I I I LEVEL ACT-3 COORDINATED SCIENCE LABORATORY APPLIED COMPUTATION THEORY GROUP AN OPTIMAL ALGORITHM FOR FINDING THE KERNEL OF A POLYGON D. T. LEE F. P. PREPARATA AD NO. REPORT R-763 Approved for public release; Distribution Unlimited UILU-ENG 77-2230 UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS 78 07 10 157 | SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) | DEPORT DOCUMENTATION PAGE READ INSTRUCTIONS | | | |---|---|--|--| | | BEFORE COMPLETING FORM NO. 3. RECIPIENT'S CATALOG NUMBER | | | | | | | | | 4. TITLE (and Subtitle) | 5. TYPE OF REPORT & PERIOD COVER | | | | AN OPTIMAL ALGORITHM FOR FINDING THE KERNEL | Technical kepet | | | | OF A POLYGON, | 6. PERFORMING ORG. REPORT NUMBER | | | | 7. AUTHOR(*) | R-783; UILU-ENG 77-2230 | | | | | NSF MCS-76-17321 | | | | D. T. Lee F. P. Preparata | DAAB-07-72-C-0259 | | | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS | 10. PROGRAM ELEMENT, PROJECT, TAS | | | | Coordinated Science Laboratory V University of Illinois at Urbana-Champaign | AREA WORK ONLY NOMBERS | | | | Urbana, Illinois 61801 | | | | | 11. CONTROLLING OFFICE NAME AND ADDRESS | TOTAL TOTAL | | | | Joint Services Electronics Program | NUMBER OF PAGES | | | | | 8 | | | | 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Offi | | | | | | UNCLASSIFIED | | | | | 150. DECLASSIFICATION DOWNGRADIN | | | | Approvedfor public release; distribution unlimit | | | | | Approvedfor public release; distribution unlimit | ted | | | | | ted | | | | Approved for public release; distribution unlimit | ted
F-MCS-76-1732 | | | | Approved for public release; distribution unlimit | ted
F-MCS-76-1732 | | | | Approved for public release; distribution unlimit | ted
F-MCS-76-1732 | | | | Approved for public release; distribution unlimit | 1 1000 Reports F-MCS-76-1732 | | | | Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 10, 11 allease 15. DAABOI-12-C-0259, NS 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block nu Computational Complexity Kernel of I | 1 1000 Reports F-MCS-76-1732 230 1mber) | | | | Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT FOR THE SDATES OF THE STATES | 1 1000 Reports F-MCS-76-1732 230 1mber) | | | | Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abstract shields in Block to, Halfand 15. DAABOI-12-C-0259, NS 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block nu Computational Complexity Kernel of I | 1 1000 Reports F-MCS-76-1732 230 1mber) | | | | Approved for public release; distribution unlimit 17. DISTRIBUTION OF ATTEMENT FOR THE SECURIST IN BIOCK 10, 11 Miles 15. DA ABOII—12—C—0259, MS 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block nu Computational Complexity Kernel of I Computational Geometry Design of Algorithms Optimal Algorithms | ted F-MCS-76-1732 230 polygon BT2+ | | | | Approved for public release; distribution unlimit 17. DISTRIBUTION OF ATTEMENT FOR THE SDETFER SHIPS OF THE STATE OF THE SDETFER SHIPS | ted F-MCS-76-1732 230 polygon BIZP polygon BIZP potices is the locus of the point | | | | Approved for public release; distribution unlimit 17. DISTRIBUTION OF ATTEMENT (OF THE SDETFECT ENTOTED IN BIOCK 20, 11 Allease 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block not Computational Complexity Computational Geometry Design of Algorithms Optimal Algorithms 20. ABSTRACT (Continue on reverse side if necessary and identify by block not the kernel K(P) of a simple polygon P with n verinternal to P from which all vertices of P are visited. | ted F-MCS-76-1732 230 Imber) Polygon DI2+ Tices is the locus of the pointsible. Equivalently, K(P) is | | | | Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the abstract shield in Block 20, 14 difference of the supplementary NOTES. 18. SUPPLEMENTARY NOTES. 19. KEY WORDS (Continue on reverse side if necessary and identify by block not Computational Complexity Computational Geometry Design of Algorithms Optimal Algorithms 20. ABSTRACT (Continue on reverse side if necessary and identify by block not the kernel K(P) of a simple polygon P with n verinternal to P from which all vertices of P are vithe intersection of appropriate half-planes determined the intersection of n generic half-planes. | ted F-MCS-76-1732 Simber) Polygon DI2P Tices is the locus of the point is the. Equivalently, K(P) is ermined by the polygon's edges has is known to require time | | | | Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (OF the abstract shield in Block 20, 14 difference of the supplementary notes. 18. Supplementary notes. 19. KEY WORDS (Continue on reverse side if necessary and identify by block notes). Computational Complexity Kernel of I Computational Geometry. Design of Algorithms Optimal Algorithms 20. ABSTRACT (Continue on reverse side if necessary and identify by block notes). The kernel K(P) of a simple polygon P with n verification of appropriate half-planes determined to P from which all vertices of P are visited intersection of appropriate half-planes determined intersection of n generic half-planes of the intersection, we show that one can exploit the order | Polygon DI2P retices is the locus of the polisible. Equivalently, K(P) is ermined by the polygon's edges are is known to require time ring of the half-planes cor- | | | | Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (OF THE SDETTSET IN BIOCK 20, 14 difference of the supplementary notes. 18. Supplementary notes. 19. Key words (Continue on reverse side if necessary and identify by block notes) Computational Complexity Computational Geometry Design of Algorithms Optimal Algorithms 20. ABSTRACT (Continue on reverse side if necessary and identify by block notes) The kernel K(P) of a simple polygon P with n verifice intersection of appropriate half-planes deter although the intersection of n generic half-planes. | Polygon BIZP retices is the locus of the point is the Equivalently, K(P) is ermined by the polygon's edges hes is known to require time ring of the half-planes cores to obtain a kernel finding | | | | Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT for the abstract entered in Brock 20, 11 allease 15. DAABOI-12-C-0259, NS 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block not Computational Complexity Computational Geometry Design of Algorithms Optimal Algorithms 20. ABSTRACT (Continue on reverse side if necessary and identify by block not the kernel K(P) of a simple polygon P with n verinternal to P from which all vertices of P are vithe intersection of appropriate half-planes determined in the section of notes of the polygon's edge responding to the sequence of the polygon's edge responding to the sequence of the polygon's edge. | Polygon BIZP retices is the locus of the point is the Equivalently, K(P) is ermined by the polygon's edges hes is known to require time ring of the half-planes cores to obtain a kernel finding | | | | and | £713 | White Section > | |---|------|---| | IT | | | | A 144 A 1444 | | *************************************** | | | DY | THOU/AVAILABILITY COORS AVAIL and/or SPECIAL | ## LEVELI UILU-ENG 77-2230 AN OPTIMAL ALGORITHM FOR FINDING THE KERNAL OF A POLYGON by D. T. Lee and F. P. Preparata This work was supported in part by the National Science Foundation under Grant NSF MCS-76-17321 and in part by the Joint Services Electronics Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAB-07-72-C-0592. Reproduction in whole or in part is permitted for any purpose of the United States Government. Approved for public release. Distribution unlimited. ## AN OPTIMAL ALGORITHM FOR FINDING THE KERNEL OF A POLYGON D. T. Lee and F. P. Preparata University of Illinois at Urbana-Champaign ## Abstract The kernel K(P) of a simple polygon P with n vertices is the locus of the points internal to P from which all vertices of P are visible. Equivalently, K(P) is the intersection of appropriate half-planes determined by the polygon's edges. Although the intersection of n generic half-planes is known to require time O(nlogn), we show that one can exploit the ordering of the half-planes corresponding to the sequence of the polygon's edges to obtain a kernel finding algorithm which runs in time O(n) and is therefore optimal. This work was supported by the National Science Foundation under Grant NSF MCS 76-17321 and by the Joint Services Electronics Program under Contract DAAB-07-72-C-0259. AN OPTIMAL ALGORITHM FOR FINDING THE KERNEL OF A POLYGON* D. T. Lee and F. P. Preparata Coordinated Science Laboratory University of Illinois Urbana, Illinois 61801 1. The <u>kernel</u> K(P) of a simple polygon P is the locus of the points internal to P which can be joined to every vertex of P by a segment totally contained in P. Equivalently, if one considers the boundary of P as a counterclockwise directed cycle, the kernel of P is the intersection of all the half-planes lying to the left of the polygon's edges. Shamos and Hoey [1] have presented an algorithm for finding the kernel of an n-edge polygon in time O(nlogn). Their algorithm is based on the fact that the intersection of n generic half-planes can be found in time O(nlogn); they also show that O(nlogn) is a lower-bound to the time for finding the intersection of n half-planes. However, this lower-bound does not apply to the problem of finding the kernel, since in the latter case the half-planes are ordered according to the sequence of the edges of P, nor does their algorithm take advantage of this order. In this note we shall show that, indeed, this ordering can be exploited to yield an algorithm which runs in time linear in the number of the edges. Obviously, since each edge must be examined, the time of our algorithm is optimal within a multiplicative constant. 2. It is obvious that the kernel of the polygon P, being the intersection of half-planes, is a <u>convex</u> polygon K(P). We shall denote P by a doubly-linked list of vertices and intervening edges as $v_0e_0v_1e_1...v_{n-1}e_{n-1}v_0$. ^{*} This work was supported by the National Science Foundation under Grant NSF MCS 76-17321 and by the Joint Services Electronics Program under Contract DAAB-07-72-C-0259. We also impose a direction upon each edge such that the interior of the polygon lies to the left of the edge, or, equivalently, the boundary of P is directed counterclockwise. A vertex v_i is called <u>reflex</u> if the angle formed by its two adjacent edges e_{i-1} and e_i meeting at v_i is greater than π , and it is called <u>convex</u> otherwise. The algorithm we shall outline scans in order the vertices of P and constructs a sequence of polygonal chains K_0 , K_1 , ..., K_{n-1} , called kernel chains. Each of these chains is a sequence of portions of straight lines, whose first and last members are half-lines and all others are line segments. As we shall show, the polygonal chain K_i bounds the intersection of the appropriate half-planes determined by e_0 , e_1 , ..., e_i . Due to convexity, the angle between two consecutive edges of a kernel chain is always $< \pi$. Notationally, if points w_i and w_{i+1} belong to the line containing the edge e_i of P, then $w_i e_i w_{i+1}$ denotes the segment between w_i and w_{i+1} and directed like e_i ; moreover, k_i denotes a point at infinity and, for example, k_i denotes a half line terminating at vertex w_i and directed like edge e_i . If P has no reflex vertex, then P is convex and K(P) = P. Thus let v_0 be a reflex vertex of P. Referring to figure 1, we set K_0 equal to the intersection of the half-planes lying to the left of edges e_{n-1} and e_0 . Notationally, K_0 will be represented by the string of symbols $A e_0 v_0 e_{n-1} A$. For each K_i it will be convenient to distinguish two vertices, F_i and L_i , which delimit the sequence of vertices of K_i which are visible from v_i ; these two vertices play, as we shall see, a very important role in the construction of K_{i+1} from K_i . Obviously, in K_0 we have $F_0 = L_0 = v_0$. Figure 1. Illustration of kernel chain Ko We now develop the advancing mechanism of the algorithm, i.e., the process of constructing $(K_{i+1}, F_{i+1}, L_{i+1})$ from (K_i, F_i, L_i) . For later ease of reference, it is convenient to distinguish a hierarchy of different cases. (1) v_i is reflex (see figures 2a and b). In this case L_i lies on or to the left of the half line $v_i e_{i-1} \land$ and, obviously, $L_{i+1} \leftarrow L_i$. Candidates for F_{i+1} are only points belonging to the subchain delimited by F_i and L_i . We now examine where the segment $v_{i+1}F_i$ lies with respect to $\land e_i v_{i+1}$. (1.1) $v_{i+1}F_i$ lies to the right of $Ne_i v_{i+1}$ (figure 2a). We scan the Figure 2 - Advancing mechanism when v, is reflex. kernel sequence counterlockwise from F_i , until we find a kernel vertex w_t on or to the left of $\Lambda e_i \ v_{i+1}$. If no such vertex exists, then the kernel is empty. Otherwise we can determine a unique point w' as the intersection of the segment $w_t w_{t-1}$ and $\Lambda e_i \ v_{i+1}$ and set $F_{i+1} \leftarrow w'$. Next we scan the kernel sequence clockwise from F_i until we find a point w'', intersection of $\Lambda e_i \ v_{i+1}$ and some segment $w_s w_{s-1}$. Then if $K_i = \alpha w_s \dots w_{t-1} \beta$, where α and β are sequences of alternating edges and vertices, we set $K_{i+1} = \alpha w'' e_i w' \beta$. - $(1.2) \ \underline{v_{i+1}}^F i \ \text{lies ot the left of } \Lambda e_i \ \underline{v_{i+1}} \ \text{(figure 2b)}. \ \text{Let}$ $w_s, \ w_{s+1}, \dots, w_{s+r} \ \text{be the sequence of the kernel vertices between } F_i \ \text{and}$ $L_i, \ \text{with } w_s = F_i \ \text{and } w_{s+r} = L_i. \ \text{Let } \gamma_j \ \text{denote the angle measured counter-}$ $\text{clockwise from the segment } w_j v_{i+1} \ \text{(directed from } w_j \ \text{to } v_{i+1} \text{) to } e_i. \ \text{We}$ $\text{successively examine the angles } \gamma_s, \ \gamma_{s+1}, \dots, \ \text{until we find some } w_{s+p}, \ \text{(}0 \leq p \leq r\text{)}, \ \text{such that } \gamma_{s+p} \ \text{is minimal.} \ \text{Notice that since } K_i \ \text{is a}$ $\text{convex polygon, only } w_s, \ w_{s+1}, \dots, w_{s+p}, \ w_{s+p+1} \ \text{need to be examined to}$ $\text{find } w_{s+p}. \ \text{We then set } F_{i+1} \leftarrow w_{s+p} \ \text{and } K_{i+1} \leftarrow K_i.$ - (2) v_i is convex (see figures 3a,b,c,d). In this case F_i lies on or to the left of the half-line Λe_{i-1} v_i . To determine L_{i+1} , we distinguish whether the vertex L_i lies to the left of $v_i e_i \Lambda$ or not. - (2.1) $\underline{L_i}$ lies on or to the right of $\underline{v_i}e_i^{\Lambda}$ (figures 3a,b). We scan the kernel sequence $\underline{K_i}$ clockwise from $\underline{L_i}$ until we determine a unique segment $\underline{w_t}w_{t-1}$ such that $\underline{w_t}$ and $\underline{w_{t-1}}$ lie, respectively, to the right and to the left of $\underline{v_i}e_i^{\Lambda}$: we can then determine the intersection point $\underline{w'}$ of $\underline{w_t}w_{t-1}$ and $\underline{v_i}e_i^{\Lambda}$. We must distinguish where $\underline{v_{i+1}}$ lies with respect to $\underline{w'}$. Let $\underline{K_i} = \alpha w_t \beta$. $(2.1.1) \quad v_{i+1} \in w'e_i \Lambda \text{ (figure 3a). Clearly } L_{i+1} \leftarrow v_{i+1} \text{ and}$ $F_{i+1} \leftarrow w'; \quad \text{also, we obtain } K_{i+1} \leftarrow \alpha \, w'e_i v_{i+1} e_i \Lambda.$ Figure 3. Advancing mechanism when v_i is convex. (2.1.2) $v_{i+1} \in v_i e_i w'$ (figure 3b). Let γ_j denote the counterclockwise angle from the directed segment $w_j v_{i+1}$ to e_i . If $w_s \cdots w_{s+r}$ is the sequence of kernel vertices from F_i to L_i , then we successively examine the angles γ_s , γ_{s+1} ,..., until we find a minimal γ_{s+p} . We then set $L_{i+1} \leftarrow w'$, $F_{i+1} \leftarrow w_{s+p}$, and $K_{i+1} \leftarrow \alpha w' e_i \Lambda$. (2.2) $\underline{L_i}$ lies to the left of $\underline{v_i}e_i\Lambda$ (figures 3c,d). Let $\underline{K_i} = \alpha \underline{L_i}e^i\Lambda$. We determine the intersection \underline{w}' of $\underline{Le}'\Lambda$ and $\underline{v_i}e_i\Lambda$. (2.2.1) $v_{i+1} \in w'e_i \Lambda$ (figure 3c). In this case, we set $L_{i+1} \leftarrow v_{i+1}$, $F_{i+1} \leftarrow w'$ and $K_{i+1} \leftarrow \alpha L_i e'w'e_i v_{i+1} e_i \Lambda$. (2.2.2) $v_{i+1} \in v_i^e_i w'$ (figure 3d). In this case, F_{i+1} is determined exactly as in the corresponding case described in (2.1.2) (figure 3b) whereas $L_{i+1} \leftarrow w'$ and $K_{i+1} \leftarrow \alpha L_i^e'w'e_i \Lambda$. In all of the above cases, it is immediate to realize that K_{i+1} is the intersection of K_i and of the half-plane to the left of e_i . Using the advancing mechanism described above, we ultimately obtain the kernel chain K_{n-1} , which, if K(P) is nonempty, is nonsimple (see figure 4), i.e., it has a crossing point w. Our remaining task is finding w. Let $K_{n-1} = \Lambda e_0' w_1 e_1' \dots w_m e_m' \Lambda$. We scan the edge sequence of K_{n-1} , starting from e_2' , and at the i-th step, for $i \geq 2$, we check whether w_1 lies to the left of the line containing e_1' , directed like e_1' . Let s be the smallest value of i for which w_1 lies to the right of e_1' . Next we scan the vertex sequence $(w_1 w_2 \dots)$ until we reach a vertex w_r , such that w_{r-1} and w_r lie on opposite side of e_1' . At this point we check whether e_1' and e_{r-1}' intersect: if they do, their intersection is the sought w_i otherwise we replace w_1 with w_r and continue the process (repeating the alternate scanning of the edge sequence and vertex sequence) until the intersection is found. Figure 4. Finding K(P) from Kn-1. We now analyze the performance of the algorithm outlined above. In case (1.1) we scan K_i starting from F_i , both counterclockwise and clockwise, and let v_i be the total number of edges visited before finding the two intersections w' and w". This process actually removes v_i - 2 edges from K_i (those comprised between w_i and w_{t-1} in figure 2a) and since each of the removed edges is colinear with a distinct edge of P, the total number of vertices visited by the algorithm in handling case (1.1) is at most O(n). In case (1.2), we scan K_i counterclockwise starting from F_i , and clearly (p+1) is the total number of vertices visited before we find w_{s+p} . But in this process the distinguished point "F" has advanced p positions (from $F_i = w_s$ to $F_{i+1} = w_{s+p}$) counterclockwise. Since the number of vertices of any K_j is at most O(n), and the point "F" can only advance on kernel chains, we conclude that the total number of vertices visited by the algorithm in handling case (1.2) is at most O(n). In case (2.1) the intersection w' of $v_i^e_i \Lambda$ and $w_t^w_{t-1}$ involves scanning K_i clockwise from L_i . Let μ_i be the total number of edges visited before finding w'. This process actually removes μ_i edges from K_i (those comprised between w_t and Λ). Here again, since each of the removed edges is colinear with a distinct edge of P, the total member of vertices visited by the algorithm in finding w' in case (2.1) is at most O(n). Case (2.1.1) requires a constant amount of work. Case (2.1.2) requires globally an amount of work at most O(n), by an argument identical to that developed for case (1.2). The discussion of cases (2.2), (2.2.1), and (2.2.2) is exactly analogous to that of (2.1), (2.1.1), and (2.1.2), respectively. Finally, it is straightforward to realize that finding the intersection w in K_{n-1} requires at most O(n) operations. In summary, we conclude that finding the kernel of a simple polygon runs in time O(n), which is clearly optimal within a factor. ## References - [1] M. I. Shamos and D. Hoey, "Geometric Intersection Problems", Proc. 17th Annual Symposium on Foundations of Computer Science, October 1976, pp. 208-215. - [2] M. I. Shamos, "Geometric Complexity", Proc. Seventh Annual ACM SIGACT Symposium, May 1975, pp. 224-233.