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1. Introduction

*—:;ishis monoqraph.wws give#g mathematical analysis of
spectral methods for mixed initial-boundary value problems.
Spectral methods have become increasingly popular in recent
years, especially since the development of fast transform
methods *see»SeC7“i0T? with applications in numerical weather
prediction, numerical simulations of turbulent flows, and other
problems where high accuracy is desired for complicated solutions.'
We do not discuss the sophisticated applications of spectral v
methods here; a survey of some applications is given in Sec. 15,
Instead, we concentrate on&ghe development of a mathematical theory
that explains why spectral methods work and how well they work.
Before presenting the theory, we begin by giving some simple

examples of the kinds of behavior that we wish to explain.

Spectral methods involve representing the solution to a
problem as a truncated series of known functions of the inde-
pendent variables.  We shall make this idea precise in Sec. 2,
but we can illustrate it here by the standard separation of
variables solution to the mixed initial-boundary value problem

for the heat equation.

Example 1.1l: Fourier sine series solution of the heat egquation.

Consider the mixed initial-boundary value problem

du(x,t) _ azu(x,t)
2

(0 < x<m, t>0) (1.1a)
L X Tl
u(o,t) = u(n,t) =0 (t > 0) (1.1b)
]
u(x,0) = f(x) (0 < x < w) . (l1.1¢)




4 |
: The solution to (1l.1) is

i . u(x,t) = ] a (t) sinnx, (1.2) g
=1
S %
§ an(t) = fn e (n-llzlnnol) (1.3,
where
n
! g o -z—jf(x) aln ok 8%  (Bel,3,.000) (1.4)
1 n T
0

are the coefficients of the Fourier sine series expansion of
f(x). Recall that any function in Lz(o,n) has a Fourier sine
series that converges to it in Lz(o,n); the Fourier sine series
of any piecewise continuous function f(x) which has bounded
variation on (0,w) converges to %[f(x+)+f(x-)] throughout

i (0,m) (see Sec., 3).

A spectral approximation is gotten by simply Eruncating
| (1.2) to
&{ N
i uN(x.t) = 7 an(t)sin nx (1.8)
n=1

and replacing (1.3) by the evolution equation

dan 2
HT = - n an (n=l,...,N) . (1.6)

with the initial conditions an(o) .~ (n=1,...,N) .
{ The spectral approximation (1.5-6) to (1.1) is an ex-
ceedingly good approximation for any t > 0 as N + o .

In fact, the error u(x,t) - uN(x,t) goes to zero more rapidly

2
-Nt
than e as N + o for any t > 0 . 1In contrast, a finite

{ difference approximation to the heat equation using N grid points

-




in x but leaving t as a continuous variable (a 'semi-

discrete' approximation) leads to errors that decay only
algebraically with N as N + ». [0f course, if we solve
(1.6) by finite differences in t the error of the spectral
method would go to zero algebraically with the time step At.
However, we shall neglect all time differencing errors for now
and study only the convergence of semi-discrete approximations.

Time-differencing methods are discussed in Sec. 9.]

Example 1.2: Fourier sine series solution of an inhomogeneous

heat eguation.

Not all spectral methods work as well as the trivial one
just outlined in Example l.l. Consider for example the solution

to the problem

2
u

=%

du _
55 +1 (0 <x<m t>0)

"

X

with the same initial and boundary conditions as before.

The Fourier sine coefficients of the exact solution are now

2
a (t) = £ et A 1-e™ Yl (1.7)
mTn

where ., = 0 if n is even and ., = 1 if n is odd. Spectral

approximations are now given by (1.5) with (1.6) replaced by

da
ﬁa-nzan+"—4ﬁen (n=1,...,N) ,




the solution of which is (1.7) for n=1,...,N. Now the
truncation error u(x,t) - uN(x.t) no longer decays exponentially
as N+ ~ ; the error is of order N 5 as N » « for fixed
X, 0<x<mn, and t > 0 . In other words, the results

to be anticipated from this spectral method behave asymptotically
as N * @ jin the same way as those obtained by a third-order
finite-difference scheme [in which the error goes to zero like

Ax3 = (n/N)3]. For this problem, straightforward solution by
finite differences may be more efficient and accurate than solution

by Fourier series.
The last example may be disturbing but even more serious

difficulties confront the unwary user of spectral methods, as
the next example should make amply clear.

Example 1.3: Pourier sine series solution of the one-

dimensional wave equation.

Consider the mixed initial-boundary value problem for the

one-dimensional wave equation

a‘ié’éit) + 3“(’3‘;‘) =x +t (0<x<w, t20) (1.8a)

u(o,t) =0 (t > 0) (1.8b)

u(x,0) =0 (b S % S W) (1.8¢)
The exact solution to this well posed problem is u(x,t) = xt.

This solution can also be found by Fourier sine series expansion
of ul(x,t). To do this, we substitute (1.2) into (1.8) and re-

expand all terms in sine series. The Fourier expansion of du/dx is




l ”

. ] b_(t)sin nx (1. 9)

9X and

where integration by parts gives

> % e . 2n [
b (t) =5 £ §x 8in nx dx, = - == 5 u cos nx dx
® n
= - %? ) a ) (t) [/ sin mx cos nx dx, (1.10)

n=1

m=1
m+n odd

n+l

Also the Fourier sine coefficients of x are 2/n(-1) and

the Fourier sine coefficients of t are (4t/nn)en, where 0 - 0

if n is even and o, - 1 if n is odd. Equating coefficients

of sin nx in (l1.8a) we obtain

da o
v SHPW CR) nm 2 D, 4 e (n=1,2,...). (1.11)
t ¥ m=1 n“-m = -

m+n odd

The Fourier sine coefficients of the exact solution

u(x,t) = xt are

2 n
an(t) il (-1)"'t (o= 1,25.4)
It is easy to verify by direct substitution that these coefficients
satisfy (1.11) exactly; in particular, the sum in (1.11) converges

for all t.

S itio




Now suppose we employ a spectral method based on Fourier
sine series to solve this problem. We seek a solution to (1.8) in
the form of the truncated sine series (1.4). If the exact co-
efficients an(t) are used in (l1.4) then u(x,t) - uN(x,t) - 0
as N + o ; for each fixed x, 0 <x<w, and t > 0 the

error is of order 1/N as N + =« (see Sec. 3). 1

However, it is not reasonable to assume that the expansion

coefficients an(t) are known exactly in this case because of
the complicated couplings between various n in the system
(1.11)} It is more reasonable to determine them by numerical
solution of an approximation to (1.11). Galerkin approximation

(see Sec. 2) gives the truncated system of equations

N
da
== I a -2en"s e mel,...m (1.12)
m=1l n"-m
m+n odd

The truncation of the infinite system (1.11) to the finite
system (1.12) is a standard way to approximate infinite coupled
systems. Unfortunately, it need not work. 1In Figs. 1.1-1.2
we show plots of the approximations uN(x,t) at t =5 given
by (1.4) for N = 50,75. These plots are obtained by numerical
solution of (1.12) with an(O) = 0; the time steps used in the J
numerical solution of (1.12) are so small that time differencing

errors are negligible. It is apparent that the approximate solu-
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Fig. 1.2. A plot of the Galerkin approximation czAx.nv to (1.8)
for N=75 at t=5. This solution is obtained by numerical
integration of (1.12). Time differencing errors are negligible.
The exact solution u = xt at t=5 41s also shown.




tions with N finite do not converge to the exact solution as N

increases ! The divergence of this spectral method will be ex-

plained in Sec. 6.

Not all spectral methods give such poor results.

A properly

formulated and implemented spectral method gives results of

striking accuracy with efficient use of computef resources.

The choice of an appropriate spectral method is governed by

two main considerations:

(i) Accuracy. In order to be useful a

spectral method should be designed to give results

of greater accuracy than can be obtained by

more conventional difference methods using similar
spatial resolution or degrees of freedom. The choice
of appropriate spectral representation depends on the

kind of boundary conditions involved in the problem.

(ii) Efficiency. In order to be useful the spec-

tral method should be as efficient as difference
methods with comparable numbers of degrees of
freedom. For similar work, spectral methods
should produce more accurate results than

conventional methods.

In Sec. 15, we present a catalog of different spectral methods

and indicate the kinds of problems to which they can be most use-

fully applied.

Many examples of efficient and accurate spectral methods will

be given later.
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2. Spectral Methods

The problems to be studied here are mixed initial-boundary

value problems of the form

—-———3“(’3‘;:*" = L(x,t)u(x,t) + £(x,t) (xeD, t >0) (2.1)
B(x)u(x,t) = 0 (x € 3ab, t > 0) (2.2)
u(x, 0) = g(x) (x € D) (2.3)

where D is a spatial domain with boundary 3D , L(x,t) is a

linear (spatial) differential operator and B(x) is a linear

(time independent) boundary operator. Here we write (2.1-3)

for a single dependent variable u and a single space coordinate

x with the understanding that much of the following analy-

sis generalizes to systems of equations in higher space di-

mensions. Also, attention is restricted to problems with

homogeneous boundary conditions because the solution to any

problem involving inhomogeneous boundary conditions is the sum of

an arbitrary function having the imposed boundary values and

a solution to a problem of the form (2.1-3). The extension to

nonlinear problems will be indicated at the end of this section.
Before discussing spectral methods for solution of (2.1-3) let

us set up the mathematical framework for our later analysis.

It is assumed that, for each t ,. u(x,t) is an element

of a Hilbert space H with inner product ( , ) and norm

|l +|| . For each t > 0 , the solution' u(t) belongs to

the subspace B of H consisting of all functions u e H

1 We will often denote u(x,t) by u(t) when discussing u as
a function of t.

~10-
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satisfying Bu = 0 on 93D . We do not require that u(x,0)=g(x)e B

but only that u(x,0) ¢ ¥ . The operator I. is typically an
unbounded differential operator whose domain is dense in,

y a3 ) e 5 1 i f
but smaller than, P For example, i

L = 3/3x and )

L2(0,1), the domain of L can be

chosen as the ‘dense set of all absolutely continuous functions on

s x A ]

’

If the problem (2.1-3) is well posed, the evolution operator
is a bounded linear operator from f to B , Boundedness implies
that the domain of the evolution operator can be extended in

a standard way from the domain of L to the whole space H

(Richtmyer & Morton, 1967, p. 34). For notational convenience
we shall assume henceforth that L is time independent so that

the evolution operator is exp(Lt). 1In this case the formal so-

lution of (2.1-3) is

t
u(t) = eLtu(O) +J[ eL(t—s)f(s)ds (2.4)
0

This formal solution is justified under the conditions
that £(t) , Lf(t) , and sz(t) exist and are continuous
functions of t in the norm ||+|| for all t 2 0 (sece
Richtmyer & Morton, 1967).

The semi-discrete approximations to (2.1) to be studied here

are of the form




R e b

auN(x,t)
5T = LN uN(x,t) + fN(x,t) (2.5)

where, for each ¢t , uN(x,t) belongs to an N~-dimensional sub-

space B N of B, and LN is a linear operator from H to BN

of the form

| = . 2.6

| Ly = Py L Py ( )
Here PN is a projection operator of ff onto BN and
fN = PNf . We shall assume that 8 N C B M when N < M .

For definiteness, we shall also assume the initial conditions for
the approximate equations (2.5) to be uy (0) = PNu(O) where
| u(0) = g(x) is the initial condition (2.3). Specific

examples of projections PN and the resulting approximations

{
!
]
|
|
q
|
{

LN will be given below.

According to this general framework, the formulation of a
spectral method involves two essential steps: (i) the choice of
approximation space BN; and (ii) the choice of the projection
operator PN . It will turn out that the mathematical analysis

of the methods also involves two Key steps: (i) the analysis of

how well functions in H can be approximated by functions in

BN (see Sec. 3) and, in particular, the estimation of
| v = PNuII for arbitrary wuel; and (ii) the study of the
‘stability’ of Ly (see Sec, 4) . Finally, there are the

important practical questions of how to discretize time (sece

Sec. 9) and how to implement spectral methods efficiently (see

Sec. 10). All these considerations will be reviewed in

Sec. 15,

!
|
|

! |




Galerkin approximation

A Galerkin approximation to (2.1-3) is constructed

as follows. The approximation Uy is sought in the form of

the truncated series
N
ug (x,t) = n_)_I.lan(t) o, (%)  £2.6)

where the time-independent functions ¢, are assumed linearly
independent and ®n€ By for all n. Thus, uN(x,t) necessarily
satisfies all the boundary conditions. The expansion coefficients

an(t) are determined by the Galerkin equations

22 (0 eug) = (6 b ug) + (8,6 (n=l, ... ,N) (2.7

or
da N

N
m—
m£1(¢n'¢m) g mzlam(¢n'L¢m) i (¢n'f> ¥

These implicit equations for an(t) can be put into the
standard explicit form (2.4-5) by defining the projection

operator PN by

N N

Pyul(x) = T P 19

; () ¢n(x) (2.8)
n=l m=1

m

where Pyn are the elements of the inverse of the N x N matrix

whose entries are (¢n,¢m).

Note that the relation

N N
Pu= J J p (¢ ,Pu)é (x)
N nel gml W N n
holds for all projection operators Py+ However, the specific

projection operator (2.8) is particular to Galerkin approximation.




The Galerkin equations (2.7) may be characterized as follows.
At each instant t, we assume that the expansion coefficients a_(t)
n

in (2.6) are known and seek values for the N independent quantitics
dan/dt (n=1,...,N) that minimize

auN du
(s't—' - LuN'W - LUN) E

The resulting equations for dan/dt are (2.7).

Example 2.1: Fourier sine series

If we choose H = L2(0,n) and @n(x) = sin nx , we re-
cover the Galerkin approximations given in Example i.1-2 for the
heat equation and in Example 1.3 for the wave equation. Every
function ucLz(O,n) has a Fourier sine series that converges
in the L, norm, so that | Ju - U || + 0 as N » =,

However, as illustrated b§ Example 1.3, this does not ensure
that the Galerkin approximation uy converges to u as N + ©

Example 2.2: Chebyshev series

We choose H to be the space of functions on
the interval |x| < 1 that are square integrable with respect

to the weight function 1/V1-x2 . 1If the problem is

o tu, . ik, k) (Rl vl &3>0) (2.9a)

t

u(-1,t) = 0 , u(x,0) = g(x) , (2.9b)

which is a slight generalization of Example 1.3, it is appro-

priate to choose the expansion functions for the Galerkin approxi-
mates to be ¢ (x) = T (x) - (—l)nTo(x). Here T (x) is the
n n

Chebyshev polynomial of degree n definied by Tn(coso) = cos nf
2
when x = cos0 ; thus, To(x) = ], T](x) - X, Tz(x) = 2x =1, T3(x)

4x3 ~ 3X,... « Observe that ¢n(x) satisfies the boundary condition

- S S L IBGES, SRS

-
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Hadge

on(-l) = 0 because Tn(-l) = (-1)" for all n. The properties

) of Chebyshev polynomials are summarized in the Appendix.

The Galerkin equations (2.7) are obtained explicitly as
follows. First, the definition of T, (x) and the substi-

tution x = cos 6 imply that

W
(T,,T,) = fcosn 8 cosm edef -;-cn )
- v

nm ’

where

2 /!
(f,9) -f f(x)g(x)//1-x° dx,
-1

Here €3 =2, c =1 (n>0) and $om ™ 0. 42 n tm, 1 if

n = m. Therefore,

m n+m
(Opeby) =3 8o + (-1)™Mg,

Next, the Chebyshev polynomials satisfy

T, (x) T, ix)
O - ol - JB=l
' 2qh (x) n+1l n-1

(n 2 2),

as may be verified by substituting x = cos 6. Therefore,

(\
ﬂ(-l)n+lm + m™m n<m m+n odd
(¢ne0m) = {7(-1)"*1n n>m m+n odd
’ 0 n + m even 2

Using these results, (2.7) gives the Galerkin approximation equations

( =]3=




F dln 5 & N N
» -t ¢ 2(-1) ac ) (-1)Ma_ = -2 pa_+
m=1 " p=n+l P
p+n odd
2 n N -~ n "
+ ("1 - =
) p§1 Paj+ £ +2(-1)7 £ (n=1,...,N),
p odd

Here fn = (Tn,f) for n=0,...,N.
These Galerkin equations can be simplified by introducing

N
Z (-l)mam, so that (2.6) becomes

the notation ag = -
m=1

N
ug(x,t) = I a ()T (x). (2.10)
n=0

Substitutirg the abhove exnression for 24, the Galerkin equations

can be rewritten as

for a
n
da N
B o 2 z - 1 n
at b pa_+ f + — b(t)(-1)" (n=0,...,N), (2.11)
. “n p=n+l P o €n 4 o
p+n odd
N
I «n"a =0 . (2.12)
n=0
Here b(t) is a 'boundary' term that ensures maintenance of the

boundary condition (2.12). Using (2.12) it is easy to show that

the explicit form of b(t) is

N u n’
g a3 1 P nta +8 ) & A | et - (-1)"¢ ]
Dit) & ==fee [ni-:o( ) (n"ay n] ;:%' % e :1;0 n

?\*I




Tau approximation

The tau method was invented by Lanczos in 1938 (see Lanczos
1956). First, the expansion functions °n (n=1,2,...) are
assumed to be elements of a complete set of orthonormal functions.
The approximate solution uN(x,t) is assumed to be expanded in

terms of those functions as in

N+k
I a (t)e (x) . (2.13)

(x,t) -
N n=1

Here k is the number of independent boundary constraints BuN-O

that must be applied. The important difference between (2.13)

for tau approximation and (2.6) for Galerkin approximation is that
the expansion functions ¢n in (2.13) are not required individually
to satisfy the boundary constraints (2.2). The k boundary

constraints

N+k

nzl a, B¢ =0 (2.14)

are imposed as part of the conditions determining the expansion co-

efficients a, of a function in BN' Then, the projection operator

Py is defined by

o N Kk
P A =
N(nzl "¢") n§1A"°" g mzlbm°N+m

™




where b (m=1,...,k) are chosen so that the boundary con-
m

straints are satisfied: BP u = 0 for all u e M.

It follows from these definitions that the tau approximation
to (2.1-2) is given by (2.13) with the k equations (2.14)
and the N equations

dan

- (¢an uy) + (On.f) 1 PSR | S (2.16)

An equivalent formulation of the tau method is given as

follows: The equations for the expansion coefficients a of the

exact solution u in terms of the complete orthonormal basis °n are

u(x,t) = 7 a (t)e (x) ,
n=1

dan

H't_' - (@nvL“) + (@nof) (=), 2, .0:) & (2.17)

The tau approximation equations for the N+k expansion co-
efficients of uy in (2.13) are obtained from the first N
equations (2.17) with u replaced by Uy and the k boundary
conditions (2.14).

The origin of the name 'tau method' is that the resulting

approximation Uy is the exact solution to the modified problem

auy .
" Lhu et pzl rp(t)¢N+p(x) (2.18)

-18-




which lies in EN for all t > 0 . For each initial value problem

and choice of orthonormal basis ¢n (and associated inner product),

there is a (normally unique) choice of t-coefficients such that

uy e.EN . namely

tp = (om_p.LuN + f) (p = k+l1, k+2, ...)

The remaining tau coefficients Tye Toreees Ty are determined by

the k boundary constraints
]
B—s-u—N- = 0
t
and the N dynamical constraints (2.17) for n =1,...,N.

Example 2.3: Fourier sine series

For all of the applications given in Example 2.1, Galerkin
and tau approximations based on on = % sin nx are identical
(except for the scaling factor 27w ) since the orthonormal

expansion functions °n satisfy the boundary conditions.

Example 2.4: Chebyshev series

If we choose ¢n+1(x) =l%%\ Tn(x) where Co = d; . =]
(n > 0) and apply the tau method to the problem (2.9) the result
can be recast into the form of equations (2.10-12) with b(t) =0
and (2.11) only applied for n=20,1,...,N-1 instead of
n=20,1,...,N. Thus, the tau equations for the one-dimensional

wave problem (2.9) are (2.10) with

dan 2 v s
p+n odd
N n
I (=1) an(t) = 0 (2.20)
n=0

In this problem, j% rl(t)- aﬁ - QN while tp(t) =0 for p>1 .
=19~

.
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Example 2.5: Laguerre series

Here we choose X to be the space of functions that are
square integrable on 0 < x < w with respect to the weight
function e * . We choose the expansion functions to be
on(x) = Ln(x) where Ln(x) is the (normalized) Laguerre poly-
nomial of degree n: Lo(x) =1, Ll(x) = 1-x,

Lz(x) -1°2x+']2.‘82, e e o

Suppose we wish to solve the problem

u, + B ™ f(x,t) (0 £ x <™, t >0) (2.21a)

a(Q,t}) = 0O , u{x,0) = g(x) (2.21b)

by seeking an approximate solution of the form

N
uN(x,t) = : an(t)Ln(x) . (2.22)

n=0

To derive the tan equations for an(t), we note that Ln(x)

satisfies Ln(O) =1, Lﬁ - L$+1 = Ln' n=20,1,... and
N -X > . :
(Ln,Lm) g 4) Ln(x)Lm(x)e dx Snm . Thus, the tau approximation
(2.17) is
dan N
= * L & * (Ln,f) (n =0,1,...,N-1) (2.23)

p=n+l
while the boundary condition is

N
20 a, = 0 . (2.24)
n=

-20~




Ty

Similarly, the Laguerre-tau approximation to the heat

equation problem

ut = uxx + f(x,t) (0 LR tw, £ 0)
(2.25)
u(o,t) =0 u(x,0) = g(x)
is given by (2.22), (2.24) and
dan N
& = L (en-Dlaj + (L, 6)  (n=0,1,...,N-1) (2.26)
p=n+l

Collocation or pseudospectral approximation

The projection operator PN for collocation [sometimes
called the method of selected points (Lanczos 1956) or pseudospectral
approximation (Orszag 1971c)] is defined as follows. Let
X)eXgreoorXy be N points interior to the domain D. These
points are called the collocation points. Also let ¢n(x)
(pn=1,...,N) Dbe a basis for the approximation space B N and

suppose that det on(xm) # D. Then for each u ¢ H

N

Pyu = ) a_ ¢ (x) (2.27)
n=]

where the expansion coefficients a are the solutions of the

equations




Zl a) on(xg) = ulxy ETTL SRR, | (2.28)
n=

Thus, collocation is characterized by the conditions that

PNu(xi) = u(xi) for i=1,...;,8N and Pue BN . Notice that

the results of collocation depend on both the points X, and

the functions ¢n(x) for n = 1,...,N .

Example 2.6: Fourier sine series

If we wish to solve the problems formulated in Examples

1.1-3 by collocation instead of Galerkin or tau methods
we proceed as follows. We choose the space J} = L,(0,7),

the expansion functions ¢n(x) = sin nx (n=1l,...,N), and the

collocation points X

;= /(1) (3=1,...,N). The

collocation equations

He~—2

PR i | s
L a, sin ﬁ%T = u(xj) (3=1,...,N) (2.29)

have the explicit solution

N
2 : jn
ay = §+1 jzl u(xj)s;n %%T (n=1,...,N) (2.30)

This result follows from the relation

N

. win _.  twkn _ N+l
n£1 sin E%T sin ©17 = 5 ij




valid for 0 < j,k < N+1 . Thus,

N
Pyu = ] a, sin nx (2.31)
n=1

where a  is given by (2.30).

It follows from (2.29-31) that

N .
P LPyu = nzl b, sin nx

where b = - n? a, (n=l,...,N) if [ = 82/8x2 , and

N

;o TN
2 m sin &y
b, = §1 ) Tm ™ 2m (n=1,...,N)
m=1 cos m - COSs m
m+n odd

if L = 293/93x .

Example 2.7: Chebyshev collocation for the wave equation

Suppose we wish to solve the one-dimensional wave problem
(2.9) using collocation. An appropriate basis for the approxi-

mation space

p . n
By is the set of functions ¢n(x) = Tn(x) - (~1) To(x)

(n=1,...,N) introduced in our discussion of Example 2.2 above.
We choose the collocation points to be the extrema of the

Chebyshev polynomial T, (x) satisfying |x|] <1 . since ]
TN(cos ) = cos N6 , these extrema lie at Xy = cos %} for

j=0,...,N1 . The point Xy = - 1 is also an extremum of




Ty(x) but it is not inclyded in the set of collocation points

because the boundary conditions for (2.9) are imposed at x = -}
80 on(-l) = 0 for all n .

As in Example 2.2, the expansion coefficients a  for
n=1,...,N may be augmented by defining ag = - ? (-1"™ L

m=1
80 that

N
uy (x,t) = ngo a ()T (x) .

It may then be shown that the collocation equatians for an(t)

that follow from (2.9) are

N
da
-2 1 IR 51— L(t) (-1)™ (n=0,...,N)  (2.32)
n p=n+ n
p+n odd
N n
I (-1) a (t) =0 (2.33)
n=0

vhere f =« (T ,f) and &) =& =2, ¢ =1 (0<nc<N.
Here b(t) is a 'boundary' term that is used to ensure complianéo

with the boundary condition (2.33). It may also be shown that

N 9 N
b(t) = - & .Zo (=1)%(n*a +2 ) = & [5,‘31 -3 (-1)"3,,]

X=-]1 n=(

n=




The reader should observe the close similarity between the

Chebyshev Galerkin, tau, and collocation equations for the problem
(2.9). The only difference between them is the way the boundary
term b(t) enters. 1In the Galerkin equations (2.11), b(t) appears
with the coefficient (—l)n/cnx in the tau equations b(t) enters
with the coefficient an so it appears only in the equation for
ay as a tau coefficient; with collocation, the coefficient of

b(t) is (-1)“/En. This close similarity between the three methods
for the wave equation can also be seen by observing that when
f(x,t) is a polynomial of degree N in x, all three approxi-
mation methods give Nth degree polynomial approximations uN(x.t)
that satisfy exactly the initial-boundary value problem

auN auN
5ttt an = E(xet) + T(E)Qu(x) (2.34)

uN(-l,t) = 0 .

In the tau method, QN(x) = TN(x): in collocation,

N=l g (=2)*N 1 ,1-N
Q (x) = j“o (x-x3) = 2 I = T (X) = § 277 (x=1)Ty (%)
4 n=0 cn

where xj = Cos %% (J = 0,...,N-1) are the collocation points;

finally, the Galerkin equations (2.10) are obtained if

- (=2)"
Q. (x) = J —— T (x) .
" n=0 cﬂ s

«28=
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For all three methods Tt(t) is uniquely determined by the

requirement that uN(x.t) be a polynomial of degree N in Xx

that satisfies the boundary condition uN(—l,t) =0 for all ¢t .
Example 2.8: Chebyshev spectral methods for the heat equation

To illustrate further the nature of the differences between

Galerkin, tau and collocation methods, we apply them to the

heat equation

2
du d"u
ﬂ-s-a-x7'+f(XIt) (-l<x<1' t‘>o))

u(-1,t) = u(l,t) =0 (t > 0), u(x,0) = gi{x) (-1 < x < 1).
We approximate u(x,t) by

N
uy (x,t) = I oa (t)T (x) .

n=0

The Galerkin, tau, and collocation equations for an(t) are all

of the form

da N

D . 2_ 2 p
" . p_£+2 p(p©-n )ap+fn(t)+b1(t)Bln+b2(t)52n (2.35)
p+n even
) ] oen®
a = (=1)" a_ =10, (2.36)
n=0 " n=0 ”

-26-
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where fn (Tn,f). Egs. (2.36) are just a restatement of
uN(zl,t) = 0. The terms bl(t) and bz(t) in (2.35) are
boundary terms that ensure compliance with the boundary condi-

tions (2.36). The only differences between the three approximation

methods lies in the coefficients Bln and an.

In the tau method,

%in ™ 6n,N-l s Bow ™ Sum k2.37a)
In the Galerkin method,

n
Bow o, R ow aERIL (2.37b)

this result follows using the expansion functions

Ty (x) n even
¢n(X) % Tn(X) " Tl(x) n odd
that satisfy ¢n(il) = 0 and augmenting the expansion coef-
ficients a  for n > 2 by a, = - ) ap, and a, = - )) Qg1 °
Finally, with collocation performed at the points xj = COS %}
(3 = 1,2,...,N~1) the coefficients Bln and BZn in (2.35)

are given by

B w B, w A1) (2.37¢)
€n

It may also be verified that the boundary terms bl(t)

and b2(t) are of the form

2 N ( -‘2 N ng aQ
37 ¢ L + Y (-1)y' £ | (2.38)
b,(t) = ¢ 5| o N A ST 2| n
i i+ 42 = n a v n;:o
ax“l _,y n=0 ¥ xmel

e e i =S




! A Gt i

o L Bl £ .

for i =1,2. Here
c,. = -} g = ;(_1)N i
l+ ’ ‘1= < ’
N+ ‘
S oot Quum MR |
for the tau method;
B e g oo telt
’ - ’
1+ N2+N 1 N2+N
e wplen - e | m
2+ N2+N C N2+N
for the Galerkin method;
g ok € e
1+ N g o
G - S
2+ = 0 2- N

for the collocation method.

In the previous examples the only difference between Galerkin,
tau, and collocation approximations is their treatment of the boundary
terms. However, in more complicated problems, there are significant

differences between these avproximations. The next example illustrates

the influence of quadratic nonlinearity.

Example 2.9: Chebyshev approximations to Burgers' equation

Chebyshev series approximations to the solution u(x,t) to

Burgers' equation

2
du B e £1,t>0) (2.39)
X
u(tl,t) =0
u(x,0) = £(x)




O

@

Bl <avis o

are obtained by methods very similar to those for linear equations.

In general, spectral approximations to the nonlinear equation

L

B
LEERY (2.40)

are of the form

— = P_A(P.u.) (2.41)

where PN is a projection operator. The projection operator

. : : : %
PN can be that for Galerkin, tau, or collocation approximations.

If we write

I ~~22Z

uy (%, t) a (t) T (x),

n=0

: f£hen the Galerkin approximation to (2.39) is given by

da e e
oy wls = w2 p dy @yt vl mmZ-n?)a_ + by (t) + b_(t) (1"
|m| <N m=n-+2
= m+n even
lplsN (0<nsN) ,
m+p2n+l
n+m+p odd

(2.42a)

t Observe.that if (u, Au) = 0 so the system (2.40) has the
energy integral 3(u,u)/3t = 0, then (2.4]1) has the enerqgy
integral a(uN,uN)/at = 0 provided that the projection operator
PN is self-adjoint. This follows from
(ug /PRA(PLu)) = (Pug,A(P ul)) = 0.

An example of a sclf-adjoint projection operator PN is the
Galerkin operator (2.8). Energy conservation is quaranteed

only if the inner product used in the definition of the CGalerkin
approximation is the same as that in the encrgy integral.

- 29




N N
. la = ] a(-1)"=0, (2.42b)
A n=0 n=0
?!"
§
i
where a

= c a for m| £ N. The tau equations are identical
m = Cln] |n| Im| <
except that (2.42a) only applies for 0 <£n<N-2 and b+ =b_ = 0.
On the other hand, the collocation equations obtained using the collo-

; cation points xj = COs %% for j = 1,...,N-1 are just (2.42b) and

°h@E = -2l p3a -2] Paa,
| |m|5N |m|<N
i |p|<N Ip|sN
m+p>n+l mt+p>2N-n+1
n+m+p odd n+n+p odd
| N
! + v] mmPnda+ B (t) + Bb_(0) (-1 (2.43)
‘ m=n+2
mn+n even
(05n*N)

where ¢, = cy = 2 and ¢, =1 for n ¢ 0,N. Observe the appear-

ance of the 'aliasing' term as the second sum on the right side of

(2.43). Aliasing is discussed in detail by Orszag (197la, 1972).

Example 2.10: Chebyshev approximations to u, + F(u)x =0

Galerkin and tau approximations to the solution to

u, + F(u)x = 0 (2.44)

where F(u)

is arbitrarily nonlinecar, are very unwieldy both

to write down explicitly and to solve on a computer. On the other hand,

-30-.




while the collocation equations may also be hard to write down

‘explicitly, they lend themselves to ready solution without their
explicit form being known!

The collocation approximation to (2.44) is obtained as follows.

We use the relation
duy
(Flug)), = F'(uy) = - (2.45)

Since 8uN/ax can be computed explicitly in terms of u, as a poly-
nomial in x of degree N-1, it follows that (F(uN))x can be
evaluated by this formula at each of the collocation points assuming
that F'(z) is a known function; thus, the collocation approxima-
tion to (2.44) is determined.

There is a slightly different collocation procedure that can also
be applied to (2.44). It has the operator form

%
N 3
3t *Puax P Fluyy) =0 S bl

which is usually not the same as the collocation approximation of
the form (2.41) described above. In this approximation, auN/at is
computed by first using collocation to obtain %g%un) fram Uy arnd then
using the collocation approximation PNB/Bx to 3/0x given in Example 2.7.
The collccation approximation given by (2.41) or (2.45) diffes from

(2.46) by the term
P, & (1-p,) F(u.)
N 3x N N

which is generally not zero. However, if F'(z) is not known

accurately then (2.46) may be the only viable method.




3. Survey of Approximation Theory

The remarkable convergence properties of spectral methods to

ket

be discussed later owe to the rapid convergence of expansions of
smooth functions in series of orthogonal functions. We present
a summary of the relevant theory here.

Fourier series

The complex Fourier series of f(x) defined for 0% x = 24
is the periodic function
g(x) =k=§w ay eikx, (3.1)
where
a, = g% fzﬂf(x)e-ikxdx g (3.2)
0

We shall show below that if f£(x) is piecewise continuous and has

bounded total variation then
g(x) = 3 [£(x+)+£(x-)) (3.3)

for 0 = x $ 2r and g(x) 1is repeated periodically outside the interval

0 < x « 2n. In particular, g(0) = g(2m) = §[£(0+)+£2n-)] .

The Fourier sine series of a function f(x) defined for

0 <x <n is the function

9'(x) = kZI a, sin kx ' (3.4)

.32~




where

= % | £(x) sin kx dx . (3.5)

The Fourier cosine series of a function defined for 0 < x < =W is

g (x) = ) a, cos kx (3.6)
k=0
where
2 n
ay = FE; g f(x) cos kx dx (3.7)

with ¢cg =2, ¢ = 1 (k > 0). It follows easily from (3.3) that if

f(x) is piecewise continuous and has bounded total variation then
gg(x) = £.(x) (3.8)
g (x) = fc(x)/ (3.9)

where fs(x) = fc(x) = 3[f(x+)+f(x-)] for 0 < x <,
fs"”’ = -f_(x), f.(-x) = £, (x) for -m < x < 0, £ (0) = £,(n) = 0,
fc(O) = £(0+), fc(ﬂ) = f(r-), and fs(x) and fc(x) are extended

periodically outside the interval - m < X S e

Convergence of Fourier series

To prove (3.3) we define gK(x) as the partial sum

K :
gex) = [ aett* (3.11)

k==K

Using (3.2) and the trigonometric sum formula

-33-
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sin [ (K+%)s]

% eiks &

k=-K sin(4s)

we obtain

X sin( (K+3)t]
f (x-t)dt (3.12)

g(x) = 3= [
X=2T  gin[dt)

The kernel sin(K+g)t/sin4t of the integral (3.2) is
plotted for several values of K in Fig. 3.1. This plot
suggests that when f(x) has bounded total variation the leading
contribution to the integral as K + « comes from the neighbor-
hood of t = 0 since the contributions from the rest of the in-

tegration region should nearly cancel due to the rapid oscillations

of the integrand. Thus,

+e sin[ (X+3)t]
f (x-t)dt (K+w) (3.13)

gy (xX) N
‘ & _. sinlit)

for any fixed € > 0. Since ¢ may be chosen small we may replace

sin ¥t by 4t with a maximum error of 0(83). Also since f(x-t)
is piecewise continuous, we may assume that f(x-t) 1is continuous
for 0 St = ¢ and =-¢ St €0 with at worst a jump discontinuity
at t = 0. Therefore we may replace f(x-t) by f(x-) for t > 0

and f(x+) for t < O giving

~-34-
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L vl i

€ sin(K+3)s

gg(x) v [E(x+)+£(x-)] & [ ds (K+e)
0

Since

€ sin(K+§)s (KE+3)e

1 1 in s 1 ¢ si
e F U TR A PR
0 0 Q
for any fixed ¢ > 0, we oObtain
gg (x) v B[E (x+)+£ (x=)] (K+)

proving (3.3).

In the neighborhood of a point of discontinuity of £ (x)
[or x =0 and x = 2r if £(0+) # f£(2r-)] the convergence
of gx(x) to its limit (3.3) as K + » is not uniform. To
investigate the detailed approach of gK(x) to g(x) near a
point of discontinuity Xq of f(x), we use the asymptotic

integral representation (3.13) to obtain

. € sin[(K+3)t] 2
gk (Xt —) ~ : f(xo+K 3 -t)dt (K+e)
K+3 ~€ +

A~

for every fixed 2z. Since € is assumed small we can approxi-
mate f(x°+s) by f(xo+) for 0 < s < € and by f(xo-) for

-€ € 8 < 0. Therefore, for each fixed z and ¢,

-36-




s S i i 4

e e——— i ——— o ——

omcost a5

M s i

f(x,+) z/(x+i)sin(x+§) f(x,-) ¢
2 0 0 sin(K+3)t
gx(x°+.x+;) N — _£ T dt + —— :
z/ (K+3) (o)
(K+3)
£(x+) 2 £(x,-) € :
0 sin s 0 sin s -
. — e Sl o == i (k=)
-€ (K+%) 2
f *) Z o £(x,-)
n (t? [ DB ax .y D 5in 8 44 (K+e)
- 00 2
Since | sin s/s ds = m, we obtain
z 1 ;
gy (Xo+t —) v F[E(x+)+E(X,-)] + F[E£(x,+)-£(x . -)] Si(2) _(K+») .
K'70 K+3 0 0 2 0 0
(3.14a)
for anv fixed 2z. Here the sine integral Si(z) is defined
2 z
si(z) = £ 8in s g5 (3.14b)

A plot of Si(z) is given in Fig. 3.2.

The result (3.14) shows that if x - xj = 0(}) as K + = then
gg (X) = F[E(xp+H)+£(xp=)] = 0(1). This shows the nonuniformity of
convergence of gK(x) to f(x) in the neighbarhood of the discon-~
tinuity x,. This nonuniform behavior of the limit gg(x)+f(x) as K + @
is called the Gibbs phenomenon.

moilhnnrauethe(ﬁbbsljen:mmon:hxanactuu.nmrie'seﬁes,we;ﬂot

in Fig. 3.3 the partial sums of the Fourier sine series expansion

of the function

f(x) = x/n (0<x<m)

The extended function f,(x) is discontinuous at x = n leading

to the Gibbs phenomenon there.
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Fig. 3.2. A plot of the sine integral Si(z) defined in (3.14b) for 0 < z < 15.




* 1L >X > (0 Teaiajuy 3yl

JO 10F123UT 3yl UF X 103 N/T IF] ST S97138 I3FInoj
a3yl 30 2oua813AUOD JO 3Bl IY3J IPY3 IAIIBQO OSTYV ° L = X IEIU
uousmouayd sqqyH Y3l 2A13sqQ°pajjordoste s} u/x UVOFIdUNZ YL

*0%°0Z°0T=N 3103 u/X UOFIdUNJ Y3 JO uojsuedxa sI}1d8 Iuls
197anoj ay3 jo suns [ej3iied mial-N 2yl jo Joyd v ‘g°¢ ‘3¥4

€1

-39-

e

B e ot




As K +» =, the maximgm error of the partial sums of a Fourier
(complex or sine or cosine) series in the neighborhood of a point
of discontinuity occurs at the maximum of Si(z)

Since Si'(z) = 0 when z =nn for n = :1,:2,..., the maximum
error must occur at one of these points. It is easy to argue that

the maximum of Si(z) actually occurs at 2z = 1 where

% Si(m) & .58949 (3.15)
Thus the maximum overshoot of the partial sums of the Fourier

series near a discontinuity occurs near x = Xg + . for K
K+4&

large and is of magnitude

gx(x0+;f;) - £(xg*) v .08949[f (xo+)-£ (x4-)] (K+) (3.16)

where the quantity in square brackets is the jump at Xge For the
example plotted in Fig. 3.3 the jump of fs(x) at x = m has
magnitude 2 so the Fourier series gives a local overshoot of
magnitude 0.179.

A8 x + 2t o, Si(z) + & 1 so that (3.14) is consistent with
the convergence of the Fourier series to f(xof) just to the right

of X, and to f(xo-) just to the left of x The Gibbs phenomenon

o.
only appears when x -+ Xg at the rate 1/K as K =+ o,

Rate of Convergence of Fourier Series

If f(x) is smooth and periodic, its Fourier series does not
exhibit the Gibbs phenomenon. The Fourier series of swhan f(x) con-

verges rapidly and uniformly. Suppose f(x) is periodic and has

-40-
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continuous derivatives of order p = 0,1,...,n-1 and f(n)(x) is

integrable. Applying integration by parts to (3.2), it follows that

2 r
LTI I J £ (yemikx 40 |

a
k 2n(ix)™® Jo

Since f(n)(x)~ is integrable, the Riemann-Lebesque lemma

implies that

& < I/RT ik de)on (3.17)
Note that, because £f(x) is periodic, continuity of f(p)(x)
also requires f(p)(O) = f(p)(Zu) . It follows from (3.17)
that if f£(x) is continuous with £(0) = f(27) and f'(x) is
integrable then a, << 1/k as k + = ; if, in addition, f£'(x)
is piecewise continuous and differentiable then a = 0(1/k2)
as k + = .

Now we can be more precise in our estimates of the error
gp(x) - £(x) . If a, goes to zero like 1/k"® as k + =

and no fasteg,then f(n_l)(x) is discontinuous. In this case,

ge(X) = £(x) = 0(=) (K » =) (3.18)
K e
when x is fixed away from a point of discontinuity of f(n-l)
as K + » , while
g (x) = £(x) = 0(—y) (K + =) (3.19)
K

when x - x, = 0(%) as K +» » where X0 is a point of
discontinuity of £n=1) oy

In particular, if f(x) is infinitely differentiable and
periodic [f(x+27) = f(x)] , gx(x) converges to f(x) more

rapidly than any finite power of 1/K as K + « for all x .

-
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Fourier sine and cosine series have convergence properties

very similar to the complex Fourier series just discussed. We
summarize these properties for Fourier cosine series. If deri-
vatives of f(x) of order p = 0,1,...,n-1 are continuous for

0 <x<n while £P (0) = £P () = 0 for all odd p < n

and f(n)(x) is integrable, then the Fourier cosine coefficients

given by (3.7) satisfy
a << 1/x® (k +=) (3.20)

as may be proven by integration by parts.

Thus, if f(x) is infinitely differentiable for 0 < x < 7
ana £%P*1) (o) = £(2P*1) (1) _ 4 for p =10,1,... then the
Fourier cosine coefficients ay approach zero more rapidly
than any power of 1l/k as k + + » ., 1In other words, if £ (x)
is infinitely differentiable on =-» < x < «, periodic with period
2r  [f(x+21) = £(x)] , and even [f(x) = f(-x)],
then the remainder after N terms of the Fourier cosine series
(3.‘) goes to zero more rapidly than any finite power of 1M
ags K+ »

To compare the convergence properties of Fourier sine and
cosine series, we have plotted in Figs. 3.3 and 3.4 some results
for the Fourier sine and cosine expansions, respectively, of the
function x/n for 0 < x < Tm . As discussed above, the Gibbs
phenomenon in the sine series expansion is evident at x = m (see
Fig. 3.3). Observe that the error in the N term partial sum
goes to zero like 1/N as N + » when x is fixed 0 < x < m .
The Gibbs phenomenon near x = m slows the convergence of the
Fourier series for all x. 1In Fig. 3.4, we plot the error between
the N term cosine series and x/m . Observe that as N + = the

error goes to zero like 1/N2 for 0 < x < m and like 1/N when

x = 0(1/N) as N +» =

' =42~
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Chebyshev polynomial expansions

The convergence theory of Chebyshev polynomial expansions

is very similar to that of Fourier cosine series. In fact, if

8

g(x) = ] a7, (x) (3.21)
k=0

is the Chebyshev series associated with f(x) for -1 <x <1
then G(8) = g(cos 6) 1is the Fourier cosine series of
F(o) = f(cos 8) for 0 <9 < m . This result follows from

the definition of Tn(x): since Tn(con 6) = cos n 6,

a0
G(8) = g(cos®) = ] a cos né . Thus,
k=0

2 ™ 1 ’ o
LR £ £(cos®)cos ko do = Ff’—k {l £(x) Ty (x) (1-x?) "} ax

(3.22)

where Sy = 2 Cx = 1 (k > 0).
It follows from this close relation between Chebyshev
series and Fourier cosine series that if f(x) is piecewise

continuous and if f(x) is of bounded total variation for

-1 <x <1 then g(x) = %[f(x+)+f(x-)] for each x (-1 < x < 1)

and g(1) = £(1-), g(-1) = £(-14) . Also, if f£P)(x) is

continuous for all | x| £1 for p=90,l,...,n=1, and f(n)(x) is

integrable, then

a, << 1/x" (k + ), (3.23)

k
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since |T, (x)| < 1 for |x| <1, it follows that the re-
mainder after K terms of the Chebyshev series (3.23) is asymptotically
much smaller than 1/X*! as K+ . If £(x) is in-
finitely differentiable for |[x| < 1, the error in the
Chebyshev series goes to zero more rapidly than any finite
power of 1/K as K+«

The most important feature of Chebyshev series is that
their convergence properties are not affected by the values
of f(x) or its derivatives at the boundaries x = : 1 but
only by the smoothness of f(x) and its derivatives throughout
-1 <x < 1. In contrast, the Gibbs phenomenon shows that the
rate of convergence of Fourier series depends on the values of
f and its derivatives at the boundaries in addition to the
smoothness of f in the interior of the interval. The
reason for the absence of a Gibbs phenomenon for the Chebyshev
series of f(x) and its derivatives at x = 1 is due to the fact
that F(8) = f(cos ) satisfies F'2P*1)(g) = p(2P*)(5) o ¢
provided only that all derivatives of f(x) of order at most 2p+l

exist at x = 1,
An important consequence of the rapid convergence of Chebyshev
polynomial expansions of smooth functions is that Chebyshev expansions
may normally be differentiated termwise. Since

P
B T, (x) = 0 (k2P) (k + ®)

dxp

uniformly for |x| < 1 [see Appendix], if a, *+ 0 faster than any

finite power of 1/k as k + «» then (3.21) implies

™




k‘l;_ E——

® dPr, (x)
——gdp BT e (3.24)
P k
dx k=0 axP

(as may be proven by an elementary uniform convergence argument).
While Chebyshev expansions do not exhibit the Gibbs phenomenon

at the boundaries x = t 1 , they do exhibit the phenomenon at any

interior discontinuity of £(x). In Fig. 3.5 we plot the partial

sums of the Chebyshev expansions of the sign function sgn x:

T (x)
n _2_!1_‘!’_}____ (3’25)

s 2n+1

sgn x =

I 18

n=0

Near x = 0, a Gibbs phenomenon is observed; for fixed x # 0,
the error after N terms is of order 1/N. 1In general, the local
structure of the partial sums gx(x) of Chebyshev series near a
discontinuity of f(x) is, aside from a simple rescaling, given

by (3.14):

{'”7 l T

) & FLE(xgH)+E (x4=))
+ LExgH-E(xpm)] Siz) (K=

where Ixol <1 and z is fixed. This equation is derived
by a simple extension of the argument used to derive (3.14)

{cf. (3.33) below for the explanation of the origin of the

scale factor lﬁJ{~x§ I
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Rate of convergence of Sturm-Liouville eigenfunction expansions
in terms

Let us consider the expansion of a function f£(x)

of the eigenfunctions °n of a Sturm-Liouville problem: The

eigenfunction ¢n(x) is a nonzero solution to

a doy
I P g + (Awix)=g(x)) ¢, (x) =0 (3.26)

satisfying homogeneous boundary conditions. To be specific in

our discussion we assume the boundary conditons on(a) = on(b) =0,

although the analysis applies more generally. We assume that

p(x) 20, w(x) 2 o, q(x) 20 for a < x S b. We will also

assume that the eigenfunctions are normalized so that they satisfy

b
[wx)e (x)o (x)dx = & - . (3.27)

a

and that they form a complete set; the latter property follows if

xn +© as n + » (see Courant & Hilbert, 1953, p. 424).

A+ = follows heuristically as follows:

The requirement that
1 14
/ X ’

(3.26) suggests that ¢n(x) has a typical spatial scale of

so the requirement that arbitrary f£(x) (with arbitrarily small

spatial scale) be expansible in terms of {¢n} implies that A

must grow unboundedly with n .
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We wish to estimate the rate of convergence of the eigen-

function expansion

f(x) =] ap¢ (x) . (3.28)
n=1
Using the orthonormality relation (3.27), the L, - error after

N terms is

N X ©
b 2 2
fltt=) - } a ¢, (x)|° wix)ax| = ) fl (3.29)
. n=1 =N+1
Thus, the Ly-error may be estimated by calcnlating the rate ,
of decrease of &, a8 0w
Orthonormality of {¢n} implies that
b
a, = / f(x)¢n(x)w(x)dx v (3.30)
a

Substituting w(x)¢n(x) from the Sturm-Liouville equation (3.26)

gives

1 % da dén
et [ (- S at0e, ) fax .

n a

Integrating twice by parts, we obtain

b

&
a =L p(x)l¢n(x)f'(x)—¢,‘\(x)f(x)]l + XL‘I h(x)e, (x)w(x)dx  (3.31)
a

n

X=a n

*n




h(x) = [- é%;>(x) %% + q(x)f(x)] /w(x). (3.32)

This integration by parts is justified if f is twice differentiable
and h 1is square integrable with respect to w. Under these con-

ditions and recalling that ¢ (a) = ¢ (b) = 0 , we obtain

. l [] s 1
a, = X; [p(a)¢; (a)f(a)-p(b) ¢, (b)£(b)] + O(X;)

; B 2 B3 B 2
as n+ «, since | [ hp wdx < [ hwax | ¢; wdx = 0(1) as
a

a a
n * © .

Nonsingular Sturm-Liouville problems

To proceed further we must distinguish between nonsingu-
lar and singular Sturm-Liouville problems: a problem is non-
singular if ' p(x) >0 and w(x) >0 throughout a £ x S b. The
important conclusion from (3.31-32) is that if the Sturm-Liouville

problem is nonsingular and if f(a) or £(b) is nonzero then

1 (] L}
a, v x;-[p(a)¢n(a)f(a)-p(b)¢n(b)f(b)] (n + =)

(3.33)

(Notice that if ¢n(a) = 0, then ¢n(x) = 0 s8gince (3.26) is

second-order differential equation and p(x) # 0).

It is well known [Courant & Hilbert 1953] that the asymptotic

behavior of the eigenvalues and eigenfunctions of a nonsingular

Sturm-Liouville problem are given by




Ay v ["“/{b@ dx]z (n + =) (3.34)
X
on(x) ~ AL sin(d)\n £ Jg—dx) (n + =) (3.35)

Using these relations in (3.33), we find that a behaves like

n

This behavior of a. leads to the Gibbs phenomenon in the
expansion (3.28) near those boundary points at which f(a) or
f£(b) # 0. The asymptotic behaviar (3.34-35) implies that this
Gibbs phenomenon is asymptotically identical to that exhibited by

Fourier sine series provided we use the stretched independent variable

b
X = n(x-a)/w(a)/pla) /[ /w(s)/pl(s) ds (3.36)
a

near x = a and a similarly stretched coordinate near x = b.
If f(a) = £f(b) = 0, then a, << 1/n as n + =, However, a

further integration by parts in (3.31) shows that if the Sturm-

Liouville problem is nonsingular and if h(a) or h(b) % 0,

then a behaves like l3 as n + », In general, unless f(x)

n
satisfies an infinite nu;ber of very special conditions at x = a
and x = b, then &n decays algebraically as n»«,
These results on algebraic decay of errors in expansions
based on nonsingular second-order eigenvalue problems generalize
to higher-order eigenvalue probleﬂs. For example, as n+~, the expansion

coefficients in a  in f£(x) = nZO a 6 (x), where {on(x)} are

the normalized 'beam' functions

0" = A0 4 0 (21) = 0l (t1) =m0

-5]=-
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behave like %

boundaries x = tl),
1

if f£(tl) # 0 (implying a Gibbs phenomenon at the
f(tl) = 0 but £'(tl) # 0 ,

and so on.

like - if f£(2l) = £'(21l) = 0 but £''''(:1l) # 0,

n

Singular Sturm-Liouville problems

If p(a) = 0 in (3.33) then it is not necessary to require that

f(a) = 0 to achieve

For this reason,

expansions based on eigenfunctions of a Sturm-Liouville problem that

is singular at x = a

do not normally exhibit the Gibbs phenomenon

at x = a. Furthermore, if the argument that led to (3.33) can be

[this is possible if p/w, p'/w,

repeated on h(x) given by (3.32)

and g/w are bounded and all derivatives of f are square integrable

with respect to w] then the boundary contribution to

If there are also no

X = a is smaller than ~%
A

boundary contributions

from x = b when the operations leading

to (3.33) are repeated indefinitely [which is true if p(b) = 0],

then a, decreases more rapidly than any power of

The important conclusion is that the rate of convergence of

eigenfunction expansions based on Sturm-Liouville problems that are

Xx = b converge at a rate governed by

singular at x = a and at

the smoothness of the function being expanded not by any special

boundary conditions satisfied by the function.

Fourier-Bessel series

A Fourier-Bessel series of order

0 is obtained by choosing

the expansion functions tobe the eigenfunctions of the singular

Sturm-Liouville problem

d
a;(-x

a§ﬂ + A X6 =0 (0 < x < 1)

0n(1) = 0, 6_(0) finite,




o~y

Therefore, p(x) = w(x) = x in (3.26) so the problem is singular

at x = 0, but nonsingular at x = 1. The eigenfunctions are

‘.

on(x) = Jo(jonx)

where Jo is the Bessel function of order 0 and jon is its
2

nth zero, Jo(jon) = 0. The eigenvalues )\ satisfy

n = Jon

jon v (n- })n (n+ew) .

The Fourier-Bessel expansion of a function f£f(x) is given by

(-
£(x) = ] a  J5(5 %) - (3.38a)
n=1
The expansion coefficients a ~are given by (3.30):
2 . (3.38b)
R [ tE(£) Ty (G thdt . .
0 “on
because

fltJ (3 t)%at = 32 (5_ )2
0 0 ‘“on 0 jon *

For example, the Fourier-Bessel expansion of f(x) =1 is

@ 2 g
l=-] —J (. %) (3.39)
n=1 jonJ(')(jon) fikon

In Fig. 3.6 we plot the 10, 20, and 40 term partial sums of the

series (3.39). There are three noteworthy features of this
plot:

(i) At x = 1 there is apparently a Gibbs phenomenon. 1In
fact, it is easy to show that this Gibbs phenomenon has the same

structure as that for Fourier sine series:
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1.5

.w

S Fourier-Bessel series expansion (3.36) of the
- function 1 truncated after N=10,20,40 terms.

2 fixed x satisfying 0 < x < 7 and like 1//N

= for x near 0.

o e T w————— Sl e v o a o T - oy iy

Fig. 3.6 A plot of the partial sums of the

observe that the series converges like 1/N for

Observe the Gibbs phenomenon near x = 1. Also t

-h--b;th—uhbb_{F--bPP:—--h—-b--hb-b>bbhh-hhrbtbb--—-hbhbhbn—»--hbnb;—yt-hbrubhhhb- JAliAl

x

1.
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N nzj

St .- ) ~ si(z) (N+)
0'-“on 1
n=1 Jon70 Gon’ i

iThis behavior is not too surprising because Jo(z)m(z/nz) cos (z~}{m)
as 2z++», so-‘the large n behavior of (3.39) can be asymptotically

approximated by that of Fourier series.

(ii) For fixed x satisfying 0 < x < 1, the error after
N+1 terms of (3.39) is
N 2 1
1+ ] s &y (3o %) ® 0GR (N+e)
n=0 3,70 (3on’

In fact, the nth term of (3.39) has magnitude of order 1/n
: 1 1
and oscillates in sign roughly every min (;, I:;) terms. The
error in such an oscillating series is of order 1/N after N terms.
(iii) At x = 0, the series converges (so there is no Gibbs
phenomenon there) but the convergence is very slow and oscillatory.

In fact, the error after N terms is of order (—1)N+1//ﬁ &

This follows because

(_1)N+1 ey

S s, e 5 S
n=0 joan(jon) n=N+1 vV n vV 2N

(3.40)

This slow rate of convergence near x = 0 holds even though the
eigenvalue problem is singular at x = 0. There are two reasons

for the slow convergence of Fourier-Bessel series near x=0. First,
the Gibbs phenomenon at x = 1 affects the rate of convergence
throughout 0 S x £ 1., In fact, this is the sole source of the

‘behavior (3.40). However, when £'(x) # 0, slow convergence near




e ”

x = 0 can also originate because p(x) = w(x) = x gives

P'/w = 1/x which is singular at x = 0 so h(x) given by (3.32)
is singular at x =0 if f£'(0) #% 0.

Chebyshev series revisited

Chebyshev polynomials are the eigenf unctions of the singu-

lar Sturm-Liouville problem (3.26) with p(x) = /1_x2,

wix) = 1//'1-x2 + q(x) =0, =13 x S 1, and the boundary conditions

that ¢n(il) be f inite. The eigenvalue corresponding to Tn(x) is

An = n2. Since p/w = l-x2 and p'/w = -x are both finite for
lesl, it follows that the argument leading from (3.30) to (3.33)
can be repeated on h(x) given by (3.32) so long as f(x) is
sufficiently differentiable. Therefore, the Chebyshev series
expansion of an infinitely differentiable function converges
faster than any power of 1/n as n + «», as shown following (3.23)
by a diff erent method.

To illustrate the convergence properties of Chebyshev series

expansions, we study the rate of convergence of the series

sinM-(x+a) = 2 | Z-J (Mr) sin(Mra+inm)T_(x) Ix] € 2

n=0 "n

(3.41)
Since J (M7) -~ 0 exponentially fast as n increases beyond Mm, it
follows that (3.41) starts converging very rapidly when more
than M7 temms are included (see Fig. 3.7). This result leads to
an heuristic rule for the resolution requirements of Chebyshev
expansions. Since sin Mm(x+a) has M complete wavelengths lying
within the interval |x| < 1, we arque that Chebyshev expansions

converge rapidly when at least m polynomials are retained per

wavelength. In general, we expect that the Chebyshev expansion
of a function that oscillates over a distance )\ converges rapidly

if 2n/) polynomials are retained. Fewer polynomials are required

only (see below).
if the region of rapid change of the function occurgAat the boundarxﬁ
-56-
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Fig. 3.7. A plot of the Lz-error in the Chebyshev series expansion (3.38) of
sin(Mmx) truncated after 'r“(x) versus N/M. The various symbols represent:
C)M=10; xM=20; AM=30; OM = 40. Observe that the L,-error approaches

zero rapidly when N/M > 7.




The Chebyshev polynomial expansion of a function f(z)

that is analytic in a region of the complex-z plane that includes

the interval -1 <z <1 converges at least exponentially fast

as n > o , If £(z) has singularities in the finite-z plane
then

lim sup Iakll/k -

k+o

(3.42)

ol L

where R is the sum of the semi-major and semi-minor axes of
the largest ellipse with foci at z = *1 within which f(z)
has no singularities. Thus, the Lo-error (3.29) after N terms of

the Chebyshev expansions decays to 0 roughly like R'N

as N-+o,
To prove (3.42), we note that
1l f(z)T,.(2)
a = ;l'_z_ J ___..2___ dz
n cn =] ,1_22
-1/2 -n
= L [ f@a-2% (z + /22-1) a2 (3.43)
Teh Ic

where C 1is any comtour that encircles the interval (-1,1)

just once and does not enclose singularities of f(z).

n n

Eq. (3.43) follows because 2T (z) = (z + J2°-1) " + (z - /2 ~1)
where we choose the branch of /;I:I satisfying /ijf Nz

as z +® . Since (z + /z°-1)"+ 0 as 2z + = with this
choice of branch cut, we can expand the contour C to infinity
by Cauchy's theorem and pick up the contributions from the
singularities of f£f(z). If the 'nearest' singularity is a pole
at z = zo with residue r (other singularities may be treated
similarly), then

(n +» =)

’




To complete the justification of (3.42) we need only show

that lzo + /zg-ll = R . Recall that an ellipse with foci

at 1 satisfies x2/A2 + yz/B2 =1 with Az - 82 % [

If = lies on this ellipse, then setting 2, = A cos 6 + iB sin 6 ,

0
it follows that z0 + /zg-l = (A+B)e10 = Re1e .

Let us give ar example of the behavior (3.42). The function

£(z) = tanh (10 z) has poles at z = *in/20 . Thus,

R = 7/20 + A s ("/20)2 = 1.16934. The Chebyshev expansion
cOefficients of f£f(z) satisfy asn = 0 (because f(z) 1is an
odd function), while a, # 1.2679, a, # - 0.4089, ag ¥ 0.2300,
and so on. The rms (L2) error ey [see (3.29)]

obtained by truncating the series for f(z) after TN(z)
47/%49
demonstrating (3.42) for this case. The error ey is smaller

satisfies (eg/e ) ¥ (1.175)% , & (1.16935)° ,

than 0.01 for N > 25, which again illustrates the result that
roughly w polynomials per 'wavelength' are required to resolve
a function; the function f(z) has a region of rapid change
near x = 0 of width roughly 0.1.

If f(z) is entire, R = o in (3.42) so its Chebyshev
expansion coefficients decay faster than exponentially. More
precisely, the method of steepest descents applied to (3.43) gives
the following result: if £(2z) is entire and
£(z) = 0(|z|P exp |2|®*) as z + «» , then

lim sup(fnla |)/(ngnn) = - % (3.44)

n-+o©

For example, sin Mn(z+a) is entire with a 1 while its
Chebyshev coefficients in (3.41) satisfy an = 0((Mﬂ)n/n!)
as n + o, in agreement with (3.44). Also, a polynomial has

Chebyshev coefficients that satisfy (3.44) with a = 0 .
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Finally, we remark that the Chebyshev series expansion
(3.21-22) of an arbitrary function g(x) has a maximum
pointwise error that does not differ drastically from the
smallest possible maximum pointwise error of any Nth degree
polynomial, the so-called minimax error. In fact, the maximum
pointwise error of the Chebyshev series (3.21) truncated after

2 ¢nN) times larger than the minimax

TN(x) is at most 4(1 + ®w
error (Rivlin 19%9). Since 4(1 + Tl ¢nN) < 10 for

N < 2,688,000, the Chebyshev series is within a decimal place
of the minimax approximation for all such polynomial approxima-

tions.

Legendre series

Legendre polynomials are the eigenfunctions of the singular
Sturm-Liouville problem (3.26) with p(x) = 1-x2, q(x) = 0,
wix) =1 for -1 £ x 21 and the boundary conditions are
A, = n(n+l) and its eigenfunction is ¢n(x) = Pn(x), the
Legendre polynomial of degree n. Since p/w =1 = x2 and
p'/w = -2x are both finite for |x] £ 1, it follows that the

Legendre series expansion of infinitely differentiable functions

converges faster than algebraically.
To illustrate the convergence properties of Legendre series,

we study the convergence of the series

sinMn(x+a) = 7}}-“_ n£0(2n+1)an+*(m) sin (Mra+dnm)P_(x)

(3.45)

Since the expansion coef ficients in (3.45) vanish rapidly as n

increases beyond Mm, we conclude that Legendre polynomial expansions
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of smooth functions converge rapidly provided that at least

T polynomials are retained per wavelength, (see Fig. 3.8).

When a discontinuous function is expanded in Legendre series,
the rate of convergence is no longer faster than algebraic. 1In
the neightorhood of a discontinuity, a Gibbs phenomenon occurs
whose local structure is the same as that for Fourier series
with a suitable stretching of the coordinate. For example, the

Legendre series expansion of the sign function sgnx is

sgnx = ] (-1)™ (4n+3) (2n) !

(3.46)
=0 2°™"*1(n+1)1nt

P2n+l (x)

The partial sums of this series are plotted in Fig. 3.9. Three

features are noteworthy:

(i) The Gibbs phenomenon near x = 0 has the same structure

as that for Fourier series.

(ii) The error after N terms behaves like 1/N for |x|<1,

x $# 0. This follows from the fact that the (2n+l)st Legendre

coefficient in (3.46) satisfies

a = (-1t Un#3 @it 4 L, (n+w) (3.47)
n 220+1 (1411) in! /o
and the estimate
P_( 1
ax) = 0(=) (n+e)

for |x| <1; the series (3.46) is analternating series if x

is fixed away from zero so the error after N terms is at most

h
of order &nPn 0 (-{__T) .

-61~

P




Fig. 3.8. A plot of the Lz-error in the Legendre series expansion (3.39) of

sin(Mnx) truncated after PN(x) versus N/M. The various symbols represent:
(M= 10; xM=20; A M= 30; OM = 40. Observe that the Lz-error approaches

zero rapidly when N/M > m.
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(iii) The series converges only like 1//N at x = *1. This

follows from (3.47) because Pn(tl) = (.*:1)n for all n. Thus,

an interior Gibbs phenomenon in a Legendre series expansion has

a 'long-range' effect in the sense that it seriously affects the

rate of convergence at the endpoints x = *1 of the interval.

In contrast, the error of the Chebyshev expansion of sgn x

plotted in Fig. 3.5 decay like 1/N at x = #1 . This behavior

is gquite general; the boundary errors of Legendre polynomial
expansions decay to zero roughly a factor N slower than the

boundary errors of Chebyshev expansions.

The rate of convergence of Legendre expansions of a general

function f(x) may be estimated as for Chebyshev expansions.
In particular, the results (3.42) and (3.44) hold provided that
f(x) satisfies the stated conditions and (3.23) holds with

only minor modifications.

Resolution of thin boundary layers

Legendre and Chebyshev polynomial expansions give an

exceedingly good representation of functions that undergo rapid

changes in narrow boundary layers. Consider the sequence of

functions gé(x) = f(x) expl(x-1)/8] as §+0 with Re§>0 for

a fixed smooth function £f(x). As §+0, gG(x) develops a

boundary layer of width § near x=1. It may easily be shown

that the Chebyshev expansion coefficients of ga(x) satisfy
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12
ap~ (26/mY2 £1)eT ™ 8 (nsw ; 8n%=0(1)) (3.48)

provided that Re §>9, Thus, if N polynomials are retained,
the rms error ¢ in the Chebyshev expansion of gd(x) satisfies

N ¢ .- 3 (REON?  (Now). (3.49)

The result (3.49) implies that as §+0, the number of
polynomials required to reach a specified error bound increases
only as 1//§, in contrast to a uniform grid representation of
gs(x) that would require order 1/§ grid points in the interval
|x|<l. In fact, to achieve 1% maximum pointwise error in boundary
layers of thickness ¢§ at the ends of the interval ~lex<cl, it

is necessary to retain only

N ~3//Re§ (3.50)

polynomials as §-+0.

Heuristically, the reason that Chebyshev expansions represent

boundary layers so well is that the extrema of Tn(x) occur

2 2
at xj=- costj/n for 3=0,1,...,n. Since Xp=X~ T /2n and
X, 1-xn--1r2/2n2 as n~+» , it follows that these polynomials can

resolve changes over distances of order n .
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The convergence properties of Legendre polynomial expansions
ki of boundary-layer functions are similar to those of Chebyshev

expansions. 1In particular, (3.49) and (3.50) are both still

i iR

valid. In Fig. 3.10 we compare the spatial distribution of the

errors in Chebyshev and Legendre polynomial expansions of the

function g(x) = elOO(x—l)' which has a narrow boundary layer

s e g

of width 1/100 near x=1. Apparently for x away from the
boundaries x=%*1, the Legendre expansion has somewhat smaller
errors, while near x=:1 the Chebyshev expansion has smaller
errors.

The Legendre expansion gives the polynomial QN(x) of

degree N that minimizes

1
I igtxy - QN(x)Izdx

while the Chebyshev expansion gives that QN that minimizes

1/2

| 1 .
| | folex) - o ? (1-x?) T2 ax.

-1

The Chebyshev expansion also gives a smaller maximum error

max |g(x) - QN(X)I
| x| <1

than the Legendre expansion by roughly a factor 2//N ;
as remarked above, the Chebyshev QN(x) is usually remarkably

close to the minimax polynomial that minimizes the maximum

error.
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Laguerre polynomials are the eigenfunctions of (3.26) with

p(x) = xe™%, g(x) =0, w(x) =e X for 0 < x < ® with

- %x th o ;
e ¢n(x) bounded at x = 0 and =, The n eigenvalue is
)‘n = n and the associated eigenfunction is ¢ (x) =L (x),

the Laguerre polynomial of degree n. If f(x) and all its

derivatives are smooth and satisfy

£(x) = 0(e™™ (x + =)

for some a < %, it is easy to show by retracing the derivation

of (3.33) from (3.30) that the Legendre expansion

f£(x) = ) a L (x)
n=0
converges faster than algebraically as the number of terms N -+ «.

To illustrate the rate of convergence of Laguerre series,

we consider the expansion of sinx:

sinx = zo 5-(3;0_-157-2- cos[%(n+1)]Ln(x) (3.51)

n

which converges for all x, O S x < », since

L, (x) v at e*xx_*n'* cos(2v/nx -¢n] ,
m

[see Erdelyi et al 1953, Vol. II, pg. 200] it follows that if

N > > x, then the error after N terms at x is roughly

odx

V2 () T

x)

This error is small only if N%n 2 > x or N > 1l.44x. Since

the wavelength of sinx is 27 , Laguerre expansions require

'\ approximately 9.06 polynomials per wavelength to achieve high
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accuracy. (This figure may be reduced to about 6.53 polynomials
per wavelength by using the modified Laguerre expansion

Z anLn(x)e-mx and optimizing the choice of a.) Thus, Laguerre
expansions require many more terms to resolve a function of given
complexity than do either Chebyshev or Legendre expansions. The
reason is that significant weight is given to x + + » in the
Laguerre series where sinx has an essential singularity.

Ih Figs. 3.11-13, we plot the partial sums of (3.51) with
N = 10, 20, and 40 terms. Observe that the number of wavelengths

of sin x represented accurately by (3.51) is roughly N/9.

Hermite expansions

x2

Hermite polynomials satisfy '(3.26) with p =e ~ , q(x) = 0,
2 o
wix) = e X for - o< x < w, ¢, (x)e X" pounded as |x] + =.

The Hermite polynomial Hn(x) of degree n is associated with

the eigenvalue An = 2n., If £(x) and all its derivatives satisfy

2
£(x) = 0(e**) (|x] + =)

for some a < %, then the Hermite expansion

f(x) =] a H (x)
n=0

converges faster than algebraically as the number of terms N »+ «.

This is proved by retracing the steps leading from (3.30) to (3.33).

To study the rate of convergence of Hermite series, we consider

the expansion of sinx:

v 1
Sin x & ] epBgpenem (x) (3.52)
2°0%L ane1) 0¥

n=0

™
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Fig. 3.11. A plot of sin x and the partial sum of the
Laguerre series expansion of sin x in (3.51 truncated
after the Laguerre polynomial rzauv with N=10.

Observe that the accuracy of the approximation decreases
as x 1increases and that roughly one wavelength of sin x

is approximated accurately by this truncation of (3.51).
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Fig. 3.13. Same as Fig. 3,12 except that the

Laguerre series (3.51) is truncated after _.zoc
with N=40. Cbserve that the approximation is
accurate for roughly 4% wavelengths of sin x.

40.




Since the asymptotic behavior of Hn(x) is given by [Erdelyi,

et. al 1953, vol. II, pg. 201)

2
Hn(x) n e*x T?ﬁéT cos (V2n+l x - #nm)

as n + » for x fixed, it follows that the error after g
terms of (3.52) goes to zero rapidly at x only if N 2 IE§_§ .
This result is very bad; to resolve M wavelengths of sinx
requires nearly Mz Hermite polynomials! [By expanding in the
series | anllin(x)e"mx 'and optimizing the choice of a, it is
possible to reduce the number of required Hermite polynomials to
about %11 = 7.85 per wavelength, but this is still quite poor.]
Because of the poor resolution properties of Laguerre and
Hermite polynomials the authors doubt they will be of much prac-

tical value in applications of spectral methods.
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4. Review of Convergence Theory

The fundamental problem of the numerical analysis of
initial value problems is to find conditions under which
uN(x,t) converges to u(x,t) as N + «» for some time in-
terval 0 < t < T and to estimate the error |lu - u|l .

The principal result is the Lax-Richtmyer equivalence theorem

which states that stability is equivalent to convergence for

consistent approximations to well-posed linear problems. The
terms stable, convergent, and consistent relate to technical
properties of the approximation scheme which are defined below.

An approximation scheme (2.5-6) is stable if

LNt
le ™ || < K(t) (4.1)

for all N where K(t) is a finite function of ¢t . Here

the operator norm is defined by

L.t
L.t N

le ¥ || = max dle — ull
uey [l

An approximation scheme is convergent if
lu(t) - uN(t)H + 0 as N +» =

for all t in the interval 0 < t < T and all u(0)eX and

£(t) eX. Finally, an approximation scheme is consistent if
ltu - Leuf[ =+ ©

(4.2)
lu - il > o
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as N+ o for all u in a dense subspace of Af .

The classical Lax-Richtmyer equivalence theorem relating
the above definition states that "a consistent approximation to
a well-posed linear problem is stable if and only if it is
convergent."” In this monograph we are confronted with some
subtleties regarding the notions of stability and convergence.
Because a precise understanding of the ideas of stability and
convergence is important to the theory of algebraic stability
given in Sec. 5, we outline here the proof of the equivalence

theorenm.

Proof of the Equivalence Theorem

To show that stability implies convergence we use (2.1l) and

)

(2.5) to obtain

-T—a(u-um=L(u-u)+Lu-Lu+f—f .
t N N N N
Thus,

Lyt
u(t) - uN(t) = e [u(O)-uN(O)]

t LN(t-s)
+ [ e [Lu(s)-Lyu(s)+£(s)-f (s)] ds, (4.3)
0

¢ Using (4.1) and (4.3) and the triangle inequality we obtain the
estimate

flate)=ug(t) || < K(t) |lu(0) ~uy (0) ||

t
+ ﬂ) K(t-s)[HLu(s)-LNu(s)H + Hf(s)-fN(s)Hl ds

(4.4)

Thus, if u(t) belongs to the dense subspace of ) satisfying
(4.2) and if £(t) belongs to the dense subspace of X satisfy-

( ing ||f - Pyf[| + 0 as N+ e, then [lu(t) - uy(t)fl +0
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as N » = Since all solutions u(t) of (2.1) can be

approximated arbitrarily well by functions satisfying (4.2),

the proof that stability implies convergence is completed.
Conversely, to show that convergencelfﬁflies stability,

we first observe that, for any uek, |le o u)] is bounded

for all N and each fixed t . In fact, convergence implies

L.t L.t
o < |lle™ull - fle®all| < lleMu-eull » 0, >
while well-posedness requires that HeLtuH is finite. How-
L.t
ever, max||le N u|| may depend on u and on t , so stability
N

is not yet proved. To complete the proof we use the fact that

)é is a Hilbert space. The principle of uniform boundedness
L.t

(Richtmyer & Morton 1967) implies that if |le N u|| is bounded

L
as N+ for eech t and ueM then |le N || is bounded as

N - » for each t . This proves stability and completes the
proof of the equivalence theorem.

Using the equivalence theorem, the study of the convergence
of discrete approximations to the solutions of initial-value problems
is reduced to the study of the stability of the discrete approxima-
tions, assuming the approximations are consistent. Thus, the de-
velopment of conditions for the stability of families of finite-
dimensional operators Ly is of primary interest in numerical
analysis.

Von Neumann Stability Condition

The simplest condition for stability is due to von Neumann.
Let us suppose that the Hilbert space M possesses the inner product
€ » ) o Using the inner product, we define (neglecting the compli-

*
cations due to boundary conditions) the adjoint L of an operator

L as that linear operator that satisfies
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(u,Lv) = (L u,v) for all wu,v in M . For the finite dimen-
sional approximation LN' the matrix representation of L; is
the adjoint of the matrix representation of LN (see Sec. 2).

The operator LN is said to be a normal operator if LN commutes

with L; so LNL; = L;LN .

The von Neumann stability condition is that stability of |

normal operators LN is equivalent to the condition

Re AN < C (4.7)

where AN is any of the eigenvalues of any of the operators

LN and C is a finite constant independent of N . To prove

*
this, we note that if L is normal, then LN and LN as

N
well as exp(L,t) and exp&L*t) are simultaneously diag-
S |

nolizable. Therefore,
*t L.t
L.t (u,el'uenu) =

(e N I(2 = max Y = max e
ueH . AN

2(ReAN)t

where AN are the eigenvalues of LN . Thus, the von Neumann
condition (4.7) is equivalent to the stability definition (4.1)
with K(t) = exp(2Ct) .

The von Neumann condition gives an operational technique
for checking stability of normal approximations: compute the
eigenvalues of LN and check that the real parts of the eigen-

values are bounded from above.

Example 4.1: Symmetric hyperbolic system with periodic
boundary conditions

Let us apply the theory just discussed to the stability

of difference approximations to the m-component symmetric

hyperbolic system

d(x,t) . 5 du(x,t)
___szg_- A -—5#——— (4.8)
—77-
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with periodic boundary conditions #(0,t) = T S X
Here u is an m-component vector and A is a symmetric

m x m matrix.

If we discretize in space using second-order centered

differences, we obtain

= 0,

ou. u.
e PR ¢ G (i Leas sude sl (4.9)

t 2Ax

uo(t) = uN(t) ' ul(t) = uN+1(t)

where uk(t) = u(k/N,t) and Ax = 1/N . The system (4.9)
is equivalent to the system of mN equations

36

3t (4.10a)

]
o
=3

where 1 is the column vector whose transpose is

~

uT = (ﬁl,ﬁz,...ﬁN). Here B 1is the mN x mN matrix given
by the Kronecker product

B = A ®pD , (4.10b)

where A is the m x m matrix in (4.8) and D 1is the

N x N matrix

0 1 0 B ... @ =1
=3 0 L 0 ede 000
0-1 0 1...0 O
¥ 1 e U e v
b = 3= RO it
0 0 0 O 0 1
o N R -1 0 .
*
D is anti-symmetric (so D = -D and, hence, D is

normal) so it has eigenvalues that are either 0 or pure

_78-

=




i sin(2nkAx)/Ax for k=0,1,...,N=1, Thus, the norm

of exp(Bt) satisfies

llexp(Bt) || = max |lexp(iA sin(2mkax)t/ax|| = 1,
0<k<N

where we use the fact that A is symmetric so it has real

eigenvalues.

Kreiss Matrix Theorem

If the approximate evolution operators LN are not normal,
conditions guaranteeing stability are much harder to obtain.
The von Neumann condition (4.7) is still necessary for

stability (why?), but it is not sufficient to ensure stability.
One important case in which stability conditions can be found

is for the problem studied in Example 4.1 with A no longer
symmetric. The appropriate generalization is to assume that the
approximation L, has the form Ly = A 0DN where A is a fixed
m x m matrix (possibly not normal) and DN is an N-dimensional

normal matrix. It is easy to show that

Hexp(LNt)ll = max Hexp(xNAt)ll (4.11)
A
N

where A is any of the eigenvalues of Dy - A stability

N
condition for (4.11) will be obtained below. To do this, we

generalize (4.11) and seek conditions for the stability of a family
of mxm matrices A(w) , where w is an arbitrary parameter.
That is, we seek conditions such that

max ||exp[A(w)t]|| < K(t) ,
W

where K(t) is a finite function of t. Once these general
conditions are found, they can be specialized to give stability

conditions for families of the form exp(LNt) where LN'A“Dﬁ with

-’?9-

e —— e e R R sz




e

AR i o

L et AT N il

|
]
|
]
|
i
|
i
i
1

DN normal by simply choosing A(w) = Aw where « is any of

the eigenvalues of any of the matrices DN .

The basic result on the stability of families of m x m
matrices is the Kreiss matrix theorem (Kreiss 1962):

For any family A(w) of m x m matrices, each of
the following statements implies the next:

(1) There exist symmetric matrices H(w) satisfying
H(w)A(w) + A*(w)EB(w) < 0 and
I < H(w) , ||H(w)]|] & ¢ for some constant C .
(ii) Hexpialultl|l ¢ € tor «ll % p 0O .
(iii) (Re M) ||(AI-A(w) Y|l < c' for some constant C'

and all ) satisfying Re X\ > 0

(iv) There exist matrices H(w) satisfying (i) with
|[H(w) || £ K(m)C' where C' is the constant
appearing in (iii) and K(m) depends only on
m and not only the family A(w) .

Observe that for a family of matrices A(w) to satisfy
the conditions of this theorem it is necessary that all the
eigenvalues of all the matrices have non-positive real parts.
Otherwise there would be some w and some eigenvector W satis-
fying “exp[A(w)t]GH + ©» as t + » violating (ii).

The most important relation implied by this theorem is the
implication that (iii) implies (ii) with C S K(m)C' That is,
for any m x m matrix A all of whose eigenvalues have nonposi-

tive real parts

|lexp(At) || < K'(m) max (Re A)lI(AI—A)-1|| (4.12)
Re A >0
where K'(m) is a finite function of m .
An elementary proof of (4.12) has recently been given

by Laptev (1975) and improved by C. McCarthy (private communica-

tion to G. Strang, 1975). Lapfev observes that if v > 0 , then
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as may be proved by shifting contours in the complex plane.

Since each entry of (v+iu-A)-1 is a rational function in

of degree at most m , the derivatives of the real and imaginary
parts of each entry can chance sign at most 4m times when u
increases {rom - to = . On any u-interval, say a < u < b,
1

where the real and imaginary parts of an entry in (v+iu-A)~

are monotonic, the second mean-value theorem implies

cos ut f(u) du = [ T

a

—:—maxlf(u)l '
M

IA

for some c¢ satisfying a<c<b where f£f(u) is the real or

imaginary part of an entry in the matrix (v+iu-A)-1. If we apply

this kind of inequality to the right side of (4.11), it follows

that for all i,j

64 m -1
(v+iu-A)ij

s x . (4.14)

m .
J elut(v+iu—A)T% du max
-0 1] u

If it is true that the matrix norm has the property that

'Bijl < Cyy for all i,j implies |[|B|| <||c]| + then (4.14)
implies
® iut 1 64
I e*H* (v+ip-a) dull < tm max (\)+:‘Lu—l\)—1 (4.15)
-0 u .

Choosing v = 1/t in (4.13-15) gives (4.12) with K'(m) = 64 m .
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There are three important matrix norms in which

j| < Cij for all i,j implies |[|B|| < |Ic||, namely
the matrix norms induced by the Ll' L2, and L_ vector

B

norms. This is shown using the relations

m
“3”1 » m;" iil lBijl i
m m
IBll, = sup P F B BT
S Bellaer ded dmp 2SO
”Y”2=1
m
loll, = nax Iyl
which hold for all matrices B . In other norms . lBijI < Cij
may not imply ||B|| < ||c|| but the equivalence of all matrix norms

implies || B || < F(m) ||C|| for some finite function of the
dimension m. Thus, (4.12) is obtained with K'(m) = 64mF (m) .

The functions K(m) appearing in statement (iv) of the
Kreiss theorem and K'(m) appearing in (4.12) need not be equal.
It follows from the Kreiss theorem that K'(m) < K(m) . Kreiss
showed only that K(m) = O(m"™) as m + « ; this is much too
conservative. Miller & Strang (1965) showed that K(m) = O(Cm)
as m + o for some constant C > 1 .

In the case of a normal family of matrices A(w) the con-
ditions of the Kreiss matrix theorem are trivially satisfied:

if the eigenvalues of A(w) have negative real parts then

|lexp(A(w)t]|| £ 1 for all t >0 and w




Non-Normal Approximations

The Kreiss matrix theorem applies to approximations of the
form Ly = A@D,, where A is a fixed dimensional non-normal
matrix and DN is an N-dimensional normal matrix. This type
of operator Ly is commonly encountered in the solution
of initial-value problems with periodic boundary conditions.

On the other hand, non-periodic boundary conditions usually lead
to problems in which the non-normality affects the N-dependent
operator Dy. When finite-difference methods are used for such |
problems, the deviation of Dy from a normal operator is frequently

‘smallt

Example 4.2: Non-normality of a difference approximation to a mixed

"initial-boundary value problem

A difference approximation to the mixed initial-boundary

value problem

%% + %2 = f(x,t) (0gxgl, £50)

b

u(o,t) = 0,

u(x,0) = g(x)

is given by

1&? _Jil__i__. = £(jh,t) (1<j<N) (4.16)

k‘ where uj(t) = u(jh,t) and we set uo(t) =0 and uN+l(t) = 2uN(t)
' '“N-l(t)‘ The latter condition is an extrapolation condition
which ensures that (4.16) is a closed system of equations. This
approximation has the matrix representation
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l - . . . . . .
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3 g s et ) RERE] ) s LR 0 -2 2 -

The departure of LN from a normal matrix is a matrix of
rank 1 in the lower right-hand corner. For problems of this
kind, extensions of von Neumann stability analysis, like that
introduced by Godunov & Ryabenkii (196 3) and extended by
Kreiss (see Kreiss & Oliger 1973), apply.

Unfortunately, the class of semi-discrete approximations
investigated in this monograph include problems that cannot be
easily analyzed either by straightforward von Neumann stability
analysis or by the Godunov-Ryabenkii or Kreiss analysis.

In contrast to the classical problems of the numerical analysis
of difference methods for initial-value problems, spectral

approximations LN are frequently not even approximately normal.
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8 Algebraic Stability

In this section, we develop a theory of stability and
convergence which generalizes the classical theory discussed
in Sec. 4. As will be shown by examples in Sects. ¢-8, this
generalized stability theory is well suited to study the con-
vergence of spectral methods.

A spectral approximation

BuN
t

-a—- = LNUN + fN (5.1)

to the initial-value problem u, = Lu + £ is called

algebraically stable as N+ o if

IIeLNtII < NNSEk(t) (5.2)

for all sufficiently large N , where r, s, and K(t)
are finite for B A G

It may at first seem that the Lax-Richtmyer theorem shows
that algebraically stable approximations cannot be convergent
unless (5.2) holds with R0, 0 In fact, if we
demand that the approximations converge for all u(0) and
f£(t) in the Hilbert space » , this conclusion is correct.
However, it is possible for approximations that satisfy (5.2)
with r >0 or s >0 to converge on a dense subset of
the Hilbert space in which the only functions for which con-
vergence is not obtained are highly pathological. 1In fact, if

p‘t r + sT>0 but p is smaller than the order of the
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spatial truncation error of a particular solution u(x,t) , i.e.

NP ||Lu(t) - Lt || =+ 0 (N + ) (5.3a)
NP Jlu(o) - wy(0) || =+ 0 (N + ®) (5.3b)
NP ||£ee) - Eg(e)|] > O (N + o) (5.3c)

for all (s then (4.4) and (5.2) imply that
Il utt) - ue(e)|] =+ o (N + )

for g < t<T. Thus, algebraic stability implies con-
vergence in that subspace of )} satisfying the conditions
(5.3). If this latter subspace is large enough, an algebraic-
ally stable method can still be very useful although it cannot
yield convergent results for all initial conditions u(0) and
forces f(t) . Since spectral methods are normally infinite-
order accurate, algebréic stability implies convergence for
such spectral methods.
In the examples of algebraic stability given in Sects. 7-9,

we find b =i % ' s £ 0 , and K(t) < M. In this case,

algebraic stability implies convergence so long as (5.3) holds
with P < % . Thus, the approximation need not be infinite-
order accurate to achieve convergence. However, we develop the
general theory of algebraic stability here in the expectation
that it will find application to spectral methods for high-order

equations in which p may be large.
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Oour definition of algebraic stability is very similar
to the notion of s-stability introduced by Strang (1960).
However, our motivation is slightly different. Strang intro-
duced s-stability to study the convergence of time~discretized
initial-value problems in which the-norm of the evolut;on

operator grows as a power of the time step. We shall return

to this concept when we discuss generalized stability in Sec. 9.

Let us give an illustration of the need for a theory of

algebraic stability. In Sec. 8, we will discuss Chebyshev

polynomial spectral methods to solve the one-dimens  /mnal
5 wave equation u, + B f(x,t) with boundary conditions
u(-1,t) =0 . Unfortunately this problem is not well posed

in the Chebyshev norm

1
a2 = %—’% ax -
=l -X

i In fact, if

1 - l%L - - 3 R

u(x,0) =

' 0 it (xlas«,
(!
i then the solution of U, tu_ = 0, u(-1,t) = 0 at t =1 is given
: by
k- 3i=iR a2 l-€ < x ¢ 1
( € € 7
; u(x,l) =

0 X £ 1-¢
(
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Therefore, as € »> 0+ ,

% ||u(x,0)|[2 . " (e ~ 0+)
2 2
: lax, || ~ 3F V2e (e + 04) ,
;
% so that if L = - % !
In fact, ”eLt|| = - fox. O < t<2 , lleLtll =0

for &> .2 , so the one-dimensional wave equation is not
weli posed in the Chebyshév norm.

Since the finite-dimensional approximations Ly to L
given by Galerkin, tau, and collocation approximation (see
Sec. 2) should converge as N »* » , it follows that we may

expect
llexp(Lyt) || + =

as N + @ in the Chebyshev norm. To estimate the rate of
divergence of Hexp(LNt)H as N + » we argue that

Chebyshev polynomials of degree at most N can resolve dis-
tances of at most order 1/N interior to (-1,1) SO we

may reasonably guess on the basis of (5.4) with € = 1/N that

1
llexp(Lyt)|| = O(N I) (N + ) . {5:8)

This result is justified by the numerical results presented

in Table 8.3. Eq. (5.5) implies that Chebyshev-spectral approximations




A

to the one-dimensional wave equation are not stable but are
algebraically stable with r = 1/4 and s =0 in (5.2).

Notice that algebraic stability in one norm implies
algebraic stability in all algebraically equivalent norms.
Thus, algebraic stability is equivalent in all of the Lp
norms 1l < p <= because these norms are algebraically
equivalent in N-dimensional vector spaces (i.e., they differ
from each other only by a fixed power of N ). To show this,
we recall that the Lp norm of a vector a = (al,...,aN)
is defined by

1/p

N
P
= a. .
||¢al|lp ifll il

If qg = po with 0<ac<l, then

fhelig 2 -9/E

[ B4
-
"

N N
(- Lat  S Y Lg
q i=1 i=1 i=1

by Holder's inequality. Therefore, for all p > 1,
1
NP

-]




s

g

o pispinn cdod

Also, if p>1, then

P
N
P
la;1® < [z Jagl) = lally .

1l i=1l

N
llallf,’ = I
1=

so that

!

N lally < llally < llally - (5.6)

The verification of algebraic stability for spectral
methods leads to a general problem in matrix theory. Suppose
that AN(N=1,2,...,) is a one parameter family of matrices.
We will find conditions on the members of the family such that
exp (ANt) is algebraically stable. We will use only the L,

norm since the others are equivalent to it.

Conditions for Algebraic Stability

Let {AN} be a family of N x N matrices where

llagll = o(n?) (N » ) for some finite a . A necessary

and sufficient condition for algebraic stability

At
lle N | = O(NrNSt) (N + )

is that there exist a family {Hy} of Hermitian positive-

definite matrices such that
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-1 b, - :
a1l gl = o™y (N + =) (5.7a)

HA, + Ay < c(NH (5.7b)

c(N) < d log N (5.7¢c)

for all sufficiently large N where b and d are finite
numbers independent of N . ‘

To prove sufficiency we use the Lie formula

n
e‘C+D)t = lim (eCt/n eDt/n) (5.8)

n-+o )

which is valid for arbitrary matrices C and D . This

formula is proved at the end of this section. If we define

(o]

(]
=
=}

2

-4
+
ool

2

(5.9)

and note that

oA 1 iy 1
exp [ANt] = HN 2 exp [HNI ANHN 2-t] HNI v

-9]1-




it follows from the Lie formula that

e = 1lim H

1 i}
t = n
By k ] <ec1-./n eDt/n) HNI- (5.10)

n-»co

;
§
;

However, it follows from (5.7b) that, since C 1is a

a———

it ok ol

syrnmetric matrix,

i ”eCt/n“ < ect/n

Also, D is an anfisymmetric matrix so that

oot = 1,

Therefore, (5.10) gives

i
le ™ < &t jlay 2 i 2|

ct. b/2
< N N e N

<
o 2

proving algebraic stability.
In order to prove that the conditions (5.7) are also

necessary for algebraic stability we define

By = Ay - (r+l) log(N)I .

Therefore,

\ B .t s
| le V| =o(ﬁg) "
N
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By Liapounov's theorem (Barnett & Storey 1974) there exists

a Hermitian positive-definite matrix HN such that

(5.11)

[}
]
~

*
HNBN + BN HN ’

Thus,

-I + 2(r+l) log N HN < c(N)HN'

"5 Wy B

where c(N) = 2(r+l) log N . In order to complete the

proof of (5.7) we need to estimate the norms of HN and

HN-l 5 It can be easily verified that an explicit formula
for HN is
B.t B *t
(- ]
HN=I R
-0
Therefore,

* ©

® Bt B
gl < [ le Ml e 5 ae < n%® J N3 ae 2w
0 0

if 2 &nN > 1,

-
L3
o
-
2
v

EAN Also from (5.11) we obtain

e

2s




o

so that

A

-1
2 Bl Nl

or

< 2]||B

NIl = owm® (N + o) (5.12) |

This completes the proof of the necessity of (5.7).

The condition for algebraic stability given in (5.7)

implies that for every algebraically stable problem, there is

a new norm induced by the Liapounov matrices HN which is
algebraically equivalent to the original norm and in which

the problem is stable in the classical sense.

The above result gives a method for checking numerically
the algebraic stability of a family {AN} of matrices satis-

fying ||Ay)l = o(x%) as N+ = :

(i) We check that the real parts of the eigenvalues

of AN are bounded from above by s log N ;

otherwise, the family of matrices Ay are alge-~

braically unstable. §

(ii) We introduce BN = AN - (s+1)log(N)I and

compute the Liapounov matrix Hy such that

* »
HNBN + BN HN = =-I . There are several numeri

cally efficient techniques to compute HN

(Bartels & Stewart 1972).

|
|
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(iii) To verify algebraic stability the condition number
of “N must be bounded by Nb for some finite b
as N » @ Noting (5.12), it is only necessary
to verify that the eigenvalues of Hy are bounded

from above by some finite power of N as N+ =,

This procedure is applied in Sects. 7-8 to verify algebraic
stability of model problems. Since (5.7) gives a necessary

and sufficient condition for algebraic stability, if these

conditions do not hold the family of matrices Ay is alge-
braically unstable.

Proof of the Lie Formula

To prove the Lie formula (5.8) for finite dimensional

matrices, we use the identity

c p|" (c__..+o ¢p®
et _ {eMe" - le\ M - oM™
psl (_.__cw gip  sp\Taglttes
= Z e n n & anen enon
k=0
D\" C D
e chb n-1 S Cc+D ¢b
HeS*2 e J || & [ oli®Pl7 o ® - oM"Y
k=0
n=1-k
n
,(aucn + ||D||)
C+D c D
n n_n

<nijle™ - e'e| expl(l]c]|+]|ID]])(2=2/m)).

e T e e ‘ufwvhvmmedd“




sO that

for any

Eq'

(n + )

®
0
+
o
]
o
o310
5|10
S
A
Six=

K > %HCD-DCH . proving (5.8).

(5.8) is also true for certain infinite dimensional

matrices (operators). This deep result known as the Trotter

product formula is very useful in the modern theory of

partial differential equations.
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6. Spectral Methods Using Fourier Series

Fourier series are appropriate to solve problems
with periodic boundary conditions. With periodic boundary
conditions, a stable spectral method based on Fourier series
is usually accurate and efficient. On the other hand, when
Fourier series are used to solve non-periodic problems
(including problems having period.c initial conditions

but whose evolution operators violate periodicity),

stability is not enough to ensure convergence to the true
solution of the problem. An example of the latter effect
was given in Example 1.3. In this section, we investigate
the stability and convergence of spectral methods based on

Fourier series.

Example 6.1: Constant-coefficient hyperbolic equation with
periodic boundary conditions

Consider the one dimensional wave equation

e kL =N (0 < x<1),

u(x,0) = f(x)

with periodic boundary conditions

u(0,t) = u(l,t) .

-97-

(6.1)




Since collocation, Galerkin and tau methods are identical in
the absence of essential boundary conditions (see Sec. 2),
let us analyze the Fourier-collocation or pseudospectral
method. We introduce the collocation point<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>