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1. Introduction

In this monograph ._w~ give~p mathematical analysis of

spectral methods for mixed initial—boundary value problems.

Spectral methods have become increasingly popular in recent

years , especially since the development of fast transform

methods 4eee~See-~-~ 1G)~ with applications in numerical weather

prediction, numerical simulations of turbulent flows, and other

problems where high accuracy is desired for complicated solutions.

We do not discuss the sophisticated applications of spectra..t -

methods here; a survey of 3ome a~p1ications is given in Sec. 15 .

Instead , we concentrate on~the development of a mathematical theory c

that explains why spectral methods work and how well they work.

Before presenting the theory, we begin by giving some simple

examples of the kinds of behavior that we wish to explain.

Spectral methods involve representing the solution to a

problem as a truncated series of known functions of the inde-

pendent variables. We shall make this idea precise in Sec. 2,

but we can illustrate it here by the standard separation of

variables solution to the mixed initial-boundary value problem

for the heat equation.

Example 1.1: Fourier sine series solution of the heat ~guption .

Consider the mixed initial-boundary value problem

au (x,t) 
= 

a2u (x~t) (0 < x < n , t > 0) ( 1. la)

u(0,t) u(,T,t) — 0 (t > 0) ( l .lb )

L~
)L u ( x , 0) f ( x )  (0 X < 1 I ) (l.lc) 

- 

j
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Th. solution to (1.1) is

- u(x,t) — 
~ 

a~~(t )  sin n x • ( 1 .2)
n—i 

2
a~~(t) = f~ e~~ ~ (n—i ,2,... ) (1.3)

where
it

.
~.ff(x) sin nx dx (n—l ,2....,) (1.4)

are the coefficients of the Fourier sine series expansion of

f(x). Recall that any function in L2(0,~r) has a Fourier sine

series that converges to it in L2 (0 , IT ) ;  the Fourier sine series

of any piecewise continuous function f(x) which has bounded

variation on (0 , it ) converges to ~ ( f ( x + ) + f ( x - ) ]  throughout

(O . it) (iee Sec. 3).

A spectral approximation Is gotten by simply truncating

J ( 1.2) to

uN (x st )  = ~~a~~(t)sin flX ( 1.5)

and replacing (1.3) by the evolution equation

da
= — n~ a~ (n= 1, . ,. , N ) . ( 1 .6)

with the initial conditions a~~(O) = f~ ( n l , .. ., N)

The spectral approximation ( 1.5-6) to (1.1) is an ex-

ceedingly good approximation for any t > 0 as N

In fact, the error u (x,t) - u (x ,t )  goes to zero more rapidly

than e as N for any t > 0 . In contrast , a f i n i t e

difference approximation to the heat equation using N grid points

— 2 —
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in x but leaving t as a continuous variable (a ‘semi-

discrete approximation) leads to errors that decay only

algebraically with N as N -
~~ ~~~. (Of course , if we solve

( 1.6) by finite differences in t the error of the spectral

method would go to zero algebraically with the time step ~t.

However, we shall neglect all time differencing errors for now

and study only the convergence of semi—discrete approximations.

Time-differencing methods are discussed in Sec. 9.~J(
Exan~~le 1.2: Fourier sine series solution of an inh omogeneOus

heat eguat.~~~

Not all spectral methods work as well as the trivial one

just outlined in Example 1.1. Consider for example the solution

to the problem

~~~~
L.

~
+ 1  ( 0 < x < i r ,

(
with the same initial and boundary conditions as before.

The Fourier sine coefficients of the exact solution are now

a~ (t) = f~ e~~~
2t 

+ —~~-~~~ (l_ e~~~ t )e~ (1.7)

where e~ = 0 if n is even and e~ = 1 if n is odd . Spectral

approximations are now given by (1. 5) with (1. 6) replaced by

da 2 4
= - n a~ + ~~ e~ (n—l,.,.,N) ,

3
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the solution of which is (1,7) for n — l,...,N. Now the

truncation error u (x,t) - uN (x , t )  no longer decays exponentially

as N • ~ ; the error is of order N 3 as N ~ ~ fo r fixed

x , 0 ‘- x ~- ~ , and t 0 . In other words, the resul ts

to be anticipated from this spectral method behave asymptotically

as N ~ ~ in the same way as those obtained by a third-order

finite—difference scheme (in which the error goes to zero like

tx 3 — (it/N)
3
~~. 

For this problem, straightforward solution by

f in i te differences may be more eff ic ient and accurate than solution
by Fourier series.

The last example may be disturbing but even more serious

difficulties confront the unwary user of spectral methods, as

the next example should make amply clear.

Example 1.3: Fourier sine series solution of the one-

dimensional wave equation.

Consider the mixed initial-boundary value problem for the

one-dimensional wave equation

~u ( x , t )  
+ ~u (x1t) ~ + ~ < n , ~ > 0) (1.Ba)

u(0,t) = 0 (t ‘ 0) (1.8b)

u ( x , O)  = 0 (0 x ‘ ii) (1.8c )

The exact solution to this well posed problem is u (x,t) = xt .

Thi s solu tion can also be found by Fourier sine ser ies expansion

of u(x,t). To do this, we substitute (1.2) into (1.8) ~nd re—

expand all terms in sine series. The Fourier expansion of ~u/~x is

— 4 —  
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= ~ b1~(t)ain nx (1. 9)
~ n 1

where integration by parts gives

it

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— - ~ a~ (t) f sin mx cos nx dx , (1.10)
n—i 0

—
~~~~ 

~ ~‘~~2 am (t)

rn—i ~ m

m+n odd
C

Also the Fourier sine coefficients of x are 2/n(-l)~~
1 and

the Fourier sine coefficients of t are (4t/wn)e~ . where e~ = 0

if n is even and en = 1 if n is odd. Equating coefficients

of sin nx in (1.8a) we obtain

~~~~~~~~~~ m~1 
nrn a~~~~~~ ( l ) n ÷ ± t e ~~( n 1 , 2 , . . . ) .  (1.11)

m+n odd

(. The Fourier sine coefficients of the exact solution

u(x,t) xt are

( a~~(t )  = — ~ (1)
n
~ (n = 1,2,...)

It is easy to verify by direct substitution that these coefficients

satisfy (1.11) exactly; in particular , the sum in (1.11) converges

f or all t.

—5—
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Now suppose we employ a spectra l method based on Fourier

sine series to solve this problem. We seek a solution to (1.8) in
the form of the truncated sine series (1.4) . If the exact co-

efficients a~ (t) are used in (1.4) then u(x,t) - uN (x ,t) -. 0

as N • Co ; for each fixed x , 0 < x < it , and t > 0 the

error is of order 1/N as N + Co (-see Sec. 3).

However , it is not reasonable to assume that the expansion

coefficients a~~(t )  are known exactly in this case because of
the complicated couplings between various n in the system
(1.11). It is more reasonable to determine them by numerical

solution of an approximation to (1.11). Galerkin approximation

(see Sec. 2) gives the truncated system of equations

N

— - 

~ m~~ n
2 rn 2 am - .~~ . (_1)n + ~~ ten (n— l , . . . ,N ) ( 1.12)

mi-n odd

The truncation of the inf in i te  system (1.11) to the f ini te
system (1.12) is a standard way to approximate infinite coupled

systems. Unfortunately, it need not work. In Figs. 1.1-1.2

we show plots of the approximations uN (x s t) at t — 5 given

by (1.4) for N — 50 ,75. These plots are obtained by numerical

solution of (1.12) with a~~(O) — 0; the time steps used in the

numerical solution of (1.12) are so small that time differencing

errors are r.egligible . It is apparent that the approximate solu—

—6— 
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tions with N finite do not converge to the exact solution as N

increases 1 The divergence of this spectral method will be ex-

plained in Sec . 6. 
—

Not all spectral methods give such poor results. A properly

formulated and implemented spectral method gives results of

striking accuracy with efficient use of computer resources .

The choice of an appropriate spectral method is goierned by

two main considerations:

(i) Accuracy. in order to be useful a

spectral method should be designed to give results

of greater accuracy than can be obtained by

more conventional difference methods using similar

spatial resolution or degrees of freedom. The choice

- 
-~ of appropriate spectral representation depends on the

kind of boundary conditions involved in the problem.

(ii) Efficiency. In order to be useful the spec-

tral method should be as efficient as difference

methods with comparable numbers of degrees of

freedom. For similar work , spectral methods

should produce more accurate results than

conventional methods.

In Sec. 15, we present a catalog of different spectral methods

and indicate the kinds of proulems to which they can be most use-

fully applied.

Many examples of efficient and accurate spectral methods will

be given later.

—9—
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2. Spectral Methods

The problems to be studied here are mixed initial-boundary

value problems of the form

3u (x,t) 
= L(x , t ) u ( x , t )  + f(x,t )  (x c D , t > 0) (2.1)

B(x)u (x ,t) = 0 (x c 3D, t > 0) (2.2)

u(x, 0) = g(x) (x c D) (2.3)

where D is a spa tial domain with boundary 3D , L(x ,t) is a

linear (spatial) differen tial operator and B(x) is a l inear

(time independent) boundary operator. Here we write (2.1-3)

for a single dependent variable u and a single space coordinate

x with the understanding that much of the following analy-

sis generalizes to systems of equations in higher space di-

mensions. Also, attention is restricted to problems with

homogeneous boundary conditions because the solution to any

problem involving inhomogeneous boundary conditions is the sum of

an arbitrary function having the imposed boundary values and

a solution to a problem of the form (2.1-3) . The extension to

nonlinear problems will be indicated at the end of this section.

Before discussing spectral methods for solution of (2.1-3) let

us set up the mathematical framework for our later analysis.

It is assumed that, for each t , - u (x,t) is an elemen t

of a Hu bert space K with inner product ( , ) and norm

II U • For each t > 0 , the solution ’ U(t) belongs to

the subapace 8 of H consisting of all functions u c K

1 We will often denote u(x ,t) by u(t) when discussing u as
a function of t.

—1 0—

_ _ _ _  
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sat isfying Bu = 0 on 3D . We do no t requir e tha t  u ( x , 0 ) = g ( x ) c  S

t. but only that u (x , 0) ~ . The operator I. is t y p i c a l l y  an

unbounded (Ii t ferontia 1 opera tor  whose  cloma i n i ~ dense i n ,

but smaller than , . For examp le , if

L = 3/3x and )
~

= L2 ( O , l ) ,  the domain of I, can be

chosen as the -dense  ~;et of a l l  a b s o l u te l y  con t inuous  func t ions on

0 ,~, x <  1

If the problem (2.1—3) is well posed , the evolution operator

is a bounded linear operator from II to 5 • Boundednes~ im lic’s

that the doriain of the evolution operator can be extended in

a standard way from the domain oi L to the whole space H

(Richtmyer & florton , 1967 , p. 34)  . For no tat i ona l  convenience

we shall assume hencefor th  tha t  L is time independent  so tha t

the evolution operator is exp (L t ) . In this  case the formal  so-

lution of (2.1—3) is

u(t) = eLt u ( O) +f O
L (t_5)

f(s)ds (2.4)

( This formal solution is justified Under the conditions -

that f (t) , Lf (t) , and L2f ( t ) exi st and are continuous

functions of t in the norm . I I  for all t ~ 0 (see

Richtmyer & Morton , 1967)

The se~ii—discroto approximations to (2.1) to be studied here

arc of the form
(

I
— 11—
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3u (x , t)
N = LN uN (x~

t) + fN (x,t) 
(2.5)

where , for each t , uN (x,t) belongs to an N - d i men s i o n a l  sub-

space B of 8 , and is a l inear  operator f rom U to

of the form

LN PN L P N 
. (2.6)

Here is a pro jection opera tor of II on to and

= 
~~~~~~~~ 

• We shall  assume tha t ~ N c ~ 
when N < M

For de f in i t eness, we shall  also assume the i n i t i a l  condi t ions  for

the approximate equations (2.5) to be u
~~
(O) = PN u ( O )  where

u(0) = g(x) is the initial condition (2.3) . Specific

examples of projections 
~N 

and the resulting approximations

LN 
will be given belaw .

According to th is  general framework , the fo rmu la t i on  of a

spectral method involves two essential steps: ( 1) the choice of

approximation space 5
N~ 

and (ii) the choice of the p r oj e c t i o n

opera tor 
~N 

• I t  will tu rn  ou t. that the mathematical analysis

of the methods also involves two key steps: ( i )  the an a ly s i s  of

how well functions in H can be approximated by fun c t i on s  in

8N (see Sec. 3) and , in parti cular , the e s t i mat i o n  of

I lu — PNUI for arbitrary u~ U; and (ii) the  s tudy  of the

‘s tabi l i ty ’ of (see SOC. 4)~ Fi.n~i1 1y, thcrc ’ are the

important pract ical qu e st t o n ’~ of how to dlscreti~’~ t i m e  (se t ’

Sec. 9) and how to implement  ,;~‘~‘c t r a l  methods t ’t  f i ci t ’nt ly (~~ee

Sec. 10) All these conn ider a t ion s  will be reviewed in

Sec. 15.

—12—
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Galc r k i n  approxim at ion

A Galerkin approximation to (2.1-3) is constructed

as follows. The approximation u
~ 

is soughi in the form of

the t runcated series

uN (x,t) = ~~a~~(t) ~~ (x) (2.6)

where the time-independent functions are assumed linearly

independen t and N for all n. Thus1 uN
(x ,t) necessari ly

satisfies all the boundary conditions. The expansion coefficients

a~~(t ) are determined by the Galerkin equations

~~ 
(~~~,u~ ) = ~~~~~ u~

) + (~~~,f ) ( n 1 ,...,N) (2.7)

or
N da N
1 n ’~ m~ ~~~ 

= 
~ 
ar~
(
~ n

,L
~m
) + (q ~~, f )

iu=1 m].
t

These implicit equations for a~~(t ) can be pu t into the

standard explicit form (2.4—5 ) by defining the projection

operator 
~N 

by

N N
PNu (x)= Y 

~ 
pnm (~m~

u) ~~~~ (2.8)
n=l m=l

where 
~~~ are the elements of the inverse of the N x N matrix

whose entries are

Note tha t the rela tion

N N
P~1u = 

~ Pflm (~~~P
PNU)~~~

(X)
n=l m=l

holds for al l projection opera tors 
~N

• However , the spec i f i c  —

projection operator (2.8) is particular to Calerkin approximation.

— 13 —
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The Galerkin equations (2.7) may be characterized as iollo~ r.

At each ins tant t, we assume tha t  the expansion c o e Ui c i e n t~ a1~ ( t )
in (2.6) are known and seek values for the N Independent quantities

dan/dt (n=l ,...,N) that minimize

(~-~-— — ~~~~~~~ - LU
N

)

The resultinq equa tions for  da 1~/c1t art’ (2.7).

Example 2.1: Fourier s i ne  series

If we choose U = L2(O,n ) and ~~(x) = sin nx , we re-

cover the Galerkin approximations given in Example 1.1-2 for the

heat equat i on an d in Examp le 1.3 for the wave equation. I-:very

funct ion u~ L2(O ,n) has a Fourier sine series that converges

in the L2 m i , so that ~u - P
N

U I I  ~ 0 as N -
~ ~~.

However , as illustrated by Example 1.3 , this does not ensure

that the Galerkin approxima tion U
N 

converqes to u as N -
~

Example 2 . 2 :  Cho byshev ser ie s

We choose H to be the space of fun c t ions  on

the interva l l x i  < 1 that are square integrabie wi th respect

to the weight  func t ion  l/\f i x 2 . if the problem is

+ ~ = f ( x , t )  (—1 < x ~ 1, t ~ 0) , (2.9a)- -

u (—1,t) 0 , u ( x , 0) = g(x) , ( 2 . 9 h )

which is a sliqht qcnerali?ation of Fxamplc 1.3 , i t i s appro-

priate to choose the expansion functions for the Galerkin approxi-

mates to be ~ (x) = T (x) — ~—l)~ T (x). h ere T ( x )  is the
n n 0

Chebyshcv polynomial of degree n de finied by T (cos0) cos nO

when x ~ cosO ; thus , T
0
(x) 1, T,~ (x) x , T

2
(x) ~x

’— l , T
3
(x~

4x3 — 3x , . . . . Observe that (x ) sat i s t i es the  o u n d a r y  eon~1 i t i on 

— 14— ~~~~~~~~~~ — ~~~~~~ :____ • s-’- - I J



-~ - :~ T~ 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~

—

1.

— 0 because T~ (-l) a (~~1)~i for all n. The properties

of Chebyshev polynomials are summarized in the Appendix .

The Galerkin equations (2.7) are obtained explicitly as

follows. First, the definition of T~ (x) and the substi-

tution x — cos 0 imply that

~Tn~Tm ) — 
fcos n 0 cos m O d e —  ~~~ 6~~~,

where

( (f,g) 

~f 
f(x)g(x)//l_x~~ dx~

Here C0 
a 2, c~ — 1 (n > 0) and 0 if n + m, 1 if

m. Therefore,

— + (_l)~~
m
~

Next, the Chebyshev polynomials satisfy

T~~1(x) T’_ 1 (x)
2T Cx) — n+l — 

~—1 
(n 2),

as may be verified by substituting x a c os O .  Therefore,

1r(~ l)~~~
1m + 1 T m  n < m , m + n o d d  —

(c~~~~
) 

~r(-1)~~~
1m n > in, in + n odd

0 n + m e v e n  •

Using these results, (2.7) gives the Galerkin approximation equations

—15— 
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da N N
+ 2 (_ l ) l

~ 
~~ I (~ i)~ a~ —2 p a  +ma ] . p—n+].

p+n odd

+ 2 (_j ) fl 

~ p ~~ + + 2 (_ 1 ) fl f0 (n1 ,...,N).p—i
p odd

Hare — (T~.f) for n — 0,...,N.

These Galerkin equations can be simplified by introducing

the notation a0 
— - ~ (_1)

mam, so that (2.6) becomes
m”i

N
uN (x ,t) 

a I a~ (t)T~ (x) • 
(2. 10)

n— 0

Substitutirg the ahnve exnression for a0, the Galerkin equations

for a can be rew r itten as
n

da N
— 

~~~~~~ 

a~ + + ~~ b(t)(—l)~ (n0 ,...,N), (2.11)

p+ n odd

N

~ 
(_1)r~ ~~ ~ 0 

(2.12)

n 0

Here b(t) is a ‘boundary ’ term that ensures maintenance of the

boundary condition (2.12). Using (2.12) it is easy to show that

the explicit form of b ( t )  is

b (t )  ~~ [~~~~
(_ 1) n (n 2 a

fl
+
~ fl1 

1 
[
~~ N 

~

-~~ - 

— 1 6— 
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Tau approximation

The tau method was invented by Lanczos in 1938 (see Lanczos

1956). First , the expansion functions (n—] ,2,...) are

assumed to be elements of a complete set of orthonormal functions.

The approximate solution uN(x,t) is assumed to be expanded in

terms of those functions as in

N+k

uN (xst) 
I a~ (t)+~ (x) . (2.13 )

- n—i

Here k is the number of independent boundary constraints Bu~f’~0

that must be applied The important difference between (2.13)

for tau approximation and (2.6) for Galerkin approximation is that

the expansion functions • in (2.13) are not required individually

to satisfy the boundary constraints (2.2). The k boundary

constraints

N+k
Z a ~~B,~~ — 0  (2.14)

are imposed as part of the Conditions determining the expansion co-
effjcjents of a function in 8N~ 

Then , the projection opera tor

is defined by

P
N(~~ ~~~~~ + (2.15)

-~~~~~~~~ -~~~ ~~~~~~~ --~ - - 
J
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where bm 
(m= l,...,k) are chosen so that the boundary con-

straints are satisfied: BPNu 0 for all u

It follows from these definitions that the tau approximation

to (2.1—2) is given by (2.13) with the k equations (2.14)

and the N equations

da
($~~,L UN) + (+~ .f) (n—1 ,...,N) . (2.16)

An equivalent formulation of the tau method is given as

follows: The equations for the expansion coefficients a~ of the
exact solution u in terms of the complete orthonormal basis are

u(x t) — I a~(t)~~(x)n—i

da
(~~~,Lu) + (~~~~~~~~~ f)  (nl ,2,...) . (2.17)

The tau approximation equations for the N+k expansion co-

efficients of UN ~~fl (2.13) are obtained from the first N

equations (2.17) with u replaced by UN and the k boundary
conditions (2.14).

The origin of the name ‘tau method ’ is that the resulting

approximation U
N is the exact solution to the modified problem

= L UN + f + 
p~1 

Tp (t)~ N÷p
(x) (2.18)

—1.8—
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which lies in for all t > 0 . For each initial value problem

and choice of orthonormal basis (and associated inner product),

there is a (normally unique) choice of r-coefficienta such that

c 
~N 

• namely

tp — — 
~~N+p’ 

LuN + f ) ( p  a k+l, k+2,

The remaining tau coefficients t ]~~ ~~~~~~~~~~ 
~k 

are determined by

the k boundary constraints
auN

B
_sr 

— 0

and the N dynamical constraints (2.17) for n — 1,...,N.

Example 2.3: Fourier sine series

For all of the applications given in Example 2.1, Galerkin

and tau approximations based on I9 sin nx are identical

(except for the scaling factor v’~7~ ) since the orthoriormal —

expansion functions $~ satisfy the boundary conditions.

Example 2.4: Chebyshev series

If we choose +~+1
(x) Tn (X) where c0 2, c~ = 1 j

(n > 0) and apply the tau method to the problem (2.9) the result

can be recast into the form of equations (2.10-12) with b(t) = 0

and (2.11) only applied for n = 0,l,...,N-l instead of

n - 0,l,...,N. Thus, the tau equations for the one—dimensional

wave problem (2.9) are (2.10) with

Nda 2
-

~~~~~~~ 

— — Z pa + f (0 ~ n ~ N-].) (2.19)
Cn p—n+l

p+n odd

~ (_].)fl a (t )  — 0 (2.20)
n— O fl

In this problem, 4 r 1 (t)— e~ — while c~ (t) 0 for p > 1 . 

— 19 —
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Example 2.5: Laguerre series

Uere we choose )1 to be the space of functions that are

square integrable on 0 ~ x ~ with respect to the weight

function e~~ . We choose the expansion functions to be

L~ (x) where L~(x) is the (normalized) Laguerre poly-

nomial of degree n: L0(x) — 1, L1(x) = l—x ,

L2(x) — 1 — 2x + ~~ x
2, ...

Suppose we wish to solve the problem

+ u,~ f(x,t) (0 < x < ~~~ t > 0) (2.2la)

u(0,t) = 0 , u(x ,0) — g(x) (2.21b)

by seeking an approximate solution of the form

N
uN (x.t) = E a (t)L (x) . ( 2 . 2 2 )

n=0 Ti fl

To derive the tan equations for a~ ( t)~ we note that Ln (x)

satisf ies L~ ( O ) = 1, L~ — L~~1 L~ , n = 0,1,... and

(L
~~
L
~
) J~

° Ln (x)L (x)e
~~~

dx 
~nrn 

Thus, the tau approxima tion

(2.17) is

da N
— E a + (L~~f) (n = 0,1,. ..,N—1) (2.23)

p n+l ~

while the boundary condition is

N
E a = 0 . ( 2 . 2 4 )

n 0  ~

— 20—
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Similarly, the Laguerre—tau approximation to the heat

equa tion problem

U
t

a U
~~~~~

+ f ( X ,t )  ( 0< x < ~~~, t > 0 )

(2.25)
u (0, t) — 0 u (x,0) = g(x)

is given by (2.22), (2.24) and

da N
I (P_n_1)a~ + (Lns f) (n0 ,1,...,N l )  (2.26)

p—n+1

Collocation or pseudosp~ctral approximation

The projection operator 
~N 

for collocation (sometimes

calle4 the method of selected points (Lanczos 1956) or pseudospectmal

approximation (Orszag l9llc)1 is defined as follows. Let

xl x2,. ..,x1~ be N points interior to the domain D. These

points are called the collocation points. Also let ~~ (x)

(n—l ,...,N) be a basis for the approximation space ~ N and

suppose that det +n (xrn) ~ 0. Then ~or each u i H

N

PNU — a c~~(x) (2.27)
n—i

where the expansion coefficients a~ are the solutions of the

equ t tions

—21—
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N

I a~ $~~(x~) — u(x j) (ial ,..., N) . (2.28) -

n— 1

Thus , collocation is characterized by the conditions that

PNu (x .) — u(x .) for i — 1,...,N and PNUC 8N Notice that

the results of collocation depend on both the points x~ and

the functions •~~(x) for n =

Example 2.6: Fourier sine series

If we wish to solve the problems formulated in Examples

1.1—3 by collocation instead of Galerkin or tau methods

we proceed as follows. We choose the space )4= L
2

( O ,7T),

the expansion functions $n(x) = sin mc (n=1 ,...,N), and the

collocation points x~ = irj/(N+l) (j=l,...,N). The

collocation equations

n~l 
a~ sin ~~~~~~~~ = u (x~) (~j=1,...,N) (2.29)

have the explicit solution

a~ = 

~~~~~ ~ 
u(x~)sin ~~~ ~(n=1 ,...,N) (2.30)

This result follows from the relation

n~1 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6jk

—22—
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valid for 0 < j,k < N+ 1 . Thus ,

N
PNU ~ 

a~ sin nx (2.31)
n—i

where a~ is given by (2.30).

It follows from (2.29—31) that

N

-~~~~~~~ 
PNLPNu I b~~sin nx

- n—i

where b~ = - n2 a~ (n=l ,...,N) if L = 92/ax2 ,and

N .

2 m sin~~-~~
b~ = L nm ~~ 

am (n—i ,. . . , N)
r n 1  ~~~~~ N~1 

- ~~~~~

m+n odd

if L =  ~,‘ax .

Example 2.7: Chebyshev collocation for the wave equation

Suppose we wish to solve the one-dimensional wave problem

(2.9) using collocation. An appropriate basis for the approxi-

mation space 8N is the set of functions •n(X) T~ (x) - (-1)~ T0(x)

(n— l,...,N) introduced in our discussion of Example 2.2 above.

We choose the collocation points to be the extrema of the

Chebyshev polynomial TN(x) satisfying lx i  < 1 . Since

TN(cos e)  — cos NO ~ these extrema lie at X

j  

— cos !!j~.j~. for

j — 0,...,N— l  . The point X
N 

- 1 is also an extremunt of

-- - - - -  - ~~~~~~~~~ -
- ---~~~~~~~~~~~~~~~~~~ -~~~~~~ ~~~~~~~~~
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TN (x) but it is ~~~ inclUg,d in the sat of collocation points
because th. boundary conditions for (2.9) are imposed at x — -1
so •~ (-l) — 0  for all n

As in Example 2.2, the e~p~n~~on coefficient. a
~ 

for

n — 1,... ,N may be augmented by defining 
~~~~ 

— - (-.l)~ amrn-iso that
N

uN(x,t) — 
~ 

a~ (t)T~ (x)
n—0

It may then be shown that the collocation equatiQns for

that follow from (2.9) are

— - ~~~-. - p a + f + ~~ — L (t) (_ 1) n (n— 0,...,N) (2.32)
n p—n-s i P n
p+n odd

N
I (—i)~

’ a~~(t) — 0 (2.33)
n—0

where f~ -. (T~~ f ) and — 
~N 

— 2 , — 1 (0 ‘ n < N) .

Here b(t) is a ‘boundary ’ term that is used to ensure compliance
with the boundary condition (2.33). It may also be shown that

b ( t )  — - 
~~ ~~ (.i)fl(~ *5~~~~ ) — 

~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~ _- ~ --- --~J_~ -- - - -- .-—-~~
-,

~~~~~~
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~
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The reader should observe the close similarity between the

Chebyshev Galerkin, tau, and collocation equation. for the problem

(2.9). The only difference between them is the way the boundary

term b(t) enters. In the Ga].erkin equations (2.11), b(t) appears

with the coefficient (-l)’~/c~~ in the tau equations b(t) enters

with the coefficient so it appears only in the equation for

aN as a tau coefficient; with collocation, the coefficient of

b(t) is (-i)~ /c~. This close similarity between the three methods

for the wave equation can also be seen by observing that when

f(x,t) is a polynomial of degree N in x, all three approxi-

mation methods give Nth degree polynomial approximations uN(x,t) 
-

that satisfy exactly the initial—boundary value problem

~ uN 
aU

N+ — f(x,t) + T (t)QN (x) (2.34)

UN(l 4 t) = 0

In the tau method, QN (x) — TN (x); in collocation,

N-i N n-sN
Q.d(x) — it (x—x 4) — 2

2 N  
I T (x) — -~~~ 2~~~~(x—1)T ’(x)

a N N
n—0 n

where X

j  

cos (j = 0,...,N-l) are the collocation points;

finally , the Galerkin equations (2.10) are obtained if

N 
i n

QN (x ) — ~ 
(
; T~~(X)

n— 0 fl

-25- 
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For all three method. r (t) is uniquely determined by the

requirement that uN (X,t) be a polynomial of degree N in x

that satisfies the boundary condition uN(~
ll t) = 0 for all t

Example 2.8: Chebyshev spectral methods for the heat equation

To illustrate further the nature of the differences between

Galerkin, tau and collocation methods, we apply them to the

heat equation

= .L_~ + f(x,t) (—1 < x < 1 , t >

u(—l,t) — u(1,t) = 0 (t > 0), u(x,0) — g(x) (—1 < x < 1).

We approximate u(x,t) by

N

~ a~ (t)T~ (x)

n— 0

The Galerkin, tau, and collocation equations for a~ (t) are all

of the form

— 
% ~—L2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(2.35)

p+fl evefl

N N
I a~ — I (~ l)

’ a~ — 0 , ( 2 . 3 6 )

n—0 n—0

—26- 
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:1
wher e = (‘r 1~, t ) . Eqs. (2. 36) are just a ~~~ at  ~ m~’n t T  ~ f

uN (~~
1,t) = 0. The t er m s  b1 ( L )  and b2 C t )  in  ( 2 .  3 5)  ~u e

boundary terms t hat e n s u re  compliance wit h the bounda :v cond i —

tions (2. 36) . The onl y d i f f e r e nc e s  between the three approxima t ien

methods lies ~~~ the c oe f f i c i e n t s  B 1~ and B 2 .

In the tan method , -

B ~ , B (2 . 37 a )1r~ n ,N—l 2n nN

In the Galerkin method ,

1 I

B = —i--- , 
__
~
___ .±__L___ ; (2.37b)in c 2n cn Ti

this r esult.  fo l lows  usiny the expansion functions —

(T 0
( X )  n even

= T~~(x) 
-

(T1(x) n odd

tha t s a t i s f y  4~ (‘1) = 0 and auqment inq t he ex p a n r  i o n coef—

f i c i en t s  a for n > 2 by a0 
— 

~ a21~ and a1 = —

F i n a l l y ,  w i t h  co l locat ion  pei formed at  the p o i n t s  x~ ~~~

( j  l,2,~~~.,N—l) the coefficients B1~ and 1
~2n ~~ ( 2 . 3 5)

are g iven by

Ti
= - B ~~ - - (2 17 ~)n C 1~ Ti

it may also be v e r i f ie d  that the boundary t e r ms  b1 ( t )

an d b2 (t )  are of the fo rm

bi (t )  
~~~ 1 0

f
fl~ + 

~~~~~~~~~~~~ 
( : . :~~)

-27-
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for i = 1,2. Here

C

1
~~~ 

‘ 
c.~ ~(_1)N

C
2 

=

for the tau method ;

c _ N+~ c — ( 1) N
1+ 2N +N N + N

N
c ~~(—l) c 

— _ _

2+ ~~~2 2— 2N + N  N + N

for the Galerkin method;

c — 1 c —

C — o  c — I
2+ 2 - N

for the collocation method.

•1 In the previous examples the only difference between Galerkin,

tau , and collocation approximations is their treatment of the boundary

terms. However, in more complicated problems, there are signi f icant

differences between these apProximations. The next example illustrates

the influence of quadratic nonlinearity.

Example 2.9: Chebyshev approximation s to Burgers’ equation

Chebyshev series approximations to the solution u(x,t) to

Burgers ’ equation

+ = v i-~ (IxI~ l,t>0) (2.39)

u(±l,t) = 0

u(x,0) = f(x) 
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
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are obtained by me t hods very  s imi 1 ar  to those for  i i  near  e q uat i on s .

In general , spectral  approx imat ions  to the non l inea r  equation

= A(u) (2.40)

are of the form

PN A (PNuN) 
(2.41)

where is a projection operator. The projection operator

can be tha t for Ga lerk in , tau , or collocation approxi:iiationS~

If we write

N
uN (x ,t) = ~

‘ a~~(t) T~ 
(x)

n - 0

- 

then the Gale rk in  approximat ion to ( 2 . 3 9 )  is g iven by

Cn 
~~~~~~ = — 2 1  p a a~ + V ~ 

m (m2_fl2)arn + b~ (t) + b_ (t) (~~~1)
Ti

m~<N 
rn=n+2

- m+n even
(0~ n~ N ) ,

in+p~n+l
n+m+p odd

( 2 . 4 2 d )

~ Observe that if (U , Au) = 0 so the system (2.40) h a s the
energy integral ~(u ,u)/~ t = 0, then ( 2 . 4 3 . ) has the cnert ;y
integral a(uN , uN)/~t 0 provided tha t  the projection op e r a t o r

is seif—adjoint. This follows from

NP NUN~~ 
= NUN ,~~~

PN~
1Nfl = 0.

An example of a scif-adjoi.nt projection operator P~ is the
Galerkin operator (2.8) . Energy conservation is quarantec’d
only if the inner product used in the dot i nit. io n of the ~ a I e rk i n
approximation is the same as that in the enerqy integral .

- -  -— 
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N N

~ 
an I a~~(—l )~ = 0 (2.42b )

n=0 n=0

where = d
m 1 

a
,~~ for l in t ~ N. The tau equations are identical.

except that (2.42a) only applies for 0 < n < N - 2 and b~ = b 0.

On the other hand , the collocation equations obtained using the collo-
cation points x~ = cos !~ . for  j  1,....,N—l are just (2.42b) and

~n 
-ai

~~ 
= - 2 I ~ ~m~p 

-2 1 ~ ~m~plml~N l m I ~ N - 
-

IpI.~W J p ~ .~N
m+p>n+l nl+p>2N-n+ 1

n+m+p odd n+m+p odd

+ v ~ m (m 2-n2) a  + E~~(t )  + ~_ ( t) (-l)~ (2 . 4 3 )
m=n+2

m+n even

(0� n�N )

where = = 2 and = 1 for n + 0 ,N.  Observe the appear-

ance of the ‘aliasing ’ term as the second sum on the right side of
(2.43). Aliasing is discussed in detai l  by Orszag (l97 1a , 1 9 7 2 ) .

Example 2.10: Chebyshev appro< imat ions  to U

t 
+ F(u)

~ 0

Galerkin and tau approximations to the solution to

+ F ( u )~ 0 (2.44)

where F(u) is arbitrarily nonlinear , are very unwieldy both

to write down explicitly and to solve on a computer. On ~~~ other h and

—30—

- 
___________ _________________



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

while the collocation equations may also be hard to write down

explicitly, they lend themselves to ready solution without their

explicit form being known I

The collocation approximation to (2.44) is obtained as follows.

We use the relation

auN(F (u N ) ) x — F’ (uN) ~j.— . (2.45)

Since 
~
uN/3x can be computed explicitly in terms of ~~ as a poly—

noinial in x of degree N—i, it follows that (F(u.d))X can be

evaluated by this formula at each of the collocation points assuming

that F’ (z) is a known function; thus, the collocation approxima-

tion to (2.44) is determined.

There is a slightly different collocation procedure that can also

be applied to (2.44). It has the operator form

au N
+ 
~N ~~ ~N 

F(uN) = 0 (2.46)

which is usually not the same as the collocation approximation of

the form (2.41) described above. In this a~proxination, au /at is
N

a~ip~te~ by first usir~ colla~ation to obtain PNF (u.s) fran U
N 

ard then

~~~~ the co1l~~ation a~ roxin~tion PNa/ax to s/ax given in E~~nple 2.7.

The co11a~ation ap~roxination given by (2.41) (2.45) diffa~s fran

(2.46) by the t~ m

~N ~~ ~~~~~ 
F(uN)

which is generally not zero. However, if F’ (z) is not known

accurately then (2.46) may be the only viable method.

(
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3. Survey of Approximation Theory

The remarkable convergence properties of spectral methods to

be discussed later owe to the rapid convergence of expansions of

smooth functions in series of orthogonal functions. We present

a summary of the relevant theory here.

Fourier series 
4

The complex Fourier series of f(x) defined for O - ~ x

is the periodic function

g(x) 
~ 

ak ~~~~ (3.1)
k—-~

where

2tr
ak — * 

f f(x)e 1k
~
Cdx . (3.2)

0

We shall show below that if f(x) is piecewise continuous and has

bounded total variation then

H g(x) = ~ (f(x+)+f(x—fl (3.3)

for 0 x ~ 2~i and g(x) is repeated periodically outside the interval

0 x 4 2it. In particular, g(0) — g(2it ) — I (f (0+)+f~ 21r—) J

The Fourier sine series of a function f(x) defin d for

0 < x < n is the function

g5(x) ~ 
ak ~~~ kx (3.4)

k—l /
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where

ak ~~~
. I f(x) sin kx dx . (3.5)
0

The Fourier cosine series of a function defined for 0 < x < it is

= I ak cos kx 1 
(3.6)

k=0

where

It
ak = 

~j
1- f f(x) cos kx dx (3.7)
C
k 0

with c0 = 2 , C
k 

= 1 (k > 0). It follows easily from (3.~3) that if

f(x) is piecewise continuous and has bounded total variation then

g5(x) = f5(x), 
(3.8)

g~ (x) = f
~~
(c), 

(3.9)

where f5(x) = f~ (x) = ~[f(x+)+f (x—)1 for 0 < x < it ,

f8(—x ) = —f5(x), f~
(—x) = f

~
(x) for —it < x < 0, f5(0) f

5
(it ) = 0,

= f(0+), f
~~

(Tr ) = f (ir—) , and f (x) and f
~~
(x) are extended

periodically outside the interval - it < x ~ i t .

Convergence of Fourier series

To prove (3.3) we define g~ (x) as the partial sum

g~ (x) — ~ ake 
(3.11)

k—-K

Using (3.2) and the t~’tgonometric sum formula

—33—
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iks sin t (K+~)SIe —

k——K sin(~s)

we o b t a i n

x sin((K+~ )tJ
g~ (x) — ~~~ 

f f(x—t)dt (3.12)
x— 2n sin (~ t]

The kernel sin (K+1)t/sinit of the integral (3.2) is

plotted for several values of K in Fig. 3.1. This plot

suggests that when f(x) has bounded total variation the leading

contribut ion to the integral as K -
~~ comes from the neighbor-

hood of t — 0 since the contribut ions from the rest of the in-

tegration region should nearly cancel due to the rapid oscillations

of the integrand . Thus,

+c sin E (X+* )t ]
g~ (x) ~ ~~~~ 

f - f (x—t)dt (K-’~
) (3.13)

~ sinI~ t )

for any fixed c > 0. Since c may be chosen small we may replace

sin It by It with a maximum error of 0(c3). Also since f (x-t)

is piecewi se continuous , we may assume that f(x-t) is continuous

for 0 ~ t c and —c ~ t 
< 0 wi th  at worst a jump discontinuity

at t 0. Therefore we may replace f(x-t) by f(x—) for t ‘ 0

and f (x+ ) for t < 0 giving

— 3 4 —
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1.
1 ~~ sin (K+I)s —

g~~(x) “~ (f(x+)+f(x—)] ~~~ 
f — ds (K+OD)
0

Since

1 £ sjfl(K+*)s 
ds = 

1 (K+~ )E ~~~ ~ ds “ ~ f ~~~~ ds = ~ ( K-’c~ )

for any fixed c > 0, we obtain

g~ (x) “u *(f(x+)+f(x—)] (K-.~)

proving (3.3).

In the neighborhood of a point of discontinuity of f(x)

(or x = 0 and x = 2ir if f(0+) + f(2w—)) the convergence

of g~~(x) to its limit (3.3) as K -
~~ is not uniform. To

investigate the detailed approach of g~ (x) to g(x) near a

point of discontinuity x0 of f(x), we use the asymptotic

integral representation (3.13) to obtain

c sin[(K+~)tJg~ (x0+ —~
--- ) “~ ~ 

f f(x0+..L- -t)dt (K-~co)

for every fixed z. Since c is assumed small we can approxi-

mate f(x0+s) by f(x0+) for 0 < S < c and by f(x0-) for

-e < s < 0. Therefore, for each fixed z and c ,

—3 6—
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q~ (x0+ 
_

~~~~~~ , 
~ 
f x 0+) 

Z/(K+I)sifl(ic+*) 
+ ~~~~~ sin uc+I)t 

-

z/(R+*)

= 
f(x0+) 1~ 

~ ds + 
~~~~~~~ 

c (K+ *) 
sth ~ dx (K~’°)

— c (K+~ ) z

f(x0+) ~ dx + 
f(x0-) sin ~ ds (K.co ) 

-

-

~ Since f sin s/s ds it , we obtain

g~~(x 0+ —
~~

-—) “.. *Ef(x0+)+f(x0—)) + ~- ( f ( x0+ ) — f (x 0— ) 1  Si( z) (K’,) .. - 

-

- K+~

- (3.14a)

for any fixed z. Here the sine Integral Si(z) Is defined

Si(z) = 
~~ 

f ~~~ ~ ds (3.14b)
- 

A plot of Si(z) is given in Fig. 3.2.

The result (3.14) shows that if x - x0 — 0(i) as K • ~ then
- gK (X) 

— I(f(x0+)+f(x0-)] = 0(1). This shows the nonuniformity of

convergence of g~ (x) to f(x) in the neighborhood of the discon-

tinuity x0. This i~ nuniforzn belavior of the limit g~(x)÷f(x) as K

is called the Gibbs phenomenon.

lb ilus~~ate the Giths r.*~errm1eron in an act~.al Fbtr ia sa ies, we plot
- in Fig. 3.3 the partial sums of the Fourier sine series expansion

of the function

- f(x) — X/1t (0cx<ir )

The extended function f8(x) is discontinuous at x = it leading
to the Gibbg phenomenon there.

- - - - -
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Fig. 3.2. A plot of the sin. int.gral SIL(z) d.fined in (3.14b) for 0 ~ ~ 15.
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As K • — , the maximum error of the partial sums of a Fourier

(complex or sine or cosine) series in the neighborhood of a point

of discontinuity occurs at the maximum of S1(z)

Since Si’(z) — 0 when z — nit for n — ±1,±2..., the maximum

error must occur at ose of these points. It is easy to argue that

the maximum of 51(z) actually occurs at z — iv where

Si(w) 4 .58949 (3.15)

Thus the maximum overshoot of the partial sum s of the Fourier

series near a discontinuity occurs near x x0 + ~~~~~~ for K
I

large and is of magnitude

g~ (x0
+_i_) — f(x0+) ‘~ .08949[f (x0+)—f (x0—)J (K+~) (3.16)

I

where the quantity in square brackets is the jump at x0. For the

example plotted in Fig. 3.3 the jump of f9(x) at x iv has

magnitude 2 so the Fourier series gives a local overshoot of

magnitude 0.179.

As z + ± ~~ , Si(z) -~ ± 1 so that (3.14) is consistent with

the convergence of the Fourier series to f(x0+) just to the right

of x0 and to f(x0— ) just to the left of x0. The Gibbs phenomenon

only appears when x + x0 at the rate 1/K as K *

Rate of Convergence of Fourier Series

If f (x) is smooth and periodic , its Fourier series does not

exhibit the Gibbs phenomenon. The Fourier series of sirh an 1(x) con-

verges rapidly and uniformly. Suppose f(x) is periodic and has

-40— 
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continuous derivatives of order p = 0,1,...,n—l and f~~~(x) is

integrable . Applying integration by parts to (3.2) , it follows that

________ 1
21r (n) —ikxak = i f (x)e dx

2n(ik) JO

Since f(n) (x) - is integrable, the Rieznann-Lebesque lemma

implies that

ak << i/k” . (k + ±o~ ) . (3.17)

Note that, because f(x) is periodic, continuity of f~~ (x)

also requires f(P) (0) = f~~~ (2n) . It follows from (3.17)

that if f(x) is continuous with f(0) = f(2ir) and f’ (x) is

integrabie then ak << 1/k as k + 
~ ; if, in addition, f’ Cx)

is piecewise continuous and differentiable then ak = 0(1/k2)

as k+~~~.

Now we can be more precise in our estimates of the error

- f(x) . If ak goes to zero like l/k’~ as k + ~~

and no faster1 then f(1~~~ (x) is discontinuous. In this case,

g~ (x) - — f(x) = 0&4) (K + ) (3.18)
K

when x is fixed away from a point of discontinuity of

as K-’~ ° , while

g~ (x) — f(x) = 0(,~~i
) (K -

~~ °°) (3.19)

when x - x0 — 0(i) as K + ~ where x0 is a point of

discontinuity of

H - In particular, if f(x) is infinitely differentiable and

periodic (f(x+2ir ) f(x)J , g~ (x) converges to f(x) more

rapidly than any finite power of 1/K as K -
~~ for all x

~~~~• - •  -• — - ~~~~~~~~ ~~~~~~
-- , -

~~ ~a rr r i_ . _ . _ :
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Fourier sine and cosine series have convergence properties

very similar to the complex Fourier series just discussed. We

summarize these properties for Fourier cosine series. If deri-

vatives of f(x) of order p = O ,1,...,n-l are continuous for

0 < x < it while f (P) (0) f(P) (~ ) 
-
~~ 0 fnr all odd p < n

and f~~~ (x) is integrable, then the Fourier cosine coefficients

given by (3.7) satisfy

a~ << 1/k ” ( k + — ) , (3.20)

as may be proven by integration by parts.

Thus, if f Cx) is infinitely differentiable for 0 < x < it

and f (2p+l) ~~ ~ 
C 2p+1) (ir) = 0 for p = 0,1,... then the

Fourier cosine coefficients ak approach zero more rapidly

than any power of 1/k as k + + . In other words , if f ( x)

is infinitely differentiable on -
~~~~ < x < ~~, periodic with period

2-it (f(x+2ir ) = f(x)] , arid even If(x) = f(—x )],

then the remainder after N terms of the Fourier cosine series

(3.~~) goes to zero more rapidly than any finite power of li~ 
-

as ~~~~~ •

To compare the convergence properties of Fourier sine and

cosine series, we have plotted in Figs. 3.3 and 3.4 some results

for the Fourier sine and cosine expansions, respectively, of the

function x/n for 0 ~ x < it • As discussed above, the Gibbs

phenomenon in the sine series expansion is evident at x = iv (see

Fig. 3.3). Observe that the error in the N term partial sum

goes to zero like 1/N as N + ~ when x is fixed 0 < x < it

The Gibbs phenomenon near x = -it slows the convergence of the

Fourier series for all x. In Fig. 3.4, we plot the error between

the N term cosine series and x/iv . Observe that as N + ~~~ the

error goes to zero like 1/N2 for 0 < x < iv and lik e 1/N when

x— 0(1/N) as N - ~~
- — 4 2 —
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ch.bygMv polynomial expansions

The convergence theory of Chebyahev polynomial expansions

is very similar to that of Fourier cosine series. In fact, if

g(x) = 

k=O 
akTk ( x) (3 .21 )

is the Chebyshev series associated with f(x) for —l < x < 1

then G ( e )  = g(cos 0) is the Fourier cosine series of

F (0 ) = f (cos e) for 0 < 0 < n . This result follows from

the definition of T~~(x): since T~ (cos 0) cos n 0,

G(0) — g(cos0) = ~ ~~ cos nO • Thus,
k=O

-It 1

• ~~~~~~
— f f(cosO)cos kO dO = —a—- f(x)Tk(x) 

(l_x 2)~~ dx
k o ITC

k —l •

(3.22)

where c0 = 2 , Ck = l  (k > O).

It follows from - this close relation between Chebyshev

series and Fourier cosine series that if f(x) is piecewise

continuous and if f (x) is of bounded total variation for

-l < x < 1 then g(x) = ~(f(x+)+f(x—)] for each x (—1 < x < 1)

and g(1) = f(l—), g(—l) = f(—1+) . Also , if f~~~~(x) is

continuous for all lx i < 1 for p = 0,l,...,n—1 , and f~~~~(x) is

integrable, then

ak << 1/k’’ (k ~~- 
~~~~~~~~ (3•~ 3)
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Since Tk(x)I < 
~ . for l x i < 1 , it follows that the re-

mainder after K terms of the Chebyshev series (3.23) is asynptotmcally

much smaller than 1/K”~~ as K -
~~ ~~~. If f(x) is in-

finitely differentiable for x l < 1 , the error in the

Cbebyshev series goes to zero more rapidly than any finite

power of 1/K as K -~~
The most important feature of Chebyshev series is that

their convergence properties are not affected by the values

of f(x) or its derivatives at the boundaries x — ± 1. but

only by the smoothness of f(x) and its derivatives throughout

-1 -C x -C 1 . In contrast, the Gibbs phenomenon shows that the

rate of convergence of Fourier series depends on the values ~f

f and it. derivatives at the boundaries in addition to the

smoothness of f in the interior of the interval. The

reason for the absence of a Gibbs phenomenon for the Chebyshev

series of f(x) and iti derivatives at x — ±1 is due to the fact

that F(0) — f(cos 0) satisfies F~
2
~~~~(O) — F~

2
~
’
~~~(,t) — 0

provided only that all derivatives of f(x) of order at most 2p+1

exist at x —  ti.

An important consequence of the rapid convergence of Chebyshev

polynomial expansions of smooth functions is that Chebyshev expansions

may normally be differentiated termwise. Since

d~ 2
— Tk(x) = 0(k P) (k * oo)

dx~

uniformly for lx i ~ 1 (see Appendixi , if ak 0 faster than any

finite power of 1/k as k + ~ then (3.21) implies

— 4 5 —
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— E ak (3.24)
dx~ k—O dx~

(as may be proven by an elementary uniform convergence argument).

While Chebyshev expansions do not exhibit the Gibbs phenomenon

at the boundaries x = ± 1 , they do exhibit the phenomenon at any

interior discontinuity of f(x). In Fig. 3.5 we plot the partial

sums of the Chebyshev expansions of the sign function sgn x:

4 T2÷1 Cx)
sgn x = 

~ n=0 
(~ l)

’
~ 2n+l (3.25)

Near x = 0, a Gibbs phenomenon is observed; for fixed x $ 0,

the error after N terms is of order 1/N. In general, the local

structure of the partial sums g~ (x) of Chebyshev series near a

discontinuity of f(x) is , aside from a simple rescaling, given

by (3.14):

_ _ _ _  ~.

+ ~4f(x0+)—f (x0—fl 
Si(z) (K~~)

where 1x 01 < 1 and z is fixed. This equation is derived

by a simple extension of the argument used to derive (3.14)

(cf. (3.33) below for the explanation of the origin of the

scale factor l,4/ç 1.
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Pate of convergence of Sturm-Liouville eigenfunction expansions

Let us consider the expansion of a function f(x) in terms

of the eigenfunctions 4~~~~ 
of a Sturm-Liouville problem: The

eigenfunction $~ (x) is a nonzero solution to

~~ 
p (x)~~31 + (X~w(x)—q (x)) 4~ (x) = 0 (3.26)

satisfying homogeneous boundary conditions . To be specific in

our discussion we assume the boundary conditons ~~ (a) — 4~~(b) = 0,

although the analysis applies more generally. We assume that

p(x) ~ 0, w (x) ~ 0. q(x) ~ 0 for a x b. We will also

assume that the eigenfunctionS are normalized so that they satisfy

L

b
w(x)~ n (x)~ m (x)dx = 

~nm (3.27)

and that they form a complete set; the latter property follows if

as n + (see Courant & Hu bert, 1953, p. 424).

The requirement that -.- follows heuristically as follows:

(3.26) suggests that •~ (x) has a typical spatial scale of 1//c ,

so the requirement that arbitrary f ( x )  (with arbitrarily small

spatial scale) be expansible in terms of { +~~~~
} implies that

must grow unboundedly with n

—48— 
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We wish to •stimate the rate of convergence of the eigen-

function expansion

f (x) = 
~ 
an~n

(x) - (3.28)

n—i

using the orthonormality relation (3.27), the L2
- error after

N terms is

[b - 
~ a~~,~(x)l~ w (x)dx]~~~~~ 

a~]. 
(3.29) —

a n=l N+l

Thus, the L2-error may be estimated by calcnlating 
the rate

of decrease of a~ as n + ~~

Orthonormality of ($,,} implies that

a = f(x)
~ n

(x)w(X)dX . (3.30)

Substituting w (x)
~ n

(X) from the Sturni—Liouville equation (3.26)

gives

= ~~ 1
b 

~~~

_ 
~~~~~ p (x) -~~~~~~ + ~(x)~ n) 

f(x)dx .

Integrating twice by parts, we obtain

b b
a~ = ~~ p(x)($~~(x)f’(X) $1~(X)f(X))i 

+ ~Lf h(x)4~~(x)w(x)dx (3.31)
x=a n a

________________________ _______________________________
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where

- - 
h(x)  = [— ~~ -p C x) + q (x)f(x)] /w(x). (3.32)

This integration by parts is justified if f is twice differentiable

and h is square integrable with respect to w. Under these con-

ditions and recalling that 4P~~(a) = $~~(b) = 0 , we obtain

a~ = ~L Ep (a),~~(a)f(a)—p(b)~~~(b)f(b)] + 0(~!~)

b b b
as n + ~~~, since f h~1.~w d x 12 < f h2wdx f 4~ wdx = 0(1) as

n +

Nonsingular Sturm-Liouville problems

To proceed further we must distinguish between nonsingu—

lar and singular Sturm-Liouville problems: a problem is non--

singular if p (x) >0 and w(x) >0 throughout a x ~ b. The

important conclusion from (3.31-32) is that if the Sturm-Liouville

problem is nonsingular and if f(a) or f(b) is nonzero then

a~ ‘
~~ ~L [p(a)~~~(a)f(a)-p(b)q,~ (b)f(b) ] (n +

(3.33)

(Notice that if $~~(a) = 0, then ~~ (x) 0 since (3.26) is

second-order differential equation and p(x) ~ 0).

It is well known [Courañt & Hilbert 19531 that the asymptotic

behavior of the eigenvalues and eigenfunctioris of a nonsingular

Sturm-Liouville problem are givei~ by

~

- - —

~ 
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An ~ [n1r
/f

b
~~~~dX]

2 (n + co) (3 34)

“
~ 
An sin~~~ (n + —) (3.35)

Using these relations in (3.33), we find that a~ behaves like

as n + . .

This behavior of a~ lead s to the Gibbs phenomeno n in the

expansion (3.28) nea r those boundary points at  which f (a) or

f(b) ~ 0. The asymptotic behavior (3.34—35) implies that this

Gibbs phenomenon is asymptotically identical to that exhibit& by

Fourier sine series provided we use the stretched independent variable

__________ 
b 

__________

K — i(x—a)iw (a)/p (a) if lw(g)/p[s) de (3.36)
a

near x — a and a similarly stretched coordinate near x — b.
If f(s) — f(b) — 0 ,then a~ << 1/n as n + ~~~. However, a

further integration by parts in (3.31) shows that if the Sturm-

Liouville problem is nonsingular and if h(a) or h(b) + 0,

then an behaves like as n * ~~~. In general, unless f(x)

satisfies an infinite number of very special conditions at x — a

and x — b, then a decays algebraically as n-~~.

These results on algebraic decay of errors in expansions ]
• based on nonsingular second-order eigenvalue problems generalize

to higher-order eigenvalue problems. For example, as n-~~, the expansion

coefficients in a~ in f(x) a ~ Cx), where {~ C x ) )  are
n—0 n n  n

the normalized ‘beam’ functions

~

)

~~

‘‘‘  — x~~~ , • (±l) — ~~(±l) 0 .

51 
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behave like if f(±l) ~ 0 (implying a Gibbs phenomenon at the

boundaries x — ± 1) ,  lik e —
~~~~

- if f(±l) — 0 but f’(±l) ~ 0

like —
~~~~ if f(±1) — f’(±l) = 0 but f’’’’(±l) ~ 0, and so on.
n

Singular Sturm-Liouville problems

If p(a) = 0 in (3.33) then it is not necessary to require that
• 1

f(a) = 0 to achieve a << as n + • For this reason ,n

expansions based on eigenfunctions of a Sturm—Liouville problem that

is singular at x = a do not normally exhibit the Gibbs phenomenon

at x = a. Furthermore , if the argument that led to (3.33) can be

repeated on h (x) given by (3.32) [this is possible if p/w, p’/w,

and g/w are bounded and all derivatives of f are square integrable

with respect to WI then the boundary contribution to a from
$4  

n

x = a is smaller than 4 as n + ~ . If there are also no
A’

boundary contributions from x = b when the operations leading

to (3.33 )  are repeated indefinitely (which is true if p(b) = 0],

then a~ decreases more rapidly t han any power of ~~~~
- as n -‘-

The important conclusion is that the rate of convergence of

eigenfunction expansions based on Sturm-Liouville problems that are

singular at x = a and at x = b converge at a rate governed by

the smoothness of the function being expanded not by any special

boundary conditions satisfied by the function.

Fourier— Besse l series

A Fourier-Bessel series of order 0 is obtained by choosing

the expansion functions to be the eigenfunctions of the singular

Sturm-Liouville problem

d d$
+ A~ x,

fl 
— 0 (0 < x < 1) (3.37)

— 0, • (O) finite , j

L 
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Therefore, p(x) = w (x)  — x in (3.26) so the problem is singular

at x - 0, but nonsingular at x — 1. The eigenfunctions are

— Jo ojon)t)

where is the Bessel function of order 0 and j  is its
2

nth zero, J0(j0~) — 0. The eigenvalues A~ — j0~ satisfy

“ (n- -1)1! (n-. oo )

The Fourier-Bessel expansion of a function f(x) is given by

f(x) — Z a~ J 0 (j 0~x) . (3.38a)
n l

The expansion coefficients a are given by (3.30):

1
a~ 

2 

~ 
~ 
tf(t)J0(i0~t)dt~ 

(3.38b)

0~~on

because

f t ~~~0 ~~ont) 2 dt 
~

For example, the Fourier—Bessel expansion of f(x) = 1 is

1 = — 
2 J 0 (j 0~x) (3.39)

n’~i i0~J~~(i 0~ )

In Fig. 3.6 we plot the 10, 20, and 40 term par tial sums of the

series (3.39). There are three noteworthy features of this

plot:

(i) At x = 1 there is apparently a Gibbs phenomenon. In

fact, it is easy to show that this Gibbs phenomenon has the same

structure as that for Fouri•r sine series :
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N izj —

— 
2 J0 (i 0~ — Ofl) ~‘. Si(z) (N.)

n 1  
~~~~~~~~~

+This behavior is not too surprising because J0 ( zh.(2/ i rz)  cos (z— ~1r)

as z-’+°, so~ the large n behavior of (3.39) can be asymptotically

app roximated by that of Fourier series.

(ii) For fixed x satisfying 0 < x < 1, the error after

N+l terms of (3.39) is
N

i + 2 J0(i0~x) — 0(~) (N-.-.o)
n—0

In fact , the nth term of (3 .39 )  has magnitude of order 1/n

and oscillates in sign roughly every mm (~~, ~~~~~~~~~ 
terms. The

error in such an oscillating series is -of order 1/N after N terms.

(iii) At x = 0, the series converges (so there is no Gibbs

phenomenon there) but the convergence is very slow and oscillatory.
N+ 1In fact, the error after N terms is of order (—1) /v’~

This follows because

N n N+l
i + 2 

~ 
(—1) 

~
‘ 
(—1) (N-.-cD )

n 0  j J~~(j~~~) n—N+l V9~

(3.40)

This slow rate of convergence near x = 0 holds even though the

eigenvalue problem is singular at x = 0. There are two reasons

for the slow convergence of Fourier—Bessel series near x=0. First ,

the Gibbs phenomenon at x = 1 affects the rate of convergence

throughout 0 ~ x ~ 1. In fact, this is the sole source of the

~behavior (3.40). Howevet, when f’ Cx) ~ 0, slow convergence near
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x = 0 can also originate because p(x) w(x) a x gives

p’/w = 1/x which is singular at x — 0 so h(x) given by (3.32)

is singular at x = 0 if V (0) + 0.

Chebyshev series revisited

Chebyshev polynomials ar e the eige nfun ctions of the singu-

lar Sturm—Liouville problem (3.26) with p(x) = /1—x
2,

w(x) — 1//1-x2 , q(x) — 0, - 1 ~ x ~ 1, and the boundary conditions
that q~~(±l) be f inite. The eigenvalue corresponding to T (x) is

An ~~~ Since p/w = l-x2 and p ’/w = -x are both finite for

lxk i , it follows that the argument leading from (3.30) to (3.33)
can be repeated on h(x) given by (3.32) so long as f(x) is

sufficiently differentiable. Therefore, the Chebyshev series

expansion of an infinitely differentiable function converges

faster than any power of 1/n as n * ~~~, as shown following (3.23)

by a different method.

To illustrate the convergence properties of Chebyshev series

expansions, we study the rate of convergence of the series

sin M—(x+a) = 2 ~ -~-J (Mit ) sin (Mii-a+~ n-rr)T Cx) lx i ~ 1n=0 n

(3.41)

Since J~ (M~t) 0 exponentially fast as n increases beyond Mu , it

- 

follows that (3.41) starts converging very rapidly when more

than MIt terms are included (see Fig. 37). This result leads to

an heuristic rule for the resolution requirements of Chebyshev

expansions. Since sin Mit (x+a) has M complete wavelengths lying

within the interval x~ < 1, we argue that Chebyshev expansions

converge rapidly when at least -it polynomials are retained per

wavelength. In general , we expect that the Chebyshev expansion

-

~~~ 

- of a function that oscillates over a distance A converges rapidly

if 21ir/A polyncunials are retained. Fewer polynomials are required
only (see below).

if the region of rapid change of the function occurs at the boundary
—56— A
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Pig. 3.7. A plot of the L2—error in the 
Chebyshev series expansion (3.38) of

ain (NJTx) truncated after TN(x) versus N/M. The various syizbols represent:

• 0 M • 10; x M 20; t~ H — 30; 0 M 40. Observe that the L
2
-error approaches

zero rapidly when N~M > it.
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The Chebyshev polynomial expansion of a function f(z)

that is analytic in a region of the complex-z plane that includes
the interval -l < z ç 1 converges at least exponentially fast
as n + . If f(z) has singularities in the finite—z plane

then

liin sup lak i = ( 3 42 )

where R is the sum of the semi—major and semi-minor axes of
the largest ellipse with foc i  at z = ±1 within which f ( z )

has no singularities. Thus , the L2—error (3.29) after N terms of
the Chebyshev expansions decays to 0 roughly like R N as N+o.

ro prove (3.42), we note that

ri f(z)T (z)
a =~~~~ 2.— i _ _ _  dz
n i!C J~~ Il—z2

—1/2 —n
= —i--— I f ( z ) ( l— z 2 ) ( z + / z 2 — l )  d z (3 . 43 )

itcn -~C

where C is any co~ntour that encircles the interval (-1,1)

just once and does not enclose singularities of f(z).
-n 12 -n

Eq. (3.43) follows because 2T~ (z) = (z + /z —1) + (z — ‘z —1)

where we choose the branch of /~
2_i satisfying /z2-1 “- z

as z + ~ - Since (z + Jz~-l)~~ -’~ 0 as z + with this

choice of branch cut, we can expand the contour C to infinity

by Cauchy ’s theorem and pick up the contribu tions from the

singularities of f(z). If the ‘nearest’ singularity is a pole

at z = z0 
with residue r (other singularities may be treated

similarly), then

a ~ 2i r 
+ /?-l)’~ 

(n -
~~ ~~~) .

n 0 0

—58— 
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To complete the justification of (3.42) we need only show

that (z0 
+ /z~— l I  = R - Recall that an ellipse with foci

at ±1 satisfies x2/A2 
+ y2/B2 = 1 with A2 - B2 — 1 •

If z
0 

lies on this ellipse, then setting z
0 

= A cos 8 + iB sin 0

it follows that + /z~~-i = (A+B)e18 = Re~°

Let us give ar example of the behavior (3.42). The function

f(z) = tanh (10 z) has poles at ~ = ± jit/20 . Thus ,

R = it/20 + Ii + (it/20)2 ~ 1.16934. The Chebyshev expansion

coefficients of f(z) satisfy a2 = 0 (because f (z) is an

odd function), while a
1 ~ 

1.2679, a3 
j — 0.4089, a5 ~j  0.2300,

and so on. The rms CL2) error eN (see (3.29)]

obtained by truncating the series for f(z) after TN
(z

satisfies (e,/e11
) + (1.175)

2 
~ e47/e49 1’ 

(1.16935)2 ~

demonstrating ( 3 . 4 2 )  for this case. The error eN is smaller

than 0.01 for N > 25, which again illustrates the result that

roughly -ii polynomials per ‘wavelength ’ are required to resolve

a function ; the function f(z) has a region of rapid change

near x = 0 of width roughly 0.1.

If f(z) is entire, R = in (3.42) so its Chebyshev

expansion coefficients decay faster than exponentially. More

precisely, the method of steepest descents applied to (3.43) gives

the following result: if f(z) is entire and

f(z) = 0 ( 1 z 1 8 exp I z l ~~) as z + , then

ur n  sup (LnIa~~I)/(n Lnn) = — 
~~

- (3.44)

For example, sin M-ir(z+a) is entire witn ~ = 1 while its

Chebyshev coefficients in (3.41) satisfy a — O((Mfl)n/flI)

as n + ~~ , in agreement with (3.44). Also, a polynomial has

Chebyshev coefficients that satisfy (3.44) with a — 0

— 59— — 
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Finally, we remark that the Chebyshev series expansion

(3.21-22) of an arbitrary function g(x) has a maximum

pointwise error that does not differ drastically from the

smallest possible maximum pointwise error of any Nth degree

4 polynomial, the so-called miniffiax error. In fact, the maximum

pointwise error of the Chebyshev series (3.21) truncated after

T
N
(x) is at most 4(1 + it 2 £nN) times larger than the miniinax

error (Rivlin 1969). Since 4(1 + —2 LnN) < 10 for

N < 2,688,000, the Chebyshev ser ies is within a decimal place

of the minimax approximation for all such polynomial approxima-

tions.

Legendre series

Legendre polynomials are the eigenfunctions of the singular

Sturm—Liouville problem (3.26) with p(x) l—x 2, g(x) = 0,

w(x) = 1 for —l ~ x ~ 1 and the boundary conditions are

A = n(n+1) and its eigenfunction is ~~(x) = Pn (X)s the

Legendre polynomial of degree n. Since p1w = 1 - x and

p’/w = —2x are both finite for xl ~ 1, it follows that the

Legendre series expansion of infinitely differentiable functions

converges faster than algebraically.

To illustrate the convergence properties of Legendre series,

we study the convergence of the series

sin Mn (x+a) = 
1 

~~ (2fl+ 1)J~~~4
(M1T ) sin (M~Ta+~ nr ) P ~~(x )

( 3 . 4 5 )

Since the expansion coefficients in (3.45) vanish rapidly as fl

inc reases beyond Hit, we conclude that Legend re polynomial expansions

—60— 
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of smooth functions converge rapidly provided that at least

it polynomials are retained per wa~,elength. (see Fig. 3.8).

When a discontinuous function is expanded in Legendre series,

the rate of convergence is no longer faster than algebraic. In

the neighborhood of a discontinuity , a Gibbs phenomenon occurs

whose local structure is the same as that for Fourier series

with a suitable stretching of the coordinate. For example, the

Legendre series expansion of the sign function sgn x is

sgn x = ~ (-1)~~(4n+3)(2n)~ p
2 1(x) 

(3.46)
n—0 2 ~ Cn+l)!n! fl+

1-
The partial sums of this series are plotted in Fig. 3.9. Three

features are i*oteworthy:

Ci) The Gibbs phenomenon near x = 0 has the same structure

as that for Fourier series.

(ii) The error after N terms behaves like 1/N for I x i l c i ,

x + 0. This follows from the fact that the (2n+l)st Legendre

coefficient in (3.46) satisfies

a — (_j)fl (4n+3) (2n) I 
— 0(—~—-) (~

+
~) 

(3.47)
n 22n+l Cn+1)lnL

and the estimate

P (x) - 0(—~--) 
(n + c o )

n

for l x i  <1; the series (3.46) is an alternating series if x

C is fixed away front zero so the error after N terms is at most

of order a~P~ 
_

~~ (
1 )2

( —61—
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Pig. 3.8. A plot of the L2—error in the Legendre series expansion (3.39) of
sin(Mrtx) truncated after PN(x) 

versus N/K. The various symbols represent:

0 Ms 10; ~ — 20; z~ M— 30; 0?1 • 40. Observe that the L2—error approaches

zero rapidly when N/H > it.
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• (iii) The series converges only like l/~~ at x = ± 1. This

follows from ( 3 . 4 7 )  because P (±1) = (±l) n for all n. Thus,

an interior Gibbs phenomenon in a Legendre series expansion has

a ‘long—range ’ effect  in the sense that it seriously affects the

rate of convergence at the endpoints x = ±1 of the interval.

In contra st, the error of the Chebyshev expansion of sgn x

plotted in Fig. 3.5 decay like 1/N at x = ± 1 . This behavior

is quite general; the boundary errors of Legendre polynomial

expansions decay to zero roughly a factor iW slower than the

boundary errors of Chebyshev expansions.

The rate of convergence of Legendre expansions of a general

function f(x) may be estimated as for Chebyshev expansions.

4 In particular, the results (3.42) and (3.44) hold provided that

f (x) satisfies the stated conditions and (3 .23) hold s with

only minor modifications.

Resolution of thin boundary layers

Legendre and Chebyshev polynomial expansions give an

exceedingly good representation of functions that undergo rapid

changes in narrow boundary layers. Consider the sequence of

functions g~~(x) = f(x) expl (x—l)/fl as 15+0 with Re~~>0 for —

a fixed smooth function f(x). As 15+0, g15 (x) develops a

boundary layer of width 15 near x 1. It may easily be shown 
j

that the Chebyshev expansion coefficients of g
15
(x) satisfy

—64— J
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a~~- (26/it)
1’12 f(l)e 7 ~~ (n+c. ; ón2a.O (l)) (3.48)

provided that Re 6>0. Thus, if N polynomials are retained ,

the rms error ~ in the Chebyshev expansion of g6(x) satisfies

Mi E ~ (Re15)N2 (N-.-co) . (3.49)

The result (3.49) implies that as 6+0, the number of

polynomials required to reach a specified error bound increases

only as 1//i, in contrast to a uniform grid representation of

g6(x) that would require order 1/15 grid points in the interval

x~<l. In fact, to achieve 1% maximum pointwise error in boundary

layers of thickness 15 at the ends of the interval -1-cx<l , It

is necessary to retain only -

•

N - 3//Re ~ (3.50)

polynomials as 6-.-0.

Heuristically, the reason that Chebyshev expansions represent

boundary layers so well is that the extrenta of T~ (x) occur

at x cos it j/n for j 0 ,1,...,n. Since x0-x1 it /2n and

—x - it2/2n2 as n-~ , it follows that these polynomials can
n-l n
resolve changes over distances of order n •

-65- 
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The convergence properties of Legendre polynomial expansions

of boundary-layer functions are similar to those of Chebyshev

expansions. In particular, (3.49) and (3.50) are both still

valid. In Fig. 3.10 we compare the spatial distribution of the

errors in Chebyshev and Legendre polynomial expansions of the

function g(x) = e100~~~
3
~~, which has a narrow boundary layer

of width 1/100 near x=l. Apparently for x away from the

boundaries x= ±l, the Legendre expansion has somewhat smaller

errors, while near x= ±l the Chebyshev expansion has smaller

errors.

The Legendre expansion gives the polynomial QN
(x) of

degree N that minimizes

1

.1 lg(x) - QN (’~~l
2
~~—l

while the Chebyshev expansion gives that that minim izes

~ l 
g(x) - 

~~~~~ 
i
2 

(l-x
2
)~~~~

2
dx.

The Chebyshev expansion also gives a smaller maximum error

max g(x) - QN
(
~
c )I

I x

than the Legendre expansion by roughly a factor 2//N

as remarked above, the Chebyshev QN(x) is usually remarkably

close to the minimax polynomial that minimizes the maximum

error.
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Laguerre polynomials are the eigenfunctions of (3.26) with

p(x) = xe X , q(x) = 0, w(x) — e~~ for 0 < x < ~ with

-
• 

- -
l x

e ~ $~ (x) bounded at x = 0 and ~~~. The ~th eigenvalue is

A = n and the associated eigenfunction is •~ (x) = L~ (x)~

the Laguerre polynomial of degree n. If f(x) and all its

derivatives are smooth and satisfy

ax
f (x) = 0(e ) (x --~~)

for some a < ~~~, 
it is easy to show by retracing the derivation

of (3.33) from (3.30) that the Legendre expansion

f(x) = ~ a~ L~ (x)
n=0

converges faster than algebraically as the number of terms N ~~-

To illustrate the rate of convergence of Laguerre series,

we consider the expansion of sin x :

sin x = 

n~0 2 (n4 1.) 72 COS[~
(flhl)]Ln(X) (3.51)

which convcrges for all x, 0 ~ x < ~~~. Since

L (x) ‘~ ‘ ~~~~~ e~~x~~n~* cos(2/~~ —*it]n

(see Erdelyi et al 1953, Vol. II, pg. 200] it follows that if

N > > x, then the error after N terms at x is roughly

e1~
2N~’2 (Nx)1

This error is small only if NL n 2 > x or N > 1.44x. Since

the wavelength of sin x is 21r , Laguerre expansions require

approximately 9.06 polynomials p.r wavelength to achieve high

-68-
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accuracy . (This figure may be reduced to about 6.53 polynomials

per wavelength by using the modified Laguerre expansion

~ a~L~ (x)e~~
C and optimizing the choice of a.) Thus, Laguerre

- - 
expansions require many more terms to resolve a function of given

complexity than do either Chebyshev or Legendre expansions. The

reason is that significant weight is given to x -
~ + in the

Laguerre series where sin x has an essential singularity.

In Figs. 3.11—13, we plot the partial su ms of (3.51) with

- - 
I - N = 10, 20 , and 40 terms. Observe that the number of wavelengths

of sin x represented accurately by (3.51) is roughly N/9.

Nermite expansions

Herntite polynomials satisfy ~(3.26) with p = e~
C 

, q(x) 0,
2 2

w(x) = e~~ for - ~ < x < ~~~
, •~~(x)e~~

C bounded as l x i + 
~~~

The Hermite polynomial H~ (x) of degree n is associated with

the eigenvalue A~ 2n. If f (x) and all its derivatives satisfy

f(x) O(e~~ ) (lx i -+

for some a < ~~ , then the Hermite expansion

f(x) = 
~ 

an Hn (x)
n= 0

converges faster than algebraically as the number of terms N -
~

This is proved by retracing the steps leading from (3.30) to (3.33).

To study the rate of convergence of Her-mite series, we consider

the expansion of sin x:

= 

n—0 2~~
’1 (2n+1H 

H2~~1(x) (3.52)

L 
- 

- 
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Since the asymptotic behavior of H
n
(X) is given by [Erdelyi ,

et. al 1953, vol. II, pg. 201)

H~ (x) “-a e~~ 
r cos (12n+1 x - ~n1t)

— as n + for x fixed, it follows that the error after N

terms of (3.52) goes to zero rapidly at x only if N 
~ lo~~x

This result is very bad; to resolve M wavelengths of sin x

requires nearly Hermite polynomials ! (By expanding in the

2
series ~ a~~H~ (x)e~~~~ - and optimizing the choice of a, it is
possible to reduce the number of required Hermite polynomials to

about ~ -ur ~ 7.85 per wavelength, but this is still quite poor.] -
•

Because of the poor resolution properties of Laguerre and

Hermite polynomials the authors doubt they will be of much prac-

tical value in applications of spectral methods.

1

(
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4. Review of Convergence Theory

The fundamental problem of the numerical analysis of

initial value problems is to find conditions under which

uN(x,t) converges to u (x,t) as N -‘. ~ for some t ime in-

.4 terval 0 < t < T and to estimate the error I lu  - UN 11
4 The principal result is the Lax-Richtmyer equivalence theorem

which states that stability is equivalent to convergence for

consistent approximations to well-posed linear problems. The

terms stable, convergent, and consistent relate to technical

properties of the approximation scheme which are defined below.

An approximation scheme (2 .5-6)  is stable if

L t
lie N u < K(t) (4.1)

for all N where K(t) is a finite function of t . Here

the operator norm is defined by

LNt

li e N = max lie uft
utj( h u ll

An approximation scheme is convergent if

i l u ( t )  — uN(t) II + 0 as N -.

for all t in the interval 0 ~~ . t j  T and all u (0 )e )~ and

f(t) c)(. Finally, an approximation scheme is consistent if

liL u - LNuII + 0

(4.2)

I I U _ P NU l I  + 0

—7 4—
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Ci as ~~~~~ for all u in a dense subspace of )~

The classical Lax—Richtmyer equivalence theorem relating

the above definition states that “a consistent approximation to

a well—posed linear problem is stable if and only if it is

convergent.” In this monograph we are confronted with some

subtleties regarding the notions of stability and convergence.

Because a precise understanding of the ideas of stability and

convergence is important to the theory of algebraic stability

given in Sec. 5, we outline here the proof of the equivalence

L theorem.

Proof of the Equivalence Theorem

To show that stability implies convergence we use (2.1) and

(2.5) to obtain

a(u~uN)
= LN(

u_u
N) + Lu - LN

u + ~ 
- 

~N

Thus,

L t
u(t) - uN (t) = e N [u(0)_u N (O)l

t LN
(t_s)

+ f e [Lu(s)_LNU(s)+f (S)—fN
(8)] ds~ (4.3)

(. Using (4.1) and (4.3) and the triangle inequality we obtain the

estimate

I I u ( t ) _ u N (t) fl ~~~. K(t) llu (0)
~
uN (O) II

+ f K ( t—s ) ( l l L u ( s )_ L NU ( 5 )  II + 
~~~~~~~~~~~ ~~ 

ds

(4.4)

Thus, if u(t) belongs to the dense subapace of )~ 
satisfying

(4.2) and if f (t) belongs to the dense subspace of )(. satisfy-

( 
ing II ~ 

- 

~~ N~~~~
t ’  

• 0 as N + ~ , then t I n ( t )  - uN(t) II + 0
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as N . ~ • Since all solutions u(t) of (2.1) can be

approximated arbitrarily well by functions satisfying (4.2),

the proof that stability implies convergence is completed .

Conversely, to show that convergence implies stability,
L t

we first observe that, for any uc~ r , ~~ 
N u~J is bounded

for all N and each fixed t • In fact, convergence impl ies

0 ~~~ I e~~
t

u i I  — IleLtu ll ~ IIe~~~u 
- e~

t
uIl + 0 (N + co)

while well—posedness requires that hJ e Lt ul) is finite. How-
LNtever, max l i e  u l l  may depend on u and on t , so stability

N
is not yet proved. To complete the proof we use the fact that

).(- is a Hilbert space. The principle of uniform boundedness
L t

- • 

(Richtmyer & Morton 1967) implies that if ))e N u)) is bounded
L t

as N + ~ for each t and u€* then lie 
N 

~ 
is bounded as

N + ~ for each t . This proves stability and completes the

proof of the equivalence theorem.

Using the equivalence theorem, the study of the convergence

of discrete approximations to the solutions of initial-value problems

is reduced to the study of the stability of the discrete approxima-

tions, assuming the approximations are consistent. Thus, the de-

velopment of conditions for the stability of families of finite-

dimensional operators 
~~ 

is of primary interest in numerical

analysis.

Von Neumann Stability Condition

The simplest condition for stability is due to von Neumann. 
—

Let us suppose that the Hu bert space M possesses the inner product

( , ) . Using the inner product, we define (neglecting the compli-
*

cations due to boundary conditions) the adjoint L of an operator

L as that linear operator that satisfies
— 76—
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(u,Lv) — (L u,v) ~or all , u,v in ~ . For the finite dimen-

sional approximation L.a, the matrix representation of LN is

• the adjoint of the matrix representation of LN (see Sec. 2).

- 

- The operator L.
~ 

is said to be a normal operator if LN commutes

with L so LNLN - LNLN
The von Neumann stability condition is that stability of

normal operators L.a is equivalent to the condition

R CA N < C (4.7)

where AN is any of the eigenvalues of any of the operators

and C is a finite constant independent of - N . To prove

this, we note that if LN is normal , then LN and LN as

well as exp(LNt) and exp-(L t) are simultaneously diag-

nolizable. Therefore,

L t  L%at L Nt 2(ReX )t
(Je N ff 2 

= max (u,e u) 
= max e N

ucH ‘ A N

where AN are the eigenvalues of LN . Thus, the von Neumann

condition (4.7) is equivalent to the stability definition (4.1)

with K(t) = exp(2Ct)

The von Neumann condition gives an operational technique

for checking stability of normal approximations: compute the

eigenvalues of LN and check that the real parts of the eigen—

• values are bounded from above.

Example 4.1: Symmetric hyperbolic system with periodic

boundary conditions

Let us apply the theory just discussed to the stability

of difference approximations to the rn-component symmetric

hyperbolic system

~~ (x,t) A ~(x,t) (4.8)at 3x
—77— 
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with periodic boundary conditjoflS j flo , t) i~(l,t)

Here ~ is an rn—component vector and A is a symmetric

m x in matrix.

If we diacretize in space using second-order centered

d i f f e rences, we obtain

3u. u. — u.
= A 2Ax 

( j  = l,2,...,N) (4.9)

u0
(t) = uN (t )  , u1(t) = uN+l (t )

where uk(t) = u (k/N,t) and ~x = 1/N . The system (4.9)

- ; is equivalent to the system of inN equations

all B u (4.lOa)

where i~ is the column vector whose transpose is
+

= (u
l
,u2?...UN

). Here B is the inN x inN matrix given

by the Kronecker product

H B = A ~~~ D , (4.lOb)

where A is the m x in matrix in (4.8) and D is the

N x N matrix

D = 

th(~~~

—

~ !
0 0 0 0  0 1
1 0 0 0 —1 0

*
D is anti—symmetric (so D = -D and , hence , D is

normal) so it has eigenvalues that are either 0 or pure

—78—
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j ajn (2nk~x)/Ax for k — 0,l,...,N—1. Thus, the norm

of exp(Bt) satisfies

ffexp(Bt) 
~f — max )lexp (iA sin(2nk~x)t/~x)I 

— 1
0~$k<N

where we use the fact that A is symmetric so it has real

eiganvalues.

Kreiss Matrix Theor~~
If the approximate evolution operators LN are not normal ,

conditions guaranteeing stability are much harder to obtain.

The von Neumann condition (4.7) is still necessary for

stability (why?), but it is not sufficient to ensure stability .

One important case in which stability conditions can be found
4’ is for the problem studied in Example 4.1 with A no longer

symmetric . The appropriate generalization is to assume that the

approximation LN has the fo rm LN — A 0 where A is a fixed —

m x m matrix (possibly not normal) and is an N-dimensional

norma’ matrix. It is easy to show that

IIexp (LN
t)  

~ 
— max IIexp (X

~
At) ii (4.]1)

A
N

where AN is any of the eigenvalues of DN . A stability

condition for (4.11) will be obtained below. To do this , we

generalize (4.11) and seek conditions for the stability of a family

of m x in matrices A(u ) , where w is an arbitrary parameter.

That is, we seek conditions such that -;

max jlexp [A(w)tJ)f K(t)

~~.re k ( t )  is a finite function of t. Once these general

~ondttion. are found, they can be specialized to give stability

-u~d & t L o n ~ for families of the form exp (LNt) where LNaA~~~D~ with

—- ---_ -— -—---•——-— - -—-—•—-•-—-•—--——------• — --— - --—--- --
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normal by simply choosing A ( w )  — Aw where L~ is any of

the eigenvalues of any of the matrices DN

The basic result on the stability of families of in x m

matrices is the Kreiss matrix theorem (Kreiss 1962)

For any family A(w) of in x in matrices , each of
the following statements implies the next:

(i) There exist symmetric matrices H (~ ) satisfying

H(w)A(w) + A*(w)F~(w) < 0 and

I ~. H(w) i I H ( ~~) h i ~~~. 
C for some constant C .

(ii) llexp ( A ( w ) t l I I ~~ . C for  all t 
~~. 
0

— 
(iii) (Re A) ii (XI—A(w)~~~iI ~~. C ’ for some constant C’

and all A satisfying Re A > 0

(iv) There exist matrices H ( w )  satisfying ( i)  wi th

I I H(~ ) < K (m)C’ where C ’ is the constant
appearing in (iii) and K(m) depends only on
in and not only the family A (w)

Observe that for a family of matrices A(u ) to satisfy

- - the conditions of this theorem it is necessary that all the

eigenvalues of all the matrices have non-positive real parts.

Otherwise there would be some w and some eigenvector ~ satis-

fying hiexp [A(w)t]~~h i + as t + violating (ii).

The most important relation implied by this theorem is the

implication that (iii) implies (ii) with C -
~~~ K(m)C’ That is,

for any m x m matrix A all of whose eigenvalues have nonposi-

tive rea l parts

ilexp(At) < K’ (m) max (Re A) II (Al—A) II (4.12)
Re A > 0

where K’ (m) is a finite function of in

An elementary proof of (4.12) has recently been given

by Laptev (1975) and improved by C. Mccarthy (private communica-

tion to C. Strang , 1975). Lapfev observes that if v 0 , then

—80—
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eAt = 

~~~ 
eXt (XI_A ~~~ dA - 

eVt JCO 1~t i ) i d (4 i3)

as may be proved by shifting contours in the complex plane .

Since each entry of (~,+i~j-A)
1 is a rational function in ‘,i 

4

:

of degree at most in , the derivatives of the real and imaginary

parts of each entry can chanae sign at most 4 m times when ~i

increases irom -
~~~ to . On any M-interval, say a < < b

where the real and imaginary parts of an entry in (v+iij-A)~~

are monotonic, the second mean-value theorem implies

.1: cos pt f~~i) dp = f(a) [sin ct — sin(at)] + f(b) ~sin(bt) — sin(ct)]

< ~~maxIf (~ )I ~t~~~

for some c satisfying a <c <b where f(p) is the real or

imaginary part of an entry in the matrix (v+i~.i—A)~~~. If we apply

this kind of inequality to the right side of (4.11), it follows

that for all i,j

J e~~
t(v+ip_A) Tl d~ < 64m max (v+i!j—A)~~ . (4.14)

—~~~ 
1] t ~I 3.)

If it is true that the matrix norm has the property that

IB~~ I ~~ . C1~ for all i,j implies li B il ~. I I C I I  , then (4.14)

implies

~~~~~~~~~~ ~~~ 
6~~m max (v+i~i-A )~~~~ (4.15)

Choosing v lit in (4.13—15) gives (4.12) with K’(m) — 64 in

—81 
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There are three important matrix norms in which

IB 1~ l ~~~. 
C~~ for all i,j implies II B I1 ~~~. I t C h  , namely

the matrix norms induced by the L1, L2, and L,,0 vector

norms. This is shown using the relations

in

ii ~~h I = max E )B. - )1. 
~ i=l ~~~~

in in

I I B I I  = sup E E B.2 
11 x 11 2 =1 i=i j=1 13 1 

~

11y 11 2 =’

= max E )B..~ ~1 j l

F which hold for all matrices B • In other no~m~~. I B ij ) 
~~~ 
Ci.~

may not imply I1 B I1 ~~ . li d ) but the equivalence of all matrix norms

implies II B II < F (m) I t c h  for some finite function of the

dimension m . Thus, (4.12) is obtained with K’(m) = 64mF(m) -

The functions K(m) appearing in statement (iv) of the

Kreiss theorem and K’ (m) appearing in (4.12) need not be equal.

It follows from the Kreiss theorem that K’(m) 
~~ . K(m) . Kreiss

showed only that K(m) = O ( m
m

) as in + ; this is much too

conservative. Miller & Strang (1965) showed that K(m) = O(C”)

as m + ~ for some constant C > 1

In the case of a normal family of matrices A (w) the con-

ditions of the Kreiss matrix theorem are trivially satisfied:

if the eigenvalues of A (w) have negative real parts then

iiexp(A (~ )t] ~ 
j  1 for all t ~ 0 and w
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Non-Normal Approximations

The Kreiss matrix theorem appl ies to approximat ions of the

- ) form LN — A
~~
DN, where A is a fixed dimensional non-normal

matrix and is an N-dimensional normal matrix . This type

of operator LN is commonly encountered in the solution

of initial—value problems with periodic boundary conditions.

On the other hand, non-periodic boundary conditions usually lead

to problems in which the non-normality affects the N—dependent

operator DN. When finite-difference methods are used for such

problems, the deviation of from a normal operator is frequently

‘small

Example 4.2: Non-normality of a difference approximation to a mixed
- initial-boundary value problem

A difference approximation to the mixed initial-boundary

value problem

+ = f(x,t) (0~x~1, t>0)

A- u ( o~t) = 0,

u(x,0) = g(x)

t is given by

+ 
U
j~~~~~j_1 

= f(jh,t) (1<j <N) (4.16)

where uj(t) = u(jh,t) an~ we set u0(t) =0 and uN+l (t) = 2uN (t)

-~~ _ 1(t ) . The latter condition is an extrapolation condition

which ensuzes that (4.16) is a closed system of equations. This

approximation has the matrix representation

— 8 3—
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0 1 0 0 . . . . .  0 0 0

— 1 0 1 0 . . . . .  0 0 0

0— 1  0 1 . . . . . 0 0 0

— ._.!_. . • . . . .
LN

_ 
2h

0 0 0 0 . .  . — 1 0 1

0 0 0 0 . . 0 — 2  2

The departure of La from a normal matrix is a matrix of

-: rank 1 in the lower right-hand corner. For problems of this

kind, extensions of von Neumann stability analysis, like that

introduced by Godunov & Ryabenkii (196 3) and extended by

Kreiss (see Kreiss & Oliger 1973), apply. -‘

Unfortunately, the class of semi-discrete approximations

investigated in this monograph include problems that cannot be

easily analyzed either by straightforward von Neumann stability

analysis or by the Godunov-Ryabenkli or Kreiss analysis.

In contrast to the classical problems of the numerical analysis

of difference methods for initial-value problems, spectral

approximations LN are frequently not even approximately normal.

— 8 4 —
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5. A1g~ebraic Stability

In this section, we develop a theory of stability and

convergence which generalizes the classical theory discussed

in Sec. 4. As will be shown by examples in Sects . 6-8, this

generalized stability theory is well suited to study the con-

vergence of spectral methods.

A spectral approximation

au
= L

N
uN + f N (5.1)

to the initial-value problem u~ = Lu + f is called

algebraical1~ stable as N + w if

hh e~~
t

ih j  NZN5tK(t) (5.2)

for all sufficiently large N , where r, a, and K(t)

are finite for 0 ~~. t �. T •

It may at first seem that the Lax—Richtmyer theorem shows

that algebraically stable approximations cannot be convergent

unless (5.2) holds with r 
~~. 
0, s ~~. 0 . In fact, if we

demand that the approximations converge for all u(0) and

f(t) in the Hilbert space H , this conclusion is correct.

However, it is possible for approximations that satisfy (5.2)

with r > 0 or s > 0 to converge on a dense subset of

the Hu bert space in which the only functions for which con-

vergence is not obtained are highly pathological. In fact, if

p r + sT > 0 but p is smaller than the order of the

L. - 

-85- 

- - J



- ---
~
-
~~~~

-‘----
~~~-—---- —~~~~~~~~~~-.—----- -- - -- — -—.- -~~~~~~~~ -

spatial truncation error of a particular solution u(x,t) , i.e.

N~ IlLu(t) — LNU(t) I) 
+ 0 (N + 

~~~) 
(5.3a)

N~ Ilu(0) — u.aCO) II + 0 (N + 
~~~) 

(5 .3b)

N~ I l f ( t )  — fN (t) Ii + 0 (N + Ce) (5.3c)

for all 0 ~ t j  T , then (4.4) and (5.2) imply that

Jj u(t) — uN(t) J~ 
+ 0 (N + Ce)

for 0 ~ t .~~ . T . Thus , algebraic stability implies con-

vergence in that subspace of ~ satisfying the cond itions

(5.3). If this latter subspace is large enough, an algebraic—

ally stable method can still be very useful although it cannot

yield convergent results for all initial conditions u(0) and

forces f(t) . Since spectral methods are normally infinite—

order accurate, algebraic stability implies convergence for

such spectral methods.

In the examples of algebraic stability given in Sects. 7—9 ,

we find r < , s < 0 , and K(t) < M • In this case,

algebraic stability implies convergence so ‘ong as (5.3) holds

with p ~~~. . Thus , the approximation need not be infinite-

order accurate to achieve convergence. However, we develop the

general theory of algebraic stability here in the expectation

that it will find application to spectral methods for high—order

equations in which p may be large.
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Our definition of algebraic stability is very similar

to the notion of s-stability introduced by Strang (1960).

However, our motivation is slightly different. Strang intro-

duced s-stability to study the convergence of time--discretized

initial-value problems in which the- norm of the evolution

operator grows as a power of the time step. We shall return

to this concept when we discuss generalized stability in Sec. 9.

Let us give an illustration of the need for a theory of

algebraic stability. In Sec. 8, we will discuss Chebyshev

polynomial spectral methods to solve the one-dimens .nal

wave equation Ut + ~~ = f(x,t) with boundary conditions

u(—l,t) = 0 . Unfortunately this problem is not well posed

in the Chebyshev norm

2
l i u i i 2 

= 
u (x) dx

-1

o In fact, if

1 — ~~ if l x i < E

u(x,0) =

0 if Ix ) �. c

then the solution of u~ + u~ = 0, u(-1,t )  = 0 at t 1 is given
by

u(x,1) =

0 x Il-c

—87—



- ~~~~~~~~~~ 

- -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --
~
.--

~~~~~~
—-.--.-

~~~~
,•— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Therefore, as c + 0+ ,

h l u ( x , 0) 11 2 
‘~-‘ c (c 0+)

l iu b c , l) 1l 2 
‘_
“ ~~ (c + 0+)

so that if

1

I I e L Ii �. “
~ 

(~
) c~~ ( c  + 0+) (5.4)

In fact, 11e~~ i1 = for 0 < t < 2 , I I e I
~
t II = 0

for t > 2 , so the one-dimensional wave equation is not

well posed i-n the Chebyshev norm.

Since the finite-dimensional approximations LN to L

given by Galerkin, tau, and collocation approximation (see —

Sec. 2) should converge as N + Ce , it follows that we may

expect

hhexp (LNt) JJ + CO

as N + CO in the Chebyshev norm. To estimate the rate of

divergence of hIexp (LNt)iI as N + we argue that

Chebyshev polynomials of degree at most N can resolve dis-

tances of at most order 1/N interior to (-1 ,1) so we

may reasonably guess on the basis of (5.4) with c = 1/N that

hlexp(LNt)Ih = 0(N 

~
) (N Ce) . (5.5)

This result is justified by the numerical results presented

in Table 8.3. Eq. (5.5) implies that Chebyshev-spectral approximations

— 88— 
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to the one—dimensional wave equation are not stable but are

algebraically stable with r = 1/4 and s = 0 in (5.2).

Notice that algebraic stability in one norm implies

L algebraic stability in all algebraically equivalent norms.

Thus, algebraic stability is equivalent in all of the

norms 1 
~ 
p 5 ce because these norms are algebraically

equivalent in N-dimensional vector spaces (i.e., they differ

from each other only by a fixed power of N ). To show this,

we recall that the L~ norm of a vector = (al,...,aN)

is defined by

/N \1/p
h a i l  = ( E Ia~ l~P \i=l

If q — p a  with 0 < a < 1 , then

= ( 
~~ a~~i~~~ ~~. 

( 
~ ia.ik~(~~ 

\~l-ct 
= 1J~ Jg~ ~‘~~/Pq 

\i=l / \i=1 
1 
/ \i=1 / p

by Holder’s inequality. Therefore, for all p > 1

N~ i l a I i ~ < h I a I f ~
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Also, if p > 1 , then

Ih a h l~ = 

i!1 

J a . J ~~ 
~ ~ 

ia ii)~ 
= iI a ih ~

so that

N~ h a i l 1 ~~ . iIa iI~ ~~ h a u l . (5.6)

The verification of algebraic stability for spectral

methods leads to a general problem in matrix theory. Suppose

that AN (N=l, 2 , . . ., )  is a one parameter family of matrices.

- - We will find conditions on the members of the family such that

exp (A.~t) is algebraically stable. We will use only the

norm since the others are equivalent to it.

Conditions for Alg~ebraic Stability

Let {A
N

} be a family of N x N 

•

matrices where

h A N 11 = O(N ) (N + co) for some finite a . A necessary

and sufficient condition for algebraic stability

ile
ANt li = o(tNst) (N +

is that there exist a family 
~~~~ 

of Hermitian positive-

definite matrices such that

—90—
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hhH;111 hI H N hi = O(Nb) (N ÷ cc) (5.7a)

*
HNAN + ANHN ~~~. 

c(N)HN , (5.7b)

c(N) < d log N (5.7c)

for all sufficiently large N where b and d are finite

numbers independent of N

To prove sufficiency we use the Lie formula

= iim (e
ct”n e~)th

mn)1~ (5.8)

which is valid for arbitrary matrices C and D . This

formula is proved at the end of this section. If -we define

= 
~ ~ 

ANHN + HN~~~ 
AN HN2]

(5.9)

D = 
~~

. [
~ 

ANHN - 

~N 
A HN~]

and note that

exp [ANt] = HN~~~ exp [HN~ ANHN ~] HN~

—91—
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it follows from the Lie formula that

e
1
~
t 

= ~~~~~ (e
Ct/n eDtmn)~ 

~~~~ 
(5.10)

However, it follows from (5.7b) that, since C is a

symmetric matrix,

~ ect~
’n

Also , D is an antisymmetric matrix so that

= 1

Therefore, (5.10) gives

i l e AN hi I ect I1 H N
2 I1 i i H N~~hi ~ eCtNb~

’2
1

proving algebraic stability.

In order to prove that the conditions (5.7) are also

necessary for algebraic stability we define

BN = AN - (r+l) log(N)I

Therefore,

I) ~~~~ j J = 0 (
~

) (N + co)
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By Liapounov ’s theorem (Barnett & Storey 1974) there exists

a Hermitian positive-definite matrix RN such that

}I
NBN + BN

*
HN 

= ~I , (5.11)

Thus,

HNA.~ + ~~
*MN = -I + 2(r+1) log N RN ~~

. c (N) HN ~

where c(N) = 2(r+1) log N . In order to complete the

proof of (5.7) we need to estimate the norms of RN and

It can be easily verified that an explicit formula

for H
N is

*
(i BNt BN t

= J e e dt.

Therefore,

u R N 1? ~~~. jie
B
~~ Jl IIe~~

*t
JJ dt I N2S J N 2t dt i N2S

( 
0 0

if 2 £nN > 1, i.e., N ~ 2 . Also from (5.11) we obtain

—l —1 * — 1 2BNHN + H N BN = 
~~
(HN )

‘
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so that

lIEN II 1 2 IIBN U I I H N~~I I

or

1
~~N ’~ ~ 2 IIB N 1I = O(Na) (N + co) (5.12)

This completes the proof of the necessity of (5.7).

T1~e condition for algebraic stability given in (5.7)

implies that for every algebraically stable problem, there is

a new norm induced by the Liapounov matrices EN which is

algebraically equivalent to the original norm and in which

the problem is stable in the classical sense.

The above result gives a method for checking numerically

the algebraic stability of a family {AN} of matrices satis-

fying lIA~ J J = O(Na) as N :

(i) We check that the real parts of the eigenvalues

of A.L,~ 
are bounded from above by s log N

otherwise, the family of matrices AN are alge-

braically unstable.

(ii) We introduce BN = AN 
- (s+1)log(N) I and

compute the Liapounov matrix EN such that

*HNBN + BN EN = ~I . There are several numeri-

cally efficient techniques to compute EN
(Bartels & Stewart 1972).
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(iii) To verify algebraic stability th. condition number

of RN must be bounded by Nb for some finite b

as N-’ . Noting (5.12), it is only necessary

to verify that the eigenvalues of RN are bounded

from above by some finite power of N as N -‘ ~~

This procedure ii applied in Sects. 7—B to verify algebraic

stability Of mode l problems . Since (5.7) gives a necessary

and sufficient condition for algebraic stability , if these

conditions do not hold th. family of matrices AN is alge-

braically unstable.

Proof of the Lie Formula

To prove the Lie formula (5.8) for finite dimensional

matrices, we use the identity

[ C D 1~ 1(C+D~~ [ cD 1~
•

C+D 
- {e~ e~j  

- - 

V°

~~

- 

- 

:~~ 
{e

(
~~~~~(e~~~ - e~e~) [e~e~

i_1_k

C D C+D C D
- (e~e~~) 

ii 
~ k’~O 

e~~~~~~1I ~~ ii.~ 
-

n — i - k
+ IIDU) ~

C+D C D

~ n fib - e~
’e~ Il exp[(HCII+IIDII)(l—l/n )).

_ _ _ _ _ _ _ _ _ _ _  

-95-

- -‘.- -

~ 

.~~~~~~~~ 
-



~~~ T~~~ T~~ ’ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

__

On the other hand,

C+D C D
- e’1a’~II I 

JIcD Dc I I + ~n ~

so that

C D  ~

~ 
eC+D - (e

iT
e~~
) 

Ii ~ (n

for any K > 
~-t lC D-D C(f  , proving (5.8) .

Eq. (5.8) is also true for certain infinite dimensional

matrices (operators). This deep result known as the Trotter

product formula is very useful in the nodern theory of

partial differential equations.
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6. Spectral Methods Using Fourier Series

Fourier series are appropriate to solve problems

with periodic boundary conditions. With periodic boundary

conditions, a stable spectral method based on Fourier series

is usually accurate and efficient. On the other hand, when

Fourier series are used to solve non-periodic problems

(including problems having period_c initial conditions

but whose evolution operators violate per iodicity) ,

stability is not enough to ensure convergence to the true

solution of the problem. An example of the latter effect

was given in Example 1.3. In this section, we investigate

the stability and convergence of spectral methods based on

Fourier series.

Example 6.1: Constant-coefficient hyperbolic equation with
periodic boundary conditions

Consider the one dimensional wave equation

u
~~
+ u

~~~~
O ( O < x < l ) ~ (6.1)

u(x,O) — f ( x )

with periodic boundary conditions

u (O ,t) u(l,t)

( I
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Since collocation, Galerkin and tau m.thods are identical in

th. absence of essential boundary conditions (see Sec. 2),

let us analyse the Fourier-collocation or psoudospoctral

method. We introduce the collocation point.

x~ — n/2N (n — O,....2N—l) and the vector notation

~ 
a(uo,...,u2N_l) wh.r . u~ - u(x~) . The collocation

equations that approximate (6.1) can be written as

-‘ -•1 -.
a C D C U , (6.2)

where C and D are 2N ~
. 2N matrices whose entries are

Ckt — ~~~ e xp (_ 2 t r i (k
~

N ) x t ) , (6.3a )

~
‘2N

— —2tT i k ’  
~kt  • (6.3b)

where k’ - k—N (1 ‘~ k 2N—l ) and k’ — 0 if k — 0 . A

simple derivation of (6.2) is obtained by observing that

C~ gives the Fourier coefficients of the collocation proj ection

Pu of u ( x )  . Thus, DC~ are the Fourier coeff ic ients  of

— i
- 

~~~~~ Pu and, finally. C ocu gives the collocation pro j ection

-98—
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of-~~jPu which is -~~~ 4~ Pu. The matrix c isaunitary

matrix so C~ — C~
1 , and the matrix D is skew-Hermitian so

- - D. Therefore, C 1DC ii skew—Hermitian so that

I exp(C~~D c)tI~ — 1 (6.4)

This proves that the Fourier—collocation method is stable for

(6.1). The results of this example can be generalized to a

general system of constant coefficient hyperbolic equations.

Example 6.2: Variable—coefficient hyperbolic equation with
p.riodic boundary condlkions

Consider the system of equations

+ A(x)u,~ — 0 0 ‘. x ‘ 1

with periodic boundary conditions u(O ,t) — u(l,t) and periodic

inhomogenity : A (x) — A (x+l) for all x • Here u(x) is

a vector of m components and A(x) is an m x m matrix.

If we assume that A(x) is a symmetric matrix and that

(6.5)

— 99—
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for some finite a , then the Fourier—Galerkin method is

stable. To show this , we denote by UN the N-term Fourier-

Galerkin approximation of u. Then using integration by parts

we obtain

~€ j
l 
u~ uNdx f u~ (A+A

*)x uNdx ~2af u
~
uNdx .

Therefore ,

I u~~
(x , t ) u N (x , t ) d x < ~~t fu *(x ,o)u (x ,o)dx

which proves stability .

Condition (6.5) is not sufficient to ensure stability for

the collocation method . Consider the scalar equation (m = 1)

u
~~

= r(x)u
~ 

0 < x < l
( 6 . 6 )

u ( 0 . t) = u ( l , t)

If we impose the additional restriction that r(x) is non-zero

within 0 x 1, then we can prove that the collocation

is stable. We must show that exp(RC*DCt) is stable where C and

D are given by (6.3) and R is the matrix with entries

= r (x 1) tS~~~

The matrix R 1 can be identified as the Liapounov matrix HN
invoked in (5.7) and , thereforr , the method is stable ;

-100—
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R ’(RC*DC ) + (C*D*CR* ) — 0.

In fact , following the proof of the main resul t in Sec . 5,

U exp(RC
*DCt) l~ 

2 
< I I R I I  f i R I II max Ir x) I /mm ~r(x) I,

0<x l 0<x<1

L

proving stability for N -‘ —

If r(x) has a zero within O x< l , collocation with Fourier
(

series may lead to instability . For example, if N — 2, the

eigenva lues of RC DC are 0 ,0 , ti~.(r 0+r 2 ) ( r 1+r 3) where rj  — r(x1),

so there are growing modes if Cr +r 2 ) ( r  +r ) < 0. In some cases,0 1 3
these modes may have large growth rates. One way

to limit the growth rate of these modes 4a ~e rewrite

(6.6 ) as

Ut + ~~ 
(r(x)u)x + 

~~~ 
r(x)u~ - 

1 dr(x) u - 0 ( 6 .7 )

Now Fourier-collocation gives the matrix equation

.4 * * .4
u + .(½C nCR +~~RC DC - Q)u- 0t
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r ’( x ~ ) S )(~ . The first two matrices on the

r ight side add up to a skew—Hermitian matrix. Also, if (6.5)

holds for r(x) then Q c ii .  Therefore , we obtain the

inequality

d - ‘ 2  - ‘2
~~~Iu I 

.- a~~u~

Thus, we see it is possible to bound a priori the growth of modes in the

Fourier--coliocation method for variable coefficient problems with

periodic boundary conditions.

On the other hand, for problems with non-periodic boundary

conditions, Fourier-spectral methods can produce wrong solutions

even when they are stable. This is illustrated by Example 1.3

which we now study more carefully.

Excul%ple 6.3: Hyperbolic equation with non-periodic bounda~yconditions

Consider the problem ( 1.7) :

au (x , t )  
+ a u (x ~~t )  

= ~ + ~ (0 x ~i t ‘ 0 )

u (0,t) = 0 (t ‘ 0) (6.8)

u(x 0) 0 (0 x

—102—
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The solution is

u(x,t) xt

If we attempt to solve (6.2 )  by Fourier sine series using the

Galerkin procedure we obtain

N
U
N 

— ~ a~ sin nx (6.9)
n l

(
‘I

~~~~~~~~~~~~~~~ 
~2~~~2

am~~~~~~~~
) +

~~~~~
t e n 

(6.10)

m+n odd

C
where e~ = 0 if n is even and e~ = 1 if n is odd.

It is easy to verify that the above approximation is stable.

If we write (6.10) in the form

where = (a l, . . ., aN ) ,  
~ 

= l ’ ’~ N~ ’ ~~~ = ~ ~~~~~~~~~~~~~~~~~~~~ 

~te~I~ j ,

then

AN + A ~~~~~
0 .

Thus , I exp(A Nt) 
~ 

= 1 for all N and t.

In Figs. 6.1—6.4 we plot the solution of (6.9—10) at

t = 1 for N a 25 , 50 , 75 , 100 . It is apparent that uN (x,l)

does not converge to the exact solution xt at t = 1 as

N -. . Instead , UN 
for N even appears to be converging as

L _ 1

~~
: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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5 - Ft 9.  6 .1 .  A plot of UN (X,t) vs x for N—25 and t—l where U N ( x t ) is
determin d by nuas~ica~ integration of (6.9-10) with neg1igik~ e- tims—ditf.rencing error.. A plot of the exact solution
xt at tsl to (6.8) it, also given. Observe the apparent

- divergenc, of U
~
(x ,t) from the exact solution for 0<x<t

and the enhanced Gibb s phenomenon at x-0 , n .

\~~
u25 (x. 1) 

/ [ 
- 

/

0

—5 —

—10 4—
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Fig . 6 . 2 .  Same as Fig . 6.1 except N— 50 , t— l .
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~~~L~50
(X ,l)
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Fig. 6.3. Same as Fig . 6 . 1 .  except N— 7 5 . t— 1.

(x , 1)

C 

I

0 -
~~~~~~~~~~

-.—.-
~~

—5 
-
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Fig. 6 4 .  Same as Fig . 6.1.  except N 100 . t— l .
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N -‘ ~ to the function

xt x > t
u = 

— (6.11)even ir(x-t)+xt ~~ < ~~

for t < while U
N 

for N odd appears to converge to

the function

xt x > t
(6 .12)

0 ¶(t x)+xt x < t

for t < i~ . The results plotted in Fig. 6.5 for u100(x ,t=
2)

are also consistent with convergence to the wrong solution

(6.11) . Notice that the approximations U N ( X , t) plotted in

Figs. 6.1-5 all exhibit a large region of nonuniform con-

vergence near x = 0 and x = 11 and that the errors in

the interior of the interval 0 < x <~~~i decrease with N

roughly like

The origin of the divergence of (6.9—10) from the exact

solution to (6.8) is not instability; rather, the divergence is

due to inconsistency. Since IIexp (ANt) II 1, the method is

stable. To show that it is not consistent we estimate the

truncation error in the L2 norm,

— 1 flR —

L 
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Fig . 6 . 5 .  Same as Fi g. 6 .1  •xcept t4 u l00 t 2 .  Observe that the region
of apparent diverg ence is still 0~x’t.
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C N — I I L U  -

for u = xt where LN = PNLPN and 
~N 

is the Galerkin

projection operator and L - 3/9x . This error can be

bounded from below by

= 
~I Lu 

- PNLu + PNLu 
- PNLPNu II

~ IIPNL
(I_P

N)u(j 
— II ( I_ P N ) Lull

However , Il ( I-P~) Lu l I  -~ 0 (like 1//N) as N- ’ because

this norm is just the error in tl~.e Fourier sine series ex-

pansion of Lu — xt = t . Therefore, if we can show

that 1IP N
L(I_P

N)ulf does not approach zero as N -‘ ~~

then (6.9-10) is not consistent.
To estimate IIP NL(I_P N)UII we proceed as follows.

Since

—11 0—
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L (I_P
N)u — ~ a~ (t) sin nx

n—N+l

we obtain

N
PNL (I_P N )u  — ~ b~~(t) sin n x

n— i

C where

b Ct )  .—~~ )~ ~~ a~~(t)fl W m~~ +1 2 7
m+n odd~~ 

in

Therefore, since the Fourier coefficients of u are qiven by

a~(t) — 2(_1)n+l t/n

N
2 2J I P NL (I_ P N ) U J I  — ~ b~

~~a 1

6 4 2  N f  
~t 

n~i.\m”.Li n
2_m /~~

m+n odd

N
2 I64t 

~ I ~
— ~2 n~1’ muJ4+l ~~m+n odd

> ct 2 
~ !4 > C 1t2N

n—l N

— i l l —
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for suitable constants C and C1. This completes the proof

that I ILU - LNUI I does not approach zero as N -‘ ~~~.

Blair Swartz (private communication, 1976) traces the

inconsistency of (6.9-10) to the incompleteness of the set

of functions {L(sin n x) = — n cos n x, nal ,2,...}. This set of

functions is made complete by augmenting the set by the function 1.

Whereas u may be well approximated by a function UN of

the form (6.9), Lu may not be well approximated by the

function LuN
. In fact, if I ILu - LuN I -‘0 as N -‘

then

1T

J (Lu - Lu.~) dx -‘ 0 (N-~ 0o ) .

0

Since

f LuN
a
~~~f ~ na c o s n x d x = 0 ,

Lu may be well approximated by LUN only if

o = Lu dx = u(0) -

which is generally not true.

As shown in Figs. 6.1-5, UN (x,t) does converge to xt

as N -‘ ~~~. The analysis given above provides no clue to the

fascinating way in which the method achieves this divergence.

There is no indication of the ‘error ’ wave (_l) Ntr (x_t) that

appears in (6.11—12) and propagates with speed 1 across

0 x C . It seems that the complete mathematical analysis

of the divergence of (6.9-10) is difficult and we do not now
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( have a justifiable argument to demonstrate convergence of UN I 
*

to U.y.~ 
and UOdd given by (6.11-12) as N through

even and odd values, respectively.

In the next example we will show that it iS not simply

the presence of boundary conditions but rather the non-periodic

nature of the problem that causes the divergence of the

Fourier-Spectral methods .

Example 6 .4  Non-periodic boundary-free prob lem

Consider the problem

( 0 < x < i t )

(6.13)
u (x , O) f ( x )

The problem is well posed without specifying any boundary con-

dition . However, since the solution is given by

u(x,t) — f(~ + ( x4) e t ) (6 .14)
(

it is clear that the solution is not periodic in x . Since

r(x) — x - 
~~

- has a bounded derivative , it follows from Example

6.2 that Fourier—Galerkin approximation to (6.13) is stable.

Nevertheless it is not convergent as shown by the resul ts

plDttd in Figs. 6.6—8 for f(x) sin x and N — 5, 10, and

20 retained terms in the Fourier sine series.
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• Fig. 6.6. A plot of. U(~~~ t )  and U (x ,t )  vs x for N— S .

t—0.5. Here u(x.t) is the exact s~1ution of (6.13) and uN (x.t)
- is the Galerkin approximation to this solution using an N term

Fourier sine series expansion. Observe the apparent divergence
- 

of u N (x . t) from u (x,t).
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Fig. 6.7. Same as Fig . 6.6. except N—IL ta .5 .
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Fig . 6.8. Same as F~~~. t’ .~~’ . exc ept N-20 , t..5.
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Polynomial Subtractions for Non-Periodic Problems

There is a method that can be used to ensure that Fourier

series yi.-l d convergent results for non-periodic problems.

The idea is to express the solution as the sum of a low-order

polynomial and a Fourier series; the polynomial is chosen so

tha t the Fourier series converges rapidly as suggested origin ally

by Lanczos ( 1956 ,1966) . The method has been used by Orszag

(l971C) and Wengle & Seinfeld (1977) to solve problems with

non—periodic boundary conditions. We illustrate it here

for the problem discussed in Example 6.4.

Example 6.5 Polynomial subtrac tions applied to Four ier ser ies

The Fourier sine series expansion of the exact solution

u(x,t) to (6.13) converges slowly because, in qeneral ,

u(0,t) # 0 and u(i~,t) ~ 0 . Th is slow convergence of

the Fourier series of the exact solution implies that Galerkin

approximation is inconsistent, as shown using the methods

of Example 6.3. In order to avoid slow convergenc e or even

divergence, we proceed as follows.

We seek the solution to (6.13) as the sum of a linear

polynomial and a Fourier series :

u (x , t) — b ( t ) x  + c(t)(~~—x ) + ~ a (t)sin nx (6.l~~
n— I.

where b(t) and c(t) are chosen to ensure that an (t) 
-
~~ 0

rapidly as n . Substituting (6.15) into (6.13) gives
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h’ ~t~~x + C ’ 
~~t )  (“ —x l ~ a ’ ( t l s j n n x ~~ (~~— x ) [ b ( t ) —  c ( t ) 1

n 1

a~~(t)sin nx (6.16)

w her t ’

I t )  — v 2nm 1— 

,u~~i n2-m2 
am + a (6.17

f l + f l~ ~~~~~~~~

n �m

art’ the F~~u r t e r  S l f l t’ ct.~e t  t I i e nt 5  ~ t ( — x) a sin nx *

1: we knew u (0,t) and ut. , t) we could set b (t)au(~~,t)/1T and

~~t)=u(O,t),’~; with this Choice , the Fourier sine series in

(6.l5~ does not ex h i b i t  the Gibbs phenomenon and a~~(t) 0(i/n 3)

as n~ ”. However , the boundary condi t ions  on u are not known

as part o t  the specifications of the  problem (6.13). Therefore,

~‘e mus t s ol v e  tor b(t) and c t )  directly from the differential

equa t i on .

Equatinq c o e f f ic i c ’n t s  of sin nx in (6.16) gives

Wi
= ~~~~~~~~~~~~~~~~~~~~ [b-c-2c ’~~~ e + an (n= 1,... (t~.l8)

where e = I if n is odd , 0 i f n is even ; here we use the

F o u r ier  s ‘i no so ~ : e t ’ xpaus IC’ n o t I and x:

—1 18— 
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M
sin nx

R~~dd

— 2 Z (-l)’~
41 a in n x

Also, if b (t) and c(t) are chosen so that a~ uu.0(1/n3)

as n-~~, then the Fourier series ~~~ sin nx may be differentiated

terrnwise so

sin nx= (~--x )~~~ 
~ 

a~ sin nx — (~~— x) 
J1 

na~~cos nx

Therefore,

u r n  
~ 

a sin nx = ~~
- ~ n a

x-.0+ n—i n 2 n—i ~

lim 
~ 

a sin nx - 
iT ~ (_ 1) n n a

x-.it— n—i n 
2 n—i

using these results and setting x ‘rr and x — 0 in (6.16)

gives, respectively ,

— (c—b) — 

~ n~ 1 
(_ ~~ fl na~ 

(6.19)

— (b—c) + 
~ 

n a~ 
(6 .20 )
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a — 0 for n — N+ 1 , N+2 ,
n

The above derivation suggests, but does not prove , that

a~ (t) 
-
~ 0 suff iciently rapidly as n -

~~ that inconsistency

problems are avoided . The exact solution of (6.13), which

satisfies (6.18—20) with N = , does satisfy a — 0(1/n 3)

as n-~~ . However , the Galerkin approximation with finite N

does not yield such a rapidly converging result. In fact,

estimates like those given in Example 6.3 show that

HLv — LNvH = 0( 372~ 
(N -

~~ ~) (6.21)
N

where v satisfies v (0,t) = v(’n ,t )  = 0 and L = (~- -x )~~ *

Since the Galerjcin approximation (6.18) is stable (see Example

6.6), we expect that the errors in the Gaierkin approximation

(6.18—20) are of order N~
312 for fixed t .  *

The above prediction has been tested numerically. In

Table 6.1 we list for various N the maximum errors in the

approximation obtained by solving (6.18-20). A plot of the

error u
N
(x
~
t) — u(x,t) vs x for N = 30, 40 at t = .5 is

given in Fig. 6.9 — 10 .
In the next example , we prove that the method of

- . polynomial subtraction used in Example 6.5 is stable.

Example 6.6. Proof of stability for polynomial subtractions

It is not obvious that the approximation (6.18-20) is

stable. Fourier series approximation without polynomial subtractions

are stable but not consistent (see Example 6.4). On the other hand ,
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Table 6.1

N tN maxI~~~ (x , t— .5) - u (x, t _ .5)( I N 3/2 C N

5 4. 19 ( — 3 )  4 . 7  ( — 2 )

10 2. 13 (—3)  6.7 ( — 2 )

15 1.13 (—3) 6.6 (—2)

20 8.28 (—4) 7.4 (—2)

25 5.76 (—4) 7.2 (—2)

30 4.70 (—4) 7.7 (—2)

- 4. 35 3.64 (—4) 7.5 (—2)

40 3.13 (—4) 7.9 (—2)

Table 6.1. Errors in the polynomial-subtracted Fourier

series approximation uN (x,t) given by (6.22) and

‘6.18—20) for the problem (6.13) with f(x) — sin x

for t— .5. Observe that the errors appear to decrease as

N 312 as N in agreement with the estimate (6.21).
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the approximations obtained by polynomial subtractions are consistent

as shown by (6.2l), but their stability remains to be shown.

To demonstrate stability of (6.18-20) , we reformulate

these equations in terms of uN
(x.t) defined by

N
u,~(x , t) = b(t)x + c(t)(u—x) + a (t) sin nx . (6.22)

n— i ~

In terms of uN (x,t), (6.18) is equivalent to

f ..~~! + (x— .) sin nx d x =  0 (n=l ,...N)1 (6.23)

while (6.19-20) become, respectively,

(x—~~ ) 
_
~ i] = 0, (6.24) *

[
~ 

+ (x - 

~
.) = 0, (6.25)

x = 0

Multiplying (6.23) by n2a~~ sumin g from n = 1 to n = N, and
noting that

N
2 - n2 a sin nx ,

n 0
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we obtain

I [..
~ 

+ (x- ~
) 

~~~~ 
dx — 0. (6.26)

Integrating (6.26) once by parts and using (6.24-25), we obtain

?dx .’O.

Therefore,

~ 
2 2 

f (x-~~)

Integrating the second integral on the right once by parts gives

~ 
f ( )2~~~~~~ _~~ (auN ) 2 d~~~~~~~

[(
~

u
N)2 j + ( a U t I ) 2 f

]

so that

a 
(�)

2
dx~~~~~~ (

~~ N ) 2 dx

Thus , we obtain the stability estimate

~ 
[

~ u~~(x ( t) ] 2 dx < e t 
f 

~~~~~~~~~~~ 2 
dx~ (6.27)
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The bound (6.27) shows the stability of (6.18—20) .

Examples 6.5-6 suggest that by subtracting polynomials of

higher and higher degree from u (x,t), the residual Fourier

series can be made to converge faster and faster. Subtracting

a linear polynomial as in (6.15) gives Fourier approximations

with errors of order N
3’2 as N-~~ ; subtracting a quadratic

polynomial gives Fourier approximations with errors of order

and so on. In the limit we disperse entirely with

Fourier series and obtain a rapidly converging polynomial

approximation. The convergence theory of these polynomial

spectral approximations is discussed in the next two sections.
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7. Applications of Algebraic-Stability Analysis

The main result of Sec. 5 does not provide us with a

systematic way of constructing the family 
~N 

of Liapo unov

L matrices necessary to prove algebraic stability . In general,

these ma trices are d i f f icul t  to find . However , there are

several problems for which they can be found directly from

the differential equation.

It is very easy to construct Liapounov matrices for Galer-

kin approximations to

where L is a semi-bounded operator on the Hu bert space

We say that L is semi-bounded if

*4 L + L < c* I (7.1)

for some constant ~ , where L* is the adjoint of L defined

with respect to the Hu bert space inner product ( , ) .  If L

is semi-bounded

~~ (u,u) < c* (u,u) , (7.2)

so

(I

(u(t),u(t)) ~ e~
t(u(0),u (O))

I )
—127—
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and the ‘energy’ (u(t),u(t)) grows at most exponentially with

t.

If an energy estimate of the form (7.2) exists, then ~a1erkin

approximation based on the Hu bert space inner product (. , • ) is

stable (and , hence, algebraically stable). The Liapounov

matrix H N may be chosen to be the N x N identity matrix -

In fact , it follows from the Galerkin equations (2.6-7) that,
if f 0, then

~& (u~,u~) = (uN,(L+L
*)UN) <

Thus ,

(uN ( t ) , uN (t ))~~ e~
t(uN (O),uN (O))

Since uN(t) = exp(LNt)uN (O) for all uN (0), it follows that

If exp (L~t) (I ~ exp (Ic*t) so stability is proved . The reader is

reminded that with stability established, the theory of Sections

4 and 5 proves convergence for consistent schemes.

Example 7 1: Semi-bounded Galerkin ~pproxiaations

The above construction establishes stability and thus con-

vergence for a wide variety of Galerkin approximations. Among

these stable Galerkin approximations are :

(1) Solut ion of any problem u~ = Lu that is semi-bounc~ed

in L2 (-1 ,1) by means of Legendre series. For example,

u~ + ~~ — f(x,t) with u(—l ,t )  = 0 is stable (and convergent)
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when solved by Legendre-Ga].erkin approximation. For our argument

to be complete it is necessary to verify that the Legendre-

C Galerkin approximation to this problem is consistent. This is

done as follows.

We write

C
IILU_ PNLPNUH < 

~f (I-P~ )Luff + IfPNL(I~
PN)ull * 

*

The first term on the right goes to zero as N-’~~ at a rate

governed solely by the smoothness of Lu ; it measures the

error in the N term Legendre-Galerkin expansion of Lu *

The second term is estimated as f~ l1ows. Set

L(I_PN)u = 
nL 

a~~~(x)

where {+~~
} are normalized Legendre polynomials. If L is

a finite-order differential operator so L* is also a finite-

4 order differential operator (for example, L*=a/~xi.z L=-a /~x),

then
an = ( c~~, 

L(I_P
N
)U)

(L$~~, (I_P N
)t l )  

.

Thus,

~a~ I ~~
. II L *~~H I l (I~PN)ull

= O(n~ /NB) (n-.~ ; N-~~ ) ,

where A depends only on L (A = 3/2 if L = -~~/~ x and is a

normalized Legendre polynomial) and B depends only on the

smoothness of u (B is arbitrary if u is infinitely differentiable).

Thus,
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N)uII . 0

faster than any power of 1/N if u and all its derivatives

are sn~oth. This proves consistency . This kind of proof

extends to a wide variety of the examples to be discussed in

Sects. 7 and 8, but will not be repeated .

(ii) Solution of u~ - xu
~ 

with the boundary conditions

u(±l,t) — 0 is a well posed problem in the Chebyshev inner

produc t
1

(u,v) - j  

u ( x ) v ( x )  ~~
-1 (l_x2)è *

In fact, if L — x ~/~x , and u is differentiable and

satisfisi u (±l) — 0 then, by integration by parts,

(u,Lu) — f
1 x(l_x2)~~~u u

~
dx — - J (1_x 2)~~~u

2 dx 0 *

— 1 —I

Thus , Galerkin approximation to the problem is stable using

Chebyshev polynomials.

(iii) Solution of u~ + u — 0 (0 < x < 
~~ ) with

u(0,t) — 0 is a well posed problem in the LagUerre inner

product
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(u,v) = f  u(x)v(x)e~~dx
0

In fact, if u(0,t) = 0 then, by integrating by parts,

- I uuxe
_X

dx = - ~ ~~~~~ I~ — I e~~u
2dx < 0

0 0

Similarly , the problem u
~ 

= ~~~ (0 < x < ~~
) with u(0,t) = 0

is also stable in the Laguerre norm.

(iv) Solution of u~ = ~~~~ (-
~~ < x < a )  is well

posed in the Hermite inner product

2
(u ,v) = I u (x ) v ( x) e X dx . *

In fact,

~E
(u,u) = -2 f x  e~~ UU

x 
dx

so that integration by parts gives

~~ (u,u) = Tu
2e~~

2
u_ 2x2 dx < (u ,u)

where we assume that u << x exp (~~ x
2) as lx i ~ *

(v) The heat equation u~ = Uxx with u (± l , t) = 0 is semi-

bounded in the Chebyshev norm . In fact, if u is differentiable

for lx i < 1 then
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-—

~~~~~~~~~~~~—



r~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~J ( l—x 2 ) uu dx — ( l-x2 ) 
~~ uu - J (u(l-x 2) ] u,~ dx

-1 
xx ~ -1 -l 

x

The first term vanishes because u is a polynomial in x and

therefore u(±1) = 0 implies

* U 0
2 1/2

( l—x x = ± l

The integral term on the right is

1
rl .~ 2

— (u(l—x ~) ~ u dx
i_i x x

1 1 1

= - _x2 ) ) ~~~~~~~~x2 )
~~

(l_x 2 ) dx

1 1

+ 
~ 

~~ [(u(l_x
2
~~~~ 

]

2 
x(l-x 2 ) dx

1 1— —  2 —
= - J’ [~uu_ x 2

~ 
2 

(l_x 2)
2 

dx

3 5

2 ~~~~l i~l 2
+ u x(l—x

2
) —

~~~~ 
j u2(1—x 2) dx (7.3)

—l —l

< 0

and therefore

2d U dx < 0

l-x
I
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In the next two examples we generalize the proofs of

stability and convergence for Galerkin approximations given in Example

7.] to show the stability and convergence of tau approximations .

Example 7.2: Semi-bounded tau approximations

( i )  Cohsider the equation

at ax

with

u(±1,t) = 0

It was shown in Example 7.1(u ) that if L= x~/ax , then *

L + L * < 0

in the Chebyshev inner product. If we seek the solution as the

truncated Chebyshev series

N

u - Z a Tn n
n—O

by the tau method , then u.d satisfies exactly the equation

auN 
___— — x — *r (x )TN (X) + T~ _j (t)T~~.](X) (7.4)

N

Equating coefficients of and ~
F4*1 on both sides of

(7.4), we obtain
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a
~~
- NaN = T

N

a~_1 
— (N

~
-l)a

~~1 
= T N_ i

since T~ 2n—l~
n 

- n2n~ 3xn~ 2 + ~~• •  * Therefore,

(UN r ~~~ L) = ( (L+L*)u N , uN ) + [a~ -NaN ]aN

+ (a!~~l— (N-*l)aN..lJ aN l  (7.5)

so that

~~ [(uN,uN)_a~
—a
~_l] 

=((L+1
~
)uN , uN ) - Na~ - (N-l)a~_1 ~ 0.

Since

N 2(uN ,uN ) = 
~ 

a~
n=0

the above inequality is equivalent to

* 

~~ :~: 
a~ ~ 0 (7.6)

This proves stability : aN and aN..l 
are bounded because they

are determined in terms of a0, a11.. .,aN...2 by the boundary

conditions u (±1,t) = 0.

For this example , we can prove stability directly from the

matrix representation of LN. In fact,
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~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~ O~ k N ) ,  ( 7 ./ ~~)

~ oven
In the tau approximatiOn , the boundary  cond i t i on s  u ( .L1 , t )  = 0 recjui F & ’

that the last two rows of the matrix bc replaced by

(L ) 
(—  ) , *

I.

(LN
) 1. ( 7 . 7 c)

N ,

V
If the boundary conditions (7.7h ,c) are act applied then

the spectral approximation is unstable: without the boundary conditions

has the eigenvalue N [with the cigenvectOr aN_ 2k
(k)~

aN_ 2k_ 1 = 0] so tha t
IJ
N
t 

-, Ntl i e II - e .

To prove convergence when the boundary condi t .ioiis (7. 7b, c) are

applied , let us f i r s t  consider  an odd so lu L ion  in wh ic h  a 0

if n is even . If we assume that N = 2M+ l and set

d = a  ,0~~~~k < M )
k 2k-F l —

then the system reduces to

I) -
~

where
M— j

Djk =_ ( 2 k + 1 )5 j k+ 2~~~ 0
(2k+ l)~~j~~,k

_ 2 N  (O~j<M , O~ k’-M )

If we introduce the 14 X H t 1 a n nf on n ~L t i O n  m a t r i x  S defi :n’d by

S. — (0~~i~ t1 , 0~k~L4
ri~l ,k 

- - - 
* 

--
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then S (D+D*)S* is a diagonal matr ix with entries

(-4 , —4, ..., —4 , —4N — 12). Thus, we obtain D + D* ~

so that a (~~,~~)/~ t<O which proves stability.

Example 7.3. Stability of tau methods applied to deqree-reducing

semi—bounded equations

An argument  s imilar  to that given in Exampl e 7 .2  demonstrates -

stability of tau method s in terms of arbitrary orthonormal polynomial

bases for equations ~
-
~~

- = Lu where L is semi-bounded and degree

reducing: L is said to be deqree reducing if for any polynomial

of degree N~ LPN is a polynom ial of degree at most N - k

where k is the number of boundary conditions that are applied.

If L is degree reduc ing ,  equating coef f ic ien ts  of

.

in 
*

= L U
N 

n=N— k+1

• implies that r~~(€)= a (t) for xi = N—k+1,...,N ; here

N
uN(x,t) 

= ~
* n=0

and thb orthonormal  expansion polynomial 4~~ (x) is assumed of degree a.

Therefore,

~~~~~
(u Nl uN) 

- ~ a~a~ (IL+L*) uN ,u N ) ~
n=N- k

so that

L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
. 

- 
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which proves stability since aN_k+l,...,aN are determined by

the boundary conditions in terms of

Example 7.3: More stable tau~~ p~ roximations

(i) Suppose that

V
u~ + u~ — 0 (.4 x ~~. 1, t > 0)

u (—l,t) — 0

is solved by tau approximation using Legendre polynomials.

The Nth degree Legendre polynomial UN satisfies

4
UN 

+ u~4 - a~P~

so that 
*

4

d 2 2 2
~~~~ [_ { uNdX 

- 

~~~~~~~~~~~ 
a1~] ~~. 0

which proves stability.

(ii) Suppose that

U — ut xx

u (~ l,t) 0

is solved by the tau method using Chebyshev polynomials. Since

a2 *

L = —
~~ - is degree decreasing and L + L - 0 (see ~xaxxxple

3x
7.1(v)), the method is stable.

(iii) The solution of

1
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Ut + U x = O  ( 0 < x < ~~~ , t > 0 )

u(0,t) = sin t (t (7.8)

u (x,0) = 0 (0  < x Qo)

by Laguerre polynomials is stable using the tau method since ,

by Example 7.1 (iii) , L is semi-bounded . The equations of

the Laguerre—tau approximation to (7.8) are a simple modification

of (2.23—24). In Fig. 7.1 we compare this tau approximation

with the exact solution of (7.8) at t = 30 for a 20-term

Laguerre expansion. The reader should compare this approximate

result obtained by the tau method with the best Laguerr~ ap~~oxi-

mation to sin x plotted in Fig. 3.12.

In the next example we discuss some ways to find non-trivial

Liapounov matrices {HN} when L is not semi-bounded

* 

Example 7.4: POlynomial approximations to a variable coefficient

hyperbolic equation

Consider the initial-value problem

u~~~~~-xu~ l x i  < 1

u(x,0) = g(x) (7.9)

which is well posed without requiring any boundary conditions.

The exact solution...to this problem is

u(x,t) = g(xe t)
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so that ~ (~~,t) approaches a constant as t~~~:

• 
- 

u(x,t) ~g(0) ( t+co , Ixi<l) .

The prob1e~s ii well—posed in the sense that I I exp (Lt)
is finite for finite t, where L= - xa/ax and I I  11 is

the usual L2 norm. However, f f exp (Lt) I = exp (
~ t) for

any t because the function that extremi~es I Iu(t ) I i  subject

to f tu(0)I (= 1 satisfies u(x,0)= g~(x) where

t/ 2
± e Jx I<e t

2
= 

-t0 lxI>e

Therefore, I I exP(Lt) I I  grows exponentially as t-~~.

The operator L is semibounded in the usual L2 
norm:

~~ 
dx=  - f x  ~~~~~~~ - dx = - u2(l) - u2(-l) + f u

2 dx

< I u dx ,
~~—1

so L + L* < I. Therefore, Galerkin polynomial solution of

(7.9) is stable and convergent. The Legendre polynomial approx-

• imation uN (x,t) satisfies

— auN auN-st. + x -~~~~~
- = 0 (7.10)
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exactly because no boundary conditions are applied and L is

degree preserving. Therefore, Galerkin, tau, and collocation

approximations to ( 7 .9 )  are identical and all three methods

are stable .

In fact , all polynomial-spectral methods applied to

(7.9) satisfy (7.10); all polynomial methods for this problem

give identical results and , therefore, they are all stable in

the usual L2 norm. In terms of the natural norms for a general

polynomial basis i.e. that norm in which 
~~~~~~~~~~~~~~~~ 

=

~~~~.
‘

the spectral approximation (7.10) is algebraically stable if

the N x N matrix whose elements are

(HN) jk = I ~~ 
(x) (x) dx

has a condition number which is bounded algebraically, i.e.,

II HN I III H N ’II = 0 (N8) (N÷co).

As an example of the complicated behavior of spectral

approximations for this problem in norms different from the usual

L2 norm, let us consider the Chebyshev-L2 norm. It may easily

be shown that L + L* is not senxibounded in the Chebyshev inner

product. For example, consider the trial function

I
v = T O - T 2N

—~~~ — 

_

~_~
1

i -
~~~~
—

~~ -~~



~~~~

— -- -

~
. 

~~

- -- -—  ----- 

~~-T~~~ ~~~~~~~~~~~ —— • • -
--—--

~

------ 

~~~~~~~~~~~~~~~~~~~~~~~~~

then

((L+L*)v,v) = — (xv
~
,v) - (v,xv

~
)

/ T2N+l +T 2N_ l
= 

_
~c

2N (T2N_l+...+Tl],Tl — 2

= ~~
. N(v,v) • •~~ 

-

Nevertheless, Chebyshev approximation to this problem is 
*

algebraically stable. This fact may be explicitly demonstrated

j  
by construction of a Liapounov matrix.

A Liapounov matrix for the Chebyshev approximation to (7.9)

may be found by direct examination of the evolution equation for

the vector &
N

N
( n= 0 ,...,N). (7.11)

p=n+2
p+n even

Since a0 decouples from als...,aN iz~ (7.ll),we can restrict
attention to al,...,aN. Suppose we define {H

N
) by

= 
3 
6
jk ~ 

(1 < j,k < N).

—142
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Then

1-1 0 —l 0 —l ...\/ 0 —1 0 —l 0 ....~~~

HNLN + L
~
}IN aI -l 0 ~~~]* 0 -l . . . . J < o ;

;

the matrix displayed above has rank 2 and the nonzero eigenvalues

are - [N/2], -((N+l)/2]. Therefore, by the theory of Sec. 5,

iI e~~
t

Il ~ 4IIH~ II IIHN II = - -

where 
~~~ 

is now the Chebyshev norm. Thus, LN is

algebraically stable in the Chebyshev norm even though LN +L~ 

*

is unbounded in this norm .

The qualitative behavior of I exp(LN
t) 

~ 
as a function

of N and t is as follows. For fixed t and ~~~~

I I exp (L~ t) I I  0 (N114); this result is justified heuristically

by following the argument given in Sec. 5 that led to (5.4).

On the other hand if t > tnN , I exp(LN
t) I i  0(N112) as N-~ o.

A heuristic justification of this result is as follows. Let

u (x,O) — 1 for x c ,  0 for Ix t ”c . Then the exact solution

of (7.9) for t>th 1/c is u(x,t) “~ 1 for J x J < l , so I t u ( x , t ) i I 2
~ ~

as c.~*0+ for t~ Ln i/c. As in Sec. 5, we conclude that

I l exp ( L N t H I a  0 (N1”2) for t” QnN as N-..a~. (Even in the usual

L., norm, (~ exp(LNt) II = 0 (NV2) when t tnN, which mimics the

unbounded growth of H exp(Lt)~ as t - -a, . )
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8. Constant Coefficient Hyperbolic Equations

In this Section, we discuss the stability of spectral methods

for the problem

+ = ( l x i  ~ 1, t > 0) (8.1)

with the initial condition

u(x,Q) = f(x) (l x i < 1) (8.2)

and the boundary condition

u (—l,t) = 0 (t > 0)  . 
(8.3)

The results for this problem can ~be extended to a general

hyperbolic system of the form

u = Aut x

with characteristic boundary conditions, because for any hyperbolic

system A can be diagonalized by a -real similarity tranformation .

The opera tor L = - is semi—bounded in the usual

L2(-l,l) norm when operating on the subspace of functions v that

satisfy the boundary condition v(-1,t) = 0. In fact

1
(v ,IL+L*)v) = -2f v dx = — v2(1) ~ 0

—144—
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and therefore Galerkin and tau methods are stable using

Legendre polynomials.

However , L is not semi—bounded in the Chebyshev norm. To

show this, we set

v(x) = T2N(x) 
— T1(x) 

— 2T0(x)

so that v ( - l )  = 0 . In this case , using the result

= 2N[T2N_l+T2N..3+~~~
+Tl)

we obtain

1 1 *

(v,[L+L*]v) = —2 f  ( l — x 2)~~ ~ v dx
—l

1 1
= — 2 f  (1_x 2 )

~~~
[2N (T2N ...l+T 2N_ 3 + .. .+T1) —T 0J (T 2N~ Tl~ 2T o ) dx

4N-8
= (v,v). (8.4)

The fact L + L* is not semi-bounded is consistent with the fact

that exp(Lt) is not a bounded operator for t’- 2 in the Chebyshev

norm (see Sec. 5). However , these results do not prove that

• Chebyshev—spectral approximation to (8.1-3) is not convergent.

In fact, we shall show that, while Chebyshev-spectral approximation

to (8.1—3) is not stable in the Chebyshev L2 norm , it is algebraically

stable in this norm.
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In order to investigate algebraic stability, we must study more
carefully the behavior of the Chebyshev coefficients of the • 

-approxi~~te solution

N
UN = 

~ a~ (t ) T (x)
n= 0

The &if fer entj a l  equations for the an ’s are given by (2.11)for Gal erk in approximation (2 .19) for the tau method , and
• ( 2 . 3 2 )  for the collocation method. As remarked in Sec. 2, all 

-these equations may be written in the vector form

where ~ = (a01 a1,...a ) and L.N is an (N+1) x (N+l) matrix.
Numerical Evidence for A1~ ebrajc Stability

Let us first examine the behav ior of LN + LN *. In Table 8.1
we list the largest eigenva~u~ of LN + LN * for N= lO ,2O ,...,1O~for the three Chebyshev methods. This table indicates that the
largest positive eigenvalue of LN + LN * grows like CN2 for some
constant C . If L N were a norma). matrix this would implyL t  

1 2
* 

that lIe N ji behaves like exp (~ CN t). However, the matr ices
L
N are not norma l and therefore the large eigenvalues of LN + LN*do not imply instability.

—14 6—
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Table 8,1

— _ _  - • • - -

N • Collocation Thu Galerkin
_ _ _  —

~~

10 68.84125 21.4089 72.8947

20 287.6920 84.8970 296.3027

30 656.-~’l8 190.4908 669.6434

40 1175.2124 338.1769 1192.9231

50 1843.8839 I 527.9525 1866.1433

60 2662.4966 759.8167 2689.3042

70 3631.0503 1033.7690 3662.4061

80 4749.5453 1349.8093 4785.4489

90 6017.9812 1707.9375 6058.4329

~~~~~~~
j

~~~~~~436. 3584 [ 2108.1534 748l.3s7

~J

Table 8.1. The Iarqest positive eiqenvalue A max of LN +

for the Chebvshev-spectral solution of the one-dimensional wave

equation (8.1-3) . The Gale rk in  approximation to this problem is
given by the solution to (2.11), the tau approximation is given

by (2.19), and the collocation approximation is given by (2.32).

Observe tha t 
~max “. CN 2 as N * ~~‘ where c ~ 0.75 for the

Galerkin and collocation methods and c ~ 0.21 for the tau

method.
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In Table 8.2, we give the norms of the matr ices

exp IL N~ 
eXp [LN I for the three projection methods (Galerkin,

collocation , and tau). The results indicate that I l e x P ( L N ) I l  grows

• only like N114 as N (as arçued heuristically in Sec .5) . In other

words , L~ is algebraically stable (at least for t—l) . This result

shows the extreme pessimism of the energy estimate Hexp(LN)H —

0(exp(~ CN
2)); crude energy methods may be very misleading for non-

norma-I evolution operators.

In order to understand better how the Chebyshev spectral

methods avoid an energy ‘catastrophe ’ [energy growth like exp(N2t)J

we have solved the tau equations (2.19) numerically with a very

‘bad ’ initial condition:

uN (x ,O) — (TN (x) + 2TN 1 (x) + (_ ]~) N T0(x))/~~”~ . ( 8 . 5 )

For the tau method , this initial condition satisfies

~~~~~ 
(u~ ,u~)~ n (u

N ,(tJ N+LN* )uN) — 0 ( N 2 ) (N ~~- ) *

t—0

In Figs. 8.1-2 we plot the energy (uN,uN) vs t for N — 25

and N 50. It is apparent that the initial slope of the energy

qrowth is of order N2 but that the energy does not maintain this

rapid rate of growth. Observe that the region of rapid growth

is closer to t — 0 for N - 50 than for N — 25. The behavior

observed ~n Fiys. 8.1-2 is not inconsistent with the fact that

uN ( t  - 0) is  a ‘bad ’ eigenmode of LN + LN * . Hecause L
N ~

—1 48—
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Table 8.2

N Collocation Tau Galerkin

10 2.0707 2.0003 2.5788

20 2.7932 2.8119 3.1903

30 3.4620 3.4857 3.8328

40 4.0324 4.0514 4.4078

50 4.5222 4.5339 4.8630

60 
• 

4.9117 4.9855 5.2057

70 5.2961 1 5.4002 5.5262

80 5.6586 I 5.7770 5.8689

90 6.0282 6.1401 6.2526

100 6.3818 6.4831 6.6257

• 
*

Table 8.2. The largest exgenvalue 
~~~~ 

of exp (L~)exp (L~).

Observe that Amax behaves as cN~’
12 as N + ~~ where

c a 0.6 for all three spectral methods. The
*

* 
largest eigenvalue of exp CL ) exp (L ) grows only like
N despite the existence of eigenvalues of LN 

+ L~
growing like N2 (see Table 8.1).
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non—normal the ‘bad ’ initial condition is not an eigenmode of

LN 
so that after evolution from 0 to t exp(LNt)f 

U
N 

‘rotates ’

out of the region of bad modes of LN + LN
*.

The direct computation of exp [LNt] for t=l is not enough to

verify algebraic stability because the theory of Sec. 5 shows

that we must study the behavior of exp[LNtI for a complete

time interval 0 ~ t < T . This may be done using the method

suggested in Sec. 5 for the numerical verification of algebraic

stability. First, in Table 8.3 we list the numerically computed

j  eigenvalues of L N . Observe tha t all the eigenvalues of have

negative real part. (This result will be shown rigorously later.)

Therefore, exp(LNt) I + 0 as t-’~ for fixed N. Thus

the Chebyshev approximations are asymptotically stable in the

sense that they remain bounded as t~~ with N fixed .

In Figs. 8.3-5, we plot the L1-m~ttrix norm of exp(LNt)

vs t for N=5 ,l5,25 . Observe that as t~~ for fixed N ,

I exp(L~ t)  1~ approaches zero while it grows slowly (like N1”2)

as N-’~ for fixed t<2 (Note that growth of I I exp(LNt) II~
-
; like N112 as N-~~ is not inconsistent wi th growth of

I Iex~ (L1~t) 11 2 l ike N1~
’4.) Also observe that the norms seem

to have a boundary layer at t—2 such that f exp(LNt) ‘~~l ~~
as N-’~ for t<2 and ~~~~~ as N-’~ for t~’2. This behavior

is consistent with the unbouncledness of exp (Lt) for t— 2 (see (5.4)J.

Asymptotic stability does not prove stabili ty because LN is

not normal . The next step in the computational proof of stability -

is to compute numerically the Liapounov matrices HN satisfying

H -152- 
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Table 8.3

[ 
N Collocation Tau Galerkin

10 —2.4532 —2.999 —1.9306

20 —2.5932 —3.9320 —2.15

30 —2.7267 —4.5380 —2.32

40 — 2 . 8 4 9  —4.9918 — 2 . 4 6 5 9

50 —2.966 —5.3837 —2.5965
(- I

60 —3.0824 —5.7266 —2.7226

70 —3.1985 —6.0489 —2.8478

80 —3.3162 —6.3650 —2.9738

90 —3.4365  — 6 .686 1 —3.1017

100 —3.5597 —7.0229 —3.4335

Table 8.3. The real part of the eigenvalue of LN with

least negative real part for the collocation , tau, and
Galerkin spectral approximations to (8.1.3). Since all the

eigenvalues of L
N 

have negative real parts, these spectral
methods are asymptotically stable as t -

~~~~~~.
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*H AN + AN ~
1N 

= - I (8.6)
) N

A good method to compute U N is described by l3artels & Stewart

(1974). In Table 8.4 we list the condition number of for

the Galerkin , collocation and tau methods. This table suggests

that the condition number of 
~N 

grows at most l ike N 3 as N

for the Galerkin and collocation methods
t and l ike N 2 for the

• tau method. Recalling (5.11), we obtain

, 1-
_J ‘-

[eXPI L N t I  0 (N ~ 
) . ( 8 . 7 )

for all three methods . It should be noted tha t  ( 6 . 7 )  gives only  an

upper bound for I expELNt] H . According to the theory g iven in

Sec. 5, this upper bound can be sharpened by at most II L N I I  = 0 ( N 2 )

(N-~~) ,  expla ining the or iqin  of the difference between the estiI~-tate

(8.7) and the observed behavior N”4 of the computed L 2-matr ix

norms.

In the above discussion , we have given numeri cal evidence

for algebraic stability of the Chebyshev-spectral methods for

(8.1) . We shall now prove ri gorously that  Chebysh cv—spect ra l

methods for (8.1) are algebraically stable.

Proof of Algebraic S t ab U i t ~y ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
F In the Chcbyshov-Galcrkin approximat ion to (8 .1) , we represent

the spectral approximation UN by the series
(

—
I

U
N 

= 

~ 

a 1 (t )  (T -(-l)~~T0] ( 8 . 8 )

The cond ition nu m ber of can g row no fa st e r  than  N 5
~~ 2

L 

N -~~. To see thi s , wo r lote th ;I t  (5.1$) giv e s  h u N ~ 
0 ( N

while (5.13) and the results t h a t  ex p (] .N t ) H ~- 0(Nl,
/
~*~) fo~ t ’~7

and 1 I cx p (L N t )  I ~- 0 as N for t ’2  give  I I 1I
~ 

I 1= 0 (N ~~
’ )

as N~~~ 

- -—- -~~~ - ~~ 5•~~ -~~ -~~ •-- ~~~~~- -
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Table 8.4

~~~~~~~~~~~~ 
l u  _ __ ____ I1__~~_~ j

10 4.1463 x io2 3 1090 x io2 4.6388 x io2

20 3.0332 x l0~ 1.2421 x 1O 3 
• 

3.2672 x

30 9.8746 x ~~~ 2.7938 x ~~~ 1.0464 x

40 2.2940 x ~~ 4.9662 x ~~~ 2.9083 x

L~~~~~~~~~~~~~~~~~~~~
. _ _ _  

_ 
_ _ _

Table 8.4. The condition number IIH N hI I I H ~~I I in the
matrix norm of the Liapounov matrices U

N 
for the

collocation , tau , and Galerkin spectral methods for (8.1-3) .

For the collocation and Galerkin methods, the cond ition

- 
number seems to grow like N 3 as N-~~ , while for the tau
method it seems to grow like N 2 as N -~~



- -

Recalling (2.34), UN 
satisfies

3u N T (x)
+ = TN (t)n~O 

fl (1)n (8.9)

We can determine T
N

( t )  by equating the coefficients of

in (8.8):

daN (t)1N (t) = 
dt 

(_1)N

Let us now multiply both sides of (8.9) by 2(l—x)uN and integrate

with respect to the Chebyshev weight function (1x 2)~~
’2. Thus,

the left hand side of (8.9) becomes

4-

2 j ( 1 _ x ) u N
[_

~~~ + _ ~~~ ] ( l_ x2 )~~~ dx

= ~~ J ( l— x) ( l_x 2 )~~~ u~ dx+ f (l—x)~~(1+x)
1 

—
~~~~~~~ dx

= ~~ f (1-x) (1-x2 )~~~ u~dx + (l-x) ~( l+ x )~~ ~~

1 j  3
+ f  uN (

~~
( l — x )

~~~
(l +x)

~~~ + ~
(1_x)~~(l+x) ~I dx (8.10)

—l
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The boundary term in the last expression vanishes because U
N

is a polynomial satisfying uN (*
~
l) = 0 . Also,

(l-x)UN = (l_x)
~~~~

an[Tn
_ (_l)

~~ ø) ~~afl [Tn
_ (_l)nTO 3

I -
~~

. (T~~ 1 + T~~ 1) - (-l)~~T1]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

(8.11)

The first and thiEd sums on the right in (8.11) are orthogonal

to the right side of (8.9). The inner product of (l_x)u
~

with the second sum on the right in (8.9) gives

_ ( _ l) NT N aN ~~ N a~ ( 8 . 1 2)

Combining (8.10)  and (8.12) , we obtain

~~~~~~~~~ f (l—x) (1_x
2) 
1
u~ dx + * a~ ~ 0 (8.13)

This inequality proves that UN 
is stable in the new norm defined

in (8.13) : -•
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I l u l 1
2 L1~

-
~ 

(l-x 2)~~~~
2 Iu (x)I 2 dx ( 8 . 1 4 )

It remains to prove tha t  t h e  norm defined by (8.14) is

algebraically equivalent to the usual Ch ebyshev-L 2 norm. That

is, we must show the existence of two funct ions C1 
(N) and c2(N)

such that for every Nth clcqree polynomial U N

1 u 2 1 (l—x) u 2 1 u 2
c J —-p---— dx < f •- -— - -- ~~ --- d x <  c. f ~~~~~~~~~ (8 .15)
i _i /l — x 2  —1 11—x 

— 2 _l ,~1~—~•-

where 
- 

1/c 1 (N)  and c2 ( N )  grow at most algeb r a i ra l  ly as N--*~’.

The second i n e q ual ity  in (8.15) holds wi th c2 ( N )  = 2 becau~;e

1-x< 2.

The first inequal ity in (8.15) is mere difficult- to

establish . By the mean—value theorem ,

1 1 u 2
f 

~~~~~~ — l /i~~~
2 

dx

However th i s  does not prove the required  in e qu a l i t y  because it  is

not. c l e ar  tha t  l / ( i_
~ N ) is bounded a]gebrairally as N-~~ for  a ll

p o l y n o m i a l s .

To establish the first inequality in ( 8 . 1 5 )  we Use a differen t

ap1)~oach. We subst i tute t he  Chcbyshov po lynomi  a)

N
u Sr 7 ~~ T -‘N n~o 

fl ~
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and obtain

1 
- 

N
2 ( l_ x ) U  2 2
~ 

N dx = 2a0 
- 2a0a1 + ~ a~~

- n—l

N
1

- 

~ n=2 
(a~ a~_1 + a a

~+1)

(a~ .. .aN) U
N 

(a
0
...a )T, -

where H is the symmetric , positive definite , (N + 1) x (N+1)

tr idiagonal matr ix  whose elements are

- 
- 

I 
c~ i f j = k

I — ½c . if j = k— l

- ~~N~ j k = (8.16)

I —½c~ if j = k+l

L 0 otherwise,
where c0 2, c~ 1 if n > 0. To complete the demonstration of

the first inequality in (8.15), we must show that HN
)c

l
(N)I

where c1 (N ) >0 and l/c1(N) is bounded algebraically as N-~c. .

Since is nearly a constant—diagonal tridiagonal matrix , the

eigenva].ues of HN can be studied by standard techniques: if

= det(HN—A I) . then satisfies the three—term recurrence

relation

= (l_A )D
N....l 

— 

~
- DN_2 (N>2) . (8.17)

iL~ ~~~~~~~~~~~~ -• 
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Since (B.17) has constant coefficients , it is easy to sol ve

exactly. From this solution, it is not hard to show that the

smallest ciqenvalue of 
N satisfic~

2
x .~~ —n--— (N -~~ )

mi- n 8N 2

Choosing c1 
(N) = A min ( N )  g ives 1/c 1 ( N )  8N 2

/~i 2 (N - *~~)

4 This proves that the norm de f i n e d  by ( 8 . 1 4 )  is a lgeb rai ca l l y

e q u i v a l e n t  to t he  Chcb yshev  norm and , t he r e fo re , Cheb ys hc v— Gal  e rk i n

approximation to (8.1) is algebraically stable. Note also that (~~.1~ )

shows that the matrix defined in (8.16) satisfies (5.7b) with -

c( N ) = 0. Since h u N 1 1  = 0 ( 1)  and J 1 ~~~~~~j J  0(N 2), (5.11)

impl ies that k~~
P(L

~~
t) I I = 0(N) as N-~”~, which a lso f o l lows

( directl y from (8.15).

We have not yet beer. able to obtain a rigorous demonstration

that ( I exp(LN t )  I = 0 (N 1”4 ) as N-~~ as found num er ical ly in

Table 8.2. Our best result to date is Iexp (r
~

t )  f t  0(N) as

N —~-°‘

(

Although the problem (8.1) is not well pésed in the Chehyshev nerm

(as shown in Sec. 5), it is well posed in the norm d e f i ne d  by (6.14)

Using (8.1) and (8.3), we obta in
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L ~~~~~~~~ U u~ dx ~ (~-~)“2 U U dx

1

= — 
1. f  U2 (1—x)~~~

”2 (1+x) 3,/2 dx < o.
2

Thus ,

1, 1/2 2
~~ 

u d x < 0,
—l

so that I I e hIt I I < i  in the norm (8.14).

Proof of Algebraic S tab i l i ty  for Chcbyshev-Tau Approximation

The proof of algebraic stability for the tau method is similar

to that just given for Galerkin approximation. The Chebyshev-tau

approximation U
N 

satisfies

~U
N ~1u

- 
t 

+ _5
~ 

= TN (t) TN (X) (8.18)

uN ( l ,t) = 0

where

UN = Y a ~ T~~. 
(8.19)
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Therefore

(1—x) 
~~~~ 

=-N TN + ~~~~ T n 
(8 . 20 )

Moreover, comparing the coefficients of on both sides of

(8.18) we find

da H

TN (t) = _

~~~~~~

. 
- 

(8.21)

Eqs. (8.18-21) imply

(~~~~,(1-x)~~ -~~) + (~~~
,(1-x)

~~~~
) = - ( 8 . 22 )

Since

- 

~t 
1 x = — 1 ~

we obtain

2(~~~ , (1-x) = (1-x) 1/2 (l+x)~~~~
2
~ (~

uN/~
t) 2~~ x dx

/ (l x ) /2 ( l+x ) 3/2 (~~uN/a t) 2 dx~

Therefore ,(8.2l) gives

~~ f (l_x) (l_x 2)
_
~~(~~~~)

2 dx 0
— 1 (8.23)
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auNThis proves that the evolution of —s-—- is stable in the norm
~~

(8.14). Finally, the boundedness of .-

~~

--

~

- implies the

boundedn ess of U
N
I as wil l  now be shown . If UN is g iven - 

-

by (8.19), then

~U N-i

- 

-

where

c b - bn—i n— i n+l
- 

a~~ = —--— ----~~ —-- ( n = 1 , . . . , N )

The boun dary cond ition uN (_l ,t) 0 requires that

N
a

0 
n~ l 

a3~ 
5 - i

Therefore , since aUN isboundccl , so is u
N

In Sec . 9 we present a variety of numer ica l  r esu l t s  for

the numerical solution of (8.1) by Chebyshev and Lcgenclre spectral.

methods.

Effect of Boundary Conditions on th e Stability of Spectral Methods

Let us discuss the effect of boundary conditions on the

stability of the Cheybshcv approximations to (8.1) - In Sec . 6 it

was shown that incorrect treatment of the boundary does not a f f e ct

the stabil i ty (though it does a f f e c t  the convergence) of the Fourier—

Galerkin method . This is not the case for the Chehyshcv—spectral

methods. Let us assume that we solve (8.1) ignoring the boundary

condition ( 8 . 3 )  and suppose that u
N
(x r O) = T

~~
(x ) . The resul t in g

~ 
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system of Galerkin equations for {a~ } is

Naa
Pa~ (8.24)

n p~n+l
p+n odd

where a~~(O) = 
~nN~ 

Eq. (8.24) can easily be solved :

is a polynomial in t of degree k of the form

aN k (t) = ( , .2 ) k 
(~~ ) tk + •.. . (8.25)

This solution is clearly not bounded by any finite power of N.

Thus , the Chebyshev methods are algebraically unstable when no

boundary conditions are applied.

If we had imposed the boundary condition u (+1,t) = 0 in

addition to, or instead of , the boundary condition u(—l ,t) = 0,

then Chebyshev—spectral solution to (8.1) would be unstable.

With u (+l ,t)=0 instead of (8.3), the Chebyshev-spectral approximations

to the operator —a/ax all have eigenvalues with positive real parts

(that grow as N -
~~ °~). Similarly, if we tried to impose the extra

boundary condition au (+l ,t)/ax = 0 in addition to u(-l,t)=0 [as

is frequently done with finite difference methods), an unstable

scheme would result,

0 The effect of imposing u(+1,t) = 0 in addition to u ( -l , t )  = 0

is slightly d i f fe rent  for Leqendre—spectral methods. With u(-1,t)

u(+l,t)=0, Legendre—spectral methods for solution of (8.1) are

semi-bounded. In fact,

* 
1

(v,(L+L )v) = —2 f vav/ax dx = 0
—l

when v (±1 ,t) = 0 , so these methods are semi-bounded and stable.
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However, these spectral approximations are not consistent.

For example, Galerkin approximation involves expansion of

u(x,t) in terms of the functions •2n (X)=P 2n (X) 
— P0(l)

2n+l~~~~~
’2n+l 1’

~ 
P1(x) that satisfy 

~~~~~ 
= 0.

But au/ax cannot, in general, be expanded in terms of the

functions

The above situations are typical of rapidly converging

spectral methods. Spectral methods are extremely sensitive to

the proper formulation of boundary conditions. When proper

boundary conditions are imposed so the problem is well posed,

the methods yield very accurate results; when improper boundary

conditions are mistakenly applied, the methods are likely to be

explosively unstable. The stability and convergence of spectral

methods follows very closely that of the exact equations.

4
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9. Time Differencing

In previous sections we have investigated the properties of

spectral approximations to the spatial operator L of the

differential equation

Lu.

In this section we investigate the properties of time-integration
4:

techniques for the solution of the semi-discrete spectral approx-

imations

= LNuN 
(9.1)

Time djscretization errors in both finite difference and

spectral methods are typically much smaller than are spatial

discretization errors. There are two reasons for this: (i) time

steps are frequently restricted in size by explicit stability

t. conditions -- stability of the time integration requires that
time—differencing errors be small; and (ii) many problems involve

several space coordinates so any possible efficiency in the

( representation of the spatial variation of the dependent variables

is quite important to the overall efficiency of the method-- if

the number of degrees of freedom necessary to describe a certain

three-dimensional field accurately can be reduced by two in each

space direction then the total number of degrees of freedom is

decreased by a factor 8, but a similar improvement in time

( differencing gives just a factor 2. We will investigate

here only finite-difference methods of finite-order accuracy for 

- -  - 
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timewise solution of (9.1) despite the infinite-order

accuracy in space of many of the spectral methods discussed

in earlier sections. -No efficient, infinite-order accurate

time—differencing methods for variable coefficient problems - -

are yet known. The current state-of-the-art of time-integration

techniques ~or spectral methods is far from satisfactory on both

tbeo~etica1 and practical .gi~ounds and the results to be presented

bere i~ust be regard~d as only ~~.1~eqinning. -

One of our prime goals is to investigate the stability of

time differencing methods for the solution of (9.1 ) .  To do

this we must first explain how to extend the stability definitions

given in Sects. 4 and 5. Let u~ (x) = 
~
?N(x,nt

~
t) be the approx-

imation to the solution of (10.1) at time nt~t, where t~t is a

time step. Time differencing methods involve approximating

in some way to give a rule for constructing :

= ~~~~~t )u ~ (9.2)

where KN 
is an operator acting on UN• Using this rule repetitively

it follows that

~~~x,n~t)  = (KN(~
t)1%N(x,O), (9.3)

where for notational simplicity we assume At fixed . We say that

(10.2) is strongly stable if

Ii [RN (~ t)J~~f 1  < K (nj~t )  (9.4)~
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for al]. N and n sufficiently large and At sufficiently small. —

Here K (T) is a finite function of 1’. We define generalized

stabil~ ty by replacing K(T) in (9.3) by N~~~TK(T) as in(5.2).

A sufficient, though not necessary, condition for strong

stability (9.4 ) is -

I t ’o)~(At ) II —1 < ~At (9.5)

C for some finite K and all At sufficiently small. If

is a normal matrix then stability is assured if the eigenva].ues

A of RN satisfy the von Neumann condition

(5

m ax iA l < 1 + KAt (9.6)

for sufficiently small At (Richtmyer & Morton 1967). If RN
is not normal, then ( 9.6) is still a necessary , though not
sufficient, condition for stability in the sense of (9.4 ) .

The importance of these stability definitions is that they

lead to the fully discrete form of the equivalence theorem (see

Sec. 4): a scheme is consistent if

K (At) — I
iI (  

N 
At — L)u II + (9.7)

as N -
~~ ~ and At -.- 0 for all u in a dense subspace of H;

scheme is convergent if

I (u~ — u(nAt) H -
~~ 0

- 
- 

as N • ~ and At + 0 for all n satisfying 0 < nAt < T and

(
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all u(0) c~~. The equivalence theorem states that for consistant

approximations to well-posed problems, stability is equivalent

to convergence.

Let us now study the stability properties of some

specific time-differencing methods.

Implicit time—integration methods

Two time-integration methods that are unconditionally

stable for every algebraically stable spectral method are the

Crank—Nicolson scheme and the backwards Euler scheme. For any

semi-discrete spectral approximation (9.1) to u~ = Lu, the

Crank—Nicolson tiine-differencing scheme is given by

n+1 n
1 UN +U

U
N 

- U
N~ 

= t~t LN ( 
2 

(9.8)

and the backwards Euler scheme is given by

U
N 

- U
N~ 

= At LN 
U
N - (9.9)

To prove that (9.8) or (9.9) is stable , we proceed as follows. —

If (9.1) is algebraically stable there exists a family of

positive definite Hermitian matrices (HN
} such that

HN LN 
+ L

N
* H

N 
< ct(N)

or, equivalently,

M
N
”2 

I~~ HN

112 + HN~~~
2 
L
N

* M
N
”2 

< a(N)I,
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where ct(N)<dthN for some finite d. Substituting

n 1/2 n
V.N = H N U

N

into (9.8—9), we obtain, respectively,
(I

v n+l~~ n-l

vN 
v.N = At MN 

N 
2 

(9.10)

v~~
1 

- vN At MN 
V
N~~~ 

(9.11)

C.’ where

M H 1/2 L H -1/2N N N N

Taking the scalar product of ( 9.10) with

n n+lVN + V N , we - get

I I ~~~~~ 2 I i v 2 
= .4~i ((vN~~~+vN

’
~
), N M N  (v

~~
1+vN

’
~
) )

£5+t~ I IvN 
+VN II ~~~~~~~~~ 

(IIv N
’
~~~I I + fjv~ I

(9.12)
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Therefore ,

l i v 
n+1 11 2 < (1+ ½ ciAt ) 

li v n 11 2 9 13)N (1— ½ czAt) N -

which proves generalized stability for V
N 

and , hence, also for

—1/2UN EN V
N
.

Similarly, we may show that the backwards Euler method

is unconditionally stable. Taking the scalar product of (9.11)

n+1 nwith VN + vN 
, we obtain

n+1 2 n 2 n+l n n+l
I á v N I I - I IV N i i  = A t  (MN vN V N + ~ N

= ~~t (
~~ V N , 2vN~~~ 

- AtMN vN )

ct At  I I v N H (9.14)

.5)
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so that

v n 2
u N  ‘— l — ciAt N

proving generalized stability of UN.

Note that the above proofs show that if cx(N) is not a

function of N then VN 
= HN~

’2 UN 
is strongly stable for both

the Crank- Nicolson and backwards Euler schemes.

Spectral approximations using Fourier series

Next, we consider several time integration

methods for Fourier series spectral approximations to

U + U  = 0t x

with periodic boundary conditions. As shown in Sec. 6, the

collocation equations are

= C
~~

Dcuw 
(9.15)

where the matrices 2N~ 2N C and D are defined in (6.3).

The ‘leapfrog ’ time differencing approximation to (9.15) is

the explicit two-level scheme

n+l n-i -l n
U
N 

- U
N 

= 2At C DCUN (9.16)

-T” ~~~ in the leap frog scheme

( t t p ) u~ — ~~~ + 2AtC 1DCu~ ,

— 1 7 5 —
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~~~~

80 RN is a two—level evolution operator since it depends on

both u~~~ and u~. The definitions of stability , convergence,

and consistency given above extend easily to this case.

We shall show that (9.16) is strongly stable provided that

At < 2ii~ N—l~) 
(9.17)

To show this we first recall from Sec. 6 that C is unitary

and D is skew-Hermitian. Therefore, A C 1DC is also skew-

Hermitian, and hence normal , so that

I i A I  = 2,r(N-l)

Now we take the inner product of (9.16) with ~~~~ + ~~~~~

to get

n+l 2 n—l 2 n+l n—i n
I 1U t~ i i  - I 1U~ Ii = 2AtRe(uN + U

N 
, AuN)

since ~~~~ and u~ are real. Since A* = -A , we obtain

I 1U ~~~~~~~ H + I l u ~ H 2 
- 2AtRe(u~~

1, Au~)

= I iu~ i 1 2 + I iu~~~ i I 
- 2AtRe(u~ , Au~~~) ~U

so- u~ = u~ . Schwarz ’ inequality implies that

!Re (ur,Ad~~ ~~~~ i l A I f  1 l u ~~~i I  i i u ~ II

I - 
- —176— 
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so that if (9.17) is satisfied , i.e. AtI fA f I < i— c for some c > 0 ,

2AtRe (u~”, Au~ ) < 2(1—c) I Iu~’~ I I I I u ~ l I

Using this resul t~~~e obtain

+ Hu ~ i I 2 ) + (1—c) (Hu~~~i I  — II u ~ i 1 2 < u ~

(9.18)

Since is a bounded function of N (because of the initial
conditions) , we see that I Iu~~’i J is bounded for all N and
n , proving strong stability.

Another way to prove that the leapfrog and Crank-NicOlson €ime

differencing schemes are strongly stable for (9.15) is to use a , -

( ‘ modal analysis, which is justified because A is normal. Thus ,

if u~ is an eigenfunction of A with eigenvalue A , the

Crank-Nicolson approximation to KN (At) is

4 ~~~~
—

KN (At
)u
~ 

= (1 + AAt)/ (l — 
~~~

- \At) u~ (9.19)

I I’ Since the eigenvalues X of C 1DC are all pure imaginary , it

follows that I KN (At) I I  = 1, so Crank-Nicolson differencing is

stable.

Still another time differencing method for solution of (9.15)

is to use a Runge—Kutta scheme. It easily verified the first and

second-order Runge-Kutta methods are unstable unless At satisfies

conditions that are much more restrictive than (9.17). With the

first-order Euler method

n+l n fl
U
N 

= U~ + AtA UN

L —177—
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stability requires that N 2At be bounded as At -‘- 0 [because

iI RN (At)li= 1 + 0(N2 At2)] ; with the second-order scheme

= + ~~
- 

~ tA~~

n+1 n -n+i/2U
N 

U
N
+ AtAU

N

stability requires that N4’13At be bounded as At -
~~ 0. However,

the third and fourth-order Runge-Kutta methods give conditional

stability restrictions like (9.17) which we will now derive.

The third—order Runge-Kutta scheme may be written fo~~a linear

equation like (9.1) as

- 

= [I + ~tA + l/2 (AtA )2 + 1/6( ~~tA) 3]u ~ KN ( A t ) u
~

- (9.20)

Since K
N (At) given by (9.20) is normal ,

I 1K (A t )  I i  = max Ii. + AA t  + 1/ 2 (A A t )  2 + 1/6(AAt) 3~N A

where the maximum is taken over all the eigenva lues o f A .

eigenvalues of A are ik with ki < 2n(N—l), so (9.6 ) is

satisfied provided that

At < 2fl-(N—l) 
- 

(9.21)
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Thus, this method allows time steps that can be ,‘r times

larger than with the leapfrog scheme while maintaining stability .

However, if the operator A is complicated , the third-order

Runge-Kutta scheme requires about 3 times as much work as leap-

‘, from at each time ~bep, so it is probably not competitive. — - --.
~~~~

-

Similar analysis of the fourth-order Runge-Kutta scheme

gives the stability condition
*

At < 9.22)
1T(N 1)

Thus time steps can be nearly three times -larger than with

leapfrog steps. However, fourth-order Runge-Kutta differencing

requires about four times the work of leapfrog differencing , so

the scheme is probably not too useful unl ess very high accuracy
C -

• is desired.

Now we shall consider time-differencing methods for Fourier

series spectral approximations to the heat equation with periodic

boundary conditions:

~~~~~~~~ ( 0 < x < l )  (9.23)

• Collocation using Fourier series gives the spectral equations

— — — 5— - —

1 2
= C D CU N (9 .2 4 )

~
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• — 1 2  . . • •  -The matrix C D C is negative definite. Because (9.19, still

holds and all eigenvalues A are negative, Crank-Nicolson time

differencing is unconditionally stable. On the other hand , it

is easy to show that leapfrog d i f ferencing is unconditionally 
-

unstable. In fact , if u~ is an eigenfunction of C 1D2C with

eigenvaiue A < 0 then I I K N(At)~ u
~ I grows like

(—XAt + A~1(AAt)
2) e (

~~
t) as At + 0 for fixed A and

nAt . Since max IA l = 4-n 2 (N-l)2 grows like N2 as N -~

lI K N (At~~
u
~ l I  cannot be bounded be a finite function of nAt

for all N , proving unconditional instability .

Another way to solve (9.24) jS to use a generalized Dufort-

Fran kel scheme

n+l n-i
UN 

— UN — i 2 n 2 n+ 1 n—i• 2At = C D CuN - yN ( U N 
- 2U N + U

N

(9.25)

If ~ ~2 then this method is unconditionally stable

(Gottlieb & Gustaffson 1976).

Similarly , Euler time differencinq of (9.24) is conditionally

stable. Stability requires that At ma x f \j 2 or A t . :- ( N — 1 ) ~~~~
1 .

Higher-order Adams—Bashforth schemes have similar conditional

stability limits.
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Time-differencing for mixed initial-boundary value problems

Some care is necessary in the formulation of time-

differencing methods for spectral approximations to mixed

• initial-boundary value problems. The sensitivity of spectral

methods to the proper formulation of boundary conditions, -

as shown in Sects. 6—8 , carries over to the formulation

of time-differencing methods for these approximations. For

example, for most mixed initial-boundary value problems leap-

-a frog t ime differencing is uncond it ionally unstable for spectral

approximations. Furthermore, explicit time integration methods

may be unduly restricted by conditional stability requirements

in spectral approximations. The origin of these severe

restrictions is the very high resolution of spectra ] methods

near boundaries . Thus , it is frequently necessary to combine

special kinds of impl icit time—integration methods with spectt5~1

approxima tions in order to maintain high accur •icy at reasonal~1c

computational cost. Several ~•xamples wi l l  be V~’ r% La (t~r .

Let us begin by studying time-differenc i nq methods tor

the Chebyshev—spectral approxima t i~~~~~i~~ t (~ the mix.’~l i n i t i a l —

boundary value problem (8.1— ~)

U~ + U~ — 0 (— l’ - x l , t ’ t)) , ( t ~~~~~~7 7 )

u(x ,0) — fix) (—1 ~~x 1) , (~~.28)

1
u(—l ,t) 0 (t~ 0). (9.29)

L - 
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In Sec. 8, we proved that various semi-discrete spectral -

approximations to (9.27-29) are algebraically stable.

Let us first consider the leapfrog time-differencing

scheme

= UN + 2At LN U~~~, (9.30)

where u~(x) is the time-discretized approximation to

uN (x ,nAt) , A t is the time step, and the semi-discrete

approximation is 
~
UN/3t LN UN •

This scheme is unconditionally unstable for any At as N-~- - .

To show this we recall that in Sec. 8. we proved that the

eigenvalues of L
~ 

have negative real part (see Table 8. ~fl

and that the largest eiqenvalue of LN 
has a neqative rea l

part that grows like N as N - ’ . Let us rewrite ( 9 . 30 ) ~~

in the 2 x 2 block matrix form

u~~
1’I~ 2 \t Lw 

i\~ (u~ \~
1 ~ ~ I I

-
~~~~~ / 0/ ~~~~~~~

• If the eiqenval~ies of LN •~r~’ deno t ed as 
~N’ 

t h e n  the

eigenvalues of the mat rix on the riqht in 9.31 are

= 
~N 

Ati /i + ( A t ) 2 
~N

(9. 32)
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For fixed N and A t+0,

(4 —MEAt 2A N — e (1 + 0(At ) ) .

(9.33).

Thus

I 
~~ 

1 
~ 

— i~~nAt
[A N j — (.1)n e ( 1 + 0(Atj) (O< nAt<T,A t+Q)

(9.34)

Since Ii X~ (At) > (A 1~~ i
n and there are eigenvaluei of

with negative real part of order N2, no inequality of

the form (9.4) can be satisfied . Thus, leapfrog time

diff.rencing of the Chebyshev approximations to (9.27-29)

is unconditionally unstable.

There are several conditionally stable expl icit time-

differencing approximations that can be used with spectral

approximations to (9.27-29). Two examples are the Mains-

Bashforth ucheme

u 1 — u ~~ +~~~~A t L ~~ -~~~~A t L  ( 9 . 3 5 )

and th, modified Euler scheme 
- -

~~~~~~~~~~~~~~~~ (9 .36a)

+ At U~ + At L
~ 

~~ (9.36b)
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The modified Euler scheme (9.36) is in practice stable provided

the stabil ity cond ition

8At ~~~ .—
~~~ 

(9 .37)
N

is satisfied. A similar stability condition holds for the

AdainS-BashfOrth scheme.

The fact that the stability limit in (9.37) depends

on 1/N2 rather than 1/N is not very surprising 
*

because the Chebyshev collocation points cos u n/N

are spaced by a distance of order 1/142 near the boundaries.

Since the wave speed in (9.27) is 1 the wave propagates from

one grid point to the next in a time of order 1/N2 so time

steps must be smaller than this to maintain explicit stability .

The explicit stability restriction (9.37) for Chebyshev—

spectral methods wi th N polynomials should be contrasted wi th

the corresponding stability conditions for finite difference

approximatioi~~to (9.27-29). With N gridpoints uniformly spaced

in the interval -l<x< l, the grid spacing is 2/N so the

Courant stability condition is At < 2/N. As N~~ , this

stability condition on fin ite difference schemes is much

weaker than the condition (9.37) on the spectral approximations.

A semi-implicit technique that permits stable time-differencing

with spectral methods with a stability condi tion like that

of finite-difference schemes will be discussed later in this

section.
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In order to prove that the modified Euler method (9 . 3 6 )

is stable, we begin by noting that (9.36) is equivalent to the

— second-order Taylor series method —

= (I + At + ~ (At)
2 

ia~~
2
) u~ ~~~ ~~ (9.38)

A sufficient condition for algebraic stability of (9.38) is

the existence of positive-definite symmetric matrices SN
such that

GT S G < s (9.39a)
- —  N N N — N

and the condition number of S14 satisfies

I 1s141 I Js~~I I — 0(N8) (N-.co) . (9 . 39b)

for- some finite 8 . If (9.39) holds then

(0~)fl ~14 (G14)~ ‘ (GT)~~~ SN ~~~~~~ < ... < SN

or

s;”2 (~~~~L.~l/2~~1/2 (G14
)’~
’ 
c

]. 12 ‘. — —— —

Therefore,

- 4
i ~~1/2 f (  ) i’I 

~—l/2~ 1

‘ ‘ N  ‘ N N I I I ’ ’
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so that

- , I f  u~j~~= I t ( G N)
~~ 4 II< ( ( S ~~~~

2
( l I I S ~~~

2 cN~~ s;112 1 1

( 1~ 14 l i l l u  ii = 0 (14811411 ) (N-~~) .

To complete the stability proof we must investigate ~

under what conditions matrices SN 
satisfying (9.39) exist.

One choice for S
N 

is just the Liapounov matrices of L
14
;

these matrices satisfy

S14 L14 + L ~~S14 - I  (9.40)

It was shown in Sec.8 that the Liapounov matrices for spectral

approximations to (9.27-29) have algebraically bounded condition

number. Using (9.38) , we obtain

G~ SN GN = [I + At L~ + ~~~. (At) 2(L~)
T

J SN~~~~
t I t )

~~~ N
))

or

G
~~sN

GN = S N + A t  (L~~SN
+ S N LN)

+ 4-t~ t) 2 ((L~)
T 514 

+ 2L~ SN L14 
+ S

N 
L~ ] - -

+ ~ (At) 3((L~)
T S

N I~14 + L~ SN L~ ] + ~ (A t ) 4 (L~ ) T SN L~ .
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From (9.40), it follows tha t

(L~ ) T SN + L~ SN LN = -L~

SN LN + S.~ L~ =

• (L~ ) T SN LN + L ~~ SN L~~ = _ L ~~ LN

so that

G~ SN GN = S
N 

- AtI - (At)2 [L~ + LN ]

— 
~~

. (At) 3 L~ LN + ~- ( A t ) 4 (L~ ) T SN L~

Thus , (9.39a) is satisfied provided tha t

- —At (L~ + LN
) < I (9.41)

At L
~~

SN
L
N

< 2 I  (9.42)

If (9.41—42) are satisfied then the modified Euler method for

(9.27—29) is algebraically stable.

At f i r st , it may appear that the stability condition

(9.42 ) is much more severe than the stability condition

(9.4)). In fact, we know from Sec. 8 that

11L 14 11 = 0 (N 2 ), I1S~ H = 0(1) (N +~ ) ,

— 
-i~87- 

- 4



so that (9.4 2) seems to require that At~ 0(l/N
4) as

N-~~. However , the stability condition (9.42) is no

more restrictive than the s tabi l i ty  condition (9 .41 )

To see thi s we use (9 .40 ) written in the form

L~ SN 1’N + (L~~) 1 L~ SN LN 
- I

to obtain the representation [see (5.13))

L~ SN LN = I expL (L~~ )
Tt] explL;

1t) dt
0 N

It may be shown that the nornt of the integrand of ( 9 . 4 3 )

is 0(1) as N -
~ for t = 0(N2) and that the norm decays

rapidly to zero as t -
~~ ° . Therefore ,

- 

) JL~ SN 
L
N! ) 

= 0 (N2) (N~°’) (9.44)

showing that the stability condition (9.42) is of the form

At = 0(1/N2).
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j
semi-implicit methods

When explicit time-stepping methods are used to solve

semi—discrete spectral equations for the hyperbolic problem

+ a(x) = 0 (.-l< x’Z].) (9.45) -

with appropriate boundary conditions [that depend on the sign

of a(x)3, there result stability conditions of the form

~t~~min 2 1 a 1  Nfl~ x l a(x)I~ 
(9.46)

These stability limits can be derived heuristically from the

Courant stability condition

~ X ffe (9 47)
~ & a~ff 1

where aeff is the effective wave propagation speed in a

direction in which there is effective grid resolution t
~
Xeff •

Near the boundaries x=±l, the Chebyshev-spectral methods have

resolution t~
Xeff  

= 0(1/N2) as N-~ while aeff = a(±l); in

the int’~.rior of —l< x<l, Chebyshev series have effective resolution

t
~
Xeff 

— 0( ) as N÷~ while the largest wave spped is maxla (x) .

Thus, (9.47) implies (9.46) for the Chebyshev—spectral methods.

The stability condition (9.46) is too severe for many

a~plicatione because it requires that t~t = 0(1/N2).
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In order to relax this severe constraint , we use a semi-implicit

method in which the propagation through the high-resolution boundary

is treated implicitly, but the propagation through the interior is

treated explicitly.

Om. possible semi-iaplici~t scheme is the following two-step

u~tbod . Let LN be the Chebyshev-spectral approximation to

-a (x) with appropriate boundary conditions applied , and

4, ~~ be the Ch•byshev spectr~al approximations to the

constant coefficient wave operators - a(+l)a/ax, -a(-l)a/ax,

respectively, again with appropriate boundary conditions applied.

A semi-implicit two-step scheme is given by

~~~~ - ~~t I~•
•
~
• ~~~ u~ + f~t (LN - L~) u~ (9 .48 a)

- ~-~t L~ u!L~~ 
— urT + ~~~ (L~ 

- L~) u~
’T (9.48b )

s The scheme (9.48) is stable if the stability condition

~ 
}Tmax~~

a(x)I

is satisfied.

The condition (9.49) is sufficient to ensure stability ,

but the semi—implicit scheme (9.48) may be stable even if

(9.49) ii viold’t& . If maxfa (x)~<~ a(l)~ or max1a(x)J~~1a (—l )L
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(9.48) is usually unconditionally stable for sufficiently

large N (see Sec. 8 of Orszag 1974). The implementation

of (9.48) on a computer is straightforward and efficient; the

properties of Chebyshev polynomials summarized in the Appendix

show that the implicit equations (9.48) are essentially tridiagonal

• matrix equations .

The reason that the semi-implicit method outlined above

does not have a stability restriction like t~t = 0(1/N2) can be

understood as follows. By subtracting L~ and in succeeding

half—time-steps, the explicit part of the calculation is similar

to that in solving an equation of the form

+ (l—x 2) b(x) = 0 (9.50)

where the wave speed vanishes at x~~±l . If b(x) = b a

constant, the Chebyshev-tau equations for (9.50) are just

2 b [(n—i) a
1~ _ 11 — (n+j.) a~~1 1 (9.51)

where c0 = 2 and c = 1 for n>0. By Gerschgorin ’s theorem,

I ILN I for (9.51) satisfies

I IL14~I I = 0 (bN) ( N-.~~) , (9.52)

so the explicit time step restriction is ~t = 0(l/bN) as
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We note tha t Chebyshev-spectral approximations to (9. 50)

are stable when no boundary conditions are applied . In fact,

using Galerkin approximation and the Chebyshev inner product,

we obtain

2(uN~ ~~~~~~~~~ 
+ b(l—x ) ) — 0

so

1 u 2 1 _ _ _

~E L~ /i_ :2 
dx - -b f v’1-x~ ~~ dx

2 2I. xu 1 u
— -b f N dx < l b I f N dx

— l v’l— x~ 1 ‘1x 2

Therefore,

I u~
(t) 11

2 e~~~
t I IuN O 1 1

2 
.

proving stability.

There are other attractive semi-implicit schemes for (9.45).

For example, suppose a(x) is one-signed, say a(x)>0, and let

amex • maxa (x) . Define as the Chebyshev approximation to

- am~~ ~~ 
with boundary conditions imposed at x = -1.  A

semi-implicit Chebyehev spectral scheme for (9.45) is

[ n+]. L~~ ” ~~~~ — u~ + ~
t(LN 

- L~
ax) u~ . (9.53)
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The scheme (9.53) is usually uncond itionali y stable anU ~ivoids

the severe time step restriction (9.46). It is also easy to

implement efficiently because L~~
X is a Chebyshev approximation t~

a con s tan t—coef f ic ien t  wave opera tor .t

The same kind of trick stabilizes spectral methods for non-

• linear equations. For exa m ple , if we are solving the equation

~a!~+~~ i~ = 0at 3x

during a time interval in which u(x ,t) is smooth (no 5hOCk wdvt ’~ ;)

then we may use the semi-implicit scheme

-
~~~~~~~~

= (~~ u — u )  ~~
-

~~
-

at ~~max ax max ax

in which the terms on the left are t reated  impl ic i t ly  in time,

while those on the right are treated explicitly. Here u ismax
an estimate of the largest value of u (x,t). Similar semi-imp licit

methods are effective in eliminating (or at least relaxing) t i !~c-

step restrictions for finite-difference methods. The key idea

is to recognize the source term of a numerical instability and then

to approximate it by a simple expression that can easily be treatc~i

implicitly.

D. Hc~id voge l ~~~ pointed out tha t the semi—implicit scheme(9.53) with repl.~~ced by a Chebyshc’v spectral appi-o m a t i e nto ½ (bx+c)a/~x , where b+c = a (+l), c—b ?i(—l ), is ~i i 5 Ostable under the weak restriction (9.49). The resultinqimplicit equations arc still tridiaqonal [see (A.9), (i\.18)].
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Several other examoles of semi—impl icit methods should make

the general technique clear. For the variable coefficient heat

equation

u = k(x) u (-l x-l )
t xx

With Suitable boundary conditions at x = •I 1 and k ( x ) ’  0 ,

Chebyshev—sp ectral  methods give exp l i c i t  t ime—step  s t a bi li t y

conditions of the form

‘ nun { 
A 

~ 4 , 
—

~~

—- — ) (9 . 5’ )
k(—l)N 9 k(l)N N ntaxk(x)

1 x j <1

The very severe time step restriction tha t ~t = 0(1/N4) as

N-” is due to the high resolution of Chebyshev series i~ear the

boundaries x ± 1. To avoid th is  problem we can use a semi—imp i i c’.i t

method. Let LN be the Chebyshev-spectral approximation to

k (x )  a 2/ax 2 and let ~~~~~ be the Chebyshev— spectra l ap p r o x i m it  ion

to 1k a2/~x
2 where k = maxk(x) . The semi-impl ic i t2 max max

scheme (9.53) with ~~~~ defined in this way

seems to be unconditionally stable (Ors~ oq 1974) and c ’e rt a in~~y

does not have any s tab i l i ty  restr ic t ions of the form (c) •~~4 )

Fi nally,  we con~uent on the need for implicit or semi—implicit

schemes in mult i—dimensional  problems . If we wish to solve the

Navier-Stokes equations

-‘ - ‘ ‘  2 -
~

~1+ U . Vu ~~~ - V p + vV u
( 9 . 5 5 )
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for incompressible fluid flow, the treatment of the various

terms should guided closely by the type of stability restrictions

they impo se.

If v— 0 then we need only consider the types of stability

restrictions induced by the advective term -~.vi~ and by the

pressure term —vp; we will not discuss the effect of the

pressure because it is closely connected to the incompressiblity
+

( condition V .u— 0 and is not relevant to the semi—implicit ideas

discussed here. At a boundary of the flow, it is appropriate to

specify boundary conditions on ~~~ where ~ is the normal

to the boundary . If the boundary is solid and stationary , then

and we are in a situation similar to that modelled by

(9.50). The effective convective speed normal to the boundary

vanishes, so spectral methods exhibit no unusual time stepping

restrictions. However , if fluid is being blown into or sucked

out of the boundary so ~~~~~~~ 0, then semi-implicit methods must

be applied to avoid unreasonably restrictive conditions like

(9.46) on the time steps.

If v>O , then the viscous terms in the Navier-Stokes equations

should be treated implicitly to avoid unreasonable time step

restrictions due to the high resolution of spectral approximations

near the boundary .
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10 Efficient Implementation of Spectral Method s

There are two aspects of the efficien t implementation of

spectral methods that we discuss here: Ci) evaluation of

derivatives; (ii)  evaluation of nonlinear and nonconstant

coefficient terms , (iii) roundoff errors. More details on

these matters are given elsewhere (see the References).

Evaluation of der~ivatives

An efficient procedure to obtain the expansion coefficients

of derivatives of a function f(x) in terms of the expansion

coefficients of f ( x )  is to use recurrence relations. For

example , to evaluate the term

N
P a p

p— n+l
p+n odd

that appears in the Chebyshev equations (2.11), (2.19), and

(2.32),we use the recurrence

S 5n+2 + (n+l)a~~1 (O<n<N—l) (10.1)

with SN — SN+l — 0. In this way, 5n is evaluated for all n

using only N arithmetic operations. The existence of the recurrence

relation (10.1) is ensured by the recurrence property

I I

2T ~~~~~~~~~~~~~ - 
n— (n>l)

n n+] n—i

—196—



—

satisfied by the Chebyshev polynomials. Similarly,  it is possible

to derive recurrence relations to evaluate efficiently the

coefficients of arbitrary derivatives of functions expanded in

Chebyshev and other classical polynomial expansions.

Evaluation of nonlinear and nonconstant coefficeint terms

The most e f f i cient way to evaluate nonlinear and general

nonconstant terms in spectral approximations is to apply transform

methods. The key idea is to apply fast Fourier transforms and other

t ransforms to trans form e f f ic ien t ly  between spectral representations

of a function f(x) and physical-space representations of f(x).
ci

Wi th Chebyshev polynomial expansions , fast Fourier transforms permit

the evaluation of arbitrary nonlinear and nonconstant coefficients

terms in order N log N arithmetic operations.

In general , collocation methods give approximations to nonlinear

and nonconstant coeff ic ient  problems tha t  can be more e f f i c i e n t l y

implemented than Galerkin or tau approximations. Collocation is

recommended for these problems. For example , the solution of the

hyperbolic problem 
-

+ eU = f(x ,t) (—1 < x < 1, t > 0), (10.2)

u(—1 ,t) = 0,

would be difficult using Galerkin or tau approximation but is

straightforward using collocation methods.

- - - - -- - - -197- 
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Let us explain how to riarch the solution to (10.2) forward

by one t ime step e f f i c ien t l y  u s ing  Cheb yshev co l loca t ion.  %~e m t  rotiu~’.

the N+l collocation points  x~ = cos nj/N (j 0,...,N)

and represent the current solution u~ as

u .  = . ( 10 .3)
n=0 N

Then we invert (10.3) by the fast Fourier transform to

obtain a~ for n = 0,1,...,N and calculate

a~
’
~

by (10.1). Next we evaluate

= E a~~~ cos (10.4)
x=x~ n=0 n

using the fast Fourier transform . Finally, we evaluate

• ~~~~~~~~~~~~~~~~~ at each of the ‘grid’ poin ts x~

and use the results to march the solution forward to the next

time step.

For qua dra t ica l ly  h onl inc ar d i f f e r e n tial equat ions , like the

Navier— Stokes equations of incomprcssil.~1c fluid 
dynamics , Galerkin

and tau approximations are workable but normally require at 
least



twice the computational work of collocation approximation . However,

Galerkin approximation is sometimes very attractive because it gives

approximations that are conservative and have no so-called aliasing

errors (see Orszag l971c, 1972 for a more complete discussion of

th ese properties) .

Roundoff Errors

Transform methods norrrally give no appreciable amplification

of r-~undoff errors. In fact, the evaluation of convolution-like

suing using fast Fourier transforms often g ives results with much

smaller roundoff error than would be obtained if the convolution

sum s were evaluated directly .

On the other hand , the use of recurrence relations to evaluate

derivatives can sometimes be a source of large roundoff errors.

In this case , it is often best to convert the probl em being solved

into a new one that is numerically well-conditioned . An example of

such a transformation is given below.

Example 10.1: Solution of y”-ky=f(x) by Chebyshev polynomials

The boundary-value problem

y ” — ky = f ( x )  -1< x<l ( 10.2)

y(—l ) — A , y ( 1) = B

can be solved using a Chebyshev-tau approximation . The
resulting approximation yN (x) is given by (see Appendix)

N
YN(~

c) a T Cx) (10.3)
n—0 ~
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N_L 
~ p ( p 2— n 2 ) a — ka = f (0< n<N—2) (10.4)

c~ p n+2 P fl —

p+n even

N N
~ (~~1)

fl a = A , a = B, (10.5)
n=0 fl n=0

where {f} are the Chebyshev series coefficients of f(x).

The solution of the system (10.4—5) for the Chebyshev

coefficients {a n} may be done in several ways. One obvious

way to do this efficiently is to write

= a~~~ + aa~
2
~ + 8a~~

3
~ . (10.6)

Here a~
’
~ satisfies a~

’
~ = ~~~~ = 0 and

N
p (p2_n2)a(U .~ka

W = f (0~n<N—2),C~~ p=n+2 p n n

( 2 )  ( 2 )  (2)
while a satisfies aN = 1, as_i = 0 and

N (2) (2)
p(p

2-n2)a - ka~ = 0 (0<n<N-2) ,
Cn p=n+2 • 

p

and a~
3
~ satisfies a~

3
~ = 0, a~

3
~= 1, and

N
— p(p -n )a ‘- ka = 0 (0<n<N-2).

fl p n+2 p

p+rt even

Each of the solutions ~~~~~ a~
2
~ , a~

3
~ , may be found

using roughly N operations by backwards recurrence. When

the constants a and 8 in (10.6) are chosen so that the

boundary conditions (10.5) are satisfied , a~ given by
( 10.6) satisfies ( 10 .4—5 )

The above procedure is efficient but it is not usually

numerically stable. Roundoff errors multiply rapidly so that
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may have little significance.
A better procedure is to first convert (10.4-5) into a

nearly tridiagonal system of equat ions. It may be shown that
( 10.4—5) is equivalent to the system

kc ke ken— 2 n+2 n+4
4n(n- 1) 

a~~ 2 - + 
2 (n 2-1) 

an 4n(n+ 1) an+2

c f e f e f
— n— 2 n—2 

- 
n+2 n + n+4 n+2 (2 N) (10 7)— 4n (n— 1) 2 (n 2— l )  4 ( ~~ j•1 — —

with the boundary conditions (10.5) still applied. Here

c0
=2, c~=l for n>O and en l for n<N, e~=O for n>N. The

system (10.5), (10.7) may be solved by standard banded matrix
techniques in roughly the number of operations required to

solve pentadiagonal systems of equations. The equations in the
form (10.7) are essentially diagonally dominant so no appreciable

accumulation of roundoff errors occurs. This technique for

solution of (10.2) is very useful in imp1em’~nting implicit
spectral methods for dissipative terms and for solving Poisson-
like equations (see Sec. 14).
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11. Numerical Results for Hyperbolic Problems

We begin by presenting numerical results for spectral approximations

to the problem

u + u — 0 (—1<x<1,t’O) (11.1)
t x — —

u(x,0) — 0 ,u(—l,t) = g(t), (11.2)

whose exact solution is

(g(t — x — 1) (x’zt—l)
u (x,t) —

(0 (x>t—l). (11.3)

If g(t) is smooth, u(x,t) is smooth for Ix I< 1 when t>2; when

tc2, u(x,t) is not smooth at x~t—1 .

In Sec. 2 we explained how to obtain semi-discrete Galerkin ,

tau, and collocation approximation to (11.1-2) using either

• Chebyshev or Legendre polynomial expansions. In Sec. 9, we showed

that either Adams-Bashforth or modified Euler time differencing gives

stable and convergent results for these spectral approximations. The

numerical results cited in this Section were obtained by Adams-Fiashforth

time-differencing ; time steps were chosen small enough that time-

differencing errors are negligible.

Comparison of Chebyshev and Leg~nc1re Polynomial Spectral Methods for

Smooth Solutions

When g(t) =—sin Mnt , the solution (11.3) has M complete

waves within xI<] . when t’2. As argued in Sec. 3, we expect that

accurate results will be obtained only if N’Mn polynomials are

retained .
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In Fig. 11.1, we plot the root-mean-square error for I x~<l
averaged in time for 4<t<4.4 obtained using the Chebyshev

approximations to (11.1—2) when g(t) = —sin 5irt . In this time

interval, u(x,t) is smooth for x I< 1 . Observe that the errors

decrease exponentially fast when N~5ir . Also observe that when the

spectral approximations are relatively inaccurate (errors greater
C.

than roughly 10%), Galerkin approximation is most accurate followed

by collocation and then tau. On the other hand, when the spectral

approximations are very accurate (errors less than roughly 0.5%),
(

tau approximation is most accurate followed by Galerkin and

collocation . This behavior seems typical . Also observe from

Fi9. 11.1 that all three spectral approximations are nearly as
4-

accurate as the best (rms) Chebyshev approximation; in fact, tau

approximation with N+1 polynomials is usually more accurate than

the best approximation with N polynomials. Here the best (rms)

Chebyshev approximation is that Nth degree polynomial that
1 2 2 —1/2minimizes / IUN - u l  ( l—x ) dx.

In Fig. 11.2, we make similar comparisons of the error in

spectral approximations using Legendre series for the problem

(10.1-2) with g(t) = —sin 51Tt . Here too the errors decrease

exponentially fast when N~51T. Again, tau approximation is more

accurate than Galerkin when both are very accurate, while it 18

less accurate when both are relatively inaccurate. Also, tau

C 
approximation with N+1 polynomials and Galerkin approximations

with N+2 polynomials are more accurate than the best Legendre

approximation with N polynomials. Here the best Legendre

approximation is that Nth degree polynomial that minimizes

—

—203—

- 
—•---• --~~~ ~~~~~~~~ 



- _ •- . —-•~,~---~—— --- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fig. 11.1. A plot of the L2-errors in Chebyshev-spectral
solution of (11.1—2) with g(t) — —sin 5nt. The errors
are averaged in time over the interval 4 t<4.4; the exact
solution u(x ,t) — sin 5ii (x+1-t) is amootE E~iroughout thistime interval. The best (ring ) approximation is given by
(3.41) with M — 5, a l—t trundated after rN (x). Observe
that the errors decrease rapidly for N > 51T .
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Fig. 11.2. Same as Fig. 11.1 except for Legendre-spectral
solution of (11.1—2) with g(t) — —sin 5 tr t . Here the best
(rms) approximation is given by (3.45) with M = 5, a 1—t
truncated after PN (x ) .
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In Fig. 11.3—4 we plot the error 
~N
(x,t) in the best

Chebyshev polynomial approximation to sin 5 1T(x+1-t) at t—4 .

Observe that £
N (x,t) is nearly an ‘equal ripple ’ approximation

(Acton 1970) so uN
(x,t) i-s nearly a minimax approximation.

In Figs. 11.5—8 we plot the errors C N(x?t) versus x

at t—4 obtained by numerical solution of Chebyshev spectral

approximations to (11.1-2). As N increases, the tau method

gives the c.~~sest approximation to an equal—ripple error, which

is consistent with the result shown in Fig. 11.1 that tau approximation

~!ves the smallest errors at high accuracy.

In Figs. 11.9—10, we plot the error in the best

— Legendre polynomial approximation to sin 5rr (x +l-t) at t4.

Observe that L N
(x,t) has large errors near the boundaries

x = ~ l. By comparing the results plotted in Figs. 11.3-4 with

those plotted in Figs. 11.9-10, we conclude that the best Chebyshev

polynomial approximation is closer to an equal r ipple approximation

than is the best Legendre polynomial approximation. Even though the

best Legendre polynomial approximation to u(x,t) gives the smallest

mean-square error to u, the best Chebyshev polynomial approximation

usually gives a smaller value of the maximum pointwise (L~) error.

The large errors of the best Legendre approximation are concentrated

near the boundaries x=±1, while the Chebyshev weight function

(1-x 2) 1”2 tends to distribute the errors in the best Chebyshev

approximation uniformly throughout -l<x<l.
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• In Figs. 11.11—13, we plot the errors C N(x,t) at t—4

obtained by numerical solution of Legendre spectral approximations

to (11.1—2). As for Chebyshev-spectral approximations, the error

in Legendre-tau approximation is smaller than that in Legendre-

Galerkin approximation.

One important feature of Legendre-spectral approximation is

that the spatial distribution of the error in tau and Galerkin
approximation plotted in Figs. 11.11-13 differs  markedly from

the spatial distribution of the error in the best Legendre

polynomial approximations plotted in Figs. 11.9-10. The boundary

errors in the best L2 approximation are relatively large while

the boundary errors are relatively smaller in the spectral

approximations.

The boundary (endpoint) errors in Legendre-tau approximation

exhibit ‘superconvergence ’ in the sense that they go to zero much

faster than either the L2 - errors or the L2 and endpoint errors

of Chebyshev-tau approximation. This fact is illustrated in Fig.ll.l4

where we plot the L2 and endpoint errors of Legendre—taU and

Chebyshev-tau spectral approximations to the solution of (11.1-2)

with g(t) =—sin5rr t . Here the endpoint error is IuN(+l ,t) u(+1,t)I

at the outflow boundary x— +1.

Several features of the results plotted in Fig. 11.14 deserve

comment. First, although the maximum error of the best N-term

Chebyshev polynomial approximation is smaller than the maximum

error of the best Legendre polynomial approximation to u(x,t) by

roughly a factor l/v’i~ (see (3.38) and (3.39)], the maximum error

of the L gendre-tau approximation is smaller than the maximum error
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rig. 11.14 A comparison of the Chebyshev-tau and Legendre-
tau L and endpoint (x — +1) errors for the solution to (11.1-2)
with ~(t) — —sin 5trt .
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of the Chebyahev—tau approximation. Second, the endpoint error at

x=1 of the Legendre-tau approximation goes to zero like the square

of the endpoint error of the Chebyshev-tau approximation. This

remarkable behavior of en4~oint errors in Legendre-polynomial

approximations was found origlinally by Lanczos in a slightly

different context [Lanczos 1966 (p. 156), 1973].

A mathematical analysis of the errors of spectral approximations

to (11.1-2) has been given recently by Dubiner (1977). Dubiner ’s

results include: (a) asymptotic estimates of the errors incurred

by the various spectral methods, including error oscillations when

the solution is smooth ; (b) a complete boundary layer description

of the decay of large errors due to discontinuities after the

discontinuities propagate out of the computational domain; (c)

analysis of the behavior of the tau-function t(t) in (2 34). Dubiner

has analyzed a variety of spectral methods for (11.1-2) based on

expansions in general Jacobi polynomials. His ingenious analyses

of tau methods should permit more complete analysis of these

methods than possible using earlier a posteriori analysis (see Fox

& Parker 1968 for examples of a posteriori error analysis of tau

methods).

Mesh Refinement

Sometimes it is useful to split up a domain into several

subdomains and then use numerical methods of different spatial

resolution in each. For example, in limited-area numerical weather

forecasting near a metropolitan area, it may be desirable to have

much finer resolution in a small region than is practical globally.

One way to do this is to solve the problem separately on each

—220—
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of several subdoasins and then to match the numerical solutions

so obtained across subdomain boundaries. As a model of this

procedure we consider the problem

u~ + u~ — 0 (—l<x<l , t>0) (ll.4a)

u(—l,t) = g(t), 
(11.4b)

v
~ 

+ ~~ = 0 (l<x< 3,t>O) (ll.5a)

C v(l+,t) u(1—,t). (11 .5b)

With finite difference methods, the accurate solution of the coupled

system (11.4.5) using different grids for -l< x<l than for

l<x< 3 may be troublesome. Inaccurate results or even numerical

instabilities can result from the matching (Browning, Xreiss & Oliger

( 1973). Because grids with different grid separations have different

dispersion characteristics for waves propagating on the grid ,

waves can reflect from the boundary at x=l and cause large

errors.

Spectral methods are attractive for the solution of mesh

refinement problems like (11.4-5) bec~ause they give small endpoint

errors. For example, the Chebyshev-tau approximation to (11.4-5)

with N+l polynomials to represent the solution for -l<x (l and

M+i. polynomials for 1<x< 3 is given by

N
u.d(x,t) — ~ 

a~ (t) T (x) (—1<x<l) (11.6)
n—0

— 2 2 1 —
.4
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vM(x,t) = ~ 
b~ (t) Tm

(x_2) (l<x<3) (11.7)

da N
-~~~~~~~ 

= - -~~
- p a ( 0 < n < N — l )  ( 11.8)
n p n+l p

p+n odd

db N
= — p b (0< m<M—1 ) ( 11.9)

dt cm~~~m+l P — —
p+m odd

N

~ 
( . ] ) n a = g ( t )  (11.10)

n=0

M in N
1 (— 1) bm = I a (11.11)

m=0 n=L,

It may easily be shown that if g(t) is smooth, the solution to

(11.6-11) converges to the solution of (11.4-5) throughout

—l<x< 3 faster than any finite power 1/N or l/M as N, M-~~.

The solutions for -j<x<1 and l<x< 3 match without the

necessity of imposing any matching conditions in addition to

(ll .5b) . Because no spurious downstream boundary conditions

are appl ied at x—+ l on the wave propagating in the interval

—l<x< l, there are no reflected waves.
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One more example of a refined mesh spectral calculation

is instructive. Consider the heat equation problem

~~~~~~ 
x v ~

_
~~~ —l<x< l (11.12a)

2
= v 1_X l<x< 3 (ll.12b)

u(—l ,t) f(t), v(3,t) g(t) (11.12c)

u(l~t) = v( 1+,t), (l- ,t) (].+,t) (ll.12d)

where (ll.l2d) follows by requiring continuity of temperature and

heat flux across the boundary at xml. A Chebyshev-tau approximation

to (11.12) is given by

N
u(x,t) = 

~ 
an
(t)T

n
(x) (—1zx<l) (ll.13a)

n— 0

v(x,t) 
~~~~~~~~ 

bm
{t)Tm

(X_2) (1<x<3) (ll.l3b)
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da N 2 2
— ~j~- ~ p(p —n ) a~ (0<n. N-2) (11.13c)

1~ p-n+2
p+n even

db N
= 

~~ ~L+2 P(P2_m2)b~ (0.p<M-2) (ll.l3d)

p+m odd

N M
~ (—l ) a = f(t), ~ b = g ( t )  ( 11.l3e)

n— 0 fl m=0 ~

N M N M

I a ~ (— l ) %  , ~ n2a = — I (_l) tthm2b
n— 0 n m=0 ~ n=0 m=0 m

( l l .l3 f)

It may be shown as in Example 7.1(v) that this approximation is

• semi-bounded and hence stable and convergent.

Discontinuities

When t<2 , the solution (11.3) to (11.1—2) is not

smooth at x— t — l ;  if g ( t )  = sin MiTt , the solution has a

discontinuous derivative. This discontinuity seriously degrades

the rate of convergence of spectral approximations near the

discontinuity. Nevertheless, spectral approximations are still

normally much more accurate than finite-difference approximations

to the same problem. Orszag & Jayne (1974) give comparisons

between finite—difference and spectral approximations to

discontinuous solutions; in particular , they argue that if the 9

2th derivative of the solution is discontinuous, the rate of —

convergence of Chebyshev-spectral approximations to (11.1-3) for

tc2 is of order l/N~ as N-~°~. Dubiner (1977) has given a detailed

asymptotic analysis of this problem. His results include detailed

-224-
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behavior of the error for all x and t and are in good agreement

with numerical solutions.

One of the attractive features of spectral methods for problems

with discontinuities is that the region of large errors is more

localized near the discontinuity than in finite-difference methods.

Thus, it should be possible to eliminate oscillations near the

discontinuity using less dissipation than is required when finite

difference methods are used. A comparison of the error in Ch.byshev-

tau and second and fourth—order solutions of (11.1-2) for t<2 is

given in Fig. 11.15 .

Another interesting way to use spectral methods for problems

with discontinuous solutions has been suggested by Boris & Book

(1976). The “optimal flux-corrected transport” approximation

gives good resolution of discontinuities without introduction of

unphysical numerical oscillations near the discontinuity . The idea

is to add in an artificial diffusion to smooth the discontinuity and

then to ‘anti-diffuse’ the resulting solution in such a way that no

new oscillations or maxima/minima are produced.

Comparison with Finite Difference Methods

Finite-difference approximations to (11 .1-2) must be

formulated carefully near the boundaries x =! 1. For example ,

tJ~e fourth-order semi-discrete approximation

au ~ 
+ 

8(u ~~ 1—u~~.1) — u j~~2+U j ..2 — 0l2~x 
—

where u~~(t) = u (jAx ,t), must be modified at x—-l +l~x , l-l~x , l

because u (—l—~x,t), u4 +~x,t), u (l+2Ax,t) all lie outside the
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computational domain -l< x<l. (reiss & Oliger (1973) discuss

methods to formulate difference approximations at these grid

points. However, it is not known how to formulate appropriate

‘boundary ’ conditions for arbitrary order difference schemes.

This difficulty is an artifact of difference methods; a fourth-

order difference quation requires 4’boundary ’ conditions while

only 1 condition ( 11.2) is properly imposed on the first-order

di f ferential equation (11.1).

On the other hand , properly formulated spectral methods

require no ‘spurrous ’ boundary conditions . Indeed , the imposition
I ,

of a spurious boundary condition on a spectral approximation to

(11.1), like au/ax = 0 a t X  +1, will induce an unconditional

instability (see Sects. 8,12). The mathematics of spectral

approximations follows closely the mathematics of the differential

equation being solved .

Spectral approximations also require considerably fewer degrees

of freedom to achieve accurate results than are required by

difference methods. A comparison for the problem (11.1-2) is

giv en in Table 11.1 for late times at which the solution is smooth.

In Figs. 11.16—19 we show three-dimensional perspective plots

of the solution to a simple two-dimensional hyperbolic problem with —

periodic boundary conditions

aAtx ,y,t) 
- y aA (x~y , t) 

+ ~ 

~
‘;‘

~~ 
= 0 (11.14)
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Table 11.1

Second-order Pourth-order Chebyshev-tau

N M C
2 

N M £4 N M c

40 2 0.1 20 2 0.04 16 4 0.08

80 2 0.03 30 2 0.008 20 4 0.001

160 2 0.008 40 2 0.002 28 8 0.2

40 4 1. 40 4 0.07 32 8 0.008

80 4 0.2 80 4 0.005 42 12 0.2

160 4 0.06 160 4 0.0003 46 12 0.02

Table 11.1. L2 (rms) errors for the solution of (11.1-2) with

g (t) = sinM lit. The errors listed are measured at t=5 when the

solution (11.3) is smooth. Time differencing errors are negligible

and N is the number of grid points or Chebyshev polynomials.

Observe that to achieve a 1% error , the second—order method requires

N/Mt40 , the fourth-order method requires N/M>15, while the

Chebyshev-tau method requires N/M~ 1T .

I
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with

A (x±2w ,y±2iT,t) = A(x,y,t).

The solution to (11.14) is constant along the characteristics

x+iy= (x0 + iy0)e
lt. Therefore, A (x,y , 2ir )~ A (x ,y, 0) so

the solution should keep A unchanged after a time 2~i. In

Fig. 11.16, we plot the initial conditions used for the calculation

whose results are plotted in Figs. 11.17—19 . In Fig. 11.17 we plot

the results at t=2rr of a second-order centered space difference

scheme; in Fig. 11.18 we plot the results of a fourth—order scheme

and in Fig. 11.19 we plot the results of a spectral calculation

using the Fourier expansion

A (x,y , t) = a(k,p,t)e ’~~
’
~~
’

IkI<K I p l ~~P

All three calculations used the same number of degrees of freedom

but the differences in accuracy are striking. The Fourier-spectral
- - - method works well even though the convecting velocity (-y ,x) in

(11.14) has jump discontinuities at x=±2li, y = ±2 TT . The dominant

error in all three calculations originates from the ‘corners ’ of

the initial A (x,y,0) distribution; thus error appears as a large

lagging phase error in the f in i te  difference solutions which explanins

the ‘wakes’ of large errors following the remnants of A (x,y, 21t).

Higher-Order Wave Equations

The mixed initial-boundary value

2 2L.
~~ — 

L_~ (—l<x<l ,t>0) (11.15)
at  ax
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u(~ l,t )  — 0 (11.16)

u(x,0) = f ( x )  , (x,O) g(x) (11.17)

is well posed. Legendre polynomial solution of (11.15-17) is

semi-bounded and , hence stable (see Sec. 7). However , we have not

yet been able to prove that Chebyshev solution of this problem is

ever algebraically stable. The techniques of Sec. 8 prove that

if the boundary conditions (11.16) are replaced by the characteristic

conditions

au (—l ,t) + auc— 1 ,t) • o , au (1,t) — au (l,t) = 0,
at at

the scheme is algebraically stable. However , we have not yet

been able to prove this result for (11.16). However , it is

reassuring to note that we have solved the Cheybshev-spectral

approximations to (11.15-17) and find no evidence of lack of

convergence. Indeed , the Chebyshev methods work just as well as

they do for (11.1-2). Thus, it is not the spectral methods that

run into difficulty on higher-order equations , bu t just our

methods of analysis.
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12. Adv~ctive-Dj ffusiorz Equation

In this section, we consider spectral methods for the

advective—diffusion (‘linearized Burgers ’) equation

~u(x,t) + ~~a~~~1~
t) 

— v ~~~~~~~~ + f(x,t) (—1 ~~. x < 1) (12.1)

u ( - l t )  — 0 , u(l,t) a 0 ( 12.2)

• u (x , 0) — g (x) ( 1 2 . 3 )

Eq. (12.1) is parabolic so boundary conditions should be applied

at both x = -l and x — +1 . When v is small , the boundary

condition appl ied at x — +1 (assuming ~J > 0) has an interesting

effect on the stability of the spectral methods.

To begin , we remark that the analyses of Sects. 7-8 can be

extended to show that, as N + ~~~, N-term Legendre and Chebyshev

approximations to (12.1-3) are stable and convergent.

For example , Chebyshev-Galerkin approximation is stable

because (12.1-2) and (7.3) imply that

1 2 1 2 1 2

~~ /1~ x2 
dx ~ I I  J-~ (1_ x 2 ) 3/2 dx - 

1_l (1-x 2 ) 5”2 dx

r/I~V/U 
2

< J u l  I _____ 

dx
— 1—/I-v7U (1—x ) /

u2 
J

l 
dx ( 12 .4 )

- v

so the approximation is semi-bounded.
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However , for finite N, there may be d i f f i c u l ty  integrat ing

the resulting spectral equations. With Legendre polynomials,

Galerkin approximation LN 
to (12.1-3) satisfies LN 

+ LW ~~. 0

so there is no difficulty with time integrations (although the

solution may not be accurate unless N is large enough.

On the other hand, Chebyshev-SPectral solution of (12.1-3)

encounters the following curious behavior when v is small.

If v/U is small and N is not too large, the Chebyshev—spectral

approximations LW to (12.1-3) have eigenvalues with positive

real parts. In Table 12.1, we list values of Ncrit for var ious

values of v/U; for N < Ncrit , LW for Chebyshev—tau 
-

• approximation to (12.1—3) has eigenvalues with positive real

parts. Since these eigenvalues may have moderately large real

parts (they can be as large as U2/2v by (12.4)], there may

be rapid growth of errors and numerical solution of the

Chebyshev-spectral equations may appear unstable and divergent.

For N > Ncrjt there are no eigenvalues of LW with positive

real parts so the spectral equations are stable.

The origin of this tempora l instability is the outflow

boundary layer at x = ±1 ; when U > 0, the solution to

(12.1-3) develops a region of rapid change of width roughly

v/U near x = +1 as t increases. Since roughly 3(U/v)~~~
2

Chebyshev polynomials are required to resolve a boundary layer

of width v/U [see (3.50)], we expect that Ncri t ~ ~~~~~~~~

so \)N
~rit

/U+ 9 . In fact, as shown in Table 12.1, the

criterion is actua l ly VN~ rj t /U ~ 4. (Since the Chebyshev norm

of exp(-Uta/ax) is roughly N’14 (see Sec. 8), we expect

that the proper scaling of Ncrjt is better represented as

7/4VNcri t/U 4’ 1.3. As shown in Table 12.1 , this modified scaling is

more nearly satisfied for the range of v considered.]
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TABLE 12.1

v/U N i t VN~rj t /U vN~~~ t/U

1.0 x io 2 15 2.25 1.14

2.5 x ~~~ 35 3.06 1.26

1.0 x 61 3.72 1.33
•41

6.0 x 81 3.94 1.31

4.0 x 101 4.08 1.29

U 
— - —-----—-5 - • •• - 5 —  - —--•------—--———------— - - -—5— — -— ——-5—--

Table 1.2.1 Critical values Ncrit of the number of Chebyshev

polynomials necessary that the tau approximation to the operator

-U~u/ax + va2u/ax2 with u (±l) = 0 have no eigenva].ue with

positive real parts. Also listed are the inverse ‘grid Reynolds

number ’ VN~rit /U and the parameter vN
~,~~t

/U

—237—
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If Chebyshev—spectral approximations to (12.1-3) are

solved using fractional time-step methods, the temporal

• instability for N < Ncrj t appears in a unique way. Define

the operator AN as an N-mode Chebyshev approximation to the

operator -Uau/ax with the boundary condition u(-l) = 0

and the operator BN as an N-mode Chebyshev approximation

to the operator va2u/ax2 with u (±l) = 0. Then the

• evolution operator of (12.1-2) is exp((AN+B N)t] so a

fractional step method involves the splitting

auN/
/at = 3luN/3t + a 2uN/at  where

= 
‘ 

a2uN/at 
= BNuN

For any values of v and U > 0, the fractional step

is algebraically stable since Ilexp ANtil = 0(N~~
4)

(see Sec. 8) ,  while the fractional step a 2uN/at  is stable

since fexp BNt I I  < I (see Sec . 7) .  Nevertheless ,

llexp( (AN+BN)t] Il can grow rapidly with t. The reason is

that AN and BN do not commute so it is not true that

Ilexp [(AN+B N)t] II I tlexp AN til I exp BNtII

The Lie formula (5.8) does ensure that

Ilexp ((AN+B N)t]II < u r n  II exp (AN t /n ) I I ~ I l ex p ( B~t / n hI ~ .
n

— 238—
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However, as n ~

lIexp (ANt/n) II - 1 “- CN2t/n

with C > 0 (see Sec . 8) so

II exp (Ar~t/fl) It ’~ “ exp(CN2t) >> 1 (n

Therefore the Lie formula gives only the very weak upper bound

Ilexp [(AN+B N)t]lI I exp(CN2t)

In sununary, Chebyshev-spectral approximations to (12.1-3)

give fractional step methods such that each fractional step

is algebraically stable while the total step is unstable

unless N > N i t
If the boundary conditions ( 12.2) are replaced by

u(—1,t) = 0 , (+l ,t) = 0 ( 12.4)

when U > 0, the criterion for temporal stability is relaxed

significantly . As shown in Table 12.2 , the value of vN
~rjt

/U

is decreased to roughly 1.6. However, the growing modes that

appear when N < Ncrit are much tamer than those that appear

when the boundary condition u(+l,t) = 0 is applied, so

accurate time integrations can still be obtained when

vN 2/U ~ 0.01 ( see Haidvogel 1977) .
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TABLE 12.2

v/U N . vN7”~ /Ucrit crit

2.5 x ~~~ 21 0.52

1.0 x l0~~ 37 0.56

6.0 x 49 0.54

4.0 x 61 0.53

2.0 x 89 0.52

Table 12.2. Critical values Narit of the number of

Chebyshev polynomials necessary that the tau approxima-

tion to the operator -Uau/ax + va 2u/9x2 with

u(—l) = 0, au (÷ l ) / ax  = 0 and U > 0 have no

eigenvalues with positive real parts . The parameter

vN~~~ t/U is also listed.
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13. Models of Incompressible Fluid Dynamics

The Stokes equations for low Reynolds number, two-

dimensional incompressible flow :re

= — ~p + vV v, (13.1)

= 0

where is the velocity field, p is the pressure, and v is

the kinematic viscosity. With the boundary conditions that

= 0 on rigid stationary boundaries, the problem (13.1) is

well posed for any v > 0. An equivalent formulation is given

by the vorticity-streamfunction equations

= vV 2C
2 (13.2)

=

obtained by taking the curl of the Stokes equations (13.1). Here

*~, is the streaznfunction defined by ~ = (-ai4,/ay, a~/ax) and ~

is the vorticity.

• A one-dimensional model of (13.2) is

2
= v ~-5 (—1 < x 1 1, t > 0), (13.3)

ax

4 , = 2..4 (—1 < x < 1). (13.4)
ax — —

On stationary rigid walls, the boundary conditions for ( 13.3-4) are

ip(x ,t) = *~
(xp t) = 0 (x = 1). (l3.5-)r

There is one subtlety in the application of spectral methods

to (13.3—5) that does not appear directly when the primitive

equations (13.1) are used. It is necessary to use some care

to avoid unconditional numerical instability with the Chebyshev-.

tau method.
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The iw~st obvious way to use the tau method to solve

(13.3—5) is to substitute (13.4) into (13.3) and solve

4’xxt 
— V

~
1) x (—1 < x < 1, t > 0) (13.6)

by expanding *(x,t) in the Chebyshev series

N
~p(x ,t) = ~ a~ (t ) T~ (x) . (13.7)

n=0

Denoting by ~~~ the Chebyshev expansion coefficients of ~~1p/~x~

( see A . 2 0 ) ,  the tau equations for (13.5—6) are

da (2)

dt = a~
4
~ (0 < n < N—4, t > 0), (13.8)

N N
~ ( ± l) ”~~ = ~ (±l)’~n~a = 0. (13.9)

n=0 n=0

Unfortunately , this method for solution of (13.3—5) is

unconditionally unstable as N -
~~ ~~. In Table 13.1, we list

the largest positive eigenvalue Amax of (13.8-9); there is

a solution of (13.8-9) that grows like a~ (t) = an (O)exp (k maxt).

Since 
~‘max 

grows like N4 as N -*- ~~~, errors also grow rapidly

as N -
~~ for fixed t. This method is unusable for time—

dependent calculations.

In Table 13.1, we also list the values of An for ri = 1,5,

where the eigenvalues of (13.8—9) are ordered according to

l~’i l ,~~ 1x 2 1 1 ... . The exact eigenvalues of (13.3—5) are

found by seeking solutions of these equations of the form

*(x,t) = 4 (x)exp(At) , ~(x,t) = ~(x)exp(Xt) . It may be easily

verified that the exact eigenvalues of (13.3—5) are given by

with ~t = nn or ~i any nonzero solution of the transcendental

equation tan v = ~t. The exact values of A 1 and A 5 are also listed
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Table 13.1

r x - 

A
I 1 5 max

10 —9.8696598 —189.63800 4,272.

15 —9.8696044 — 89.54550 29,439.

20 —9.8696044 — 88.86244 111,226.
25 —9.8696044 — 88.86244 294,697.

(H 30 —9.8696044 — 88.86244 652,722.
35 —9.8696044 — 88.86244 1,255,298.
40 —9.8696044  — 88.86244 2 ,215 ,880.
Exact —9.8696044 — 88.86244

Table 13.1. Eigenvalues of the tau approximation (13.8-9)
to (13.6—7). The N—4 eigenvalues are ordered so that

J x 1 f < J A 2 1 < ... J A N ... 4 .All th~ eigenvalues are real.
The largest positive eigenvalue Amax AN_4.
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in Table 13.1. Evidently , even though (13.8-9) is unstable as

N -
~~ ~~~, it does a good job of reproducing the low-n modes;

approximately i/IA I Chebyshev polynomials are required to

resolve the mode with eigenvalue A . Thus , this version

• of the tau method may be useful  for eigenvalu e calcul ations

even though it is unconditionally unstable for the initial-

value problem (13.3—5) (as evidenced by the spurious unstable

modes wi th eigenvalues as large as Amax )•

The tau method behaves similarly when applied to more

di f f i cu l t  problems , like the Orr—Sommerfeld equation for

linear stability analysis of incompressible plane—parallel

shear flows. Low modes are given accurately by the analog

of (13.8—9) (see Orszag 1971 ), but there appear spurious

unstable modes with large growth rates. Similar spurious

unstable modes appear in finite-difference solution of the

Orr—Sommerfeld equation (see Gary & Helgason 1970).

There is a simple method to avoid the spurious unstable

modes encountered by (13.8-9). The technique to be described

• below also eliminates the spurious unstable modes encountered

in solution of the Orr—Sommerfeld equation . The idea is

simply not to combine (13.3—4) into (13.6). Rather , we

expand r (x,t) as in
N

~(x,t) = 
~ 
bn (t)Tn

(x) (13.10)
n=0

and solve

db 2
= v b~ ~ (0 ~. n < N—2), (13.11)

b~ — a~
2
~ (0 n < N—2), (13.12)

in addition to ( 13 .9) .  Here we have dropped two equa tions

— 2 4 4 —  
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from the Chebyshev modal equations that result from ( 13.3-4) .

The logic of this modification of the tau method is as follows.

• Application of (13.8) for 0 < n < N—4 is equivalent to

application of (13.12) for 0 1 fl < N together with (13.11) for

0 < n < N-4. On physical grounds , we may expect that this

procedure will lead to instability because the boundary conditions

— 0 at x = ±1 should be imposed on (13.4) not (13.3), while

the boundary conditions Px = 0 at x — ± 1 should be imposed on

(13.3) only when v > 0. On the other hand , when the system

is truncated as in (13.11—12), each of the dynamical equations

can play their proper role in adjust ing the boundary conditions :

the boundary conditions *~ 0 are imposed on (13.12) while

the boundary conditions = 0 are imposed on (13.11).

U We shall now prove that (13.11—12) is stable for the

~pecial case in which N is even with a2n+ l = b2n4l = 0 for

all n , t > 0. In this case , ip (x,t) and r~(x,t) are even functions

of x. To begin , we observe that (13.11) is equivalent to

~~~
1.. v i4+b~TN

(x) (-l< x l, t>0 ) ,

while (13.12) is ec-~ivalent to
2

~(x,t) + bNTN (x)ax
Therefore,

3 4
~~~~~~~~ v P~4 +~~~~~~~~~ ‘ . —

atax ax

Since ~ is an even function of x , it follows by integration with

respect to x that

— v 1.4 + aNTN . (13.13)
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Also, since ji(x,t) is a polynomial of degree N that satisfies

= 0, integration by parts gives

‘~ 
~xTN

(1_x 2) ~~ = — + x4iX/(lx)]T N ( l x ) dx = 0

since and x1P
~
/(l_x ) are polynomials of degree N—2 so they must

be orthogonal to TN (x). Therefore , taking the Chebyshev inner

product of (13.13) and P~~
(x,t), we obtain

~ ~l 
~~(l-x

2)~~ c.4X = 2v f ~~~~~~~~~~~~~~~ 
< 0, (13.14)

where the last inequality is established ui~ing the inequali ty

derived in Example 7.1(v):

1 2f uu (l—x )~~ dx < 0

if u (x) I a polynomial of degree N satisfying u (±l) = 0. The

energy bound (13.14) proves stability of the tau approximation

(13.11—12).

Finally, let us discuss methods for the solution of

the primitive equations (13.1) using Chebyshev tau approximations.

A one—dimensional model that embodies the essential features

of (13.1) is obtained by solving (13.1) within the slab —1 1 1 1.

-
~~~ I ~~

‘ I ~~ with an assumed solution of the form

= (u (x ,t )e ikY , v(x , t )e~~~’), p = p(x,t)e’~~
’

for some real wavenumber k. Let the Chebyshev expansion

coefficients of u(x,t), v(x,t), p(x,t) be denoted as u
n

(t )
~

v~~(t), p~ (t) (0 ~ ‘~ 
IN ), respectively. Then an unconditionally

stable, implicit fractional step method for the solution of (13.1)

with a forcing term (f(x ,t)e ~i,q(x t)e1kY) added to the right side is
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— u~~(t )  + A t [—p~
1
~ + f~~( t ) ]  (0 < n I N—2), (13.15)

— v~ (t) + ~t[_ikp~ + g~ ( t ) J  (0 n < N), (13.16)

+ ik~ — 0 (0 < n < N), (13.17)

— ~ (— l ) !~u — 0 ~0 I~~ 
< N ) , (13.18)

n— 0 n— O
t un (t+~

t) — vAtu~
2
~ (t+~t) — (0 ~ n I N— 2 ) ,  (13.19)

v (t+~ t) — v~ tv~
2
~~(t+~ t) — 

~n (0 I~~ I 
N—2), (13.20)

N N
~ ( l)

’
~
un (t+At) = ~ ( l)~~v~~(t+~ t) — 0. (13.21)

n—0 n=0

Here we use the notation that , for example , u~
2
~ represents

the Chebyshev coefficients of u~~ (x,t). The scheme (13.15—21)

is based on backwards Euler time differencing ; it is straight-

forward to generalize (13.15—21) to other more accurate time

4. differencing methods.

The fractional step (13.15-18) involves computation

of the pressure field by imposition of the incompressibility

C condition (13.17). Only the boundary conditions u(±1,t) = 0

are applied because this part of the time step is effectively

inviscid so only the normal flow can be specified at the

boundary. Thus, we drop (13.15) for  n = N—l ,N in favor of

the two boundary conditions (13.18). The fractional step

(13.19—21) involves the viscous term in (13.1) so boundary

( i conditions are applied on both the normal velocity component

u and the tangential velocity component v. Accordingly , the

tau method involves dropping (13.19-20) for n — N—l ,N in favor

cf these boundary conditions.

—247—

—.5 — -—5 - - ~~ —-5 -----5- ----5- — -
-
~
.
~~~~

--“-—
~~

-- 
•~~~~~~~~~~~~~~~~~~~~~

—-- - - --5 - 

___
~F__ -



- — - 5 — --5- -~~~~~~~~~~~~~~~~~~~ -5- -——-5— -- - — - — ’-5---

The system (13.15—21) is solved as follows. Multiplying

(13.15) by ik and subtracting the result from the Chebyshev

x—derivative of (13.16) gives

— ik~~ = ‘tr,~~~ (t )  — iku~~(t )  + ~t[g~~W (t )  - ikf n (t)]

H ( 0 < n < N — 2 ) .

Substituting 
~n 

= i~~~
(U /k from (13.17) gives

= u~
2
~~

(t )
~~k

2Un (t )  + ~t [-ikg~~~~(t) - k
2f~ (t)1

(0 < n < N—2) . ( 13 .22)

Eq. ( 13.22) with the boundary conditions ( 13.18) is of the

same form as ( 13.19—20) with boundary conditions ( 13.21) .

These equations are best solved by the algorithm discussed

at the end of Sec . 10.

The stability analysis of ( 13.15—2 1) is as follows .

The evolution of a perturbation is governed by (13.15-21)

with f~ = g~ 
= 0 for all n. Therefore , the solution of ( 13.22)

is = u~~(t )  for all n. Also , 
~n = v~~(t )  for all n . Finally ,

• - the implicit scheme ( 13.19—21) is an unconditionally stable

scheme for solution of the heat equation . This proves that

(13.15—21) is unconditionally stable.

• The methods discussed in this section extend to give

• stable methods for solution of the nonlinear Navier-Stokes equations.

For example, if the forcing term (f,g) in (13.15—16) is chosen

to be the nonlinear terms of the Navier—Stokes equations, our

analysis shows that stability of (13.15—21) is determined by stability

restrictions on the nonlinear terms alone.
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14. Miscellaneous Applications of Spectral Methods

In this Section, we survey some special topics regarding

spectral methods. Some of these topics are still under active

investigation, so the results reported here are very incomplete.

Complicated Geometries

There are two ways that spectral methods can be used

to solve problems in complicated geometries without introducing

basis functions that are special to the geometry and, therefore,

unwieldy and inefficient to use. The two methods are mapping

and patching.

Mapping involves transforming the complicated domain

into a simpler one by means of a coordinate transformation.

Spectral methods are then applied in the simple geometry

using the techniques discussed in earlier sections. For

example , if we wish to solve the heat equation

~~ 
u(x,y,t) = V2u(x,y,t) (14.1)

in the two-dimensional domain

— 1 < x < l , -f (x)<y< f(x )

for some given function f(x) with the boundary conditions

that u — 0 on the boundary of the domain , we would proceed

as follows . First, we make the coordinate transformation

z = y / f (x) ( — l < z < l )  (14.2)

and rewrite (14.1) as

~~ u(x ,z,t) = (~~~ — ~~z ~~)
2u(x ,z,t) + ~~~~~ u(x ,z,t)

(—1 < X 1 1, —1 1 Z 1) . (14.3)
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Then, we expand u(x,z,t) in a double Chebyshev series

and integrate (14.3). For this purpose, a hybrid numerical

scheme is suggested in which time differencing is stabilized

• by a semi—implicit method (see Sec. 10) in which a simple

diffusion operator is added and subtracted from (14.3). The

simple diffusion operator is then evaluated using a tau

method (because the tau method is simplest when no complicated

nonlinearities or nonconstant coefficient terms are involved);

the remaining nonconstant coefficient term in (14.3) is then

evaluated using fast Fourier transforms and the collocation

method. The resul~ is an efficient and accurate method for

solution of (14.1).

Techniques like those just described have been applied

at a variety of problems with much success. If a convenient

coordinate transformation is available, the mapping technique

combined with appropriate spectral methods may be expected

to be very useful.

The idea of patching is that if the geometry is the

union of several simpler geometries (like an L—shaped region)

then spectral approximations can be formulated in each of

the simpler domains and then patched across the boundaries by

requiring that the solution (and an appropriate number of

derivatives) be smooth. When this technique is applied

together with the mapping technique discussed above, it is

possible to devise spectral shock—fitting methods for the

solution of compressible flow problems. These methods require

much further investigation to judge their usefulness in practical

problems.
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Poisson ’s Equation in Two and Higher Dimensions

The Chebyshev tau equations for Poisson’s equation

V2u - f in the square —1 (x< 1, -l
~

y<l are

+ u~~~’
2
~ = f~~ (0<n <N—2 ,0<m~M --2) ,  ( 14.4)

while the Dirichlet boundary conditions u = 0 are

N
~ (± l)~~%~ = 0 (0<m<M) , (14.5)

n—0

N
~ (±l)

mU = 0 (0<n<N) . (14.6)
m—0 nm — —

Here we expand u(x,y) and f(x,y) in the double Chebyshev series

= 
JO JO 

{
~~~

} T (x)T (y) (14.7)

and we denote the Chebyshev expansion coefficients of

by ~~~~~~ The 2N+2M+4 boundary conditions are not all linearly

independent; there exist four linear relations among them, namely

N M
C ~ (± l) n (± 1) munm = 0. (14.8)

n=0 m=0

Thus , ( 14 .4— 6)  gives (N+l) (M+l) equations for the (N+l) (M+l)

unknowns Unm (0<n<N , 0<m<M).

Using (10.7) [or (A.20)], the system (14.4—6) can he reduced

to a block tridiagonal matrix equation modified by extra full

rows corresponding to the boundary conditions (14.5-6). These

equations can be solved by standard block tridiagonal algorithms

in order N3M or order NM 3 operations. If Poisson ’s equation must

be solved several times with the same values of N and M but different

functions f(x,y), it is more efficient to apply alternative methods.
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A method to solve (14.4-6) in order N2M operations (with

a preprocessing stage that requires order N3 operations) is

as follows. First, we find the N-2 eigenva].ues A~ and eigen-

vectors ~~~ (p = 0,...,N-2) of the equations

:~~~~~ 

= Xpe~p (0 1 n I N-2)

~ (±l)
ne = 0.

n=O

The eigenvalues A~ are all negative as proved in Example 7.3(u ) .

Then we form the (N+l)~~(N+l) matrix E whose elements are

Enp = e np ( O l n I N , 0 < p < N - 2)

E~ N i  = (0 < n < N)

E
fl ,N 

= 6
n,l (0 1 n I N)

and compute the inverse matrix D = E 1. Since the boundary

conditions (14.5) are satisfied by U
flm~ 

it follows that

unm = :~: 
enpvpm (14.9)

for suitable vpm for all n,m. Therefore, setting

= 
n~ 0 

(D)pnfnm (0~p<N-2, 0<m<M-2), (14.10)

it follows that (14.4—6) become

Apvpm + ~~~~~~~~~ = g~~ ( O < p <N- 2 , 0< m <M-2) (14.11)

( ±l) mV m = 0 (0Ip11~~2~~ (14.12)p

Eqs. (14.11—12) may be solved efficiently (in order NM operations)

for Vpm using the algorithm discussed at the end of Sec. 10.

Once Vpm is found, u~~ may be reconstructed from C)” .9). The

total operation count is order N2M [from the two matrix multiplies
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(14.9—10)].

The solution of Poisson ’s equation by the Chebyshev

series method outlined above is very competitive with finite-

difference solution using fast Poisson solvers. Zang &

Haidvogel (1977) present a number of comparisons of the Chebyshev

methods and fast Poisson solvers.

There are two further complications that may arise in

elliptic boundary-value problems. First, the elliptic equation

may have nonconstant coefficients or may even be nonlinear.

Here we recommend that spectral equations be solved using

relaxation methods of the kind advocated by Concus & Golub (1973),

in which the heart of the algorithm is the fast, efficient

solution of Poisson-like equations . Second , the geometry

may be more complicated than a box . In this case , we recommend

the implementation of capacitance matrix techniques (or

equivalent Green’s function techniques) in which the problem

to be solved is imbedded in a simpler geometry, like a box

(see Buzbee et al 1971). Again , the heart of the algorithm

is the fast solution of Poisson ’s equation using (14.9-12).

Coordinate Singularities

When spectral methods are applied to problems in

cylindrical or sp’herical geometries, their formualtion may

require special care at the coordinate singularities. These

‘pole problems’ have been extensively investigated (Orszag 1974,

Tang 1977). As a simple example of these effects, let us

consider the computation of the eigenvalues of Bessel’s equation

using the Chebyshev tau method (Metcalfe 1974). The problem is
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to find the eigenvalues and eigenfunctions y(x) of

y’ + y ’ - y = - ly (14.13)

subject to the conditions that y(l) = 0 and that y ( x )  be f in i te

for 0 1 x 1 1. The exact eigenvalues are related to the zeros of the
Bessel function J~ : A~ = j~~ 

where J~~(i~~ )=O~ p=l,2,...

When n is even , the eigenfunctions of (14.13) are even

functions of x; when n is odd, the eigenfunctions are odd.

This fact suggests that we represent the solution to (14.13)

in terms of series of even Chebyshev polynomials when n is even

and odd polynomials when n is odd. Thus, for n odd we write

y(x) 
~ YmT2m...l~~

) . (14.14)
m=l

In Table 14.1, we 1.ist numerical values for the smallest eigenvalue

of (14.13) with n = 7 using the series (14.14), the boundary

condition y(1) = 0, and the Chebyshev tau method. The convergence

of this method, while very impressive as M increases, is slowed

by the coordinate singularity of (14.13) at x = 0. In general,

series of the form (14.14) behave like x as x -
~ 0. In this

case the terms y’/x and y/x2 are singular at x = 0. The true

eigenfunctions J7(j~7x) behave like x
7 as x 0, as may easily

be shown using Frobenius’ method, so none of the terms of (14.13)

are in fact singular for the exact eigenfunctions.

it is possible to improve the convergence of (14.14) by

imposing additional ‘pole conditions’, like y’ (0) = 0. When

• y ’(O) = 0 in the series (14.14), the terms of (14.13) are

individually nonsingular. In Table 14.1, we also list numerical

values of the smallest eigenvalue of (14.13) with n = 7 and

the two boundary conditions y(l) 0, y ’ (0) = 0 applied. There
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Table 14.1

M A1 with y (l)=O A1 with y (l)=y ’(O)=O

— 124.001290649
14 169.111983340 122.895944051
18 126.557832251 122.907620295
22 122.991799598 122.907600279
26 122.908250800 122.907600204

Exact 122.907600204 122.907600204

Table 14.1. Smallest eigenvalue of (14.13) with n = 7
obtained using (14.14) and the Chebyshev tau method.
M is the number of Chebyshev polynomials. The extra
boundary condition y ’ (0) = 0 is a pole constraint at
the singular point x = 0 of (14.13).

—255—

- - - I---—--5- —-5- — — --5- .5— —-5- ~ •-— -~~~~
--

~~— ~~~ _. !. 4



L 
_

~~
- -

~~ ~ 
- —

~ 
-~~~ -

. 
~~~~~~~~~~~~~~~

is clearly a dramatic improvement in the rate of convergence.

It is also possible to make the problem less sensitive to

pole properties near the origin by first multiplying (14.13)

by x2 to eliminate explicitly singular terms and then applying

the tau method. The results of the latter trick are essentially

the same as applying the pole condition y’ (0) = 0 directly to

(14.13).

If pole conditions are not properly applied, it is possible

to degrade significantly the accuracy of spectral computations.

It is even possible to induce strong instabilities that are

absent when proper pole conditions are applied. These matters

are discussed in detail by Orszag (1974) and Tang (1977).
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15. Survey of Spectral Methods and Applications

In this Section , we give a brief survey of spectral

methods and some of their recent applications. There are

five important features of spectral methods that shou ld be

considered in their formulation and application. They are :

(i) Rate of convergence - If the solution to a problem

is inf ini te ly  different iable, then a properly designed

spectral method has the property that errors go to zero

faster than any f in i te  power of the number of retained modes.

In contrast, finite—difference and finite-element methods

yield fini te—order rates of convergence . The important

consequence is that spectral methods can achieve high accuracy

with little more resolution than is required to achieve moderate

accuracy.

(i i)  Efficiency - The development of fast  transform

methods permits spectral methods to be implemented with

comparable efficiency to that of finite difference methods

with the same number of independent degrees of freedom.

However , since spectral methods typically require a factor

of 2—5 fewer degrees of freedom in each space direction to

achieve moderate accuracy (say, 5% error), the spectral

computations can be considerably more effective. As the

required accuracy increases, the attractiveness of spectral

methods increases.

(iii)  Boundary conditions — As shown in earl ier  Sections

of this monoqraph, the ma thematical features of spectra l

methods follow very closely those of the partial differential
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equation being solved. Thus, the boundary conditions imposed

on spectral approximations are normally the same as those

imposed on the d i f fe rent ia l  equation . In contrast; f ini te-

difference methods of higher order than the differential equation

require additional ‘boundar~r conditions.’ Many of the

complications of finite-order f in i t e— diLfe rence  methods disappear

with the infinite-order-accurate spectra l methods.

Another aspect of the treatment of boundary conditions

by spectral ~nethods is their high resolution of boundary

layers . If the solution to a problem has a boundary layer

of thickness ~ , then only about ii~
½ polynomials [see (3.50) ] need

be retained to achieve high accuracy . In contraSt , f in i te-

difference methods using equally spaced grid points would require

about 1/c grid points to resolve such a boundary layer solution.

Moreove r , if a coordinate transformation is employed to improve

the resolution of a boundary or internal layer of thickness u

the errors of spectral methods are decreased faster  than any

f in i te  power of ~ as i -
~~ 0.

(iv) Discontinuities - Surprisingly , spectral methods

do a better job of localizing errors than difference schemes

and hence require considerably less local dissipation to smooth

discontinuities.

(v) Bootstrap estimation of accuracy — It is often

possible to estimate the accuracy of spectral computations

by examination of the shape of the spectrum. Thus, in computations

of three—dimensional incompressible flows at high Reynolds numbers,

the mean—square vorticity spectrum must not increase abruptly at
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large wavenumbers (small scales); if the vorticity spectrum

decreases smoothly to 0 as wavenumber increases, it is safe

to infer that the calculation is accurate. On the other hand,

similar criteria for finite—difference methods can be very

misleading.

Let us now survey some applications of spectral methods

to incompressible fluid dynamics. We shall classify the method

according to the boundary conditions and geometry.

Ci) Periodic boundary conditions in Cartesian coordinates -

Here Fourier series are appropriate. Spectral methods have

been regularly used in three dimensions with 32 x 32 x 32

modes and in two dimensions with 128 x 128 modes to simulate

homogeneous turbulence. Most operational codes now use

pseudospectral (collocation) methods because aliasing errors

are usually small. The key fast transform methods are described

in detail by Orszag (1971c).

More recently, more ambitious spectral codes have been

developed. The KILOBOX code employs 1024 x 1024 Fourier modes

in two dimensions while the CENTICUBE code uses up to

128 x 128 x 128 modes in three dimensions. These h!gh resolution

codes are now being used to study fundamental questions

regarding high Reynolds number turbulence, including the structure

of inertial ranges.

(ii) Rigid boundary conditions in Cartesian coordinates -

Here Chebyshev polynomials should be employed . Typical

4pplicatione to date include numerical studies of turbulent

shear flows and boundary layer transition. Pseudospectral

methods are used, with Chebyahev polynomials particularly
r 
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convenient because fast Fourier transform methods can be

applied.

(iii) Rigid boundary conditions in cylindrical geometry —

Here Chebyshev polynomials should be used in radius , Fourier

series in angle, and either Fourier or Chebyshev series in

the axial direction (depending on boundary conditions). Some

technical aspects of the implementation of Chebyshev series

in radius, including pole conditions, is discussed by Orszag

(1974). Applications to date include studies of transition

in circular Couette flow and pipe Poiseuille flow. In particular,

it should be emphasized that Chebyshev polynomial expansions

are much better suited for serious numerical work than the

apparently more natural choice of Bessel function expansions

in radius . There are two reasons : Chebyshev series converge

faster to general functions regardless of their boundary

conditions and Chebyshev-spectral methods can be implemented

efficiently by fast transform methods .

(iv) Problems in spherical geometry — Here surface

harmonic expansions, generalized Fourier series, and ‘associated’

Chebyshev expansions all have attractive features. A

detailed discussion of these methods is outside the scope of

this monograph , but roughly speaking generalized Fourier series

permit the most efficient transform methods to be developed

followed by associated Chebyshev expansions and then surface

harmonic expansions but surface harmonic expansions are best

with regard to the pole problem . A variety of applications

of these methods to global atmospheric flows have been made .

(v) Semi—infinite or infinite geometry — He re Chebyshev
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expansions are best if the domain can be mapped or truncated

to a finite domain without serious error. There are two cases

here: additional boundary conditions may or may not be

required at ‘infinity.’ Here again the formulation of spectral

methods follows closely the exact mathematics. If additional

boundary conditions, like radiation or outflow boundary conditions ,

- 

- 

- 

must be imposed on the truncated domain , then they should

also be~app1ied to the spectral method. On the other hand,

if mapping without additional boundary conditions does not

- introduce a singularity in the exact equations , no boundary

conditions at ‘infinity’ are required in the spectral approximation.

(5

C .-

c
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Appendix. Properties of Chebyshev Polynomial Expansions

The Chebyahev polynomial of degree n Tn (X)s is defined

by

T~ (cos6) = c o sp O .  (A .l)

Thus, T0(x) — 1, T1(x) = x, T2 (x) 2x2—1 , T3(x) = 4x
3—3x ,

T4(x) - 8x
4-8x+]., and so on. Some properties of Chebyshev

polynomials are

IT~
(X) I~.Ll IT~(x)I <n2, (A.2) $

2 2— T (±1) = (±1) ~ IT (n —k )/(2k+l), (A.3)n k=O

p
T (x) 1= 0(n2~) (n÷~; p fixed), (A.4)dxP n

Tn (±l) = (±l)
’
~ , T2~~(0) = ( .].) n T2~~1(o) = 0, (A.5)

T
~n
(0) = 0, T~~~1 ( O) =

The following formulae relate the expansion coefficients
I

a~ in the series

f(x) = 
~ 

a~ Tn(X) (Ix I<l )
n=0

to the expansion coefficients b~ of

Lf(x) — 
~ 

b~ T~ (x) (IxI~.1)n—0
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for various linear operators L. We use the constants C
n

and d~ defined by

— 2, c~ = 0 (n<0), C 1 (n>0),

dn — 1 (n> 0) , dn 0 ( n<0 ) .

Some formulae are:

Lf f’(x): c b = 2 ~ pa (A .6)
p—n+l ~
p+nodd

Lf — f”(x) : c~b~ = p(p2—n2)a (A.7)
- 

- p—n+2
p+n even

U — xf(x): b = ~.(c~~.1a~ _j Fa~÷1) (A.8 )

Lf = x2f(x)t b = 
~ 

{c fl..2afl..2
+(cn+cfl_l)afl

+an+2) (A.9)

Lf = x4f(x)~ b~ = ~~ 
{cn 4 an_4 +(c n c

~~2+2cn.2 )a
n 2  (A.10)

+(C 2+2C 1+C
2
1+C

2 ÷c )a +(c i+c +c +1+c +2)a +2+a +4)

f(x) f(0) : 
p—n— i 

(A.1l)Lf x c~b = 2  ~ (-1) a
p=n+1 p
p+n odd
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p-n-2

Lf — 
f(*)—f (0) f’ (oj~ :c b = 2 )‘ (p n) (1) 2a (1 .12)

n n  ÷2 p

- 
p+fl evefl

f’(x)—f’(OL . C b = 4 ~ pa~ 
(A.l3)

L f -  X • p n+2
p-n 2 mod 4

— 
f ’ ( x ) — f ’ ( O ) — f ” ( O ) x  . c b = 2 ~ (p—n+1)pa

LL — 
. 

~~ p=n+3 —

p-nE3 mod 4

I

— (p—n—i)pa (A.14)

p n+5 p

p-nil mod 4

Lf = xf’ (x) : ~c b = na + 2 ~ pa (\.15)
p=n+2
p+n even

Lf = x2f’ Cx) : b~ = ~
{(n—l)a~~ 1+(fl+l) 

(1+d n i +Cn l
)an+l (A.16)

$
+ 4  ~ p a )

p

p+n odd - —

$
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U — xf” (x) : c b  2n (n+l)a~~ 1 
+ 

~~~~~~~~ 

~~~~~~~~~~~~~~~~ 
(~~.17)

-
~~~ p+n odd —

Lf — x
2f” (x) : Cnbn n (n-l)a~ + ~ p (p2-fl2-2)a (K.T8)

p=n+2 
p

p+fleVefl

_ _ _

l-x

with f(±l)—0 : c b  = -2 ~ (p-n)a (A.l9)

p n+2 p

p+n even

Also, if we expand f~~ (x) as in

f(x) I a n~~ 
Tn (X)v

then

— ~~~~~~ — 2na~~~’~~~ . (A.20)
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