G ApFDLTR7843
b -
P
SV
P a
=<
THE STATISTICAL NATURE OF
- FATIGUE CRACK PROPAGATION
B
D. A. VIRKLER
< B. ; HILLBERRY
l.ﬂ P. K GOEL
a. : SCHOOL OF MECHANICAL ENGINEERING
z PURDUE UNIVERSITY
Que) WESTLAFAYETTE, INDIANA
S

APRIL 1978

TECHNICAL REPORT AFFDL-TR-7843
Final Report — June 1976 to May 1978

Approved for public release; distribution unlimited.

S T SO SRR RIS 17 1 W ARPIE  SSOU NPT M I R BRI e kAR e

AIR FORCE FLIGHT DYNAMICS LABORATORY ,
AIR FORCE WRIGHT AERONAUTICAL 1LABORATORIES -
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

78 07 31 00]




e B T T T ot ¥ AT WL P20 ey 30 St v Wrwrrs e e W v v

e T O UG

B L 2 . Sl R P

v saem

or e ey e e

B LT pICNp,
I T T

NOTICE

When Government dravings, specifications, or other dats are used l
for any purpose other than in connection with a definitely related |
Government procurement operation, the United States Government thereby
incurs no responsibility nor any obligation whatsoever; and the fact : i
that the government may have formulated, furuished, or in any vay R
supplied the said drawings, specifications, or other data, is not to " § ]
be regarded by implication or otherwise as in any manner licensing the
holder or any other person or corporation, or conveying any rights or
permission to manufacture, use, or sell any patented invention that
may in any way be related thereto.

This report has been reviewed by the Information Office (01) and
is releasable to the National Technical Information Service (NTIS).
At NTIS, it will be available to the general public, including foreign
nations.

-

This technical report has been reviewed and is approved for

EOSE TP

publication.
i
) ]
7557 e; /4?3"7? J‘S:‘-dﬁs—- ) . %
mncrmaz."mnzt. ROBERT M. BADER, Chf N
Project Engineer Structural Integrity Br 2

-

v el

OO ST o

g
F02 THE COMMANDER 1

gVl A

RALPH L. KUSTER, JR., Col, USAF
Chief, Structural Mechanics Division

"1f your address has changed, if you wish to be removed from our
mailing list, or if the addresses 19 no longer employed by your
organization please notify, AFFDL/FBE, W-PAFB, OH 45433 to help us
maintain a current mailing list".

Copies of this report should not be roturned unless return is required
by security considerations, contrsctusl obligations, or notice on a
specific document.

AIR FORCE/88700/10 July 1978 ~ 478




2 A peg AR PRADT Ay

B

LY {4

A At s Ll Mt

EE I TN

e

NITHIE

¥
H
;
i
P2
2
I
-
o
¥
L
L 3
?;.
:|' .
E
&
e
£
L
3
i
4
4
2=
1
4
5
7
¢
s\
T

Anw ST AR R A R WA T mer e

UNCLASSIFTED
SECURITY CHRTWFICATION OF THIS PAGE (When Date Bntered)
9 EPORT DOCUMENTATION PAGE per AP INOTRUCTIONS
= 7. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
P Y tc
. ——r—— v . TYPE O "'/t(" & BERIOOC COVERED

THE STATISTICAL NATURE OF FATIGUE GRACK FINAL/ VL ¥
kaPAGATION ° [©. PERPORMING ORG. REPORT HUMBER

4 BSmampam- o -

2. A//m““’-“’ ‘- visoéa-n-mv }»v«

. M./HILLBERRY : —
E. £L .
- G ORGANIZATION NAME AND ADDRESS ! ROORAM EL!M T. PROJECT, TASK

, UMBERS
SCHOOL OF MECHANICAL ENGINEERING > @
23”7&1P]’d

PURDUE UNIVERSITY

f1) CONTROLLING OFFICE NAME AND ADDRESS -
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA —

BLDG. 410 - >
— Z Y,

ijLLINQ_AILEEQRCE_BAS.EB_D.C_ZDBJZ________
. MONITORING AGENCY NAME & AODRESS 11 dilferent from Controlling Ollice)

FATIGUE, FRACTURE AND RELTABILITY

18. SECURIYY $. (of this repor:)

STRUCTURAL INTEGRITY BRANCH UNCLASSIFIED
STRUCTURAL MECHANICS DIVISION 182, ?Cgsééatu;uclncu-o;wuon‘cmo

AIR FORCE FLIGHT DYNAMICS LABORATORY, WPAFB, OHIO

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

e e T AR R LR YT Y T B—_ v halina b & bl
P o - e W T AT TR ETER v e - chfatis o iiindes S Ll eord e

18. SUPPLEMENTARY NOTES

13. KEY WORDS (Continue on reverse aide |l nicessary and identily by block number)

FATIGUE WEIBULL

CRACK PROPAGATION GAMMA

STATISTICAL DISTRIBUTION DIFFERENTIATION METHOD
NORMAL

LOG-NORMAL

CAWCT (Continue cn roverse aide if necesesry and identily by block number)
A statigtical investigation of the fatigue crack propagation process was
conducted. Sixty-eight replicate constant amplitude crack propagation tests

were conducted on 2024~T3 aluminum alloy. istribytion determination programs
were written for the variables gN/As, N, da/dN, and dN/da."4The following
distributions were considered: two-parameter normal distr{bution, three-

parameter log-normal discribution, three-paraneter Weibull dietribution, two-

292.47¢ g 0O

'

parameter gamma distribution, three-parameter gamma distribution, the E J'L!(/

DD 23", 1473  eoimion or 1 wov es s oesOLETE UNCLASSIFIED
uc%grv CLARY IR IoN o7 b8 ks .lnund)é

<

i
)
" e b e s b s okt mcahd

J O

e R

PR

3
3
i
i
b |
i
3
1
1
{
i
]
i
i
1
1
;
!

cba nmny o eMealiM e

FOVIRT VAL YOS TN




THEFTEIRISATYITR T BT T YT R TR Ty TrTREE ERRT N Ty Y v aTreaT /M ooy e e .m0 TE o yESeTT T TEEOITWEERAT YRR WY VR o osammITETER W TERORL T

UNCLASSIFIED

URITY CLASSIFICATION OF THIS PAGE™hen Dete Enternd)

he generalized three-parameter gamma distribution, and the generalized four-
parameter gamma distribution. From the experimental data, the distribution of
N as a function of crack length waa beat represented by the three-parameter
log-normal distribution.

Six growth rate calculation methods were investigated and the method which
introduced the least amount of error into the growth rate data was found to be
a modified secant method. Based on the distribution of da/dN, which varied
moderately as a function of crack length, replicate a vs. N data were predicted
This predicted data reproduced the mean behavior but not the variant behavior
of the actual a vs., N data.

Rt VoS - e e

i1 INCLLSSIFIED

SECURITY CLASSIFICATION OF THIS PAQE(Then Dats Bniered)

T R e T .

bt 8 . = = i o e b? Gn




i

it Lo B KR e PP ERNISS T

YRR T o T ST A UE NN

AT I ST

' IR PRER g

L

AR B Arde L K TIRL AR

R UTARTI T R e T e gt ag

f;
!
g
&

A . M A

FOREWORD

This report describes an investigation of the variability in
fatigue crack propagation under constant ampltiude loading sponsored
by APOSR-78-3018, and performed under Air Porce Project 2307, Solid
Mechanics, Task 23079110, Variability in Fatigue Crack Growth.
Technical monitor for the project was Dr. J.P. Gallagher, formerly
of AFFDL/FBE. Ms. M.E. Artley (AFFDL/FBE) assumed responsibility
for the project February 1978. The project period was June 1976 to
May 1978.

This program was conducted by the School of Mechanical Engineering
Purdue University, W. Lafayette, Indiana. Principal Investigator was
Professor B.M. Hillberry; the graduate research assistant was
Mr. D.A. Virkler. Professor P.K. Goel vas the statistician. Materials
for the test specimens were provided by the Aluminum Company of
America.

This report was submitted by the authors April 1978.
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2; SECTION I |
% INTRODUCTION

i

% Throughout the course of history, it has always been desirable to

% be able to predict the life of a given design under expected service con-
; ditions, Life prediction in metal structures has necessitated a need for
g knowledge about the metal fatigue phenomenon, The matal fatigue process,
% as {t is known today, is complex and is still not fully understood. Thare
% are many variables which influence the life of a metal structure, such as
; the material, loading, and geometric characterjistics of the particular

§ structure, This investigation involves only the determination of the ef-

;
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fect of material properties on life prediction.

One of the primary mechanisms by which metal fatigue occurs is the
propagation of microscopic cracks [1]. The study of fatigue crack propa-
gation behavior has been widely conducted for some time in an effort to
understand metal fatigue more fully. The information obtained from crack é
propagation studies is then ugsed in estimating the fatigue life of struc-
tures and components, Ideally, it is desirable that this estimated life
wil]l exactly predict the actual l1ife. Unfortunately, there are many vari-
ables which influence this prediction and some are not well understood.
One of the most important of these variables is how well the empirical
crack growth relationships obtained from experimental data actually re-
presant the observed crack propagation behavior.

The rav dats from a fatigue crack propagation test are the half

crack length, a, and the number of cumulative load cycles, N, needed to




grow the crack to that length from some reference initial crack length
for slightly increasing stress intensity level Joad conditions, called
constant amplitude loading. A plot of typical raw fatigue crack propa-
gation data is shown in Figure 1. The current interpretation of this
raw data focuses upon the fatigue crack growth rate as a:Eunction of an
applied stress intensity parameter, usually AK, the change of the stress

intensity during the load cycle. The fatigue crack growth rate is de-

fined as the rate of extension of the crack with respect to the number
of applied load cvcles [2). Actual determination of the crack growth
rate requires an evaluation of the slope of the raw a vs. N data at

various discrete points, which results in the derivative of a with re-

e et . Abluill 3 RS0

spect to N, normally called da/dN, A plot of typical da/dN vs. AK data

o

is shown in Figure 2.
The importance of the fatigue crack growth rate as a variable of

interest is born out in the fact that the fatigue crack growth rate is

AR ol bbby b

nearly independent of the geometry for the same stress intensity level
of loading [3]. This allows crack growth behavior prediction based only
on the knowledge of the crack growth rate vs. the stress intensity level }
of loading for a given material for any geometry chosen. Obviously, this
would be an important design tool if the crack growth behavior predictions
were accurate and reliable, These crack growth behavior predictions can

be used to predict the number of load cycles needed to grow a crack from

an initial crack length, a5

tance a crack propagates, Aa, during a specified number of applied load

, to some new crack length, a8 and the dis-

——

cycles, 1In addition, using various prediction techniquas, the constant

amplitude loading crack growth rate behavior is used to predict variable

ROWD IO s o e

amplitude loading crack growth rate behavior [4].
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There are several methods of numerically determining the crack
growth rate from the raw a vs. N data, It has been suspected that the
crack growth rate calculation method has a very significant effect on
the variance of the resulting growth rate vs, stress intensity parameter
data [2,5,6,7].

During the prediction of crack growth behavior, the crack growth
rate vs. stress intensity parameter data is integrated back to obtain
predicted a vs. N behavior. Considerable variation in this predicted
crack growth behavior has been experienced, thus hindering accurate life
estimates [2,5,6,7). This variation is a result of variation in the raw
crack growth data, variation due to the crack growth rate calculation
method, and material variations,

This investigation will compare several numerical growth rate cal-
culation methods and attempt to find the method which introduces the
least amount of error into the growth rate vs. stress intensity parameter
data. It will also attempt to describe crack growth behavior in a sta-

tistical manner with the expectation that this statistical description

of crack growth behavior will reduce the large amount of error currently

present in life predicticn.
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SECTION II

BACKGROUND

Metal fatigue has long been recognized as a random phenomenon [8],
but until recently, little effort was devoted to applying statistical
tools to fatigue crack propagation behavior. By fitting different equa-
tions to the crack growth rate vs, stress intensity parameter data, nu-
merous equations of fatigue crack growth have been suggested [9), How-
ever, due to scatter in the data, it has been impossible to select which
equation is the moat appropriate. Also, when the original crack growth
data are predicted from these equations, the correlation with the original
data is generally very poor [8]. Due to the large amount of scatter in
the crack growth rate vs. stress intensity parameter data, investigators
have startad using statistical methods to characterize fatigue craczk pro-
pagation behavior [5,6,7,8]. It can be easily shown that the amount of
data scatter is generally considerably greater than can be accounted for
by experimental inaccuracies [8]. It has been pointed out that the re-
maining scatter is due to the essentially random nature of fatigue crack
growth which 1s a result of the relative nonhomogeneity of the material
(8,10].

From a macroscopic viewpoint, it is often convenient to regard a
metallic material as a homogeneous continuum, and basing engineering
calculations on this assumption does not generally lead to serious error.
However, the scatter observed in fatigue testing of a metallic material

arises precisely because it is not a homogeneous continuum, when
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considered on a microscopic scale [8]. Consequently, it is important to

; examine fatigue crack growth from a statistical viewpoint. In order to
include fatigue crack prupagation scatter in the general overall charac-
terization of fatigue crack propagation behavior, this investigation
will apply statistical concepts to fatigue crack growth behavior,

In considering the crack growth from some initial crack length, a5
to a new crack length, 81’ there is a certain mean and variance assoclated
with the number of load cycles required for this amount of crack growth
which characterizes the statistical distribution of N at a. A schematic
trepresentation of this distribution of N is shown in Figure 3, 1In order
to statistically characterize the crack growth behavior, it is necessary

to determine the distribution of N from experimental tests.

The variance in N illustrated above can be due to random errors in

the measurement of a, N, and AK, to systematic errors in these measuve-
ments, and to the statistical variation in the material's growth rate
: properties. Through the use of accurate equipment, the random errors in

the measurement of a, N, and 4K can be reduced to an acceptable level and

it enbibinari

meagured by a separate test. Through a careful experimental set up and

procedure, the systematic measurement error can be reduced. From this,

Adadtbaind

the desired statistical behavior of the material's crack growth proper-

. ties can be determined.

ULV W P Wrp e

In considering the crack growth rate vs. stress intensity parameter

data, there is some statistical distribution associated with the crack

R IEE AT L L e

growth rate, da/dN, at some stress intensity level, AKi‘ A schematic
representation of this distribution of da/dN is shown in Pigure 4. In

order to statistically characterize the crack growth rate behavior, it
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Figure 3.

Schematic Representation of the Distribution of N
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is also necessary to determine the distribution of the crack growth rate
from experimental tests.

The variance of da/dN fllustrated above originates in the variance
present in the original a vs. N data. The density of the raw data (es-
sentially, the distance between 2 consecutive data points, Aa) and the
crack growth rate calculation method both contribute to the overall vari- ;
ance of da/dN. 1In order to determine the variance of da/dN due to the
variance in the original a vs. N data, it is necessary to determine the
effect of both data density and the crack growth rate calculation method
on the variance of da/dN,

Once the crack growth rate vs. stress intensity paramster data has
been obtained, the next step is to be able to predict the change in
crack length for a given number of applied load cycles or, inversely, the
number of applied load cycles for a given change in crack length. The
variance of this prodiction fs directly related to the variance of the
crack growth race, In order to evaluate the effectiveness of this pre-
diction, it is necessary to predict the original a ve. N dats from the
crack growth rate data and then compare the predicted a vs, N data with
the original a vs. N data,

This & vs. N prediction can be accomplished by sithar of two methods.
The currently popular method is to numerically integrate the mean da/dN
vs. AK curve to obtain predicted a vs. N data [2,4,5,6,7,9]. However,
no adequate method for detlermining the resulting scatter in a or N existe
[5]. An alternate msthod uses the knowledge of the distribution of da/dN
and the fact that da/dN is an independsnt random variadble to obtain a vs,
N step by step. This method is discussed in detail in BSection 7.3. Using

this method, the variances of both a and N can be readily obtained,

10

P



e ) VA W POP e oy

s T TR x

e S ey o

- O

poney

- —

T LMY L WOLEIE gy MY (o g S 1f o T AT et

W’"mm -y

p—— -

—mee e o R S T R R TRV 17 It Ok LR O B e

SECTION 1II

OBJECTIVES OF INVESTIGATION

The main purpose of this investigation was to apply statistical con-
cepts and theory to the study of fatigue crack propagation behavior. 1In
doing this, there were four main objectives to be met. They were:

1) Determine the statistical distribution of N (cumslative
load cycle count) as & function of a (crack length).

2) Determine which crack growth rate calculation method
yields the least amount of error when the crack growth
rate curve {s integyrated back to the original a vs. N
data.

3) Determine the statistical distribution of da/dN (crack
growth rate) as a function of AK (stress intensity
parameter,

4) Determine the variance of a set of a vs. N dats predictec

from the da/dN distribution parameters.

11
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SECTION IV

i
CRACK GROWTH RATE CALCULATION METHODS {
|

Numsrous methods of calculating the crack growth rate from the raw ‘

a vs. N data have been used by various investigators [2,5,6]. None of

these seem to be univarsally accepted, but rather each investigator

scemed to favor a different mathod. Bince it was virtually impossibie to
investigate all of these methods, six of the more important msthods were

salected for examination, Thase methods are:

1)
2)
3)
4)
5)
6)

[< VTR

The secant method,

The mod{fied secant method,

The linsar 7-point incremental polynomial mathod,

The quadratic 7-point incremantal polynomial msthod,

The linear log-log 7-point incremsntal polynomial method, and

The quadratic log-log 7-point incremental polynomial method.

4.1 Secant Msthod

The secant method is a finite difference method and perhaps the

simplest of the mesthods considered [2,5,6]. Basically, the secant

method calculates the slops of a straight line between 2 adjacent a vs.
N data points,
tangent lins of the a vs. N curve at an average crack length, -‘-1’ and

average cycle count, N,. A schematic representation of tha secant

wethod is shown in Figure 3.

It then approximates this slope as the slope of the

i
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The average crack length, ;I, is given by

a, +a
3_1-_1_3._":1 (1)

Similarly, the average cycle count, EI. is given by

N + N
— .’+
N, - bt (2)

The slope of the line connecting the 2 adjacent data points, which is

used to approximate the growth rate, ig given by

(a - a,)
da Ni) 3)

dN

o
1 Wy -

at a, and Ni

4,2 Modified Secant Method
The modified secant method 1s really an extension of the secant
method., Basically, this method averages the growth rates obtained by
the secant method so that the da/dN data coincides with the original a
v, N data. The beginning and end points are assumed to be equal to the
first and last growth rates, respectively. A schematic representation of
the modified secant method is shown in Figure 6,

The growth rate is given by

da 1+1
Ni 2
at a and N1 for 12 to (n-1) where n s the number of data points in the
data set,

The first growth rate dats point is given by

da (.2 -8 ) (5)
Nl (N2 - N:)
at ‘1 and Nl'
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The last growth rate data point is given by

(a -a .)
da n n-1
— - -—_- (6)
dNn (Nn Nn-l)

at an and Nn.

4.3 Linear 7-Point Incremental Polynomial Method
The linear 7-point incremental polynomial method is the simplest of

the four incremental polynomial methods. 1In each of the incremental

polynomial methods, a polynomial is fit by the method of least squares
to a series of data points, called a strip, and the derivative of the
polynomial 1s evaluated at the middle point [2,5,67. This strip is
then incremented by one data point and the curve fitting and evaluation
process is repeated. The strip incrementation process is repeated until
all of the data points have bean used. Any odd number of data points

can be used for the incremented strip, although 7 points are usually

U I LV PRPVTPIIE TR I " 15~ TR BT ey ) & TN I Sy VT

used. The incremental polynomial methods differ basically in the poly-

nomial which is fit to the data.

v s e B

Initially the strip data points are scaled in the following manmer.

Two constants, C1 and C2, are calculated as follows [5,6]:

“1+ngs + Ni'“ns
= ‘2 ——

16

¢ ©)) P

‘ N - N j

: o o rows s ) 1

i 2 2 |

‘ i

: “strip ~ . i

f where s ——'i‘P——' (9)

4 E

! ,

E where notrip is the number of data points in the strip, Note that C1 1ie !

b 1

i

i the center of the strip cycle count data and C2 is the range of the strip %
1
:
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<ycle count data. The data scaling is then performed as follows:

Cr

A
N - C1
S C2

where Ns is the scaled cycle count data. As a result of this scaling,

the strip cycle count data runs from -1 to +1. This insures that when
i;aat squares curve fitting occurs, the scale of the data will not in-
fluence the curve fitting, which is a constant danger when using least
squares as a curve fitting technique.

After the curve fitting has been performed, the derivative of the
resulting poiynomial is then evaluated at the midpoint of the strip, NL'
This evaluation takes into account the scaling that was performed prior
to the curve fitting. A schematic representation of the incremental
polynomial method is shown in Figure 7.

In the linear 7-point incremental polynomial method, the fitted
polynomial is a first order linear straight line. After fitting by

linear least squares, the fitted polynomial takes the foliowing form:

a~b +b N (11)

Substituting the scaling equation,

a= [bo - :gl] + [;i]u (12)

Taking the derivative of a with respect to N,

ﬂ-'ﬂ-
wie

[ ]
GI.‘O‘

(13)

~

Obviously, for a straight line, the slope is independent of where the

derivative {s evaluated at.
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4.4 Quadzatic 7-Point Incremental Polynomial Method

The quadratic 7-point incremental polynomial method has gainsd wide
acceptance as a valid crack growth rate calculation method (5,6]. 1In
this method, the fitted polynomial is a second order curve. After fitting

by second order least squares, the fitted polynomjal takes the following

form:

2
a=b +bN + bzns (14)
Substituting the scaling equation,
b C b,C b
R e R R
o C
2 c
Taking the derivative of a with respect to N and evaluating at the mid-
point, Nt’

b, 2b.C 2b
an, ~ [‘c‘i - "C':Tl] + [cz Ny (16)

4.5 Linear Log-lof 7-Point Incremental Polynomial Method
The linear log-log 7-point incremsntal polynomial msthod was used
to determine Lf the data could be linearized by a loglo transformation
on both the crack length and cycle count data, This method is essentially
the same as the linsar incremencal polynomial method except for the log
transformations of the input data just prior to the data ecaling.

The fitted polynomisl {s linear and takes the following form:

log a = b + bINLS (17)

vhere NLs is the log scaled cycle count data.
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4.4 Quadratic 7-Point Incremental Polynomial Method

The quedratic 7-point incremental polynomial method has gained wide
acceptance as a valid crack growth rate calculation method [5,6]. 1In
this method, the fitted polynomial is a second order curve. After fitting

by second order least squares, the fitted polynomial takes the following

form:

2

a= bo + ble + bZNs (14)
Substituting the scaling equation,
2
b,C b,C b 2b.C b
as= b--—l—l«}--—z—.l_]...[—l.-_—z—l-]"q’-[—z-ﬂnz (15)
o C2 c 2 C2 c 2 c
2 2 2

Taking the derivative of a with respect to N and evaluating at the mid-

point, Ni’
b 2b,.C 2b
da .[._1-.._;—1]4.[_..“ (16)
dN C 2 i
i 2 C2 C2

4.5 Linear lLog-log 7-Point Incremental Polynomial Mathod

The linear log-log 7-point incremental polynomial method was used
to determine if the data could be linearized by a log10 transformation
on both the crack length and cycle count data, This method is essentially
the same ae the linear incremental polynomial method except for the log
transformations of the input data just prior to the data scaiing.

The fitted polynomial is linear and takes the following form:

log a = b +bNg an

vhere NLB is the log scaled cycle count data.
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The derivation of this equation is shown in Appendix A,

4.6 Quadratic Log-log 7-Point Incremental Polynomial Method
The quadratic log-log 7-point incremental polynomial method was used
to determine if a second order curve fit could improve the performance of
the linear log-log 7-point incremental polynomial method. This method is
essentially the same as the linear log-log 7-point incremental polynomial
method except that the fitted polynomial is second order instead of first
order.

The fitted polynomial takes the following form:

2
log a = b, +b)Ng+bNg (19)
The growth rate, da/dN, for this method, evaluated at the midpoint, Ni’
is given by 2 2
[bllagu b.C ] [h(logh) - 2b,C logN, + b,C, ]
b 2
da .10 o 2 10 e&
ary €Ny
2b_1logN, - 2b,.C
. [ 2 i 21 bl] (20)
C

The derivation of this equation is shown in Appendix B,
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SECTION V

STATISTICAL CONCEPTS

When used properly, statistics is extremely useful in quantifying the
results of many engineering experiments. In many applications, however,
statistics is used as a quick substitute for a thorough experimental
analysis and often times it is used without checking the underlying
assumptions or else the results are misinterpreted. In an attempt to
alleviate these problems, the statistical concepts used in this investi-
gation and their use as tools in analyzing fatigue crack growth behavior

will be presented and discussed,

5.1 Histograms

The first step in statistically analyzing any set of data is to see
what the data looks like, Histograms are statistically derived pictures
of a data set. They give a rough idea of the shape of the density func-
tion of the data. They alao»;ive a rough estimate of the average value
and the amount of variability present in the data.

The most common histogram used is a frequency histogram. The data is
divided into several classes and the frequency of the data in each class
is plotted against the limits of the classes [11]. This type of histogram
frequently takes the form of & bar chart, A slight modification of this
involves calculating the relative frequencies in each class by dividing
the frequency in each class by the total number of data points. Ths re-

lative frequencies are then plotted against the limits of the classes.
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This is called a relative frequency histogram [12]. An example of a re-
lative frequency histogram is shown in Figure 8.

Another convenient form of the histogram is called a cumulative fre-
quency histogram. This histogram shows the frequency of data less than or
equal to a specified value. 1t is calculated by cumulatively adding suc-
cessive class frequencies of the frequency histogram from the smallest
class value to the largest class value. It frequently takes the form of
a step chart. Again, the relative cumulative frequencies can be calculated
by dividing the cumulative frequencies by the total number of data points
so that the last value of the relative cumulative frequency is equal to
one. When the relative cumulative frequencies are plotted against the
limirs of the classes, the resulting plot is called a relative cumulative
frequency histogram [ 12]. An example of a relative cumulative frequency

histogram is shown in Figure 9.

5.2 Distributions
Once a rough idea of what the density function of the data looks like
based on the histograms, the next step is to try to fit the data to several
likely distributions. Eighu different distributions were selected as
likely candidates for the distribution of fatigue crack propagation

variables.

S.2.a Two-Parameter Normal Distribution
The most widely used distribution in statistics is the two-paramster
normal distribution [12]. This distribution was selected as a candidate
for the distribution of fatigue crack propagation variables mainly for

this reason and for the sake of completeness.
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The two parameters of the two-parameter normal distribution are the ,
mean, designated by p, which is the scale paramster, and the standard '

deviation, designated by g, which is the shape parameter. Tha density

=1 IS s OB 0 Y R

function, £(x), for the two-parameter normal distribution is given by

E (11,12].

3

¢ 1 1 /ve cw<Y < ®

' £(x) = exp[-— Ak 2]. o< p< @ (¢3))

% m 2 ( o ) 0<g«cw

{

§ The estimates for the mean and standard deviation are computed by [11,12)

. n

i . ; X '
f G- St (22) |
; n ? z
) [;1 (x, = B)

E o~ L——L——n (23)

? Where n is the number of data points and the symbol ~ symboligzes an

§

estimated value.

parea

The standard errors of the estimates provide a measure of how good

» [T erg——y

these estimates are. The standard errors of the estimated mean and

standard deviation are given by [13]

(24)

L]
=
g =]
[ ]

e i b

¥3 n '
8. 2.5 -f- (0-1) - 2, L ) (2%)
o=k [o &5 ]

~tooy.

where I represents the gamma function. The covariance of i with G Lo

alvays equal to gero, due to their orthogonality [13],

5.2.b Two-Paramster Log Normal Distribution
The two-paramoter log normal distribution has besn suspscted of being

a likely candidate for the distribution of fatigue crack propagstion
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variables [5,67. Essentially, the two-parameter log normal distribution
states that the 10310 of the random variable x, i.e., loslox. is normally

distributed.

The two parameters of the two-parameter log normal distribution are
p, the scale parameter, and B, the shape parameter. Tho density function
for the two-parameter log normal distribution is given by [14,15)
x>0

£00 = opmp oxe] - 35 {logyox - W} s-w<uc e 26)

0<cpfp<< =

o ern L s i ra NS i

The estimates for , and £ are computed by ueing the following equa-

3

tions [14)] %
i

n 1

i® £ log,.x ‘

gap 2071 @7 |

n 4

. n ,

Be I (loggx, =) Co

n |

The standard errors of these estimates are given by the following

S. E. ¢ -E (29) 1

S.E.A= 3 (30)

equations (13,14].

The covariance of I with 3 is again alvays equal to zero, due to their

orthogonality [13].

$.2.c Three-Tarameter Log Normal Distzibution

With the expectation of a better fit of the dats, the three-paramster %
log normal distribution was considered as a candidate for the distribution

of fatigue crack propagation variables, ' The main difference betwesn
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the two-parameter and the three-parameter log normal distributions is the
inclusion of the lucation parameter in the three-parameter log normal dis-
tribution.

The three parameters of the three-parameter log normal distribution
are u, the scale parameter, f, the shape parameter, and the terminus, T,
wvhich is the location parameter. The density function for the three-para-

meter log normal distribution is given by [14,1S5)

1 1 Te<ku< e
£(x) = W, exp[- 7] {loslo(x-f) - u}z] ' 3: :: ® 31
X
The difficulty in using distributions containing a locution parameter
is the eotimation of that location parameter. The parameter estimation

methods used to obtain the value of the location parameter are presented

in Section 5.3,
Once the location parameter, r, has been estimated, u and B are asti-
rated using the following equatione [15).
n
b= I logolx-T)

1=1 (32)

n

p= ;_5 [lcmw(xi - . ﬁ]2

1e] (33)

n

To obtein the standarxd errors of the estimates and the covariance
values, the covariance matrix for the three-paramster log normal distribu-
tion is computed. The covariance matrix is & symmetric matrix and is given

by [16)

27

AR e b K b Sl dimcaba a2t el i e s

Cha nhe L Sead! g

[N P T TV Y W U

i
Ll
!
1
i
fl
]




- ﬁ' 8 T "
(6 + 1) exp(p) - 28 -2 8 -ax;[a - g] |
AREED) |
vVec, 23{_(3 + 1) exp(B) - 1] 2 8 exp[a - %]
ol % - 3 5
vhere - P[ 1’ i

a

CV - L 35)
@ +1) exp® - 25~ 1]

The standard errors of the estimates are given by the diagonal terms and

the covariances between the estimates are given by the off-diagonal terms

of the 3 by 3 covariance matrix,

5.2,4 Thres-Paramster Weibull Distribution

The three-parameter Weibull distribution has long been considered in
representing fatigue datsa [17]). Por this reuson, the three-parameter
Weibull distribution wan considered as a candidate for the distribution of
fatigue crack propagation variables, This distribution also includes the
location parameter as one of its three parametars and thus the difficulty
of its estimation arises. Two basic metnods were used to estimate the
paramsters (Section 5.3) and each method required different psrameters.
Thus, two sets of Weibull parameters and their associated equations will be
presented.

The first set of the thres parameters of the three-parameter Waibull
distribution include the characteristic value, 8, vhich is the scale para-
meter, the Weibull slops, B, which is the shape varameter, and the expected

minimum valus of ¥, Xo* which is the location parameter. The density func-

tion for these paramsters is given by [18]
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In the method of estimating the location parameter used with this set of
parameters, all three parameters are estimated simultaneously.

The second set of three parameters of the three-parameter Weibull dis-

W D R ® PRI S 1 S ey |

tribution include b, the scale parameter, c, the shape parameter, and the

.

terminus, v, which is the location parameter. The two sets of parameters

are related as follows,

P

b= - x )
; c=B (38)
5 T % (39)

The density function for the second set of parsmeters is given by [19)

£0x) = c(x-»r)°"'.b’°-exp{-[-ﬁ§l]g}, osvse . (40)

% o< ¢g< ¥

i As with the previous set of parameters, all three parameters are

i estimated simultaneously when the location parameter is estimated, To

? obtain the standard errors of the estimates obtained by the method re- !
i ferred to above and the covariance values, the covariance matrix for the

i three-parameter Weibull distribution is computed. The covariance matrix

i is a symmetric matrix and is given by [13]

}

% Veyl (41)

where

ol




Lo PRERTEE U . TERRTE TR e W L Y. NN T et i ek ot R i S el o by Yh e, b sty §

e o v eh e AN SERE 2 WA A ¥ e ns SR AL R S v e e e . e

. b ¢ 5
2 7]
n <2
~ (I'Y/ u 1 1 1
L X é[— ra-9 -y 2-h)
: b : g :
2 tea 1
v - v D ra-d 42)
3 2

i
where vy is Eulers Comstant (0.577215) and §y represents the digamma func-
tion.

Once the covariance matrix is obtained, the standard errors of the
estimates and the covariances between the estimates are obtained from the
same terms in the covariance matrix as outlined above for the three-para-

meter log normal distribution.

5.2.2 Gamma Distribution
Due to the nature of the fatigue crack propagation process, two im-
portant assumptions can be made. The first assumption, called the in-
creasing failure rate assumption, states that b~ ‘ause the crack growth
rate increases as the crack grows (under consr slitude conditions),
the rate, or probability, of failure increases ne crack grows, The

second assumption states that the distribution of a fatigue crack propa-

;
|
i
!

gation variable is independent of the crack length and is a function of
the initial crack length only. If these two assumptions are mede, then
it can be proven that a generalized gamma distribution is a valid distri-

bution for any fatigue crack propagation variable [13,20].
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Generalized Four-Parameter Gamma Distribution. The four parameters

of the generalized four-parameter gamma distribution are the location para-

meter, T, the power parameter, o, the scale parameter, b, and the shape/

power parameter, g. The shape parameter, c, is given simply by {21)

cC =g 43)

The density function for the generalized four-parameter gamma distribution
i is given by [21]

L et ——— T P

b8% r(g)

£x) = a0 exg] - {'Lu‘}a] ’ :{, (44)
8

vV NNV
0 =

All four parameters are estimated simultaneously using the parameter

et

estimation methods presented in Section 5.3. To obtain the standerd er-

ros of the e¢stimates and the covariances between the estimates the covari-

ance matrix for the generalized four-parameter gamma distribution is com-

puted. The covariance matrix is a symmetric matrix and {8 given by

where ¢ ' represents the trigamma function.

| [13,21,22] 4
vely? 45)
!
% where 4
‘ b ? é 3
: _ . ' -
8 . (s ied G ra-n
& e b b b
2 e L
! @R 1R "—-‘L_N" 2
: & b r(g)
: ve (%6)
! Sl 2 r(t-ty \ !
) + + — w - |- . k41 - i
P brap (5 1}) ’(“ *)] ‘
! . |
{ ra [g&’ -25 +1] {
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The standard errors of the estimates are given by the diagonal terms
and the covariances between the estimates are given by the off-diagonal

terms of the &4 by &4 covariance matrix.

Three~-Parameter Gamma Distributicn. If the power parameter, a, is

assumed to be equal to one, the generalized four-parameter gamma distri-~
bution reduces to the three-parameter gamma distribution. The density
function for the three-parameter gamma distribution is given by [21,23]
-1 X >
f(x)-g—'ﬂ-—[-m] » b>0 7
b8 1 (g) b g5 1

The three parameters are estimated using the same method used for the

generalized four-parameter gamma distribution. The standard errors and

covariances are found by using the covarlance matrix for the generalized

four-parameter gamma distribution (equations 45 and 46) and setting a

equal to ome.

Generalized Three-Parameter Camma Distribution. If the fatigue crack

propagation variable of interest is AN/Aa, then considering the fatigue

crack propagation process it would be expected that AN would be zero for
aa zero [24]. From this, it is assumed that the location parameter, vy,
is equal to zero which reduces the generalized four-parameter gamma
distribution to the generalized three-parameter gamma distribution. The

density function for the generalized three-~parameter gamma distribution

1s thus [23]

ga~-1
£(X) a a0 exp[-(%)a] ,

o8 r(g)

(49)

®n oa X
Iviviviv
00
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The standard errors of the estimates are given by the diagonal terms
and the covariances between the estimates are given by the off-diagonal
terms of the 4 by 4 covariance matrix.

Three-Parameter Gamma Distribution. If the power parasmeter, a, is

assumed to be equal to one, the generalized four-parameter gamma distri-
bution reduces to the three-psrameter gamma distribution. The density

function for the three-parameter gamma distribution is given by [21,23]

g-1 X >
; roo « Lol [ 4] w30 )
b 811

b8 1 (g)
' The three parameters are estimated using the same method used for the

generalized four-parameter gamma distribution. The standard errors and

covariances are found by using the covariance watrix for the generalized
four-parameter gamma distribution (equations 45 and 46) and setting a
equal to one.

Generalized Three~Parameter Gamma Distribution. If the fatigue crack

propagation variable of interest is pN/sa, then considering the fatigue
erack propagation process it would be expected that AN would be zero for
Aa zero [24]. From this, it is assumed that the location parameter, vy,
is equal to zero which reduces the zeneralized four-parameter gamma
distribution to the generalized three~-parameter gamma distribution. The
density function for the generalized three-paraueter gemma distribution
is thus [23]

£00) = S:%L:f(—;—:- oxp[-(%)u] .

(49)

oo X
Iviviviy
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The three parameters are estimated using the same method used for the

generalized four-parameter gamma diatribution, The atandard errors and

covariances are found by using the 3 by 3 gubmatrix for 3, 3, and ¢ from

the 4 by 4 covariance matrix for the generalized four-parameter gamma dis-

tribution (equations 45 and 46),

Two-Parameter Gamma Distribution. If the power psrameter, o, is again

assumed to be equal to one, the generalized three-parametor gamma distribu-

tion reduces to the two-parameter gamma distribution. The density function

for the two-parameter gamma distribution is givem by [11, 12, 23]

-1 20
00 - G—anf- (9] . 320 L

The two parameters are estimated using the same method used for the gener-

aliged four-parameter gamra distribution. The standard errors and covari-

ances are found by using the 3 by 3 submatrix used for the generalized

three-parameter gamma distribution and setting « equal to onme.

5.3 Parameter Estimation Methods

Since the determination of the estimatesz of the parameteis is critical

to a proper fitting of the data to the two, three, and four-parameter die-

tributions, two different parameter estimation methods were used [14, 25].

The first method, a graphical method, was selected for its simplicity

[17, 18, 26, 27]). The second method, the method of maximum likelihood

estimators (MLE), was selected because of its reliadility, accuracy, and

widespread acceptance [14, 15, 19, 21-23, 28-32),

5.3.4 Graphical Mathod
This method wae the first of the two methods actempted, due mainly to

ite simplicity in use (17, 18], This method was tried with both the
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three-parameter log normal distribution and the three-parameter Weibull
distribution. The graphical method involves plotting the data on special
probability paper whose axis scales correspond to special distribution
characteristics and then selecting the value of the location parameter
such that the resulting plot of data follows a straight line {17,181,

Once the estimate of the location parameter is known, the estimates of

the other two parameters are made graphically, Simce only three para-

meters can be estimated graphically, this limits the use of this method f

to two or three parameter distributions [27].
For the three-parameter log normal distribution, a plot of Y vs, X

yields a straight line for data that follows a three-parameter log normal

distribution [14)] where
Y = G(2) (51)
X= loglo(xc) (52)

where G(z) is the equation for the standard normal probability scale which

1s given by [11]

R |3
() = f 3 exp (—72&-) dx (53) } :
= ! ;
; where i :
f { i
‘l -
z = Flx.) (54) |
}

where F(xc) is the cumulative density function of the corrected data. %e

is the value of the data corrected for the value of the location parameter

by the following equation.

Xe =X T Xg (55)

e sem—
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For the three-parameter Weibull distribution, a plot of Y vs. X where

Y=1nin (1—}.—%;5) (56)
X = 1n (Xc) (57)

ylelds a straight line for data that follows the three-parameter Weibull
distribution [17,18].
For both of these plots, F(xc) corresponds to the median ranks which

are calculated by [181

Xe
F(xc)'m , ISXCSn (58)

To determine the value of the location parameter such that the re-
sulting plot ytelds a straight line, an iterative process which minimizes
some variable must be used. For the graphical method, the variable to be
minimized is the curvature of a second order curve fit using least squares,
thereby assuring a straight line. One of the fastest and most efficient
of the many minimization methods available is the Golden Section search
method [26].

In the Golden Section search method, the value of the curvature (the
variable to be minimized) 1is calculated at two optimal locations and,
based on these values, 2 certain area where the curvature minimum is known
not to exist is excludad from the rest of the search, This process is
repeated until the area remaining to be searched is less than some toler-
ance level. The value of the location parameter in this area is then
taken as the estimated value of the location parameter. A schematic re-

presentation of the Golden Section search method 1s shown in Figure 10.

..\'

v

o 35

sasm il it Slincs

doai? -

e Ml at an ot on Lamba £

ki, S ML AR e oba

PRRTRUIT PRI PSRV SR S T P TP DYRIVP




N
I I ™ I |
_ e~ I { 5|
" I I I I
o
> I I I I
< lenax | > I
<
= I I I I
- I | I I
o | | | sy |
| 1 —
1 I 1 .
X win X X X e

M ] 2

T (LOCATION PARAMETER)

IF Ba(X,) < Bp(Xp)
THEN X, BECOMES Xy

IF By (X,)> Ba(Xp)
THEN X, BECOMES Xpw

IF Bg(xl) = Bz[Xz)
THEN X, BECOMES Xy
AND X, BECOMES Xpw

H = 0.618033989

Figure 10, Golden Section Search Method
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5.3.b Maximum Likelihood Estimators Method

After the griphical method was perfected and us~d, the need for a
more statistical approach to the estimation of the ; rameters of the two,
three, and four-parameter distributions became evident (Section 8.1).

This led to the use of the Maximum Likelihood Estimators method to statis-
ticaliy estimate the distributior perameters.

The Maximum Likelihood Estimators (MLE) method involves solving maxi-
mum likelihood equations through the use of a nonlinear programming algor-
ithm {14,15,19,21,22,23,28,30,31,32]. Many forms of the maximum likelihood
equations have been determined by investigators for the three-parameter log
normal distribution, the three-parameter Weibull distribution, and the two,
three, and four-parameter gamma distributions [14,15,19,28-32],

Three-Parameter Log Normal Distribution. The maximum likelihood equa-

tion used in this investigation for the three-parameter log normal distri-

bution 1ie [15)

In L(1) = - r{ﬁ.(T) +% n B (T)] (59)
n
L. Indx,~T)
where B(r) = 1'1——“'—‘— (60)
n 2
. E [1n (x,-7) - G(7)
and Bt il - 0] o (61)

Three-Parameter Weibull Pistribution. The maximum likelihood equa-
tion used in this investigation for the thres-paramiter Weibull distribu-

tion is [19]
n - n ¢
L(b,c,7) * n(lnc - clnb) + (¢ - 1) £ ln(x,~1) - b ¢t (xi’T) (62)
{»] i=]1

Note that the maximum likelihood equation is a function of all three para-

meters whereas for the three-parameter log normal distribution, the maxioum
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likelihood equation {is ; function of just the location parameter. However,
the scale parameter, b, ran be factored out of this equation and estimated
separately, The resultin, '~ parameter maximum likelihood equation for
the three-parameter Weibu:} .listribution is [13]

iy c c-1 i . j
PR TN Rl ILAREIEL) G

RN T IATO TV W ST LIRS | 1 TP TN TR VS

L(c,7) = Ilnc - 1n [l
n
where the estimation of the scale parameter is given by [13)
. L B o l/¢
-5 £ &0 (64)
i=]1
The effect of reducing the number of parameters in the maximum likelihood
equation is to reduce the computing time, and thus the cost, of the maxi-
mization of the maximum likelihood equation.
Generalized Four-Parameter Gamma Distribution. The maximum likelihood

equation for the generalized four-paraneter gamma distribution is [21,30,
32)

n
L(b,g,2,T) = n Inx + (ga-1) [ z ln(xi--r)] - gn ln(ba')
i=1

n (xi-T)
-z T - n Inl(g)
i=} b

(65)

The number of parameters in this equatfion can also be reduced by factoring
out the scale parameter, b. The resulting three parameter maximum likeli-

hood equation for the generalized four-paramster gamma distribution is [13)

L(g,2,T) = n lna+ (gx-1) [51 ln(xi-'r)] - gr{l + In {El (xi--,-)a} . 1ngn]

et e

(66)
- n 1nr(g)

vhere the estimation of the scale parameter is given by [13]
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Three-Parameter Gamma Digtribution., The maximum likelihood equation

for the three-parameter gamma distribution reduced to eliminate the scale

parameter is [13]

L(g,1) = (g-1) [E 1n(x1-7)] gn [1 + ln { z (xi-'r)} - ln(gn)]

? (68)
; -n 1“1-(8) 3
where the estimation of the scale parameter is given by [13] 3
, ]
1 4
bellr « -] (69) ;
ng L. i ‘
H 4
' Generalized Three-Parameter Gamma Distribution. The maximum likeli- ‘ .
hood equation for the generalized three-parameter gamma distribution is 3
| 1
, L(b,g,0) = n lna + (ga-1) [ E ln(xi)] - gn In(t” ) E
H i=]
! (10) i
| . [—T - n 1nr'(g)
i 1" E
% This equation can also be reduced to eliminate the scale parameter, b,
£ L
,! The resulting two parameter maximum likelihood equation for the gener- |
i !
alized three-parameter gamma distribution is [13] | i
3
L) = n 1o + (ga-1) [ £ ln(xi)] gn[l + 1n{ £ ("1’} - ln(gn)]
{=1 4
(1) y
- n Inr(g) 1
where the estimation of the scale parameter is given by [13]
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b =[x {Ex(x‘)a} Ve (72) ‘

Two-Parameter Gamma Distribution, The maximum likelihood equation
for the two-parameter gamma distribution reduced to eliminate the scale

; parameter is [13] , |

L(e) = (s-D) [1;:-11 Inixy)] - 81+ 1n {El )} - intem]

; (73)
- n 1nl'(g)
where the estimation of the scale parameter 18 given by [13]
badlr ] (7)

ng Ll

Interior Point Penalty Function. After some experience using the

Graphical method to estimate the location parameter of the three-para-
meter Weibull distribution, it was found that the iteration tended to go

to minus infinity in some cases. Since this was the global (overall) maxi-

|
i
3
|
i
]
i
|
j

mum of the function to be maximized, 1t became necessary to use a method ]
that converged on the local maximum, and not the global maximum. The

method used to achieve this requires the use of an interior point penalty

PRNIRNPETP YT S

function which prevents the value of each of the parameters from reaching K

either of its global limits [15].

e las e b *

The interior point penalty function, better known as the objective

Y

function in nonlinear programming terms, for the three-parameter log normal

distribution using the maximum likelihood equation is [1S5)

P(1,r) = In L(7) - r[(f + c, - 4-,’)'1 + (xnin -7 = ¢+)’%] (75

vhere c, ie a large positive number (= 1025),

e Lt okt M . 0 el
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r 1is an iteration variable, and
¢, is a8 small positive number (= 10-8).
The objective function for the three-parameter Weibull distribution

using the two parameter maximum likelihood equation is [15]

P(t,c,t) = L(7,c) - r[(‘r + c, - c".)'1 + (xnln - 'r-¢+)-1

) (76)
+(c-e)  + (10-c-c+)'1]
The objective function for the generalized four-parameter gamma dis-

tribution using the three parameter maximum likelihood equation is [15]

-1 -1

P(g,T,r) = L(ga,T) - r[(s =l-¢) " +Q00-8-¢)

-1

@ -1-¢)t+ 00 -a-0¢) an

-1 -1
t(r+c, -e) +(xmin“r-¢+)]
The objective function for the three-parameter gamma distribution

using the two parameter maximum likelihood equation is [15]

P(g,T,r) = L(g,7) - x{(g -1 ¢_',)'1 + (100 - g - ¢4_)'1
(78)
+(r4e, - ¢+)'1 ot Tt ¢+)-1]

The objective function for the generaliged three-paramster gamma dis-

tribution using the two parameter maximum likelihood equation is [15]

Pa,r) = L) - G- 167+ 100 - g e
(79

+ - tre)™t + (100 - - 07!
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Ihe objective function for the two-paremeter gamma distribution using

the one parameter maximum likelihood equation 1s [15]

P(e,r) = L(@) - 8- 1-e)7 4 (1005 -] (80)
The algorithm used to converge the objective function towards the
local maximum likelihood is as follows [15].
1. Maximize the objective functiom, P(T,r).

2. Check for convergence to the optimum i.e. when

I‘r(rj) - f(rj_l)l < e (81)

where ¢ is the convergence criterion constant.

3. 1If the convergence criterion is not satisfied, reduce rj by

setting

:j+1 » drj, 0<d< 1 (82)
wvhere d is a3 convergence constant.

4. Increment j and repeat.

The maximigation of the objectiva function has been done by many non-
linear routines [191, However, the Hooke-Jeeves pattern search method [33]
has enjoyed particularly good success in maximizing MLE objective functions
and was therefore utilized in maximizing the objective functions for the
three-parameter log normsl distribution, the three-paramster Weibull dis-

tribution and the two, three, and four-parameter gamma distributions [15).

5.4 Goodness of Fit Criteria

Once the statistical parameters for each of the candidate distribu-
tions have been estimated, the distribution which the data followe the

closest must be selected from the candidate distributions., A statigtical
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method which is used many times to find out how well data fits a certain
distribution is the goodness of fit teast. Several goodness of fit tests
have been proposed [127, but three of the more reliable and widely used
goodness of fit tests have been selected as criteria for the selection of
the '"best' distribution. These three goodness of fit tests are regres-

sion, the chi-square test, and the Kolmogorov-Smirnov test.

5.4.a Regression

Regression in its simplest form involves fitting a polynomial to a
set of given data plotted on certain axes [347. In the case of fitting
data to a statistical distribution, the data can be plotted on a plot
whose axes correspond to certain characteristics of that particular
statistical distribution (Section 5.3.a). 1It is known that if data fol-
lows that particular distribution, then the data will follow a straight
line fit when plotted on these special axes., If a linear regression is
performed on this plotted data, it can be determined how close the data
does fit a straight line. This then provides a measure of the goodness
of fit of the data to that particular distribution,

If a set of data follows the two-parameter normal distribution, a
plot of the data with the X axis as a linear scale and the Y axis as a
normal probability scale will follow a straight line [18), The normal
probability scale is described in detail in Section 5.3.a. A typical
plot for the two-psrammter normal distribution is shown in Figure 11,

1f a set of data follows the two-parameter log normal distribution,
a plot of the data with the X axis as a loglo scale and the Y axis as a

normal probability scale (Section 5.3.a) will follow a straight line {18].

In this plot, the location parameter is not estimated and is assumed to be

———— s S —————. .
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i zero. A typical plot for the two-parameter log normal distribution 1is
shown in Figure 12,

1 Both the plots fcr the three-parameter log normal distribution and

the three-parameter Weibull distribution have been discussed in Section
5.3.a. A typical plot for the three-parameter log normal distribution is
i shown in Pigure 13 and a typical plot for the three-parameter Weibull dis-
tribution is shown in Figure 14, The three-parameter gamma distribution
plot requires the data to be plotted on a plot where the X axis 1is a
linear scale and the Y agxis is a gamma probability scale, The equation

for calculating the gamma probability scale, H(z), is [27]

i Fix) T(e) = B3 ot ot gc (83)
o

; where

i

! -

where F(xc) is the cumulative density function of the corrected data which
is given by equation (58). Equation (83) was solved iteratively for H(g)
using the interval halving method [277. A typical three-parameter gamma
distribution plot is shown in Figure 15. The two-parameter gamma distri-
bution plot also requires the X axis to be a linear scale and the Y axis

to be a gamma probabllity scale, A typical two-paramster gamms distribu-

T P Y Wb TR L TR AR TS S SO S

tion plot is shown in Figure 16. 1In each of the above plots, the data

are plotted on the X axis against the corresponding median ranks on the

o

Y axis.

Linear regrassion uges linear least gquaxes which uses the matrix

approach to linear regression to fit a best fit straight line to the data

(34]. As a result of this matrix approach to linear regression, a goodnass
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of fit statistic, called the coefficient of multiple determination, Rz,

can be calculated., The value of R2 is always between zero and one. The

closer the value of R2 is to one, the closer che fit of the data is to a

straight line. Therefore, by comparing the values of R2 for each of the

distributions, the distribution with the highest value of R2 is the dis-

tribucion which the data follows the closest.

This value of R* can be ccrrected for the slope of the least squares
24 line i{n an attempt to achieve a more precige measure of the closeness of
g the data to the straight line. This corrected value of R2 is called the
é closeness and is given the symbol C2. The derivation of C2 is given in
% Appendix C,
é S5.4.b Chi-Square Test
. The chi-square goodness of fit test is & statistical method fecr de-
. termining how close given data follow a certain distribution, Basically,
ic
g 1) divides the data into an optimum number of equiprobable intervals,
» 2) counts the number of data points in each interval (called the ob-
; served frequerncies),
i 3) calculates the number of data points that should bs in each in-
‘ terval based on the estimated distribution parameters (called the
E expected frequencies), and
? 4) compares the observed frequencies with the expected frequencies
% (11,12).
% The test statistic, xz, is a measure of how close the observed frequencies
]

are to the expected frequcncies, and t' us how close the data follows the

given digtribution. x2 is given by
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k (o,-e,)

i=1 e,
where k is the number of equiprobable intervals,
o, are the observed frequencies, and
e are the expected frequencies.

The lower the value of the chi-square statiastic, the closer the ob-
served frequencies match the expected frequencies and thus the closer the
data follows the given distribution., However, the chi-square statistic
can not be compared between distributions that do not have the same number
of distribution parameters, nﬂ,because the degrees of freedom for the chi-
square statistic for distributions not having the same number of distribu-
tion parameters is not constant [13]. Therefore, the tail area of the

chi-gquare distribution to the right of the chi-square statistic, called

A, 18 computed for each distribution by [13)
. G-
. Ix2/2 exp(-u) * u du
r
where v is the number of degrees of freedes and u {8 a variable of inte-

(86)

A

gration. The .alue of A is always teiween gero and one, with A aqual to
~ve .wfug 8 perfect fit. The lower the value of the chi-<quare statistic,
the higher the value of the tail area, all other thin;. - 5+ar-. There-
fore, the discribution Lo he chusch as the distribution whi.! the data
follows the closest is th» one which has the highest value of A.

The: chi-squara ststistic may be cecmparad with a critical valus which
followa the chi-square distribution at an acceptance level of @, with v

degrees of freedom, x2 o v (127, where

»

= - - l (87
vek n, )
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Acceptance of the gproposed distribution as the diatribution which the data

follows should occur when [12]

2 2
X =X (88)
o sV
a
The tail area, A, may be compared with the acceptance level to test ac-

ceptance of the proposed distribution, Acceptance should occur whea [13]

A2 a, (89)

The end points for the classes for the two and three-parameter normal
distributions were found by dividing a standard normal curve into differ-
ent numbers of equiprobable intervals [35]). The end points for the equi-

probable intervals for the three-parameter Weibull distribution were

given by [19)

o r o - aofa - ()]

The end points for the equiprobable intervals for the two, three, and

four-parameter gamma distribution were given by [21)

ot o (@)

where Fﬁ-l is the inverse cumulative density function for the generalized

four-parameter gamma distribution,

5.4.c Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov test is another statistical goodness of fit
test similar to the chi-square goodness of fit test. Basically, it cai-
culates the sample cumulative density function and compares it with the
theoretical cumulative density function of the given distribution by cai-

culating the maximum deviation, D, between the two cumulative density
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functions [11]. The test statistic, Z, is a measure of how close the two

cumulative density functions are and thus how close the data follows the

given distribution and is actually equal to D.

The lower the value of the Kolmogorov-Smirnov statistic, the closer
the sample cumulative density function lies to the theoretical cumulative

density function, and thus the closer the data follows the given distribu-

[T RDY TS € RNy

tion. Therefore, the distribution to be chosen as the distribution which 3

the data follows the closest is the one which has the lowest value of the ;
Z statistic. The Kolmogorov-Smirnov statistic may be compared with a

table of critical values to determine if the proposed distributIdt Bhould

PO

be accepted as the distribution which the data follows (36].
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SECTION VI

DETERMINATION OF THE DISTRIBUTION

Several computer programs were written to determine the distribution
of the desired fatigue crack propagation variables using the previously
mentioned statistical concepts. The four programs written to determine
statistical distributions of fatigue crack propagation variables are:

1) Delta N Distribution Determination Program (Golden), or
DNDDPG,

2) Cycle Count Distribution Determination Program, or CCDDP,

3) Crack Growth Rate Distribution Determination Program, or

CGRDDP, and

4) Delta N Distribution Determination Program (MLE), or DNDDP.

6.1 Delca N Distribution Determination Program (Golden)

This program, called DNDDPG, was written to determine the distribu-
tion of the AN/aa variable computed from the input a vs. N data which is
supplied by program DELYCP (Section 7,1), Basically, it fits the data to
four dietributions and computes a goodness of fit statistic for the com-
parison of the distributions. The four distributions fitted are:

1) the two-parsmeter normal distribution,
2) the t:wo-paumetcf log normsl distribution,

3) the three-parametar log normal distribution, and

4) the three-parameter Weibull distribution,

-z
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It uses the graphical method, including the Golden Section search method,
to estimate the location parameter for both the three-parameter log normal
distribution and the three-parameter Weibull distribution, The goodness
of fit criterion used is 02 (Section 5.4.a).

This program produces output which includes the input a vs. N data,
the computed a vs. N data, some of the test conditions, some of the in-
ternal program parameters, the frequency distribution array, the 4N/Aa
data, and the distribution parameters and a partial analysis of variance
table for each distribution, The plots generated by this program are a
relative frequency histogram, a relative cumulative frequency histogram,
and a distrjbution plot for each of the distributions. Further documenta-

tion of this program is shown in Appendix D,

6.2 Cycle Count Distribution Determination Program

This program, called CCDDP, was written to determine the distribution
of the N (cycle count) variable from a set of replicate cycle count data
at one crack length level, Identical load and test conditions are re-
quired for the replicate data. This program fits the data to six distri-
butions. These distributions are:

1) the two-parameter normal distribution,
2) the two-parameter log normal distributiom,
3) the three-parameter log normal distribution,
4) the three-parameter Weibull distributiom,
5) the three-parameter gamma distrjbution, and
6) the generalized four-parameter gamma distribution,
It uses the Maximum Likelihood Estimators method to estimate the para-

metars of each of the above distributions except the two-parameter normai
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distribution and the two-parameter log normal distribution. Three good-
ness of fit criteria are calculated for the comparison of the distribu-
tions. They are: A

1) the chi-square tail area,

2) the Kolmogorov-Smirnov statistic, and

3) Rz from regression.

This program produces output which includes the input replicate cycle

count data, the test conditions, some of the internal program paramesters,

the frequency distribution array, and 1) the estimated distribution

parameters, 2) a partial analysis of variance table, and 3) the goodness

of fit criteria for each distribution except the generalized four-para-
meter gamma distribution, for which only the estimated distribution para-
meters and the goodness of fit criteria are printed. It also prints a
comparison of the distributions and the resulting "best' distribution
based on the goodness of fit criteria. The plots generated by this pro-
gram are the originel cycle count data plot, a relative frequency histo-
gram, a relative cumulative frequency histogram, and a distribution plot
for each of the distributions except the generalized four-parameter gamma
distribution. Further documentation of this program is shown in Appendix

E,

6.3 Crack Growth Rate Distribution Determination Program

This program, called CGRDDP, was written to determine the distribu-
tion of the crack growth rate (da/dN) variable from a set of raplicate
da/dN date at one crack length level. This da/dN data 1is calculated by
the DADNCP program (Section 7.2). 1ldentical load and tast conditions are

required for the replicate data.

57

PR TV T TSV RTT T FRU T T S P . e P O

s st bt aBkanart e

ey Lok .



e ——_————

———— .

R TR £ e 17— S PP oo JOS

This program is nearly identical to the CCDDP program (Section 6.2),
using the sume distributions, the same parameter estimation method, the
same goodness of fit criteria, and having nearly the same output. The
main difference is the variable of interest being da/dN instead of cycle
count, Thus the required input is different and some of the output is
different in this respect. Further documentation of this program is

shown in Appendix F.

6.4 _Delta N Distribution Determination Program (MLE)

This program, called DNDDP, was written to determine the distributiomn
of the 4N/Ada variable from a set of replicate da/dN data et one crack
length level. The da/dN data used is the same as that used by the CGRDDP
prograe (Section 6.3),

This program is based on the CGRDDP program. One main difference be-
tween them is that the input da/dN data is inverted to create the vari-
able AN/ga. The second main difference is the assumption that 7 for the
gamma distributions 1s equal to zero, thus reducing the 3-parameter gamma
discribution and the generaliged 4-parameter gamma distribution by one
paramater (Section 5.2.3). Along with the change in variable, there are
appropriate changes in the output. Further documeutation of this program

ies shown in Appendix G.
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SECTION VII

GROWTH RATE AND GROWTH PREDICTION

Since this investigation was not just interested in the distribution
of fatigue crack propagation variables alone, it became necessary to
write several other programs to aid in the analysis of the experimental
data, These supporting programs inclued 1) Delta N Calculation Program,
or DELTCP, 2) da/dN Calculation Program, or DADNCP, and 3) a vs. N Pre-
diction Program, or AVNPRD, Several others not mentioned here were used

tc " 4n the analys.s and manipulation of the experimental data.

7.1 Delta N Calculation Program

This program, called DELICP, was written to calculate intermediate
Aa vs. AN data to be used by program DNDDPG (Section 6.1). Basically,
it calculates Aa vs. AN data from a set of constant amplitude a vs. N
data by one of five different methods. These methods are;

1) the secant method,

2) reject certain selectable data points and use the secant method,
thereby increasing pa,

3) the quadratic 7-point incremental polynomial methed,

4) reject certain selectable data points, recreate new a vs. N data,
and then uge the quadratic 7-point incremsntal polynomial method,
and

5) wuse the quadratic 7-point incremental polynomial method, recreats

nev a vs. N data, reject certain salectable data points, and then i

use the secant method.
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Further documentation of this program is shown in Appendix H.

7.2 da/dN Calculation Program

This program, called DADNCP, was written to calculate the crack
growth rate, da/dN, by the six different methods presented in Section
4. These methods are;

1) the secant method,

2) the modified secant method,

3) the linear 7-point incremental polynomial method,

4) the quadratic 7-point incremental polynomial method,

5) the linear log-log 7-point incremental polynomial method, and

6) the quadratic log-log 7-point incremental polynomial method.

For each of these methods, the calculated da/dN data is integrated back
into estimated a vs. N data, which is compared with the original a ve. N
data, resulting in an average incremental error. By comparing these
errors, the da/dN calculation method which results in the lowest error
can be selected.

The required input for this program is a set of constant ja a vs. N
data. This program produces output whichi includes the input a ve. N data,
the test conditions, da/dN vs. AK and actual cycle count data vs, esti-
mated cycle count data for each da/dN calculation method, and a summary
of the errors from each method with the resulting "best” da/dN calculation

method. Further documentation of this program is shown in Appendix I.

7.3 a vs. N Prediction Program

This program, called AVNPRD, predicts a vs, N data from the distri-

bution of da/dN (or dN/da) as a function of crack length and compares it
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with the original & vs, N data., The required input is the knowledge of
the distribution of da/dN (or dN/ds) as & function of crack length as
determined by the CGRODP? (or DMDDP?) program, This pregram selasts a
grovth rate at each crack length using a vandom number ganerasor snd the
distribution parameters, This growth rate is then used to snlsulate AN
as a function of crack langth, which is used to predict repiicate cets
of a ve, N data, Thase predicted sats of a vs. N daca sre then vompared
vwith the original a ve. N data suts,

This program producen output which {ngludes the test sonditions, the
predicced a vo. N data, and & plot of all of the predicred a ve, N dats,

Yurther documenctation of this program 1 shown in Appundix J,
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with the original a vs. N data. The required input is the knowledge of
the distribution of da/dN (or dN/da) as a function of crack length as
determined by the CGRDDP (or DNDDP) prcgram. This program selects a
growth rate at each crack length using & random number generator and the
distribution parameters. This growth rate is then used to calculate AN
as a function of crack length, which is used to predict replicate sets
of a ve. N data. These predicted sets of a vs. N data are then compared
with the original a vs. N data sets.

This program produces output which includes the test conditions, the
predicted a vs. N data, and a plot of all of the predicted a vs. N data.

Further documentation of this program is shown in Appendix J.
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SECTION VIII

STATISTICAL ANALYSIS OF PREVIOUSLY GENERATED DATA

A considerable amount of crack propagation data in the form of a vs.
N data have recently been generated at Purdue University for center crack
specimens of 2024-T3 aluminum alloy [37]). From this set of data, there
were 30 different overload/underload tests which were conducted under
constant stress intensity conditions and at constant Aa. From each of
these tests, approximately 19 to 155 data points, for a total of 2076
data points, were collected after the crack had grown through the reglon
influenced by the overload/underload sequence. The data typically chosen
for analysis is shown in Figure 17. This large amount of data was col-
lected following the overload affected region to establish a final steady
state growth rate as well as establishing the steady state growth rate
for the next test [37,38,39). From this set of test results, there are
2 to 7 sets of data at each of five different loading conditionms.

The value cf these data for statistical evaluation centers on the
accuracy with which the original a vs. N data were collected. 1In these
tests, the crack length was monitored and measured with a 100X micro-
scope mounted on a digital measurement traverse. The traverse has a
resolution of 0.001 mm (0.00004 in,) with a direct digital read-out. A
printer activated by a push buttor was connected to the cycle counter
and the digital traverse. In collecting the data, the microscope was

advanced an increment of 0,01 mm, 0.02 mm, or 0.05 mm (depending on the
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growth rate). When the crack had grown this increment as observed with
the cvross hair in the microscope, the printer was activated with the push
Eucton and the crack length and number of cycles were printed. The re-
gultin: data are very dense and appear to be fairly accurate. This large
amount of data was used to make & preliminary statistical analysis to aid

in the direction and scope of this inw ..ation [40].

8.1 Distribution of gN/pa
The first step of the analysis was t> determine the distribution of
the variable gN/Aa which was celculated by the secant method. This was
done by writing a pair of programs using many of the statistical concepts
presented in Section 5. These programs, called Delta N Calculation Pro-
gram, or DELTCP (Section 7.1), and Delta N, Distribution Detisrmination
Program (Golden), or DNDDPG (Section 6.1), were run on each of the data
sets. The distributions were ranked from 1 to 4 (1 being the best) based
on the goodness of fit criterion, C2 (SectSon 5.4.a). The rankings were
averaged over all of the tests and the results are shown in Table I. The
best distribution was the three-parameter log normal distrtibution fol-
lowed closely by the two-parameter log normal distribution, A plot cf
the £1it of the AN/pa data to the three-paramater log normal distribution
is shown in Figure 18. 7
Baged on these results and the use of the DELTCP and DNDDPG programs,
the folloving conclusions were made.
1) The %-parameter Weibull distribution was tried and re-
tected f1um all further analysis because of 1its poor per-
forman. - - providing a fit for the JN/Aa deta due to it's

sack of 3 jocation paramster.
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2) 1Include the other four dist-ibutions in the analysis of
| other fatigue crack propagation“variablea. o |
3) Using the constant amplitude portion of overload/underload
' data does not lead to a satisfactory atatistical analysis.

Therefore, a statistically designed test program was needed.

4) The graphical method of parameter estimation teaded to be

unstable and unreiiable for the data used. Therefore, the

Maximum Likelihood Estimsicrs method of parameter esiima-

tion was tried and used.

S) The use of c? as a goodness of fit criterion was poor be-

cauge it failed to distinguish betwee: the distributlons

very well. Therefore, the chi-square an. Kolmogorov-Smirnov

goodness of fit tests were tried and used.

8.2 Effect of Quadratic 7-Point Incremental Polynomial Methpd

The second step of the analysis was to examine the effe¢ . using

the quadratic 7-point incremental polynomial method vs, u3ing i 3jecant
method in calculating the variable AN/Aa. This was done by runﬁ;u, the
DELTICP program and changing the AN calculation method for each of the
data sets. Once the AN/Aa data was calculated for each dats set, .t was
run on the DNDDPG program to determine the effect of the AN calculi on
method on the distribution parameters. The most noticeable effsct was
the decrense in the varisnce using the quadratic 7-point incremsntal
polynomial method us shown in Table 11, From this, it 1s evident that
the quadratic 7-point incremsntal polynomial msthod introduces quite a
smoothing effect in reducing the amount of data scatter and thus the data

varisnce.
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Table 11

Smoothing Ef€act of the Incremental Polynomial Method t

VAR. (T.P.} VAR, (1.P.) !

R S S RIS JPUT LTSSy ¥ W ST o SO r TP rr g

DISTRIBUTION Fvemee VAR . (SECANT) ST0. OBV O e (secavT)
S TER 0.419 0.0820 '
.
N 0.444 0.1273 1
3-PARAIE IR 0.647 0.2817
3P ARENE TER 0.871 0.4185
!
|
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8.3 Life Prediction Using Estimated Distribution Parameters

The next step in the analysis was to see if the estimated distri-

bution parameters could be used for life prediction. Using the mean of
the AN/ja data (for the two-parameter normal distribution) and the over- ?

all change in crack length (af-ao), the final cycle count, Nf, was pre-

Py,

dicted and compared with the observed value of Nf for each set of data
and then averaged over all the data sets. The results are shown in Table

I1I. Prom the :2latively low amount of error, it is evident that statis-

un,e v G
,,,_\,__,.,...,M‘.w-«m::v-fwﬁ.w‘wvwv : '”“‘ w

tical methods using estimated distribution parameters could prove invalu- |

i able for life prediction. i
. B
Table III i

Life Prediction Based on the Mean 4

A

P‘ i
AVERAGE Nﬁﬁmm PERCENT ERRCR

1.011 2.93

P VI S P

- A e

8.4 Effect of ja

The final step in thn analysis of twne previously generated data was
to determine the affect of ths eize of ja. This was done by using the

DELICP program to generate AN data with different valuas of ga. By

P N N P Y O VTR PP Ry
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rejecting certain successive data points (i.e, every 1l out of 2, every 2

out of 3, etc.), data with increasing valuves of pa ware generated, The
DNDDPG program wag then run on each different Aa set of data for each of
the data sets. Also, several tests at the same load conditions were com-
bined to give a large amount of data and then Aa was increased as de-

scribed above. The results are shown in Figure 19 and Table IV. From

these results, it is obvious that the larger 4a is, the smaller the re-

sulting variance of the data will be.
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Table 1V

Bffect of Increasing da

VAR. (AR=.10 M) VAR. (AR=.16 M)
DISTRIBUTION Ao o .05 ) VAR, @A=.06 1Y)
e’ﬁﬁﬁgzﬁTER 0.617 0.513
2-PARAMETER
P 0.660 0.539
3-PARAMETER
L 0.851 0.412
3‘52§SEE[ER 0.883 0.761
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SECTION IX

EXPERIMENTAL INVESTIGATION

In an effort to answer the investigation objectives, it bacame
necessary to conduct an experimental investigation to provide adequate
data for subsequent analysig. Through the ure of previously collected
data (Section 8), it became increasingly clear that any experimental in-
vestigation that would be expacted to provide meaniﬁgful resul te would
have to be statistically designed. Through the use of some preliminary

theoretical and experimental testing, a test program was designed.

9.1 Experimental Test Program

Given the objectives of the investigation (Section 3), it was evi-
dent that replicate tests under identical load and environmental condi-
tions had to be conducted. It was also obvious that constant amplitude
loading should be used rather than constant AK (load shad) loading since
it would be much easier to control and replicate and also give a range of
AK levels. To be able to find the distributions of N and da/dN, the data
from each test had to be taken at consistent discrete a levels,

To determine the actual load levels to be used, several preliminary
tests using the same lot of the same materisl were conducted. To obtain
the desired growth rates (dc/dN“m =1x 1.0'6 in./cycla and
da/dNIllx =5 x 10-5 in./cycle) and keep the testing time within reason,
it was found that AP should be 4200 lbs. It was also determined to use

an R ratio of 0.2 to stay well ouc of the compresesion region.
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A preliminary theoretical investigation was conducted to determine
where the data was to be taken. It was found that to get the deasired
range of growth rates, the data would have to be taken over at least

40.0 mm, It was determined that steaady state conditions would not exist

until 9.0 wm due to the crack initiation load shedding process. 1Im an
effort to reduce data error as much as possible and still obtain a rea-
sonable amount of data, the initial Aa was chosen to be 0.20 mm based on
the statistical analysis of previous data (Section 8.4). Since the:*
growth rate would be too fast to operate the optical system and the
printer at the end of the test for the load levels chosen, Aa would be

increased to 0.40 mm and finally to 0.80 mm, The number of data points

taken at Aa * 0.40 om and ja = 0.80 mm were arranged so that when succes- !
sive data points were rejected (to find the effect of increasing pa),
there would be no large gaps in the data. A schematic represenration of

the test program is shown in Figure 20,

;,
i
|
|
%

In order to obtain enough data to conduct a meaningful statistical
analysis, it was determined that there should be at least 50 replicate
tests [13]). However, since more specimens were available, a total of 68
tests were conducted, thereby increasing the confidence of the statistical
analysis results. The teat conditions are listed below.

a = 9,00 om.,

49.80 mm.

LJ
[}

R = 0.20

-}
L}

1050 1bs.
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5250 1bs.
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9.2 Test Specimen

The test specimens used in this investigation were 0.100 inch thick
center crack panels of 2024-T3 aluminum alloy. The speciman geomatry is
shown in Figure 21. ;
Test specimens were obtained with a till finish and polished to a ’
mirror finish in the vicinity of the crack path to facilitate optical l

observation of the crack tip during crack growth measurement. The lot of

specimens was numbered in order as they were taken out of the shipping

crate 80 that true randomigation of the samples could be accomplished,
The fixture plate holes were drilled and reamed to the desired dimen-
sions. The stress raiser shown in detail in Figure 21 was machined with
an electro-digcharge machine,

Before loading each specimen, the centerline of the specimen was
scribed at the stress raiser and a silica gel desiccant was applied at
“he stress raiser. The entire expected crack path was then sealed with
clear polyethylene to insure desiccated air at the crack tip. Loading

was then applied parallel to the direction of rolling of the material.

9.3 Test Equipment

The test maching was a 20 Kip electro-hydraulic closed-loop syatem
operated in load control. A function generator was used to generate @
sinueoidal voltage signal which, when superimposed on a d.c, set point
voltage, constituted the desirad input to the system, During testing, an
oscilloscope was used ¢o mucitor the feedback signal (load) and ths ocutput ;
of the amplitule npaaur;uenc system of the testing machine to ingure cor- 7
rect load levels and sinusoidal loading. A digital cycle counter was used
to count the number of applied load cycles. Crack growth vas monitored

with & zoom stereo microscops operated at a magnification of 150x
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rigidly mounted on a horizontal and vertical digital traversing system.
A crosshair mounted in the microscope was used as a reference line during
data acquisition. A digital resolver system on the horizontal traverse
produced a digital output with a resolution of 0,001 mm (.00004 in.).

The direction of travel of the optical system prior to data acquisition
wag never changed during a test to eliminate any hysteresis effects in
the traverse system. Both the digital traverse and cycle counter outputs
(crack length and numbar of cycles) were connected to a mechanical
printer. The printer printed both the crack length and the cumulative
cycle count by the operation of a push button. A strobe light swvnchro-
niged with the feedback signal was triggered at the point in the lcad
cycle when the crack was most fully open to illuminate the crack tip.
More detailed discussions of the test equipment can be found in refer-

ences [37,38,39].

9.4 Test Procedure

Since the scope of this investigation strictly involved the deter-
mination of the effect of material properties on fatigue crack propaga-
tion, care was taken to control as many other variables as possibie. All
tests were subject to nearly identical environmental conditions of room
temperature (24°C) and desiccated air. Loads were controlled to within
0.27. of the desired load using the test machine's amplitude measuremsnt
system, To prevent any effects from the order in which the specimens
were run, the specimens were randomized using a computer program which
utilized a random number generator. The tests were run in the random
order determined by this program. The order of tests is shown in Appen-

dix K.
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Crack inftiation starting at the stress raiser was performed
starting at AP = 15000 1lbs. and shedding the load 107 no sooner than
every 0.5 ma (12.5 times the change in plastic zone radius due to the
load shed) to the desired test load level, Fatigue cycling was done

initially at 10 hz up to 5.4 mm (due to reduced frequency response of

A s Sl o ma Rl L B i 2 e SR s

the testing machine at high loads) and then at 20 he. To make certain
that no lvad effects were present in the data, the test load level was
reached 1.0 mn before data acquisition (58 times the change in plastic
zone radius due to the last load shed). The load level was held constant
throughout the test (thus increasing AK with increasing crack length).
All tests were started at the same init’al crack length (Za = 18.00 mm),
The location of the centerline of the specimen was noted as a reference
to insure consistent crack length measurements throughout the test.
Cycling was continuous throughout the test to eliminate any time or
underload effects on subsequent fatigue crack growth.

The crack length and number of cycles were monitored continuously
for each test and discrete data points were taken as determined by the
test program. Data were actually taken by advancing the optical system
by the specificd increment and pressing the printer push button when the
crack tip had grown to the incremented position as determined by the
crosshair in the stereo microscope. The amount of error in the data ac-

quisition process is given in Section 3.5.

9.5 Meusurement Accuracy !

In an attempt to isolate the data variance due to the material prop-
erties, a measure of the experimental error was needed. This experimental
error reésults from the random error in measuring the cycle count and the

crack length,
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By using the test machine's amplitude measurement system which com-
pares a known input signal with the feedback signal (applied load), the

loads can be controlled to within 0.2%.

Brror in the crack length measuremsnt is due to two sources, If the

spatial relationship between the microscopc crosshair and the scribed

reference line on the specimen is not constant, then an undetermined

oAkt

amount of measurement error is present, This usually occurs when the

microscope is accidentally moved with respect to the specimen and can be

avoided by a careful experimental procedure,

The second source of crack length measurement error is the alignment
of the crack tip with the microscope crosshair. This alignment process
congists of 1) defining the crack tip location, 2) defining the crosshair
location, and 3i comparison of the two locations to see if they are iden-
tical. If they are, then the printer button is pushed and a data point
is taken.

To determine how well the observer's eye performs this alignment pro-

cess, the following test was devised., A crack was initiated and the cy-

ek et R b st LAY o bk MM AR B A b S il O o ot Rl ik

cling was stopped when the observer determined that the crack had reached
J
9,00 mm, He then took 10 repeat measurements of the crack iength, baing

careful to always approach the crack tip from the same direction to pre-

JORF T R ¥ T

: vent any hysteresis effects. This series of 10 repeat measurements vas
repeated at 9 other predetermined crackh lengths., The mean and standard
deviation of sach set of 10 repeat measurements was computed and the

error of the original data point was then calculated in terms of the

standard daviation, The results of the 10 mets 0f repeat measurements

e

are as follows.
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Xz = 0.001414 mm. |
SE = (0.001390 mam. % i
where
i; is the mean of the errors,
SE is the standard deviation of the errors.
Therefore, the average experimental arror for each data point is 0.001414

mm. The average experimental error as a function of the crack length

meagurement interval, Aa, is shown in Table V. It should be noted here

that the larger Aa is, the smaller the average experimental error is,
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Table V

Average Experimental Error

AR INCREMENT (MM)  AVERAGE ERROR (PERCENT) :
|

0.20 0.71 i

0.40 0.35 '

0.80 0.17
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SECTION X

DATA ANALYSIS AND RESULTS

As a result of the experimental investigation conducted as described
in Section 9, 68 replicate a va. N data sets were obtained, These data
are shown in Figure 22. Using these data, an analysis was performed to

meet the objectives of the investigation {(Section 3). i

10.1 Distribution of N

The first objective to be met was to determine the distribution of N

as a function of crack length. The replicate N data used was readily ob-

T

tained from the original replicate a va. N data. Typical replicate cycle
count data are shown in Figure 23, The distribution of the replicate

cycle count data was determined at each crack length level through the

use of the CCDDP program (Section 6.2)., At each crack length level, this
program calculated the distribution parameters and goodness of fit criteria

for the six distributions and then compared the goodness of fit criteria

between five of the distributions in order to establish the distribution
rankings. The generalized 4-paramster gamma distribution was not consid-
ered for the distributfon rankings because it was expected to have an ex-
cellent fit to the cycle count data due to it's power parameter (Section
5,2.e), The distribution parameters, goodness of fit criteris, and the
distribution rankings were then combined over all of the crack length

levels.
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The distribution parameters of the cycle count data as a function of
crack length were plotted for each of the six distributions and are shown
in Figures 24 through 29. The distribution parameters are normalized so
that their minioum and maximum values are equal to gzero and one, re-
spectively. As a result of this normalization, these figures do not show
the actual values of the distribution parameters but are intended to re-
flect trends present in these parameters.

The goodness of fit criteria for each distribution were averaged over
all of the crack length levels. These results are shown in Table VI. For
these goodness of fit criteria, the best fit of the data to a distribution
occurs when the chi-square tail area is a maximum, the Kolmogorov-Smirnov
statistic is a minimum, and the closeness, R{ is a maximum. Using these
relationships, an understanding of which distributions provide the best

fit for the cycle count data can be obtained.

Tne distribution rankings at each crack length level were combined
over all of the crack length levels. By convention, the lower the value

of the distribution ranking, the better the fit of the data to the given

distribution. The mean rank and it's standard deviation for each of the )
distributions and the number of times each distribution was selected as
the begt digtribution were calculated during this combining process,

These results are shown in Table VII.

S

: The 3-parameter log normal distribution provided the best fit for the

: cycle count data by a wide margin, &s evidenced by the low distribution

ranking value, the low Kolmogorov-Smirnov test statistic value, and the j
very large number of times it was selected as the best distribution., The
d-parameter gamma digtribution provided the next best fit, while the 2-

parameter log normal distribution and the 3-parameter Weibull distribution
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2-PARAMETER
NORMARL DISTRIBUTIOGN
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: Figure 24. 2-Parameter Normal Distribution Parameters
of Cycle Count Data as a Function of Crack
Length
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Figure 25. 2-Parameter Log Normal Distribution Parameters ! i
of Cycle Count Data as & Function of Crack Length 1
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NORMRLIZED DISTRIBUTION PARAMETERS

3-PARAMETER
LOG NORMAL DISTRIBUTIOGN
1.200 NORMALIZED PARAMETER VALUES
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Figure 26, 3-Parameter Log Normal Distribution
Parameters of Cycle Count Data as a
Function of Crack Length
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3-PARAMETER
WEIBULL DISTRIBUTION
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Figure 27. 3-Parameter Weibull Distribution Parameters i
of Cycle Count Data as a Function of Crack ;
Length ‘
90 ;
i
G RA SR e e i et s ) - I g
oo sl FES- DT oS Toiasd L G S A D MR R T Ewarail | S AR 3. LA aew N sirchh e 7 i Bl i 2ot Fam Wt “ :“d’




3-PARAMETER
GAMMA DISTRIBUTION
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Figure 28, 3-Parameter GCamma Distribution Parameters !
of Cycle Count Data as a Function of Crack !
Length %
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GENERALIZED 4-PARAMETER
GAMMA DISTRIBUTION

}.200 NORMALIZED PARAMETER VALUES
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Figure 29, Generalized 4-Parameter Gamma Distribution ;
Parameters of Cycle Count Data as a Function
of Crack Length

TN o L

92




w WM%AWHU, —

Table VI

Average Goodness of Fit Criteria for the
Distyibution of Cycle Count Data

CHI-SQUARE KOLMOGOBROV- CLOSENESS
DISTRIBUTION TAIL AREA SMIRNGV TEST (R SQURRED)

2-PARAMETER

NGRMAL 0.8365 0.08985 0.93310

2-PARAMETER
L@G NORMAL | 08842 0.0857 | 0.95799

3-PARAMETER |
LOG NORMAL 0.8594 0.0699 0.98223

-
e et 4 N A g BB G AT Fe CRMBA P C L5

3-PARAMETER

WEIBULL 0.8340 0.0882 0.93658
3-PARAMETER
GAMMA 0.8602 0.0722 0.87160 |
| !
i GENERALIZED -

Y-PARAMETER | 0.8075 0.0722
GAMMA

v Lk &) L)




Table VII

Distribution Rankings for the Distribution of Cycle Count Data

NUMBER OF
DISTRIBUTION  MeaN  DEVIRFION DISYRIBUTION
2-F’NHURRF|MMRELTER 4 .982 0.1348 0
el_noPGgRNgOMREMTﬂELR 3.147 0.6780 7
IPARBETER | | 531 | .5082 137
TERE | s | oem | s
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tied for the third best fit for the data. The 2-parameter normal distri-
bution finished last in the distribution ranking as it provided a very

poor fit for the data.

R L)

10.2 Crack Growth Rate Calculation Mathods

v

; The second objective to be met was to determive which crack growth

é rate calculation method introduced the least amount of error into the §

é % da/dN data. This was to be done by integrating the da/dN data cslculated i %

? | by each crack growth rate calculation method back into a vs. N data and _

% ? then calculating the error between the new a vs. N data and the original b
; g

a vs. N data. 3
The DADNCP program (Section 7.2) was run on each of the 68 originsl
a vs. N data sets. This program calculates the da/dN vs. AK data, inte-

grates the da/dN data back into a vs. N data using Simpson's one-third

Ty e ———
T P

rule and the trapezoidal rule, and then calculates a step by step average i
incremental error, as outlined by Frank and Fisher (2], for each of ths i
; six da/dN calculation methods. The da/dN calculation method which re-
% sults in the lowest average incremsntal error is then gselected as the j
i best da/dN calculation method for that data set. The log,, da/dN vs,
? loglo 0K data are plotted for each of the da/dN calculation methods &nd
2 typical plots of these data are shown in Figures 30 through 35.
The average incremental error from each da/dN calculation method was |
averagad over all of the data sets and the number of times each da/dN

calculation method was selacted ss the best method was computed. Thase

resulto are shown in Table VIII. The modified secant method had the lowest

sverage incremental error, followed closely by the secant method, The

f modified secant method and the secant method were both selected as best
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Figure 32. Typical Logyo da/dN vs. Llogip AK Data
Calculated by the Linear 7-Point Incremental
Polynomial Method
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Typical Log1p da/dN vs. Log}o 4K Data
Calculated by the Quadratic 7-Point
Incremental Polynomial Method

99




T R TR TR TR TR TR T TR T R T WA TN REAERT T LA e T T L TR T AR TR TR WA ooy s o s s o s TR T T e B e o T ETE T adRmARmEEmEe F o TREEEAET T T RS e R TR e TR

DA/DN VS. DELTAR K PLOT

LINEAR LG6-LOG 7-POINT INCREMENTAL PGLYNOMIAL METHOD

2 - REPLICATE CA TEST &8

1 DELTR R = .20 MM CONSTANT
: DELTA P = 4.20 KIP

‘ 10™ PMAX = S5.25 KIP
% 7 131 DRATA PAINTS
R = .20
s -

N
A
J-M.h‘ PRy

do oot aded

DA/DN ( IN/CYCLE)
R

R"= .992196
ERROR = 8.78%

n
-

9
10. 0 &%.0

20.0
DELTAR K (KSI-SQUHRE RGUT IN)

X

Figure 34, Typical 103%0 da/IN vs. Logjo AK Data
Calculated by the Linear Log-Log 7-Point
Incremental Polynomial Method
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Figure 35. Typical Log;o da/dN vs. Log,, &K Data
Calculated gy the Quadratic Log-Log
7-Poiat Incremental Polynomial Method
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Table VIII

da/dR Caleulation Method Results

DR/DN OVERALL AVERAGE  NUMBER OF
. CALCULATION INCREMENTAL ERROR TIMES BEST
P METHAD (PER CENT) METHED
: SECANT METHOD 2.70 17 '
§ MGDIFIED
; SECANT METHAD 2.58 51
, LINEAR
: 7-PAINT INCREMENTAL 5.96 0
' PBLYNOMIAL METHOD
QUADRATIC |
7-PBINT INCREMENTAL . 5.83 0 |

POLYNOMIAL METHOD

LINEAR LOG-LOG
7-POINT INCREMENTAL 9.41 0
POLYNOMIAL METHAD

| QUADRATIC LOG-L06
| 7-POINT INCREMENTAL 6.65 0 ;
PALYNOMIAL METHOD .
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methods, with the modified secant method selected three times as often
as the secant method. From these results, it can be stated that the
modified secant method introduces the lowest amount of error into the

da/dN data of the six da/dN calculation methods selected.

10.3 Distribution of da/dN

The third objective to be met was to determire the distribution of
da/dN as a function of AK. The first set of da/dN data selected for
analysis was da/dN data calculated by the secant method, with the anti-
cipation of also finding the distribution of da/dN data calculated by
the modified secant method and the quadratic 7-point incremental poly-
nomial method. Data were selected from the first two da/dN calculation
methods because of their ability to re-create the original a vs. N data
and the quadratic 7-point incremental polynomial method because of its
widespread use. The combined data from each of these three methods are
shown in Figures 36, 37, and 38.

The steps of analysis for the distribution of da/dN are very similar
to the steps of analysis used for the distribution of N. First, the re-

plicate da/dN data used was obtained from the da/dN ve. AK data generated

by the DADNCP program (Seétion 7.2) using the secant method. Typical re-
plicate da/dN data are shown in Figure 39, The distribution of the re- 3
plicate da/dN data was determined at each AK level through the use of the

CGRDDP program (Sectio 6,3). At each 3K level, this program calculated

the distribution parameters and goodaess of fit cri+r -ia for the six dis-

tributions and then compared the goodne : of fit crite. . between the dif-

ferent distributions to give the distribution rankings. Again, the gen-

eralized 4-parameter gamma distribution was not included in the
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Figure 36. Combined L°810 da/dN vs, Loglo 4K Data
Calculated by the Secant Mathod
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Figure 37, Combined Log, da/dN vs, Log, AK Data
Calculated by the Modified Secant Method
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Figure 38. Combined Loglo da/dN ve, Lozlo AK Data
Calculated by the Quadratic 7-Point
Incremental Polynomial Method
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distribution rankings. The distribution parameters, goodness of fit

criteria, and the distribution rankings were then combined over all of é
the AK levels.

The distribution parameters of the da/dN data as a function of crack
length (essentially AK) were plotted for each of the six distributions
! 'and are shown in Figures 40 through 45. The distribution parameters are
again normalized to show the trends present in the parameters.

The goodness of fit criteria for each distribution were averaged

i
!
3
i
]
{
%
]
;
!

over all of the AK levels., These results are shown in Table IX. From
f these results, an understanding of which distributions provide the best . j
k fit for the da/dN data can be obtained. ;
The distribution rankings at each AK level were combined over all of

% the AK levels and again the mean rank and 1ts standard deviation for
each of the distributions and the number of times each distribution was i
selected as the best distribution were calculated. These results are
shown in Table X.

Each of the distributions gives a fair but not outstanding performance

in providing & fit for the da/dN data. There were no significant differ- !

ences between the means of any of the five distributions, especially con- '
sidering the high values of standard deviation about the mean, The 3-

parameter gamma distribution did have a slightly lower mean than the

- ——— e

other distributions and 1t also had the lowest value of the Kolmogorov-
Smirnov statistic. However, the 2-parsmeter log normal distribution was
the best distribution slightly more often than the other four distribu-

tions, but again there were no significant differences between the five

distributions, These results lead to the conclusion that the 3-paramster

gamma distribution provides a better fit for the da/dN data than the other
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Figure 40, 2-Parameter Normal Distribution Parameters
of da/dN Data as a Function of Crack Length
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Table IX

Average Goodness of Fit Criteria for the
Distribution of da/dN Data

CHI-SQURRE KOLMOGORAV- CLOSENESS
DISTRIBUTION TRIL ARER SMIRNGV TEST (R SQURRED)

2-PARAMETER

NORMAL 0.8494 | 0.0915 | 0.94997

2-PARAMETER

: !
% LOG NORMAL 0.9011 0.0779 0.97647 3
: ]

i 3-PARAMETER

LOG NORMAL 0.8442 0.0834 0.96966 z

3-PARAMETER

WETBULL 0.8474 0.0777 0.95842

3-PARAMETER
GAMMA 0.8389 0.0737 0.96662 f

GENERALIZED
: 4-PRRAMETER 0.7946 0.0726
j GAMMA

PR RS, P A SO T VO R PO VR Iy
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Table X

Distribution Rankings for the Distribution of da/dN Data

| STANDARD TN IU n“e?s? Raeﬂsrr
DISTRIBUTION MEAN DEVIATIBN DISTRIBUTION
2-PARAMETER
NORMAL 3.684 1.6497 27
2-PARAMETER
LOG NORMAL 2.603 1.1943 37
3-PARAMETER
L 3G NORMAL 3.360 1.5524 26
3-PARAMETER
WE IBULL 2.985S 1.1925 19
3-PARRMETER
GAMMA 2.368 0.9646 27
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four distributions, but its performance relative to the other distribu-
tions is not strong at all. Due to this poor performance by the da/dN
data in fitting a distribution, no analysis of da/dN data calculated by
either the modified secant method or the quadratic 7-point incremental

polynomial method was conducted.

10.4 Prediction of a vs. N Data from the Distribution of da/dN

The fourth objective to be met was to determine the variance of a set
of a va. N data predicted from the da/dN distribution parameters. The
da/dN distribution parameters were estimated by tﬁe CGRDDP progiram (Sec-
tion 6.3) as described in Section 10.3. The AVNPRD program (Section 7.3)
was run on the da/dN distribution parameters and 68 replicate a vas. N
data sets were predicted. These data sets are shown in Figure 46.

To obtain the variance of this predicted data, the CCDDP program (Sec-
tion 6.2) was run at 14 crack length levels of the predicted data. The
distribution parameters, goodness of fit criteria, and the distribution
rankings were then combined over all of the crack length levels runm.

For this predicted data, neither the 3-parameter gamma distribution
nor the generalized 4-parameter gamma distribution would coaverge on
parameter egtimates, implying that ne;ther distribution would provide a
fit for the data. The distribution pérametets as a function of crack
length obtained for the other four distributions are shown in Figures 47
through 50. The average goodness of fit criteria for the four distribu-
tions for the predicted date are shown in Table XI. The distrioution

rankings results for the four distributions for this data are shown in

Table XI1I,
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Figure 47. 2-Parameter Normal Distribution Parameters

as a Function of Crack Length for Cycle
Chunt Data Predicted from the Distribution
of da/dN
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Table XI

Average Goodness of Fit Criteria for the Distribution of Cycle
Count Data Predicted from the Distribution of da/dN

CHI-SQUARE KOLMOGORAV- CLOSENESS
DISTRIBUTION TAIL ARER SMIRNGV TEST (R SQUARED)

e-FRRAMETER | 0.9087 | 0.0735 | 0.98515
B L. | 0.9128 | 0.0722 | 0.9847
SR . | 0.8828 | 0.0730 | 0.98515
SFARAMETER | 0.8919 | 0.0818 | 0.96884
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% Table XII
; : Distribution Rsnkings for the Distribution of Cycle Count
. Data Predicted from the Distribution of da/dN
DISTRIBUTION  MeaN DEVIATION DISTRIBUTION
' ]
2-PARAMETER '
NORMAL 2.643 0.7449 2
; 2-PARAMETER - |
; LOG NORMAL 1.214 0.5789 12 f
3-PARAMETER
LAG NORMAL 2.286 0.6112 0
3-PARAMETER ;




The 2-parameter log normal distribution provided the best fit for the
predicted replicate cycle count data, followed by the 3-parameter log

normal distribution and then the 2-parameter normal distribution. The 3-

. e e e

parameter Weibull distribution provided the worst fit for the data of

the four distributions which the data fit.

T

i The next step in the analysis was the comparison of the distributions

G o e

of N between the actual cycle count data and the cycle count data pre-

3 : dicted from the distribution of da/dN., The mean and standard deviatjon

of both distributions at the crack length levels used above were computed

.

and the resultc are shown in Table AIII. At every crack length level,

there was no significant difference between the means but there way a

j;
i
i
i
j
]
;
:

¥
[ ' very significant difference between the standard deviations of the two

distributions, In every case, the standard deviation of the predicted

s e

cycle count data is much smaller than the standard deviation of the actual

cycle count data, !

As a check on the analysis above, a vs. N data were predictad from

] the distribution of da/dN in a slightly different manner than for the

predicted replicate cycle count data, The mean and + 1, 2, and 3 sigma

2 values of da/dN at each crack length level were obtained from the distri-
bution of da/dN, Using these 7 lines of da/dN data, a vs. N data was ]

predicted. The results are shown in Figure 51. A comparison between the

actual cycle count mean and + 1, 2, and 3 sigma values and the cycle '

count values predicted from the mean and + 1, 2, and 3 sigma da/dN lines

R
L

at a single crack lengch level is shown in Table XIV.

From the sbove analysis, it can be concluded that predicting a vs. N
datas from the distribution of da/dN using the method described in Section

7.2 yields low error in predicting mean crack propagation bshavior, but
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Table XIII

Comparison of the Distributions Between Actual Cycle Count Data and
Cycle Count Data Predicted from the Distribution of da/dN

MEAN STRNDARD DEVIATION a
, CRACK LENGTH (M) ACTUARL  PREDICTED ACTUAL  PREDICTED '
§ 11.000 =81 SIS 695 1981
‘ 13,000 %0128 9122 ss2 212
F 18,000 117486 118700 §719 4348
| 17.000 1383 133871 10903  4g%8
18.000 158382 156915 11848 3268
21.000 170786 171379 12489 3249
23.000 182188 183670 8204 3084
25.000 190878 194504 ase? 3380
27.000 202538 204083 8944 3432
£9. 000 211030 218812 8123 3407 -,
31.000 218688 220323 9328 418 !
33.000 ey w1 %7 3530
33.000 231416 233249 10037 3578

365.200 234373 238333 10191 3574
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Table XIV

Compaxison of Actual Cycle Count Data with Cycle Count Data Predicted
from Constant Variance da/dN Lines N

R

A = 31,000 M ACTUAL PREDICTED

-3 SIGM 187829 117430

-2 sIicw 195682 Les4t

-1 SIGMW 205562 173182

ERN 217891 213318

+1 SIGA | %z 884688

s 816  as:mes 330341

+3 S1CMA aTo048 | a0

——— e e e e

ek il I el s 1o

- e b

PR OV SR P

o da



Al s e S TR
R . o —

o P

yields high error in predicting crack propagation behavior at the extremss

et amman— o

of the distribution of N.

10.5 Ioverse Growth Rate !
{ ' Due to the failure of the da/dN data to fit any of the given distri-

butions satisfactorily, it was decided that the growth rate variable war- !

4

ranted a further investigation. Looking back at the original experiment-

al investigation (Section 9), it can be seen that the dependent variable
of the data was N while the independent variable was a (i{.e. N was mea-

sured as a was varied)., Since the dependent variable, N, provided a very
nice fit to the 3-parameter log normal distribution, it was strongly sus-

pected that changes in the dependent variable, AN, would also provide a

good fit to one of the given distributions, Since A a was constant it

was decided to use AN/Aa, or in differential terms, dN/da, as a variable

of interest for further analysis.

RS-

The analysis conducted using dN/da as the variable of interest was
the cams anslysis used for da/dN. The first part of this analysis was to

determine the distribution of dN/da. Replicate dN/da data wers obtained

e i i i 71

by inverting the replicate da/dN data calculated by the secant msthod

using the DADNCP program (Section 7.2). Typical replicate dN/da dats are

shown in Pigure 52. The distribution of the replicate dN/da datas vas

determinad at sach AK level through tha use of the DNDDP program (Section
6.4), At sach AK level, this program calculated the distribution para- f
meters and goodness of fit criteria for six distributions and then com-
pared the goodness of fit criteria bgtwean the different distributions

to give tha distribution rankings. The location parameter for the 3-

T TR T T e o

, parameter gamma distribution and the generalized 4-parameter gamma
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distribution was assumed to be rero by this program, thus reducing these
two distributions to the 2-parameter gamma distribution and the general-
ized 3-paramster gamma distribution, respectively. As before, the gen-

eralized 3-parameter gamma distribution was not included in the distribu-

tion rankings. The distribution parameters, goodness of fit criteria,

and the distribution rankings were then combined over all of the AK levels.
% The distribution parameters of the dN/da data as a function of crack
length were plotted for each of the six distributions and are shown in
Figures 53 through 58. The distributions parameters are again normaliged

to show the trends present in the parameters.

s A ————— e %o

The goodness of fit criteria for each distribution were averaged over
§ all of the 4K levels, These results are shown in Table XV, From these
i results, an understanding of which distributions provide the best fit for

the dN/da data can be obtained.

[P

The distribution rankings at each AK level were combined over all of
the 4K levels and the mean rank and ite standard deviation for each of I

the distributions and the number of times each distribution was salected

g
%
i
%
:
i
|
;
i
q
i
é

e —ae

as the best distribution were calculated. These results are shown in

Table XVI.

The 3-parameter log normal distribution provided the best fit for the
dN/da data, as evidenced by the low distribution ranking, the low
Kolmogorov-Smirnov test statistic value, and the large number of times
it vas selected as the best distribution. The 2-parameter log normal and
: the 3-paramster Weibull distribution tied for the second best fit for the
dN/da data, doth having roughly the same distribution ranking and

Kolmogorov-Smirnov test statistic value and the same number of timos it was
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‘ © Table XV |
i i Average Goodness of Fit Cticotu'fbr' the Distribution of dN/da Data
f CHI-SQUARE KCLMOGOROV- CLGSENESS §
é | DISTRIBUTIGN TRIL AREA sumuev resr (R snunﬂem A H
? >_PARAMETER | B
NORMAL 0.8383 0.0992 0.949121 |
2-PARAMETER e i
06 NORMAL 0.9011 0.0779 0.97547}} %
3-PARAMETER 7 %
: 3-PARAMETER : :
: WETBULL 0.8409 0.0790 0.95477 i
: : i
2-PARAMETER | L 3
’ GENERALIZED | |
3-PARAMETER | 0.7507 0.0800
GAMMA
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Table XVI .
Distribution Rankings for the Distribution of dN/da Dats

‘NUMBER OF
STANDARD  TIMES BEST.

DISTRIBUTION MEAN DEVIATION DISTRIBUTIGN

2PRRRETER | 4 sp | e | 10
06 NORMAL. 2.610 | 1.2363 28
SPRRRVETER | ) oo | g .aszl .
S-PARRMETER | 2.sse | 1.2504 27
e-PARAMETER | 3309 | 1.2m8 | 15
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selected as tha best distribution. The 2-parameter gamua distribution
provided the fourth best fit and the 2-parameter normal distribution pro-
vided the worst fit for the dN/da data.

The next step of the analysis was to see if the improved fit of the
dN/da dats to a distribution would improve the prediction of a vs. N data

from the dietribution’of dN/da. The AVNPRD program (Section 7.3) was

~slightly modified for the dN/da varisble and run on the dN/da distribution

'peramatoro. resulting in 68 predicted replicate a vs. N data sets. These

data sets are shown in Figure 59,

The CCDDP program (S8ection 6.2) wes run at a few crack length levels

"of the predicted data. The distribution parameters, goodness of fit

criteria, and the distribution ranki.gs were then combined over all of the

—-crack length levels run.

For this set of predicted data, the generalized 4-parameter gamma
distribution would not converge on parameter estimates, implying that it
could not provide s fit for the dN/da data, The distribution parameters

as a function of crack length obtained for the other five distributions

-are shown in Figures 60 through 64. The average goodness of fit criteria

for the five distributions for the predicted data are shown in Table XVII.
The distribution rankings results for the five distributions for this data
are shown in Table XVIII,

The 3-parameter log normal dietribution provided the best fit for the
predicted replicate cycle-count dats, followed in order by the 2-parameter
log normal distribution, the 3-parameter Weibull distribution, the 2-pars-
meter normal distribution, and the 3-paramater gamma distribution,

The next step in the analysis was the comparison of the distributiona

of N between the actual cycle count data and the cycie count data predicted
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Table XVII

Average Goodness of Fit Criteria for the Distribution of Cycle
Count Data Predicted from the Distribution of dN/da

CHI-SQUARE KOLMGGORAV~

CLOSENESS

CISTRIBUTION TRIL ARER SMIRNGV TEST (R SQURRED)

Q-PNQORRQMMRELTER 0.9816 0.0652 | 0.98765
ZL'OPGHRNQG”REMTQELR 0.9640 0.0614% | 0.98990
3L-OPGn RNQOMREJHELR 0 9319 00567 | ©0.98180
3’22?235{“ 0.913S 0.0617 | 0.98100
3-PRRAMETER | o.e0v0 | 2.4483 | 0.85993
B
147




- —— T TS wT -

g -

Diseribution Rankings for the Distribution of Cycle Count Data
Predicted from the Distribution of dN/da

Table XVIII

NUMBER OF ‘
STANDARD  TIMES BEST }
DISTRIBUTION  MEAN DEVIATION DISTRIBUTION
2-PARAMETER |
2-PRARAMETER
L3G NORMAL 2.571 0.9376 2
3-PARAMETER !
LOG NORMAL 1.571 0.7559 8
3-PARAMETER -
WF TBULL 2.857 1.0995 !
3-PARAMETER .
GRM"H 2 0857 1 Pt § ISP 2
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from the distribution of dN/da. The mean and stendard deviation of both
distributions at the crack length lewels used above were computed and the
results are shown in Table XIX, At every crack length level, there was
no significant difference between the means but there was a very signifi-
cant difference between the standard deviations of the two distributions.
In every case, the standard deviatioﬁ of the predicted cycle count data
was much smaller thaiw the standard deviation of the actual cycle count
data.

Just as for the data predicted from the distribution of da/dN, a vs.

N data were predicted from the mean and + 1, 2, and 3 sigma dN/da lines.
The results are shown in Figure 65. A comparison between the actual cycle
count mean and + 1, 2, and 3 sigma values and the cyclie count values pre-
dicted from the mean and + 1, 2, and 3 sigma dN/da lines at a single crack
length level is shown in Table XX,

From the above analysis, it can be concluded again that predicting a
vs. N data from the distribution of dN/da using the method described in
Section 7.3 yields low error in predicting mean crack propagation behavior,
but yields high error in predicting crack propagation behavior at the ex-

tremes of the distribution of N,
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Comparison of the Distributions Between Actual Cycle Count Data and
Cycle Count Data Predicted from the Distribution of dN/da

CRACK LENGTH (1)
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B A R R B B ST
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Table XIX

MEAN

PREDICTED
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Table XX

Comparison of Actual Cycle Count Data with Cycle Count Data
Predicted from Constant Variance dN/da Lines

f
! §
3

A = 31.000 MM ACTUAL PREDICTED
( -3 SIGMA 187828 116635 .
| -2 sIom 195682 140289 :
? -1 SIGMA 208362 173118
2 MEAN 217991 213635
| +1 SIGMA 233827 2854538
+2 sIGMA 253239 328255

i
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i
t
!
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I
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+3 SICMA 278046 409051
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SECTION XI

DISCUSSION

Throughout the course of this investigation, a few unique events took
place and many interesting observations were made. Some of these have
rather simple explanations 7 1 others require a quite detailed discus-

sion, Hopefully, some important conclusions can be made as a result.

11.1 Experimental Investigation

The behavior of fatigue crack propagation experienced during this
investigation was much different than first anticipated., The most sur-
prising event that took place in almost every test was the sudden changes
in the magnitude of the crack growth rate. Both sudden increases in the
growth rate, as 1if the crack had just come upon some unusually weak alum
inum, and sudden decreases in the growth rate, as if the crack was exper-
iencing some unusually tough material, were observed repeatedly, many
times one or two millimeters after & previous event of similar nature.

One of the more outstanding examples of this type »f behavior is shown in
Figure 66.

It appears that the matcrial is made up mostly of a fairly homogeneous
material with many smaller aress located in a random fashion which char-
acteristically have vastly different crack propagation properties than the
majority of the material. The size of these small areaa seems to vary
considerably from as small as less than 1 millimeter in length to perhaps
as large as 5 or 10 millimeters in length, These small areas obviously

have a very large effect on the overall smoothness of an & vs. N data set
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Figure 66. s vs, N Data Showing Abrupt Growth Rate Changes
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and on the total amount of scatter, especially in the growth rate data.

The average growth rate also seemed to vary somewhat from test to
test, with some tests running slow throughout the whole test, while
other tests ran fairly fast throughout the whole test. This phenomsnon
is the cause of the outlying data sets in Figure 22. As also noted by
other invesgtigators [5,6,7), the variation {n growth rate at the beginning
of the test during the slow growth rates leads to most of the variation
in N at the final crack length.

As a result of these observations, the conclusion is made that thig al-
loy is a very non-homogeneous material, especially considering the random
nature of crack propagation behavior. It very rarely obeys the smooth
growth rate equations often used to describe its behavior and does so

only when it's behavior is considered at a very macroscopic level.

11.2 Distribution of N

The conclusion stating that the cycle count data follows a 3-parameter
log normal distribution can be considered very strong. The only occur-
rences vhere this was not so was at short crack lengths where the need
for the location parameter used in the 3-parameter log normal distribu-
tion was not near as strong as at long crack lengths.

FromPgures 24 through 29, the distribution parameters tend to vary
quite a bit at short crack lengths but ten. to follow smooth curves after
a> 15 mm. The scale paramoter in the first two distributions where no
location parameter is estimated have very smooth curves, showing that
mean crack propagation bshavior does foilow smwooth growth rate equations.

Tha same smooth shape of the location pramster in the last four distribu-

‘tions also supports this statem nt. Essentially these location paramster
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curves define an area where crack propagation will never occur. In other
vords, the number of load cycles needed to reach a given crack length
will never be less than the estimate of the location parameter at that
crack length, This is shown in FPigure 67. On this plot, crack propaga-
tion data will never occur to the left of the location parameter line.
Note from Pigure 26 that the scale parameter, i, tends to remain constant
after a > 20 mm., allowing the location parameter to completely account
for the increase of N with increasing crack length. From Figure 24, note
the smooth increase of the shape parameter, o, as a function of crack
length, thus supporting the expectation of higher variances at longer
crack lengthse. Another interesting event is shown in Figure 29. The
power parameter, &, of the generalized 4-parameter gamma distribution was
always estimated to be equal to one, thus reducing this distribution to
the 3-parameter gamma distribution. It should be noted here that over
half of the computer time used to obtain all of the distribution para-
meters was used to estimate the parameters of the generalized &4-parameter
gamme distribution. By eliminating this distribution from the CCDDP pro-
gram, much time and money can be saved.

Another interesting occurrence which appeared very often is shown in
Table VI. Many times the distribution rankings implied by one goodness
of fit criterion could not be supported by anothar gocdness of fit cri-
terion and often three different distribution rankings were implied by the
three goodness of fit critaria. In other words, the goodnese of fit cri-
teria were not consistent betwsen themselves, This necessitated a somn-.
what subjective analysis of the goodness of fit critaria. The closeness,
Rz, tended to be very sensitive to the scales of the plot and the slope

of the linear least squares line, Thus, the closensss was rarely used
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unless the slopes were approximately the same between the different dis-
tributions. The chi-gquare tail area tended to be undiscerning between
distributions that provided fairly equal fits to the data. Thus, the chi-
square goodness of fit criterion wae ueed only when there were fairly
large differences between the distributions. The Kolmogorov-Smirnov
goodness of fit test provided a fairly reliable and sensitive test and
was used heavily in establishing distribution rankings.

A typical fit provided by each of the five distributions for the
cycle count data is shown in Figures 68 through 72, As state previously,
the 3-parameter log normal distribution provided a reliable tight fit for
the cycle count data as shown in Figure 70. The 3-parameter gamma dis-
tribution did surprisingly well and although it was not selected as the
best distribution very often, it consistently placed a close second to
the 3-parameter log normal distribution, 7The 2-parameter log normal dis-
tribution did not do well due to the lack of a location parameter. For
the 3-parameter Weibull distribution, the location parameter seemed to
work alright, but the shape of the density function did not match the data
very well as shown in Figure 71. The 2-parameter normal distribution
provided a very poor fit for the cycle count data and should not be in-

cluded in any further investigations of the dictribution of N.

11.3 Crack Growth Rate Calculation Methods

Of the gix da/dN calculation methods selected, both the secant method
and the modified secant method contributed low amounts of error into the
da/dN data as shown in Table VIII. The modified secant method calculated
da/dN data which could be integrated back closer to the original a vs. N

data than the secant method could, perhaps because it calculates da/dN
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dota at the nriginal crack length levels instead of between the original
crachk length levels.

None of the 1n;remeuta1_po}ynomial methods calculated da/dN data
which could be integ.ated ba:k cven close to the original a vs. N data.
This i: no doubt due to the 3:200valng effact of these methods which tends
to reduce the sudden chanses”ié‘;roﬁthlrafea. This is shown in Pigure 38

where the number of extreme da/dN data points for the quadratic 7-point

incremental polynomial method is much less than ihe number of extreme

da/dN data points for either the secant method of the modified secant

——— e ——— -

method (Figures 36 and 37). This 1is also shown in Figures 30 through 35
wvhere the incremental polynomial method data iollow & narrow band line
while the recant method and modified secant method data follow & more
broali band line. Note also from Figures 32 through 35 cha wavipess of
the dnt;'a show:ng the large changes in growth rate noticed during data ac-
quisition. 4 '
If crack propagation data Q&g.e always very smooth data, then the in-
cremental polynomial methods would '1,ptroduce a very small amount of error
into the da/dN data. But as stated previously, the sudden changcs in

growth rate are {sherent in the crack propagation process, and sny attempt

st wodifying these changes will distort the resulting data and prevent it

from becoming a true representation of crack ‘iuop.g.ti:.n behavior. 5
Of the four incremental polynomisl methods ussd, botb the gquadratic

7-point version and the quadratic 'log-log 7-66(:1:;-;."1?3 'do the best job,

followed closely by the linear 7-point Qerlion. The linear log-log 7-

point version does & very poor job ge shown in Pigure 34 lngl Table VIII.

The use of the log-log transforastion failed to give any improvemsat owver

the conventionsl incremsntal polynomial msthods in the ability to reproduce
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the original a vs. N data. The uge of the second order polynomial fit
over a siraight line polynomial fit improvee the performance of the in-

cremental polynomial hqghggg, eepeciqliy_yhen using the log-log transfor-

O Aidlagkbk-and dinnd iy it N

mation. ‘ ' .

e it

The .-ount of variaetbn in the. ;vergsp incteuen:tligir cent error over

HEE IR

L« e LR

all of thcﬁteata vas £a1riy ¥mall, usually leds thanié 135 per cent error,

indjcating fairly consistent results over all of the experimental tests.

ANy

11.4 Distribution of da/dN

No outstanding positive results were achieved for the disér!!htion of
da/dN, Each of the distributions provided roughly the same qu111ty of £1t
for the data, with the 3-parameter gamma distribution doing a qlightly f
better job than the other four distributions. o s, -

’ ! H

The da/dN data varied quite a bit as a function of AK as ihown in f ;

Figure 36. As a result, different distributions would provide!a fit for

L S R Rl bl s ai et Tt TEN o oL o]

|
the da/dN dats at different pAK levesls, de?ending on the generaﬂ-fﬁxya and
skewness of the data at a given 3Kk level. Theze were several %ccasfono

vhen the da/dN data was skewed leftf, as shown in Figure 73, syukntric, as

: . — B
shown in Figure 74, or skewed right, as shown in Figure 75. ! agea.

1

When the data was either skewed loft or symsetric, the 2-parameter

normal distribution provided the heat fit £or the da/dN data, f shown in

90,9 :
Figures 76 and 77. ‘When tbg data vas Akpwed righ; either OSQEB.t og nor- |

| SR SRRERITI I i/ SIS I A7,

mal diltribution-, tha'3opnrlu'tur Veibull Otnrfitution, or the 3-parameter

gamma distribution provided a fit for the da/dN data. Typical fite of the

skewed right da/dN data to thhse four disttributions o34 'Shbwn in Pigures

78 through 81. Due to the large variations in the da/dN data, esch of the

distributions is nesded to provide s fit for the wide range of density
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function shapes.
The large amount of variation in tha shape of the da/dN data as a

function of AK is shown in the plots of the distribution parameters as a

function of crack length (Figures 40 through 45). Note that there i{s a

lot of variation inthe shape parameter (the pluses) and the location para-
mater (the dismonds). The variation of the shape parameter reflects the
changes in the amount of variance and the shape of the data, The variation
of the location parameter reflects the changing skewness of tha data. As
the skewness goes from right to left, the estimate of the location para-
weter decraases rapidly. Also, from Pigure 45, it cen Se seen that there
are many occurrences where the estimate of a was not equal to one, thus
implying the necessity of the inclusion of the generalized 4-parameter
gamua distribution when analygzing da/dN data so that a wide range oi den-

sity functior shapes can be accommodated for the da/dN data.

11.5 Prediction of a vs. N Data from the Digtribution of da/dN

The results of the prediction of replicate a va. N data from the dis-

tribution of da/dN were less revealing than anticipated. When comparing
Figure 46 with Pigure 22, it becomes apparent that the variance of the
predicted 3 vs. N data is much less than the variance of the actual a vs,
N data. However, the mean of the prcdicted a vs, N data is very close to
the mean of the actual a vs. N data. The implication of this 1is that
crack propagation behavior is not being accurately modeled by a randomly
selected value of da/dN from the distribution of da/dN, 1In crack propa-
gation bashavior, as discussed in Section 11.1, the growth rate at z given
AK level 18 not independent of the growth rates at previous AK levels, as

evidenced by periode of up to 10 mm. of uncharacteristically fast or slow
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growth rates, However, the independence of growth rates {s assumed in
the prediction of a va. N data from the da/dN distribution parameters,
rasulting in very smooth a vs. N data. This smooth a vs. N data lacks
the areas of sudden fast and slow growth rates discussed in Section 11.1
which occurs frequently in actual a vs. N dzta. Thus, the combination of
‘many smooth a vs. N lines of the same maan behavior rasults i{n the reduc-
tion of variance noted abéve. To accurately predict crack propagation
behavior, some means of quantitatively describing the interdependence of
adjacent growth rates must be found.

When the distribution of the cycle count data predicted from the
distribution of da/dN was analyzed, naither gamma distribution would
converge on its parameters as the estimate of the shape/power parameter,
8, tended to approach its upper global limit, The 2-parameter log normal
distribution provided the best fit for this data because the location
paramater of the 3-parameter log normal distribution was estimated to be
gero at most crack length levels.

When the distribution of the predicted cycle count data is compared
with the distribution of the actual cycle count data, as shown in Table
XIII, it can again be seen how the mean of the predicted cycle count dats
is very close to the mean of the actual cycle count data while the stan-
dard deviation of the predicted cycle count data is much less than the
standard deviation of the actual cycle count data.

When a vs. N dataare predicted from constant variance da/dN lines,
the spread of the predicted data i{s much wider than the spread of the
actual data, as shown in Table XIV. This occurs bacause either all very
slow or very fast growth rate daca is used at the + 3 sigma da/dN lines,

thus causing either a very long or very short number of cycles. The
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actual data, however, rarely has any growth rates on the order of + 3
sigma, and even more rarely has repeated growth rates on the order of + 3
sigma, On the average, actual data tend to have repeated growth rates
within + 1 sigma.

From Figure 51, it cean be seen that the constant variance lines tend
to get further apari when going from left to right, indicating that the
discribution of N is skewed right. Since the distribution of N has been
determined as the 3-parameter log normal distribution which is a skewed
right distribution, the prediction of a vs. N data from constant variance

da/dN lines supports this conclusion,

11.6 Inverse Growth Rate

As anticipated, an improvement in the fit provided for the dN/da
data over the fit provided for the da/dN data was obtained. The 3-para-
water log normal distribution was able to provide the best fit for the
dN/da data without serious competition from the other four distributions.
This {mprovement is partially dus to the inversion of the growth rate
variable. Since N was strongly log normally distributed, it was antici-
pated that AN would be log normally distributed also. Another reason for
this improvemsnt was the exclusion of the location parameter from the
gaoma distributions, thereby severly decrsasing their ability to provide
an adequate fit for the dN/da data. The fit providad by those distribu-
tions which estimated a location paramster was significantly better than
the fit provided by the gamma distributions. Quite a large range of
values vere estimated for the location paramster (from - 1.6 x 10711 ¢o
4.9 x 105) snd the absolute value of the estimate of the location para-

mster was always greater than 900, indicating no tendency to approach . -
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zero as acsumed in equation 48 (Section 5.2.e). Thus, this assumption
has not proven valid,.

The value of the location parameter of the 3-parameter log normal dis-
tribution assumed negative vslues in many instances, indicating that
skewed left and symmetric dN/da data was present as well as skewed right
dN/da data. This was expected sinée the simple invergion of the da/dN
variasble dnes nothing to change the skewness of the density function of
the data. The only effect of this inversion is to change the direction
of the skewness and to alter the shape of the density function slightly,
A higtogram of typical symmetric dN/da data is shown in Figure 82 and
plots of the fit of the dN/da data to sach of the distributions are shown
in Figures 83 through 87, Note in Figure 85 the adility of the 3-para-
meter log normal distribution to handle symmetric as well as skewed right
data. Again, due to the large variation in the dN/da data, esch of the
distributions is needed in order to provide a fit for the data.

There is a large variation in the shape parameter and location para-
meter again for the dN/da data, as shown in the plots of the distribution
parameters as a function of crack length (Figures 53 through 58). The use
of dN/da does not remove these variations from the data, although it doss
reverse the basic trend of the mean as shown by comparing Figure 40 with
Figure 53. The mean value of ds/dN increases as a function of crack
length while the mean value of dN/da decreases ss a function of crack
length, both being expected for constant amplitude loading.

The use of dN/da distribution parsmeters in the prediction of repli-
cate a va. N data d4d not change the predicted data noticeadbly. As sug-

gested previously, the problem of predicting a vs. N data accurwtely lies -
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18

4

Conctdotlh e il

e P e o ik Dt b & A A

e A




3-PARAMETER |
LOG NORMAL DISTRIBUTION PLOT |

= w.3- REPLICATE CA TESTS. ‘
: z SECANT METHOD ;
- o " PELTA A = .20 MM / .
f -+ -68 DATA POINTS / -
: o “ A =21.10 MM /

C. 98.0 ' R = .20 /"‘

s X

= {

— 90.0-

aQ |

& 0.0 ?

[ =} ]

m H

a.

& 50.0
’ x A= .9769 |

2 Z= .0693

R = .99195

EE 20.0 — ;

== !

S 10.04 ? =-8. 134x10, -

é (‘r‘d = 3.7M7.10° .
w Z AU = 5.385 |
g W 2.0+ / L) =172
: — x/ B = 3.307x10 !
: = -2 k
| 5 / S.E. (B) = 1.139«10
; 2 / SLOPE = 15.92018 i

Eg 0.1 - L < j

N —

10
» DELTR N/DELTR A (CYCLES/IN)-TAU HRT

Figure 85, Typical Pit of Symmetric dN/da Data to the
3-Parsmeter Log Norwmal Distribution
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WEIBULL PROBABILITY (PER CENT)

3-PARAMETER

WEIBULL DISTRIBUTIGN PLOT
99.9 - REPLICARTE CAR TESTS.
" SECANT METHOD y
99.0 - DELTA A = .20 MM
68 DATA POINTS
80.0 - A = 21.10 MM
R = .20
70.0-1
§0.0 -
/;
30.0 -
&
X
Va
<ol 4 A= .9813
) /// x Z.: .0690
o R'= .96606
7/
/7
x e 7= 7.998:10!
oq S s.€. (7) = 2.43810,
L/ AB = 9.377:10“
0.5+ 7 S.E. (B) = 3.886110
[ L = 2.752
S.E. (C) = 1.266
SLOPE =  1.70414
0.1+ - r v —_

10 2 5 10
DELTA N/DELTA A (CYCLES/IN)-TRU HRT

Figure 86. Typical Fit of Symmetric dN/da Data to the

3-Parameter Weibull Distribution
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GAMMA PROBABILITY (PER CENT)

2-PARAMETER
GAMMA DISTRIBUTIGN PLOT

REPLICATE CA TESTS.

s9.9
] SECANT METHOD
DELTA A = .20 MM
68 DATA POINTS
3.5 A = 21.10 MM ,
99 .G - R = .20 {/
38.0 - )(/
95.0 ;X
90.0 - A
70.0 -
60.0 - A = .99i1
Z = .0BS3
R = .99281
20.0 -1
A
‘?;’! B = 6.485:10;
F S.E. (B) = 1.101x10]
S AG = 2.521x10
x / S.E. (6) = 4.287
//’ SLOFE = 2.802x10
0.1 bt - r — —

Figure 87.

80000.0_  -40000.0 0.0 40000.0 80000,
DEVIARTION OF DN/DAR FROM THE MEARN

Typical Pit of Symmetric dN/da Data to the
2-Faramester Gamma Distribution
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not in which variable is used to predict the data but rather in the
assunption of independent adjacent growth rates.

When the cycle count data was predicted from the dN/da digtribution
parameters, the 3-parameter log normal distribution provided the best fit
for the data as the estimates of the location parameter were all at anti-
cipated values. This is an improvement over the prediction of cycle
count data from the distribution parameters of da/dN, because the
estimate of the location parameter was nearly always equal to zero. The
use of this location parameter significantly improves the fit of the pre-
dicted cycle count data to the 3-parameter log normal distribution,

Again, the values of § assumed maximum global values in both gamma Jistri-

butions., This is most likely due to a lack of significant variance in

the predicted cycle count data. When the distribution of predicted cycle

count data was compared again to the distribution of actual cycle count
data, the mean data was almost exactly predicted while the predicted
standard deviation was again much less than the actual standard deviatiom,
which can be seen by comparing Figure 59 with Figure 22.

The a vg. N data predicted from constant veriance dN/da lines almost
exactly reproduced a similar plot made from constant variance da/dN lines,
as seen by comparing Figure S1 with Figure 65. Thus, the dN/da data seems

to support the conclusion that the cycle count data fits the 3-parameter

log normal distribution the best.
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SECTION XII

CONCLUSIONS

most significant conclusions of this investigation are summarigzed o

as follows:

1

2)

3)

4)

)

6)

The 2-parameter Weibull distribution was tried on previously
generated fatigue crack propagation data and, due to its very
poor performance, was dropped from the remainder of the statistd-
cal analysis (Section 8.1)

Actual replicate cycle count data followed a 3-parameter log mor-
mal distribution, with especially good fits at louger crack
lengths {Section 11.2).

The modified secant method introduces the lowest amount of error
into the da/dN data of the six growth rate calculation methods
selected (Section 11.3).

The large amount of variance present in the da/dN vs. AK data
prevented a consistent fit of the replicate da/dN data to any of
the candidate distributions (Section 11.4).

Replicate dN/da data followed a 3-paramester log normal distribu-
tion (Section 11.6).

The method of predicting a ve. N Jata from the da/dN or dN/da
distribution parameters was not completely successful due to the
assumption of independent adjacent growth rates (Sections 11.5

and 11.6).
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SECTION XIII

RECOMMENDATIONS FOR FURTHER WORK g

The use of statistical methods in describing and predicting fatigue
crack propagation behavior worked very well. However, accurate life

prediction was not achieved because a total statistical description of

the crack propagation process has not been determined. Only a minute

gy ——— e o 1 e e v s e

percentage of the total possible experimental and aenslytical work needed

to achieve this total statistical description was conducted under this

investigation, Based on the observations, results, and conclusions of
this investigation, the following topics nead further investigation.

1) Experimental crack propagation data with N as the independent

e r—— _..._.......
'+ it 5 bbbt e il ¢ oz

: variable and a as the dependent variable is needed. From this 3
é the distribution of a as a function of N and the distribution of : 5
' da/dN as a function of N can be obtained. ; %
2) A study of the interdependence of growth rate data would be ;
valuable for use in the prediction of a vs. N data from the dis- |

D atan v 2 I

tribution of growth rate data.

3) The effect of data density on the variance and distribution of

growth rate data needs to be found to aid in more accurste dats

; acquisition and analyeis.

e

4) A study of the sudden growth rate changes in the original a vs. N ;
data mentionsd in Section 11.1 would aid considerably in the

understanding of the crack propagation procass. i

et ertlonidiodnthr e
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S) A more reliable and accurate mechod of establishing the distri-
bution rankings is needed. The goodness of £it criteria used in
this investigation did not totally fulfill this need. A
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APPENDIX A

DERIVATION OF THE da/dN EQUATION POR (HE LINEAR LOG-LOG 7-POINT

INCREME NTAL POLYNOMIAL METHOD

The fitted polynomial equation for the linear log-log 7-point incre-

mental polynomial method is given by

log,,a=b +b N (A-1)

vhare NLS is given by

10310 N - C1

(A-2)

NLS.

are given by the scaling equations (equations 7 and 8,

C,

vhere C1 and C2

Section 4.3). Substituting into equation A-1 for NLS’

log.. N-C
r 10 1 .
log)g a = b, +b ¢ c, , (4-3)
Solving for a,
. log,n N-C ]
b +b, —AO 1
..100 1'_ c2 -
b, C b, lo N
p -3 d .21 %0
o 02 C2
= 10
b. C
b.—L—l (10‘ N)o"l
(] Cz 10 C2
= 10 10
b, C b
D o bl e §
o c2 C2
= 10 « N (A-4)
109
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Taking the derivative of a with respect to N and evaluating at tha mid-

- point, N

t'
b, C
b - % b -l - 1
da ° 2 1y "2
——— gy 10 ¢ T N (A-S)
d-ni : C2 ‘! R
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APPENDIX B

DERIVATION OF TAE da/dN EQUATION FOR THE QUADRATIC LOG-LOG 7-POINT
INCREMENTAL POLYNOMIAL METHOD

The fitted polynomial equation for the quadratic log-log 7-point in-

cremental polynomial method is given by

log10 am= bo + b). “I..S + b2 lez (B-1)

vhere “LS is given by equation A-2, Substituting {nto Equation B-1 for

N

2

. log -C log
- 10 17 ;0 _
10310 a b + bl Cz g + b 2 (B-2)
letting
1031 N-C
U - _LC-——J (3-3)
2
dau o 1
K " N 1n(10) - T, (B-4)
Then -
- + -
log,a=b +b U+b v (B-5)
Solving for a,
bo + b1 U+ bz U2 7 .
a=10 ' (B-6)

Taking the derivative of a with respsct to U,
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b.U b, U
da _ o 4 1 2 ' -
T 10 i L10 10 J (B-7)
where
) b, U b, e, b U v, 7 : Pes
E.IO 10 =110 « 10 +2b, Uln (10)
- - 2
(B-8)
b, v b U ;
+ 10 . 10 N ln(lO)J
Then
bo b1 U b2 Uz
da . . . L B -
37 10 10 10 1an (10) . 2 b2 U+ ‘?L’ o (n 9)
- . U'sfaz the chein rule,
ds _ da , du ]
aN " du * aN (B-10)
b b, U b Uz
o 1 2 . - 1 q
s e e t1e 0 . 2By Ut d N In(10) -Gy
. by U b,V .
' U+bd
. 1o 10 . 10 . % iU (B-11)
(.72 « N .
Bubsticuring for U and evaluating et the midpoint, '1' _
2 2
. ;b] loglll i blc]] bz (loglt) - 2bzcllo|l1 + "z°1 -
g8 .20 10 1
1 C2.1 T 1
2b,logh, - 2b,C,
- 2
3" /)
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APPENDIX C

DERIVATION OF C2

From linear regression, the coefficient of multiple determination,
Rz, is given by [34)]

SSRES
TCSS

R =1 - (c-1)
Where SSRES is the residual sum of squares and TCSS is the total corrected
sum of squares. Since SSRES and TCSS are sasured in the vertical direc-

tion, it was desirable to correct them so that their direction is normal

to the slope, m. Let the slope be given by

m= J/K (c-2)
Where J is the side of a triangle along the least squares line and K is
the side of the triangle perpendicular to the least squares line., From

basic geometry,

2o +x? (€-3)
Where I ie the third side of the triangle. I is always in a vertical di-

tection. Substituting from equation C-2 inte C-3 for J,

?e@.-n?end

«x? (w2 +1) (C-4)
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Solving for Kz,

K" = 5 (€c-5)
m +1

{

2/ -

Solving for the correction of the slope, X /1%, ;
{
i

- (C-6) ¥

K__1 , g
1 m +1 i

s 4

Plugging thie into equation C-1 to obtain Rz corrected for the slope,

called Cz.

BT BRSSP

-7

- (c-8)
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APFENDIX D

DNDDPG DOCUMRIIATION

This program consists of a main p.ogram and 25 subroutines. The main

program (DNDDPG) reads in the desired pa vs. AN data and calls subroutine

DELTA to re-create the original a vs. N data. The program flow i{s then

transferred to subroutine CLASS which divides the data into comstant Aa

data sets and then calculates the histogram frequencies for each constant

Aa data set, The program flow is then transferred to subroutine STPLOT

which determines the distribution.

Subroutine STPLOT uses, directly or indirectly, the following sub-

routines.

1.

11,

111.

Parameter EBstimation Subroutines
1. GOLDEN
2. CRVFIT

Scaling Subroutines

1. PRBFLT
2. WBLFRB
3. L1G8cAL
4. LRSCAL
S. INLNSC
6. ODSCAL

Plotting Subroutines

1. DOFLOT
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2. NELT T
; 3. LOGPLT . }
4. WBLPLY
5. onXIs e I
IV, Output Subroutimes
- - 1, RITDAT - . S T ' %
2, RITPAR
..~ Vo General Purpose Subroutines -
. 1. LSTSQR : . T
2. BANK ; :
3. OUTLIR
% 4. NRMIAB _ : : i
.
6. MAXR
7. MAXI
A liscing of this program can be obtained from: PO
Prof. B, M. Hillberry
School of Mechanical Engineering
Purdue University
West Lafayette, Indiana 47907
Phone (317) 494-1600 AR
; |
-
!
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APPENDXX B

CCDDP DOCUMENTAT ION

This program consists of a main program, 53 subroutines, and 18 func-

tion subprograms. The main program (CCDDP) reads in the desired replicate

cycle count data and writes it by callimg subroutine RITDAT. The program

flow is then transferred to subroutine CLASS which cslculates the histo-

gram frequencies for the data, The program flow is then passed to sub-

routine STPLOT which determines the distribution.

Subroutine STPLOT uses, directly or indirectly, the following subh-

routines and function subprograms.

Y. Parameter Estimation Routines

A. Subroutines

1.
2.
3.
4.

5.

MLELN
MLEW
MLEG
MLEGG

HJ

B. Supporting Function Subprograms

1,

2,

FLN
W
FG

FGG
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IX,

e gy e

III,

Statistical Parameters Subroutines
1. NRSTAT
2. WBSTAT
3. GMSTAT
Goodness of Fit Routines
A. Subroutines
1. CHISQR
2. XOLSMR
3. NRMCS
4. WBLCS
5. GAMCS
B, Supporting Function Subprograms
1. FPNRM
2. FWBL
3. FGAM
Output Subroutines
1. RITPAR
2. RITRBS
3. PAROUT
Plotting Routines
A. Main Flotting Subroutines
1, AVNPLT
2, HISPLT
3. NRMPLT
4. LOGPLT

5. WBLPLY

6. GAMPLY

qadoas
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VI,

VII,

VIII,

e Tt R I T

Supporting Plotting Subroutines
1. ODAXIS
2. LGAXIS
3. OMAXIS
4. ScCINOT

Scaling Subroutipes

NRMSCL
WBLSCL
GAMSCL
LGSCAL
LNSCAL
INLNSC
ODSCAL
SCALEL

Strees Intensity Calculation Routines

A,

B.

Subroutine
1. DELTAX
Function Subprogram

1. PFAB

General Purpose Statistical Routines

A.

Subroutines

1. NRMTAB

2. OQUTLIR

Function Subprogrems
1. PNORM

2. FGAMMA
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3. PESI

4. FTRIGN S
S. PINGAM

6. FGM

7. PQONT

T TR PMLTTE A NS CTY 91T BT TR T IR Y
el
¥
v

8. PGMNEG et 4
9‘ FSER oL X - -l - —:'— 7 ::;’ }
10, FFRAC

IX, General Purpose Subroutines

1. TABLEL R 1

LAl o b dena s grtt Ll b A0 R

2. INTHAV B
3. INTERP
4. INVINT
5. LSTSQR

6. INVMAT S e R

7. RANXK
8. MANCHA

9. INITR B T

ot marns

10. 1ITOR

9 - . . . . AU . .- a P . j
11. LOG : . . e . T oL s S ] %
12. MAXR ' j

i

13. MAXI

| A listing of this program can be obtained from Professor B, M.

Hillberry (Appendix D),

!
]
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APPENDIX F

CGRDDP DOCUMENTATION

This program consists of a main program, 50 subroutines, and 17 func-

tion subprograms. This program is nearly {dentical to the CCDDP program °

(Appendix E) and only the main program (CORDDP) and 3 subroutines are

changed. These 3 subroutines are; -
1. CLASS,
2. STPLOT, and

3. RITDAT.

This progra=m requires an input of replicate growth rate data and has the
otma»outfuc as the CCDDP program, Subroutines DELTAK, ITOR, and MAXI and
function subprogram FAB need not be loaded for this program. A listing

of this program can be obtained from Profesgor B, M, Hillbotry'(Appondix
D). . o E
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APFENDIX G

DNLDDP DOCUMENTATION
This program consists of a main program, 49 subroutines, and 17 B
function subprograms. This program is nearly identical to the CGRDDP
program (Appendix F) and only the main program (DNDDP), 9 subroutines,
and 3 function subprograms are changed. The 9 subroutines that are . ... ..
changed are;
1. CLASS, L 1
2, S8TPWIT,
3, MG, :
4. MEGG, 3
i 5. GMBTAT,
6. GAKS,
7. RITDAT,
8. RITPAR, and

S. GAMPLT.
The 3 function subprograms that sre changed are;
1. FG,

2. F0G, and
3. rGAM,
Thie prograw requires an input of replicate growth rate data and hae the

sams output as the CGRDDP program, Subroutine INNMAT need not be loaded |
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for this program, A listing of this program can be

Professor B. M. Hillberry (Appendix D),

s e e R e S e = R

obtained from
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APPENDIX H | ‘

o DELTCP DOCUMENTATION
: This program consists of & omin program and 5 subroutines. The main
program (DELTCP) reads in the desired a vs. N data and calls the proper

subroutine(s) to calculate the Aa vs. AN data according to the desirad

calculation method chosen., The Aa ve. AN calculation subroutines are;

1. REMOVE,

Lo
us .
. L.
; ,
: 1
: . N
* e "
ettt ostabia, a1 SARRR NN

2. STRIP, and

3. DELTA,

The main program then calls subroutine RITDAT to write the ja vs. AN h

data, The only general purpose subroutine required is subroutine LSTSQR,

A listing of this program can be obtained from Professor B, M, Hillberry
(Appendix D).

e At oA i n ek i i

Sttt s o Bbab.

e v anriaten A B R AL IR
——
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APPENDIX 1

DADNCP DOCUMENTATION
This program consists of a main program, 22 oubfdﬁtinol, and 1 func-
tion subprogram. The main program (DADNCP} reads in the desirad a vs. N

data set and calls, directly or indirectly, the following subroutines and

function subprogram,
I. Growth Rate Calculation Subroutines AR
1. DADN
2, SECANT
3. MODSEC T
4, STRIP
5. EVAL

II. Brror Determination Subroutines

1. DELTA
2. INTEGR B A S
3. ERROR

I1I. Output Subroutines
1. RITDAT
2. RITRES
3, RESULT

IV, Plotting Subroutines

1. AVNFLT

2. Lnr

PR g v
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- V. B8caling Sudbroutine

1. LGSCAL

v =

“ 7T yl, Stress Inteusity Calculstion Routines

s 2 7‘0_ smti;.
B, Function Subprograns

1. 748

. VII. General Purpose Subroutines

et fnadsdiife L L TIETESIOY 53R .o

S 2, mam \

3. CHECK : - _,

4, ITOR
3. MAXR
6. LOG

7. LSTSQR

A )isting of this program can be obtained from Professor B, M, Hillberry

(Appendix D).
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|
‘ AVNPRD DOCUMENTATION L
: : This program consists of a main program, 19 subroutines, and 8 func- :
‘ _ tion subprograms. The main program (AVNPRD) reads in the desired distri-
; bution parameters and calls, directly or indirectly, the £.o:¥11w1ng sub- B
: routines and function subprograms. R f i
! I. Random Number Generating Subroutine
i I1. 1Inverse Distribution Subroutines | 3
: 1. INVDIS
; 2. INVNRM G
3. IW2IN i
‘ 4. INILN | i
: 5. INVWBL i
F ‘ 1I1. Prediction Subroutines i ’ %
; 3. MODSEC ‘
| 4, STRIP :

IV. Output Subroutine

[y ! YRR

[ .
& 1. RITDAT
1]




V. Plotting Subroutine

1.

A.

AVNPLT

VI, General Purpose Statistical Rout:inu

Subroutine

1. MNRMTAB

Function Subprograms
FNORM
FGAMMA

FINGAM

1

2

3

4. FGM
S. FGMINT
6. FGMNEG
7. FSER

8. F¥RAC

VII. General Purpose Subroutines

1.
2

3.
b4,
5.

A listing of

(Appendix D),

TABLEL
INTHAV
INTERP
INVINT

MAXR

this program can be obtained from Professor B. M, Hillberry

|
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101

147
7

119

&7
112

40
18
132
118

APPENDIX K

RANDON ORDER OF EXPERIMENTAL TESTS

Ao 2o -

N ) ';;190‘

20.
e,
22.

%,

] 25.

R
T e

T *1?.:’270

28.
29,
30.
a1,

of the 68 spscimens used during testing 15 B8\

60
-88
50

1M -

35
14

61

12

38,

C 47,
48.
49.

“.55.
56.
82,
58.
"-59..
.60.
61,
.
63.

127
6

71

38

78

106
129
k)|

125
2
116

a b B Kol L

]
i
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11,
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