COMPUTER SYSTEM DESIGN USING A HIERARCHICAL APPROACH TO PERFORMANCE EVALUATION

BALASUBRAMANIAN KUMAR

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS
REPORT DOCUMENTATION PAGE

1. **REPORT NUMBER**

2. **GOVT ACCESSION NO.**

3. **RECIPIENT'S CATALOG NUMBER**

4. **TITLE (and Subtitle)**

 COMPUTER SYSTEM DESIGN USING A HIERARCHICAL APPROACH TO PERFORMANCE EVALUATION

5. **TYPE OF REPORT & PERIOD COVERED**

 Technical Report

6. **PERFORMING ORG. REPORT NUMBER**

 R-799; UILU-ENG 77-2246

7. **AUTHOR(s)**

 Balasubramanian Kumar

8. **CONTRACT OR GRANT NUMBER(S)**

 DAAB-07-72-C-0259; MCS 73-03488 A01

9. **PERFORMING ORGANIZATION NAME AND ADDRESS**

 Coordinated Science Laboratory
 University of Illinois at Urbana-Champaign
 Urbana, Illinois 61801

10. **PROJECT NUMBER**

11. **PROJECT NUMBER**

 University of Illinois at Urbana-Champaign
 Urbana, Illinois 61801

12. **REPORT DATE**

 October, 1977

13. **NUMBER OF PAGES**

 161

14. **MONITORING AGENCY NAME & ADDRESS (IF different from Controlling Office)**

15. **SECURITY CLASS. (of this report)**

 UNCLASSIFIED

16. **DISTRIBUTION STATEMENT (of this Report)**

 Approved for public release; distribution unlimited.

17. **DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)**

18. **SUPPLEMENTARY NOTES**

19. **KEY WORDS (Continue on reverse side if necessary and identity by block number)**

 Design
 Hierarchy
 Modeling
 Performance Evaluation
 Optimization

20. **ABSTRACT (Continue on reverse side if necessary and identify by block number)**

 The concept of a hierarchy of system models for the performance evaluation of computer systems is introduced. The characteristics and construction of such a hierarchy are discussed. Since it consists of models that span a wide range of complexity and cost, such a hierarchy is a very useful tool in the cost-effective design of computer systems.

 A procedure that uses such a hierarchy in computer system design is developed. The procedure uses the hierarchy to trade off cost and accuracy of system performance predictions. The viability and usefulness of the.
20. ABSTRACT (continued)

procedure are demonstrated by applying it to the optimization of the architecture of a complex computer system - the CPU-memory subsystem of the IBM System 360/Model 91. In most of the experiments conducted, the procedure converged, if not to the exact optimum, at least to within a very near region of the optimum. A sensitivity analysis procedure is then used to identify the exact optimum, as well as to determine the sensitivity of the objective function to changes in the system parameters. The efficiency of the overall procedure is shown to be considerably greater than that of the worst-case approach to system design.

Some conclusions are drawn about this class of single stream, highly pipelines, CPU-memory architectures. Extensions of the hierarchical approach to performance evaluation are proposed.
This work was supported in part by the Joint Services Electronics Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAB-07-72-C-0259 and in part by the National Science Foundation Grant under MCS 73-03488 A01.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release. Distribution unlimited.
COMPUTER SYSTEM DESIGN USING A
HIERARCHICAL APPROACH TO PERFORMANCE EVALUATION

BY

BALASUBRAMANIAN KUMAR

B.Tech., Indian Institute of Technology, 1973
M.S., University of Illinois, 1976

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1978

Thesis Adviser: Professor Edward S. Davidson

Urbana, Illinois
The concept of a hierarchy of system models for the performance evaluation of computer systems is introduced. The characteristics and construction of such a hierarchy are discussed. Since it consists of models that span a wide range of complexity and cost, such a hierarchy is a very useful tool in the cost-effective design of computer systems.

A procedure that uses such a hierarchy in computer system design is developed. The procedure uses the hierarchy to trade off cost and accuracy of system performance predictions. The viability and usefulness of the procedure are demonstrated by applying it to the optimization of the architecture of a complex computer system - the CPU-memory subsystem of the IBM System 360/Model 91. In most of the experiments conducted, the procedure converged, if not to the exact optimum, at least to within a very near region of the optimum. A sensitivity analysis procedure is then used to identify the exact optimum, as well as to determine the sensitivity of the objective function to changes in the system parameters. The efficiency of the overall procedure is shown to be considerably greater than that of the worst-case approach to system design.

Some conclusions are drawn about this class of single stream, highly pipelines, CPU-memory architectures. Extensions of the hierarchical approach to performance evaluation are proposed.
ACKNOWLEDGMENT

The author is struck by a strange feeling of inadequacy in trying to acknowledge Professor Ed Davidson's contribution to this work. Professor Davidson's guidance, friendship, encouragement and genuine personal warmth render conventional expressions of gratitude woefully inadequate. The author can only hope that some day, he himself will be able to contribute so much to someone else's work.

The author thanks all his colleagues and professors in the Department of Computer Science and the Coordinated Science Laboratory, especially Professor Dave Kuck, Janak Patel, Ravi Nair, Joel Emer, Trevor Mudge and Alan Cant for contributing so much to his education.

For making his stay in Urbana-Champaign so much fun, the author is deeply indebted to his friends Arvind and Sashi Parthasarathi.

Finally, the author thanks Ms. Hazel Corray for her impeccable typing, attention to detail and cheerful assistance.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>INTRODUCTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1 Problem Statement and Objectives</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Background</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3 Structure of the Dissertation</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2.1 Introduction</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.2 Performance Evaluation Concepts</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.3 System Modelling Concepts</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Types of Models</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Validity of Models</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.3.3 Other Characteristics of Models</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.3.4 Overview of the Model Building Process</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.4 A Hierarchy of System Models</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.4.1 Motivation Behind the Hierarchy Concept</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.4.2 Characteristics of the Hierarchy</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.4.3 Construction of the Hierarchy</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.5 System Optimization Using the Performance Model Hierarchy</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>3.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3.2 Description of the 360/91</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Pipelining and Parallelism in the 360/91</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3.2.2 CPU-Memory Architecture of the Model 91</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>3.3 Overview of the Model Hierarchy for the System</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>3.4 A Control Stream Model of the System</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3.4.1 The Control Stream Concept</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>3.4.2 Assignment of Logical Resources in the Model</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>3.4.3 Control Stream Generation</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>3.4.4 Terminology Used in the Model Description</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>3.4.5 Resources and Buffers in the Model</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>3.4.6 Control Flow of an Instruction Process</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>3.4.7 Control Flow of an Operand Process</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>3.4.8 Control Flow of a Memref Process</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>3.4.9 Approximations Made in the Model</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>3.4.10 System and Model Parameters</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>3.4.11 Performance Measurements Using the Model</td>
<td>46</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>5.6 Efficiency of the Optimization Procedure</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>5.7 Some Architectural Conclusions</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>5.7.1 A Final Design for the System</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>6 CONCLUSION</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>6.1 Summary of the Research</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>6.2 Accomplishments of the Research</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>6.3 Suggestions for Further Research</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>6.3.1 Shortcomings of the Optimization Procedure and Suggested Remedies</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>6.3.2 Further Research into the Hierarchy Concept and General Issues</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>LIST OF REFERENCES</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>VITA</td>
<td>161</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Problem Statement and Objectives

Computer systems can be viewed from three different aspects:

1) Structure
2) Function
3) Performance

The tasks that the system is expected to accomplish, constitute its function. Structure refers to the organization of the system components, and performance is a measure of how well the system accomplishes its function. Thus a well-designed computer system is one whose structure is such that it accomplishes its function to meet some performance and cost constraints. It is thus very important to understand the relationship between the performance of a computer system and its structure and function. This is true both during the design phase of a new system, as well as in the re-configuration of an existing system to optimize its effectiveness.

In this dissertation, we will present a hierarchical approach to the performance evaluation of computer systems. We will show that a hierarchy of system performance models is a cost-effective way of examining computer system design questions. We will lay down the characteristics that such a hierarchy should possess. We will then develop a procedure for the use of such a hierarchy in the design of a computer system. The principles embodied in our approach will be exemplified by a case-study of the design of a computer system.

In earlier work [KLM76a, 76b], we developed a technique for modelling a system, called control stream modelling. This is an effective
technique for the performance evaluation of complex computer systems by simulation. In this dissertation, we will use such a control stream model in our case-study.

1.2 Background

Performance evaluation of proposed computer systems, for the purpose of examining design questions, is not a new concept. For example, Ballance et al. [BAL62] describe a simulation model that was used in the design of the look-ahead unit of the IBM Stretch system. Boland et al. [BOL67] discuss a simulation model used in designing the memory unit of the IBM System 360/Model 91. However, these were used only to examine a few very specific system design questions. We know of no work in the field that looks at major overall architectural design questions, or a cost-effective tool for examining them. It is our belief that interrelationships between system design parameters can be understood, and real tradeoffs made, only when global, many-parameter models of the system are constructed and analyzed.

Hierarchical approaches to modelling have also been examined in the past, [SEK72, BRO72, BHA76]. However, these have been concerned with the reduction in the complexity of analytic models, by structural decomposition of the system model to form sub-system models that can be analyzed independently. Thus all the models in the hierarchy use the same modelling tools. We believe that ours is the first attempt to bring together a variety of state-of-the-art modelling tools, whose intrinsic range of cost and complexity make them very suitable for use in a hierarchy. We also believe that analysts in the past, have not laid enough emphasis on proper calibration and validation techniques for models. This dissertation will deal in detail with such concerns.
1.3 **Structure of the Dissertation**

In Chapter 2, we introduce some basic performance evaluation and modelling concepts. We then discuss the motivation behind the hierarchical approach to system modelling. The characteristics and construction of such a hierarchy are then described. Finally, we provide an overview of a system optimization procedure that uses a hierarchy of system performance models.

Chapter 3 introduces the system chosen for the case-study - the CPU-memory subsystem of the IBM 360/91. After a short description of the system architecture, the hierarchy of models used to analyze its performance is described. The two models used are a control stream model, alluded to earlier, and an analytical model built by regression techniques. The models are described in some detail in this chapter.

In Chapter 4, we develop a procedure for optimizing a system design, with respect to some objective function that includes system performance as a component. Using the hierarchy in the procedure, ensures accuracy of performance predictions, and convergence to an optimum system, and at the same time renders the procedure cost-effective. We also attempt to bound the approximation error of the hierarchy, and to estimate the efficiency of the optimization procedure as compared with some simple benchmark procedures.

Chapter 5 discusses the results of applying the procedure to the system chosen as a case-study, for three program traces. The procedure is shown to converge, if not to the exact optimum system, at least to within a near region of the optimum. Sensitivity analysis then identifies the exact optimum besides determining the sensitivity of the objective function to system parameter changes near the optimum.

Chapter 6 summarizes the research and offers suggestions for further research.
CHAPTER 2

A HIERARCHICAL APPROACH TO PERFORMANCE EVALUATION

2.1 Introduction

In this chapter, we first introduce some basic performance evaluation and system modelling concepts. We then attempt to classify models with respect to a variety of features. The hierarchical approach to performance evaluation is introduced and the construction and characteristics of such a hierarchy are discussed. Justification of a hierarchy of models as a powerful tool for the cost-effective design of computer systems is then given and an overview of a procedure that uses a hierarchy to optimize the design of a computer system is presented.

2.2 Performance Evaluation Concepts

The performance of a computer system is defined as the effectiveness with which the system handles a specific application. Various measures can be used to describe the performance of a computer system, one of the most common being the system throughput, i.e., the number of tasks processed by it in unit time. Once a measure has been chosen as the one that describes the system performance most satisfactorily, performance evaluation can be viewed from two different aspects:

1) The determination of the performance function F, such that

$$\text{System performance} = F(a_{v_1}, \ldots, a_{v_m}, w_{v_1}, \ldots, w_{v_n})$$

where the a_{v_i} are the system architecture parameters, and the w_{v_j} are the system workload parameters.

2) The estimation of values of the above performance function for a specific set of system parameter values

$$(a_{v_1}, \ldots, a_{v_m}, w_{v_1}, \ldots, w_{v_n}).$$
2.3 System Modelling Concepts

Any analysis of a system is only an analysis of a model of the system. This is true of system performance evaluation, which is an analysis of one aspect of the system - its performance. A model of a system can be defined as an abstraction that contains only the significant variables and relations of the system. We now discuss a few aspects of system modelling.

2.3.1 Types of Models

Models used for system performance evaluation can be divided into three broad classes [SV076]:

a) **Structural Models** describe aspects of individual system components and their interactions. They usually serve as the basis for more abstract models, by providing an interface between the real system and the more abstract models. An example is a block diagram model of a system in which each block is a system component.

b) **Functional Models** define the operation of the system such that the model can be analyzed mathematically or studied empirically. Examples include queueing models that have mathematical solutions for the performance measures of interest, and simulation models that provide empirical evaluations of performance measures.

c) **Analytical Performance Models** formulate the dependence of performance on the system workload and architectural variables. Such models are usually functions that are fitted to data obtained from functional models.

Some models fall across the above classes as we will see in the next chapter.
2.3.2 Validity of Models

A model is said to be valid when the performance measure values generated by it agree with the actual observations of system performance to within a desired range of accuracy. The range of validity of a model is the region in the multi-dimensional space of system parameters, over which the model is valid. Usually the range of validity and the accuracy of a model have to be traded off.

There are varying degrees of rigor to the validity of models [ZEI76]. At the least rigorous level, a model is replicatively valid, if it matches the performance values already acquired from the real system. At a more rigorous level, a model is predictively valid, when its predictions of performance are corroborated by observations of the system. At the most rigorous level, a model is structurally valid if it not only reproduces the observed system behavior, but truly reflects the way in which the real system operates to produce this behavior.

The choice of the rigor with which a model is judged for validity, depends on the specific purpose that it is being used for.

2.3.3 Other Characteristics of Models

Besides validity, some other aspects of models that we will be interested in, are:

1) Cost: This is usually tied to the computational complexity of the model, i.e., the work involved in using the model to make a single evaluation of system performance. Thus simulation models are usually quite expensive in their computational demands, while mathematical models such as queueing models and analytical performance models are quite inexpensive.
2) **Amount of information obtainable from the model**: Very often, the analyst is interested in more than a single measure of system performance. For example, in a system which is an interconnection of resources, resource utilization is as important a measure as system throughput, since it can point to system bottlenecks. Models with higher structural validity tend to be capable of yielding more information than models of merely predictive validity. Further, the detail with which such information is available varies considerably. Thus, a queueing model may attempt to yield accurately only the average utilization of a resource, while a simulation model can yield an entire histogram of resource utilization.

2.3.4 Overview of the Model Building Process

Regardless of the type of model chosen, there are certain common features in the process of building up the model as a tool for performance evaluation. The following are some of the basic phases of the model building process:

a) **Choice of experimental frame**: The experimental frame characterizes a limited region of the entire system parameter space, in which the system is to be modelled. All the aforementioned characteristics of a model are only with respect to the experimental frame for which the model is constructed. Thus a model may be invalid in an experimental frame other than the one chosen, but only its validity in the chosen frame is of importance.

b) **Model calibration**: Calibration is the process of estimating the parameters that describe the model in the experimental frame. For example, the parameters of an analytical model that expresses performance as a linear function of the system parameters,
\[P = \beta_0 + \sum_{i=1}^{m} \beta_i \cdot v_i + \sum_{j=1}^{n} \gamma_j \cdot w_j \]

are the coefficients \(\beta_i \) (\(i = 0 \) through \(m \)) and \(\gamma_j \) (\(j = 1 \) through \(n \)). The calibration of such a model may involve the fitting of a linear regression equation to observed values of system performance for varying values of the system parameters.

c) Model validation: Once a model has been calibrated, it can be used to predict system performance. Validation is the process of establishing the validity of the model by comparing model predictions of performance with observations of system performance. If the validity is satisfactory, the model predictions in the experimental frame will be accepted. If the validity is poor, the model may have to be recalibrated with the new observations of performance. Calibration and validation for any model can simultaneously improve to a point; beyond that point, they may have to be traded off. Thus, calibration using data from a larger number of observations than the order of complexity of the model may cause poor overall validity in the region. On the other hand, the same model may yield an acceptable degree of validity for more local sub-regions.

d) Prediction using the model: Once a model has been calibrated and validated in an experimental frame, it can be used to predict system performance in that frame. However, if the experimental frame should ever change, the process of calibration and validation will have to be repeated for the new frame.

2.4 A Hierarchy of System Models

We now introduce the concept of a hierarchy of system models for performance evaluation and discuss the motivation behind the concept and
the characteristics that a hierarchy needs to satisfy to be a cost-effective design tool. We also discuss procedures for the construction of a hierarchy.

2.4.1 Motivation Behind the Hierarchy Concept

We will assume that a computer system analyst is evaluating the performance of a computer system for one of the following reasons:

a) To design a computer system which is the optimum system for some objective function that includes system performance as a component.

b) To optimize an existing computer system for an objective function as in (a).

In either event, the analyst is interested in obtaining an optimum system configuration.

Since optimization procedures usually use an iterative scheme to converge to the optimum, a number of evaluations of the objective function will be called for. This requires that the performance component of the function be evaluated with minimum cost, so as to keep the cost of the optimization procedure within reasonable bounds. On the other hand, the performance evaluation must be sufficiently accurate to meet the accuracy demanded of the optimization procedure. A performance model hierarchy provides a cost-effective trade-off between accuracy and computational cost, in much the same way that a memory hierarchy is a cost-effective tradeoff between memory access time and cost.

Further, performance information of varying levels of detail is needed at different stages of the system design process. Thus at the initial stages of design, crudely derived performance information can be used. Later, as the major design features are closer to convergence, more detailed
and accurate performance information will be needed. A performance model hierarchy, as defined below, is compatible with this need.

2.4.2 Characteristics of the Hierarchy

The hierarchy of performance models will have the following characteristics:

The low end of the hierarchy will contain models of high structural, and consequently high predictive, validity. These models tend to resemble the resource configuration of the system. It is expected that they will have a broad range of validity in the system parameter space and that they are capable of yielding detailed performance information of great accuracy. The price to be paid for these desirable qualities is in the high computational demands of these models.

The high end of the hierarchy will contain models of only predictive validity and their range of validity in the system parameter space is much more limited. The performance information that they yield generally has less accuracy than the low level models and is apt to be of a summary, i.e., less detailed, nature. However, they have the advantage of being very much less demanding in their computational requirements.

Intermediate levels of the hierarchy will have intermediate values of these characteristics. Thus travelling up the hierarchy, one sees models that have:

1) Less structural validity
2) More limited range of validity
3) Less detailed performance information
4) Less accurate information
5) Lower computational requirements.
In terms of the types of models described in Sec. 2.3.1, there will be structural models at low levels, functional models at intermediate levels and analytical models at high levels of the hierarchy.

2.4.3 Construction of the Hierarchy

The actual models themselves must be chosen from the state-of-the-art modelling tools available. Thus a typical 3-level performance hierarchy may include a simulation model at the low level, a queueing model at the intermediate level and an analytical model at the high level.

At each level, model calibration will be done using only the performance information of models lower in the hierarchy. Since the model information content increases as we go down the hierarchy, the information obtained from lower level models should be sufficient to calibrate higher level models. Furthermore, calibration may cause a degradation in accuracy. Thus to achieve a certain degree of accuracy for a model, one must use models of higher accuracy to calibrate it. Using only lower level models for calibration ensures this, since accuracy increases as we go down the hierarchy. The calibration procedures will obviously be tailored to the models involved in the calibration.

When the hierarchy is being used to optimize an existing system, the hierarchy can be constructed in a bottom-up fashion since the structural information needed to construct the lower level models is available. However, when the hierarchy is to be used in the design of a system, this information is not available and the construction may have to start at intermediate levels of the hierarchy. For example, an analysis of queueing models of various server configurations can be used in the initial stages to decide the gross structure of the system. As the structure begins to emerge, low-level models can be constructed to examine finer structural detail.
2.5 **System Optimization Using the Performance Model Hierarchy**

We now outline a procedure for cost-effective use of the performance hierarchy in system optimization. We assume that the system is to be optimized with respect to some objective function that has system performance as a component.

Figure 2.1 is a flow chart depicting the optimization procedure. The salient features of the procedure are:

1) The cost of the procedure is kept down by using a high-level model for performance prediction in the iterative procedure that searches for the local optimum.

2) However, the accuracy of the procedure is ensured by the validation check on the high-level model after each prediction of the local optimum. If the check fails, the more accurate low-level model is called at the newly predicted optimum, and the extra information is used to re-calibrate the high-level model in an experimental frame around the new point.

3) After the validation check has proved successful, an analysis is conducted to determine the sensitivity of the objective function to changes in the system parameters around the optimum. This is needed for two reasons:

 a) To locate the true optimum in the local region, since the predictions of the high-level model are accurate only to a certain degree.

 b) To establish the relative importance of the various parameters around the optimum.
Choose initial experimental frame

Run LLM for an initial set of points in the frame. Choose initial reference point

Calibrate HLM at the reference point

Using HLM, optimize the system design

Is HLM calibrated at the predicted optimum?

Run LLM at predicted optimum. Choose it as the new reference point.

Sensitivity analysis

Need to examine new frame?

Stop

Choose new experimental frame

Figure 2.1 System optimization procedure.
Too high a sensitivity to some parameter, may lead the analyst to decide to explore another experimental frame.

In Chapter 4, we discuss such a procedure tailored to study a specific system in detail, touching on aspects such as efficiency and error bounds of the procedure.
CHAPTER 3

MODELS FOR A COMPLEX COMPUTER SYSTEM: THE IBM 360/91

3.1 Introduction

As a case-study of computer system design using the hierarchical approach to system performance evaluation, we chose the CPU-memory subsystem of the IBM System 360/Model 91 as a base. A hierarchy of models was built to evaluate its performance, as a function of some chosen system parameters. The hierarchy was then used to arrive at a system design, in terms of the chosen parameters, that had the optimum cost/performance value. In this chapter, we describe the system and the models in the hierarchy.

3.2 Description of the 360/91

The stated objective of the Model 91 was to attain a performance greater by one or two orders of magnitude over the IBM 7090 [AND67a]. Since circuit and hardware technology advances could provide only a fourfold performance increase, architectural advances were expected to provide the rest of the performance improvement.

3.2.1 Pipelining and Parallelism in the 360/91

The outstanding feature of the Model 91 was the extensive use of pipelining and parallelism throughout the system.

Pipelining is the technique by which the hardware along a processing path is split up into a number of segments with temporary storage between them. Then, when an instruction proceeds from one segment to the next, a succeeding instruction is allowed to use the first segment, even though the first instruction has only barely begun to be processed. Thus, the processing rate is determined, not by the time to traverse the entire processing path, but by the time spent in each segment (see Figure 3.1). The instruction
Figure 3.1 Illustration of pipelining between successive instructions.
processing functions of the 91 were split into the segments shown in Figure 3.2. Thus it is possible to enter instructions into this pipeline once every clock cycle, this cycle being 60 nsec.

Parallelism involves the replication of often used hardware units, as well as the possibility of simultaneous use of dissimilar hardware units by different instructions. In the Model 91, the execution function is divided between two separate units - for fixed and floating point instructions, respectively. Further the floating point unit has two separate sub-units - an add unit and a multiply/divide unit. Thus, instructions of these three classes can be executed in parallel.

3.2.2 CPU-Memory Architecture of the Model 91

The organization of the system (see Figure 3.3) will be described under the following division of functions:

1) The instruction unit
2) The execution units
3) The memory unit
4) Buffering in the CPU.

3.2.2.1 The instruction unit

Instructions are pre-fetched from memory and stored in a 64 byte instruction buffer. Pre-fetching buffers the instruction unit against unpredictable memory delays. The instruction unit extracts instructions from the instruction buffer at the rate of one every clock cycle. In the next cycle, the instruction is decoded by the decoder. If it is a fixed or a floating point instruction, it is dispatched to the appropriate execution unit on the next cycle. Concurrently with the dispatching of the decoded instruction, if the instruction needs an operand from memory
Figure 3.2 Stages in the execution of a typical floating point storage-to-register instruction.
Figure 3.3 System 360/91 organization.
the address parameters (index register, base register and displacement) are combined to compute the operand address, which is then sent to memory on the next cycle, as a fetch request.

The instruction unit also executes branch instructions after decoding them. Unconditional branches cause a switch in the instruction stream, and instruction fetching is done from the target of the branch. If a conditional branch is encountered, and the data on which the branch decision depends has not yet been computed, the CPU enters "conditional mode". Decoding and issuing of instructions continue along the path that reflects the best guess as to the decision of the branch. When the branch is finally decided, these instructions will be cancelled if the guess was wrong, and activated for execution if the guess was right. For most conditional branches, the guess is that it will not be taken. If, however, the target of the branch is back along the stream within 64 bytes of the location of the branch, i.e., for program loops that fit in the instruction buffer, the CPU enters "loop-mode" and assumes that the branch will be taken. For further iterations of this program loop, the instructions will be held in the instruction buffer, and need not be fetched from memory. To further reduce the performance degradation due to a wrong guess, 16 bytes of instruction words are fetched from the alternate branch path and stored in a separate buffer.

3.2.2.2 The execution units

As described earlier, concurrency of execution is increased by having separate units for executing fixed and floating point instructions.

a) The fixed point unit: Within the fixed point unit, execution proceeds serially, one instruction at a time. Many of the instructions require only one clock cycle of execution time.
b) The floating point unit (see Figure 3.4) is subdivided, for further concurrency, into an add unit and a multiply/divide unit [AND67b]. The add unit is pipelined to start an add operation every cycle, and requires two cycles to complete an operation. The multiply unit uses a carry-save adder tree to perform a multiply in three cycles, and an iterative Newton-Raphson technique to perform a divide in 12 cycles. An internal bus, the Common Data Bus, links these units, using the Tomasulo algorithm [TOM67]. It correctly sequences dependent streams of instructions, but permits those which are independent to be executed out of order.

3.2.2.3 The memory unit

Core memory with an access time of 600 nsec and a cycle time of 720 nsec was used in the 360/91. As the CPU clock cycle is 60 nsec, there is a wide disparity between the memory bandwidth and the projected CPU bandwidth. To increase the effective bandwidth of the memory unit, a number of features were incorporated:

a) The memory was 16-way interleaved, i.e., it was split into 16 separate modules or banks, with addresses interleaved so that consecutive addresses reside in consecutively numbered banks. Each bank can be cycled independently, so that, at any given time, more than one bank may be performing an access.

b) Incoming references from the CPU are buffered, if they cannot be honored for any reason such as a bank conflict, unavailability of the data to be stored, or data dependency on a previous, uncompleted reference. Thus requests can be sent to the memory unit at the rate of one per CPU cycle.
Figure 3.4 The floating point unit organization.
c) A check is made to see if an incoming fetch reference refers to the same location as a previous reference that is currently being serviced. If a match occurs, the second reference can be honored almost at the same time that the data for the first reference is finally available. This is called the multi-access feature [BOL67].

3.2.2.4 Buffering in the CPU

Buffers in the system (see Figure 3.3) provide queueing which smooths the instruction flow. They allow initial segments of the pipeline to proceed with processing despite unpredictable delays down the line due to busy resources, data dependencies or memory accesses. As described earlier, the instruction buffer holds pre-fetched instructions for decoding, and also holds small program loops in loop-mode. In the memory unit, buffers are provided to hold references delayed for any of a number of reasons. Branch target buffers hold instructions fetched from the alternate path of a two-way conditional branch that has not yet been decided.

In the execution units, operation buffers hold decoded instructions sent to them by the instruction unit. Operand fetch buffers provide storage into which the memory returns operands, to be used by the execution units when necessary. Operand store buffers hold operands sent by the CPU until they are stored in memory.

Thus buffering plays an important role in ensuring autonomous execution in the various functional units.

3.3 Overview of the Model Hierarchy for the System

We now outline the hierarchy of models used in the performance analysis of the case-study system. The hierarchy consists of two levels:
a) A control stream model at the low level

b) An analytical model at the high level.

The control stream model is a simulation model, that is driven by a control stream derived from program traces. It is a hybrid between a structural and a functional model (see Sec. 2.3.1), in that its resource configuration, while resembling that of the real system, is an approximation of it. As such it has reasonably high structural validity, yields accurate and detailed information, but is computationally demanding. It should be pointed out that large studies of this kind should use a model of even greater structural validity at the lowest level, i.e., without some of the approximations that were incorporated in the control stream model used in this research. However, for this study, the control stream model is taken as the structural model for the system.

The analytical model is a linear, first-order regression equation, linking system performance, i.e., instruction throughput, with the system parameters. It is predictively valid only in the limited region of its calibration, yields values of only one performance measure, but is trivial to compute.

3.4 A Control Stream Model of the System

In this section, we describe a control stream model of the IBM 360/91 CPU-memory system. This model is the low level in the two level hierarchy of models used to study the system. Consequently its complexity and computation time are significant. To predict system performance using the model, a simulator of the model has to be built, and driven by control streams representative of programs in a desired environment. The model can be used to provide a wide variety of performance statistics of the system.
The model described in this section is a simplification of an earlier control stream model of the system, that is described in [KUM76a] and [KUM76b]. The assumptions about the system that are reflected in this model, are explained in Sec. 3.4.9.

3.4.1 The Control Stream Concept

The simulator of a control stream model is not intended to perform any real computation. The sole purpose of the model is to provide timing and resource usage statistics for typical system usage. Recognition of this fact enables a significant reduction in model complexity, by the introduction of the concept of a control stream.

In the real system, an instruction, while it is being fetched from memory and processed by the CPU, traverses a flow path in the system. This flow path through the system is different for different types of instructions. Moreover, in concurrent CPU-memory systems, the data that is needed by an instruction will have its own independent flow path through the system. Typically, both the instruction and its data traverse their flow paths simultaneously.

The model of the system consists of resources which correspond in some fashion to the resources comprising the real system. In the model, a unit of traffic, or process, is generated corresponding to the starting of an instruction along its flow path in the real system. However, no distinction is made in the model between the instruction flow and the data flow caused by that instruction in the real system. The two taken together form the control flow of that instruction and are reflected in the flow path of the corresponding process in the model. Thus the instruction and data streams in the real system are replaced by a control stream in the model.
The traffic for a simulator of the model, is derived from a program execution trace by one of the methods to be discussed in Sec. 3.4.3. During simulation, however, no attention is paid to the actual data used or produced by the program. Thus the model will be concerned only with the data flow path (inasmuch as it is a portion of the control flow path) and not with the data itself. Since only timing statistics are important, the processing of a traffic unit by a resource in the model consists solely of occupancy of the resource by the traffic unit for the characteristic period of time for that resource in the real system.

3.4.2 Assignment of Logical Resources in the Model

The model associates a logical resource with combinations of various steps in the execution sequence of an instruction. The processing time of each resource is fixed by the combination of execution steps that it represents. Each of these resources can process only one unit of traffic at a time. Thus, the division of the execution sequence and assignment to associated resources is made only as fine as needed to describe the degree of concurrency possible in the system. For example, if there are two distinct consecutive steps in the execution sequence which can never be simultaneously in progress for two different instructions, and if the output of the first step is the only input to the second step and to no other step, then a single resource in the model is assigned to the combination of the steps.

A consequence of this technique is that the model will have no more resources than required to reflect system timing and dependency accurately. This assignment reduces the model complexity significantly over one which assigns a resource to each logical execution step. For
example, a system with no concurrency, i.e., no instruction look-ahead and no execution unit pipelining or parallelism, is modelled as a single resource with variable, but deterministic, processing time.

3.4.3 Control Stream Generation

To exercise the simulator of the model, a control stream to be processed by the simulator must be generated. Since the simulator does not perform any stream computations, each stream instruction need only be sufficiently described so as to enable the simulator to determine its dynamic flow. This information would minimally consist of:

1) The static control flow path of the instruction, i.e., the resources needed to process the instruction in the order that they are needed. For example, in a concurrent system, some of the resources needed by an instruction may be the instruction decoder, a particular execution unit, a memory location from which an operand is to be fetched and busses to transmit the operands to the execution unit.

2) The dependency of this instruction on instructions preceding it in the stream. This information is necessary for the simulator to set up the interlocks to ensure correct sequencing of the stream. The execution of a program on a concurrent processor gives rise to three kinds of dependencies [TJA70]:

a) Data dependency: this occurs when two instructions reference the same operand location. In a concurrent system, they have to be processed so that they reference that location in the correct sequence as dictated by the program.
b) **Procedural dependency:** this occurs when there is a conditional branch instruction in the stream. Execution beyond the branch cannot proceed until the branch decision is made and one of two paths is chosen for execution.

c) **Operational dependency:** this is caused by two instructions attempting to use a processor resource at the same time. This results in a conflict that has to be resolved by some priority mechanism.

Thus, for a control stream to be executed by the simulator of the model of a concurrent system, the data dependency information for an instruction would point to the most recent instructions that read from or wrote into the operand locations referenced by this instruction. The procedural dependency information would point to the most recent conditional branch instruction which must be executed before this instruction is executed. Note that the control stream represents a single execution of a single program. Thus all activity following branches is actually known by the simulator *a priori*. Execution is merely delayed until such time as the branch would have been completed in the real system. The operational dependency of the instruction is completely specified by its static control flow path through the resources of the system.

3.4.3.1 Control stream generation from program traces

The instruction execution trace of a real program is gathered while it executes on the real system that is to be modelled, or a compatible system. Each instruction in the trace is then mapped into a control stream instruction, specified by the set of parameters needed to describe it to the simulator. The static control flow path of each instruction is entirely determined by the types of operands that it uses and the operations
that it performs on them. Data dependency information is gathered from a simple forward scan of the trace by maintaining a list of operands used and the most recent instructions that used them. This list need only keep track of dependencies on a certain number of most recent instructions, on the grounds that instructions further back would have completed execution and will not delay instructions far ahead in the stream. For every instruction, the data dependency information is then derived by scanning the list for the operands used by this instruction and specifying the most recent instructions to use those operands. The list is then updated. Data dependency interlocks built into the simulator use this information to prevent improper out-of-sequence usage of operands.

Procedural dependency is specified by the occurrence of conditional branches in the stream, and their "data dependencies"—thus, no extra scanning of the trace is necessary to gather this information. Operational dependency is specified by the static control flow paths of the instructions in the stream—here too, no extra scanning of the trace is necessary.

3.4.3.2 Synthetic control stream generation

To synthesize a control stream, a comprehensive, yet tractable, model of the workload has to be used as the base. One approach to modelling the workload is by statistical means. The workload of programs in a given environment can be characterized by a number of statistical distributions. The information obtainable from these distributions must be sufficient to derive the main attributes of control streams described earlier. For example, resource demands of the control stream can be derived from an instruction frequency distribution. Data dependency information for
instructions in the control stream can be derived from a distribution of
the number of intervening instructions between two instructions accessing
the same operands.

Procedural dependency arises from the occurrence of algorithmic
control constructs in programs. Almost all the branch instructions in
programs can be attributed to the occurrence of one of the following high
level language features: conditional constructs (if-then-else and case
statements), iterative constructs (for and while statements) and proce-
dures (calls and returns). Thus we feel that the procedural dependency
information for a control stream is best derived from distributions des-
cribing the occurrence of high level language features in that class of
programs. For example, iterative constructs can be described by distrib-
utions of the iteration count and the length of the iteration (in
instructions).

We now outline a procedure for stream generation using these
statistical distributions. The instruction frequency distribution is
sampled, to decide the resource usage pattern of the next instruction in
the stream. If it is an instruction that can have a data dependency,
data dependency information is generated for it by sampling the data
dependency distributions. If it is a branch instruction, a high level
language construct will be generated, depending on the type of branch at
hand. For example, a branch-on-counter-condition instruction, such as
BXLE or BXH on the IBM 360, is most often used with for-loops by computers,
and will trigger the generation of a for-loop construct in this scheme.
This will include generation of an iteration count and the length of the
iteration (in instructions) from the corresponding distributions. A
procedure similar to the above is then followed for generating the instructions in the construct. When the entire construct has been generated, the outer procedure for generating the main stream is continued. The stream length is chosen by sampling the program length distribution (in instructions), and the generation procedure is stopped when this length has been reached.

The above procedure follows a first order approximation since it assumes that there is no correlation between the occurrence of successive instructions in programs. More refined procedures would replace the instruction frequency distribution by higher order distributions that describe the occurrence of instruction pairs, triplets, etc.

3.4.4 Terminology Used in the Model Description

The simulator of the model was implemented in SIMULA [BIR73]. Consequently, much SIMULA terminology has been used in the description of the model that follows. The basic time unit of the model is one clock cycle of the CPU. The units of traffic flowing through the system are processes—these are the dynamic entities of the simulation. A resource models some consecutive stages in the execution process, as described in Sec. 3.3.2. A buffer has the same function in the model as in the system—temporary storage for a process while it waits for a certain event to occur.

When a process needs a resource, it gets control of the resource, occupies it for the characteristic time of that resource and then relinquishes control of the resource. If the resource is not available, i.e., it is occupied by another process, the process waits, either in a buffer or, in the resource that it is currently occupying, until that resource is freed and this process has the highest priority among those waiting to use that resource. As a consequence, a process frees a resource that it is occupying,
only after it has acquired the resource that it needs next, or after entering a buffer where it will wait for its next resource.

To model distinctive sections of the control flow path of an instruction, different processes are used. Thus an instruction process models the flow through the instruction unit and the execution units. An operand process models the independent flow of an operand that the instruction needs. A memref process models the flow through the memory unit for any memory reference - an instruction fetch, an operand fetch or an operand store. Thus the control flow of a single instruction may involve the creation and termination of many processes, depending on its path. Appropriate synchronization mechanisms have to be provided for communication among all these processes. Further, the entity in the real system that a process models may change with time. Thus an operand fetch from memory involves the following sequence of actions:

a) The instruction process that needs the operand creates an operand process to model the computation and the transfer of the operand address to memory. This operand process may undergo delays due to resource conflicts, data dependency, etc. The instruction process, in the meantime, traverses its control flow path concurrently.

b) The operand process creates a memref process to model the memory access and waits for it to return.

c) The memref process may undergo delays due to memory conflicts etc. On completing the memory access, the memref process signals the parent operand process and is terminated.

d) The operand process now models the actual operand to be transferred to the execution unit. After doing so, it signals the parent instruction process and is terminated.
In the description of the model, a process and the type of entity that it models in the real system will be used interchangeably. For example, "instruction" will be used in place of "instruction process," except when ambiguity may result. Further, in place of the pseudo-processing that a model resource does, the function accomplished by the corresponding resource in the real system is quoted for descriptive purposes. For example, an instruction process will be described as being "decoded in one cycle," whereas all that occurs in a simulation of the model is that the process occupies the resource modeling the decoder in the real system, for one cycle. In a similar manner, an instruction process will be quoted as "fetching an operand from memory" to denote the memory operand fetch sequence described earlier.

3.4.5 Resources and Buffers in the Model

1) IBUF - the instruction buffer: holds pre-fetched instructions.
2) IEX - the instruction extractor resource: extracts the next instruction from IBUF in 1 cycle.
3) IDEC - the instruction decoder resource: decodes the instruction sent to it by IEX in 1 cycle.
4) FXIU - the fixed point unit instruction decoder resource: decodes fixed point instructions in 1 cycle and executes fixed point loads and stores.
5) FXEU - the fixed point execution unit resource: executes fixed point computational instructions. Most of the instructions take 1 cycle, with multiplies and divides executing in 11 and 36 cycles respectively [RIS72].
6) FLIU - the floating point unit instruction decoder resource: decodes floating point unit instructions in 1 cycle and executes floating point loads and stores.

7) FLAD1 and FLAD2 together constitute the floating point unit add resource: Each represents one segment of a 2-segment pipeline that executes floating point add instructions in 2 cycles, but can start a new add operation every cycle.

8) FLMD - the floating point multiply/divide resource: executes floating point multiply and divide instructions in 3 and 12 cycles respectively.

9) The memory bank resources: each holds a memory reference process for a number of cycles equal to the memory cycle time. The number of banks is a model parameter.

Figure 3.5 shows the interconnection of these resources and buffers. The figure reflects the approximations made by the model to be discussed in Sec. 3.4.9. Thus no busses are shown because, even though the nominal bus transfer time of 1 cycle is included in the control flow, the model assumes that there is never any contention for the use of these busses. This is true of the operand address generation resource as well. The path for branch instructions out of IDEC - indicates their termination after execution, while the path for "aborted instructions" out of IBUF, indicates the termination for instructions that were not decoded because they followed a branch that was taken.

3.4.6 Control Flow of an Instruction Process

The instruction process models the control flow of an instruction through the instruction and execution units. We now describe the sequence of events in the life of an instruction process. The description is not
Figure 3.5 Resource configuration in the control stream model.
complete in all respects, for lack of space. Detailed documentation is provided in the listing of the simulator program in Appendix B.

3.4.6.1 The flow common to all instructions

1) a) If the CPU is not in loop-mode, the instruction process starts by making a memory reference to model the instruction fetch, i.e., it invokes a memref process and waits for it to return from memory. When the memref is done, the instruction enters the instruction buffer IBUF in its proper place, i.e., that which maintains the program instruction sequence.

b) If the CPU is in loop-mode, no instruction fetch is necessary and the process starts with the instruction in IBUF itself.

2) When it has reached the head of the queue of instructions in IBUF, the instruction acquires the instruction extractor resource and leaves IBUF. It then schedules a new instruction process to model the prefetch into the vacant slot in IBUF. After 1 cycle in IEX, it acquires the decoder IDEC, releases IEX and is decoded in 1 cycle.

3) At this stage, if any of the address registers needed for an operand address computation by the instruction, is unavailable, i.e., has not yet been updated by a previous, as yet uncompleted instruction, this instruction waits in IDEC, delaying the instruction stream behind it.

4) If the instruction is not a branch, and needs an operand to be fetched from memory, an operand process is created now. This process will model the operand fetch from memory, and will return independently to the execution unit to merge its control flow with that of the parent instruction process.

The above steps are common for all instruction processes. The control flow of the process from this step on depends on the type of instruction that the process models.
3.4.6.2 Branch instructions

a) When the CPU is not in loop-mode:

a.1) If the instruction is an unconditional branch, the instruction stream has to be switched to the branch target. The branch instruction process causes the termination of all the instructions in IBUF and all outstanding instruction fetches (see the "aborted instructions" path in Figure 3.5.). It then initiates new instruction fetches from the target, and is then terminated.

a.2) If the instruction is a conditional branch, whose decision depends on the value of the condition code, or a counting register, there may be a delay before the branch decision is made. Since the system, in this case, assumes that the branch will not be taken, in the model, decoding continues in conditional mode. However, since the branch decision is already known to the simulator, it decodes and issues the actual instructions following the branch in the control stream only if the branch will not be taken and dummy instruction processes, if it will. Later, when the branch decision is "made," the conditionally forwarded instructions will be activated or the dummy instructions cancelled, respectively. In the latter case, IBUF is also emptied and new fetches from the branch target are initiated. The branch instruction process is then terminated.

In both of the above cases, if the branch is taken and the target is back along the instruction stream, at a distance from the branch location that is smaller than the size of IBUF, the CPU is switched to loop-mode.

b) When the CPU is in loop-mode

b.1) If the instruction is an unconditional branch, the stream has to be switched to the branch target, but no new fetches are necessary.
All that occurs is that the instruction at the target, which is already in IBUF, is scheduled next for decoding. The branch instruction process is then terminated.

b.2) For conditional branches, conditional mode is set until the branch decision is made. However, the policy for conditional decoding of instructions is reversed from that of the non-loop-mode case. The system now assumes that the branch will be taken. Thus, in the model, actual instructions from the target of the branch in IBUF are sent for decoding if the branch will be taken, and dummy instruction processes, if it will not. When the branch decision is "made," the conditionally forwarded instructions will be activated, or the dummy instructions cancelled, respectively. In the latter case, IBUF is emptied, loop-mode is turned off and new fetches from the sequential path following the loop are initiated. The branch instruction process is then terminated.

3.4.6.3 Fixed point instructions

1) After passing through the instruction unit as described in Sec. 3.4.6.1, a fixed point instruction process is transferred in one cycle to the fixed point execution unit. If it is a conditionally issued instruction, it cannot proceed for execution until the conditional branch that set conditional mode has been decided.

2) When the instruction reaches the head of the queue of instructions in this unit, it is ready for execution. Its subsequent control flow depends both on its type and the type of architecture that is being modelled for the fixed point unit. The latter is an overall model parameter and can take one of three values:
a) **Serial**: In this architecture only one instruction may be in process at a given time in the entire fixed point unit. Thus the instruction gets control of the fixed point decoder FXIU, only after the previous fixed point instruction has completed execution in the unit and transferred its result to the appropriate destination.

b) **Pipelined**: In this architecture, the decoding in FXIU and the execution in the execution unit FXEU, are pipelined. Thus, an instruction can be decoded in FXIU, while the previous instruction is still using FXEU. If the second instruction is a load or a store, and has its operand available, it can proceed simultaneously and even finish before the first. If its operand is not available, it waits in FXIU until it is, thus delaying subsequent instructions. If the second instruction is not a load or a store, and needs the FXEU to execute, it has to wait in FXIU, until the first has finished execution. Further, when the second instruction needs the result of the first instruction as an operand, it obtains that result from the appropriate location, after the first instruction has transferred it there.

c) **Dataflow**: This architectural type models the floating point unit architecture of the 360/91 as designed by Tomasulo [TOM67], and the architecture discussed by Dennis [DEN74]. The FXIU, after decoding an instruction, executes it if it is a load or store. If it is neither, the FXIU deposits it in a buffer, that creates the effect of a number of virtual execution units. These are called reservation stations in [TOM67]. The FXIU is now free to decode subsequent instructions.

The virtual units acquire control over FXEU (the real execution unit) in the order in which they become ready for execution, i.e., when they have received all their operands. Thus instructions that do not depend on one another can be executed out of sequence. Further, when an instruction
is completed and has a result to be transferred, it broadcasts the results to all the virtual units that need the operand in the same cycle. This eliminates a number of redundant operand transfers.

3) The instruction, after it gains control of FXIU, is decoded in 1 cycle. If it needs two operands, the instruction process itself models the control flow of one of these - the register operand. If the other is a memory operand, the operand process to model the fetch has already been created (see Sec. 3.3.6.1). If the other is a register operand, or if the instruction needs only a single register operand, the instruction now creates an operand process to model the control flow of that register operand.

If the register operand that this process now models is available, its transfer to the execution unit or to the destination of a load or store instruction, takes one cycle. If any operand is not available, the action taken depends on the type of architecture being modelled, as described earlier.

4) If it is a load, the instruction has now been completed. If it is a store, a memref process is created to model the storing of the operand in memory, at the end of which the instruction has been completed. If it is neither a load nor a store, the process occupies FXEU for the required execution time of the instruction that it is modelling. At the end of its execution it transfers its result to the appropriate destination(s) in one cycle.

The instruction process is then terminated.

3.4.6.4 Floating point instructions

The control flows for floating point instructions are very similar to those for fixed point instructions.

1) A floating point instruction is transferred from the instruction unit to the floating point unit in one cycle. If it has been conditionally
issued, it cannot proceed for execution until the branch that set conditional mode has been decided. When it reaches the head of the queue of instructions in this unit, it is ready to be decoded by the floating point decoder, FLIU.

2) Its subsequent control flow depends on its type and the type of architecture being modelled. The three types of architectures are analogous to the three types of fixed point unit architectures. However, there are two execution units in the floating point unit: the floating point add unit FLAD and the floating point multiply/divide unit FLMD. With this difference, the three types are:

a) **Serial**: Only one floating point instruction may be in process in the entire unit at any given time. Thus the FLIU can decode the next instruction only after the previous instruction has completed execution, and transferred its results to the appropriate destination.

b) **Pipelined**: In this architecture, decoding and execution are pipelined. Thus decoding in the FLIU, an add in the FLAD and a multiply or divide in the FLMD can proceed simultaneously. Loads and stores, which are executed in the FLIU itself, may thus finish even before previous add or multiply instructions, if their operands are available. If not, they hold the FLIU, until the operands do become available. Adds and multiplies decoded in FLIU, wait until their respective units are free before releasing the FLIU. Results are transferred to their destinations, from where following instructions can obtain them.

c) **Dataflow**: Both FLAD and FLMD have their sets of reservation stations, which act as virtual execution units. The FLIU executes loads and stores and deposits other instructions in the appropriate virtual execution units. It can thus decode instructions at the rate of one every cycle. Instructions in virtual execution units acquire the physical units,
in the order in which they become ready for execution. After execution, the result is transferred in one cycle to all the virtual units that need it.

3) After being decoded by the FLIU in one cycle, the instruction obtains its operands and completes execution in the same manner as fixed point instructions described in Sec. 3.3.6.3.

3.4.7 Control Flow of an Operand Process

The operand process models the control flow of operand fetches which proceed in parallel with the control flow of the main instruction. Since fixed point and floating point operand processes have analogous control flows in their respective units, we present a common description of both types.

If the process models a memory operand fetch, it has the memory address computed in one cycle and is transferred to the memory unit in another. In the memory unit, it waits until the most recent instruction that needed that operand, for reading or updating, has used it. When this data dependency has been resolved, it creates a memref process to model the actual fetch of the operand from memory. When the memref process signals this process on return, the operand has been fetched from memory and can be transferred to its destination. The actual transfer depends on the type of architecture being modelled. In serial and pipelined architectures, the operand waits until the instruction that needs it has acquired the resources necessary for its execution. In a dataflow architecture, the operand waits until the instruction that needs it has acquired a virtual execution unit. In all the above cases it is then transferred to its destination, an execution unit or a register, in one cycle.
If the process models a register operand fetch, its control flow again depends on the type of architecture being modelled. In serial and pipelined architectures, it waits until the most recent instruction that needed that operand, for reading or updating, has used it. When this data dependency has been resolved, the operand is transferred to its destination - an execution unit or a register - in one cycle. In a dataflow architecture, if the operand is available for use, it is transferred in one cycle to its destination. If not, it will be transferred automatically to the virtual execution unit, when the most recent instruction that needed to update it has been completed. Thus the operand process need not wait for data dependency to be resolved.

At this stage, for both register and memory operands, the process signals its parent instruction that the operand has been delivered and is terminated.

3.4.8 Control Flow of a Memref Process

The memref process models the control flow of any memory reference through the memory unit. When it is invoked, the address of the memory reference has already been transmitted to the memory unit. The memref process waits until all previous references to the memory bank that is addressed by this process, have been completed. When the bank is available, this process occupies it for a number of cycles equal to the memory access time being modelled. It then signals the parent process that invoked it that the access is complete. After this, it continues to occupy the bank until a number of cycles equal to one memory cycle time have passed since its initiation. It then releases the bank, and is terminated.
3.4.9 Approximations Made in the Model

A number of approximations were made in building the model, in order to keep it tractable. Further, experience gained from the more detailed model in [KUM76a] indicated that a number of features had a negligible effect on the system performance. We now list some of these approximations.

1) Except for the instruction buffer, all the system buffers are assumed to be unbounded in size. This is reflected in the description of the model, where processes are never delayed because of buffer overflow. Evidence from the more detailed model indicates that buffer overflows rarely occur in the system as the buffer sizes in the original system are generally adequate, yet not costly. However, keeping the instruction buffer bounded is the most effective way of keeping the instruction supply rate in the model close enough to that in the system.

2) Conflicts for busses that transfer data are neglected. In effect, the model assumes an unbounded number of copies of all busses. Since bus conflicts play a very small role in performance degradation, this is not a very serious approximation.

3) In the system, each instruction fetch returns a double word (8 bytes) from memory. This double word can contain from one to four instructions. In the model, a separate fetch is needed for every single instruction. This is a very serious approximation, and was made solely to keep some higher level models tractable. We have not examined the effects of this approximation very carefully.

4) In the system, when a conditional branch is decoded, two double words are fetched from the branch target, as a hedge against an incorrect branch prediction. In the model, this feature is absent.
5) In the system, the memory unit checks the address of each incoming fetch request against the addresses of ongoing fetches or stores. If there is a match, the second fetch can be honored almost simultaneously with the previous reference to the same location. This is called the multi-access feature [BOL67]. In the model, this feature is absent. This assumption reflects evidence from the more detailed model [KUM76a] that multi-access occurs fairly infrequently and does not affect performance to a considerable extent.

In view of the above approximations, and the lack of evaluation of their impact on the accuracy of model predictions, it would be more realistic to say that the system being modelled is a system very much like the IBM 360/91.

3.4.10 System and Model Parameters

To study system performance as a function of various system architectural parameters, a number of these system parameters were parameterized in the control stream model as well. The model parameters that can be explicitly specified are:

1) mc - the memory cycle time (in CPU clock cycles). For simplicity, the memory access time is assumed to be 5/6 of the memory cycle time.

2) mb - the number of memory banks, i.e., the depth of memory interleaving.

3) ib - the size of the instruction buffer IBUF.

4) fx - the fixed point unit architecture. The values associated with the three types described in Sec. 3.3.6.3 are:

- Serial : 1
- Pipelined : 2
- Dataflow : 3
5) f - the floating point unit architecture with the same
association of values with types as for f_x.

6) l_m - the loop-mode feature. The value assigned to l_m is:

0 - if no loop-mode capability exists.

1 - if the loop-mode capability exists.

It should be noted that the bandwidth of each of the major units -
the instruction unit, the memory unit, the fixed point unit and the floating
point unit - is affected by at least one parameter in the above set.

Further, the values associated with the execution unit architecture types,
increase in the expected direction of increase of bandwidth.

Besides these, a number of other architectural parameters can be
varied by simple changes to the simulator program. These include execution
times of various resources, priority mechanisms for scheduling various
resources, etc.

3.4.11 Performance Measurements Using the Model

As discussed in the previous sections, the model is used in the
construction of a simulator, which is driven by program execution traces.
A wide variety of performance statistics can be gathered during the simu-
lation.

For example, suppose this model is to be used to calibrate a
queueing network model of the system. From a knowledge of what the servers
comprising the queueing model accomplish, different points in the control
flow paths of the processes of the control stream model can be identified as
the points of entry and departure of these servers. At these points,
statistics can be gathered regarding server arrival and departure rates
and counts. These statistics can be used to calibrate the queueing model.
If an analytical model is to be built relating some overall performance measure such as system throughput or memory utilization, to the system parameters, the appropriate performance statistics can easily be gathered from simulations of the control stream model, for the required settings of the system parameters.

The performance measure that was most frequently used in the study, is the average system instruction throughput. This is defined as the average number of instructions that were completed per CPU cycle, over the run of the program. This was approximated in the model, by the average number of instruction processes that terminated normally per simulator cycle. Normal termination excludes those instruction processes that were flushed from the system following a branch, as well as those dummy instruction processes that were conditionally decoded following a wrongly predicted conditional branch. This throughput is measured very simply in the model by dividing the total number of instruction processes that terminated normally, by the number of simulator cycles needed to execute the program trace.

3.5 An Analytical Performance Model of the System

In this section we will describe an analytical performance model of the system chosen for study. The model attempts to describe the performance measure of greatest interest - system instruction throughput - as a function of the system parameters listed in Sec. 3.4.10. Statistical regression techniques are used to estimate this function. For an excellent introduction to regression theory, see [DRA66]. [TSA72] is an illuminating example of the application of regression modelling to computer system performance evaluation.
3.5.1 Introduction to Regression Theory

Analytical model building by regression analysis involves an iterative search for a mathematical expression relating a dependent variable \(Y \), called the response, to a set of independent variables \(X_1, X_2, \ldots, X_n \), called the factors, on the basis of observed data. Since the functional relationship may, in general, be complex, a summarization of the relationship is achieved by:

a) Selecting a small but relevant subset of the independent variables for inclusion in the expression.

b) Choosing a simple but plausible mathematical form to express the relationship. A common form to choose is the linear form, in which the expression is linear in its parameters. A further simplification is the first-order model, in which the highest power of any factor that occurs in the expression is one.

3.5.1.1 Linear regression models

In theory, the entire set of observed data can be fitted exactly by a linear model of the appropriate order. For example, a linear quadratic model involving three factors is

\[
Y = \beta_0 + \sum_{i=1}^{3} \beta_i X_i + \sum_{i=1}^{3} \beta_{i1} X_i^2 + \sum_{i=1}^{3} \sum_{j=i+1}^{3} \beta_{ij} X_i X_j
\]

This model, which has 10 parameters, can be used to exactly fit data from less than 11 observations. However, such a model may have very poor validity at points other than those at which the observations have been made. Further the interpretation of higher order interactions is usually rather difficult. In practice, therefore, it is preferable to start with a linear first-order model and to progressively introduce higher order interactions only if they
greatly increase the precision of the model. A good example of this approach is found in [TSA72]. A linear first-order model of the above system is

\[Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \]

3.5.1.2 Calibration of regression models

Calibration of say, a linear first-order model consists of estimation of the \(\beta_i \)'s, from data observed about the system. The estimation procedure is that of least square error. Suppose we have \(n \) observations of a system response \(Y \) to which a linear first-order model involving one factor \(X_1 \) is to be fitted. Let the observations be \((X_1^1, Y^1), \ldots, (X_1^n, Y^n) \). The response value predicted by the model at the factor value \(X_1^i \) is

\[\hat{Y}^i = \beta_0 + \beta_1 X_1^i \]

Thus the sum of the squares of the deviations of the model predicted responses from the system responses is

\[S = \sum_{i=1}^{n} (Y^i - \beta_0 - \beta_1 X_1^i)^2 \]

For least square error, \(\beta_0 \) and \(\beta_1 \) are assigned values which minimize \(S \). This is done by solving the equations

\[\frac{\partial S}{\partial \beta_0} = -2 \sum_{i=1}^{n} (Y^i - \beta_0 - \beta_1 X_1^i) = 0 \]

and

\[\frac{\partial S}{\partial \beta_1} = -2 \sum_{i=1}^{n} X_1^i(Y^i - \beta_0 - \beta_1 X_1^i) = 0 \]

which yields the least square estimates of \(\beta_0 \) and \(\beta_1 \).
The above procedure is easily generalized to models of higher order as well as to non-linear models.

3.5.1.3 Regression algorithms

The most widely used regression model building algorithm is the stepwise regression procedure described in [DRA66]. In this procedure, factors are introduced into the regression equation in the decreasing order of their partial correlation with the response. However, a factor is introduced only if its correlation with the response is above a significance level that is specified by the model builder. Moreover, when a factor is introduced, the contributions of factors that had been introduced before are re-assessed, and some of these may now be rejected from the model. Thus the final model will contain only those factors whose correlation with the response is above the significance level specified by the model builder, and which are not strongly correlated with each other.

The detailed procedure involves analysis of variance and other statistical techniques, which are beyond the scope of this report. [DRA66] is an excellent reference for these methods.

3.5.2 The Analytical Model of the System

The analytical model of the system 360/91, that was chosen as the high level of the 2-level hierarchy, expresses the system instruction throughput, as defined in Sec. 3.4.11, as a function of the six system parameters described in Sec. 3.4.10. The model chosen was a linear, first-order model. However, to achieve a better fit with the low-level model predictions, as well as to reflect the actual range of values usually chosen for some system parameters, these parameters were represented in various functional forms in the analytical expression. Thus, since most systems are designed with the number of memory banks and instruction buffer
slots chosen as powers of 2, these parameters were represented in the logarithmic form in the analytical model.

The analytical model is thus expressed by the relation:

\[\text{sit} = \beta_0 + \beta_1 \cdot mc + \beta_2 \cdot \log_2 \text{mb} + \beta_3 \cdot \log_2 \text{ib} + \beta_4 \cdot fx + \beta_5 \cdot fl \] (1)

where:

- \(\text{sit} \) = average system instruction throughput
- \(\beta_i \) = model parameters that are estimated by the regression procedure.
- \(mc \) = memory cycle time
- \(mb \) = number of memory banks
- \(ib \) = instruction buffer size
- \(fx \) = the fixed point unit architecture parameter
- \(fl \) = the floating point unit architecture parameter.

The \(\lambda m \) parameter is handled by building separate equations as in (1) for \(\lambda m = 0 \) and \(\lambda m = 1 \).

As is characteristic of models at the high end of the hierarchy the accuracy of this model is expected to be good only in restricted regions of the system parameter space. However, its evaluation is trivial - once the \(\beta_i \)'s are known, i.e., once the model is calibrated, the performance prediction for a set of system parameter values is obtained by plugging these values into equation (1).

3.5.2.1 Model calibration

Given a set of \(n \) observations of throughput, \(\text{sit}_j \), at the system parameter setting \((mc_j, mb_j, ib_j, fx_j, fl_j) \) \((j = 1, \ldots n)\), the calibration procedure estimates the \(\beta_i \)'s \((i = 0, \ldots 5)\) of the regression equation (1).

The procedure uses the stepwise regression algorithm mentioned in the
previous section, with some simplifications tailored to the specific use of the model.

Since the model is to be used in system design or optimization, it must indicate values for all the system parameters in the final system. This implies that all the system parameters must appear in the expression for performance. Thus, the usual statistical significance test that is applied to decide which factors should appear in the regression equation is bypassed; instead all the factors are forced into the equation.

Further, as the outline of the optimization procedure in Chapter 2 suggests, the model needs to be accurate only in the system parameters sub-region of immediate interest. This is because of the continual process of re-calibration as the procedure explores the system parameter space. Thus at the initial stages, even if the model is not statistically significant (see [DRA66]), at some reasonable level of confidence, it will be accepted, since it is reasonable to expect that as more recalibration is done, the accuracy of the model, in local regions, will improve. Consequently, the statistical tests for significance of regression and for lack of fit using replicated observations [DRA66] are not performed. Thus the regression procedure is used solely for the least squares estimation of the β_i's.
CHAPTER 4
SYSTEM OPTIMIZATION USING THE PERFORMANCE MODEL HIERARCHY

4.1 Introduction

In the last chapter, we introduced the CPU-memory subsystem of the IBM System 360/91, as the system chosen for the case-study of the hierarchical approach to performance evaluation. We presented a functional description of the system, and two models - a control stream model and an analytic performance model - of the system. In this chapter, we discuss the construction of a hierarchy composed of these two models. We also describe a procedure that uses the hierarchy to design an optimum system.

4.2 System Optimization Objectives

The techniques described in this chapter can be used to optimize a system configuration with respect to any objective function that involves system performance. In our study, we chose cost/performance ratio as the objective function to be minimized. Other objectives that may be considered by a system designer include maximizing system performance subject to an upper bound on system cost, and minimizing system cost subject to a lower bound on system performance.

We will use the performance model hierarchy to estimate the performance component of the objective function alone. We will assume that the other components of the function can be estimated with the desired accuracy.

4.3 Application of the Hierarchical Approach

In Chapter 2, we introduced the concept of a performance model hierarchy as an efficient tool for exploring a computer system parameter space. Its efficiency arises from the two main features of the hierarchy:
1) The accuracy of performance predictions increases as we go down the hierarchy.

2) The computational cost of prediction increases as we go down the hierarchy.

The latter feature demands that a high-level model be used for performance prediction in any optimization loop, so as to keep down the computational cost of the optimization procedure. The former feature ensures the accuracy of the procedure, by providing a low-level model as the basis for re-calibration of the high-level model after every iteration of the optimization. The optimization is then repeated till the predictions of the two models converge.

4.3.1 Roles of the Models in the Hierarchy

From the discussion above, it is clear that the two models play distinct roles in the hierarchy. The control stream model serves to mark with great accuracy points on the performance surface in the six-dimensional system parameter space. The analytical model attempts to use as many of these points as necessary to obtain an approximation to the surface in a local region of the space. In fact choosing a linear, orthogonal (first-order in all its factors) analytical model, chooses a hyperplanar approximation to the performance surface in that region. It would be expected that this approximation is quite gross over large regions of the space. However, the optimization procedure relies on three factors to make this approximation palatable:

a) Constant re-calibration, i.e., using the control stream model to fill in a new point on the surface with every iteration of the optimization procedure. This causes the hyperplanar approximation of the analytical model
to change, as new points appear on the surface in the region currently being explored, or as the optimization procedure shifts to new regions in the space.

b) As the optimization procedure zeroes in on the optimum, the region of interest shrinks in size, making the hyperplanar approximation increasingly better, in that region.

c) In the optimization procedure, the hyperplane model, i.e., the analytical model, will be used primarily to indicate the preferred direction of movement on the surface toward the optimum. It will have a smaller part in deciding the magnitude of the movement in that direction.

These points will be elaborated upon in later sections. In the discussions to follow, the analytical model will also be referred to as the hyperplane model or as the hyperplanar approximation.

4.4 The Optimization Procedure

We now describe a systematic procedure for exploring a given system parameter space, to optimize an objective function that involves system performance. The description will be in terms of a general system parameter space, with the case-study being used to illustrate the concepts developed.

4.4.1 Definitions and Overview

The procedure that determines the optimum system is called the global optimization procedure. The points in the space for which the performance has been evaluated using the low-level model are called calibration points. The set of calibration points is called the calibration set. One point in this set is singled out as the reference system. This system is the focal point in the region that is currently being explored by the global procedure.
Each iteration of the global optimization procedure consists of the following steps:

a) A local optimization procedure is applied to the objective function using the current version of the analytical model. This will usually be a standard multi-dimensional, real-variable optimization procedure.

b) A movement rule is invoked to determine the new reference system from the old reference system and the prediction of the local optimization procedure.

c) A stopping rule is invoked to see if the global procedure has converged.

d) If it has not converged, a recalibration procedure is applied to the calibration set to recalibrate the analytical model at the new reference system using a subset of the calibration set called the recalibration set. This may involve evaluating the performance of the new reference system using the low-level model.

Once the global procedure has converged, a sensitivity analysis procedure is invoked to probe the region near the optimum. This is both for the purpose of identifying the true optimum in the local region to which the global procedure has converged, as well as to determine the sensitivity of the objective function to the various system parameters near the optimum.

For the first iteration of the global procedure, an initial calibration set and an initial reference system must be supplied. Figure 4.1 is a flowchart depicting the various steps of the procedure. We elaborate on each of these in the sections to follow.
Choose initial calibration set and initial reference system

Run recalibration procedure on calibration set to recalibrate analytical model at reference system

Run local optimization procedure

Apply movement rule to determine new reference system

Apply stopping rule

Procedure converged?

Yes

New reference system calibrated?

Yes

Sensitivity Analysis

No

Stop

No

Yes

Run low level model at reference system. Add to calibration set

New reference system calibrated?
4.4.2 System Parameter Metrics and a Multi-dimensional Grid in the Space

Since the hyperplane model approximation to the performance surface is expected to improve for smaller regions of calibration, the concept of distance in the system parameter space becomes important. Thus, recalibration with respect to the reference system should only involve points from the calibration set that are close to that system. To quantify distance in the space, a metric has to be defined for each system parameter dimension. The metric must be chosen in such a manner that distances along individual dimensions can be combined to yield a reasonable estimate of overall distance in the space.

Often, it is most convenient to choose the metric along each system parameter dimension to reflect the maximum resolution possible in the set of values that the parameter can realistically assume. Thus, in our case-study, the metrics were chosen as shown in Table 4.1. Distance in the space is then defined as the standard n-dimensional Euclidean distance. For example, in our case-study, the distance between two systems with parameters

\[(m_c, m_b, l_b, f_x, l_d, l_m) = (5, 64, 8, 3, 2, 1)\] and \[(7, 16, 32, 1, 2, 0)\] is:

\[
\left[(7-5)^2 + (4-6)^2 + (5-3)^2 + (1-3)^2 + (2-2)^2 + (0-1)^2\right] = \sqrt{17} \text{ metric units.}
\]

By this definition of a metric along each dimension, we have laid a multi-dimensional grid on the system parameter space, with points of the grid spaced one metric unit along each dimension. Each grid point now represents a realistic system configuration. The goal of the optimization procedure is to identify the grid point which represents the optimum system.

4.4.3 The Initial Calibration Set

If the global optimization procedure can be shown to converge to the global optimum system regardless of the starting point, the initial
Table 4.1 - Metrics for the System Parameter Dimensions

<table>
<thead>
<tr>
<th>System Parameter</th>
<th>Value in natural units</th>
<th>Value in metric units</th>
</tr>
</thead>
<tbody>
<tr>
<td>mc</td>
<td>mc CPU cycles</td>
<td>mc</td>
</tr>
<tr>
<td>mb</td>
<td>mb banks</td>
<td>log mb</td>
</tr>
<tr>
<td>ib</td>
<td>ib buffers</td>
<td>log ib</td>
</tr>
<tr>
<td>fx</td>
<td>fx architectural units</td>
<td>fx</td>
</tr>
<tr>
<td>(see section 3.4.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fl</td>
<td>fl architectural units</td>
<td>fl</td>
</tr>
<tr>
<td>lm</td>
<td>lm architectural units</td>
<td>lm</td>
</tr>
</tbody>
</table>
reference system could be arbitrarily chosen. Since this may not be the case, the choice of the initial reference system may have to be based on intuition or experience, or be fixed by other cost or performance constraints. In our case-study we arbitrarily chose the point that matches the existing 360/91 as the initial reference system. This system shall henceforth be referred to as the normal system.

An initial calibration set must then be chosen around the reference system. Since this is the calibration set for the first iteration of the global optimization procedure, it must be chosen so as to yield enough information for a reasonable fit of the hyperplane model in the region around the initial reference system. This implies that there should be points on either side of the reference system along each dimension. In our case-study, we chose a very sparse set consisting of systems each of which had a change in only one dimension from the reference system. Table 4.2 lists the initial calibration set chosen for the case-study. This is repeated for $\lambda m = 0$ and $\lambda m = 1$ as will be discussed in Sec. 4.5.1. The parameter values are given in the natural units listed in Table 4.1. This will be the practice through the rest of this report.

The control stream model is then used to predict system performance at all the points of the initial calibration set. These points on the performance surface are then used to calibrate the analytical performance model to be used in the first iteration of the global optimization procedure. The calibration is done as described in Sec. 3.4.2.1.

4.4.4 The Movement Rule

Since the local optimization procedure is supplied with a very approximate evaluation of the objective function, viz, one involving the hyperplane model, its predictions must be used carefully to prevent the global
Table 4.2 - Initial Calibration Set and Reference System

<table>
<thead>
<tr>
<th>System</th>
<th>System Parameters</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>12</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>18</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>12</td>
<td>32</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>12</td>
<td>16</td>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>12</td>
<td>16</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>12</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>12</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>12</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
procedure from making wild excursions. For a simple example to illustrate this, consider the unidimensional performance function \(P(S) \) in Figure 4.2. The analytical model for this dimensionality is a straight line. When the model is \(M_1 \) about the reference system \(S_1 \), its range of validity \(R_1 \), is much larger than the range \(R_2 \), of the model \(M_2 \) about the reference system \(S_2 \). Thus movement must be much more restricted when the optimization uses the model \(M_2 \) than when it used \(M_1 \). Even when using the model \(M_1 \), movement must be somewhat restricted to prevent it from going outside the range \(R_1 \).

In the optimization of the case-study system the following movement rule was adopted. When the local optimization procedure arrives at an optimum based on the current analytical model, the reference point is shifted one grid point (in metric units) along each dimension in the direction that the predicted optimum is located with respect to this reference point. This is done regardless of the magnitude of the distance between the reference point and the predicted optimum.

The restriction of the movement to one grid unit prevents excursions beyond the range of validity of the analytical model. However the enforced movement, regardless of the magnitude predictions of the local optimization procedure, forces the procedure to make a rough exploration of as much of the objective function surface as possible in the initial stages, before zeroing in on a particular region as the most promising one for finer exploration. Examples of the application of the movement rule are given in Table 4.3. It should be noted that the movement along the mc dimension is three metric units in the first example and one metric unit in the second. This is a consequence of the adaptively varying metric unit adopted for the mc dimension, to be discussed in Sec. 4.5.2.
Figure 4.2 Validity of the analytical model in different regions.
Table 4.3 - Application of the Movement Rule

<table>
<thead>
<tr>
<th>System Parameters</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting reference system</td>
<td>12</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Optimum system predicted by hyperplane model</td>
<td>9.6</td>
<td>63.9</td>
<td>31.9</td>
<td>2.9</td>
<td>0.7</td>
</tr>
<tr>
<td>New reference system</td>
<td>9</td>
<td>32</td>
<td>16</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Example 1.

<table>
<thead>
<tr>
<th>System Parameters</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting reference system</td>
<td>6</td>
<td>32</td>
<td>16</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Optimum system predicted by hyperplane model</td>
<td>4.2</td>
<td>38.4</td>
<td>12.7</td>
<td>3.5</td>
<td>1.6</td>
</tr>
<tr>
<td>New reference system</td>
<td>5</td>
<td>64</td>
<td>8</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Example 2.
4.4.5 The Stopping Rule

When successive iterations of the global procedure cause an oscillation of the reference point between two calibration systems, the procedure is deemed to have converged and is stopped. To understand this, let us consider the cost/performance function of one system parameter in Figure 4.3. Suppose the n-th iteration of the procedure using model M_1, at the reference system S_1 causes a movement of the reference point to S_2. Let the recalibrated model at S_2 be M_2 which, on the (n+1)st iteration dictates a movement of the reference point back to S_1. If S_2 already existed in the calibration set at the n-th iteration, the situation now is exactly the same as at the n-th iteration. Thus the (n+2)nd iteration must cause the reference point to move back to S_2. The procedure would thus oscillate forever between S_1 and S_2. It is therefore stopped.

4.4.6 Heuristic Algorithms for Recalibration of the Analytical Model

For each iteration of the global optimization procedure, the reference point is moved to a new system by the application of the movement rule described in Sec. 4.4.4. If the new reference system is not a calibration point, the low level model is used to accurately evaluate the performance at this system, which is then added to the calibration set. The analytical model is then recalibrated at this reference system choosing an appropriate recalibration set. This possibly new hyperplanar approximation is used in the next iteration of the global optimization procedure. In this section, we discuss algorithms for performing this recalibration.

4.4.6.1 Calibration requirements

For the hyperplane model to be a good approximation, information local to the region around the reference system must be used in the
Figure 4.3 Oscillation between two reference systems.
recalibration. Thus the set of points chosen for recalibration must satisfy the following two criteria.

1) Along those dimensions for which the reference system does not have an extreme value, i.e., calibration points exist on either side of the reference system along that dimension, the point closest to the reference system each direction along that dimension must be in the set.

2) Along dimensions for which the reference system does have an extreme value, i.e., no calibration point has a value beyond that of the reference system in one direction along that dimension, the point closest to it in the other direction along that dimension must be in the set.

For example, the minimum recalibration set for the grid points of Table 4.2, with system 0 as reference, will not include systems 7 and 8, since system 0 has extreme values along the f_1 and f_2 dimensions and systems 7 and 8 are not the closest ones to 0 along those dimensions.

These two criteria are used by the two recalibration algorithms to be discussed now.

4.4.6.2 Multi-dimension Recalibration Algorithm

In this algorithm, all the calibration points are ordered in increasing order of their distance from the reference system. Systems for the recalibration set are chosen in this order, until the above two criteria are satisfied for all the dimensions. At this stage, any other points that are at the same distance from the reference system as the point in the recalibration set at the maximum distance from the reference system are also included in the set. This recalibration set is then used by the multi-dimensional regression procedure, described in Sec. 3.4.2.1, to estimate the β_i's of the analytical model. If the cardinality of the set is insufficient for the regression procedure to estimate all the model parameters,
further points are added to the set in the increasing order of their distance from the reference system, until the cardinality is sufficient.

Table 4.4 shows the results of an application of this recalibration algorithm to the case-study system. Notice that the grid unit distance in the mc dimension is six cycles in this example. The reason for this is explained in Sec. 4.5.2. The lower half of Table 4.4 shows percentage errors between the observed throughput values from the control stream model and the fitted throughput values from the analytical model. Thus, for the systems in the recalibration set in this example, this algorithm achieves an upper bound of 2% on the absolute regression error.

It should be observed that the algorithm as described chooses the smallest local region containing the calibration points needed to satisfy the criteria of Sec. 4.4.6.1. This is the implementation of the philosophy of using the analytical model to make only local predictions. Including more systems than the above minimum, would decrease the locality of the model and increase the regression error bound of the algorithm.

4.4.6.3 Individual Dimension Recalibration Algorithm

In this algorithm, system clusters are identified separately for each dimension. These clusters are then used to calculate the slope, i.e., the β_i, along that dimension, independently of the other dimensions.

The clusters are formed in the following manner. For each dimension, the point or points closest to the reference system along that dimension, according to the two criteria of Sec. 4.4.6.1 are first included in the cluster. If there is more than one candidate for these nearest neighbor points, the one that is the closest to the reference system in the n-dimensional Euclidean sense defined in Sec. 4.4.2 is selected. Next, all
Table 4.4 - Multi-dimension Recalibration Algorithm

Calibration set: 00 02 03 04 05 06 07 08 09 10 11 27
Loopmode: 1 (on)
Reference system: 27
mc grid metric: 6 CPU cycles

Distance of systems from reference system:

<table>
<thead>
<tr>
<th>System</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
<th>lm</th>
<th>Norm^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.33</td>
<td>0.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>3.11</td>
</tr>
<tr>
<td>6</td>
<td>0.33</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>3.11</td>
</tr>
<tr>
<td>9</td>
<td>0.33</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.11</td>
</tr>
<tr>
<td>11</td>
<td>0.33</td>
<td>-1.00</td>
<td>0.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>3.11</td>
</tr>
<tr>
<td>0</td>
<td>0.33</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.11</td>
</tr>
<tr>
<td>7</td>
<td>0.33</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>4.11</td>
</tr>
<tr>
<td>8</td>
<td>0.33</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>14.11</td>
</tr>
<tr>
<td>2</td>
<td>-0.67</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>4.44</td>
</tr>
<tr>
<td>3</td>
<td>1.33</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>5.78</td>
</tr>
<tr>
<td>4</td>
<td>0.33</td>
<td>-2.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>7.11</td>
</tr>
<tr>
<td>10</td>
<td>0.33</td>
<td>-1.00</td>
<td>-2.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>7.11</td>
</tr>
</tbody>
</table>

Re-calibration set: 27 5 6 9 11 0 7 8 2

Hyperplane model coefficients:

<table>
<thead>
<tr>
<th>Constant</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.28991</td>
<td>-0.01287</td>
<td>0.01939</td>
<td>0.00425</td>
<td>0.01094</td>
<td>0.00761</td>
</tr>
</tbody>
</table>

Error in hyperplane model predictions of throughput:

<table>
<thead>
<tr>
<th>System</th>
<th>Observed</th>
<th>Predicted</th>
<th>%Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>0.30965</td>
<td>0.31226</td>
<td>-0.84</td>
</tr>
<tr>
<td>5</td>
<td>0.28156</td>
<td>0.27895</td>
<td>0.93</td>
</tr>
<tr>
<td>6</td>
<td>0.26681</td>
<td>0.27050</td>
<td>-1.38</td>
</tr>
<tr>
<td>9</td>
<td>0.24924</td>
<td>0.25195</td>
<td>-1.09</td>
</tr>
<tr>
<td>11</td>
<td>0.26642</td>
<td>0.26381</td>
<td>0.98</td>
</tr>
<tr>
<td>0</td>
<td>0.25669</td>
<td>0.25956</td>
<td>-1.12</td>
</tr>
<tr>
<td>7</td>
<td>0.28458</td>
<td>0.28144</td>
<td>1.11</td>
</tr>
<tr>
<td>8</td>
<td>0.24699</td>
<td>0.24434</td>
<td>1.08</td>
</tr>
<tr>
<td>2</td>
<td>0.33764</td>
<td>0.33677</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>0.20186</td>
<td>0.18235</td>
<td>9.66</td>
</tr>
<tr>
<td>4</td>
<td>0.22391</td>
<td>0.24018</td>
<td>-7.27</td>
</tr>
<tr>
<td>10</td>
<td>0.19933</td>
<td>0.25531</td>
<td>-28.09</td>
</tr>
</tbody>
</table>
points within the hypercube defined by the reference system and the nearest neighbor points are included in the cluster. Thus the cluster may contain points that differ from the reference system in dimensions other than the one under consideration. Let there be m such dimensions. The points in the cluster are used by the multi-dimensional regression procedure of Sec. 3.4.2.1 to fit a (m+1) factor regression equation with the dimension of interest being forced to appear in the regression equation. That coefficient alone is taken from the resultant regression equation, and used as an estimate for the β_i along that dimension.

This procedure is repeated for each of the dimensions. Once the β_i's have been estimated for each dimension, β_0 is calculated by forcing the analytical model to exactly match the performance of the reference system.

Table 4.5 shows the results of the application of this algorithm to the same set of calibration points as in Table 4.4. For example, along the mc dimension, systems 5, 6, 9, and 11 are the nearest neighbors of the reference system 27 on the right, while system 2 is the nearest neighbor on the left. These define a hypercube with dimension ranges (-0.67 to 0.33, -1 to 0, -1 to 0, 0 to 1) in metric units. Since system 0 is inside this hypercube, it is included in the cluster for recalibration of the mc dimension.

It can be seen that the precision of this recalibration algorithm is far worse than that of the multi-dimension algorithm. In this example, the individual dimension algorithm achieved an upper bound of 10% on the absolute error for systems that occur in some cluster, as compared to 2% by the multi-dimension algorithm. In fact in all the examples that were
Table 4.5 - Individual Dimension Recalibration Algorithm

Calibration set: 00 02 03 04 05 06 07 08 09 10 11 27
Loopmode: 1 (on)
Reference system: 27
mc grid metric: 6 CPU cycles

Distance of systems from reference system:

<table>
<thead>
<tr>
<th>System</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
<th>lm</th>
<th>Norm^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.33</td>
<td>0.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>3.11</td>
</tr>
<tr>
<td>6</td>
<td>0.33</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>3.11</td>
</tr>
<tr>
<td>9</td>
<td>0.33</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.11</td>
</tr>
<tr>
<td>11</td>
<td>0.33</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>3.11</td>
</tr>
<tr>
<td>0</td>
<td>0.33</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>3.11</td>
</tr>
<tr>
<td>7</td>
<td>0.33</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>4.11</td>
</tr>
<tr>
<td>8</td>
<td>0.33</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>4.11</td>
</tr>
<tr>
<td>2</td>
<td>-0.67</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>4.11</td>
</tr>
<tr>
<td>3</td>
<td>1.33</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>5.78</td>
</tr>
<tr>
<td>4</td>
<td>0.33</td>
<td>-2.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>7.11</td>
</tr>
<tr>
<td>10</td>
<td>0.33</td>
<td>-1.00</td>
<td>-2.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>7.11</td>
</tr>
</tbody>
</table>

Individual dimension clusters:

<table>
<thead>
<tr>
<th>Parm</th>
<th>Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>mc</td>
<td>0 2 5 6 9 11 27</td>
</tr>
<tr>
<td>mb</td>
<td>0 5 6 9 11 27</td>
</tr>
<tr>
<td>ib</td>
<td>0 5 6 9 11 27</td>
</tr>
<tr>
<td>fx</td>
<td>0 5 6 7 9 11 27</td>
</tr>
<tr>
<td>fl</td>
<td>0 5 6 8 9 11 27</td>
</tr>
</tbody>
</table>

Hyperplane model coefficients:

<table>
<thead>
<tr>
<th>Constant</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20595</td>
<td>-0.01307</td>
<td>0.02859</td>
<td>0.01345</td>
<td>0.01395</td>
<td>0.00485</td>
</tr>
</tbody>
</table>

Error in hyperplane model predictions of throughput:

<table>
<thead>
<tr>
<th>System</th>
<th>Observed</th>
<th>Predicted</th>
<th>%Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.25669</td>
<td>0.23232</td>
<td>9.49</td>
</tr>
<tr>
<td>2</td>
<td>0.33764</td>
<td>0.31074</td>
<td>7.97</td>
</tr>
<tr>
<td>3</td>
<td>0.20186</td>
<td>0.15390</td>
<td>23.76</td>
</tr>
<tr>
<td>4</td>
<td>0.22391</td>
<td>0.20373</td>
<td>9.01</td>
</tr>
<tr>
<td>5</td>
<td>0.28156</td>
<td>0.26091</td>
<td>7.33</td>
</tr>
<tr>
<td>6</td>
<td>0.26681</td>
<td>0.24627</td>
<td>7.70</td>
</tr>
<tr>
<td>7</td>
<td>0.28458</td>
<td>0.26022</td>
<td>8.56</td>
</tr>
<tr>
<td>8</td>
<td>0.24699</td>
<td>0.22262</td>
<td>9.87</td>
</tr>
<tr>
<td>9</td>
<td>0.24924</td>
<td>0.22747</td>
<td>8.73</td>
</tr>
<tr>
<td>10</td>
<td>0.19933</td>
<td>0.21887</td>
<td>-9.80</td>
</tr>
<tr>
<td>11</td>
<td>0.26642</td>
<td>0.24577</td>
<td>7.75</td>
</tr>
<tr>
<td>27</td>
<td>0.30965</td>
<td>0.30960</td>
<td>0.00</td>
</tr>
</tbody>
</table>
tried, this method had a larger error bound. The reason would appear to be that the individual-dimension algorithm neglects some factor interactions because of the piecemeal approach, whereas the multi-dimension approach tries to fit an overall model that approximates the interactions as best as it can. Consequently, the multi-dimension algorithm was the one chosen for the recalibration procedure of the analytical model.

4.4.7 Bounding the Error of the Analytical Model

To control the global optimization procedure even further, an upper bound can be computed for the prediction error of the analytical model at each iteration. If the error exceeds the bound, the predictions of the procedure can be further checked or the procedure itself modified. We now develop an expression for a conservative bound, that can be used for this error checking.

Let us represent points in the system space by the vectors $S = (s_1, \ldots, s_5)$. Let the actual performance and cost surfaces be $P(S)$ and $C(S)$, respectively, both of which are positive. Let the objective function, which is to be minimized be $f(S) = C(S)/P(S)$. Let the reference system, at which the local optimization procedure begins, be $S_r = (s_{r1}, \ldots, s_{r5})$. Then the direction of movement of the procedure should be given by the gradient of f at S_r. Thus, along the i-th dimension,

$$
\nabla f_i(S_r) = \left. \frac{\partial f(S)}{\partial s_i} \right|_{S_r}
$$

$$
= \left. \frac{\partial}{\partial s_i} \left(\frac{C(S)}{P(S)} \right) \right|_{S_r}
$$

$$
= \frac{C(S_r) \left. \frac{\partial P(S)}{\partial s_i} \right|_{S_r} - P(S_r) \left. \frac{\partial C(S)}{\partial s_i} \right|_{S_r}}{[P(S_r)]^2}
$$
\[
\frac{C(S_r) \cdot \nabla P_i(S_r) - P(S_r) \cdot \nabla C_i(S_r)}{[P(S_r)]^2}
\]

where
\[
\nabla P_i(S_r) = \frac{\partial P(S)}{\partial s_i} \bigg|_{S_r}
\]

and
\[
\nabla C_i(S_r) = \frac{\partial C(S)}{\partial s_i} \bigg|_{S_r}.
\]

Assuming that the cost function is orthogonal, but not necessarily first order, in its parameters, let
\[
\nabla C_i(S_r) = k_i(s_{r1}).
\]

In optimization using the analytical model, the cost function is assumed to be exact. However \(\nabla P_i(S_r)\) is approximated by \(\beta_i\), the i-th coefficient of the regression expression. Assuming that \(P(S_r)\) is predicted exactly by the analytical model, the approximation to \(\nabla f_i(S_r)\) is
\[
\hat{\nabla f_i(S_r)} = \frac{C(S_r) \cdot \beta_i - P(S_r) \cdot k_i(s_{r1})}{[P(S_r)]^2}.
\]

Thus, the bound on the error of \(\beta_i\) is such that \(\nabla f_i(S_r)\) and \(\hat{\nabla f_i(S_r)}\) have the same sign, so as to cause the local optimization procedure to move in the correct direction along the i-th dimension. Applying theorem A.1 (see Appendix A), this is satisfied if
\[
|C(S_r) \cdot \nabla P_i(S_r) - C(S_r) \cdot \beta_i| < |C(S_r) \cdot \nabla P_i(S_r) - P(S_r) \cdot k_i(s_{r1})|,
\]

which reduces to
\[
|\nabla P_i(S_r) \cdot \beta_i| < \|
abla P_i(S_r) - \frac{P(S_r)}{C(S_r)} \cdot k_i(s_{r2})\|,
\]

(4.1)
However, to use this bound on the error in β_i, the value of $\nabla P_i(S_r)$ is required. This can be approximated by considering the broken hyperplane approximation to the surface. For example, consider the one-dimensional analytical model in Figure 4.3. Let m_1 and m_2 be the slopes of the two segments of the broken straight line approximation to the curve, that pass through S_r. Then $\nabla P_i(S_r)$ may be roughly bounded by:

$$m_1 \geq \nabla P_i(S_r) \geq m_2.$$

If, for $\nabla P_i(S_r)$ in inequality 4.1, we substitute an estimate based on m_1 and m_2, the bound can be used in practice. The estimate can be chosen so as to develop either a worst-case bounding condition or an average bounding condition. Thus the worst case inequality that bounds β_i is:

$$\max(|m_1 - \beta_i|, |m_2 - \beta_i|)$$

$$\leq \min(|m_1 - \frac{P(S_r) \cdot k_i(s_{ri})}{C(S_r)}|, |m_2 - \frac{P(S_r) \cdot k_i(s_{ri})}{C(S_r)}|).$$

A more optimistic bounding inequality would be:

$$|\text{mean}(m_1, m_2) - \beta_i|$$

$$\leq |\text{mean}(m_1, m_2) - \frac{P(S_r) \cdot k_i(s_{ri})}{C(S_r)}|.$$
Figure 4.4 Bounding the slope of the performance curve.
For every recalibration of the analytical model, the error bound conditions can be calculated as above, for each dimension. The confidence in prediction is high for those parameters that satisfy the inequality. For those that do not, one of the following corrective steps may be taken:

1) The direction opposite to that of the prediction can be examined.
2) The recalibration set can be changed to eliminate some possibly misleading calibration points.

4.4.8 Sensitivity Analysis

When the global procedure has converged, sensitivity analysis must be conducted in the region around the predicted optimum for the following reasons:

a) To precisely identify the optimum in the region of oscillation.

b) To determine the sensitivity of performance, and hence the objective function, to small changes from the optimum system. This may indicate changes that can be made in the system design, for a very small sacrifice in performance or cost. Such changes may be attractive to meet other design objectives. Since accurate predictions of performance are needed to meet the above objectives, the low-level model must be used for performance evaluation at this stage.

4.4.8.1 Exhaustive Sensitivity Analysis

This procedure evaluates the performance, and hence the objective function, at all the grid point neighbors of the predicted optimum. This is repeated until a system which is better than all its neighbors is found.
This system is a local optimum. For example, if the global procedure settles on \((5, 64, 8, 2, 2)\) as the optimum system, this procedure would evaluate systems with all combinations of the following parameter values:

- \(mc\): 4, 5, 6
- \(mb\): 32, 64, 128
- \(ib\): 4, 8, 16
- \(fx\): 1, 2, 3
- \(fL\): 1, 2, 3

This would require the evaluation of \(3^5 = 243\) systems, for the first analysis of sensitivity.

4.4.8.2 Single Parameter Sensitivity Analysis

To avoid the large number of expensive calls on the low-level model required by the exhaustive procedure, a single parameter approach to sensitivity was adopted. In this procedure, the neighboring systems along a single dimension are compared with the predicted optimum. If one of these is better, it is made the new optimum and its new neighbor along the same dimension is examined. This procedure is repeated until no improvement can be made along that dimension. Each of the other dimensions is then examined individually, holding all the other parameters constant. If after one pass through all the dimensions, no change was made to the optimum, the procedure is stopped. If there were any changes, another pass is made through all the dimensions.

Examples of this procedure are given in the next chapter.

4.4.9 Efficiency of the Optimization Procedure

Since most of the cost of using the model hierarchy, is in the use of a low-level model for performance prediction, the procedure can be compared
with other procedures by comparing the number of calls on the low-level model. Two benchmark procedures that bound the efficiency are now defined.

a) The Ideal Procedure: In this procedure, the optimum system is already known. The cost of the procedure is then associated with the sensitivity analysis around the optimum, which must still be conducted for the second reason in Sec. 4.4.8. Thus we will assume that the minimum cost that the system designer must bear is the cost of the sensitivity analysis in the ideal procedure. The efficiency of the ideal procedure is defined as 1. All procedures will be compared with the ideal procedure to estimate their efficiency.

b) The Grid Evaluation Procedure: In this procedure, the low-level model is used to evaluate the performance of all the grid points in the given region. The best system in that region is then chosen. For our case-study, we will assume that the region of interest is bounded by the minimum and maximum along each dimension, that was ever used as a calibration point by the optimization procedure. For example, if the maximum excursions along each dimension were:

- mc: 4 to 12 (9 grid points)
- mb: 16 to 128 (4 grid points)
- ib: 4 to 32 (4 grid points)
- fx: 1 to 3 (3 grid points)
- fI: 1 to 3 (3 grid points),

the grid evaluation procedure would make 1296 calls on the low-level model to evaluate all the grid points in this region.
With these definitions, the efficiency of the optimization procedure is defined as

\[\eta = \frac{\text{Number of calls to the low-level model by the ideal procedure}}{\text{Number of calls to the low-level model made by the optimization procedure}}. \]

A lower bound on achievable efficiency is defined as

\[\eta_L = \frac{\text{Number of low-level model calls by the ideal procedure}}{\text{Number of low-level model calls by the grid evaluation procedure}}. \]

Both these estimates are used in the next chapter.

4.5 Adaptation of the General Procedure to the Case-Study

In the previous section, we described a general procedure for finding the optimum point in a given system parameter space. In this section, we discuss some of the choices and assumptions made in applying this procedure to our case-study.

4.5.1 Continuous vs. Non-continuous System Parameters

The choice of a grid on the space was dictated by the desirability of examining only realistic computer systems. The grid points represent only such systems. However, for some parameters, points other than grid points also represent possible systems. Thus \(mb \) or \(ib \) can conceivably have a value that is not a power of two. A non-integral value for \(mc \) could be achieved by a finer division of the cycle time. A value of 2.5 for the fixed point unit architecture may represent a design that is a compromise between the pipelined architecture and dataflow architecture described in Sec. 3.4.6.3.

Thus these system parameters can be approximated by real values. However, in the local optimization procedure, the \(Lm \) parameter is strictly a Boolean parameter. That is, a system either does or does not have loop-mode. Thus non-boolean values for \(Lm \) would be unrealistic.
In view of the above, the global optimization was split into two parts - finding an optimum system on the \(\lambda m = 0 \) hyperplane and another on the \(\lambda m = 1 \) hyperplane. On each of these hyperplanes, a standard multi-dimensional, real variable optimization procedure was used as the local optimization procedure to determine the other five parameters of interest. The better of the optima on the two hyperplanes is then identified as the optimum system.

In an early version of the optimization procedure, the initial calibration set for optimization on the \(\lambda m = 0 \) hyperplane consisted of only one system - the normal system with loop-mode turned off. Projections of the initial calibration set on the \(\lambda m = 1 \) hyperplane (see Table 4.2) onto the \(\lambda m = 0 \) hyperplane were used by the procedure in its initial calibration. This approach is a logical extension of the orthogonality assumption to the \(\lambda m \) dimension. However, the errors in this assumption were so large as to cause the procedure to move very erratically on the \(\lambda m = 0 \) hyperplane. Consequently, this approach was abandoned and an entire initial calibration set as in Table 4.2, was used on the \(\lambda m = 0 \) hyperplane as well.

4.5.2 Adaptive Metric for the \(mc \) Dimension

Since the range of the \(mc \) parameter is considerably larger than the ranges of the other parameters, a variable metric was chosen for that dimension. If the metric were chosen as one CPU cycle, it was expected that the global optimization procedure would cause very small incremental moves in the \(mc \) dimension. To avoid this, the metric was chosen as six cycles initially. This explains the settings of 6 and 18 for \(mc \) in the initial calibration set of Table 4.2. However, if this large metric value were retained at later stages in the optimization, systems with large
differences in mc from the reference system would still be included in
the recalibration set, because the large mc metric makes them appear closer
(in metric units) to the reference system. Thus the locality of the
analytical model calibration is lost. This effect was actually observed
in an early version of the optimization procedure.

To compromise between these two opposing needs, the following mc
movement and metric reduction rules were adopted:

1) If the movement dictated by the optimization along the mc
dimension is larger than the current mc metric, the reference point is
moved just 1 metric unit along the mc dimension in that direction. If
the movement dictated is less than one metric, the reference point is
moved to the first integral value of mc, beyond the predicted optimum from
the reference point.

2) The initial value of the mc metric is six cycles. This value
may be decreased once every three iterations of the optimization procedure
and is held constant in between. The new value for the metric is chosen
as follows:

If the maximum movement in the last three iterations was equal to
the old metric value (it cannot be greater), the metric value is decreased
by 1. If the maximum movement in the last three iterations was less than
the old metric value, the metric value is reduced to the value of that
maximum. The metric is, however, never reduced below 1.

3) If oscillation occurs between two calibration points that are more
than one cycle apart in the mc dimension, the oscillation is broken by
reducing the metric by 1.
By the above procedure, the mc metric will eventually be reduced to 1, the resolution required of the optimization procedure. The metric reduction thus progressively expands the mc dimension so as to focus attention on the region of interest, by excluding points far away from having any effect on the calibration. The rate of this expansion is tied to the rate at which the optimization procedure seems to converge - which is indicated by the magnitude of the moves that it dictates. Some examples of the application of the movement rule for the mc dimension are given in Table 4.6.

4.5.3 Feasibility Checking

Since only a restricted region of the system space can be simulated by the control stream model, the local optimization procedure must be restricted to this feasible region of the space. For example, fixed point unit architectures of type 1, 2 and 3 are the only configurations allowed in the simulator. However, we found that enforcing very strict feasibility checks such as $1 \leq fx \leq 3$, allowed the local optimization very little freedom of movement and caused it to stagnate at some feasibility region boundaries. To counter this we initially designated the feasible region to be defined by the inequalities:

$$0.5 \leq mc \leq \infty$$
$$0.5 \leq mb \leq \infty$$
$$0.5 \leq lb \leq \infty$$
$$0.5 \leq fx \leq 3.5$$
$$0.5 \leq fl \leq 3.5$$
Table 4.6 - Movement in the mc Dimension

<table>
<thead>
<tr>
<th>Example</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current mc grid metric</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>mc component of starting reference system</td>
<td>24</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>mc component of optimum system predicted</td>
<td>10.2</td>
<td>7.7</td>
<td>3.6</td>
<td>6.7</td>
</tr>
<tr>
<td>using hyperplane model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mc component of new reference system</td>
<td>18</td>
<td>7</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>
However, as experience and insight were gained in the use of the optimization procedure, it was decided that applying only the above checks for feasibility allowed the local optimization procedure too much freedom of movement, resulting in it exploring regions far beyond the region of validity of the analytical model. For example, on one iteration, starting at a reference system with $ib = 8$, the procedure reached an optimum system with $ib = 160$. Since the linear dependence of performance on ib resulted in an exaggerated value of performance at $ib = 160$, changes in the other parameters did not appear very cost-effective at that high level of performance, and were therefore ruled out by the procedure.

To avoid the pitfalls described above and to restrict the movement of the procedure to the local region of validity of the analytical model an additional feasibility region was delineated. Initially this region was defined to be bounded by grid points one metric unit away from the reference system along each direction of each dimension. Thus if the reference system were $(5, 32, 8, 2, 2)$, with the mc grid metric at two cycles, the feasible region was defined by:

\[
3 \leq mc \leq 7, \\
16 \leq mb \leq 64, \\
4 \leq ib \leq 16, \\
1 \leq fx \leq 3 \\
\text{and } 1 \leq fL \leq 3.
\]

However, this was found to cramp the movement of the procedure severely, and the feasibility region boundary was extended to include grid points two metric units from the reference system along each direction of each dimension.
For the example above, this defines the feasible region by:

\[
1 \leq mc \leq 9, \\
8 \leq mb \leq 128, \\
2 \leq ib \leq 32 \\
0.5 \leq fx \leq 3.5 \text{ and} \\
0.5 \leq fl \leq 3.5.
\]

Notice that the bounds imposed by the simulation range of the control stream model are combined with the bounds restricting movement, to arrive at the overall feasible region bounds.
CHAPTER 5

DESCRIPTION OF EXPERIMENTS AND ANALYSIS OF RESULTS

5.1 Introduction

In Chapter 4, we described a procedure that uses the performance model hierarchy to optimize the design of a system, with respect to an objective function that involves system performance. We also outlined some of the special assumptions made in applying this procedure to the case-study system described in Chapter 3. In this chapter, we describe the experiments conducted in this case-study, and analyse the results.

5.2 Software Used

In this section, we list the software packages that were used in the case-study. Except where otherwise noted, all the software was run on the DEC-10 system at the Coordinated Science Laboratory of the University of Illinois.

5.2.1 The Control Stream Model

To gather the program traces that generated the control streams, a modified version of the TRACE-360 program, purchased from the University of Waterloo, was used. This program, which was run on the IBM 360/75 system at the Computing Services Office of the University of Illinois, outputs the dynamic instruction execution trace as well as the memory locations referenced by the instructions of the program being traced. The conversion of the traces to control streams was done by a program written in SAIL on the DEC-10.

The simulator of the model was coded in SIMULA-10. Its length is about 900 lines of code. Execution times of the simulator on the KI-10 CPU
ranged from 12 to 40 minutes for the traces used. A listing of the simu-
lator program is given in Appendix B.

5.2.2 The Analytical Model

The calibration of the analytical model was done by a program
written in SIMULA-10. This calls the procedure RLSEP of the IMSL library
[IMS75], which selects a regression model using the stepwise algorithm de-
scribed in [DRA66]. As described in Sec. 3.5.2.1, all the five system
parameter factors - mc, mb, ib, fx, and f2 - are forced into the regression
equation. Execution times of the calibration program were less than 1 sec.
on the KI-10 CPU.

5.2.3 The Local Optimization Procedure

The local optimization was done by a program written in FORTRAN-10.
This first reads the coefficients of the analytical model and the parameters
of the system cost model. It then calls the procedure ZXMIN of the IMSL
library [IMS75], which uses a quasi-Newton algorithm to minimize a function
of n variables. As described in Sec. 4.5.1, the five system parameters mc,
mb, ib, fx and f2 are treated as continuous variables by the optimization
program. Execution times of the local optimization program were less than
1 sec. on the KI-10 CPU.

5.3 The System Cost Model

A simple system cost model was chosen, which at the same time,
incorporates reasonably realistic cost functions of system parameters. The
model is orthogonal with respect to the individual parameters and expresses
system cost, normalized with respect to a cost of 100 for the actual 360/91
as
\[C(\text{system}) = F_{\text{CPU}}(C_0 + C_i + C_{fx} + C_{f2}) + F_{\text{mem}}(M_0 + C_{mc} + C_{mb}). \]
where:

\[F_{CPU} : \text{CPU cost as a fraction of system cost} = 0.57. \]
\[C_0 : \text{fixed cost of the CPU} = 15 \text{ (for the Main Storage Control Element section of the CPU)} \]
\[C_i : \text{cost of the instruction unit} = 9 + \frac{ib}{8} + 5 \cdot \Delta m. \]
\[C_{fx} : \text{cost of the fixed point unit} = 24 + fx^2 \]
\[C_{fl} : \text{cost of the floating point unit} = 36 + fl^2. \]
\[F_{mem} : \text{Memory cost as a fraction of system cost} = 0.43. \]
\[M_0 : \text{fixed cost of the memory unit} = 2 \]
\[C_{mc} : \text{memory cycle time component of memory cost} = \frac{371.5}{mc^{0.55}} \]
\[C_{mb} : \text{memory bank component of memory cost} = 0.1875 \cdot \text{mb}. \]

The division of cost between the CPU and memory is taken from [BEL71]. Most of the CPU cost functions are based on a rough division of cost among the various units of the actual 360/91. The cost division assumed was:

- Instruction unit : 15%
- Fixed Point unit : 25%
- Floating Point unit : 45%
- Main Storage Control : 15%

The cost function for the memory cycle time was derived from a curve fitted to memory speed, cost and size data for various System 360 Models, obtained from [BEL71]. The curve obtained was:

\[\text{Memory cost} = 32.9 + 370.0 \cdot \frac{(\text{memory size})^{0.64}}{(\text{cycle time})^{0.55}} \]

where cost is in K$,

size is in multiples of 256 K bytes and cycle time is in μsec.
A further assumption that the cycle time accounts for 95%, and the banking structure for 3%, of the memory cost in the 360/91, yields the above cost functions.

5.4 Traces Used in the Experiments

In the optimization experiments that were conducted on the case-study system, three program traces were used for generating the control streams to drive the low-level model simulator. These traces are sections of actual program traces obtained as described in Sec. 5.2.1. The traces are:

a) **EIGEN**: a program written in FORTRAN-G, to find the eigenvalues of a 14 x 14 matrix chosen from [GRE69]. It uses the subroutines TRED1 (to reduce the symmetric matrix to a tridiagonal one) and TOLL (to determine the eigenvalues of the matrix). These two routines were taken from the Eigensystem Subroutine Package (EISPACK) of the National Activity to Test Software project. The section of the trace used was the first four iterations of the TRED1 subroutine. A summary of the instruction mix of this section is given in Table 5.1. It can be seen that most of the conditional branches branch back into the instruction stream based on the value of a counter register, i.e., the program has a large number of instruction loops, with sizes ranging from 16-1024 bytes.

b) **GAUSS**: a program written in FORTRAN-G that used Gaussian elimination to solve a linear system of equations of order 20, taken from [GRE69]. It uses the subroutine GAUSZ, from the EISPACK library, to solve the system. The section of the trace used was the first four iterations of the forward elimination loop of GAUSZ. A summary of the instruction mix
Table 5.1 - Instruction Mix Summary of EIGEN

Total number of instructions: 14395

Percentage mix:

Fixed point instructions: 51.39
 Address-to-register loads: 2.02
 Register-to-register moves: 8.77
 Memory-to-register loads: 9.07
 Register-to-memory stores: 5.04
 Computational instructions:
 On register operands: 17.51
 On memory operands: 8.95

Floating point instructions: 40.41
 Register-to-register moves: 0.14
 Memory-to-register loads: 12.26
 Register-to-memory stores: 5.81
 Computational instructions:
 On register operands: 12.96
 On memory operands: 9.24

Branches: 8.20
 Unconditional branches: 0.11
 Conditional branches:
 On the condition code: 1.21
 On a counter register: 6.88
 Taken: 6.54

Target back in the stream: 6.46
Mean distance of back-target (in bytes): 44.59
Histogram of back-target distance (in bytes):

<table>
<thead>
<tr>
<th>Range</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 2</td>
<td>0.00</td>
</tr>
<tr>
<td>2: 4</td>
<td>0.00</td>
</tr>
<tr>
<td>4: 8</td>
<td>0.00</td>
</tr>
<tr>
<td>8: 16</td>
<td>0.00</td>
</tr>
<tr>
<td>16: 32</td>
<td>10.43</td>
</tr>
<tr>
<td>32: 64</td>
<td>53.87</td>
</tr>
<tr>
<td>64: 128</td>
<td>26.24</td>
</tr>
<tr>
<td>128: 256</td>
<td>0.00</td>
</tr>
<tr>
<td>256: 512</td>
<td>4.52</td>
</tr>
<tr>
<td>512: 1024</td>
<td>4.52</td>
</tr>
<tr>
<td>>=1024</td>
<td>0.43</td>
</tr>
</tbody>
</table>
of this section is given in Table 5.2. This program has about twice the percentages of branches in EIGEN. However, only approximately half of these are loop iteration branches.

c) **ERROR**: a scaled-down version of a FORTRAN program, that is used as a benchmark by the Computing Services Office of the University of Illinois. A summary of its instruction mix is given in Table 5.3. This program has a large amount of double precision floating point computation, done in predominantly straight-line code, i.e., there are very few branches.

5.5 Discussion of Optimization Experiments

We now discuss some of the optimization experiments conducted using the procedure described in Chapter 4, on the case-study system for the traces described in the last section.

5.5.1 An Iteration of the Global Optimization Procedure

Table 5.4 is an example of the results of a typical iteration of the global optimization procedure. As described in Sec. 4.4.6, the recalibration procedure chooses a recalibration set from the calibration set. This is indicated in the top half of the table. The distances indicated in the table are in terms of the grid metrics for the various dimensions. The recalibration set is used to calibrate the hyperplane model at the current reference system. The error in the model for the systems in the calibration set is printed here for illustrative purposes, but may actually be used to control the procedure. The coefficients of the model, along with the cost model parameters described in Sec. 5.3, are fed to the local optimization procedure, which determines the locally optimum system in the feasibility region demarcated as in Sec. 4.5.3. The movement rule of Sec. 4.4.4 is then used to determine the new reference system for the next
Table 5.2 - Instruction Mix Summary of GAUSS

Total number of instructions: 19380

Percentage mix:

<table>
<thead>
<tr>
<th>Type of Instruction</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed point instructions</td>
<td>38.36</td>
</tr>
<tr>
<td>Address-to-register loads</td>
<td>0.75</td>
</tr>
<tr>
<td>Register-to-register moves</td>
<td>5.61</td>
</tr>
<tr>
<td>Memory-to-register loads</td>
<td>5.98</td>
</tr>
<tr>
<td>Register-to-memory stores</td>
<td>2.98</td>
</tr>
<tr>
<td>Computational instructions:</td>
<td></td>
</tr>
<tr>
<td>On register operands:</td>
<td>16.60</td>
</tr>
<tr>
<td>On memory operands:</td>
<td>6.43</td>
</tr>
</tbody>
</table>

Floating point instructions: 46.28

Register-to-register moves: 0.19
Memory-to-register loads: 13.90
Register-to-memory stores: 6.76

Computational instructions:
On register operands: 14.77
On memory operands: 10.66

Branches: 15.35

Unconditional branches: 0.04
Conditional branches:
On the condition code: 7.60
On a counter register: 7.72
Taken: 14.62

Target back in the stream: 7.67
Mean distance of back-target (in bytes): 44.46

Histogram of back-target distance (in bytes):

<table>
<thead>
<tr>
<th>Range</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>2</td>
</tr>
<tr>
<td>4:</td>
<td>8</td>
</tr>
<tr>
<td>16:</td>
<td>32</td>
</tr>
<tr>
<td>32:</td>
<td>64</td>
</tr>
<tr>
<td>64:</td>
<td>128</td>
</tr>
<tr>
<td>128:</td>
<td>256</td>
</tr>
<tr>
<td>256:</td>
<td>512</td>
</tr>
<tr>
<td>512:</td>
<td>1024</td>
</tr>
<tr>
<td>>=1024</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.3 - Instruction Mix Summary of ERROR

Total number of instructions: 13368

Percentage mix:

Fixed point instructions: 4.19
 Address-to-register loads: 0.41
 Register-to-register moves: 0.27
 Memory-to-register loads: 1.81
 Register-to-memory stores: 1.18

Computational instructions:
 On register operands: 0.02
 On memory operands: 0.49

Floating point instructions: 93.78
 Register-to-register moves: 0.74
 Memory-to-register loads: 24.04
 Register-to-memory stores: 15.62

Computational instructions:
 On register operands: 12.37
 On memory operands: 41.02

Branches: 2.02
 Unconditional branches: 0.89

Conditional branches:
 On the condition code: 1.00
 On a counter register: 0.13
 Taken: 0.10

Target back in the stream: 0.10
Mean distance of back-target (in bytes): 2423.14

Histogram of back-target distance (in bytes):

<table>
<thead>
<tr>
<th>Range</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: 2</td>
<td>0.00</td>
</tr>
<tr>
<td>2: 4</td>
<td>0.00</td>
</tr>
<tr>
<td>4: 8</td>
<td>0.00</td>
</tr>
<tr>
<td>8: 16</td>
<td>0.00</td>
</tr>
<tr>
<td>16: 32</td>
<td>0.00</td>
</tr>
<tr>
<td>32: 64</td>
<td>0.00</td>
</tr>
<tr>
<td>64: 128</td>
<td>0.00</td>
</tr>
<tr>
<td>128: 256</td>
<td>14.29</td>
</tr>
<tr>
<td>256: 512</td>
<td>0.00</td>
</tr>
<tr>
<td>512:1024</td>
<td>0.00</td>
</tr>
<tr>
<td>≥1024</td>
<td>85.71</td>
</tr>
</tbody>
</table>
Table 5.4 - An Iteration of the Global Optimization Procedure

Calibration set: 00 02 03 04 05 06 07 08 09 10 11 54
Loopmode: 1 (on)
Reference system: 54
mc grid metric: 6 CPU cycles

Distance of systems from reference system:

<table>
<thead>
<tr>
<th>System</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
<th>lm</th>
<th>Norm^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>5</td>
<td>1.00</td>
<td>0.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>6</td>
<td>1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>9</td>
<td>1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>11</td>
<td>1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>4.00</td>
</tr>
<tr>
<td>0</td>
<td>1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>5.00</td>
</tr>
<tr>
<td>7</td>
<td>1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>5.00</td>
</tr>
<tr>
<td>8</td>
<td>2.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>8.00</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
<td>-2.00</td>
<td>-1.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>8.00</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
<td>-1.00</td>
<td>-2.00</td>
<td>-1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>8.00</td>
</tr>
</tbody>
</table>

Recalibration set: 54 2 5 6 9 11 0 7 8

Hyperplane model coefficients:

<table>
<thead>
<tr>
<th>Constant</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.29811</td>
<td>-0.01217</td>
<td>0.01694</td>
<td>0.00180</td>
<td>0.00961</td>
<td>0.00894</td>
</tr>
</tbody>
</table>

Error in hyperplane model predictions of throughput:

<table>
<thead>
<tr>
<th>System</th>
<th>Observed</th>
<th>Predicted</th>
<th>%Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>0.35112</td>
<td>0.35409</td>
<td>-0.85</td>
</tr>
<tr>
<td>2</td>
<td>0.33764</td>
<td>0.33467</td>
<td>0.88</td>
</tr>
<tr>
<td>5</td>
<td>0.28156</td>
<td>0.27858</td>
<td>1.06</td>
</tr>
<tr>
<td>6</td>
<td>0.26681</td>
<td>0.27126</td>
<td>-1.67</td>
</tr>
<tr>
<td>9</td>
<td>0.24924</td>
<td>0.25271</td>
<td>-1.39</td>
</tr>
<tr>
<td>11</td>
<td>0.26642</td>
<td>0.26344</td>
<td>1.12</td>
</tr>
<tr>
<td>0</td>
<td>0.25669</td>
<td>0.26164</td>
<td>-1.93</td>
</tr>
<tr>
<td>7</td>
<td>0.28458</td>
<td>0.28087</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>0.24699</td>
<td>0.24377</td>
<td>1.30</td>
</tr>
<tr>
<td>3</td>
<td>0.20186</td>
<td>0.18862</td>
<td>6.56</td>
</tr>
<tr>
<td>4</td>
<td>0.22391</td>
<td>0.24470</td>
<td>-9.29</td>
</tr>
<tr>
<td>10</td>
<td>0.19933</td>
<td>0.25984</td>
<td>-30.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial reference system</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>32.</td>
<td>16.</td>
<td>2.</td>
<td>2.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optimum system</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.42</td>
<td>98.04</td>
<td>11.77</td>
<td>2.72</td>
<td>2.54</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New reference system</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>64.</td>
<td>8.</td>
<td>3.</td>
<td>3.</td>
<td></td>
</tr>
</tbody>
</table>

Cost/performance value of the optimum system: 323.3087
Throughput of the optimum system: 0.3752
Memory, CPU and system costs: 61.83 59.47 121.30
Relative memory parameter costs: 123.41 20.38
Relative CPU parameter costs: 10.47 31.42 42.43 5.00 15.00
iteration of the global procedure. Not shown is the application of the stopping rule, or the possible run of the low-level model for the new reference system, for future calibration. The cost and cost/performance values of the locally optimum system are shown purely for illustrative purposes. The relative memory parameter costs are the costs of memory cycle time and memory banks, respectively. The relative CPU parameter costs are the costs of the instruction unit (without loop-mode), the fixed point unit, the floating point unit, loop-mode and the fixed CPU costs respectively.

In the following sections, we use the following terminology:

1) **Convergence sequence**: The sequence of reference systems generated by the global optimization procedure, before oscillation occurred.

2) **Sensitivity sequence**: The sequence of systems examined, after convergence, by the individual parameter sensitivity analysis procedure described in Sec. 4.4.8.2.

3) **Sensitivity report**: A summary of the sensitivity sequence, listing the sensitivity of cost, performance and cost/performance to the various system parameters at the optimum system.

The sensitivity sequence will be shown for only one experiment, since the others are very similar and, consequently not very informative.

5.5.2 Experiments on EIGN

The EIGN program was run on various system configurations for experiments 1 and 2.

5.5.2.1 Optimization on the $\lambda m = 1$ hyperplane

Since EIGN was the first trace that the experiments were tried on, the optimization was run for three different starting points on the $\lambda m = 1$ hyperplane, in an attempt to establish confidence in its convergence.
5.5.2.1.1 Experiment 1a:

Table 5.5 lists the convergence sequence with the starting point at the normal system (parameters: 12, 16, 8, 1, 3) on the \(\Delta m = 1 \) hyperplane. Notice that the mere repetition of a calibration point as a reference system does not indicate oscillation. Thus the repetition of system 18 on iterations 11 and 13 does not constitute an oscillation, because iteration 12 introduces another reference system, 60, for possible inclusion in future calibration sets, which may change the analytical model based at system 18. That this does happen is shown by the fact that the model in iteration 14 yields a new reference system, 61. Thus a pair of reference systems must be repeated twice in succession for an oscillation.

Table 5.6 lists the sensitivity sequence for this experiment. The sequence starts at the better of the two systems involved in the oscillation that ended the convergence sequence. Parameters are perturbed individually and the base system is changed if a decrease in cost/performance is achieved. The procedure is continued until a pass through all the parameters causes no change to the base system.

The optimum system reached is (6, 32, 8, 3, 3). It is interesting to note that the optimization procedure reaches an oscillation hypercube containing the optimum value for all the system parameters except \(f_2 \).

Table 5.7 which lists the sensitivity report for this experiment, shows that the projections of both the performance and cost surface (and consequently the cost/performance surface) onto the \(f_2 \) coordinate hyperplane are quite flat in the region \(f_2 = 2 \) to 3. We believe that this slope is within the regression error bounds of the procedure, thus causing the optimization error. We discuss this further in Sec. 6.3.1.
Table 5.5 - Convergence Sequence for Experiment 1a on EIGEN

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Reference System</th>
<th>Reference System Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mc</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>54</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>99</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>101</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>102</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>61</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>7</td>
</tr>
</tbody>
</table>

Oscillation Hypercube 6:7 32:64 8:16 3 1:2
Table 5.6 - Sensitivity Sequence for Experiment la on EIGEN

<table>
<thead>
<tr>
<th>System Parameters</th>
<th>Cost/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>mc</td>
<td>mb</td>
</tr>
<tr>
<td>Base --> 15</td>
<td>7</td>
</tr>
<tr>
<td>63</td>
<td>6</td>
</tr>
<tr>
<td>60</td>
<td>8</td>
</tr>
<tr>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>Base --> 63</td>
<td>6</td>
</tr>
<tr>
<td>72</td>
<td>6</td>
</tr>
<tr>
<td>73</td>
<td>6</td>
</tr>
<tr>
<td>74</td>
<td>6</td>
</tr>
<tr>
<td>Base --> 72</td>
<td>6</td>
</tr>
<tr>
<td>75</td>
<td>6</td>
</tr>
<tr>
<td>76</td>
<td>6</td>
</tr>
<tr>
<td>77</td>
<td>6</td>
</tr>
<tr>
<td>78</td>
<td>6</td>
</tr>
<tr>
<td>79</td>
<td>6</td>
</tr>
<tr>
<td>Base --> 79</td>
<td>6</td>
</tr>
</tbody>
</table>

End of Pass 1

<table>
<thead>
<tr>
<th>System Parameters</th>
<th>Cost/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>mc</td>
<td>mb</td>
</tr>
<tr>
<td>Base --> 79</td>
<td>6</td>
</tr>
<tr>
<td>88</td>
<td>5</td>
</tr>
<tr>
<td>89</td>
<td>7</td>
</tr>
<tr>
<td>95</td>
<td>6</td>
</tr>
<tr>
<td>108</td>
<td>6</td>
</tr>
<tr>
<td>96</td>
<td>6</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
</tr>
<tr>
<td>97</td>
<td>6</td>
</tr>
<tr>
<td>72</td>
<td>6</td>
</tr>
</tbody>
</table>

End of Pass 2

| Optimum System | 6 | 32 | 8 | 3 | 3 |
Table 5.7 - Sensitivity Report for Experiments la and lb on EIGEN

Optimum System: \((6,32,8,3,3)\)

<table>
<thead>
<tr>
<th>System</th>
<th>System Parameters</th>
<th>Performance</th>
<th>Cost</th>
<th>Cost/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mc) (mb) (ib) (fx) (fl)</td>
<td>Actual</td>
<td>%change from optimum</td>
<td>Actual</td>
</tr>
<tr>
<td>88</td>
<td>5 32 8 3 3</td>
<td>0.4450</td>
<td>+4.2</td>
<td>130.92</td>
</tr>
<tr>
<td>79</td>
<td>6 32 8 3 3</td>
<td>0.4272</td>
<td>0.0</td>
<td>124.63</td>
</tr>
<tr>
<td>89</td>
<td>7 32 8 3 3</td>
<td>0.4051</td>
<td>-5.2</td>
<td>119.78</td>
</tr>
<tr>
<td>95</td>
<td>6 16 8 3 3</td>
<td>0.4027</td>
<td>-5.7</td>
<td>123.34</td>
</tr>
<tr>
<td>79</td>
<td>6 32 8 3 3</td>
<td>0.4272</td>
<td>0.0</td>
<td>124.63</td>
</tr>
<tr>
<td>108</td>
<td>6 64 8 3 3</td>
<td>0.4313</td>
<td>+1.0</td>
<td>127.21</td>
</tr>
<tr>
<td>153</td>
<td>6 128 8 3 3</td>
<td>0.4329</td>
<td>+1.3</td>
<td>132.37</td>
</tr>
<tr>
<td>96</td>
<td>6 32 4 3 3</td>
<td>0.3367</td>
<td>-21.2</td>
<td>124.34</td>
</tr>
<tr>
<td>79</td>
<td>6 32 8 3 3</td>
<td>0.4272</td>
<td>0.0</td>
<td>124.63</td>
</tr>
<tr>
<td>27</td>
<td>6 32 16 3 3</td>
<td>0.4051</td>
<td>-5.2</td>
<td>125.20</td>
</tr>
<tr>
<td>97</td>
<td>6 32 8 2 3</td>
<td>0.3765</td>
<td>-11.9</td>
<td>121.78</td>
</tr>
<tr>
<td>79</td>
<td>6 32 8 3 3</td>
<td>0.4272</td>
<td>0.0</td>
<td>124.63</td>
</tr>
<tr>
<td>78</td>
<td>6 32 8 3 1</td>
<td>0.4038</td>
<td>-5.5</td>
<td>120.07</td>
</tr>
<tr>
<td>72</td>
<td>6 32 8 3 2</td>
<td>0.4111</td>
<td>-3.8</td>
<td>121.78</td>
</tr>
<tr>
<td>79</td>
<td>6 32 8 3 3</td>
<td>0.4272</td>
<td>0.0</td>
<td>124.63</td>
</tr>
</tbody>
</table>
5.5.2.1.2 Experiment 1b

In this experiment, the procedure was purposely started at a point very far away from the optimum reached by experiment 1a - viz. (18, 8, 4, 1, 1). Table 5.8 lists the convergence sequence for this experiment which eventually reaches the optimum system (6, 32, 8, 3, 3). In this experiment, the procedure reaches an oscillation hypercube containing the optimum value for all the system parameters except mb. The sensitivity report in Table 5.7 (the same as for experiment 1a), indicates that the projections of the cost, performance, and hence cost/performance, surfaces onto the mb coordinate hyperplane are also very flat in the region mb = 32 to 64. We believe this, too, to be within the regression error bounds of the procedure.

5.5.2.1.3 Experiment 1c

In this experiment, the procedure was started at yet another point on the $A_m = 1$ hyperplane (18, 16, 8, 1, 3). This is one of the points in the initial calibration set. Table 5.9 lists the convergence sequence for this experiment. It will be observed that the optimum hypercube reached is substantially different from experiments 1a and 1b, in the mc dimension, 10:11 against 6:7 and 5:6. The reason for this becomes clear from looking at the sensitivity report for this experiment in Table 5.10. The system (10, 32, 8, 3, 3) is seen to be a locally optimum system, on the evidence of the rough analysis conducted by the individual parameter sensitivity procedure. Figure 5.1 is a plot of the projections of the performance and cost/performance surfaces onto the mc coordinate hyperplane, with the other parameters fixed at (32, 8, 3, 3) respectively. The plot clearly shows the anomalous behavior of the cost/performance surface, along the mc dimension that led the procedure to find a local optimum in this experiment.
Table 5.8 - Convergence Sequence for Experiment 1b on EIGEN

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Reference System</th>
<th>Reference System Parameters</th>
<th>Oscillation Hypercube</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mc</td>
<td>mb</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>103</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>104</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>51</td>
<td>18</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
<td>13</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>106</td>
<td>15</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>107</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>108</td>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>109</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>108</td>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>10</td>
<td>110</td>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>11</td>
<td>108</td>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>12</td>
<td>111</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>13</td>
<td>112</td>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>111</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>113</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>27</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>17</td>
<td>13</td>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>18</td>
<td>69</td>
<td>6</td>
<td>128</td>
</tr>
<tr>
<td>19</td>
<td>28</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>20</td>
<td>96</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>21</td>
<td>114</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>22</td>
<td>115</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>23</td>
<td>28</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>24</td>
<td>69</td>
<td>6</td>
<td>128</td>
</tr>
<tr>
<td>25</td>
<td>28</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>26</td>
<td>69</td>
<td>6</td>
<td>128</td>
</tr>
</tbody>
</table>
Table 5.9 - Convergence Sequence of Experiment lc on EIGEN

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Reference System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mc</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>116</td>
</tr>
<tr>
<td>2</td>
<td>117</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>118</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td>8</td>
<td>119</td>
</tr>
<tr>
<td>9</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>121</td>
</tr>
<tr>
<td>11</td>
<td>122</td>
</tr>
<tr>
<td>12</td>
<td>123</td>
</tr>
<tr>
<td>13</td>
<td>124</td>
</tr>
<tr>
<td>14</td>
<td>125</td>
</tr>
<tr>
<td>15</td>
<td>126</td>
</tr>
<tr>
<td>16</td>
<td>127</td>
</tr>
<tr>
<td>17</td>
<td>128</td>
</tr>
<tr>
<td>18</td>
<td>129</td>
</tr>
<tr>
<td>19</td>
<td>130</td>
</tr>
<tr>
<td>20</td>
<td>131</td>
</tr>
<tr>
<td>21</td>
<td>132</td>
</tr>
<tr>
<td>22</td>
<td>133</td>
</tr>
<tr>
<td>23</td>
<td>134</td>
</tr>
<tr>
<td>24</td>
<td>135</td>
</tr>
<tr>
<td>25</td>
<td>136</td>
</tr>
<tr>
<td>26</td>
<td>137</td>
</tr>
<tr>
<td>27</td>
<td>138</td>
</tr>
<tr>
<td>28</td>
<td>139</td>
</tr>
<tr>
<td>29</td>
<td>134</td>
</tr>
<tr>
<td>30</td>
<td>133</td>
</tr>
<tr>
<td>31</td>
<td>134</td>
</tr>
<tr>
<td>32</td>
<td>133</td>
</tr>
</tbody>
</table>

Oscillation Hypercube 10:11 32:64 8:16 3 1:2
Table 5.10 - Convergence Sequence for Experiment 1c on EIGEN

Optimum System: (10,32,8,3,3)

<table>
<thead>
<tr>
<th>System</th>
<th>System Parameters</th>
<th>Performance</th>
<th>Cost</th>
<th>Cost/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mc</td>
<td>mb</td>
<td>ib</td>
<td>fx</td>
</tr>
<tr>
<td>143</td>
<td>9</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>141</td>
<td>10</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>144</td>
<td>11</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>146</td>
<td>10</td>
<td>16</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>141</td>
<td>10</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>119</td>
<td>10</td>
<td>64</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>147</td>
<td>10</td>
<td>32</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>141</td>
<td>10</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>148</td>
<td>10</td>
<td>32</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>149</td>
<td>10</td>
<td>32</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>141</td>
<td>10</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>145</td>
<td>10</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>141</td>
<td>10</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>
Figure 5.1 Projections of performance and cost/performance surfaces onto the mc coordinate hyperplane for EIGEN.
We believe that the main reason for the procedure arriving at this secondary local optimum, is the shortening of the mc grid metric just when the procedure happened to be exploring the region of the secondary (local) optimum. The purpose of gradually shortening the mc grid metric was to force the procedure to maintain a global perspective during the initial stages, when it has a very small calibration set, but to increasingly localize its perspective as the possible choices for the recalibration set increase. For experiment la and lb, this shortening happened when the procedure had reached the region of the global optimum of Figure 5.1. For experiment lc however, some regression error resulted in the procedure being nearer the local optimum, when the mc grid metric was being shortened. This can be seen by comparing the mc values of the reference system on iteration 12 of the three experiments - they are 8, 8 and 14 respectively. Localizing the perspective then rendered the procedure incapable of looking beyond the region of the local optimum.

The performance and cost/performance of the normal system are also indicated on Figure 5.1 to illustrate the flatness of the cost/performance surface near the optimum along the mc dimension.

Here again, the error of experiment 1 along the f2 dimension has re-occurred, and for the same reason.

5.5.2.2 Experiment 2: Optimization on the \(\lambda m = 0 \) hyperplane

This experiment was conducted by running EIGEN on systems that had the loop-mode feature turned off \((\lambda m = 0) \). The starting point was the otherwise normal system \((12, 16, 8, 1, 3)\). Table 5.11 lists the convergence sequence for this experiment and Table 5.12 is the sensitivity report at the actual optimum system \((6, 32, 8, 3, 3)\). The oscillation hypercube reached by the procedure does not contain the optimum value for
Table 5.11 - Convergence Sequence for Experiment 2 on EIGEN

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Reference System</th>
<th>Reference System Parameters</th>
<th>Oscillation Hypercube</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mc</td>
<td>mb</td>
<td>ib</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>38</td>
<td>9</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>39</td>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>43</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>45</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>46</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>47</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>48</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>13</td>
<td>49</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>57</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>16</td>
<td>61</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>17</td>
<td>62</td>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>18</td>
<td>63</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>20</td>
<td>64</td>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>21</td>
<td>65</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>22</td>
<td>64</td>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>23</td>
<td>66</td>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>24</td>
<td>67</td>
<td>9</td>
<td>64</td>
</tr>
<tr>
<td>25</td>
<td>66</td>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>26</td>
<td>67</td>
<td>9</td>
<td>64</td>
</tr>
</tbody>
</table>
Table 5.12 - Sensitivity Report for Experiment 2 on EIGEN

Optimum System: (6, 32, 8, 3, 3)

<table>
<thead>
<tr>
<th>System</th>
<th>System Parameters</th>
<th>Performance</th>
<th>Cost</th>
<th>Cost/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mc</td>
<td>mb</td>
<td>ib</td>
<td>fx</td>
</tr>
<tr>
<td>80</td>
<td>5</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>79</td>
<td>6</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>81</td>
<td>7</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>86</td>
<td>8</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>82</td>
<td>6</td>
<td>16</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>79</td>
<td>6</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>83</td>
<td>6</td>
<td>64</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>87</td>
<td>6</td>
<td>128</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>49</td>
<td>6</td>
<td>32</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>79</td>
<td>6</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>84</td>
<td>6</td>
<td>32</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>85</td>
<td>6</td>
<td>32</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>79</td>
<td>6</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>78</td>
<td>6</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>73</td>
<td>6</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>79</td>
<td>6</td>
<td>32</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>
two-dimensions - mc and mb. In both cases, the flatness of the projections of the cost/performance surface onto the coordinate hyperplanes are seen to be quite small, and are possibly within the regression error bounds of the procedure.

5.5.2.3 Analysis of the optimum architecture for EIGEN

Experiments 1 and 2 show that the optimum system for EIGEN is (6, 32, 8, 3, 3) on the \(\lambda m = 1 \) hyperplane. We now analyze this architecture in more detail.

5.5.2.3.1 Orthogonality of the cost/performance surface

The shape of the cost/performance surface seems to be fairly orthogonal with respect to its system parameters. This is illustrated by the fact that the optimum system is (6, 32, 8, 3, 3) on both the \(\lambda m \) hyperplanes. Further, the local optimum reached in experiment 1c, was different in the mc dimension (10 as opposed to 6). But this did not affect the optimum values for the other parameters, viz (32, 8, 3, 3). This seems to indicate that there is very little interaction between the parameters near the optimum on the cost/performance surface.

5.5.2.3.2 Instruction unit issues

Loop-mode is indeed cost effective by to a surprisingly small extent. Thus in the optimum system (6, 32, 8, 3, 3), removing loop-mode causes a performance and a cost/performance degradation of only 6.4\% and 4.4\%. We expect that this difference would be even smaller, if a cache, which is a cost-effective technique of achieving an even lower memory cycle time, were used. The small contribution that loop-mode makes to performance also explains why the optimum system on both the \(\lambda m \) hyperplanes had the same values for the other system parameters, viz (6, 32, 8, 3, 3).
In particular, it is interesting that the optimum ib value is 8 on both the \(\lambda m \) hyperplanes. The choice of the most cost-effective value of ib involves a tradeoff between three factors. The necessity to maintain a degree of look-ahead sufficient to ensure a high instruction supply bandwidth, demands a high value of ib. So does the possibility of holding increasingly larger instruction loops in the buffer with loop-mode. However, the occurrence of branches renders a number of prefetched instructions superfluous. Since the fetching of these instructions uses critical resources such as memory banks, the high occurrence of superfluity argues for a low degree of prefetch, i.e., a low value for ib. We will illustrate this tradeoff on EIGEN.

With \(\lambda m = 0 \), the buffer is used solely to hold prefetched instructions. The optimum value arrived at for ib is 8. Table 5.12 indicates that reducing ib to 4 degrades performance by as much as 17.5\%, because it drastically reduces the instruction supply bandwidth. However, increasing ib to 16, causes a comparable degradation in performance (16\%) due to the increase in superfluity. Thus ib = 8 represents the choice that best trades-off these two factors.

With \(\lambda m = 1 \), loop-mode enters the tradeoff considerations. But here again, the optimum choice for ib is 8. Table 5.7 shows that if ib = 4, the buffer is neither large enough for an adequate instruction supply bandwidth in non-looping situations, nor is it large enough to hold any loops (the buffer can hold \(4 \ast \) ib bytes of instructions - see Table 5.1) - hence the performance degradation of 21.2\%. However, increasing ib to 16 also causes a performance degradation of 5.2\%. This is despite the fact that 64.3\% (see Table 5.1) of all the looping branches in EIGEN have a
target distance of less than 64 bytes (against 10.4% for 32 bytes). The degradation due to superfluity is evidently greater than the increased bandwidth due to loop-mode. This suggests that loop-mode is really cost-effective only for small loops, where the branch decision and target fetching time forms a large percentage of the loop execution time.

5.5.2.3.3 Execution unit issues

A high bandwidth fixed point unit is vital for performance. This is indicated in Table 5.7, by the fact that reducing \(f_x \) from 3 to 2 causes an 11.9% degradation in performance and a 10.9% degradation in cost/performance. On the other hand, \(f_L \) has a much smaller effect on system performance and cost/performance. Thus reducing \(f_L \) from 3 to 2 causes only a 3.8% degradation in performance and a 1.5% degradation in cost/performance. This can also be seen from the convergence sequences, where \(f_x \) stays fairly steady at 3, while \(f_L \) moves unpredictably over the range 1 to 3.

We believe that this is linked with the fact that the proportion of fixed to floating point instructions in EIGEN is 1.3:1. We will contrast this with GAUSS in Sec. 5.5.3.3.

5.5.2.3.4 Memory issues

Table 5.7 shows that the latency of the memory has a greater influence on performance than its bandwidth. Thus increasing the number of banks from 32 to 64 (128), causes a mere 1.0% (1.3%) improvement in performance. This suggests that the number of memory conflicts has not decreased substantially upon increasing \(m_b \). However reducing \(m_c \) from 6 to 5, causes a performance improvement of 4.2%, which is substantially more than the effect of \(m_b \).
5.5.3 Experiments on GAUSS

Experiments 3 and 4 deal with the GAUSS program run on various system configurations.

5.5.3.1 Experiment 3: Optimization on the \(\Delta m = 1 \) hyperplane

Table 5.13 lists the convergence sequence for this experiment, with the starting point at the normal system \((12, 16, 18, 1, 3)\) on the \(\Delta m = 1 \) hyperplane. The procedure converges fairly rapidly compared with the EIGEN experiments. It is also interesting to observe that the procedure examines a much larger range (8 to 128) along the ib dimension than it did for EIGEN (8 to 32). This is because of the greater effect of loop-mode which we discuss in Sec. 5.5.3.3.

For this experiment Table 5.14 lists the sensitivity report about the final optimum \((4, 16, 16, 3, 3)\). Thus the oscillation hypercube reached by the procedure does not contain the optimum value for two-dimensions - mc and fx. Here again, the flatness of the cost/performance surface projections onto the coordinate hyperplanes possibly explains the errors - since the slopes seem to be within the regression error bound of the procedure.

5.5.3.2 Experiment 4: Optimization on the \(\Delta m = 0 \) hyperplane

In this experiment, conducted using systems on the \(\Delta m = 0 \) hyperplane, the otherwise normal system \((12, 16, 8, 1, 3)\) was again used as the starting point. As in the previous experiment, the procedure converged fairly rapidly. The convergence sequence is listed in Table 5.15. In direct contrast to experiment 3, the ib range examined was very small and in the opposite direction from experiment 3 (2 to 8).

For this experiment, Table 5.16 lists the sensitivity report about the optimum system \((4, 32, 4, 1, 3)\). The oscillation hyper-
Table 5.13 - Convergence Sequence for Experiment 3 on GAUSS

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Reference System</th>
<th>Reference System Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>mc 12 mb 16 ib 8 fx 1 fl 3</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>mc 13 mb 32 ib 16 fx 1 fl 2</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>mc 8 mb 16 ib 32 fx 1 fl 3</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>mc 6 mb 32 ib 64 fx 1 fl 2</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>mc 7 mb 16 ib 128 fx 1 fl 3</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>mc 9 mb 32 ib 64 fx 1 fl 2</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>mc 8 mb 64 ib 128 fx 1 fl 3</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>mc 6 mb 32 ib 64 fx 1 fl 2</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>mc 7 mb 16 ib 128 fx 1 fl 3</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>mc 5 mb 32 ib 128 fx 1 fl 2</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>mc 6 mb 16 ib 64 fx 1 fl 3</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>mc 7 mb 32 ib 32 fx 1 fl 3</td>
</tr>
<tr>
<td>12</td>
<td>19</td>
<td>mc 6 mb 16 ib 64 fx 1 fl 3</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
<td>mc 5 mb 32 ib 32 fx 1 fl 3</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
<td>mc 6 mb 16 ib 16 fx 1 fl 3</td>
</tr>
<tr>
<td>15</td>
<td>23</td>
<td>mc 5 mb 32 ib 8 fx 1 fl 3</td>
</tr>
<tr>
<td>16</td>
<td>22</td>
<td>mc 6 mb 16 ib 16 fx 1 fl 3</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
<td>mc 5 mb 32 ib 32 fx 1 fl 3</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>mc 6 mb 16 ib 16 fx 1 fl 3</td>
</tr>
<tr>
<td>19</td>
<td>21</td>
<td>mc 5 mb 32 ib 32 fx 1 fl 3</td>
</tr>
</tbody>
</table>

Oscillation Hypercube 5:6 16:32 16:32 1 3
Table 14 - Sensitivity Report for Experiment 3 on GAUSS

Optimum System: (4, 16, 16, 3, 3)

<table>
<thead>
<tr>
<th>System</th>
<th>System Parameters</th>
<th>Performance</th>
<th>Cost</th>
<th>Cost/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mc</td>
<td>mb</td>
<td>ib</td>
<td>fx</td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>16</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>16</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>33</td>
<td>5</td>
<td>16</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>49</td>
<td>6</td>
<td>16</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>43</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>16</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>44</td>
<td>4</td>
<td>32</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>45</td>
<td>4</td>
<td>16</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>16</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>46</td>
<td>4</td>
<td>16</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>47</td>
<td>4</td>
<td>16</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>4</td>
<td>16</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>16</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>48</td>
<td>4</td>
<td>16</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>16</td>
<td>16</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 5.15 - Convergence Sequence for Experiment 4 on GAUSS

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Reference System</th>
<th>Reference System Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mc</td>
<td>mb</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
<td>6</td>
</tr>
</tbody>
</table>

Oscillation
Hypercube 5:6 32:64 4:8 1 3
<table>
<thead>
<tr>
<th>System Parameters</th>
<th>Cost/Performance</th>
<th>Cost</th>
<th>Actual % change from optimum</th>
<th>Actual % change from optimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>mc mb ib fx f1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 4 32 4 4 4 1 1</td>
<td></td>
<td></td>
<td>0.2296 0.0 0.2296 0.0</td>
<td>0.2296 0.0 0.2296 0.0</td>
</tr>
<tr>
<td>32 4 32 4 4 1 1 3</td>
<td></td>
<td></td>
<td>0.2265 1.4 0.2265 1.4</td>
<td>0.2265 1.4 0.2265 1.4</td>
</tr>
<tr>
<td>31 4 32 4 4 1 3</td>
<td></td>
<td></td>
<td>0.2306 0.4 0.2306 0.4</td>
<td>0.2306 0.4 0.2306 0.4</td>
</tr>
<tr>
<td>31 4 32 4 4 1 3</td>
<td></td>
<td></td>
<td>0.2270 0.8 0.2270 0.8</td>
<td>0.2270 0.8 0.2270 0.8</td>
</tr>
<tr>
<td>30 4 32 4 4 8 1 1</td>
<td></td>
<td></td>
<td>0.2109 8.1 0.2109 8.1</td>
<td>0.2109 8.1 0.2109 8.1</td>
</tr>
<tr>
<td>30 4 32 4 4 8 1 3</td>
<td></td>
<td></td>
<td>0.2296 0.0 0.2296 0.0</td>
<td>0.2296 0.0 0.2296 0.0</td>
</tr>
<tr>
<td>29 4 32 4 4 8 3</td>
<td></td>
<td></td>
<td>0.2265 1.4 0.2265 1.4</td>
<td>0.2265 1.4 0.2265 1.4</td>
</tr>
<tr>
<td>28 4 32 4 4 8 3</td>
<td></td>
<td></td>
<td>0.2306 0.4 0.2306 0.4</td>
<td>0.2306 0.4 0.2306 0.4</td>
</tr>
<tr>
<td>28 4 32 4 4 8 3</td>
<td></td>
<td></td>
<td>0.2270 0.8 0.2270 0.8</td>
<td>0.2270 0.8 0.2270 0.8</td>
</tr>
<tr>
<td>27 4 32 4 4 8 8 1</td>
<td></td>
<td></td>
<td>0.2109 8.1 0.2109 8.1</td>
<td>0.2109 8.1 0.2109 8.1</td>
</tr>
<tr>
<td>27 4 32 4 4 8 8 3</td>
<td></td>
<td></td>
<td>0.2296 0.0 0.2296 0.0</td>
<td>0.2296 0.0 0.2296 0.0</td>
</tr>
<tr>
<td>26 4 32 4 4 8 8 3</td>
<td></td>
<td></td>
<td>0.2265 1.4 0.2265 1.4</td>
<td>0.2265 1.4 0.2265 1.4</td>
</tr>
<tr>
<td>26 4 32 4 4 8 8 3</td>
<td></td>
<td></td>
<td>0.2306 0.4 0.2306 0.4</td>
<td>0.2306 0.4 0.2306 0.4</td>
</tr>
<tr>
<td>26 4 32 4 4 8 8 3</td>
<td></td>
<td></td>
<td>0.2270 0.8 0.2270 0.8</td>
<td>0.2270 0.8 0.2270 0.8</td>
</tr>
</tbody>
</table>
cube thus does not contain the optimum value of the mc parameter for the same reason as the one given in experiment 3.

5.5.3.3 Analysis of the optimum architecture for GAUSS

Experiments 3 and 4 indicate that the optimum system for GAUSS is (4, 16, 16, 3, 3) on the \(\lambda_m = 1 \) hyperplane. We now analyze the results of these experiments in greater detail.

5.5.3.3.1 Non-orthogonal nature of the cost/performance surface for GAUSS

The results of experiments 3 and 4 indicate that the cost/performance surface departs much further from orthogonality with reference to its system parameters for GAUSS than for EIGEN. This can be seen from the different optima reached for the 2 \(\lambda_m \) hyperplanes. Thus:

a) With the increase in the instruction supply bandwidth due to the addition of loop-mode (\(\lambda_m = 0 \) to \(\lambda_m = 1 \)), it becomes cost-effective to have a high bandwidth fixed point unit (\(f_x = 1 \) to \(f_x = 3 \)). Further, with the demands made on memory for instruction fetching being reduced, the memory bandwidth can be reduced (\(m_b = 32 \) to \(m_b = 16 \)).

b) The interaction between \(\lambda_m \) and \(i_b \) is also clearly brought out and will be discussed further.

c) The sensitivity sequence for experiment 3 revealed that, while at a lower memory bandwidth (\(m_c = 5 \)), it is more cost-effective to have a low bandwidth fixed point unit (\(f_x = 1 \)) than a high bandwidth unit (\(f_x = 3 \)), the reverse is true when the memory bandwidth is increased (\(m_c = 4 \)). This can be seen from the cost/performance figures listed in Table 5.17.
Table 5.17 - Interaction Between mc and fx on the Cost/Performance Surface for GAUSS on the $\lambda m = 1$ Hyperplane

<table>
<thead>
<tr>
<th>System</th>
<th>System Parameters</th>
<th>Cost/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mc mb ib fx fl</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>5 16 16 1 3</td>
<td>502.37</td>
</tr>
<tr>
<td>26</td>
<td>4 16 16 1 3</td>
<td>504.10</td>
</tr>
<tr>
<td>33</td>
<td>5 16 16 3 3</td>
<td>490.88</td>
</tr>
<tr>
<td>41</td>
<td>4 16 16 3 3</td>
<td>484.05</td>
</tr>
</tbody>
</table>
5.5.3.3.2 Instruction unit issues

Loop-mode has a much greater impact on system performance for GAUSS than for EIGEN. Thus, the optimum system on the \(\lambda m = 0 \) hyperplane is 20% worse in performance and 18.6% worse in cost/performance than the optimum system on the \(\lambda m = 1 \) hyperplane. This is also evident in the different optima reached on the two hyperplanes.

The instruction buffer tradeoff discussed earlier is brought out with great clarity for GAUSS. With \(\lambda m = 0 \), \(ib = 4 \) is found to be the best tradeoff between prefetching and superfluity. The smaller degree of prefetch for GAUSS than for EIGEN, 4 against 8, is clearly related to the higher percentage of branches in the former (15.35% against 8.20%). This greatly increases the superfluity effect, forcing a low degree of prefetch. With \(\lambda m = 1 \), \(ib = 16 \) is the best tradeoff between prefetching and loop-mode on the one hand and superfluity on the other. This is despite the fact that 95.2% of all the looping branches in GAUSS have their target distances less than 128 bytes (corresponding to \(ib = 32 \)), against 33.3% for 64 bytes (\(ib = 16 \)). This again illustrates the fact that loop-mode is cost-effective only for small loops. On the other hand \(ib = 8 \) is not sufficient, since only 5.1% of the looping branches have their target distances less than 32 bytes.

5.5.3.3.3 Execution unit issues

The relative importance of the two execution units is reversed in GAUSS, with respect to EIGEN, with the floating point unit gaining in prominence. This is seen from the convergence sequence of Table 5.15, where \(f_1 \) and \(f_2 \) stay steadily at 1 and 3 respectively. Further, the sensitivity report shows that decreasing \(f_2 \) from 3 to 2 causes performance
and cost/performance to degrade by 11.5% and 10.7%, against 2.1% and 0.1% for a corresponding change in fx.

Exactly the same observation can be made as for EIGEN - this relative importance is linked to the proportion of the two types of instructions in the program. For GAUSS, the proportion of fixed to floating point instructions is 0.83:1 against 1.3:1 for EIGEN.

5.5.3.3.4 Memory issues

A curious phenomenon occurs with GAUSS - viz. there is absolutely no performance increase to be had by decreasing mc from 4 to 3. Even increasing mb from 16 to 32, produces a marginal increase in performance of 0.6%. This suggests strongly that the bottleneck has shifted to system areas other than the memory for this program on the optimum system.

5.5.4 Experiments on ERROR

For experiments 5 and 6, the ERROR program was run on various system configurations.

5.5.4.1 Experiment 5: Optimization on the \(\lambda m = 1 \) hyperplane

This experiment was conducted using systems on the \(\lambda m = 1 \) hyperplane with the procedure started at the normal system (12, 16, 8, 1, 3). Table 5.18 lists the convergence sequence for the experiment, and Table 5.19 the sensitivity report around the optimum system (7, 64, 16, 1, 3). The oscillation hypercube reached a value of mc (14:15) which is very far away from the actual optimum value of 7. Examination of the cost/performance surface reveals that it is very flat over a wide range of values for the two memory parameters - mc and mb. This is clearly indicated in Table 5.20, which lists the cost/performance values for a number of
Table 5.18 - Convergence Sequence for Experiment 5 on ERROR

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Reference System</th>
<th>mc</th>
<th>mb</th>
<th>ib</th>
<th>fx</th>
<th>fl</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>12</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>13</td>
<td>32</td>
<td>16</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>14</td>
<td>64</td>
<td>32</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>16</td>
<td>128</td>
<td>64</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>17</td>
<td>256</td>
<td>32</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>16</td>
<td>128</td>
<td>16</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>17</td>
<td>256</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>16</td>
<td>128</td>
<td>16</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>15</td>
<td>64</td>
<td>32</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>33</td>
<td>14</td>
<td>32</td>
<td>16</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>15</td>
<td>64</td>
<td>32</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
<td>14</td>
<td>32</td>
<td>16</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Oscillation Hypercube 14:15 32:64 16:32 1

3
Table 5.19 - Sensitivity Report for Experiment 5 on ERROR

Optimum System: (7,64,16,1,3)

<table>
<thead>
<tr>
<th>System</th>
<th>System Parameters</th>
<th>Performance</th>
<th>Cost</th>
<th>Cost/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mc mb ib fx fl</td>
<td>Actual %change from optimum</td>
<td>Actual %change from optimum</td>
<td>Actual %change from optimum</td>
</tr>
<tr>
<td>45</td>
<td>6 64 16 1 3</td>
<td>0.6785 +3.4</td>
<td>123.22 +4.1</td>
<td>181.60 +0.7</td>
</tr>
<tr>
<td>44</td>
<td>7 64 16 1 3</td>
<td>0.6561 0.0</td>
<td>118.37 0.0</td>
<td>180.42 0.0</td>
</tr>
<tr>
<td>43</td>
<td>8 64 16 1 3</td>
<td>0.6277 -4.3</td>
<td>114.49 -3.3</td>
<td>182.40 +1.1</td>
</tr>
<tr>
<td>47</td>
<td>7 32 16 1 3</td>
<td>0.6245 -4.8</td>
<td>115.79 -2.2</td>
<td>185.41 +2.8</td>
</tr>
<tr>
<td>44</td>
<td>7 64 16 1 3</td>
<td>0.6561 0.0</td>
<td>118.37 0.0</td>
<td>180.42 0.0</td>
</tr>
<tr>
<td>48</td>
<td>7 128 16 1 3</td>
<td>0.6692 +2.0</td>
<td>123.53 +4.4</td>
<td>184.59 +2.3</td>
</tr>
<tr>
<td>49</td>
<td>7 64 8 1 3</td>
<td>0.6333 -3.5</td>
<td>117.80 -0.5</td>
<td>186.00 +3.1</td>
</tr>
<tr>
<td>44</td>
<td>7 64 16 1 3</td>
<td>0.6561 0.0</td>
<td>118.37 0.0</td>
<td>180.42 0.0</td>
</tr>
<tr>
<td>50</td>
<td>7 64 32 1 3</td>
<td>0.6208 -5.4</td>
<td>119.51 +1.0</td>
<td>192.50 +6.7</td>
</tr>
<tr>
<td>44</td>
<td>7 64 16 1 3</td>
<td>0.6561 0.0</td>
<td>118.37 0.0</td>
<td>180.42 0.0</td>
</tr>
<tr>
<td>51</td>
<td>7 64 16 2 3</td>
<td>0.6561 0.0</td>
<td>120.08 +1.4</td>
<td>183.03 +1.5</td>
</tr>
<tr>
<td>52</td>
<td>7 64 16 1 2</td>
<td>0.2383 -63.7</td>
<td>115.52 -2.4</td>
<td>484.83 +168.7</td>
</tr>
<tr>
<td>44</td>
<td>7 64 16 1 3</td>
<td>0.6561 0.0</td>
<td>118.37 0.0</td>
<td>180.42 0.0</td>
</tr>
</tbody>
</table>
Table 5.20 - Cost/Performance Figures for Some Systems on ERROR

Optimum System: (7, 64, 16, 1, 3)

<table>
<thead>
<tr>
<th>System</th>
<th>System Parameters</th>
<th>Performance</th>
<th>Cost/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mc mb ib fx fl</td>
<td>Actual</td>
<td>% change from</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Actual</td>
<td>optimum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% change</td>
<td>optimum</td>
</tr>
<tr>
<td>57</td>
<td>6 32 16 1 3</td>
<td>0.6585</td>
<td>+0.4</td>
</tr>
<tr>
<td>59</td>
<td>8 32 16 1 3</td>
<td>0.5885</td>
<td>-10.3</td>
</tr>
<tr>
<td>58</td>
<td>10 32 16 1 3</td>
<td>0.5169</td>
<td>-21.2</td>
</tr>
<tr>
<td>60</td>
<td>12 32 16 1 3</td>
<td>0.4479</td>
<td>-31.7</td>
</tr>
<tr>
<td>45</td>
<td>6 64 16 1 3</td>
<td>0.6785</td>
<td>+3.4</td>
</tr>
<tr>
<td>43</td>
<td>8 64 16 1 3</td>
<td>0.6277</td>
<td>-4.3</td>
</tr>
<tr>
<td>41</td>
<td>10 64 16 1 3</td>
<td>0.5762</td>
<td>-12.2</td>
</tr>
<tr>
<td>55</td>
<td>12 64 16 1 3</td>
<td>0.5193</td>
<td>-20.9</td>
</tr>
<tr>
<td>61</td>
<td>6 128 16 1 3</td>
<td>0.6829</td>
<td>+4.1</td>
</tr>
<tr>
<td>40</td>
<td>8 128 16 1 3</td>
<td>0.6401</td>
<td>-2.4</td>
</tr>
<tr>
<td>39</td>
<td>10 128 16 1 3</td>
<td>0.6029</td>
<td>-8.1</td>
</tr>
<tr>
<td>38</td>
<td>12 128 16 1 3</td>
<td>0.5555</td>
<td>-15.3</td>
</tr>
</tbody>
</table>
systems of varying mc and mb values. This flatness of the cost/per-
formance surface causes both the rapid convergence and the error in the
optimum prediction.

5.5.4.2 Experiment 6: Optimization on the \(\ell m = 0 \) hyperplane

Since, as Table 5.3 indicates, ERROR has no looping branches with
a target distance of less than 128 bytes, loop-mode makes no contribution
to system performance in the ranges of ib considered. Thus experiment 6,
which runs ERROR on systems on the \(\ell m = 0 \) hyperplane, is essentially
repeating experiment 5 with a different cost function, i.e., with the cost
of loop-mode not included in the CPU cost. However, the procedure was
started at \((6, 16, 8, 1, 3)\) and gave rise to the convergence sequence
listed in Table 5.21. The oscillation hypercube is still far away from
the optimum along the mc dimension, for exactly the same reason as in
experiment 5. Table 5.22 lists the sensitivity report for this experiment.

5.5.4.3 Analysis of the optimum architecture for ERROR

The optimum architecture for ERROR is thus seen to be \((7, 64, 16,
1, 3)\) on the \(\ell m = 0 \) hyperplane. While there is quite a bit of interaction
between the mb and mc parameters on the cost/performance surface, the
surface is fairly orthogonal in the other parameters.

5.5.4.3.1 Instruction unit issues

As seen earlier, loop-mode contributes nothing to performance.
Furthermore, the low percentage of branches (~2%) causes a high degree of
prefetch \((ib = 16)\) to be quite cost-effective, with superfluity becoming
dominant only for higher values of ib (above 32).
Table 5.21 - Convergence Sequence for Experiment 6 on ERROR

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Reference System</th>
<th>Reference System Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mc</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>24</td>
<td>10</td>
</tr>
</tbody>
</table>

Oscillation Hypercube 10:11 64:128 8:16 1 3
Table 5.22 - Sensitivity Report for Experiment 6 on ERROR

Optimum System: (7, 64, 16, 1, 3)

<table>
<thead>
<tr>
<th>System</th>
<th>System Parameters</th>
<th>Performance</th>
<th>Cost</th>
<th>Cost/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mc</td>
<td>mb</td>
<td>ib</td>
<td>fx</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
<td>64</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>64</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td>64</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>32</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>64</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>7</td>
<td>128</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>7</td>
<td>64</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>64</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>7</td>
<td>64</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>64</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>7</td>
<td>64</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>36</td>
<td>7</td>
<td>64</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>64</td>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>
5.5.4.3.2 Execution unit issues

The proportion of fixed to floating point instructions, 0.045:1, is abnormally low in ERROR. Thus it comes as no surprise that f_x and f_L stay steadily at 1 and 3 respectively in the convergence sequence. Even more dramatic confirmation of this is obtained from the sensitivity report in Table 5.22. Increasing f_x from 1 to 2 yields absolutely no performance increase, while reducing f_L from 3 to 2, causes performance and cost/performance to degrade by phenomenal figures of 63.7% and 168.6% respectively.

5.5.4.3.3 Memory issues

For ERROR, both m_c and m_b seem to contribute roughly equally to performance. This is seen from the sensitivity report in which movements of 1 grid metric along either the m_c or m_b dimensions cause performance changes of the same order of magnitude - 2 to 5%. Since, however, their cost functions are different, m_c and m_b can be traded off against each other. Thus Table 5.19 shows that the (m_c, m_b) combination of (8, 64) is more cost-effective than (6, 32), as is (12, 64) over (10, 32). This wide range of choices for the pair of memory parameters to yield systems that have the same cost-effectiveness is what caused the optimization procedure to fail, as discussed earlier.

5.6 Efficiency of the Optimization Procedure

In this section, we estimate the efficiency of the procedure, using the definitions of Sec. 4.4.9. Table 5.23 illustrates the calculation of the η and η_L for the procedure in experiment 1a. Table 5.24 lists the η and η_L values for the experiments conducted. As expected, the efficiency is low in those experiments e.g. 2 and 5 where the oscillation hypercube was far from the optimum system since more sensitivity analysis is needed to identify the optimum. On the average, for the experiments
Table 5.23 - Efficiency Estimates for Experiment 1a on EIGEN

Number of low-level model calls
by the ideal procedure
\[= 3 \times 3 \times 3 \times 2 \times 2 = 108 \]

Number of low-level model calls
by the optimization procedure = 302

Number of low-level model calls
by the grid evaluation procedure
\[= 14 \times 6 \times 3 \times 3 \times 3 = 2268 \]

Efficiency of the optimization procedure:
\[\eta = \frac{108}{302} = 0.357 \]

Efficiency of the grid evaluation procedure:
\[\eta_L = \frac{108}{2268} = 0.048 \]
Table 5.24 - Efficiency Estimates for the Optimization Procedure

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Efficiency of optimization procedure (η)</th>
<th>Efficiency of grid evaluation procedure (η_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>0.357</td>
<td>0.048</td>
</tr>
<tr>
<td>1b</td>
<td>0.352</td>
<td>0.029</td>
</tr>
<tr>
<td>2</td>
<td>0.240</td>
<td>0.032</td>
</tr>
<tr>
<td>3</td>
<td>0.374</td>
<td>0.031</td>
</tr>
<tr>
<td>4</td>
<td>0.271</td>
<td>0.038</td>
</tr>
<tr>
<td>5</td>
<td>0.200</td>
<td>0.031</td>
</tr>
<tr>
<td>6</td>
<td>0.346</td>
<td>0.037</td>
</tr>
</tbody>
</table>
conducted, the ideal procedure is only 3.3 times more efficient than the optimization procedure which is 8.7 times more efficient than the grid evaluation procedure. Thus the optimization procedure is seen to be quite efficient in this case-study.

5.7 Some Architectural Conclusions

The analysis of the experiments conducted can be used to draw some broad conclusions with respect to the architecture.

1) The performance of the system is heavily dependent on the proportion of branches in the programs. Thus the performance of the optimum systems for the three traces is distinctly correlated with the percentage of branches in each, as shown in Table 5.25.

2) The best choice of instruction buffer size involves a tradeoff between increased instruction supply bandwidth due to instruction prefetch on the one hand, and superfluity and loop-mode on the other. The greater the proportion of branches, the smaller the prefetch needed. Loop-mode is cost-effective only with a high percentage of small program loops, where the branch decision and target fetching time form a small percentage of the loop execution time. At large buffer sizes, superfluity of prefetched instructions dominates.

3) The relative importance of the floating and fixed point execution units is in roughly the same proportion as the percentages of the two types of instructions in the programs.

4) Memory cycle time has a greater effect on performance than the number of memory banks.
Table 5.25 - Comparison of Various Systems

<table>
<thead>
<tr>
<th>Program</th>
<th>% of branches</th>
<th>System</th>
<th>System Parameters</th>
<th>Performance</th>
<th>Cost/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>mc mb ib fx fl</td>
<td>Actual</td>
<td>% change from optimum</td>
</tr>
<tr>
<td>Normal</td>
<td>8.20</td>
<td>EIGEN</td>
<td>12 16 8 1 3</td>
<td>0.2567</td>
<td>-39.9</td>
</tr>
<tr>
<td>Optimum</td>
<td></td>
<td></td>
<td>6 32 8 3 3</td>
<td>0.4272</td>
<td>0.0</td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td>5 32 16 3 3</td>
<td>0.4486</td>
<td>+5.0</td>
</tr>
<tr>
<td>Normal</td>
<td>12 16 8 1 3</td>
<td>GAUSS</td>
<td>0.1272</td>
<td>-55.7</td>
<td>784.93</td>
</tr>
<tr>
<td>Optimum</td>
<td>15.35</td>
<td></td>
<td>4 16 16 3 3</td>
<td>0.2868</td>
<td>0.0</td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td>5 32 16 3 3</td>
<td>0.2753</td>
<td>-4.0</td>
</tr>
<tr>
<td>Normal</td>
<td>12 16 8 1 3</td>
<td>ERROR</td>
<td>0.3106</td>
<td>-52.7</td>
<td>321.58</td>
</tr>
<tr>
<td>Optimum</td>
<td>2.02</td>
<td></td>
<td>7 64 16 1 3</td>
<td>0.6561</td>
<td>0.0</td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td>5 32 16 3 3</td>
<td>0.6832</td>
<td>+4.1</td>
</tr>
</tbody>
</table>
5.7.1 A Final Design for the System

Let us assume that the program environment for which the system is designed is characterized by the three program traces used in the experiments. The final system design must then be a compromise between the three optimum systems arrived at for the three programs, with each optimum being weighted by the occurrence of the corresponding program in the environment. To illustrate this, we develop a compromise design system and evaluate its performance and cost/performance in the environment.

The flatness of the cost/performance surface for ERROR along the memory parameter dimensions, suggests that the memory design can be influenced largely by EIGEN and GAUSS. The compromise chosen between \((mc = 6, mb = 32)\) for EIGEN and \((4, 16)\) for GAUSS was \((5, 32)\). The \(f\) parameter was assigned the value 3, since all three programs require this. The dependence of EIGEN and GAUSS on \(f\), cause that to be assigned the value 3. In view of the \(ib\) tradeoff discussed in detail in earlier sections, the compromise adopted was to fix \(ib\) at 16, with the degree of prefetch reduced to 8. Notice that this architecture is not in the space of systems considered by the optimization, where the degree of prefetch was always equal to \(ib\). The dependence of EIGEN and GAUSS on \(\lambda m\), argue for \(\lambda m = 1\) in the design. Thus the final "design" system was \((5, 32, 16, 3, 3)\) on the \(\lambda m = 1\) hyperplane.

The performance and cost/performance of the design system on the three programs is shown in Table 5.25, with the normal system and the respective optima also shown for comparison. The design system matches the optimum system for EIGEN in cost/performance and outperforms it, mainly due to the reduction in \(mc\). Its cost/performance value for GAUSS is even better than that of the optimum system for GAUSS. This is possible because the
design system is not in the system space examined by the optimization procedure. The degradation in cost/performance on ERROR is due to the reduction in the degree of prefetch and the non-usage of the expensive fixed point unit.
CHAPTER 6
CONCLUSION

6.1 Summary of the Research

In this research, we have introduced the concept of a hierarchy of system performance models and discussed the characteristics and the construction of such a hierarchy. It was argued that such a hierarchy is a very useful tool for the cost-effective design of computer systems. A design procedure that uses this hierarchy was developed. The practicality and the usefulness of this procedure were demonstrated by applying it to the optimization of a complex computer system - the CPU-memory subsystem of the IBM System 360/91. In almost all the experiments, the optimization procedure converged, if not to the exact optimum system, at least to within a very near region of the optimum. The efficiency of the procedure is considerably more than that of the worst-case approach to system design, and is not substantially worse than that of the ideal procedure. Using the procedure yielded a great deal of insight into the behavior of the system.

6.2 Accomplishments of the Research

We summarize the main contribution of the research in this section.

1) Previous studies in the performance evaluation of computer systems have tended towards one of two extremes. At the one end are models in which reality has been sacrificed for the sake of simplicity and mathematical tractability. While such studies do provide some insight into the system being modelled, their range and usefulness are severely limited because they are so far removed from realistic computer systems. At the other end are models which, because of their adherence to detail in the modelling of a specific system, have very little generality of use.
Our approach combines the tractability of the first kind with the accuracy of the other. It increases the range of applicability of the state-of-the-art performance modelling tools, by combining these synergistically into a powerful tool - the hierarchy of performance modelling tools. The main ingredients of this approach are the trilogy of calibration, validation and prediction, the proper use of which ensures accuracy as well as tractability. This is to be contrasted with most previous approaches to modelling, which have not laid enough emphasis on the iterative process of validation and recalibration before using the model for prediction.

2) The second major contribution is the embedding of a hierarchy of performance modelling tools into a system design (or optimization) procedure. The conflicting demands of standard iterative optimization procedures, viz, accuracy and ease of computation, are well matched by the attributes of the hierarchy. The practical problems with developing such an optimization procedure have been confronted and a number of issues brought to light. The success of the implemented procedure on the optimization of the case-study system is encouraging, and establishes the hierarchy as a viable design tool.

3) Some insight has been gained into the behaviour of highly pipelined single instruction stream CPU memory systems. Since the case-study system is an example of a highly complex computer system, the study leads us to believe that our understanding of complex systems can be improved by studies of this kind.

6.3 Suggestions for Further Research

We believe that our study opens up a vast area for further exploration in the performance evaluation field. We discuss some extensions
in the following subsections. First we discuss some specific improvements that can be made to the optimization procedure developed in Chapter 4. Then, we discuss more general ideas dealing with the extension and the application of the hierarchy concept.

6.3.1 Shortcomings of the Optimization Procedure and Suggested Remedies

We believe that the optimization procedure needs to be tuned further, to weed out some of the errors that come to light during the experiments. We now discuss some of the shortcomings of the procedure, and suggest some remedies.

6.3.1.1 Regression error

The experiments clearly show that in regions where the cost/performance surface has a small gradient along one dimension, the regression error must be less than this gradient value, for the procedure to converge reliably to the true optimum along that dimension. One possible way to reduce the regression error, i.e., obtaining a better fit to the performance surface, is to use a higher order regression model. Thus a quadratic model would express the response \(Y \) in terms of the factors \((X_1, \ldots, X_m) \), using the functional form:

\[
Y = \beta_0 + \sum_{i=1}^{m} \beta_i X_i + \sum_{i=1}^{m} \beta_{ii} X_i^2 + \sum_{i=1}^{m} \sum_{j=i+1}^{m} \beta_{ij} X_i X_j.
\]

Statistical significance tests can be used to include only those factors and factor pairs that significantly affect the response. The cost of fitting and using such a model would still be an insignificant fraction of the low-level model cost.
We do not, however, recommend increasing the order of the analytical model indefinitely. Thus a 3rd order model could conceivably be worse than a 2nd order model, because it may introduce an oscillatory model surface, which creates a number of fictitious local optima. However, most performance curves do have a second order flavor, which argues for using a 2nd order model.

6.3.1.2 Choosing recalibration sets

In the procedure as implemented, when the current reference system has an extreme value along one dimension, e.g., $fL = 1$, only one nearest neighbor along that dimension, i.e. one with $fL = 2$, is needed to estimate the regression model coefficient along that dimension. Use of only one other point would disregard any non-linearities that occur on the cost/performance surface along that dimension. For example, Table 5.12, the sensitivity report for experiment 2, shows that near the optimum system both $fL = 1$ and $fL = 3$ are more cost-effective than $fL = 2$. Thus, if the reference system has $fL = 1$, it may never look beyond $fL = 2$, though $fL = 3$ may well be the optimum value. This could be remedied by using a higher order model, to better model the non-linearity of the surface. Thus a quadratic model would need at least three points along each dimension to compute the best fit, and $fL = 1, 2, 3$ would have to be considered.

6.3.1.3 Inability to maintain local perspective

When the reference system has moved into a new region, the new model should not be affected very much by old regions, i.e., local perspective should be maintained. In the procedure as implemented, this is not always possible. For example, in experiment 3 on GAUSS (see Table 5.14), by iteration 6 the reference system has moved to quite a different region from the initial region. However, to obtain β_4 the coefficient along the fX
dimension - a calibration system with $f_x = 2$ is required, and the only one available in the calibration set is $(12, 16, 8, 2, 3)$. However, including this system in the recalibration set, causes a member of other systems in the initial set to be included as well, since they are at the same distance from the new reference system. This distorts the local perspective enormously, especially along the most sensitive dimension - in this case, ib.

One possible remedy for this effect, is to generate extra calibration systems when in a new region. Typically, this can be done when it is observed that too many systems at too great a distance are being included in the recalibration set. This method can then be viewed as mingling the sensitivity and the optimization procedures.

6.3.1.4 Rigid movement rule

Requiring a change in every parameter of the reference system per iteration, is too rigid a movement rule. While, in the initial stages, it forces the procedure to roughly explore large regions of the system parameter space, it tends to cause unnecessary thrashing in the later stages, thus prolonging the convergence. For example, one of the iterations in experiment 1a on EIGEN, forced a movement along the mb dimension from 64 to 128, because the optimum predicted by the local optimization procedure was 64.33. It is clear that this difference from 64 could have been well within the regression error bounds of the procedure.

One possible remedy for this problem is to set a lower bound on the change for each parameter of the reference system. If the change predicted by the optimization procedure is less than the bound, the reference system would not be changed along that dimension. These bounds could be adaptively increased as the procedure converges.
6.3.1.5 Rigid stopping rule

Requiring the procedure to oscillate between two reference systems appears to be too rigid a stopping rule. In conjunction with the rigid movement rule, this caused quite a bit of thrashing in the early experiments on EIGEN.

A possible remedy is to monitor the change in cost/performance caused by the reference system movement. When this change goes below a limit, the procedure can be stopped.

6.3.1.6 Adaptive grid metrics

We believe that the adaptive approach to varying the mc grid metric is a reasonable one. It is in keeping with the philosophy of maintaining a global perspective in the initial stages and gradually narrowing the perspective as the procedure converges to the best region. However, the problem that arose in experiment 1c on EIGEN, may have to do with the actual implementation of the adaptive approach, as described in Sec. 4.5.2.

A technique similar to the one suggested in the last subsection may be used to control grid metric reduction. This would use percentage changes in cost/performance between successive reference systems to estimate the rate of convergence of the procedure. The grid metric change is computed as a function of this rate; in fact, it could actually be increased for small rates of convergence.

6.3.2 Further Research into the Hierarchy Concept and General Issues

The concept of a hierarchy of models for performance evaluation can be extended in a number of ways:
1) Hierarchies of more than two levels should be examined. Thus, in the two-level hierarchy considered in this study, an intermediate level that is less expensive than the low level model and has a larger range of validity than the high level model, could increase the cost-effectiveness of the procedure even further. In fact, in our research, the phase which consumed the most time and resources was the simulation runs of the low-level model. Introducing a level of intermediate complexity, e.g., a queueing model, would reduce the demands made on the low-level model even further. Consequently more, and larger, program traces could be experimented upon, to build a body of theory for architectures of this type. In general, the introduction of additional levels should be considered, if large regions of either complexity or cost are not covered by any model currently in the hierarchy.

2) In connection with (1) above, the hierarchy concept could be used on subsystems derived by a structural decomposition of low-level models. For example, building separate hierarchies for the memory and CPU would enable combinations of models of different levels of complexity for the different subsystems to be used as intermediate levels. Thus the intermediate level model could either be a CPU simulation model with an analytical memory model embedded in it, or vice versa, depending on the region being explored.

3) While quite a few computer system models have been proposed and analyzed, very little work has been done in modelling work loads to drive these system models. The proposal in Sec. 3.4.3.2, to generate synthetic control streams, based on statistical summaries of program environments
is a step in this direction, and should be further explored. Parameterizing workloads will enable studies of the system workload space analogous to this study of the system architecture space. Thus the optimum workload for a given system architecture and the sensitivity of the optimum system design to the workload parameters can be examined.

4) The techniques developed in this research can be applied to model and design computers at a higher level. Thus systems can be studied at the component level of processors, memories, I/O units, etc, besides the CPU function unit level studied in this thesis. It is our belief that the basic techniques could be applied, regardless of the level at which the system is studied.

5) Cost models other than the one used in this research should be investigated for their impact on system design. For example, using cache memories makes possible very low effective memory cycle times at low to moderate costs. The cost model used in this research did not allow for introducing a cache into the system. Parameterizing cost models, i.e., making the cost coefficients for the system parameters variable, will enable studies of the sensitivity of the optimum system design to changes in the cost coefficients. In an era of rapidly changing technology, such studies are of great importance to the system designer.
APPENDIX A

Theorem A.1

If \(|A-C| < |A-B|\) then

a) \(A > B\) iff \(C > B\) and

b) \(A < B\) iff \(C < B\)

Proof:

a) To prove that \(A > B\) iff \(C > B\):

a.1) Let \(A > B\)

Then \(|A-C| < A-B|\).

a.1.1) Let \(A > C\).

Then \(A-C < A-B\).

Therefore \(-C < -B\) and thus \(C > B\).

a.1.2) Let \(A < C\).

Then \(C > A > B\) and thus \(C > B\).

Therefore if \(A > B\) then \(C > B\).

a.2) Let \(C > B\).

Assume that \(A \leq B\).

Then \(|A-C| < B-A|\).

a.2.1) Let \(A > C\)

Then \(A > C > B\) and thus \(A > B\), which is a contradiction.

a.2.2) Let \(A \leq C\)

Then \(C-A < B-A\)

Thus \(C < B\) which is a contradiction.

Therefore, by contradiction if \(C > B\) then \(A > B\).
Therefore $A > B$ iff $C > B$.

b) To prove that $A < B$ iff $C < B$

b.1) Let $A < B$

Then $|A-C| < B-A$.

b.1.1) Let $A > C$.

Then $C < A < B$ and thus $C < B$.

b.1.2) Let $A \leq C$.

Then $C-A < B-A$ and thus $C < B$.

Therefore if $A < B$ then $C < B$.

b.2) Let $C < B$.

Assume that $A \geq B$.

Then $|A-C| < A-B$.

b.2.1) Let $A > C$.

Then $A-C < A-B$.

Therefore $-C < -B$ and thus $C > B$, which is a contradiction.

b.2.2) Let $A \leq C$.

Then $C \geq A \geq B$ and thus $C \geq B$, which is a contradiction.

Therefore, by contradiction, if $C < B$ then $A < B$.

Therefore $A < B$ iff $C < B$.

Q.E.D
APPENDIX B

B.1 Introduction

In this appendix, we present a listing of the simulator of the control stream model. The simulator was written in the SIMULA language, an excellent introduction to which is given in [BIR73]. The system used was the SIMULA-10 system [BIR74], developed at the Swedish National Defense Research Institute in Stockholm. The system was run on the DEC-10 at the Coordinated Science Laboratory of the University of Illinois at Urbana-Champaign. Execution times of simulator runs ranged from 12 to 40 minutes.

In the listing that follows, comment statements begin with a '!' and end with the first ';' thereafter.
BEGIN FTDMD;
00100 TIME CONTROL STREAM MODEL SIMULATOR.
00150 IT OUTPUTS THE INSTRUCTION THROUGHPUT AND OTHER USEFUL STATISTICS INTO THE SUMMARY FILE.
00200 IT HAS 6 PARAMETERS:
00250 CYCLE : THE MEMORY CYCLE TIME.
00300 BANKS : THE NUMBER OF MEMORY BANKS.
00350 BUFFERS : THE SIZE OF THE INSTRUCTION BUFFER.
00400 FIXARCH : THE FIXED POINT UNIT ARCHITECTURE.
00450 FLARCH : THE FLOATING POINT UNIT ARCHITECTURE.
00500 BRANCH : TRUE IF LOOPMODE IS TO BE INCLUDED IN THE SYSTEM.
00550 TEXT INBUF,OUTBUF;
00600 INTEGER I,J,K,L,PC,BUFFERS,BANKS,CYCLE,ACCESS,FIXARCH,FLARCH;
00700 BOOLEAN BRANCH;
00750 IF(INFILE) INPUT; IF(PRINTFILE) OUTPUT;
00800 GET THE MODEL PARAMETER VALUES;
00850 OUTTEXT("MEMORY CYCLE TIME: "); BREAKOUTIMAGE; CYCLE:=ININT;
00900 OUTTEXT("NUMBER OF MEMORY BANKS: "); BREAKOUTIMAGE; BANKS:=ININT;
00950 OUTTEXT("INSTRUCTION BUFFER SIZE: "); BREAKOUTIMAGE; BUFFERS:=ININT;
01000 OUTTEXT("FIXED POINT UNIT ARCHITECTURE: "); BREAKOUTIMAGE; FIXARCH:=ININT;
01050 OUTTEXT("FLOATING POINT UNIT ARCHITECTURE: "); BREAKOUTIMAGE; FLARCH:=ININT;
01100 OUTTEXT("LOOP MODE: "); BREAKOUTIMAGE; IF:=ININT;
01150 BRANCH:=IF I>0 THEN FALSE ELSE TRUE;
01200 OPEN THE INPUT AND OUTPUT FILES;
01250 INBUF:=BLANKS(50); INPUT:=NEW FILE("INPUT "); INPUT.OPEN(INBUF);
01300 OUTBUF:=BLANKS(136); OUTPUT:=NEW PRINTFILE("SUMMARY "); OUTPUT.OPEN(OUTBUF);
01350 SIMULATION BEGIN
01400 INTEGER BUFFER,COUNT,LOOPGEN,NORMGEN,NEMCDOUNT,NORMTERM,DUNTERM,ATTERM,LASTSSST;
01450 INTEGER AIMI,EAM,MTERM;
01500 INTEGER TYPE,OPCODE,STORE,CTAG,READD,SNKMAS,SNKMSL,SNKMSL,INREG,MEMADD,BNDS, BT, TAKENR;
01550 INTEGER RR,RS,SI,BRANCH,TRACEND,FLOAT,SV,BAIR,BCT15,BCT15,BCT,FEED,FETCH,FEED,STKR;
01600 INTEGER FAXA,FAST,FALD,FSPF,FXAD,FXCM,FXMOL,FXDIV,FLLD,FLSPF,FLCMP,FLMOL,FLIFT,FLDIV;
01650 INTEGER BRANCH EXECUTE:0.4:TIMEIST [1:0:0:1],SSTP_VAR [0:4:5:1];
01700 BOOLEAN CONCODE,CONMODE,NOEXEC,LOOPHEAD,ABDOR,FXUFREE,FXUFREE,FLUFREE,FLUFREE,ENDPROG;
01750 BOOLEAN ARRAY BANKS [1:BANKS],SSTP [1:45:1];
01800 REF(HEAD) [INFBUF,FIXAUX,FXAUX,FLIUCH,FLIUCH,FLIUCH,FIXAUX,BICONDCH];
01850 REF(HEAD) ARRAY SSTP[1:45],BRANCH[1:BANKS];
01900 REF(ICON) SUFFIX;
01950 PROCEDURE TIMESSTATS(WHICHSTAT,BAR);
02000 THIS PROCEDURE MAINTAINS THROUGHPUT STATISTICS;
02050 INCLUDE WHICHSTAT,BAR;
B3
02100 BEGIN
02150 UPDATE THE NO. OF PROCESSES COLUMN;
02200 TIMEIST[WHICHSTAT,0]:=TIMEIST[WHICHSTAT,0]+1;
02250 UPDATE THE TIME INTEGRAL COLUMN;
02650 TIMENEST(WHICHSTAT,1):=TIMENEST(WHICHSTAT,1)+RAT;
02700 END OF TIMESTATS;
02750 PROCESS CLASS CONTROL(PRIORITY);
02800 THIS CLASS IS THE ROOT OF THE PROCESS TREE THAT DEFINES THE PROCESSES
02900 THAT FORMS THE CORE OF THE SIMULATION;
02950 REAL PRIORITY; IPRIORITY+TIME OF CREATION;
03000 BEGIN
03050 PROCEDURE SCHEDULE(TRANS,DISPLACEMENT);
03100 THIS PROCEDURE INSERTS THE PROCESS TRANS INTO THE CORRECT PLACE
03150 IN THE EVENT CHAIN, DEPENDING ON ITS PRIORITY AND THE TIME OF
03200 NEXT ACTIVATION (= CURRENT TIME + DISPLACEMENT);
03250 REF(CONTROL) TRANS; REAL DISPLACEMENT;
03300 BEGIN
03350 REF(CONTROL) ONE; TWO; REAL ABSTIME;
03400 ABSTIME+TIME=DISPLACEMENT; THE TIME OF NEXT ACTIVATION;
03450 ONE:=CURRENT.NEXT; TWO:=CURRENT; 12 POINTERS TO CHASE THE EVENT LIST;
03500 WHILE (IF ONE<>NONE THEN ONE.EVTIME<ABSTIME OR (ONE.EVTIME+ABSTIME AND ONE.PRIORITY<TRANS.PRIORITY
03550) ELSE FALSE) DO
03600 BEGIN
03650 IF EVENTS ARE SCHEDULED TO OCCUR BEFORE THIS OR PRIORITY OF THIS ONE IS LESS, CARRY ON;
03700 BEGIN
03750 TWO:=ONE; ONE:=ONE.NEXT;
03800 END;
03850 IF SOME PROCESS IS TO OCCUR AT THE SAME TIME, INSERT THIS AFTER THAT ONE;
03900 IF TWO.EVTIME+ABSTIME THEN REACTIVATE TRANS AFTER TWO
03950 IF NOT, INSERT IT AHEAD OF PROCESSES SCHEDULED FOR LATER ON;
04000 ELSE REACTIVATE TRANS AT ABSTIME PRIOR;
04050 END OF SCHEDULE;
04100 END OF SCHEDULE;
04150 END OF SCHEDULE;
04200 END OF SCHEDULE;
04250 END OF SCHEDULE;
04300 END OF SCHEDULE;
04350 END OF SCHEDULE;
04400 END OF SCHEDULE;
04450 END OF SCHEDULE;
04500 END OF SCHEDULE;
04550 END OF SCHEDULE;
04600 END OF SCHEDULE;
04650 END OF SCHEDULE;
04700 END OF SCHEDULE;
04750 END OF SCHEDULE;
04800 END OF SCHEDULE;
04850 END OF SCHEDULE;
04900 END OF SCHEDULE;
04950 END OF SCHEDULE;
05000 END OF SCHEDULE;
05050 PROCEDURE NEXTGUT(CHAIN,FLAG);
05100 NAME FLAG; BOOLEAN FLAG; REF(HEAD) CHAIN;
05150 IF CHAIN=NONE THEN PASSIVATE ELSE
05200 BEGIN
05250 WAIT(CHAIN); CURRENT.OUT;
05300 END OF LOUNGE;
05350 END OF LOUNGE;
05400 END OF LOUNGE;
05450 END OF LOUNGE;
05500 END OF LOUNGE;
05550 END OF LOUNGE;
05600 END OF LOUNGE;
05650 END OF LOUNGE;
05700 END OF LOUNGE;
05750 END OF LOUNGE;
05800 END OF LOUNGE;
05850 END OF LOUNGE;
05900 END OF LOUNGE;
05950 END OF LOUNGE;
06000 END OF LOUNGE;
06050 END OF LOUNGE;
06100 END OF LOUNGE;
06150 END OF LOUNGE;
06200 PROCEDURE=PROCCE; 1; IF THE TOTAL PROCESS COUNT;
INNER; PERFORM THE PROCESS FUNCTIONS;
PROCOUNT:=PROCOUNT-1; IDOWN THE ACTIVE PROCESS COUNT;
IF PROCOUNT=0 THEN ACTIVATE MAIN; II ALL PROCESSES ARE DONE, TERMINATE THE SIMULATION;
END OF CONTROL;
CONTROL CLASS CPUCONTROL;
BEGIN
THE NEXT LEVEL OF THE TREE WILL SPROUT BOTH INSTRUCTION AND MEMREF PROCESSES;
INTEGER ARRAY PARM[1:12]; HOLDS THE INSTRUCTION DESCRIPTORS;
PROCEDURE RELEASE(CHAIN,FLAG); THIS PROCEDURE RELEASES PROCESSES QUEUED ON CHAIN AND SETS FLAG;
NAME FLAG; BOOLEAN FLAG; REF(HEAD) CHAIN;
BEGIN
REF(CPUCONTROL) TRANS; INTEGER I;
FLAG:=TRUE; ISET THE FLAG;
TRANS:=CHAIN.FIRST;
WHILE TRANS/=NONE DO
ITRVERSE THE CHAIN, RELEASING PROCESSES;
BEGIN
SCHEDULE(TRANS,0); TRANS:=TRANS.SUC;
END;
END OF RELEASE;
PROCEDURE FREE_SLOT(POINTER);
THIS PROCEDURE FREES A SLOT IN THE SYSTEM STATUS TABLE TO BE USED BY A LATER INSTRUCTION;
INTEGER POINTER;
IF PARM(POINTER)
IF PARM(POINTER)=INDEP THEN
NEED TO FREE THE SLOT ONLY IF IT IS NOT THE PERENNIAL FREE SLOT;
BEGIN
SSTSLAVE[PARM(POINTER)]:=SSTSLAVE[PARM(POINTER)]=1;
IF NO MORE SLAVES ARE WAITING ON THIS SLOT, FREE ANY NEW INSTRUCTIONS WAITING TO GRAB THIS SLOT;
IF SSTSLAVE[PARM(POINTER)]>0 AND SSTWAITER/=NONE AND LASTSST=PARM(POINTER) THEN
BEGIN
SCHEDULE(SSTWAITER,0); SSTWAITER:=NONE;
END;
END OF FREE_SLOT;
BEGIN
GENERATION STATISTICS FOR INSTRUCTION AND OPERAND PROCESSES.;
TIMESTATS(IGEN,TIME-LASTGEN); LASTGEN:=TIME;
INNER;
END OF CPUCONTROL;
BEGIN
CPUCONTROL CLASS INSTRUCTION(BUFFPOS);
INTEGER BUFFPOS; IPOSITION IN THE INSTRUCTION BUFFER WHERE THE INSTRUCTION WILL RESIDE.;
THE INSTRUCTION PROCESS;
BEGIN
INTEGER I,SYNC; REF(OPERAND) OFFSPRING; BOOLEAN MEMOP;
PROCEDURE PREDUCE;
BEGIN
THIS PROCEDURE DOES THE SCHEDULING PRIOR TO INSTRUCTION DECODING;
BEGIN
DEF (INSTRUCTION) TRANS;
07850 ISCHEDULE NEXT INSTRUCTION FETCH ONLY IF THE END OF THE TRANCE HAS NOT BEEN REACHED.;
07900 IF \ENDPROG THEN SCHEDULE\NEW INSTRUCTION\TIME,\BUFFCOUNTER\),0);;
07950 \BUFFCOUNTER\:=1+MOD(BUFFCOUNTER,3BUFFERS); TRANS:=-IBUFX.FIRST;
08000 \BUFFCOUNTER\:=1+MOD(BUFFCOUNTER,3BUFFERS); TRANS:=-TRANS, SUC;
08050 IF TRANS=-NONE THEN FALSE ELSE TRANS.BUFFPOS\=BUFFCOUNTER\) DO TRANS:=-TRANS.SUC;
08100 END OF PREDECODE;
08150 EIF NOT IN LOOPMODE, START OFF WITH A MEMORY REFERENCE TO FETCH THE INSTRUCTION;
08200 IF LOOPMODE THEN
08250 BEGIN
08300 \NORMAL INSTRUCTION GENERATION STATISTICS;
08350 \NORMAL INSTRUCTION GENERATION STATISTICS;
08400 \NORMAL INSTRUCTION GENERATION STATISTICS;
08450 \NORMAL INSTRUCTION GENERATION STATISTICS;
08500 \NORMAL INSTRUCTION GENERATION STATISTICS;
08550 \NORMAL INSTRUCTION GENERATION STATISTICS;
08600 \NORMAL INSTRUCTION GENERATION STATISTICS;
08650 \NORMAL INSTRUCTION GENERATION STATISTICS;
08700 \NORMAL INSTRUCTION GENERATION STATISTICS;
08750 \NORMAL INSTRUCTION GENERATION STATISTICS;
08800 \NORMAL INSTRUCTION GENERATION STATISTICS;
08850 \NORMAL INSTRUCTION GENERATION STATISTICS;
08900 \NORMAL INSTRUCTION GENERATION STATISTICS;
08950 \NORMAL INSTRUCTION GENERATION STATISTICS;
09000 \NORMAL INSTRUCTION GENERATION STATISTICS;
09050 \NORMAL INSTRUCTION GENERATION STATISTICS;
09100 IF \ABORT AND PRIORITY<\ABTIME THEN
09150 BEGIN
09200 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09250 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09300 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09350 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09400 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09450 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09500 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09550 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09600 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09650 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09700 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09750 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09800 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09850 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09900 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
09950 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
10000 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
10050 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
10100 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
10150 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
10200 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
10250 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
10300 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
10350 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
10400 \ABTERM, \=\ABTERM+1; \ABORT STATISTICS;
DECsystem-10 SIMULA
Version 3
10-Oct-1977 11:50
PAGE 1-4

10450 "THE RESOURCE USAGE PARAMETERS;"
10500 BEGIN
10550 PARM[1]:=INTINT; INCHAR;
10600 END;
10650 FOR i=10,11,12 DO
10700 TOTHER PARAMETERS;
10750 BEGIN
10800 PARM[1]:=INTINT; INCHAR;
10850 END;
10900 CURCURRENT RAW MEMORY ADDRESSES INTO BANK NUMBERS;
10950 IF PARM{TYPE} = BRANCH THEN PARM{BRADDO}:=1+MOD{PARM{BRADDO}}/8,BANKS)
11000 ELSE PARM{MEMADD}:=1+MOD{PARM{MEMADD}}/8,BANKS); 1 THE BANK REFERENCED;
11050 IF NOT{PARM{TYPE} = BRANCH OR PARM{OPCODE} = SVC) THEN
11100 BEGIN
11150 "INDIES IT NEED DATA DEPENDENCY PARAMETERS;"
11200 "INIMAGE;"
11250 FOR i=15,67,8 DO BEGIN
11300 PARM[1]:=INTINT; INCHAR;
11350 END;
11400 IF GICLIC TO AVOID SST OVERFLOW ON THE SINK OPERAND SIDE;.
11450 IF THIS SLOT HAS SOME DEPENDENT SLAVES STILL WAITING FOR IT;.
11500 IF SST{PARM{SNKSLV}} OR SSTS{STL{PARM{SNKSLV}}} DO THEN
11550 OVERFLOW HAS OCCURRED. STOP TILL THIS SLOT IS FREE;
11600 BEGIN
11650 GLICH:=GLICH+1; GLSTART:=TIME; GLICH STATISTICS;
11700 IF THE SLOT IS NOT YET FREE, WAIT;
11750 IF \ST{PARM{SNKSLV}} THEN LOUNCE{STST{CH{PARM{SNKSLV}}}};
11800 IF THE SLOT IS FREE BUT ITS DEPENDENTS HAVE NOT YET SEEN THAT, WAIT;
11850 IF SSTS{STL{PARM{SNKSLV}}} DO THEN
11900 BEGIN
11950 IF MARK THIS PROCESS;
12000 SSB{STT{STL{PARM{SNKSLV}}} LOUNCE{NONE}};
12050 END;
12100 GLICH:=GLICH-TIME-GLSTART;
12150 END OF SNKSLV GICH;
12200 IO AVOID OVERFLOW FROM THE SOURCE OPERAND SIDE, DO EXACTLY THE SAME;
12250 IF SST{PARM{SRCSLV}} OR SSTS{STL{PARM{SRCSLV}}} DO THEN
12300 BEGIN
12350 GLICH:=GLICH+1; GLSTART:=TIME;
12400 IF \ST{PARM{SRCSLV}} THEN LOUNCE{STST{CH{PARM{SRCSLV}}}};
12450 IF SSTS{STL{PARM{SRCSLV}}} DO THEN
12500 BEGIN
12550 SSB{STT{STL{PARM{SRCSLV}}} LOUNCE{NONE}};
12600 END;
12650 GLICH:=GLICH-TIME-GLSTART;
12700 END OF SRCSLV GICH;
12750 BEGIN
12800 IF MARK THE AVAILABLE SLOTS AND MARK THOSE OPERANDS AS UNAVAILABLE;.
12850 IF PARM{SNKMAS} = INDEF THEN SSTL{PARM{SNKMAS}} = FALS;
12900 IF PARM{SNKMAS} = INDEF THEN SSTL{PARM{SNKMAS}} = SSTS{STT{PARM{SNKMAS}}}+1;
12950 IF PARM{SNKMAS} = INDEF THEN SSTL{PARM{SNKMAS}} = FALS;
13050 IF PARM(SRCMAS)=INDEP THEN SSTSLAVE[PARM(SRCMAS)]=SSTSLAVE[PARM(SRCMAS)]+1;
13100 END;
13150 IF PARM(MORE SLAVE FOR THE INDEX REGISTER MASTER SLOT IN THE SST); THEN
13200 IF PARM(INREG)=INDEP THEN SSTSLAVE[PARM(INREG)]=SSTSLAVE[PARM(INREG)]+1;
13250 END OF INPUT;
13300 IF THE END OF THE TRACE BEEN REACHED?;
13350 IF PARM(TYPE)=TRACEND THEN
13400 BEGIN
13450 STOP ACTIVITIES BUT FLUSH THE BUFFER FIRST.;
13500 ENDPROC:=TRUE; PRECODE;
13550 END ELSE
13600 BEGIN
13650 IF THERE AN INDEX REGISTER DEPENDENCY?;
13700 IF PARM(INREG)=INDEP THEN
13750 BEGIN
13800 RESOLVE INDEX REGISTER DEPENDENCY;
13850 IF \$ST[PARM(INREG)] THEN LOUNG(SSTCH[PARM(INREG)]);
13900 FREE_SLOT(INREG);
13950 END OF INDEX REGISTER DEPENDENCY;
14000 IF PARM(OPCODE)=SYC OR (PARM(TYPE)=BRANCH AND (PARM(OPCODE)=BALR
14050 OR PARM(OPCODE)=BC15 OR PARM(OPCODE)=BCR15)) THEN
14100 NO UNCONDITIONAL BRANCH;
14150 BEGIN
14200 IF THE SYSTEM IS IN CONDITIONAL MODE,DO NOT ISSUE THIS INSTRUCTION;
14250 IF COMMODE THEN LOUNG(BCONDB);
14300 IS THE STAGE FOR A MASS EXTERMINATION OF FOLLOWING INSTRUCTIONS;
14350 ABORT:=TRUE; AnyTIME:=TIME;
14400 SWITCH INST STREAM FETCHING AND NULLIFY LOOPMODE;
14450 PC+=PARM[BRADO]; LOOPMODE:=FALSE;
14500 ISCHEDULE FOLLOWING INSTRUCTIONS AND GET DECODED;
14550 PRECODE; SCHEDULE(CURRENT,1);
14600 END
14650 ELSE
14700
14750
14800
14850 IF IT IS A CONDITIONAL BRANCH;
14900 IF PARM(TYPE)=BRANCH THEN
14950 BEGIN
15000 WAIT IF THE SYSTEM IS IN CONDITIONAL MODE;
15050 IF COMMODE THEN LOUNG(BCONDB);
15100 IS THE BRANCH GOING TO SET LOOP MODE? IF BRANCH AND \$LOOPMODE AND PARM[TAKEBR]=1 AND PARM[BRDIST]=\$LOOPSIZ THEN LOOPMODE:=TRUE;
15150 IS IT AN INDEXING BRANCH INSTRUCTION?
15200 IF PARM(OPCODE)=ACT THEN
15250 BEGIN
15300 SCHEDULE(CURRENT,2); TIME FOR DECODING AND BRANCH DECISION ARITHMETIC;
15350 PRADCODE; ISCHEDULE FOLLOWERS;
15400 END ELSE
15450 IF IT IS DEPENDENT ON THE CONDITION CODE;
15500 BEGIN
15550 SCHEDULE(CURRENT,1); PRADCODE; DECODING TIME
15600 IF THE CONDITION CODE HAS NOT BEEN SET,ISSUE WITH CONDITIONS IN CONDITIONAL MODE;
IF CONDMODE
BEGIN
 CONDMODE:=TRUE; SET CONDITIONAL MODE OF ISSUING;
 IF THE INSTR STREAM IS GOING TO BE SWITCHED, ISSUE DUMMY INSTRUCTIONS;
 NUXEC:=(IF (PARM[TAKEBR]=1 AND LOOPMODE) OR
 (PARM[TAKEBR]=0 AND NOT LOOPMODE) THEN FALSE ELSE TRUE);
 LOUNGE(BCONDCH); WAIT FOR CONDITION CODE TO BE SET;
 CONDMODE:=NUXEC:=FALSE;
 IF CHANGED DURING CONDITIONAL MODE;
 IF ACTIVETAG:=NEXTTAG THEN
BEGIN
 CONDMODE:=FALSE; ACTIVETAG:=NEXTTAG;
END;
END OF CONDITION-CODE-DEPENDENT INSTRUCTIONS;
IF \"LOOPMODE AND PARM[TAKEBR]=1\" OR (LOOPMODE AND PARM[TAKEBR]=0) THEN
BEGIN
 ABORT:=TRUE; ATMUTE:=TIME; TABORT THE REST OF IBUF;
 IF LOOPMODE IS ON CALCULATE THE NEW STREAM ADDRESS FROM THE BRADD AND THE BRDIST PA
 KARELAC;
 PC:=IF \"LOOPMODE THEN PARM[BRADD] ELSE 1*MOD(PARM[BRADD]+PARM[BRDIST]/8, BANKS);
 LOOPMODE:=FALSE; TURN THE LOOPMODE SWITCH OFF;
END;
END ELSE
FOR NON-BRANCHING INSTRUCTIONS;
BEGIN
 PRECODE; SCHEDULE(CURRENT,1); DECODING TIME;
 ICAN IT SET THE CONDITION CODE?
 IF PARM[CONDCH]=0 THEN
BEGIN
 NEXTTAG:=PARN[CONDCH]:=4+MUG(NEXTTAG,2**10);
 IF NOT IN CONDITIONAL MODE, THIS INSTRUCTION NOW HAS THE VALID CONDITION-CODE SETT
 NG TAG;
 IF \"CONDMODE THEN
BEGIN
 CONDMODE:=FALSE; ACTIVETAG:=NEXTTAG;
END;
END;
IF IT NEED AN OPERAND FROM MEMORY;
BEGIN
 (PARM[SOURCE]):=ENDUP AND (PARM[TYPE]:=RX AND PARM[STORE]=1))
OR (PARM[TYPE]:=SI AND (PARM[UPCODE]:=FETSTR OR PARM[UPCODE]:=FETCH)) THEN
BEGIN
 SCHEDULE AN OPERAND PROCESS TO FETCH THE OPERAND FROM MEMORY;
 MEMOP:=-TRUE; OFFSPRING:=NEW OPERAND(TIME,CURRENT);
 SCHEDULE(OFFSPRING,0);
 END;
 IF \"CONDMODE THEN
BEGIN
 LOUNGE(BCONDCH);
 IF FIXED POINT INSTRUCTION;
 IF PARM[UPCODE]:=FLOAT THEN

BEGIN
SCHEDULE(CURRENT,1); ITTRANSFER TO FIXED POINT UNIT;

IF THE FIXED POINT DECODER IS FREE,GRAB IT ELSE WAIT;

IF NOT FIXFREE THEN LOUNGE(FIXUCH) ELSE FIXFREE:=FALSE;
SCHEDULE(CURRENT,1); IF FIXED POINT DECODING;

DOES IT NEED A REGISTER SOURCE OPERAND?
IF PARM(SNKLVL) x INDEP AND (PARAM[TYP] x RX OR (PARAM[TYP] x RX AND PARM(STORE) x 1)) THEN
BEGIN
SCHEDULE AN OPERAND PROCESS TO FETCH THE REGISTER OPERAND;

OFFSPRING:=NEW OPERAND(time,CURRENT); SCHEDULE(OFFSPRING,0);
END ELSE
IF \MEMOP THEN
BEGIN
IF THIS IS A 1-OPERAND INSTRUCTION,HALF THE SYNCHRONIZATION IS OVER;
SYNC:="FREESLOT(SNKMAS);
END;

DOES IT NEED A SINK OPERAND AS WELL?
IF NOT (PARAM(SNKLVL) = INDEP OR PARAM[OPCOD] = FSTA OR PARAM[OPCOD] = FST
OR (PARAM[TYP] = SI AND PARAM[OPCOD] = FXLD) OR PARAM[TYP] = SI) THEN
BEGIN
IS THE SINK OPERAND AVAILABLE?
IF SST(PARM(SNKMAS)) THEN
BEGIN
FREESLOT(SNKMAS); IFREE THE SINK SLOT;
SCHEDULE(CURRENT,1); IFERAND FORWARDING TIME;
IF DATA-FLOW ARCHITECTURE,RELEASE DECODER;
IF FIXARCH=DATAFLOW THEN NEXTGO(FIXUCH,FIXFREE);
END ELSE
IF THE SINK OPERAND IS NOT AVAILABLE;
BEGIN
IF DATA-FLOW ARCHITECTURE,RELEASE DECODER;
IF FIXARCH=DATAFLOW THEN NEXTGO(FIXUCH,FIXFREE);
WAIT FOR OPERAND TO BECOME AVAILABLE;
LOUNGE(SSCHH[PARAM(SNKMAS)]); FREESLOT(SNKMAS);
IF NO DATA-FLOW ARCHITECTURE,TRANSFER THE OPERAND AFTER IT IS AVAILABLE;
BEGIN
IF FIXARCH=DATAFLOW THEN SCHEDULE(CURRENT,1);
END ELSE
IF IT IS A COMPARE INSTRUCTION,THE OPERAND IS AVAILABLE IMMEDIATELY;
IF PARAM[OPCOD] = FXCM THEN RELEASE(SSCHH[PARAM(SNKLVL)],SST[PARAM(SNKLVL)]);
END ELSE
BEGIN
IF IT IS NOT A STORE INSTRUCTION THE SINK SLOT CAN BE FREED NOW ITSELF;
IF (PARAM[OPCOD] = FSTA OR (PARAM[TYP] = SI AND PARAM[OPCOD] = SST)) THEN FREESLOT(SNKMAS);

BEGIN
IF DATA-FLOW ARCHITECTURE,LET THE DECODER GO;
IF FIXARCH=DATAFLOW THEN NEXTGO(FIXUCH,FIXFREE);
END;

SYNC:="SYNC+1;
IF THE 2 PATHS HAVE NOT YET MERGED,WAIT ELSE RELEASE THE OPERAND PROCESS THAT GOT T
BEGIN
IF SYNC2 THEN LOUNGE(NONE) ELSE
OFFSPRING:=NONE THEN SCHEDULE(OFFSPRING,0);
IIF A MEMORY OPERAND IS NEEDED IN A NON-DATA-FLOW SYSTEM, FORWARDING TIME;
20850 IF FIXARCH\(_\)DATAFLOW AND MEMOP THEN SCHEDULE(\(_\)CURRENT, 1);.
20900 IF PARM\(_\)TYPE=SI AND (PARM\(_\)OPCODE=FLXI OR PARM\(_\)OPCODE=FLXLA) THEN
20950 IIF IT IS A SIMPLE LOAD INTO A REGISTER, IT HAS ALREADY BEEN DONE;
B52 BEGIN
21000 IF PARM\(_\)OPCODE=FLXI OR (PARM\(_\)TYPE=SI AND PARM\(_\)OPCODE=SISTR) THEN
21050 IF PARALLEL\(_\)DATAFLOW THEN NEXTGUY(FIXUCH, FIXUFREE);
21100 END ELSE
21150 IF PARM\(_\)OPCODE=SISTR THEN
21200 BEGIN
21250 IIF IT IS A STORE INTO MEMORY, IT HAS BEEN SENT TO THE SDB;
E52 BEGIN
21300 IIF NON-DATA-FLOW SYSTEM, RELEASE THE DECODER;
21350 IF FIXARCH\(_\)DATAFLOW THEN NEXTGUY(FIXUCH, FIXUFREE);
21400 IF PARM\(_\)TYPE=SI THEN LOUNGE\(_\)TYPE=SI;
21450 ELSE TAPER A POSSIBLE DATA-DEPENDENCY WAIT, SEND OFF A MEMREF TO DO THE STORE.;
21500 IF PARM\(_\)OPCODE=SISTR THEN LOUNGE\(_\)TYPE=SI
21550 ELSE SCHEDULE\(_\)MEMREF\(_\)TYPE=SI, PARM\(_\)MEMADD, PARM\(_\)CURRENT, 0;
21600 ELSE LOUNGE\(_\)TYPE=NONE;
E53 END ELSE
21650 IIF IT NEEDS THE EXECUTION UNIT;
B54 BEGIN
21700 IIF THE EXECUTION UNIT IS NOT AVAILABLE, WAIT;
21750 IF NOT FIXUFREE THEN LOUNGE\(_\)TYPE=FIXUCH OTHERWISE FIXUFREE=FALSE;
21800 IF PARM\(_\)OPCODE=SISTR THEN SCHEDULE\(_\)MEMREF\(_\)TYPE=SI, PARM\(_\)MEMADD, PARM\(_\)CURRENT, 0;
21900 ELSE IF NOT FIXUFREE THEN LOUNGE\(_\)TYPE=FIXUCH OTHERWISE FIXUFREE=FALSE;
21950 IF PARM\(_\)OPCODE=FLXI OR PARM\(_\)OPCODE=FLXLA THEN
22000 BEGIN
22050 EXECUTE THE INSTRUCTION;
22100 IF FIXARCH\(_\)DATAFLOW THEN NEXTGUY(FIXUCH, FIXUFREE);
22150 IF PARM\(_\)TYPE=SI THEN LOUNGE\(_\)TYPE=SI;
22200 ELSE SCHEDULE\(_\)MEMREF\(_\)TYPE=SI, PARM\(_\)MEMADD, PARM\(_\)CURRENT, 0;
22250 ELSE LOUNGE\(_\)TYPE=NONE;
B55 BEGIN
22300 IIF A RESULT IS TO BE STORED INTO MEMORY;
22350 IF PARM\(_\)OPCODE=FLXI OR PARM\(_\)OPCODE=FLXLA THEN
22400 BEGIN
22450 SCHEDULE\(_\)MEMREF\(_\)TYPE=SI, PARM\(_\)MEMADD, PARM\(_\)CURRENT, 0;
22500 ELSE LOUNGE\(_\)TYPE=NONE;
E55 END;
E54 BEGIN
22550 IN NOW THE SINK IS AVAILABLE;
22600 RELEASE\(_\)SSTCH\(_\)TYPE=SI, PARM\(_\)SNKSLV, PARM\(_\)SNKSLV\);
22650 ELSE END OF FIXED POINT UNIT;
22700 END ELSE
22750 END OF FIXED POINT UNIT;
22800 ELSE
22850 ELSE
22900 IIF FLOATING POINT INSTRUCTIONS;
B56 BEGIN
22950 SCHEDULE\(_\)MEMREF\(_\)TYPE=SI, TRANSFER TO FLOATING POINT UNIT;
23000 IIF THE FLOATING POINT DECODER FREE;
23050 BEGIN
23100 IIF NOT FIXUFREE THEN LOUNGE\(_\)TYPE=FIXUCH OTHERWISE FIXUFREE=FALSE;
23150 ELSE SCHEDULE\(_\)MEMREF\(_\)TYPE=SI, TRANSFER TO FLOATING POINT UNIT;
23200 IIF IT NEEDS A REGISTER SOURCE OPERAND;
23250 IF PARM\(_\)SNKSLV\(_\)INDEX AND (PARM\(_\)TYPE=RX OR (PARM\(_\)TYPE=RX AND PARM\(_\)STORE=1)) THEN
23300 BEGIN
23350 SEND OFF AN OPERAND PROCESS TO GET THE REGISTER OPERAND;
23400 ELSE END;
23450 ELSE END;
23500 ELSE END;
E57 23400
23450
23500
23550
23600
E58 23650
23700
23750
B59 23800
23850
23900
B60 23950
24000
24050
24100
24150
E60 24200
24250
B61 24300
24350
24400
24450
24500
24550
24600
E61 24650
24700
24750
E59 24800
24850
E62 24900
24950
E62 25000
25050
25100
25150
25200
25250
25300
25350
25400
25450
25500
25550
B63 25600
25650
E63 25700
25750
25800
B64 25850
25900
25950

END ELSE
IF MEMOP THEN
BEGIN
 IF IT IS A 1-OPERAND INSTRUCTIONHALF THE SYNCHRONIZATION IS OVER:
 SYNC: = 1;
 FREESLOT(SRCMAS);
 END;
 IDOES IT NEED A SINK OPERAND AS WELL?
 IF NOT(PARM(SNKSLV))=INDEF OR PARM(OPCODE)=FLSPLD OR PARM(OPCODE)=FLLD OR
 PARM(OPCODE)=FLST THEN BEGIN
 IIS THE SINK OPERAND AVAILABLE?
 IF SST(PARM(SNKMAS)) THEN
 BEGIN
 FREESLOT(SNKMAS); IFREE THE SINK SLOT IN THE SST;
 SCHEDULE(CURRENT,
 OPERAND FORWARDING TIME;
 IF DATA-FLOW ARCHITECTURE,RELEASE DECODER;
 IF FLARCH\DATAFLOW THEN NEXTGUY(FLUCH,FLUFREE);
 END ELSE
 IF THE SINK OPERAND IS NOT AVAILABLE;
 BEGIN
 IFOP DATA-FLOW ARCHITECTURE,RELEASE DECODER;
 IF FLARCH\DATAFLOW THEN NEXTGUY(FLUCH,FLUFREE);
 LOUTHCHASE(SSTCH(PARM(SNKMAS))); FREESLOT(SNKMAS);
 IF FOR NON-DATA-FLOW ARCHITECTURE,TRANSFER THE OPERAND;
 IF FLARCH\DATAFLOW THEN SCHEDULE(CURRENT,1);
 END;
 IF IT IS A COMPARE INSTRUCTION, THE OPERAND IS AVAILABLE NOW;
 IF PARM(OPCODE)=FLCMP THEN RELEASE(SSTCH(PARM(SNKSLV)),SST(PARM(SNKSLV)));
 END ELSE
 BEGIN
 IF PARM(OPCODE)=FLST THEN FREESLOT(SNKMAS);
 IF FLARCH\DATAFLOW THEN NEXTGUY(FLUCH,FLUFREE);
 BEGIN
 IF THE 2 PATHS HAVE NOT YET Merged, WAIT;
 IF SYNC<2 THEN LONQUE(MORE) ELSE
 IF OFFSPRING/=NONE THEN SCHEDULE(OFFSPRING,0);
 IF A MEMORY OPERAND IS NEEDED IN A NON-DATA-FLOW SYSTEM, FORWARDING TIME;
 IF FLARCH\DATAFLOW AND MEMOP THEN SCHEDULE(CURRENT,1);
 IF PARM(OPCODE)=FLLL THEN
 IF IT IS LOAD INTO A REGISTER, IT HAS BEEN DONE;
 BEGIN
 IF FOR NON-DATA-FLOW SYSTEMS,RELEASE DECODER;
 IF FLARCH\DATAFLOW THEN NEXTGUY(FLUCH,FLUFREE);
 END ELSE
 BEGIN
 IF PARM(OPCODE)=FLST THEN
 IF IT IS A STORE INTO MEMORY, IT HAS BEEN SENDED OFF TO THE SDB;
 BEGIN
 IF NON-DATA-FLOW SYSTEM,RELEASE THE DECODER;
 IF FLARCH\DATAFLOW THEN NEXTGUY(FLUCH,FLUFREE);
IF A POSSIBLE DATA-DEPENDENCY WAIT, SEND OFF A MEMREF TO DO THE STORE;

IF SST[PARM(SNKMAS)] THEN LOUNGE(SSTCH(PARM(SNKMAS)));
FREESLOT(SNKMAS); FREE THE SINK SLOT IN THE SST,;
SCHEDULE(NEW MEMREF(TIME, PARM(MEMADD), CURRENT), 0); LOUNGE(NONE);
END ELSE

IF PARM_OPCODE = FLMUL THEN
FLOATING POINT MULTIPLIES AND DIVIDES;
BEGIN
IS THE MULTIPLY EXECUTION UNIT AVAILABLE?
IF NOT FLMDFREE THEN LOUNGE(FLMCH) ELSE FLMDFREE := FALSE;
IF PIPELINED SYSTEM, RELEASE THE DECODER;
IF FLANCH = PIPELINE THEN NEXTGUT(FLUCH, FLIFFREE);
EXECUTE THE INSTRUCTION;
SCHEDULE(CURRENT, EXEC(PARM_OPCODE));
RELEASE THE EXECUTION UNIT;
NEXTGUT(FLMCH, FLMDFREE);
IFFLUNCH THEN NEXTGUT(FLUCH, FLIFFREE);
END OF FLOATING POINT MULTIPLIES;
END ELSE

IF IT NEEDS THE ADD EXECUTION UNIT;
BEGIN
IS THE ADD EXECUTION UNIT AVAILABLE?
IF NOT FLADDFREE THEN LOUNGE(FLADCH) ELSE FLADDFREE := FALSE;
IF PIPELINED SYSTEM, RELEASE THE DECODER;
IF FLANCH = PIPELINE THEN NEXTGUT(FLUCH, FLIFFREE);
11 CYCLE IN 1ST STAGE OF ADD PIPELINE;
RELEASE THE EXECUTION UNIT;
NEXTGUT(FLADCH, FLADDFREE);
IMCOMPARES DO NOT NEED A RESULT TRANSFL_CE WHILE ADDS DO;
SCHEDULE(CURRENT, IF PARM_OPCODE = FLMUL THEN 1 ELSE 2);
IF FULL THEN NEXTGUT(FLUCH, FLIFFREE);
END

IF NOW THE SINK IS AVAILABLE;
BEGIN
RELEASE(STMCH(SCRATCH), SST[PARM(SNKL5VLSL)])
END OF FLOATING POINT UNIT;
END

NOWN THE CONDITION CODE AND RELEASE ALL INSTRUCTIONS WAITING FOR IT;
BEGIN
IF PARM((CCTAG) = ACTIVETAG THEN RELEASE(IRONPCH, CONCODE));
END OF NON-BRANCHING INSTRUCTIONS;
END

! TERMINATION STATISTICS FOR NORMAL INSTRUCTIONS;
BEGIN
TIMESTATS(TERM, TIME-LASTTERM); LASTTERM := TIME;
END

END OF NOT TRACED;
END
END

ONLY COORDINATES FOR ALL INSTRUCTION PROCESSES;
TIMODE.SIM Version 3 16-OCT-1977 11:50

28600 TIMESSTATS(ITEM, TIME-LASTINST); LASTINST:=TIME;
28650 END OF INSTRUCTION;
28700
28750 CPUCONTROL CLASS OPERAND(PARENT);
28800 THE OPERAND PROCESS IT IS CREATED BY AN INSTRUCTION PROCESS THAT NEEDS A SOURCE OPERAND;
28850 REF(INSTRUCTION) PARENT; [THE PARENT INSTRUCTION];
29000 BEGIN
29050 INTEGER I,MASTER;
29100 I COPY THE DESCRIPTOR ARRAY OF THE PARENT;
29150 FOR I:=1 STEP 1 UNTIL 12 DO PARM[I]:=PARMDPARM[I];
29200 IF PARM[OPCODE]=FLOAT THEN
29250 IFIXED POINT OPERAND;
29300 BEGIN
29350 IF PARENT.MEMOP THEN
29400 IF IT IS A MEMORY OPERAND;
29450 BEGIN
29500 ISI INSTRUCTIONS NEED SINKS FECTORED NOT SOURCES;
29550 MASTER: IF PARM(TYPE)=SI THEN SRCMAS ELSE SRCMAS;
29600 WAIT FOR THE OPERAND TO BECOME AVAILABLE;
29650 IF VST[PARMDPARM] THEN LOUNGE[STCH[PARMDPARM]]; FREESLOT(MASTER);
29700 JSCSCHEDULE A MEMREF TO GET THE OPERAND;
29750 SCHEDULE(NEW MEMREF(TIME, PARMDPARMA,MADD0,CURRENT),0); LOUNGE(NONE);
29800 IF FOR A DATA-FLOW SYSTEM, OPERAND CAN BE TRANSFERRED NOW ITSELF;
29850 IF FIXARCH=DATAFLOW THEN SCHEDULE(CURRENT,1);
29900 IF FOR NON-SI INSTRUCTIONS, RELEASE THE SOURCE OPERAND LOCATION;
29950 IF PARM(TYPE)=SI THEN RELEASE(STCH[PARMDPARM], STS[PARMDPARM]);
30000 END OF FIXED MEMORY OPERAND;
30050 END ELSE
30100 IFIXED POINT REGISTER OPERAND;
30150 BEGIN
30200 IF VST[PARMDSRCMAS] THEN
30250 IF IT IS NOT AVAILABLE;
30300 BEGIN
30350 LOUNGE[STCH[PARMDSRCMAS]]; FREESLOT(SRCMAS);
30400 IF DATA-FLOW SYSTEM, FORWARDING IS DONE AUTOMATICALLY;
30450 IF FIXARCH=DATAFLOW THEN SCHEDULE(CURRENT,1);
30500 END ELSE
30550 END ELSE
30600 BEGIN
30650 FREESLOT(SRCMAS); SCHEDULE(CURRENT,1);
30700 END;
30750 RELEASE THE OPERAND LOCATION;
30800 RELEASE(STCH[PARMDSRCMAS], STS[PARMDSRCMAS]);
30850 END OF FIXED REGISTER OPERAND;
30900 IFSYNC;
30950 IFSYNC:=PARENT.SYNC;
31000 IF PARENT.SYNC THEN LOUNGE(NONE) ELSE SCHEDULE(PARENT,0);
31050 END OF FIXED POINT OPERAND;
31100 END ELSE
B73 31200 IF FLOATING POINT OPERAND;
B73 31250 BEGIN
B73 31300 IF PARENT.MEMOP THEN
B73 31350 IF IT IS A MEMORY OPERAND;
B74 31400 BEGIN
B74 31450 IF \$ST[PARM[SRCMAS]] THEN LOUNGE(SSTCH[PARM[SRCMAS]]); FREESLOT(SRCMAS);
B74 31500 ISCHEDULE A MEMREF TO GET THE OPERAND;
B74 31550 SCHEDULE(NEW MEMREF(TIME,PARM[MEMADD],CURRENT),0); LOUNGE(NONE);
B74 31600 IF FOR A DATA-FLOW SYSTEM, OPERAND CAN BE TRANSFERRED NOW ITSELF;
B74 31650 IF FLARCH+DATAFLOW THEN SCHEDULE(CURRENT,1);
B74 31700 END ELSE
B74 31750 END;
B75 31800 IF FLOATING POINT REGISTER OPERAND;
B75 31850 BEGIN
B75 31900 IF \$ST[PARM[SRCMAS]] THEN
B75 31950 IF IT IS NOT AVAILABLE;
B76 32000 BEGIN
B76 32050 LOUNGE(SSTCH[PARM[SRCMAS]]); FREESLOT(SRCMAS);
B76 32100 IF DATA-FLOW SYSTEM, FORWARDING IS DONE AUTOMATICALLY;
B76 32150 IF FLARCH+DATAFLOW THEN SCHEDULE(CURRENT,1);
B77 32200 END ELSE
B77 32250 BEGIN
B77 32300 "OPERAND TRANSFER TIME.;"
B77 32350 FREESLOT(SRCMAS); SCHEDULE(CURRENT,1);
B78 32400 END;
B78 32450 END OF FLOATING REGISTER OPERAND;
B78 32500 END;
B78 32550
B78 32600 RELEASE THIS OPERAND LOCATION;
B78 32650 RELEASE(SSTCH[PARM[SRCSLV]],SST[PARM[SRCSLV]]);
B78 32700 ISYNCHRONIZE WITH PARENT INSTRUCTION;
B78 32750 PARENT.SYNC:=PARENT.SYNC+1;
B78 32800 IF PARENT.SYNC<2 THEN LOUNGE(NONE) ELSE SCHEDULE(PARENT,0);
B78 32850 END OF FLOATING POINT OPERAND;
B79 32900 END OF OPERAND;
B79 32950
B79 33000 CONTROL CLASS MEMREF(BANK,PARENT);
B79 33050 THE MEMORY REFERENCE HANDLING PROCESS CREATED FOR BOTH INSTRUCTION AND DATA FetchES AND STORES;
B79 33100 INTEGER BANK: (CPU CONTROL) PARENT;
B79 33150 THE BANK REFERENCED AND THE PARENT THAT MADE THE REFERENCE.
B79 33200 BEGIN
B79 33250 MEMCOUNT:=MEMCOUNT+1; MEMORY INITIATION STATISTICS;
B79 33300 IONE-CYCLE ADDRESS TRANSFER TO THE MEMORY UNIT;
B79 33350 SCHEDULE(CURRENT,1);
B79 33400 IIS THE REFERENCED BANK AVAILABLE;
B79 33450 IF \$BANKFREE(BANK) THEN
B79 33500 BEGIN
B79 33550 LOUNGE(BANK[CH[BANK]]); SCHEDULE(CURRENT,1);
B79 33600 END ELSE \$BANKFREE(BANK):=FALSE;
B79 33650 IF AFTER 1 ACCESS TIME, THE PARENT CAN BE ASKED TO LEAVE;
B79 33700 SCHEDULE(CURRENT,ACCESS=1); SCHEDULE(PARENT,0); SCHEDULE(CURRENT,CYCLE-ACCESS=1);
I BUT RELEASE THE BANK ONLY AFTER THE ENTIRE CYCLE TIME.;
END OF MEMREF;

INITIALIZE THE DESCRIPTOR VARIABLES INTRODUCED FOR DOCUMENTATION PURPOSES;
INDEP:=#51;

ARCHITECTURAL DESCRIPTORS;

SERIAL:=1; PIPELINE:=2; DATAFLOW:=3;

INTER-EVEN EVENT DESCRIPTORS;

IGEN:=1; ITERM:=2; NTERM:=3;

INSTRUCTION DESCRIPTORS;

TYPE:=1; OPCODE:=2; STORE:=3; CCTAG:=BRADD:=4; SNKMAS:=5; SRCMAS:=6;

SMKSLV:=7; SRSCLV:=8; IMDREG:=9; MEMADD:=BADIST:=11; TAKEBR:=12;

INSTRUCTION TYPE DESCRIPTORS;

BR:=0; RX:=1; SI:=3; BRANCH:=5; TRACENO:=1; FLOAT:=50;

INSTRUCTION OPCODE DESCRIPTORS;

SVC:=9; BALR:=2; BC15:=5; BCA15:=6; BCT:=10;

SISTR:=1; PETSTR:=2; FETCH:=3;

FLDL:=1; FXAD:=2; FCMP:=3; FMUL:=4; FIDIV:=5; FXLA:=6; FIST:=7;

FLLD:=50; FLSPLD:=51; FCLMP:=53; FLMLU:=54; FDIV:=55; FSL:=56;

LOOPSIZ:=4*BUFFERS; THE UPPER LIMIT FOR LOOPMODE DECISIONS;

TALL RESOURCES ARE FREE;

FIREFIX:=FXEUFREE:=FLUFREE:=FLDFREE:=COMDCODE:=true; ENDPACK:=false;

ICGENERATE WAITING CHAINS FOR THE RESOURCES;

IFBCH:=NEW HEAD; FXIC:=NEW HEAD; FEXC:=NEW HEAD; FLIC:=NEW HEAD;

IFLAD:=NEW HEAD; FLADM:=NEW HEAD; BCONBCH:=NEW HEAD;

IGENERATE WAITING CHAINS FOR DATA DEPENDENCY WAITERS;

FOR i:=1 STEP 1 UNTIL INDEP DO

BEGIN

SST[0]:=true; SSTCH[0]:=NEW HEAD;

END;

IGENERATE WAITING CHAINS FOR MEMORY CONFLICT WAITERS;

FOR i:=1 STEP 1 UNTIL BANKS DO

BEGIN

BANKFREE[1]:=true; BANKCH[1]:=NEW HEAD;

END;

INITIALIZE THE INSTRUCTION EXECUTION TIME TABLE;

EXEC[FLXPLD]:=2; EXEC[FXADD]:=3; EXEC[FLMUL]:=4;

EXEC[FCMP]:=5; EXEC[FMUL]:=6; EXEC[FDIV]:=7;

BEGIN ENOUGH INSTRUCTION FETCHES TO FILL THE INSTRUCTION BUFFER;

BUFFER:=1; PC:=1;

FOR i:=1 STEP 1 UNTIL BUFFERS DO

BEGIN

ACTIVATE NEW INSTRUCTION(TIME+1,1) DELAY 1-1;

PC:=i+MOD(PC, BANKS);

END;

NOW GO AWAY AND LET ME SIMULATE IN PEACE;

PASSIVATE;

OUTPUT THE SIMULATION STATISTICS;
36400 IMSPEX OUTPUT DO
36450 BEGIN
36500 OUTX(*"MEMORY CYCLE TIME:*"); OUTW(*"CYCLE,4"); OUTF;
36550 OUTX(*"NUMBER OF MEMORY BANKS:*"); OUTW(*"BANKS,4"); OUTF;
36600 OUTX(*"INSTRUCTION BUFFER SIZE:*"); OUTW(*"BUFFERS,4"); OUTF;
36650 OUTX(*"FIXED POINT UNIT ARCHITECTURE: *");
36700 OUTX(*IF FIXARCH=1 THEN "1 (SERIAL)" ELSE IF FIXARCH=2 THEN "2 (PIPEDLINE) ELSE "3 (DATAFLOW)"");
36750 OUTF;
36800 OUTX(*"FLOATING POINT UNIT ARCHITECTURE: *");
36850 OUTF;
36900 OUTX(*IF FLARCH=1 THEN "1 (SERIAL)" ELSE IF FLARCH=2 THEN "2 (PIPEDLINE) ELSE "3 (DATAFLOW)"");
36950 OUTF;
37000 OUTX(*"LOOP MODE: *"); OUTX(*IF BRANCH THEN "1 (ON)" ELSE "0 (OFF)""); OUTF;
37050 OUTX(*"EXECUTION TIME:*"); OUTW(*"TIME,6"); OUTF;
37100 OUTX(*"NORMAL INSTRUCTION PROCESSES:*"); OUTW(*"PROCESS,6"); OUTF;
37150 OUTX(*"ABORTED INSTRUCTION PROCESSES:*"); OUTW(*"ABORT,6"); OUTF;
37200 OUTX(*"MEMORY REFERENCES:*"); OUTW(*"MEMORY,6"); OUTF;
37250 OUTX(*"SYSTEM PROCESS THROUGHPUT:*"); OUTW(*"THROUGHPUT,6"); OUTF;
37300 OUTX(*"USEFUL INSTRUCTION THROUGHPUT:*"); OUTW(*"THROUGHPUT,6"); OUTF;
37350 OUTF;
37400 OUTX(*"Glich TIME:*"); OUTW(*"Glich,5");
37450 OUTF;
37500 END OF INSPEX;
37550 END OF SIMULATION;
37600 IMFP.CLOSE;
37650 END OF TIME;

DEFAULT SWITCHES USED
NO ERRORS DETECTED
LIST OF REFERENCES

VITA

Balasubramanian Kumar was born in Pudukkottai, India on January 30, 1951. He received a B. Tech. degree in Electrical Engineering (Electronics) from the Indian Institute of Technology, Madras, India in 1973. At the Indian Institute of Technology, he received the President of India Prize for the best academic record in all branches of engineering in the graduating class of 1973. In 1976 he received an M.S. degree in Computer Science from the University of Illinois at Urbana-Champaign. From 1973 to 1977, he was employed as a graduate research assistant at the Coordinated Science Laboratory of the University of Illinois at Urbana-Champaign.