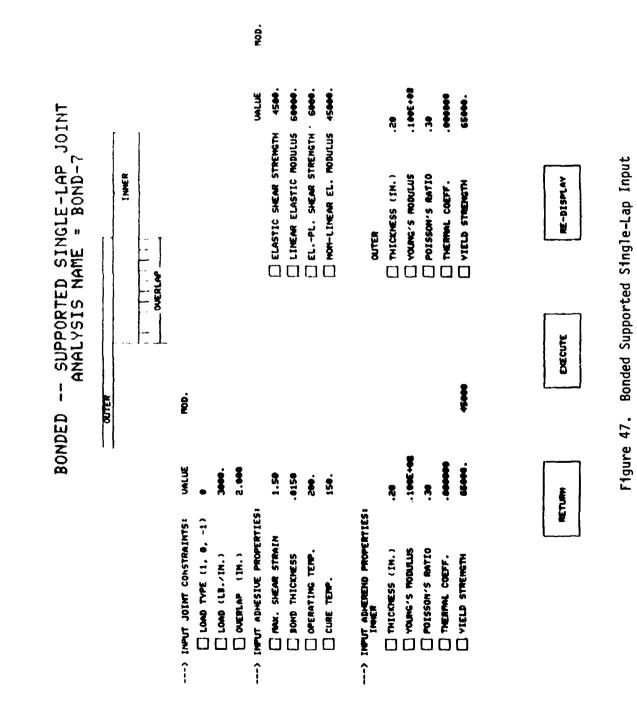
PONDED -- UNSUPPORTED SINCLE-LAP JOINT ANALYSIS ANALYSIS MARE + BONDIG-D

الالانبياط ومتقانيه فيردد فالمتعام والمتعاد والمتعادية

	WELLE	9 F.	96.	65000	.1005+03	5000.	199E+98	1.000		100 150	80. 19500.	4428. 4872. 0108. 42044.	49. 143517.			
		THICKNESS	POISSON'S RATIO	TENS. VIELD STR.	voung's modullus	TRANSU. STRENGTH	TRANSV. NODULUS	LANINATING FACTOR			19500. 19500. 17626. 18183.	4110. 4428. 38644. 40108.	47737. 70049.	•		
	ADHEREND PROPERTIES:	ĨĦ	104	10	NOY	TRA	TRA	5		171 MT10	19500. 16642	3647. 36256.	.96363	RETURN		
										\$	14703.	2005.	15542.	RE-MMLYZE		
										8	19500. 10658.	2149. 14887.	3720.	•		ł
											19500. 7689.	1730. 13169.	2474.	SAVE F		
JOINT DATAI VALUE LOAD (LB./IN.), 0.00 OVERLAP (IN.), 0.00	ADHESTUE PROPERTIES!	BOND THICKNESS .0050	MAX. SHEAR STRAIN 1.500	ELASTIC SHEAR STR. 4500.	LINEAR EL. RODULUS 70000.	ELPL. SHEAR STR. 6000.	NON-LIN. EL. MOD. SODO.	PEEL STRENGTH 10000.	PEEL MODULUS SOODO.	JOINT STRENGTHS (LB./IN.)1	ADHEREND: RENOTE TENSION TENSION + PENDING	BOND SHEAR! ELASTIC PLASTIC	LIALT DUE TO ADMESIVE PEEL OR INTERLANINAR TENSION-	a output to paint file a output to save file		

THIS PAGE IS BEST QUALITY PRACTICABLE

BONDED -- UNSUPPORTED SINGLE-LAP JOINT ANALVSIS Analvsis Name + Bondig-E


ومستندة فأقلد تعميما مروادين وليدرغ الكرام والأنفيان تنفرد والمتعا كالافتات فالملاط التكريمي

JOINT BATA:	MLUE					
LOAD (LA./IN.),	1000					
DUERLAP (IN.),	2					
ADHESIVE PROPERTIES!				ADMEREND PROPERTIES:		VALUE
BOND THICKNESS				THICK	THICKNESS	96.
RAX. SHEAR STRAIN	1.500			POISS	POISSON'S RATIO	8 .
ELASTIC SHEAR STR.	4500.			TENS.	TENS. VIELD STR.	65888.
LINEAR EL. RODULUS	70000.			VOLNO	SULUCIAN S' PODULUS	.100E+08
ELPL. SHEAR STR.	Een.			TRANS	TRANSU. STRENGTH	5000.
NON-LIN. EL. MOD.	50000.			TRANS	TRANSU. RODULUS	.1005+08
PEEL STRENGTH	1996.			LANIN	LANINATING FACTOR	1.0000
PEEL RODULUS	See.					
INTERMAL STRESSES (PSI):		9	8	\$ L/T RATIO	2	Ĩ

INTERMAL STRESSES (PSI):	ļ	8	ن.	L/T RATIO	9	1	Į
ADMENEDIDI AVE. APPLIED STRESS	33333. 80256.	19333. 1777.13	.1+174	. 14514	33333. 38786	33333. 37223.	3333 3 . 35356.
ADRESIVE! PEAK SHEAR STRESS PEAK SHEAR STRAIN PEAK PEEL STRESS	6000. .554 28097.	.329. 16833.	6000. - 210 8169.	6000. 175 1856.	6000. 159. 3226.	6000. 151. 2301.	68 98 . - 141 1197.
OUTPUT TO PRINT FILE & OUTPUT TO SAVE FILE	SAVE FILE	- 34 *	B RE-MALVZE & RETURN	RETURN	•		

Figure ⁴⁶. Bonded Unsupported Single-Lap Output (P#0, OL=0)

THIS PAGE IS BEST QUALITY PRACTICARIES

BONDED -- SUPPORTED SINCLE-LAP JOINT ANALYSIS NAME + BOND-7

LOAD TYPE = 0 (IN-PLANE SHEAR) LOAD (LD/IN) = 3000. Juerlap (IN) = 2.000 BASIC CATAI

ELASTIC SHEAR STRENGTH (PSI) LINEAR ELASTIC RODULUS (PSI) EL.-PL. SHEAR STRENGTH (PSI) NON-LINEAR EL. HODULUS (PSI) (OUTER) 20 20 .1005+08 .30 .000000 ([INER) 20 .1006+08 .30 .000000 1.50 .015 200. 150. (J.) (F.) (F.) (IN.) (PSI) (154) E PROPERTIES: MAX. SHEAR STRAIN BOND THICKNESS OPERATING TEMP. () CURE TEMP. () PROPERTIES: THICKNESS VOLNG'S MODULUS POISSON'S RATIO THERMAL CCEFF. VIELD STRENGTM ADHESIUE ADHEREND

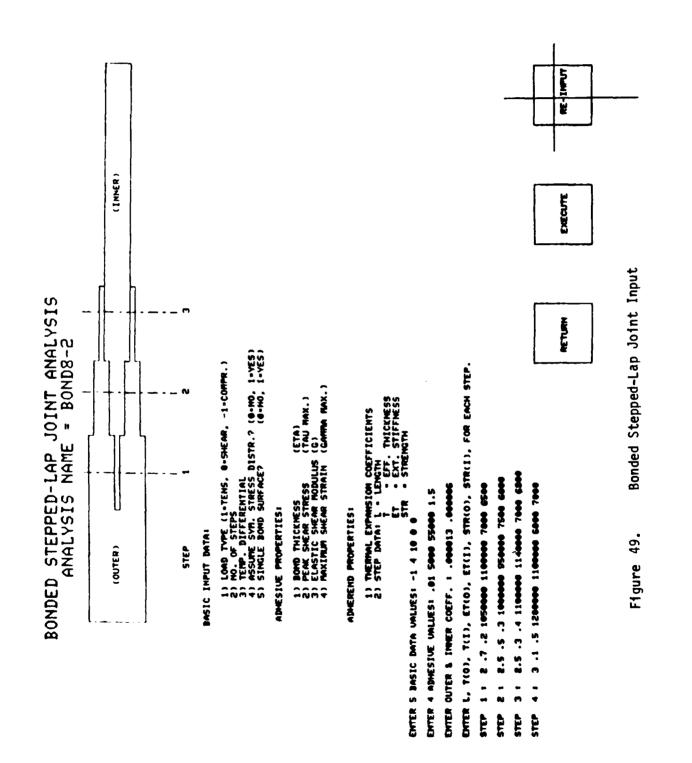
AMALYSIS: OPTIMUM OVERLAP (IN.) - 3.65 JOINT

STRAIN 519. 1.961 STRENGTH(LB/IN) 19923 -2791 -4297 -ADMESIVE SHEME TYPE-ELASTIC-PLASTIC LITECAR ELASTIC NON-LINEAR ELASTIC PLASTIC INNER OUTER ADHERENDS-

STRENGTH COMPUTATION OUERLAP (IN.) 2.00 DOND SHEAR STRENGTH (LB./IM.) 12000. BOTH ENDS OF JOINT EQUALLY CRITICAL

STRESS ANALYSIS PPLIED LOAD (LB./IN.) 3000. OUERLAP (IN.) 2.00 ELASTIC-PLASTIC SOLUTION, MAX. ADMESIVE SHEAR STRAIN .081 BOTH ENDS OF JOINT EQUALLY CRITICAL

= RE-AMALYZE & RETURN # OUTPUT TO PRINT FILE # OUTPUT TO SAVE FILE

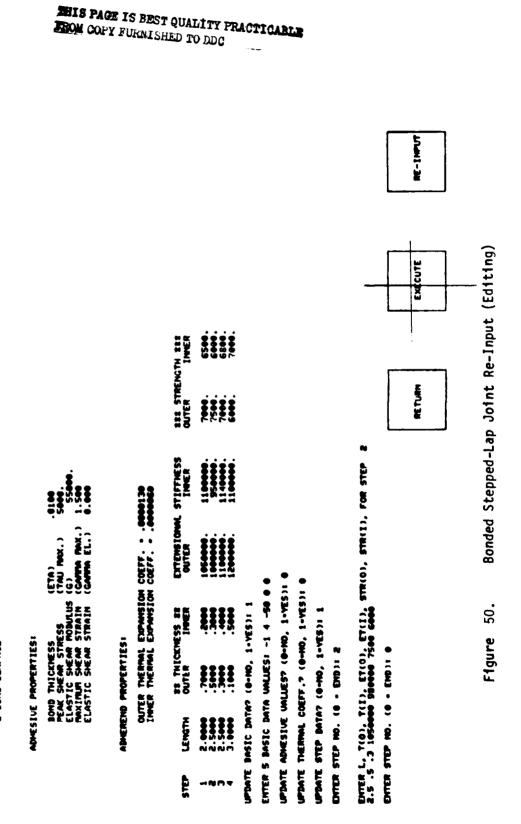

(COMPLETE)

(COMPLETE)

Bonded Supported Single-Lap Output Figure 48.

THIS PAGE IS BEST QUALITY PRACTICABLE

FROM COPY FURNISHED TO DDC



ويستأذ ومستعدد فيرمطا مقرعطان فاستكرهم للأ

and the second second

وتكالاتنان والمرابع فكالمتعاصين وكالأنكية فالمرامين مستويا فالمتحا وتنابع

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

WIEL EXISTING INPUT DATAP (0+NO, 1+VES): 1

and the second second

BONDED STEPPED-LAP JOINT MMLVSIS

BASIC INPUT DATA!

LOAD TYPE • COMPRESSION NO. OF STEPS • 4 TEPP. DIFF. • 10. 2-BOND SURFACE

ADMESIVE-RUNNED STEPPEN-LAP JUINT ANALYSIS Aualysis name B Ründr-2

BABIC INPUT DATAS

LOAD TYPE = COMPRESSION NOT OF STEPS = 4 TEMP, DIFF, = -50. Z=ROND SURFACE

ADHEGIVE PRIPERTIESS

.0100	5000.		1.500	
(ETA)	(TAU MAX.)	(8)	(CAMMA MAX)	(GAMMA EL.)
ADND THICKNESS	PEAK GHEAR STREGS	ELASTIC SHEAR MUNIILUS	NAKINUM BIEAD GTAATN	

ADHEREND PANPERTIESI

NUTER THERMAL EXPANSION COEFF. N .0000130 Inner Thermal Expansion Coeff. N .000060

		AB THICK	NES9 ++	EXTENSIONAL	871FFLE88		167H ***
8762	LENGTH	OUTER INVER	INVER	UUTER	I NNE R	OUTER	1 2 2 6 3
-	2.0000	.7000	0000	105000.	1100000.	7000.	6500.
~	2.5000	.5000	1000	1050000	981000 .	7500.	• 0004
•	2.5000	.3000	.4000	110000.	1140000.	7000.	• U Ü ¥ 9
4	3.000	.1000	. 5000	1200000.	1100000.	•0009	7000.

Bonded Stepped-Lap Joint Output - Input Data

Figure 51.

THIS PAGE IS BEST QUALITY PRACTICABLE

ELABTIC ANALYSIS

																		RA(CT1	IC.	BLR	•
		6500.	0	6500	6500	6000	6000	0004	5000 °	-00F4	6400 e	6400.	4 A U D .	7000.	7000	7000	7000	7000				
*** •••	ī	•0	80		C N	2146.	5	50		14	20	ŝ	50	14	8	0	4	5				
167 +++ X157211		00	00	0 c	00	7300	50	30	30	00	ĉ	0	20	°0	00	00	00	•				
	2	(246)	1972.	1757.	1751.	1005	1863.	1506.	1963.	1907.	1749	1745	1744.	1902	\$	5	1991.	• 0 •			ンドイ	
DELTAN DELTAT		-0004	0		0	C		000	00	0112	0126	n139	.0153	0167	01A4	0200	- 0217	0237			LA SUMAARY	
DELTAN		000000	0016	0024	0039		-,0066	0081	4000 .		.0125	- 0139	•.0153	•.016A	.01A4	0200	0217	0250				
4 4 4 9 9 4 4 4 4		1001	6 00	00	.000	003	-000	.000	.010	.003	000.	.000	000.	5 00.	000	000	00				INCLUDED	
7 4 1) I -	.000		43.	• •	-143.		• • •	* *	138.	•	•0	. ¥ .	-128.	۲	•	151	1074.)		4	
THICKI		.2000	.2000	2000	.2000	.3000	.3000	.3000	.3000	.4000	.4000	.4000	.4000	.5000	0005.	.5000	.5000	.5000				
LENGTH THICKD THICKI		1 000	.7000	.7000	.7000	0005		.5000	0005	.3000	1000	3400	. 1000	.1000	1000	.1000	.1000	0000.0				
LENGTH		.5000	.5000	. 3000	.5000	.629.	. 6250	0529.	.6250	.6250	.6250	.6250	.6250	.7500	.7500	.7500	.7500	0.000				
3729		-	nu	•	4	1	•	•	•	•	2	11	12	2	7	1	•	11				

Bonded Stepped-Lap Joint - Elastic Analysis Figure 52.

440 [WWFR 400 Load Strength	0.054 6500.	• • • •		١	• • • • •	753.					•		5542. A009.	1		•	3562. 6000.		•		-	ן ו		3757. 4800.	5757. 6400.		١		3654. 690.	3054		7000	551	•		\ 	ľ		Ĭ		r Analveic	
444 OUTER 444 Load Birength	1001		1444 7000.		7000	7 c	100		1000		7309			7007	uus 750	7300	3434. 7500.					1000	24A 7000	• •				1000	-			0009		•		30.R. 6000	04 h00h	. 600		•		I
GAMMA VELTAD DELTAI	170.0000 - 0018	0027002	- 4200		005 - 0049 - 00H	400 - 5900 - 000	.0000065	400 • 5400 • 000		004 - 0094	000010A010	000 - 0108 - 01	0104 - 010		0 - 0135 - 013	210 - 1510 - 015	0000157015	0157015				.0204	000 - 0204 -	000 0227	- 4220 - 000	120° - 6720° - 00		100 - 0249 - UZ4	1 0272 027	904 - 0272 - 027 204 - 0222 - 022		000 - 0244 - 020		210 - 2210 - 000		- 1550 - 900	0000351035	0 - 0440 - 0			Bondod Ctonnod_l an J	polined scepped-Lap outline
TAU	1000 1000	1054	- 20¢.		444						-13,					12.	121	12.					14	0				-14.	•			5				1125	212	1 000		.000	53	
THICKI	.2000	200	2002 °	200	.200			-			-	.300	-		;;	. 300	7		300	-	• •	0.04	•	007 *	•		• •	-		-		•			 • •		500	•	5000 2000		C 4 21120	r igure
THTCKU THICK	0004	• •	•	• •	. 700	•	.700	1000	•	• •	. 4000	•	•		• •	•	•	٠	•				•				• •	•	•	0001			-	•		100	100	061.	<			
LENGTH	1920	0.000.0	- 5000 - 5000		.5000	6000 0	2				с.	•			524.		c	•	ູ	0.00.0	00-0-0		3	5	001000	0.000.0		.629.		000000	0000000	0.000	. 75ng		0.00.0	0.000	.0333	.1167	0.10.0			
876	- 1	-	-	• •	•	•	•			13					•	0 2	2	23	2			2	28		2	2	5	ň	R:	::	ĥ		-		 1 41	57	2	4	0 0 3 3			

ELABTIC=PLABTIC ANALYBIB

وحذيقة والمستحد والمستحد

1

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Z	ADIRARIZO BIZERGIAN)
EL ABTIC:	31171471
	2

INNER LOAD				> c	000	ĉ	245	E O Z	ROS	190	12166.	166	ē		•		ε.	~	5	5	11910.	14141	12161.		12426	12428							12051	12051	Ĩ	-	134	-	11		•	•	ŝ	10549.	ê	ŝ	
OUTER LOAD	10072	e e		1	æ	-	13744.	11861.		••	2	5	2159		2	5		1111			•	100		100 J	2301	にこのい			0 × 0		1447		1988	1988	198	12333.	233	n .	12092.	2042	5	5		2	c.	-0-	• • •
DELTAI	10				010	510	1020-	025	~*~~=	٩,	030	.030	2	- C C C		•		1 a c .		560.		N 9 C .		1540.1	•	1 0	5.	•		- <		.0.04	100	100	0140 -	1000	c.	5760**	1076	-	.107	-,1134	۰.	1	÷.	P 2 (••1311
GAMMA DELTAD DELTA					.01	;		:	;	-	- 031·	-,031				- 047		1 7 0 ° •		ſ		•			0.40	- 010						0.44	100-	•	100		••••	2		-101	107			14	- 112		
GANN I				101	میں ا	01.	•	00	õ	Ξ	5	5	ñ.,										0			0.0			5		:			5	2	2	S	8	5	10	5	÷.			1.578		
1AU	ĉ	000		000	000	000	1000	0		-						*) 5 (8	•							7 6 4 7 6 4 7						•9 ~ C	: e		5	A 0.7	-			2	477	1	•	0	000	c	ĉ	000	.0.0
THICKE	.2000		5 8	, N	200	200	200	2000	1007°	200	200	3000	200	. 1000	- 2000 -	000 0 0		.3070	2	2	. 3000	2	2	0007.	5	20	2					00	000	- 38	300	ŝ	8	ō	8	•	ŝ	ŝ	ç	c	¢ :	ê	• 2000
THICKO THICKI	- 🗭 1			2000	700	100	. 1000	100	.7010	.7000	.7000	0005			8			2		8	8	3	8	80			5					80	001	. 1000	. 1000	000	2	.100		. 100	ŝ	3	ŝ	•	õ	0 0 F	0000.0
16291X				000	000	529	F	ŝ	.90.	c	• 0 0 •	٩.	000		526.	000		•		0.000		ŝ	÷.		5		٠						0.00	0		0.000.0		. 7500	0.000	0000 0	1403.	٦.	0.000	Γ.	000	C	u000-0
8769	- 1				•	•	•	•	-	11	21	51	- 1								N 1			r,							12		52	•	2	8		0	7			-		8	1		7

Bonded Stepped-Lap Joint Output - El.-Pl. Analysis With Infinite Adherend Strength

Figure 54.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

BONDED STEPPED-LAP JOINT MAILYSIS SUMMARY MANEY - BONDE-2

and a second second

ļ 4

ž

ELASTIC SOLUTION

JOINT STRENGTH (LBS) - 3952.

ADMESIVE SMEAR STRESS (PSI): ALLOUABLE • FIRST STEP • LAST STEP •

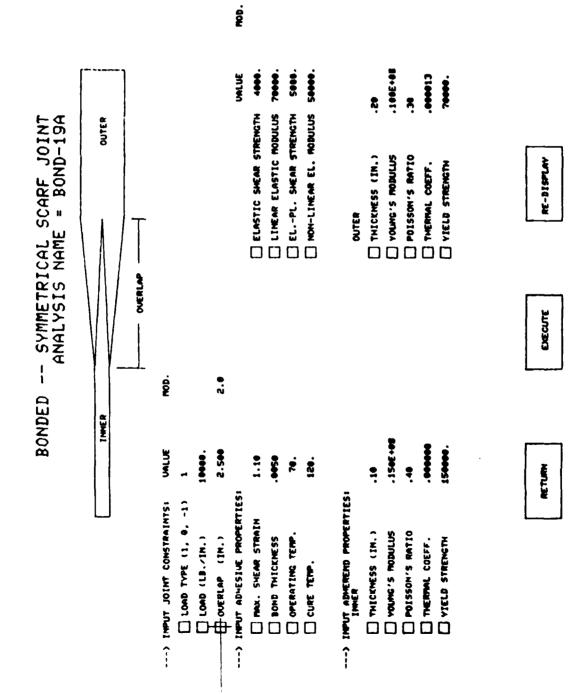
ELASTIC-PLASTIC SOLUTION

ADHESIVE SHEAR STRAIN: ALLOUABLE - 1.500 First Step - .178 Last Step - .149 į JOINT STRENGTH (LBS) .

CRITICAL STRENGTH (PSI): ACTIVAL ALLOUABLE OUTER: 7005, 7005, 7005, INVER: 7005, 7005,

TTT INFINITE ADMEREND ALLOUABLE SOLUTION TTT

ADRESTUE SHEAR STRAIN: ALLOWALE - 1.500 FIRST STEP - 1.500 LAST STEP - 1.376 JOINT STRENGTH (LAS) - 24069.


E OUTPUT TO PRINT FILE & JUTPUT TO SAVE FILE & RE-AMALYZE & RETURN &

(COMPLETE)

(CORPLETE)

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Bonded Stepped-Lap Joint Output Summary Figure 55.

1

THIS PAGE IS BEST QUALITY PRACTICABLE

136

Figure 56.

Bonded Scarf Joint Input

BONDED -- SCARF JOINT ANALYSIS NAME - BOND-19A

مالىت المركسية

2 BOND SURFACES

BASIC DATA:

. 1 (TENSION) LCAC TYPE

LCAD (LB/IM) - 1888. CUERLAP (IN) - 2.000

ADHESTUE PROPERTIES:

	TAX. SHEAR STRAIN		1.10	ELASTIC SHEAR STRENGTH (PSI)	
	BOND THICKNESS	(IN.)	See.	LINEAR ELASTIC RODULUS (PSI)	
	DPERATING TEMP.	(F.)	70.	ELPL. SHEAR STRENGTH (PSI)	
	CURE TEMPERATURE (F.)	(F.)	120.	NON-LINEAR EL. MODULUS (PSI)	
ADHEREND	ADHEREND PROPERTIES:		(1131)	(RIGHT)	
	THICKNESS		•1•	.2 0	
	SUJUGOR 2. DAUDOV	(15 4)	.150€+08	. 1 006 • 08	
	POISSON'S RATIO		•	æ.	
	THERMAL CCEFF.			eE 10000 .	
	VIELD STRENGTH	(154)	150000.	70000.	
INTERNA	INTERNAL STRESSES (PSI):				

70000. 5000. 5000.

100.

		END	J	
		STRAIN END		
	1	STRESS	3429.	
	- LEFT -	OVERLAP	8.8	
TERNAL STRESSES (PSI):	RENOTE ADMEREND STRESS - LEFT + 100000. - RIGHT + 50000.	PEAK ADHESIVE SHEAR: OVERLAP		
Ē				

RE-AMALYZE & RETURN E OUTPUT TO PRINT FILE E OUTPUT TO SAVE FILE

.

Bonded Scarf Joint Output (Load≠0, Overlap≠0) Figure 57.

BONDED -- SCARF JOINT Amalysis Name - Bond-19c

2 BOND SURFACES

BASIC DATAI

LOAD TYPE - 1 (TENSION)

LOAD (LD/IN: -

ė

OVERLAP (IN) . 0.000

ADHESIVE PROPERTIES:

RAK. SHEAR STRAIN	AIN	1.10	ELASTIC SHEAR STRENGTH (PSI)	1008.
BOND THICKNESS	(IN.)	5 90 *	LINEAR ELASTIC MODULUS (PSI)	70000.
OPERATING TEND.	. (F.)	¥.	ELPL. SHEAR STRENGTH (PSI)) 5000.
CURE TEMPERATURE (F.)	RE (F.)	120.	NON-LINEAR EL. MODULUS (PSI)	5000
ADACREND PROPERTIES		(1731)	(RIGHT)	
THICKNESS		•1•	87.	
ADUNC'S MODULUS	(1 5 4) S	.1586+48	.1005-015	
POISSON'S RATIO	0	•	R.	
THERMAL COEFF.			0210000.	
VIELD STRENGTH	(154)	15000.	70000.	

JOINT STRENGTHS (LB./IN.)!

(END) ب ہے ہے ہے ہے 199913. 64975. 64975. 64975. 89913. EL.-PL. . (END) فہ کہ فہ کہ یہ قہ قب TRANSITIONAL 6999. 24959. 24959. 36945. 48833. 69833. # (END) اب اب کے لیے ہے جے لیے ELASTIC REMOTE ADMEREND STRENGTH - LEFT + 15000. - RIGHT + 14000. OVERLAP - N 7 9 8 9 19 ADNESTUE SHEAR STRENGTHSI

S OUTPUT TO PRINT FILE & OUTPUT TO SAVE FILE & RE-AMALYZE & RETURN

THIS PAGE IS BEST QUALITY PRACTICABLE

.

Figure 58. Bonded Scarf Joint Output (Load=0, Overlap=0)

223 ENDS OF JOINT MANE BEEN INTERCHANCED 222

BONDED -- SCARF JOINT MALVSIS MARE - BOND-19D

2 BOND SURFACES

BASIC DATAS

I (TENSION) . LOND TYPE

é - (H[/[]) 0001 OUERLAP (11) - 2.000

ADHESIVE P	ADHESIVE PROPERTIES:				
E.	THE SHEAR STRAIN		1.10	ELASTIC SHEAR STRENGTH (PSI) 4	Ę
-	DOND THICKNESS	(IN.)	.	LINEAR ELASTIC NODULUS (PSI) 70	70000.
0	OPERATING TEND.	(F.)	ġ.	ELPL. SHEAR STRENGTH (PSI) 5	5000.
U	CURE TEPPERATURE (F.)	(F.)	120.	NON-LINEAR EL. MODULUS (PSI) 50	50000.
ADIERCIND P	ADIEREND PROPERTIESI		(LEFT)	(Right)	
F	TWICHESS		•1•	Ş	
•	AURUS PODULUS	(154)	*158E+9E	. 1005-408	
•	POISSON'S RATIO		ŧ	Ŗ	
-	THERMAL COEFF.			eciene.	
F	VIELD STRENGTH	(164)	15000.	74446.	

JOINT STRENGTHS (LB./IN.):

OVERLAP 8.2

ADMEDIVE SHEAR STRENGTHS!

RENDTE ADVEREND STRENGTH - LEFT + 15000. - RIGHT + 14000.

S ELAGTIC (END) 2 TRANGITIONAL (END) 2 EL.-PL. (END) 2

139

Bonded Scarf Joint Output (Load=0, Overlap#0)

Figure 59.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

...

19849.

ب

12009.

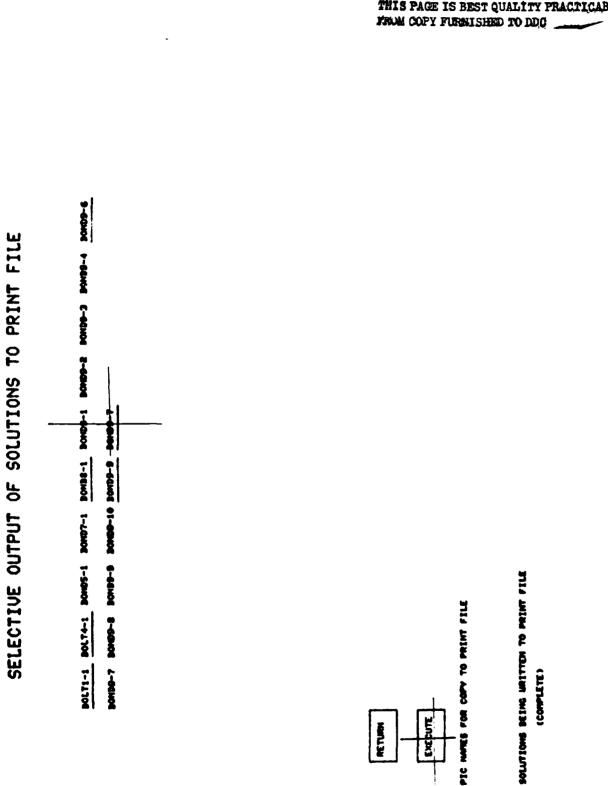
..

11903.

S RE-ANALYZE S RETURN

a curpur the PRINT FILE & CURPUT to SAVE FILE

COMPOSITE JOINT DESIGN PROGRAM


CODE OPTION

- 1 ANALYZE JOINT
- 2 SELECTIVE OUTPUT OF SOLUTIONS FROM SAVE FILE
- 3 CONSOLIDATE SOLUTIONS ON SAVE FILE
- EXIT

ENTER CODE: 2

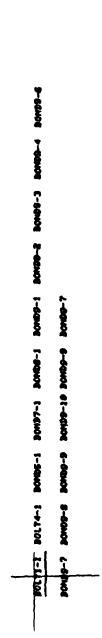
IS OUTPUT TO BE DISPLAYED? (1-YES, OTHERWISE WILL COPY TO PRINT FILE): .

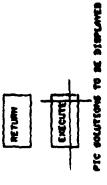
THIS PAGE IS BEST QUALITY PRACTICABLE BROM COPY FURNISHED TO DDC

فأنتقط فلأفقص ووالمتحاطة ومعارب ومستعاده والمتعاقبة فتناكرهم معاملا والمراجع والاستشاط والمستمر فللماني للم

ł

THIS PAGE IS BEST QUALITY PRACTICABLE


Selective Output of Solutions To Print File


Figure 61.

141

RETURN

142

Figure 62. Selection of Save File Solutions For Display

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC DALANCED BOLTED BOUBLE-LAP CONDOSITE JOINT ANALYSIS PRINTOUT ANALYSIS NAME - BOLTI-1

ANLUE	2000. 1.00 0. 1 (TITANUUN)		600.
INUT DATA:	JOINT LOAD (LB./IM.) JOINT R.S. TENSION FACTOR JOINT TENP (DEG. F.) R 0-DEGREE CANANITE PLICE BOLT TYPE NO. OF BOLT ROUG	JOINT THICKNESS (IN.) BOLT DIAMETER (IN.) DOLT SPACING (IN.) U/D RATIO 6-D ROU SPACING	OUTPUT DATA: JOINT LEICHT (LB/IN)
CODE		FAJ	

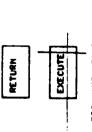
699.	
UE I CHT	
THIOL	

¥	-
STRENGTH	1
	1
	9
5	
	5
n	

FAILURE	TENSION
MACIN OF	8.
% OF LOAD TRANSFERRED	
NOLT NOL	-

TELEND OF DATA TEE

Example Solution Display Figure 63.


THIS PAGE IS BEST QUALITY PRACTICABLE

CONSOLIDATION OF SAVE FILE SOLUTIONS

وماسيحينا فالكحد فليرجدها وملاء

FIC MARES TO BE PURCED FROM SAVE FILE

Figure 64. Consolidate Solutions On Save File

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

SECTION II

ANALYTICAL PROBLEM DESCRIPTION FOR BONDED JOINTS

PHYSICAL PROBLEM DESCRIPTION

Figure 65 illustrates the various types of bonded joint geometries covered by this program. The difference between a joint and a doubler is that, in a joint, the entire load is passed through the bond whereas in a doubler, only some of the load is so transferred.

The loads in the adherends are basically in-plane, with no lateral applied loads. However, in the overlap area, there can be bending deflections and transverse stresses in one or more of the adherends as a result of eccentricities in load path. The analyses cover remote loads which are tensile, compressive, or in-plane shear.

The adherends are treated as homogeneous orthrotropic materials rather than as multi-component fiber/matrix combinations. Experimentally determined material stress-strain curves for the adhesive and adherends are used to cover the possible failure modes of adhesive shear, adhesive peel, adherend in-plane failure away from the bonded overlap, and adherend interlaminar failure in the joint area. Thermal properties, as well as mechanical, are provided for so that the analyses can account for the initial stresses induced by the bonding of metals to composites. The adherends are treated as linearly elastic to failure, while the adhesive is modelled as an elastic-plastic material to account for its considerable non-linear deformation prior to failure. The linear treatment of the adherends does not impose any real restriction on the utility of the programs because a sustained yield load on the adherends causes steady and progressive failure of the bond as long as that load is maintained.

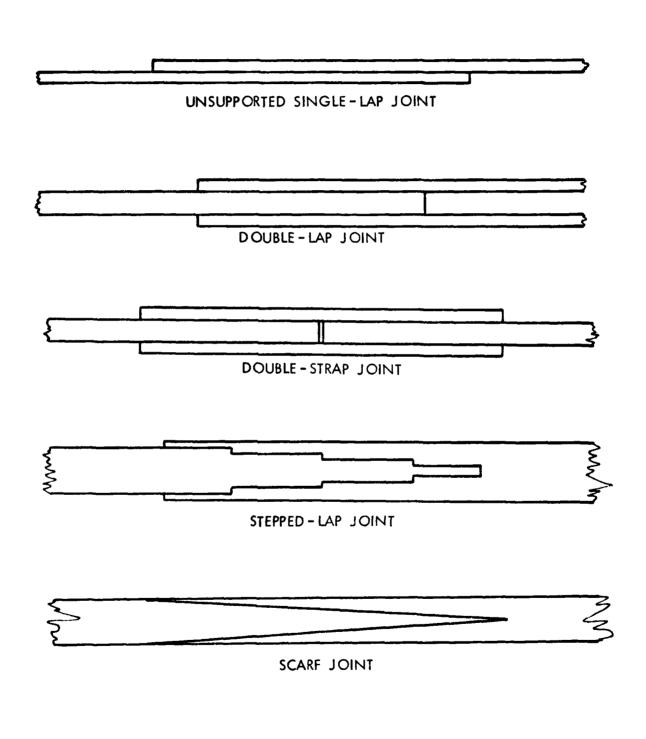


Figure 65. Bonded Joint Geometries

MATHEMATICAL MODEL DESCRIPTION

The mathematical models used are fully described $^{1-3}$, and the features accounted for here are outlined in the physical description. No published solutions cover all the governing variables precisely but it is felt that those of these analyses are the most important. The importance of accounting for adhesive non-linearity is paramount.

One key improvement found in these solutions and not found elsewhere is the accounting for adhesive plasticity in an explicit simple manner. Other more elaborate characterizations have been tried elsewhere. This has pre vented some solutions from being completed to workable form and made others too timecconsuming for production work. An explicit closed form analysis of double-lap bonded joints¹ has shown that any bi-linear (two straight lines) representation of adhesive shear characteristics leads to precisely the same joint strength provides that the adhesive models have the same failure stress, strain, and strain energy. Only the elastic-plastic limit of this family of solutions has led to explicit closed-form solutions for more complex joint geometries and this is why it has been adopted for this work.

A second key improvement pertains only to the unsupported single-lap joints. This is in the calculation of the bending moment at the ends of the overlap. Since this serves as a dominant boundary condition on the adhesive shear stresses and peel stresses as well as the adherend bending stresses, it must be determined as accurately as possible. With the exception of one Ph.D. thesis which handles this detail to the same accuracy², all other published solutions for single-lap bonded joints ase unnecessarily coarse approximations in determining that bending moment. This nullifies the

^{1.} Hart-Smith, L. J., "Adhesive-Bonded Double-Lap Joints", NASA CR-112235, January 1973.

^{2.} Hart-Smith, L. J., "Adhesive-Bonded Single-Lap Joints", NASA CR-112236, January 1973.

^{3.} Hart-Smith, L. J., "Adhesive-Bonded Scarf and Stepped-Lap Joints", NASA CR-112237, January 1977.

quantitative value of the subsequent portions of those investigations, even when they are qualitatively correct elsewhere.

Other published bonded joint solutions contain up to two factors not accounted for here. One is the ply-by-ply stress distribution within the laminate, as opposed to the homogeneous orthotropic model used here. Published assessments of this effect indicate that provision for interlaminar shear deformation alone does not have a major impact on the adhesive shear stress distribution but that the variation of the interlaminar tension stresses through the thickness does have a significant effect on the elastic adhesive shear stresses. The result of accounting for this factor is that the adhesive shear stresses peak slightly inside the end of the overlap, instead of right at the end where equilibrium demands that there be no stresses. This effect is particularly significant for unsupported single-lap joints and is not negligible for double-lap joints either, provided that attention is restricted to linearly elastic adhesive behavior. Near the ultimate joint strength, however, the adhesive non-linear behavior makes this effect less and less significant. Certainly, it is more important to account for adhesive plasticity, then, than for the variation in peel stresses through the thickness. Accounting for the latter raises the order and complexity of the governing differential equations. So far, no analyses have been able to account for both of these effects simultaneously.

The second factor treated more precisely elsewhere is that the adhesive failure criteria here are for shear and peel separately, instead of in terms of an interaction formula. The justification for the present simpler approach is as follows. When peel stresses are significant in comparison with the shear stresses, the former enforce a joint strength reduction. Therefore,

the interest in peel stresses is mainly to identify those geometries which need modifying to alleviate such stresses. In the satisfactory joint geometries, the peel stresses can be neglected in comparison with the shear stresses and, in identifying those unsatisfactory geometries in which the peel stresses are predominant, the shear stresses can be ignored. There is only a small range of geometries in which both stresses are significant simultaneously and even those can be improved to reduce the strength loss due to the peel stresses.

The solutions are formulated in terms of differential equations from classical continium mechanics. Some explicit solutions are derived. Others are exact, but implicit, and require an iterative solution. The scarf joint solutions use a finite number of coefficients of a power series solution. Consequently, the scarf joint strengths are obtained as the integral of these stresses, with considerable accuracy, but the internal stress distributions are usually not sufficiently accurate and are, therefore, not specified. The stepped-lap programs encounter potential numerical accuracy problems because of the very high shear stress gradients, which sometimes caused failure to converge. All such cases known have been eliminated by artifically dividing the step lengths automatically to restrict the arguments of the exponential functions. The internal operations are tested to 16 significant digits and the overall solutions are accurate to at least 6 significant digits. DESCRIPTION OF NUMERICAL METHODS

The details of the analysis methods are fully documented.

1-3

^{1.} Hart-Smith, L. J., "Adhesive-Bonded Double-Lap Joints", NASA CR-112235, January 1973.

^{2.} Hart-Smith, L. J., "Adhesive-Bonded Double-Lap Joints", NASA CR-11236, January 1973.

Hart-Smith, L. J., "Adhesive-Bonded Scarf and Stepped-Lap Joints", NASA CR-112237, January 1977.

LIMITATIONS

Other than the FORMAT limitations, there are no mathematical limitations on these programs. The input/output instructions are set up for U.S. customary units, rather than S.I. units, and changes would be necessary to accommodate other units.

SOLUTION ACCURACY

The solution printed will be accurate to at least the number of significant digits printed with only one exception. That exception is the case where the adherends are so thick and the thermal mismatch so great that the joint breaks apart without the application of any mechanical load. In most such cases, this situiation is identified by obviously self-inconsistent answers and by abnormally long run times because of failure to converge. A concealed failure case is that in which the stiffness imbalance and thermal mismatch cancel each other out for one particular load direction. In some such instances, the removal of the mechanical load result in failure due to the thermally-induced stresses. There is no special provision involved automatically for such a case. However, re-running the problem for a near zero load or reversed temperature differential (to simulate reversal of the load) will bring such situations to light.

DEFINITION OF NOTATION

The notation used is fully explained. 1-3

Hart-Smith, L. J., "Adhesive-Bonded Double-Lap Joints", NASA CR-112235, January 1973.

^{2.} Hart-Smith, L. J., "Adhesive-Bonded Double-Lap Joints", NASA CR-11236, January 1973.

^{3.} Hart-Smith, L. J., "Adhesive-Bonded Scarf and Stepped-Lap Joints", NASA CR-112237, January 1977.

SECTION III

ANALYTICAL PROBLEM DESCRIPTION FOR BOLTED JOINTS

PHYSICAL PROBLEM DESCRIPTION

Four types of bolted joints are treated here. These joints represent some of the more common techniques of joining major load carrying structure constructed with an advanced composite material of graphite-epoxy. These four joint types which are illustrated in Figure 66 are:

- o balanced double-lap
- o supported single-lap
- o unsupported single-lap
- o stepped-lap

The double-lap joint is one of the most common of all bolted structural joints. This type of joint is well suited for a wing centerline splice which is not exposed to the airstream. It is a fairly efficient joint which is free of eccentrically induced bending stresses. It is also a relatively easy and inexpensive joint to fabricate. The balanced doublelap joint is essentially a butted joint, symmetrically spliced by two plates of equal thickness. Away from the splice, a nominal skin thickness is necessary to carry the design tensile load, but at the joint this nominal thickness is built up to a thickness which can carry the concentrated stresses at the bolts. The built-up skins are then butted together and spliced by two identical plates, each of half the thickness of the built-up skin.

The stepped-lap joint is also a joint where the nominal thickness is built up, and which is free of eccentrically induced bending stresses. But rather than having a uniform buildup spliced by a uniform splice plate, the splice plate is stepped and fitted to a matching stepped buildup as shown in Figure 66. The stepped lap joint is a more efficient joint than the double-lap joint, but is considerably more difficult and costly to fabricate and fit. It is important to appreciate the reason for the greater efficiency of the stepped-lap joint. First of all, in the case of several bolt rows, with each row on a step, the transfer load distribution is more uniform than for the double-lap joint where the end bolts are so highly loaded. Secondly, and more significantly, the total thickness of the stepped-lap joint can be less than the double-lap joint. Where all of the load is in the buildup and it must be thickest, the splice plate need only be minimal, and conversely, when all of the load has been transferred to the splice plate, the buildup need only be minimal. As a further consequence, the bolt lengths can be shorter for the stepped-lap joint.

Single-lap joints may be either supported or unsupported. No bending stresses are assumed to exist in the supported single-lap joint, so that the structural behavior of that joint is nearly identical to a double-lap joint of half the thickness and no buildup. The support for this type joint is provided in the overlap region by connecting structure. The connecting structure can, for example, be rib flanges supporting the overlap region of a single-lap skin splice. Eccentrically induced bending stresses, do, however, exist in the unsupported single-lap joint, and these bending stresses are greatest at the two points just outside the overlap. Single-lap joints are the least expensive and easiest of all joint types to fabricate. Consequently,

the added expense and complexity of providing a joint buildup is generally rejected in favor of the inefficient uniform thickness. Of course, this thickness is considerably more than the nominal skin thickness discussed previously. Due to the extreme inefficiency of unsupported single-lap joints, their applicability should be reserved for low tensile load carrying secondary structure such as fairings, or perhaps rib and spar webs.

MATHEMATICAL PROBLEM DESCRIPTION

Development of a program which optimumly designs three of the four joint types has been completed. For a given joint loading, the number of bolt rows, bolt diameter, bolt spacing, and joint thickness are computed for the least weight joint. This search for the optimum design may be conducted for joints of the following type:

- o double-lap
- o supported single-lap
- o unsupported single-lap

For the stepped-lap joint an analysis is conducted which provides margins of safety for each bolt row with the associated failure mode for a given joint loading. The stepped-lap joint consists of too many variables for the search algorithm employed for the other three joint types.

In order to simplify the search for an optimum design, the number of independent variables must be kept to a minimum. For this reason, the math model associated with the three types of joints which considered here for optimum joint designs have the following restrictions.

- o same bolt sizes for all rows
- o same bolt spacing for all rows
- o edge distance of 3D
- o row pitch of 6D
- o two compositions of graphite-epoxy material
- o two bolt materials

In addition the double-lap joint is restricted to a balanced double-lap which requires that the two outer splice plates each be one-half the joint buildup thickness. Furthermore, the joint buildup is assumed to be gradual, with a slope of 15:1.

The two compositions of graphite-epoxy material were chosen to differ in the percentage of 0° plies since the stress concentration relief factors for these composite materials were found to be predominantly dependent on this percentage. The two percentages selected were 25% and 37-1/2% of the 0° plies. The 25% composition of course corresponds to the popular pseudo-isotropic layup. To date, stress concentration relief data has been accummulated for these two compositions only. Of course, the math model can be expanded to include more material compositions whenever this data becomes available.

The stepped-lap joint analysis allows for varying step lengths. Bolt diameters and bolt spacing may vary from one step to another. Step thicknesses of the splice plate and the joint buildup are independent (i.e., the joint need not be balanced). The following restrictions exist for the stepped-lap joint math model.

o bolts at center of steps

o two compositions of graphite-epoxy material

• two bolt materials

Strictly speaking, the bolts of all the rows are in line for the math models employed for the bolted joints. The coupling effects of the bolt rows has been neglected, so that the bolts in one row do not influence the stress state at another row. Therefore, the bolted joint analyses developed here are not strictly valid for stepped-bolts, but, depending on the row pitch, may not incur unreasonable error.

MATHEMATICAL DERIVATION OF SOLUTIONS

Four failure modes are treated for all of the bolted joint designs at each bolt row.

o tension at the hole

o bolt bearing

o bolt shear

o shear tear-out

Tension at the hole is frequently the dominant failure mode. The tension stress consists of two components, a tensile stress due to the bolt bearing on the hole, and a tensile stress due to a tension load running past the hole. The tension load running past the hole is the sum of the bolt loads upstream.

$$\sigma_{t} = K_{ti} \frac{P_{t}}{t(w-d)} + K_{t2} \frac{P_{b}}{t_{e}(w-d)} \qquad \dots (1)$$

- $P_b = P_b w N_x$ $P_t = P_t w N_x$
- Ktl = observed stress concentration factor associated
 with unloaded open hole

The bolt loads at a given row¹ and the load running past the row are expressed as fractional parts and are denoted by P_b and P_t , respectively. In the case of double-lap and single-lap joints for which an optimum design can be obtained, a subroutine based on a curve fit⁴ has been coded. For the stepped-lap joint, however, for which only an analysis is conducted, a more time consuming subroutine employing matrix inversion is used. The bolt load distribution is dependent on the flexibilities of the bolts, the joint flexibility, and the frictional force induced by tightening the bolts. The frictional forces, however, are neglected in this investigation since they depend on how far the bolts were torqued at the time of installation.

The observed stress concentration factors for composites are significantly lower than the elastic, isotropic stress concentration factors which are theoretically derived. The observed stress concentration factors are emperically derived from test data conducted for two different compositions. The two compositions tested differ in the percentages of 0° plies.

Hart-Smith, L. J., "Adhesive-Bonded Double Joints", NASA CR-112235, January 1973.

^{4.} Yen, S. W., "Investigation of Load Distribution Among Fasteners in a Multiple Row Double-Cover Butt Joint", MDC J5049-01 Douglas Aircraft Company Report, 1971.

25% 0° plies

 $K_{t1} = .5967 - .2331 d + (.4033 + .2331 d) K_{t1}_{e}$ $K_{t2} = .7311 - .1554 d + (.2689 + .1554 d) K_{t2}_{e}$

 $\frac{37-1/2\% \ 0^{\circ}-\text{plies}}{K_{t1} = .3923 - .3512 \ d + (.6077 + .3512 \ d) \ K_{t1}}_{e}$ $K_{t2} = .5949 - .2341 \ d + (.4051 + .2341 \ d) \ K_{t2}_{e}$

These expressions differ somewhat from those given in reference 1, due to the inclusion of a size effect which is introduced by the diameter, d. It should be noted that the above expressions are based on very limited data, especially with respect to the size effect. As more data becomes available, these expressions should be updated accordingly. The elastic, isotropic stress concentration factors associated with loaded and open holes are denoted in the above expression as K_{tl_e} and K_{t2} respectively. They are presented in reference 1 and are theoretically derived.

 $K_{t1_e} = 2 + (1 - d/w)^3$ $K_{t2_e} = 2 + (w/d - 1) - 1.5 \frac{(w/d - 1)}{(w/d + 1)} = 0$ $\theta = 1.5 - .5/(e/w) \quad \text{for } e/w < 1$ $\theta = 1.0 \quad \text{for } e/w \ge 1$

The effective thickness which is assumed to react the bearing stresses at the loaded holes is not allowed to exceed the bolt diameter. Although this demand is rather severe and perhaps overly conservative, some limitation is necessary to account for bolt bending and a host of other nebulous effects. Mathematically, the effective thickness is defined by

$$t_e = t$$
 for $t \le d$
 $t_a = d$ for $t > d$

For the case of the unsupported single-lap bolted joint, there is an additional amount of tension at the hole, caused by eccentrically induced bending stresses. This bending stress is derived¹ for the case of bonded joints and is a maximum at the edges of the bonded overlap. The bending stresses¹ are assumed for the case of bolted joints, but with an overlap distance of 2C taken as the distance between the outer rows of bolts.

$$\sigma_{\rm b} = \frac{6M_{\rm o}}{t^2} \qquad \dots \qquad (2)$$

 $M_0 = KN_x t/2$

$$K = \frac{1}{1 + \xi C + \frac{1}{6} \xi^2 C^2}$$

$$\xi^2 = D_X N_X = \frac{12(1-v^2)}{Et^3} N_X$$

^{1.} Hart-Smith, L. J., "Adhesive-Bonded Single-Lap Joints", NASA CR-112236, 1973.

If the sum of equations (1) and (2) is set equal to the allowable tensile stress, F_{tu} , the allowable joint load, N_x , associated with a tensile mode of failure can be determined as

$$N_{X} = \frac{F_{tu}t (1-d/w)}{P_{t}K_{t1} + P_{b} \frac{t}{t_{e}}K_{t2} + 3K (1-d/w)} \dots (3)$$

Since the values of P_t and P_b represent fractional parts of N_x which bypass the bolts and are transferred by the bolts of a particular row, the values of N_x computed from equation (3) vary from row to row. In other words, this value of N_x represents the maximum joint loading which can be applied before the tensile stresses at a particular bolt row exceed the allowable tenile stress.

The maximum loading which can be applied before the bearing stress at a particular bolt row exceeds the allowable bearing stress is determined from

$$N_{x} = \frac{F_{br}t}{P_{b}} \frac{d}{w} \qquad \dots \qquad (4)$$

The maximum loading which can be applied before a bolt shear failure occurs at a particular bolt row is determined from

$$N_{x} = \frac{\pi}{2} \frac{F_{su} \text{ (bolt) } d}{P_{b}} \frac{d}{w} \qquad \dots \quad (5)$$

In the case of single-lap joints, N_{χ} should be limited to half the value of equation (5), which is based on double shear. The maximum loading which can be applied before a shear tear-out failure occurs at a particular bolt row is determined from

$$N_{x} = 2(e/d - .5) - \frac{F_{su}t}{P_{b}} - \frac{d}{w}$$
 ... (6)

where the edge distance e/d = 3 is used. It should be noted that this formula is valid only when there are sufficient cross plies as in the case for the two composite mixes considered here. With an insufficient number of cross plies, it is pointed out⁵ that no amount of edge distance will prevent shear tear-out.

Finally, for each bolt row, there are four computed values of N_{χ} computed from equations (3) thru (6), each associated with a failure mode. Denoting the maximum of these four values as $\widetilde{N_{\chi}}$, the margin of safety for a particular bolt row is expressed in terms of the applied joint load, N_{χ} , by

$$M.S. = \frac{N_x}{n_x} -1 \qquad \dots \qquad (7)$$

The allowable joint load is then that values of n_{χ} which yields a M.S. = 0.00 for one of the bolt rows.

The joint weights which are minimized are actually weight penalties. The weight penalty of a joint is the additional weight due to the joint's splicing function. For the single-lap joint, it consists of the weight associated with one of the thicknesses extending over the overlap distance, less the bolt holes thru both thicknesses, plus the weight of the bolts themselves. For the

Hart-Smith, L. J., "Bolted Joints in Graphite-Epoxy Composites", NASA CR-144899, 1977.

stepped lap and bolted lap joints, the weight penalty consists of the weight of the joint buildup, less the nominal thickness, less the bolt holes, plus the bolts themselves. It should be noted that a comparison of a single-lap joint weight with a double-lap joint weight is unfair since the single-lap joint is not built up and the advantage of reduced nominal stresses is not utilized.

DESCRIPTION OF NUMERICAL METHODS

The search algorithm employed for determining an optimum joint design is a direct brute-force search procedure. The number of bolt rows is incremented from one to four. The diameter is incremented in sixteenths from 3/16 to 1-1/2. For each combination of bolt diameter and number of bolt rows, the thickness, t, and the w/d ratio are determined for minimum joint weight.

From equation (5)

$$N_{x} \stackrel{\leq}{=} \frac{\pi}{2} \quad \frac{F_{su} (bolt) d}{P_{b_{max}}} \quad \frac{d}{w}$$

so that an upper bound for w/d is

$$w/d \stackrel{\leq}{=} \frac{\pi}{2} = \frac{F_{su} (bolt) d}{N_x P_{b_{max}}}$$

The lower bound for w/d depends on whether a bearing design is demanded. When that is the case, from equations (3) and (4)

$$\frac{tF_{tu} (1 - d/w)}{P_t K_{t1} + P_b t/_{tc} K_{t2} + 3K (1 - d/w)} \geq \frac{tF_{br}}{P_b} d/w \geq n_x$$

The lower bound on w/d can be determined by solving these two inequalities for w/d and t simultaneously with an iterative process. That this process does indeed lead to a lower bound on w/d can at least be seen immediately for other than the unsupported single-lap joint. The first inequality leads to

$$w/d \stackrel{2}{=} \frac{F_{br}}{F_{tu}} \left({}^{P}t/_{P_{b}} K_{t1} + t/_{tc} K_{t2} \right) + 1$$

In addition to the above constraints imposed on w/d, the following practical limits on the feasible range of w/d have been observed.

$$3 \stackrel{<}{=} w/d \stackrel{<}{=} 12$$

With the range on w/d thus defined, the value of w/d which produces the least weight joint is computed using a quadratic interpolation routine. Thus for any combination of bolt diameter, d, and number of bolt rows, m, the value of w/d and t are determined. This then represents one feasible design, and there are as many as 88 of these feasible designs. The optimum design is then taken as the one with the least joint weight.

LIMITATIONS:

Although most of the limitations associated with the math model have already been noted, they are reported here for sake of completeness.

Double-Lap Joint

- o maximum of 4 bolt rows
- 0 $3/16 \stackrel{<}{=} bolt dia. \stackrel{<}{=} 1-1/2$ (in 1/16 increments)
- o two compositions of graphite epoxy material

25% 0° plies

37-1/2% 0° plies

• two bolt materials

steel

titanium

- o same bolt sizes for all rows
- o same bolt spacing for all rows
- o edge distance of 3D

• row pitch of 6D

o balanced joint

- o slope for joint buildup of 15:1
- $3 \leq w/d \leq 12$

Stepped-Lap Joint

- o maximum of 9 bolt rows
- 0 $3/16 \stackrel{<}{=} bolt dia. \stackrel{<}{=} 1-1/2$ (in 1/16 increments)
- o two compositions of graphite-epoxy material

25% 0° plies

37-1/2% 0° plies

o two bolt materials

steel

titanium

- o bolt rows at center of steps
- o slope for buildup of 15:1

 $3 \le w/d \le 12$

Single-Lap Joint

- o maximum of 4 bolt rows
- $3/16 \stackrel{<}{=} bolt dia. \stackrel{<}{=} 1-1/2 (in 1/16 increments)$
- o two compositions of graphite-epoxy material

25% 0° plies

37-1/2% 0° plies

o two bolt materials

steel

titanium

• same bolt sizes for all rows

• same bolt spacing for all rows

o edge distance of 3D

• row pitch of 6D

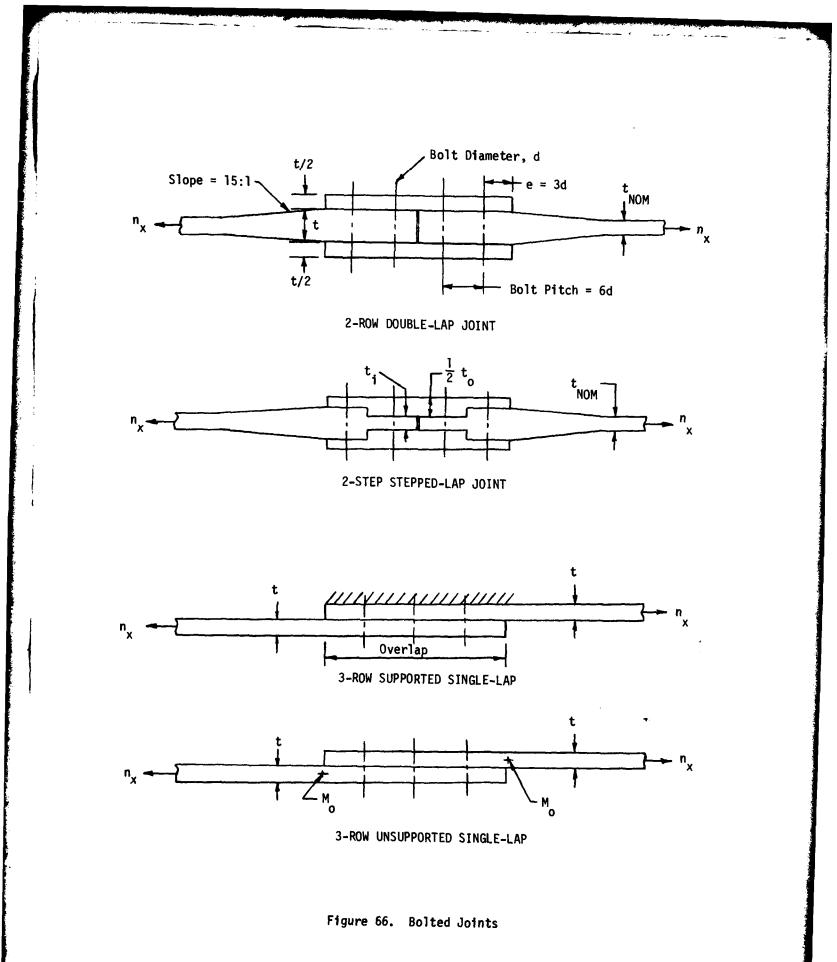
o equal thicknesses

o no buildup

 $3 \le w/d \le 12$

Many of the above range restrictions are due to very limited test data. These restrictions can be reduced as more complete test data becomes available. With the above limitations, a ceiling on joint loads of about $n_{\chi} = 40,000$ lb. per inch should be observed. Designs for greater joint loadings may become questionable and impractical.

Although many test cases of bolted joints were run for checkout purposes, future runs may indicate limitations not presently appreciated. Additional limitations may conceivably be required for the iteration and interpolation algorithms which are used, even though these codes have proved successful for all the checkout cases run to date.


The joint computer programs have been run with both IBM and CDC single precision accuracy with no problems.

SOLUTION ACCURACY

The most vulnerable area to inaccuracy of the solution is the test data which formed the basis of the observed stress concentration factors. For example, the size effect in these expressions was determined from results of only two bolt diameters. Also, the weight of the bolts is subject to some error, depending on the type of bolt and nut combination used. The effective thickness used to react bolt bearing may be a source of considerable conservation. The overall accuracy of the analytic solutions presented here are assumed to be adequate for the four types of bolted joints covered.

DEFINITION OF NOTATION

W	bolt spacing, inches
đ	bolt diameter, inches
t	joint thickness (builtup, where applicable), inches
N _X	allowable joint load, lbs. per inch
n _x	applied joint load, lbs. per inch
F _{br}	ultimate bearing stress allowable, PSI
F _{tu}	ultimate tensile stress allowable, PSI
F _{subolts}	ultimate bolt shear stress allowable, PSI
Fsu	ultimate joint shear stress allowable, PSI
е	edge distance, inches
K _{tl}	observed stress concentration factor for open hole
K _{t2}	observed stress concentration factor for loaded hole
^K tl _e	elastic stress concentration factor for open hole
^K t2 _e	elastic stress concentration factor for loaded hole
٩ _b	fractional part of loading transferred by bolt
Pt	fractional part of loading running past the hole
^t e	effective thickness reacting bolt bearing, inches
Mo	bending moment at edge of overlap, in/lbs. per inch
к	bending moment coefficient for single-lap joint M _o

+U.S.Government Printing Office: 1978 - 757-080/687