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I. INTRODUCTION

The use of an adaptive linear predictive filter to detect the presence of a sinusoid in
white noise has been discussed by Widrow er a/ (Ref. 1) in a comparison of two detection
methods. The first uses as its test statistic the frequency response magnitude of an adaptive
linear predictive filter (LPF), the second employs incoherently averaged discrete Fourier
transforms (DFTs) of the input data. Widrow's comparison is based on output signal-to-
noise figures-of-merit (FOM) for the two processors and indicates that the LPF technique
may ofter significant improvement over the DFT when incoherent averaging is required to
process the available data.

Tufts (Ref. 2) has challenged Widrow’s analysis on the grounds that the DFT should
have been allowed to process the data coherently. In their reply, Widrow et al. (Ref. 3) have
agreed that a detector utilizing a coherent DFT of the data would indeed perform better
than the LPF detector and suggested that a different FOM is appropriate for describing LPF
performance.

Despite this interchange, the fundamental question of detector performance remains
unresolved. Analysis published to date (Ref. 1) is based on FOM arguments, and these can
be misleading when used in the comparison of processors with different statistical properties.
In order to provide a definitive answer, the problem should be addressed from the standpoint
of decision theory (Refs. 4,5). This paper represents a further step toward defining the per-
formance of detectors utilizing LPFs by first extending Widrow's analysis to account for
adaptation of the LPF, then using statistical decision theory to determine performance.

Il. PROBLEM DESCRIPTION

The detection of a sinusoid in Gaussian white noise is to be considered. The frequency

of the sinusoid, fg, total noise power, a?, and noise power per hertz, o3 , arc known. Phase
and amplitude of the sinusoid are unknown, but are constant over the observation interval.
Each detector is to observe the data over a fixed interval, then decide which of the two
possible hypotheses is true:

H, noise alone present
H, sine wave and noise present.

The a priori probabilities of these hypotheses are unknown. Hence, a Neyman-
Pearson test (Ref. 4) will be used to decide whether Hy or H, is true. A scalar test statistic
generated by each detector will be compared to a fixed threshold for that detector. The
threshold is set to achieve a desired probability of false alarm (i.e.. the probability of choos-
ing H, when Hy_is true).
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Four detector structures described in the tollowing section are to be considered:

(1) The optimal detector (Fig. 1),

(2) Averaged spectral estimates of the data (Fig. 2).
(3) Fourier transform of the LPF weight vector (Fig. 3). 7
(4) Fourier transtorm magnitude squared of the LPF weight vector (Fig. 4).

The predictive filters of Figs. 3 and 4 are described in the Appendix.
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Figure 1. Coherent DFT detector for a sinusoid of
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Figure 3. Coherent linear predictor (CLP) detector

for a sinusoid of frequency f in bandlimited
Gaussian noise of known spectrum level.
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Figure 4. Incoherent linear predictor (ILP) detector

for a sinusoid of frequency fg in bandlimited
Gaussian noise of known spectrum level.

IH. ANALYSIS

OPTIMAL DETECTOR — COHERENT DFT

The likelihood ratio detector for a signal of unknown amplitude and phase is
discussed by Helstrom (Ret. S). This optimal detector, which is the coherent DFT mentioned
by Tufts (Ref. 2), can be implemented by splitting the input data into two channels as shown
in Fig. 1. The first channel is multiplied by cos(2nf.t) and integrated over the observation
interval. The second channel is multiplied by sin(2 1rl t) and integrated. At the end of the
observation period a test statistic, denoted by YcoH m Fig. 1, is formed by squaring and

summing the two integrals. The Neyman-Pearson test is applied to yoqp in order to decide
signal presence or absence.

One practical method of implementing this detector uses the DFT. The observed data
are sampled at Nyquist rate and the resulting data sequence is transformed with the known
sinusoid frequency. fg. at one of the DFT frequencies. Real and imaginary parts of the DFT
at this frequency are squared and summed to form the test statistic. Note that the data must
be transformed coherently. That is, either a single DFT must process the entire data sequence
in one transtormation, or short DFTs can be summed in phase before the test statistic is




tormed. Let Ny denote the total number of data samples processed. The none component

of the data is assumed Gaussian with zero mean and known vanance o - Consequently
under hy potheses Hgo A and B ot Fig. 1 are normally distributed with zero mean and
vananee _l: AN l"':’ When A and B are normabized to umt vanance, the test statistie, YCOH-
18 chissquared with two degrees ot treedom:

; 2
u-l‘u.u"(') ) h

Under hypothesis H A and B remam normally distributed with unchanged vanances, but
now have nonzero mean values,  Assuming normalization as in bq. (1), the test statistic
becomes non-central chissquared with two degrees of treedom
| Y (+INySNR
Hy 1 p ()= x= CINpSNR), ()]
) Rroon 2% !

where Ny the total number o input data samples processed by the detector and

sinusoid power

SNR = (Y}

total noise power

AVERAGED SPECTRAL ESTIMATES OF THE INPUT DATA (ASE)

Ihe optimal detector may require an extraordinarily long DEFT if the input time-
bandwidth product is large and DETs cannot be summed coherently. When the optimal
detector s not practical tor a given application, a sub-optimal detector employving averaged
spectra of the input data sequence may be used. As illustrated in Fig. 2, the test statistic is
formung by sumnung the squared absolute values of short, non-overlapping (ndependent)
DETs. Asin the case of the optimal detector, fg must correspond to the center frequency of
one of the DET frequency bins.  The test statistic probability distributions under hypotheses
H, and H, are

Al
Hy p (*)=x= +) (E 1
0 Pyaqp Xam
.
H i p (V=x2  (*INySNR). S)
! ‘7.-\.\‘!" \2|n( 1 :

where m s the number of independent DETs used in forming the test statistic, and N, the
total number of data samples processed, s equal to m tmes the number of samples processed
by cach DET




COHERENT FOURIER TRANSFORM OF THE LPF WEIGHT VECTOR (CLP)

Ihe LPE used in this work is discussed in the Appendix. The weight vector is
modeled as a sinusoid of time-varying amplitude summed with a Gaussian “misadjustment™
noise. Equanions (22). (23), (25). and (26) describe the LPF weight vector, Wai.K). where
i denotes the individual weight number (0 <1 < N-1) and K denotes the number ot adapta-
tion iterations (K = 1,2, « + «). The CLP detector (Fig. 3) uses as its test statistic the
- measured amplitude ot the weight vector cosine component. This amplitude s estimated
by the sum

N-1
Youp = 2, WK cosl2nf(i +8) Al ©)
=0

where 1 s the sinusoid frequency to be detected, § is the LPF prediction delay (Fig. 3), and
A s the sampling period of the digital system. The test statistic is computed. as illustrated
in Fig. 3. by first forming the DFT of the weight vector (i.e., evaluating the LPF frequency
response at frequency fo), then rotating the phase of this complex quantity as indicated.
The real part of the result is used as the test statistic. Since the weight vector misadjustment
noise 1s assumed to be Gaussian, the test statistic will also be Gaussian. The variance of the
misadjustment, and hence the variance of the test statistic, is constant under H, and H, .

In the present analysis it is assumed that all weights are initially set to zero (e, WG.0) =

0, 0 <1 <IN=1)and that a single DFT is calculated at the end ot the observation period.
When narmalized to unit variance, the probability distributions of the test statistic under
Hy and H, are (see Appendix)

Ho:pn‘Lp(')=N('IO.I) )

H, (*)=NCla ), (8)

Py
YCLP
where N+ \,v) denotes the normal density with mean x and vartance y,

N s N Ny
— SNR | 1-[1-2u0°(1 +—SNR)] !

&)

N N 3y 1
1 +— SNR [‘T“o“] .

and u is the adaptive feedback constant of the LPFE.

e probability of sinusoid detection can be maximized by separating the test
statistic distributions under Hy and H, as far as possible, 1 ¢, choosing the controllable LEP
parameters N and u so as to make « as large as possible. Assuming N to be fixed by hardware
limitations. this is accomplished by choosing

1.25643
u = , (1o

N A
20°Np (1 += SNR)

N




A
SNR s a nominal value of SNR 1o be detected, and the numerator of b (10) s the

nonzero root of the transcendental equation (1 + 2xke ™ 1. With this choice of u.

detector performance is optimized when SNR = .\‘QR Curves presented in Section 1V will
show that detector performance is not strongly influenced by SQR‘ and theretore s value
15 not critical. i

Substituting Fq. (1O) into Fgs. () and (8) gives the density ot the test statistic as a
function of N, N I SNR, and SNR. These parameters determine the CLP detector

performance.

INCOHERENT FOURIER TRANSFORM OF THE LPF WEIGHT VECTOR (ILP)

This detector (Fig. 4) does not utilize the deterministic phase ot the LPE weight
vector. The test statistic ts the magnitude squared of the weight vector DET (e, the
LPE trequency response magnitude squared) at frequency (. The model of the weight
vector is developed in the Appendix. Probability densities of the test statistic under
hypotheses Hy and H, are (with normalization to unit varance)

IIO: Cl=x2 () (n

Pyip
3 ,
H, :p7ll4P(.‘.‘:‘ Clas), ()

where ais given by Eq. (9) Just as for the CLP detector, probability ot sinusoid detection
is maximized by choosing the adaptive feedback constant according to Fq. (10).

IV. PERFORMANCE COMPARISONS

The density functions of Section HE will now be used to develop comparisons of
detector performance. Results are based on the Neyman-Pearson hypothesis test and ane in
the form of power curves showing detection probabilities as a function of false alarm proba-
bility and SNR of the recetved signal. The plots published by Marcum (Ret. 0) and the
nomogram of Urkowitz (Ret. 7) were used in obtaining these curves.

Figure S compares the coherent DET, ASE, and ILP detectors tor the case of
102,400 input data samples. The ASE DET length of 1024 pomnts was chosen to equal the

LPE weight vector length. The parameter S;\\ZR required in order to choose g tor the 1LP
was selected equal to 1N 1073 (=30 dB). Figure S shows that the 1TLE and ASE processon
are roughly equal in performance. The TLP ofters a fraction of a dB advantage at the hagher
SNR values shown, but the ASE pertorms shightly better at smaller SNRs. This result difters
from the conclusion of Widrow ‘s analysis (Ref. 1) based on a FOM comparison which
indicated a large difference between the ASE and 1LP processors. As predicted by Tutts
(Ret. M), the coherent DET detector is markedly better than either the ASE or 1LP detecton
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Figure 6 compares the coherent DET, ASE. and CLP detectors tor the case of
102,400 input data samples. All parameters are the same as those of Fig. S, Figure 6 shows
that the CLP offers about a 1-dB improvement over the ASE processor, but is still far short
of optimal performance.

A “ .
Figure 7 illustrates the eftect of varying SNR on CLP pertormance. The change in
performance is negligible as SQR is reduced from 1072 to 1074, The SNR required to achieve
\ 3
a given Pl) in the range illustrated increases only about 3 dB as SNR is increased from 107 to

p \ .. ~ o . .
107=. Thus the choice of SSJR is not critical to LPF detector performance in this example.

Figure 8 shows the effect of varying the weight vector length of the CLP detector and
DFT length of the ASFE detector. The relative performiice of the two detectorn is not
significantly affected. In both cases the CLP detector offers about a 1-dB advantage in the .
SNR required to achieve a given Ppy. ]

Figure 9 compares ASE and CLP detector performance for two values of N the
total number of data samples processed. Relative performance of the two processors is not

sstrongly atfected. At the smaller value of NT‘ the CLP detector ofters shightly more than a

1-dB advantage in the SNR required to achieve a given Ppy.

/
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V. CONCLUSIONS

Four detectors of @ sinusoid of known frequency in Gaussian white noise have been
analyzed. Two of these utilized the frequency response of an adaptive linear predictive
filter, and two employed Fourier transforms of the input data. The results show that tie
CLP processor (Fig. 3), which utilizes the deterministic phase of the LPF frequency
response, offers about a 1-dB advantage over the ASE detector, which utilizes averaged
spectral estimates of the input data (Fig. 2). The ILP detector (Fig. 4), which does not
utilize the LPF phase, performs about the same as the ASE detector. The ASE, ILP, and
CLP detectors all require significantly higher SNR than the optimal detector, which employs
a coherent DFT of the input data. In all cases, the CLP and ILP adaptive feedback constants
were chosen to yield the best possible adaptive filter performance.

The work presented here has treated the use of adaptive LPF frequency response as
a method of signal detection. Spectral analysis of the LPF output, discussed by Zeidler and
Chabries (Ref. 9), is an alternative technique. It should be noted that the detection problem
treated in this paper assumed that the receiver had a considerable amount of information
concerning both the signal and noise characteristics. As suggested by Griffiths (Ref. 10),
conditions of greater signal uncertainty (e.g., nonstationary noise or non-white noise of
unknown spectral density) may result in adaptive processor performance superior to that
of nonadaptive techniques.

u..x!..‘xx

B T B e o W g

el i e e oo o




APPENDIX: LPF WE!GHT VECTOR MODEL

Figure 10 illustrates the hinear predictor considered in this report. A thorough

i ] discussion of this system (also known as the adaptive line enhancer) has been presented by
Widrow ef @l (Ref. 1) and Treichler (Ret. 11). Only a bried sumimary is given here. The
adaptive filter of Fig. 10 is a time domain digital filter which adjusts its impulse response so
as to minimize the mean square of ¢, the difference between the desired tilter response, X,
and its actual response, y. When the filter adjustment is complete, y approximates the
minimum mean square error prediction of x over the interval of & samples. For the analysis
which follows, it is assumed that x is statistically stationary and com rosed of a sine wave
in white noise. The updating algorithm for the k™ iteration of the i™" filter weight is

WGk + 1) = Wi k) + 2ue(k) x(i,K) (13)

where x(i.k) is the data sample at the it filter tap during the k'™ iteration and W(i.k)
denotes the ith weight at the kth jteration. The constant u controls the feedback magnitude
of the adaptive system. For stability, g must be chosen greater than zero and smaller than
the reciprocal of the largest cigenvalue of the input data correlation matrix, R. The
clements of R are g

R :l:k Ix(m.K) x(n,k)]. 0 <mn <N-1 | (i)

mn

h |

where R ois the element in the m™ row and o™ column, and Fy [+1 denotes expectation

with respect to the index k. The optimal LPF weight vector, resulting in the minimum mean
square of €, is given by the discrete Wiener-Hopt equation:

Wai) = IR"I ik P 0<ik <N-1. (s)

where P is the kth cortponent of P, the correlation vector of the desired filter response and

the data contained in the filter, ¢,

i = I-'mlx(—&ml (k)] O <k < N-] (o)
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For the case of a sine wave of magnitude A and frequency f_ in white noise of total power
0* in the input bandwidth, the elements of R are
3

A
Rmn = ulamn T cos[2rf, (m-n) A] 0<mn<N-Il, (17)

s {

where A is the sampling period of the digital LPF system and § , is the Kronecker delta.
The components of P are

Y

A-
P, = —— cos|2nuf (m+d) A) 0 <m<N-I. (18)

In the following it will be convenient to assume that fg is neither zero nor the Nyquist
frequency of the digital system.

Since fg is known, A and the predictor weight vector length, N, can be chosen to
equal an integer number of sine wave periods. {

f(AN = integer (19)

When N is chosen in this way R becomes circulant (Ref. 8). The eigenvalues, AM) and

cigenvectors, U('“), of R are given by g

N-1
Am) - Rp, expl=i2rmn/N] 0<m<N-I 20)

n=

L) SR 08 (12N i2mmN-D/N) T
VN

0<m <N-1, QD
where T denotes vector transpose. Note that U““) and UN"M) e complex conjugates.
The cigenvectors are complex exponentials, each with an integral number of cycles in the
length of the LPF weight vector. Because N has been appropriately chosen and f is suitably

restricted, two of the eigenvectors correspond to frequency f. Equation (15) can be solved
using Eqs. (20) and (21). The optimal weight vector is found to be a sinusoid of frequency f:

SNR

Wa) = cos[2mf(i+d) A] 0 <i<N-I (22)

N
|+TSNR

where SNR denotes the sinusoid to noise power ratio. This is the form to which the LPF
weight vector would converge, given an infinitely long adaptation interval and the absence
of misadjustment noise. The optimum weight vector is orthogonal to all but the two conju-
gate cigenvectors of R which correspond to frequency f .




2 e G i A
.

The eigenvalues associated with these eigenvectors are equal and are given by

e

3 al

N
| N = 0% [1+—SNR). (23)

-

Treichler (Ref. 11) has shown that these eigenvalues control the speed with which the LPF
7 weight vector converges to its optimal value. They are inversely proportional to the con-
} vergence time constant. Assuming the weight vector to be initially zero, and neglecting
transient behavior as the predictor initially fills with data, the mean value of the ith weight
at the kth update is

WGiLk) = [1=(1 = 2u0K) W) (24)

{ In addition to this mean value, the weight vector also contains misadjustment noise. Widrow
(Refs. 1, 12) has shown that the mean value of this noise is zero, and its variance is .
approximated by uo?. Misadjustment is uncorrelated from weight to weight. In order to
extend Widrow’s analysis of detector performance, the following two assumptions will be
made concerning misadjustment noise:

| (1) The misadjustment distribution is approximately normal.

(2) Variance of the misadjustment is equal to the steady-state value of uo? at all
times, and is not influenced by the presence or absence of the sinusoid.

Reference 13 presents data from extensive Monte Carlo experiments with the system
of Fig. 10. These show that the steady state weight misadjustment is normally distributed
when the filter is driven by uncorrelated Gaussian input samples. The results presented in this
paper are for uncorrelated Gaussian input plus a sinusoid of less than =20 dB relative noise
power. The presence of the sinusoid would therefore seem to be unimportant insofar as
misadjustment is concerned. In addition, the optimal value of u (Eq. 10) can be shown to
imply that the observation interyal of N input data samples is equal to about 1.26 con-
vergence time constants when SNR is near the true SNR. Convergence is therefore about
70 percent complete. In view of this, the use of the steady state misadjustment distribution
and variance assumed here would seem to provide a reasonable representation of filter

misadjustment.

Under the above assumptions, the noise component of the ith LPF weight is

Py = NC10, uo). (25)
1

The LPF weight vector is modeled by the sum of Eqs. (24) and (25):

WGk = [1=(1 =208 W) + n (26)

In working with Eq. (26) it is convenient to note that, for the situations of interest in this ‘ .
paper, the square-bracketed term is of the form [ [ = ([-x)?¥], where x << 1,y >> [, and |
x?y << 1. This term is closely approximated by [1 - ¢™XY ], as can be shown by taking the J‘
natural logarithm of (1 = x)¥ and expanding in powers of X. |

o ST Bt At 1 iy
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Substituting Eq. (22) tor W(i) and evaluating the DET of Eq. (26) at frequency f results in
a complex number with deterministic and random parts. The deterministic part is due to the
first term of Eq. (26) and is equal to
*Ei SNR
—F (1 = (1 = 2uM)¥] exp [j 27 £ 8] . Q2n
I + - SNR

-

The random part is due to the noise component of Eq. (26). The real and imaginary compo-
nents of the random part are independent, identically distributed normal random variables

g : N
with zero mean and variance equal to — uo? .

-
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