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AN OPTIMAL ALGORITHM FOR FINDING THE KERNEL OF A POLYGON

D. T. Lee and F. P. Preparata
University of Illinois at Urbana-Champaign

Abstract

The kernel K(P) of a simple polygon P with n vertices is the locus of
the points internal to P from which all vertices of P are visible.
Equivalently, K(P) is the intersection of appropriate half-planes determined
by the polygon's edges. Although the intersection of n generic half-
planes is known to require time O(nlogn), we show that one can exploit
the ordering of the half-planes corresponding to the sequence of the
polygon's edges to obtain a kernel finding algorithm which runs in time

0O(n) and is therefore optimal,

This work was supported by the National Science Foundation under Grant
._NSF MCS 76-17321 and by the Joint Services Electronics Program under
Contract DAAB-07-72-C-0259.




‘E AN OPTIMAL ALGORITHM FOR FINDING THE KERNEL OF A POLYGON*

D. T. Lee and F. P. Preparata

Coordinated Science Laboratory
‘z University of Illinois
Urbana, Illinois 61801

1. The kernel K(P) of a simple polygon P is the locus of the points
internal to P which can be joined to every vertex of P by a segment totally

contained in P. Equivalently, if one considers the boundary of P as a !

counterclockwise directed cycle, the kernel of P is the intersection of all
the half-planes lying to the left of the polygon's edges.

Shamos and Hoey [1] have presented an algorithm for finding the kernel
of an n-edge polygon in time O(nlogn). Their algorithm is based on the fact
that the intersection of n generic half-planes can be found in time 0(nlogn);
they also show that O(nlogn) is a lower-bound to the time for finding the
intersection of n half-planes. However, this lower-bound does not apply to
the problem of finding the kernel, since in the latter case the half-planes
are ordered according to the sequence of the edges of P, nor does their
algorithm take advantage of this order. 1In this note we shall show that,
indeed, this ordering can be exploited to yield an algorithm which runs in
time linear in the number of the edges. Obviously, since each edge must be ke
examined, the time of our algorithm is optimal within a multiplicative

constant.

2. It is obvious that the kernel of the polygon P, being the inter-
section of half-planes, is a convex polygon K(P). We shall denote P by a

doubly-linked list of vertices and intervening edges as Vo20'1%1° * *Vn-1%n-1Y0"

4 This work was supported by the National Science Foundation under Grant
NSF MCS 76-17321 and by the Joint Services Electronics Program under Contract
DAAB-07-72-C-0259.
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We also impose a direction upon each edge such that the interior of the
polygon lies to the left of the edge, or, equivalently, the boundary

of P is directed counterclockwise. A vertex vi is called reflex if the

angle formed by its two adjacent edges e and e, meeting at v

| 1 is greater

i

than 7, and it is called convex otherwise.
The algorithm we shall outline scans in order the vertices of P and

constructs a sequence of polygonal chains K_,K K , called kernel chains.

0 Ky2 oo

Each of these chains is a sequence of portions of straight lines, whose first

n-1

and last members are half-lines and all others are line segments. As we shall
show, the polygonal chain K1 bounds the intersection of the appropriate half-
planes determined by eo,el,...,ei. Due to convexity, the angle between two
consecutive edges of a kernel chain is always < m. Notationally, if points

v, and Vil belong to the line containing the edge esi of P, then wi.siwi+1

denotes the segment between LA and wi+1 and directed like e  ; moreover,
i

A denotes a point at infinity and, for example, Aew denotes a half line
terminating at vertex w and directed like edge e.
If P has no reflex vertex, then P is convex and K(P) = P. Thus

let Yo be a reflex vertex of P. Referring to figure 1, we set Ko equal

to the intersection of the half-planes lying to the le ft of edges e -1 and

e Notationally, Ko will be represented by the string of symbols

0
A €9 Vo -1 A. For each Ki it will be convenient to distinguish two vertices,
F1 and Li’ which delimit the sequence of vertices of Ki which are visible

from vy these two vertices play, as we shall see, a very important role

in the construction of K1+1 from Ki' Obviously, in Ky we have Fo = L0 = vy

ROt e




Figure 1. Illustration of kernel chain Ko

We now develop the advancing mechanism of the algorithm, i.e., the

process of constructing (Ki+1’ Fi+1’ L1+1) from (Ki’ Fi’ Li)' For later

ease of reference, it is convenient to distinguish a hierarchy of different

cases.

(1) v, is reflex (see figures 2a and b). In this case L1 lies on

or to the left of the half line viei-lA and, obviously, Li+1* Li' Candidates

for F are only points belonging to the subchain delimited by Fi and Li'

i+l
We now examine where the segment v1+1F1 lies with respect to Agi S

(1.1) vi+1Fi lies to the right of Aei Vel (figure 2a). We scan the

(a) (b)

Figure 2 - Advancing mechanism when v, is reflex.
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kernel sequence counterlockwise from Fi’ until we find a kernel vertex w, on

or to the left of Aei v If no such vertex exists, then the kernel

i+l’
is empty. Otherwise we can determine a unique point w' as the intersection

of the segment VW and Aei Visl and set Fi+1 < w . Next we scan the

kernel sequence clockwise from F, until we find a point w", intersection

i

of Aei v and some segment wow Then if Ki = aws...wt_lﬁ, where

i+l s-l'

o and B are sequences of alternating edges and vertices, we set Ki+1 -
wneiwla.

(1.2} vi+1Fi lies ot the left of Aei Vin (figure 2b)., Let

Wes WopoeeeaWo be the sequence of the kernel vertices between Fi and

Li’ with " Fi and w = Li' Let Yj denote the angle measured counter-

str

clockwise from the segment w +1 (directed from wj to vi+1) to e. We

i

successively examine the angles Ys* Yg412°°*? until we find some ws+p’
(0 < p € r), such that Ys+p is minimal. Notice that since Ki is a
convex polygon, only LA ws+1,...,ws+p, ws+p+1 need to be examined to

find L We then set F

+p° i+1 ¢ ws+p and Ki+1 - Ki'

(2) vy is convex (see figures 3a,b,c,d). In this case Fi lies

on or to the left of the half-line Aei_1 Vie To determine Li+1’ we

distinguish whether the vertex L, lies to the left of vieiA or not.

(2.1) Li lies on or to the right of vieiA (figures 3a,b). We scan

the kernel sequence K, clockwise from Li until we determine a unique

segment w W such that L and Vol lie, respectively, to the right

t-1
and to the left of vieiA: we can then determine the intersection point

w' of W W and vieiA. We must distinguish where Visl lies with respect

t-1
]
to w'. Let iy ath.

"
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F

i+l

-w';

]
(2.1.1) viﬂe w eil\ (figure 3a). Clearly Li+1 - Vil

also, we obtain K

(c)

Figure 3.

i+l

Advancing mechanism when v

- 1
aw' eV, eA.

i

(b)

(d)

is convex.

and




2.1.2) v w' (figure 3b). Let Yy denote the counter-

11 ¥1%
is o ire 5 NV - o sie

clockwise angle from the directed segment val+1 to e, If Woee oW

is the sequence of kernel vertices from Fi to Li’ then we successively

exanine the angles Ygr Yogpooeeo until we find a minimal Vs+p° We then

' , Yooy '
set Li+1 -w, Fi+1 + ws+p’ and ki+1 aw eiA.

(2:2) Li lies to the left of vieiA (figures 3c¢,d). Let Ki =

aLie'A. We determine the intersection w' of Le'A and VieiA'
(2.2.1) vi+lE w'eiA (figure 3c¢). In this case, we set

1]
- F « w and Ki+

-~ ' '
Li+1 Vi Fivl aLie we.,v e.A.

1 s S oo 1 &

2 ] : - P
(2.2.2) vi+1€ vieiw (figure 34). In this case, F,

i+l =3

determined exactly as in the corresponding case described in (2.1.2)

: . ' , - itsy
(figure 3b ) whereas Li+ « w' and ki+1 aLit w eiA.

1

In all of the above cases, it is immediate to realize that K1+1 is

the intersection of Ki and of the half-plane to the left of e
Using the advancing mechanism described above, we ultimately
obtain the kernel chain Kn-l’ which, if K(P) is nonempty, is nonsimple
(see figure 4), i.e., it has a crossing point w. Our remaining task is
- ' ' ' ¥
finding w. Let Ko-1 Aeowlel... wmemA. We scan the edge sequence of

K , starting from e!, and at the i-th step, for i = 2, we check whether

n-1

lies to the left of the line containing ei, directed like e!. Let s

w
: 1

1
be the smallest value of i for which vy lies to the right of e;. Next
we scan the vertex sequence (wlwz...) until we reach a vertex wr, such
that Veul and v, lie on opposite side of e;. At this point we check

whether e; and e' _ intersect: if they do, their intersection is the

r~1

sought w; otherwise we replace wy with b and continue the process

(repeating the alternate scanning of the edge sequence and vertex




sequence) until the intersection is found.

Figure 4. Finding K(P) from Kn-l'

3. We now analyze the performance of the algorithm outlined
above.

In case (l.1) we scan l(i starting from Fi’ both counterclockwise
and clockwise, and let vy be the total number of edges visited before
finding the two intersections w' and w". This process actually removes
vy = 2 edges from Ki (those comprised between vy and Vel in figure 2a)
and since each of the removed edges is colinear with a distinct edge of
P, the total number of vertices visited by the algorithm in handling
case (1.1) is at most O(n).

In case (1.2), we scan l(1 counterclockwise starting from Fi’ and

clearly (p+l) is the total number of vertices visited before we find Vetp®

But in this process the distinguished point "F" has advanced p positions

P PP,
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vertices of any K

(from Fi ol to Fi+l =w ) counterclockwise. Since the number of

stp

3 is at most 0(a), and the point "F" can only advance
on kernel chains, we conclude that the total number of vertices visited
by the algorithm in handling case (1.2) is at most O(n).

In case (2.1) the intersection w' of vieiA and WV involves
scanning Ki clockwise from Li' Let by be the total number of edges
visited before finding w'. This process actually removes i edges from
Ki (those comprised between W, and \). Here again, since each of the
removed edges is colinear with a distinct edge of P, the total member
of vertices visited by the algorithm in finding w' in case (2.1) is at
most O(n).

Case (2.1l.1) requires a counstant amount of work. Case (2.1.2)
requires globally an amount of work at most O(n), by an argument identical
to that developed for case (l.2).

The discussion of cases (2.2), (2.2.1), and (2.2.2) is exactly
analogous to that of (2.1), (2.1.1), and (2.1.2), respectively.

Finally, it is straightforward to realize that finding the inter-
section w in Kn-l requires at most O(n) operations,

In summary, we conclude that finding the kernel of a simple

polygon runs in time O(n), which is clearly optimal within a factor.
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